[1] P. Ren, H. Tang and F.-Y. Wang. Distribution-path dependent nonlinear SPDEs with application to stochastic transport type equations. Potential Anal., 61(2):379-407, 2024.
[2] Y. Miao, C. Rohde and H. Tang. Well-posedness for a stochastic Camass-Holm type equation with higher order nonlinearities. Stoch. Partial Differ. Equ. Anal. Comput. 12(2024), no.1, 614-674.
[3] H. Tang and Z. Wang. Strong solutions to nonlinear stochastic aggregation-diffusion equations. Commun. Contemp. Math., 26 (2024), no. 02, Paper No. 2250073.
[4] H. Tang. On the stochastic Euler-Poincaré equations driven by pseudo-differential/multiplicative noise. J. Funct. Anal. 285 (2023), no.9, Paper No. 110075, 61 pp.
[5] H. Tang and A. Yang. Noise effects in some stochastic evolution equations: global existence and dependence on initial data. Ann. Inst. Henri Poincaré Probab. Stat., 59(1) (2023), 378-410.
[6] D. Alonso-Orán, Y. Miao and H. Tang. Global existence, blow-up and stability for a stochastic transport equation with non-local velocity. J. Differential Equations, 335 (2022), 244-293.
[7] D. Alonso-Orán, C. Rohde and H. Tang. A local-in-time theory for singular SDEs with applications to fluid models with transport noise. J. Nonlinear Sci. 31 (2021), no. 6, Paper No. 98, 55 pp.
[8] J. Li, H. Liu and H. Tang. Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in〖 R〗^2. Stochastic Process. Appl. 135 (2021), 139-182.
[9] C. Rohde and H. Tang. On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. Nonlinear Differ. Equ. Appl. 28 (2021), no. 1, Paper No. 5, 34 pp.
[10] C. Rohde and H. Tang. On a stochastic Camassa-Holm type equation with higher order nonlinearities. J. Dynam. Differential Equations 33 (2021), no. 4, 1823-1852.
[11] H. Tang. On the pathwise solutions to the Camassa-Holm equation with multiplicative noise. SIAM J. Math. Anal. 50 (2018), no. 1, 1322-1366.
[12] Z. Liu and H. Tang. Global well-posedness for the Fokker-Planck-Boltzmann equation in Besov-Chemin-Lerner type spaces. J. Differential Equations 260 (2016), no. 12, 8638-8674.
[13] H. Tang and Z. Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 2229-2256.
[14] H. Tang and Z. Liu. Well-posedness of the modified Camassa-Holm equation in Besov spaces. Z. Angew. Math. Phys. 66 (2015), no. 4, 1559-1580.
[15] H. Tang, S. Shi and Z. Liu. The dependences on initial data for the b-family equation in critical Besov space. Monatsh. Math. 177 (2015), no. 3, 471-492.
[16] H. Tang and Z. Liu. Continuous properties of the solution map for the Euler equations. J. Math. Phys. 55 (2014), no. 3, 031504, 10 pp.
[17] H. Tang, Y. Zhao and Z. Liu. A note on the solution map for the periodic Camassa-Holm equation. Appl. Anal. 93 (2014), no. 8, 1745-1760.
[18] Z. Liu and H. Tang. Explicit periodic wave solutions and their bifurcations for generalized Camassa-Holm equation. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 (2010), no. 8, 2507-2519.