![]() |
中文 |
![]() |
English | ![]() |
|
研究方向: 信号及高光谱图像处理、机器学习、深度学习 教育经历: 2007.09-2011.07 西安交通大学 数学与应用数学/金融学 本科/学士 2011.09-2013.09 法国特鲁瓦技术大学 系统优化与可靠性 研究生/硕士 2013.10-2016.09 法国特鲁瓦技术大学 系统优化与可靠性 研究生/博士 代表性论文与著作: [1] A.J.X. GUO, F. ZHU. Spectral-spatial feature extraction and classification by ANN supervised with center loss in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, Accepted. [2] F. ZHU, A. Halimi, P. Honeine, B. Chen, N. Zheng. Correntropy maximization via ADMM: application to robust hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 9. pp. 4977-4955, 2017. [3] F. ZHU, P. Honeine. Bi-objective nonnegative matrix factorization Linear Versus Kernel-Based Models. IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no.7, pp. 4012-4022, 2016. [4] F. ZHU, P. Honeine. Online kernel nonnegative matrix factorization. Signal Processing, vol. 131, pp. 143-153, 2017. [5] F. ZHU, A. Halimi, P. Honeine, B. Chen, N. Zheng. ADMM for Maximum Correntropy Criterion. 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, 24--29 Jul., 2016. [6] F. ZHU, P. Honeine. Online nonnegative matrix factorization based on kernel machines. 23th European Conference on Signal Processing (EUSIPCO). Nice, France, 31 Aug.--4 Sept.,2015. [7] F. ZHU, P. Honeine. Pareto front of bi-objective kernel-based nonnegative matrix factorization. 23th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). Bruges, Belgium, 22--24 Apr. 2015. [8] F. ZHU, P. Honeine, K. Maya. Kernel non-negative matrix factorization without the pre-image problem. 24th IEEE workshop on Machine Learning for Signal Processing (MLSP). Reims, France, 21--24 Sept. 2014. |