Time-dependent electromagnetic scattering from thin layers

Christian Lubich

Univ. Tübingen

Talk based on joint work with

Balázs Kovács & Jörg Nick

Univ. Regensburg Univ. Tübingen

arXiv:2103.08930

Outline

Scattering from generalized impedance b.c.

Functional-analytic setting

Well-posedness via time-dependent boundary integral equations

BEM & CQ discretization

Outline

Scattering from generalized impedance b.c.

Functional-analytic setting

Well-posedness via time-dependent boundary integral equations

BEM & CQ discretization

Picture: 3D-scattering from a torus

Figure: total electric field strength in the slice $x_2 = 0$ at different times

Time-dependent scattering

Time-dependent Maxwell's equations in an exterior domain for the total electric field $E^{\text{tot}}(x,t)$ and total magnetic field $H^{\text{tot}}(x,t)$,

$$\varepsilon \, \partial_t E^{\mathrm{tot}} - \mathrm{curl} \, H^{\mathrm{tot}} = 0$$

 $\mu \, \partial_t H^{\mathrm{tot}} + \mathrm{curl} \, E^{\mathrm{tot}} = 0$ in the exterior domain Ω .

(We set $\varepsilon = 1$, $\mu = 1$ in the following.)

Given incident fields (E^{inc} , H^{inc}): solution to Maxwell's equations in \mathbb{R}^3 , with support in Ω at t=0

Compute scattered fields

$$E^{\text{scat}} = E^{\text{tot}} - E^{\text{inc}}, \qquad H^{\text{scat}} = H^{\text{tot}} - H^{\text{inc}}$$

on a time interval $0 \le t \le T$ at selected space points $x \in \Omega$.

Scattering: boundary conditions

B.c. depend on material (often multiscale) \rightarrow effective models

lacktriangle Thin coating of depth $\delta \ll 1$ on perfectly conducting material

$$(E^{\mathsf{tot}} \times \nu) \times \nu = \delta (\partial_t - \partial_t^{-1} \nabla_{\Gamma} \mathsf{div}_{\Gamma}) (H^{\mathsf{tot}} \times \nu)$$

Engquist & Nédélec 1993

Skin effect: strong absorption by a highly conducting material

$$(E^{\text{tot}} \times \nu) \times \nu = \delta \, \partial_t^{1/2} (H^{\text{tot}} \times \nu)$$

Haddar, Joly & Nguyen 2008

Both cases are examples of generalized impedance b.c.

$$(E^{\mathsf{tot}} \times \nu) \times \nu = Z(\partial_t)(H^{\mathsf{tot}} \times \nu)$$

= $(\mathcal{L}^{-1}Z) * (H^{\mathsf{tot}} \times \nu)$
temporal convolution

Computation of the scattered field

- 1. Solve a time-dependent boundary integral equation for the tangential traces $E \times \nu$, $H \times \nu$ on $\Gamma = \partial \Omega$, use boundary elements for space discretization and convolution quadrature for time discretization
- 2. Apply a representation formula to compute the scattered fields (E, H) at arbitrary points $x \in \Omega$, $0 \le t \le T$. Use again convolution quadrature for time discretization.

Well-proven strategy: L. 1994, Laliena & Sayas 2009, Sayas 2016, Banjai, L., Nick 2021 (acoustic)
Ballani, Banjai, Sauter & Veit 2013, Chan & Monk 2015, Kovács & L. 2017 (electromagnetic)

... but does it work here? And how?

Challenges

- Derive a time-dependent boundary integral equation and prove its well-posedness in appropriate trace spaces
- Prove well-posedness of the time-dependent scattering problem in appropriate spaces
- Prove stability and convergence / error bounds of the discretization in space and time

Outline

Scattering from generalized impedance b.c

Functional-analytic setting

Well-posedness via time-dependent boundary integral equations

BEM & CQ discretization

Tangential trace and Green's formula

Tangential trace:

$$\gamma_T v = v|_{\Gamma} \times \nu$$
 on Γ , for continuous $v: \overline{\Omega} \to \mathbb{C}^3$

Green's formula:

$$\int_{\Omega} (u \cdot \operatorname{curl} v - \operatorname{curl} u \cdot v) dx = [\gamma_T u, \gamma_T v]_{\Gamma}$$

with the skew-hermitian pairing

$$[\phi, \psi]_{\Gamma} = \int_{\Gamma} (\phi \times \nu) \cdot \psi \, d\sigma.$$

Trace space

Hilbert space X_{Γ} such that

 $\gamma_T: H(\operatorname{curl}, \Omega) \to X_\Gamma$ is a surjective bounded linear map.

 $[\phi,\psi]_{\Gamma}$ is a nondegenerate sesquilinear form on $X_{\Gamma}\times X_{\Gamma}$.

Solution space $V_{\Gamma} \subset X_{\Gamma}$

Hilbert space V_{Γ} dense in X_{Γ}

- ▶ $V_{\Gamma} = X_{\Gamma} \cap H(div_{\Gamma}, \Gamma)$ for thin coating b.c.
- $V_{\Gamma} = X_{\Gamma} \cap L^2(\Omega)^3$ for skin effect b.c.

$$\|\phi\|_{V_{\Gamma}}^2 = \|\phi\|_{X_{\Gamma}}^2 + |\phi|_{V_{\Gamma}}^2$$

Impedance operator

 $Z(s): V_{\Gamma} \to V'_{\Gamma}$, Re s>0, analytic family of polynomially bounded linear operators: for Re $s\geq \sigma>0$,

$$||Z(s)||_{V_{\Gamma}' \leftarrow V_{\Gamma}} \leq M_{\sigma} |s|^{\kappa}$$

- $\kappa = 1$ for thin coating b.c.
- $\kappa = 1/2$ for skin effect b.c.

of positive type: for all $\phi \in V_{\Gamma}$ and Re $s \geq \sigma > 0$,

$$\operatorname{\mathsf{Re}}\langle\phi,Z(s)\phi
angle\geq c_{\sigma}\operatorname{\mathsf{Re}} s\left|s^{-1}\phi\right|_{V_{\Gamma}}^{2}$$

Temporal convolution

$$Z(\partial_t)g:=(\mathcal{L}^{-1}Z)*g$$
 for suff. regular $g:[0,T] o V_\Gamma$

Note the operational calculus: $Y(\partial_t)Z(\partial_t)g = (YZ)(\partial_t)g$

Space-time Hilbert space:

$$H_0^r(0, T; V) = \{g|_{(0,T)} : g \in H^r(\mathbb{R}, V) \text{ with } g = 0 \text{ on } (-\infty, 0)\}$$

The bound on Z(s), Re s > 0, implies a bound on $Z(\partial_t)$:

$$||Z(\partial_t)||_{H_0'(0,T;V_{\Gamma}')\leftarrow H_0^{r+\kappa}(0,T;V_{\Gamma})} \le e M_{1/T}$$

Weak formulation of the impedance b.c.

The boundary condition relates the tangential traces of E and H.

Determine the tangential traces

$$\gamma_T E \in L^2(0, T; X_{\Gamma})$$
 and $\gamma_T H \in H_0^{\kappa}(0, T; V_{\Gamma})$

such that for almost every $t \in (0, T)$, we have for all $\phi \in V_{\Gamma}$

$$[\phi, \gamma_T E]_{\Gamma} + \langle \phi, Z(\partial_t) \gamma_T H \rangle_{\Gamma} = \langle \phi, g^{\mathsf{inc}} \rangle_{\Gamma}.$$

Wellposedness of Maxwell's equations in the exterior domain with these boundary conditions?

Stable and convergent numerical method?

Outline

Scattering from generalized impedance b.c

Functional-analytic setting

Well-posedness via time-dependent boundary integral equations

BEM & CQ discretization

Potential operators in the Laplace domain

Fundamental solution

$$G(s,x) = \frac{e^{-s|x|}}{4\pi |x|}, \qquad \operatorname{Re} s > 0, \,\, x \in \mathbb{R}^3 \setminus \{0\}.$$

Single layer potential operator S(s)

$$(S(s)\varphi)(x) = -s \int_{\Gamma} G(s, x-y)\varphi(y) dy + s^{-1}\nabla \int_{\Gamma} G(s, x-y) \operatorname{div}_{\Gamma} \varphi(y) dy$$

Double layer potential operator $\mathcal{D}(s)$

$$(\mathcal{D}(s)\varphi)(x) = \operatorname{curl} \int_{\Gamma} G(s, x - y)\varphi(y) dy.$$

defined for $x \in \mathbb{R}^3 \setminus \Gamma = \Omega^+ \dot{\cup} \Omega^-$.

Potential operators in the Laplace domain: properties

Maxwell solutions:

$$s\,\mathcal{S}(s) - \operatorname{curl} \circ \mathcal{D}(s) = 0, \qquad s\,\mathcal{D}(s) + \operatorname{curl} \circ \mathcal{S}(s) = 0$$

 Jump relations: with $[\gamma_T] = \gamma_T^+ - \gamma_T^-$,
$$[\gamma_T] \circ \mathcal{S}(s) = 0, \qquad [\gamma_T] \circ \mathcal{D}(s) = -\operatorname{Id}$$

Bounds of S(s), $\mathcal{D}(s)$: $X_{\Gamma} \to H(\operatorname{curl}, \mathbb{R}^3 \setminus \Gamma)$:

$$\|\mathcal{S}(s)\|_{H(\operatorname{curl},\mathbb{R}^3\setminus\Gamma)\leftarrow X_\Gamma} \leq C_\Gamma \frac{|s|^2+1}{\operatorname{Re} s}, \quad \text{ same bound for } \mathcal{D}(s),$$

where
$$C_{\Gamma} = \|\{\gamma_T\}\|_{X_{\Gamma} \leftarrow H(\operatorname{curl}, \mathbb{R}^3 \setminus \Gamma)}$$
 with $\{\gamma_T\} = \frac{1}{2} \left(\gamma_T^+ + \gamma_T^-\right)$

Boundary operators and Calderón operator

Single and double layer boundary operators from X_{Γ} to X_{Γ} :

$$V(s) = {\gamma_T} \circ S(s), \quad K(s) = {\gamma_T} \circ D(s)$$

Calderón operator:
$$B(s) = \begin{pmatrix} -V(s) & K(s) \\ -K(s) & -V(s) \end{pmatrix}$$

is such that it transforms jumps to averages:

$$B(s) \begin{pmatrix} [\gamma_T] \widehat{H} \\ -[\gamma_T] \widehat{E} \end{pmatrix} = \begin{pmatrix} \{\gamma_T\} \widehat{E} \\ \{\gamma_T\} \widehat{H} \end{pmatrix}.$$

Coercivity: for Re s > 0 and for all $(\varphi, \psi) \in X_{\Gamma} \times X_{\Gamma}$,

$$\mathsf{Re}\left[\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, B(s) \begin{pmatrix} \varphi \\ \psi \end{pmatrix}\right]_{\Gamma} \geq \frac{1}{c_{\Gamma}^2} \frac{\mathsf{Re}\, s}{|s|^2 + 1} \, \left(\left\|\varphi\right\|_{X_{\Gamma}}^2 + \left\|\psi\right\|_{X_{\Gamma}}^2\right),$$

where $c_{\Gamma} = \|[\gamma_T]\|_{X_{\Gamma} \leftarrow H(\operatorname{curl}, \mathbb{R}^3 \setminus \Gamma)}$.

Modified Calderón operator

$$B_{\mathsf{imp}}(s) := B(s) + \begin{pmatrix} 0 & -\frac{1}{2}I \\ -\frac{1}{2}I & 0 \end{pmatrix}$$

is such that

$$B_{\rm imp}(s) \begin{pmatrix} \gamma_T \widehat{H} \\ -\gamma_T \widehat{E} \end{pmatrix} = \begin{pmatrix} \gamma_T \widehat{E} \\ 0 \end{pmatrix}$$

for solutions $(\widehat{E},\widehat{H})$ in Ω^+ of Maxwell's eqs. in the Laplace domain

On the right-hand side, we insert $\gamma_T \widehat{E}$ from the impedance boundary condition to obtain a boundary integral equation.

Time-dependent boundary integral equation

To a given sufficiently regular function $g^{\rm inc}:[0,T]\to V_\Gamma'$, find $(\varphi,\psi):[0,T]\to V_\Gamma\times X_\Gamma$ such that for all $(v,\xi)\in V_\Gamma\times X_\Gamma$,

$$\left[\begin{pmatrix} v \\ \xi \end{pmatrix}, B_{\mathsf{imp}}(\partial_t) \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right]_{\mathsf{\Gamma}} + \langle v, Z(\partial_t) \varphi \rangle = \langle v, \mathsf{g}^{\mathsf{inc}} \rangle.$$

Well-posedness. Let $r \geq 0$. For $g^{\text{inc}} \in H_0^{r+3}(0, T; V_{\Gamma}')$, there is a unique solution $(\varphi, \psi) \in H_0^{r+1}(0, T; V_{\Gamma} \times X_{\Gamma})$, and

$$\left\| \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right\|_{H_0^{r+1}(0,T;V_\Gamma \times X_\Gamma)} \leq C_T \, \left\| g^{\mathsf{inc}} \right\|_{H_0^{r+3}(0,T;V_{\Gamma'})}.$$

Time-dependent representation formulas

$$E = -S(\partial_t)\varphi + D(\partial_t)\psi$$
$$H = -D(\partial_t)\varphi - S(\partial_t)\psi$$

It then follows that

$$(\varphi,\psi)=(\gamma_T H, -\gamma_T E).$$

Let $g^{\mathsf{inc}} := \gamma_T E^{\mathsf{inc}} \times \nu - Z(\partial_t) \gamma_T H^{\mathsf{inc}} \in H_0^{r+3}(0, T; V_{\Gamma}'), \ r \geq 0.$

(a) The scattering problem has a unique solution

$$(E,H) \in H_0^r(0,T;H(\operatorname{curl},\Omega)^2) \cap H_0^{r+1}(0,T;(L^2(\Omega)^3)^2),$$

given by the representation formulas with the solution of the boundary integral equation $(\varphi, \psi) = (\gamma_T H, -\gamma_T E)$.

(b) The electromagnetic fields are bounded by

$$\|E\|_{H_0^r(0,T;H(\operatorname{curl},\Omega))} + \|H\|_{H_0^r(0,T;H(\operatorname{curl},\Omega))} \le C_T \|g^{\operatorname{inc}}\|_{H_0^{r+3}(0,T;V_{\Gamma}')},$$

and the same bound is valid for the $H_0^{r+1}(0,T;(L^2(\Omega)^3)^2)$ norms.

Outline

Scattering from generalized impedance b.c

Functional-analytic setting

Well-posedness via time-dependent boundary integral equations

BEM & CQ discretization

Space and time discretization

We implemented and analyzed

- ▶ Raviart–Thomas boundary elements of order $k \ge 0$ for the space discretization of the boundary integral equation
- ▶ Runge–Kutta convolution quadrature based on the Radau methods with $m \ge 2$ stages for the time discretization of the boundary integral equation and the representation formulas.

Discretized BIE and representation formulas

Formally, the discretization of the weak formulation of the boundary integral equation reads: for all $(v_h, \xi_h) \in V_h \times X_h$,

$$\begin{bmatrix} \begin{pmatrix} v_h \\ \xi_h \end{pmatrix}, \mathcal{B}_{\mathsf{imp}}(\boldsymbol{\partial}_{\boldsymbol{t}}^{\tau}) \begin{pmatrix} \varphi_h^{\tau} \\ \psi_h^{\tau} \end{pmatrix} \end{bmatrix}_{\Gamma} + \langle v_h, Z(\boldsymbol{\partial}_{\boldsymbol{t}}^{\tau}) \varphi_h^{\tau} \rangle = \langle v_h, g^{\mathsf{inc}} \rangle$$

with spatial meshsize h, time stepsize τ .

From the approximate tangential traces $(\varphi_h^{\tau}, \psi_h^{\tau})$, the electromagnetic fields at selected points $x \in \Omega$ of interest are computed by the discretized representation formulas

$$\begin{split} E_h^\tau &= -\mathcal{S}(\frac{\partial_t^\tau}{\partial_t^\tau})\varphi_h^\tau + \mathcal{D}(\frac{\partial_t^\tau}{\partial_t^\tau})\psi_h^\tau \\ H_h^\tau &= -\mathcal{D}(\frac{\partial_t^\tau}{\partial_t^\tau})\varphi_h^\tau - \mathcal{S}(\frac{\partial_t^\tau}{\partial_t^\tau})\psi_h^\tau. \end{split}$$

Error bounds

Under sufficient regularity, for $n\tau \leq T$,

$$\left\| \begin{pmatrix} E_h^n - E(t_n) \\ H_h^n - H(t_n) \end{pmatrix} \right\|_{H(\text{curl},\Omega)^2} \le C_T \left(\tau^{m-1/2} + h^{k+1} \right).$$

Away from the boundary, there is the full order 2m-1 in time:

$$\left\| \begin{pmatrix} E_h^n - E(t_n) \\ H_h^n - H(t_n) \end{pmatrix} \right\|_{\left(H(\operatorname{curl},\Omega_d) \cap C^1(\overline{\Omega}_d)^3\right)^2} \le C_{d,T} \left(\tau^{2m-1} + h^{k+1}\right)$$

where $\Omega_d = \{x \in \Omega : \operatorname{dist}(x, \Gamma) > d\}$ with d > 0.

Picture once again: 3D-scattering from a torus

impedance operator $Z(\partial_t) = \delta \partial_t^{1/2}$ with $\delta = 0.1$ on the torus

Condition numbers

Figure: The left-hand side plot shows a plot of the occurring frequencies for the 3-stage Radau IIA method for N=100 and T=4. On the right-hand side, the condition numbers and the euclidean norms of the occurring matrices are shown, as they appear when following the integral contour on the left-hand side. The markers on both plots localize the corresponding spikes of the condition numbers on the integral contour.