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Picture: 3D-scattering from a torus

Figure: total electric field strength in the slice x2 = 0 at different times



Time-dependent scattering

Time-dependent Maxwell’s equations in an exterior domain for the
total electric field E tot(x , t) and total magnetic field Htot(x , t),

ε ∂tE
tot − curlHtot = 0

µ∂tH
tot + curlE tot = 0

in the exterior domain Ω.

(We set ε = 1, µ = 1 in the following.)

Given incident fields (E inc,H inc): solution to Maxwell’s equations
in R3, with support in Ω at t = 0

Compute scattered fields

E scat = E tot − E inc, Hscat = Htot − H inc

on a time interval 0 ≤ t ≤ T at selected space points x ∈ Ω.



Scattering: boundary conditions

B.c. depend on material (often multiscale) → effective models

I Thin coating of depth δ � 1 on perfectly conducting material

(E tot × ν)× ν = δ (∂t − ∂−1
t ∇ΓdivΓ)(Htot × ν)

Engquist & Nédélec 1993

I Skin effect: strong absorption by a highly conducting material

(E tot × ν)× ν = δ ∂
1/2
t (Htot × ν)

Haddar, Joly & Nguyen 2008

Both cases are examples of generalized impedance b.c.

(E tot × ν)× ν = Z (∂t)(Htot × ν)

= (L−1Z ) ∗ (Htot × ν)

temporal convolution



Computation of the scattered field

1. Solve a time-dependent boundary integral equation
for the tangential traces E × ν, H × ν on Γ = ∂Ω, use
boundary elements for space discretization and
convolution quadrature for time discretization

2. Apply a representation formula to compute the scattered fields
(E ,H) at arbitrary points x ∈ Ω, 0 ≤ t ≤ T . Use again
convolution quadrature for time discretization.

Well-proven strategy: L. 1994, Laliena & Sayas 2009, Sayas 2016, Banjai, L., Nick 2021 (acoustic)

Ballani, Banjai, Sauter & Veit 2013, Chan & Monk 2015, Kovács & L. 2017 (electromagnetic)

... but does it work here? And how?



Challenges

I Derive a time-dependent boundary integral equation and
prove its well-posedness in appropriate trace spaces

I Prove well-posedness of the time-dependent scattering
problem in appropriate spaces

I Prove stability and convergence / error bounds of the
discretization in space and time
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Tangential trace and Green’s formula

Tangential trace:

γT v = v |Γ × ν on Γ, for continuous v : Ω→ C3

Green’s formula:∫
Ω

(
u · curl v − curl u · v

)
dx = [γTu, γT v ]Γ

with the skew-hermitian pairing

[φ, ψ]Γ =

∫
Γ
(φ× ν) · ψ dσ.



Trace space

Hilbert space XΓ such that

γT : H(curl,Ω)→ XΓ is a surjective bounded linear map.

[φ, ψ]Γ is a nondegenerate sesquilinear form on XΓ × XΓ.

Alonso & Valli 1996, Buffa, Costabel & Sheen 2002



Solution space VΓ ⊂ XΓ

Hilbert space VΓ dense in XΓ

I VΓ = XΓ ∩ H(divΓ, Γ) for thin coating b.c.
I VΓ = XΓ ∩ L2(Ω)3 for skin effect b.c.

‖φ‖2VΓ
= ‖φ‖2XΓ

+ |φ|2VΓ



Impedance operator

Z (s) : VΓ → V ′Γ, Re s > 0, analytic family of polynomially bounded
linear operators: for Re s ≥ σ > 0,

‖Z (s)‖VΓ
′←VΓ

≤ Mσ |s|κ

I κ = 1 for thin coating b.c.
I κ = 1/2 for skin effect b.c.

of positive type: for all φ ∈ VΓ and Re s ≥ σ > 0,

Re〈φ,Z (s)φ〉 ≥ cσ Re s
∣∣s−1φ

∣∣2
VΓ



Temporal convolution

Z (∂t)g := (L−1Z ) ∗ g for suff. regular g : [0,T ]→ VΓ

Note the operational calculus: Y (∂t)Z (∂t)g = (YZ )(∂t)g

Space-time Hilbert space:

H r
0(0,T ;V ) = {g |(0,T ) : g ∈ H r (R,V ) with g = 0 on (−∞, 0)}

The bound on Z (s), Re s > 0, implies a bound on Z (∂t):

‖Z (∂t)‖Hr
0(0,T ;VΓ

′)←Hr+κ
0 (0,T ;VΓ) ≤ e M1/T



Weak formulation of the impedance b.c.

The boundary condition relates the tangential traces of E and H.

Determine the tangential traces

γTE ∈ L2(0,T ;XΓ) and γTH ∈ Hκ
0 (0,T ;VΓ)

such that for almost every t ∈ (0,T ), we have for all φ ∈ VΓ

[φ, γTE ]Γ + 〈φ,Z (∂t)γTH〉Γ = 〈φ, g inc〉Γ.

Wellposedness of Maxwell’s equations in the exterior domain with
these boundary conditions?
Stable and convergent numerical method?
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Potential operators in the Laplace domain

Fundamental solution

G (s, x) =
e−s|x |

4π |x |
, Re s > 0, x ∈ R3 \ {0}.

Single layer potential operator S(s)

(
S(s)ϕ

)
(x) = −s

∫
Γ
G (s, x−y)ϕ(y)dy+s−1∇

∫
Γ
G (s, x−y) divΓ ϕ(y)dy

Double layer potential operator D(s)

(
D(s)ϕ

)
(x) = curl

∫
Γ
G (s, x − y)ϕ(y)dy .

defined for x ∈ R3 \ Γ = Ω+∪̇Ω−.



Potential operators in the Laplace domain: properties

Maxwell solutions:

s S(s)− curl ◦D(s) = 0, s D(s) + curl ◦ S(s) = 0

Jump relations: with [γT ] = γ+
T − γ

−
T ,

[γT ] ◦ S(s) = 0, [γT ] ◦ D(s) = −Id

Bounds of S(s),D(s) : XΓ → H(curl,R3 \ Γ):

‖S(s)‖H(curl,R3\Γ)←XΓ
≤ CΓ

|s|2 + 1
Re s

, same bound for D(s),

where CΓ = ‖{γT}‖XΓ←H(curl,R3\Γ) with {γT} = 1
2

(
γ+
T + γ−T

)



Boundary operators and Calderón operator

Single and double layer boundary operators from XΓ to XΓ:

V (s) = {γT} ◦ S(s), K (s) = {γT} ◦ D(s)

Calderón operator: B(s) =

(
−V (s) K (s)
−K (s) −V (s)

)
is such that it transforms jumps to averages:

B(s)

(
[γT ]Ĥ

−[γT ]Ê

)
=

(
{γT}Ê
{γT}Ĥ

)
.

Coercivity: for Re s > 0 and for all (ϕ,ψ) ∈ XΓ × XΓ,

Re
[(
ϕ
ψ

)
,B(s)

(
ϕ
ψ

)]
Γ

≥ 1
c2

Γ

Re s
|s|2 + 1

(∥∥ϕ∥∥2
XΓ

+
∥∥ψ∥∥2

XΓ

)
,

where cΓ = ‖[γT ]‖XΓ←H(curl,R3\Γ).



Modified Calderón operator

Bimp(s) := B(s) +

(
0 −1

2 I
−1

2 I 0

)
is such that

Bimp(s)

(
γT Ĥ

−γT Ê

)
=

(
γT Ê
0

)

for solutions (Ê , Ĥ) in Ω+ of Maxwell’s eqs. in the Laplace domain

On the right-hand side, we insert γT Ê from the impedance
boundary condition to obtain a boundary integral equation.



Time-dependent boundary integral equation

To a given sufficiently regular function g inc : [0,T ]→ VΓ
′, find

(ϕ,ψ) : [0,T ]→ VΓ × XΓ such that for all (υ, ξ) ∈ VΓ × XΓ,[(
υ
ξ

)
,Bimp(∂t)

(
ϕ
ψ

)]
Γ

+ 〈υ,Z (∂t)ϕ〉 = 〈υ, g inc〉.

Well-posedness. Let r ≥ 0. For g inc ∈ H r+3
0 (0,T ;VΓ

′), there is a
unique solution (ϕ,ψ) ∈ H r+1

0 (0,T ;VΓ × XΓ), and∥∥∥∥(ϕψ
)∥∥∥∥

Hr+1
0 (0,T ;VΓ×XΓ)

≤ CT

∥∥g inc∥∥
Hr+3
0 (0,T ;VΓ

′)
.



Time-dependent representation formulas

E = −S(∂t)ϕ+D(∂t)ψ

H = −D(∂t)ϕ− S(∂t)ψ

It then follows that

(ϕ,ψ) = (γTH,−γTE ).



Well-posedness of the time-dep. scattering problem

Let g inc := γTE
inc × ν − Z (∂t)γTH

inc ∈ H r+3
0 (0,T ;VΓ

′), r ≥ 0.

(a) The scattering problem has a unique solution

(E ,H) ∈ H r
0(0,T ;H(curl,Ω)2) ∩ H r+1

0 (0,T ; (L2(Ω)3)2),

given by the representation formulas with the solution of the
boundary integral equation (ϕ,ψ) = (γTH,−γTE ).

(b) The electromagnetic fields are bounded by

‖E‖Hr
0(0,T ;H(curl,Ω)) + ‖H‖Hr

0(0,T ;H(curl,Ω)) ≤ CT‖g inc‖Hr+3
0 (0,T ;VΓ

′),

and the same bound is valid for the H r+1
0 (0,T ; (L2(Ω)3)2) norms.
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Space and time discretization

We implemented and analyzed
I Raviart–Thomas boundary elements of order k ≥ 0 for the

space discretization of the boundary integral equation
I Runge–Kutta convolution quadrature based on the Radau

methods with m ≥ 2 stages for the time discretization of the
boundary integral equation and the representation formulas.



Discretized BIE and representation formulas

Formally, the discretization of the weak formulation of the
boundary integral equation reads: for all (υh, ξh) ∈ Vh × Xh,[(

υh
ξh

)
,Bimp(∂τt )

(
ϕτh
ψτh

)]
Γ

+ 〈υh,Z (∂τt )ϕτh〉 = 〈υh, g inc〉

with spatial meshsize h, time stepsize τ .

From the approximate tangential traces (ϕτh, ψ
τ
h), the

electromagnetic fields at selected points x ∈ Ω of interest are
computed by the discretized representation formulas

E τh = −S(∂τt )ϕτh +D(∂τt )ψτh

Hτ
h = −D(∂τt )ϕτh − S(∂τt )ψτh .



Error bounds

Under sufficient regularity, for nτ ≤ T ,∥∥∥∥(En
h − E (tn)

Hn
h − H(tn)

)∥∥∥∥
H(curl,Ω)2

≤ CT

(
τm−1/2 + hk+1).

Away from the boundary, there is the full order 2m − 1 in time:∥∥∥∥(En
h − E (tn)

Hn
h − H(tn)

)∥∥∥∥(
H(curl,Ωd )∩C1(Ωd )3

)2 ≤ Cd ,T

(
τ2m−1 + hk+1)

where Ωd = {x ∈ Ω : dist(x , Γ) > d} with d > 0.

cf. Banjai, L., Melenk 2011 (acoustic scattering with Dirichlet b.c.)



Picture once again: 3D-scattering from a torus

impedance operator Z (∂t) = δ∂
1/2
t with δ = 0.1 on the torus



Condition numbers

Figure: The left-hand side plot shows a plot of the occuring frequencies for the 3-stage Radau IIA
method for N = 100 and T = 4. On the right-hand side, the condition numbers and the euclidean norms
of the occuring matrices are shown, as they appear when following the integral contour on the left-hand
side. The markers on both plots localize the corresponding spikes of the condition numbers on the
integral contour.
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