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Classic scattering problems

uinc : plane or point source wave.

(∂2
x1

+ ∂2
x2

)usc + k2usc = 0, in R2/D̄,

usc = −uinc , on ∂D.

Boundary condition at ∞:
Sommerfeld radiation condition
(Sommerfeld 1912):

lim
r→∞

√
r

(
∂usc

∂r
− ikusc

)
= 0.

Borrowed from the internet.



Perfectly matched layer

Mathematically, the PML (Berenger
JCP 1994) introduces complexified
coordinate transformations

x̃j = xj + iS

∫ x2

0

σj(t)dt, j = 1, 2, (1)

and truncates the domain by enforcing
the following boundary condition

usc(x̃1, x̃2) = 0,

on the PML boundary.
Borrowed from the internet.



Layerd-medium scattering problem

Γ: A local perturbation of x2 = 0.

usc no longer satisfies Sommerfeld radiation condition.



Sommerfeld Radiation Condition

usc
ref : the scattered wave due to plane wave uinc incident on x2 = 0, i.e., the

unperturbed case when D = ∅. Computable!
usc satisfies:
uog := usc − usc

ref satisfies Sommerfeld radiation condition in R2/Γ, i.e.,

∂ru
og − ik±uog = O(r−1/2), r →∞, inR2

±.

This condition still gaurantees uniqueness and existence of usc (see Monk
2003, Chen & Zheng 2012, Bao, Hu and Yin 2018).
Advantage in computation: Perfectly Matched Layer (Berenger JCP 1994)
absorbs uog .



Perfectly matched layer

Since uog satisfies Sommerfeld radiation condition, we could use PML to
absorb it.

PML:

x̃j = xj + iS

∫ xj

0

σj(t)dt, j = 1, 2. (2)

We enforce
ũog (x1, x2) =: uog (x̃1, x̃2) = 0, on Γ2.



Our Problem

Governing equations:

∆utot + k2utot =0, on Ω, (3)

utot =0, on Γ, (4)

Geometrical condition:

(GC1) : (x1, x2) ∈ Ω⇒ (x1, x2 + a) ∈ Ω, ∀a ≥ 0,

(GC2): some (and hence any) period of ΓT contains a line segment,



Motivation

I Does utot or any related function satisfies the SRC?

I How to truncate the computational domain by using the PML?

I How to efficiently and accurately compute utot?



Radiation condition

Two types of incidences:

(i) a plane wave uinc(x) = e ik(cos θx1−sin θx2) for the incident angle θ ∈ (0, π);

(ii) a cylindrical wave uinc(x ; x∗) = G(x ; x∗) = i
4
H

(1)
0 (k|x − x∗|) excited by a

source at x∗ = (x∗1 , x
∗
2 ) ∈ Ω.

Sommerfeld radiation condition1:

(i). For the plane-wave incidence, uog := utot − utot
ref , where utot

ref is the
reference scattered field for the unperturbed scattering curve Γ = ΓT ,
satisfies the following half-plane Sommerfeld radiation condition (hSRC):
for some sufficiently large R > 0 and any ρ < 0,

lim
r→∞

sup
α∈[0,π]

√
r |∂ruog(x)− ikuog(x)| = 0, sup

r≥R
r 1/2|uog(x)| <∞,

and uog ∈ H1
ρ(SR

H ), (5)

where x = (r cosα,H + r sinα), SR
H = SH ∩ {x : |x1| > R}, and

H1
ρ(·) = (1 + x2

1 )−ρ/2H1(·) denotes a weighted Sobolev space.

(ii). For the cylindrical incidence, the total field uog := utot itself satisfies the
hSRC (5) in ΩH . Thus, the scattered field usc satisfies (5) as well since
uinc satisfies (5).

1Hu,L., Rathsfeld, SIAP, 2021



Related works

I Well-posedness theory:
I Chandler-Wilde and Monk, SIMA, 2005
I Chandler-Wilde and Elschner, SIMA,2010
I Hu, L. and Rathsfeld, SIAP, 2021

I PML convergence theory:
I Chen and Wu, SINUM, 2003
I Chandler-Wilde and Monk, ANM, 2009
I Zhou and Wu, JSC, 2018

I Boundary conditions for defected periodic structures:
I Joly, Li and Fliss, CICP, 2006
I Yuan and Lu, JLT, 2007
I Ehrhardt, Han and Zheng, CICP, 2009
I Sun and Zheng, JOSAA, 2009
I Hu and Lu, IEEEPTL, 2009
I Lechleiter and Zhang, SISC, 2017



PML
Based on the radiation condition, the PML only truncates x2, and introduces a
complexified coordinate transformation

x̃2 = x2 + iS

∫ x2

0

σ(t)dt, (6)

where

σ(x2) =


2f m2

f m1 +f m2
, x2 ∈ [H,H + L/2]

2, x2 ≥ H + L/2,m 6= 0
1, x2 ≥ H + L/2,m = 0
0, x2 ≤ 0.

(7)

PML



Well-posedness and convergence results

Let ũog(x ; x∗) := uog(x̃ ; x∗). It satisfies the PML-truncated problem:

∇ · (A∇ũog) + k2α(x2)ũog =− δ(x − x∗), on ΩPML,

ũog =0, on Γ,

ũog =0, on ΓH+L = {x : x2 = H + L},

where α(x2) = 1 + iSσ(x2) and A = Diag{α, α−1}.

Theorem (Yu et al., 2021)

Provided that S̃L is sufficiently large where S̃ = S
L

∫ H+L

H
σ(t)dt, the

PML-truncated problem admits a unique solution
ũog(x ; x∗) = ũog

r (x ; x∗) + χ(x ; x∗)ũinc(x ; x∗) with
ũog
r ∈ H1

0 (ΩPML) = {φ ∈ H1(ΩPML) : φ|Γ∪ΓH+L = 0} for any x∗ ∈ ΩPML.
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Semiwaveguide problems

(a) (b)

(P±) :


∇ · (A∇ũ) + k2αũ = 0, on Ω±PML := ΩPML ∩

{
x : ±x1 >

T
2

}
,

ũ = 0, on Γ± := Γ ∩
{

x : ±x1 >
T
2

}
,

ũ = 0, on Γ±L+H := ΓL+H ∩
{

x : ±x1 >
T
2

}
,

∂νc ũ = g±, on Γ±0 := ΩPML ∩
{

x : x1 = ±T
2

}
,



Well-posedness

Theorem (Yu et al., 2021)

Under the geometrical conditions (GC1) and (GC2), provided that S̃L is
sufficiently large, the semi-waveguide problem (P±) has a unique solution
ũ ∈ H1(Ω±PML) such that ||ũ||

H1(Ω±PML)
≤ C ||g±||

H−1/2(Γ±0 )
for any

g± ∈ H−1/2(Γ±0 ), respectively, where C is independent of g±.



Exact lateral boundary conditions

The well-posedness theorem implies that we can define two vertical

Neumann-to-Dirichlet (vNtD) operators N± : H−1/2(Γ±0 )→ H̃1/2(Γ±0 )
satisfying ũog|

Γ±0
= N±∂νc ũog|

Γ±0
.


∇ · (A∇ũog) + k2αũog = −δ(x − x∗), on Ω0,
ũog = 0, on Γ0 = Γ ∩ {x : |x1| < T/2},
ũog = 0, on Γ0

H+L = ΓH+L ∩ {x : |x1| < T/2},
ũog = N±∂νc ũog, on Γ±0 .



Marching operators
Marching operators: R±p : H−1/2(Γ±0 )→ H−1/2(Γ±1 ) satisfying
∂
ν±c

ũog|
Γ±1

= R±p ∂ν±c ũog|
Γ±0

.

Lemma (Yu et al., 2021)

Under the conditions that (GC2) holds and S̃L is sufficiently large, we can
choose Γ±0 intersecting Γ at a smooth point such that R±p are compact
operators and

∂
ν±c

ũog|
Γ±j+1

= R±p ∂ν±c ũog|
Γ±j
, (8)

holds for any j ≥ 0. Furthermore,

ρ(R±p ) < 1, (9)

where ρ denotes the spectral radius.



Exponentially decaying property

Corollary (Yu et al., 2021)

Under the conditions that (GC2) holds and S̃L is sufficiently large,

||ũog(·; x∗)||
H1(Ω

±,N0
j )

≤ C ||(R±p )N0 ||j−1||g̃ inc||L2(ΩPML), (10)

where C is independent of j ≥ 0. In other words, the PML truncated solution
ũog(x ; x∗) decays exponentially fast to 0 in the strip as |x1| → ∞ for any
x∗ ∈ ΩPML.

As a consequence, this reveals that the PML truncation cannot realize an
exponential convergence to the true solution since the true solution, as
indicated by Chandler-Wilde and Monk 2005, behaves as O(x

−3/2
1 ) as x1 →∞.
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Figure: Radiation behavior as j →∞.



Riccati equations

Consider the following boundary value problem for a generic field ũ:
∇ · (A∇ũ) + k2αũ = 0, on Ω+

j ,

ũ = 0, on Γj,2 ∪ Γj,4,
∂νc ũ = gi , on Γ+

i , i = j − 1, j ,

for gi ∈ H−1/2(Γ+
i ), i = j − 1, j .

Theorem (Yu et al., 2021)

Provided that kT/π /∈ E := {i ′/2j′ |j ′ ∈ N, i ′ ∈ N∗}, and L is sufficiently large,
the above problem is well-posed. The well-posedness even holds with Ω+

j

replaced by the interior domain of 2l consecutive cells, say ∪2l

j=1Ω+
j , for any

number l ≥ 0.



We can define a bounded Neumann-to-Dirichlet operator

N (0) : H−1/2(Γ+
j−1)× H−1/2(Γ+

j )→ H̃1/2(Γ+
j−1)× H̃1/2(Γ+

j ) such that[
ũ|Γ+

j−1

ũ|Γ+
j

]
= N (0)

[
∂
ν−c

ũ|Γ+
j−1

∂ν+
c

ũ|Γ+
j

]
, (11)

for all j ≥ 1. Let

N (0) =

[
N (0)

00 N (0)
01

N (0)
10 N (0)

11

]
.

Thus,

N (0)
10 ∂ν−c ũog|Γ+

0
−N (0)

11 R
+
p ∂ν−c ũog|Γ+

0
= ũog|Γ+

1

= N (0)
00 R

+
p ∂ν−c ũog|Γ+

0
−N (0)

01 (R+
p )2∂

ν−c
ũog|Γ+

0
.

We get two Riccati equations

N (0)
10 + [N (0)

11 +N (0)
00 ]R+

p +N (0)
01 (R+

p )2 =0,

N (0)
01 + [N (0)

11 +N (0)
00 ]R−p +N (0)

10 (R−p )2 =0,

for R±p . Then the lateral NtD operators are given by

N+ =N (0)
00 −N

(0)
01 R

+
p ,

N− =N (0)
11 −N

(0)
10 R

−
p .



Recursive doubling procedure
We first study the NtD operator

N (l) =

[
N (l)

00 N (l)
01

N (l)
10 N (l)

11

]
(12)

on the boundary of ∪2l

j=1Ω+
j for l ≥ 1.

N (l)
00 =N (l−1)

00 −N (l−1)
01 Al−1, N (l)

01 = N (l−1)
01 Bl−1, (13)

N (l)
10 =N (l−1)

10 Al−1, N (l)
11 = N (l−1)

11 −N (l−1)
10 Bl−1. (14)

We have

N (l)
10 + [N (l)

11 +N (l)
00 ](R+

p )2l +N (l)
01 (R+

p )2(l+1)

= 0, (15)

N+ = N (l)
00 −N

(l)
01 (R+

p )2l . (16)

Since ||(R+
p )N0 || < 1, the third term in (15) is expected to be exponentially

small for l � log2 N0.

(R+
p )2l ≈ −[N (l)

11 +N (l)
00 ]−1N (l)

10 , (17)

N+ ≈ N (l)
00 +N (l)

01 [N (l)
11 +N (l)

00 ]−1N (l)
10 , (18)

and we get R+
p iteratively from

(R+
p )2j = −[N (j)

11 +N (j)
00 ]−1

[
N (j)

10 −N
(j)
01 (R+

p )2j+1
]
, j = l − 1, · · · , 0.



Performance
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Figure: Convergence history against the number of iterations l .
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Neumann-to-Dirichlet operator

For any function ũ satisfying

∇ · (A∇ũ) + k2αũ = 0, on Ω+
1 . (19)

We have1 ũ = (K −K0[1])−1S∂νc ũ on ∂Ω+
1 , where

S[φ](x) = 2

∫
∂Ω+

1

G̃(x , y)φ(y)ds(y),

K[φ](x) = 2p.v.

∫
∂Ω+

1

∂νc G̃(x , y)φ(y)ds(y),

K0[φ](x) = 2p.v.

∫
∂Ω+

1

∂νc G̃0(x , y)φ(y)ds(y),

and

G̃(x , y) =
i

4
H

(1)
0 (k

√
(x̃1 − ỹ1)2 + (x̃2 − ỹ2)2).

1L., Lu, Qian, SIAP, 2017



Approximating N (0)


u1,1

u1,2

u1,3

u1,4

 = Nu


φs

1,1

φs
1,2

φs
1,3

φs
1,4

 , (20)

By ũ|Γ1,2∪Γ1,4 = 0, we get [
u1,1

u1,3

]
= N(0)

[
φs

1,1

φs
1,3

]
,



Contents

Introduction

Semi-waveguide Problems

PML-BIE method

Numerical examples

Conclusions and Future works



Example 1. Flat surface
Source point y = (0, 1.5). Line segment (−0.5, 0.5)× {x2 = 0} is assumed to
be the perturbed part. n = 1.03 and k0 = 2π.
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Figure: (a) exact solution; (b) numerical solution. Convergence history of relative error
Erel versus: (c) PML absorbing constant S ; (d) Thickness of the PML L, for both
Dirichlet and Neumann conditions on ΓH+L.



Example 2. A sine curve

Cylindrical wave:
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Figure: (a) Numerical solution of real part of the total wave field u in
[−5.5, 5.5]×[−2.0, 3.0] excited by the point source y =(0, 1.5). Convergence history of
relative error Erel versus: (b) PML absorbing constant S for fixed PML Thickness
L=2, (c) PML Thickness L for fixed PML absorbing constant S =2.8; vertical axes
are logarithmically scaled.



Example 2. A sine curve

Plane wave:
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Figure: (a) Numerical solution of real part of the total wave field u in
[−5.5, 5.5]×[−2.0, 3.0] excited by a plane incident wave of angle θ = π

3
. Convergence

history of relative error Erel versus: (b) PML absorbing constant S for fixed PML
Thickness L=4, (c) PML Thickness L for fixed PML absorbing constant S =2.8;
vertical axes are logarithmically scaled.



Example 3. A locally perturbed sine curve
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Figure: (a) a cylindrical wave by source y =(0, 1.5); (b) a plane wave of incident angle
θ = π

3
. Convergence history of relative error Erel versus: (c) PML Thickness L for

fixed PML absorbing constant S =2.8 for both incidences; (d) PML absorbing constant
S for fixed PML Thickness L=2.2 (4.0) for cylindrical (plane-wave) incidence.



Example 4. A locally perturbed binary grating

(a) -5 0 5
-2

-1

0

1

2

3

(b) -4 -2 0 2 4

-1

0

1

2

(c)
0.2 1 2 3

1e-12

1e-10

1e-08

1e-06

0.0001

Cylindrical
Plane

(d)
0.2 1 2 3

1e-12

1e-10

1e-08

1e-06

0.0001

Cylindrical
Plane

Figure: (a) a cylindrical wave by source y =(0, 1.5); (b) a plane wave of incident angle
θ = π

6
. Convergence history of relative error Erel versus: (c) PML Thickness L for

fixed PML absorbing constant S =2.8 for both incidences; (d) PML absorbing constant
S for fixed PML Thickness L=2.2 (3.0) for cylindrical (plane-wave) incidence.
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Conclusions and Future works

Conclusions:

I A high-accuracy PML-BIE method has been developed for wave scatteing
in locally perturbed periodic structures;

I Exact lateral boundary conditions were established to truncate the
unbounded trip onto a bounded domain;

I Exponential convergence has been observed in a compact subset of the
physical domain.

Future works:

I Extend the current work to study locally defected periodic structures of
stratified media.

I Rigorously justify that the PML solution converges exponentially to the
true solution in any compact subset of the strip.



Thanks for your attention!
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