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Boundary integral equation methods

We assume that Ω ⊂ R3 with Lipschitz boundary Γ = ∂Ω, and consider: given a
function φ, find u such that

−4u = 0 in Ω

with the Dirichlet boundary condition u = φ on ∂Ω

(PDE→BIE) A boundary integral equation reads: find σ ∈ H−1/2(Γ), such that

Vσ = (
1
2

I + K )φ.

Here, V and K are the single and double layer boundary integral operators

Vσ(x) =
1

4π

∫
Γ

1
|x − y |

σ(y)dsy Kφ(x) =
1

4π

∫
Γ

∂

∂ny
(

1
|x − y |

)φ(y)dsy x ∈ Γ

(Variational equation) The weak formulation: find σ ∈ H−1/2(Γ) such that

a(σ, ψ) = `φ(ψ) for all ψ ∈ H−1/2(Γ),

where
a(σ, ψ) := 〈Vσ, ψ〉 `φ(ψ) = 〈(

1
2

I + K )φ, ψ〉

(Numerical schemes) Collocation methods, Moment methods, Galerkin methods,
etc.



On BIE methods

A good counterpart (surface or boundary methods) with respect to domain
discretization methods (FDM, FEM, DG, spectral methods, etc.)

Analysis on uniqueness and existence, errors, convergence, singularity regularization,
surface regularity etc.

The breakthrough for the Galerkin boundary element methods for practical, three
dimensional problems was achieved through (S.A. Sauter and C. Schwab,
Springer 2010)

The development of fast algorithms to represent the non-local boundary integral
operators (efficiency)- Fast multipole methods, Preconditioner etc.

The development of numerical methods for the approximation of integrals in order to
determine the system matrix (accuracy) - Numerical quadrature, quadrature on manifold
etc.

Vσ(x) =
1

4π

∫
Γ

1
|x − y |

σ(y)dsy Kφ(x) =
1

4π

∫
Γ

∂

∂ny
(

1
|x − y |

)φ(y)dsy x ∈ Γ
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Understanding the hyper-singular boundary integral operator

Curse: The hypersingular boundary integral operator (BIO) is defined as

Wϕ(x) = − lim
z→x∈Γ,z /∈Γ

nx · ∇z

∫
Γ

∂E(z, y)

∂ny
ϕ(y)dsy . (1)

For Γ ∈ C2+α, ϕ ∈ C1+α, α ∈ (0, 1), x ∈ Γ, it can be shown that

Wϕ(x) = −HFP
∫

Γ

∂2E(x , y)

∂nx∂ny
ϕ(y)dsy

= lim
ε→0

{∫
Γε

∂2E(x , y)

∂nx∂ny
ϕ(y)dsy +

ϕ(x)

πε
− O(εα)

}
,

where Γε = {y ∈ Γ : |y − x | > ε}.



Regularization of hyper-singular boundary integral operators

Lemma

Let Γ ∈ C2 and let φ be a Hölder continuously differentiable function. Then the limit (1)
exists uniformly with respect to all x ∈ Γ and all φ with ‖φ‖C1+α ≤ 1 (0 < α < 1).
Furthermore, the operator W can be expressed as a composition of tangential
derivatives and the simple layer potential operator V:

Wφ(x) = −
d

dsx
V
(

dφ
ds

)
(x) for n=2

and

Wφ(x) = −(nx ×∇x ) · V (ny ×∇yφ)(x) for n=3

Lemma 1.2.2, Applied Mathematical Sciences 164, Springer, Hsiao-Wendland 2008

Maue (1949), Günter (1953), Giroire-Nédélec (1978), Bonnemay (1979), Nédélec
(1982), Han (1988,1994), Kupradze et al (1979), Schwab et al, (1992), Kohr (2006) etc.

Laplace equations, Stokes equations, Lamé equations, biharmonic equations etc.



Regularization of hyper-singular boundary integral operators
(acoustic and electromagnetic wave equations)

Theorem

The hypersingular BIO W associated to the Helmholtz equation can be expressed as

Wφ(x) = −
d

dsx
V
(

dφ
ds

)
(x)− k2n>x V (φny )(x).

in 2D, and

Wφ(x) = −(nx ×∇x ) · V (ny ×∇φy )(x)− k2n>x V (φny )(x).

in 3D. Here, V is the single-layer BIO given by

Vσ(x) :=

∫
Γ
γk (x , y)σ(y) dsy , x ∈ Γ.

Theorem 3.4.2, Applied Mathematical Sciences 144, Springer, Jean-Claude Nédélec
2000

Elastic wave equations???



Hyper-singular BIO for elastic wave equations

The hypersingular BIO associated with the elastic wave equation reads

Wu(x) = −Tx

∫
Γ
(Ty E(x , y))>u(y) dsy , x ∈ Γ.

(Wϕ(x) = − lim
z→x∈Γ,z /∈Γ

nx · ∇z

∫
Γ

∂E(z, y)

∂ny
ϕ(y)dsy .)

T is the traction operator

Tu := 2µ∂νu + λ ν div u + µν × curl u.

E(x , y) is the fundamental displacement tensor

E(x , y) =
1
µ

(I +
∇x∇x

k2
s

)γks (x , y)−
1

λ+ 2µ
∇x∇x

k2
p

γkp (x , y), x 6= y .

Here, I denotes the identity matrix, and γkt (x , y) is the fundamental solution of the
Helmholtz equation in Rd

γkt (x , y) =


i
4 H(1)

0 (kt |x − y |), d = 2,

exp(ikt |x−y|)
4π|x−y| , d = 3,

x 6= y , t = p, s,

where H(1)
0 (·) is the first kind Hankel function of order zero.



Hyper-singular BIO for elastic wave in 2D

Theorem (Yin-Hsiao-X. 2017, Bao-X.-Yin 2017)

The hyper-singular BIO W in two dimensions can be expressed as

Wu(x) = ρω2
∫

Γ

[
γks (x , y)(nx n>y − n>x ny I − Jnx ,ny )− γkp (x , y)nx n>y

]
u(y)dsy

−4µ2
∫

Γ

dE(x , y)

dsx

du(y)

dsy
dsy +

4µ2

λ+ 2µ

∫
Γ

dγkp (x , y)

dsx

du(y)

dsy
dsy

+2µ
∫

Γ
nx∇>x R(x , y)A

du(y)

dsy
dsy + 2µ

∫
Γ

A
d

dsx
(∇y R(x , y))n>y u(y)dsy ,

where R = γks − γkp and Jnx ,ny = ny n>x − nx n>y , A =

[
0 −1
1 0

]
.

3D (thermo-)elastic wave (Bao-X.-Yin 2019); Porous medium elastic wave in
2D/3D (Zhang-X.-Yin 2021, Zhang-X.-Yin preprint)



Why hypersingular boundary integral operators?

Why we need such formulations of hypersingular BIO or hypersingular BIO

Theoretical definition required

There is rich physics in the hypersingularity (for instance: circuit physics)

Use of BEM:
Computing Neumann boundary value problems with a double layer potential:
Hsiao-Wendland, J. Math. Anal. Appl. 1977; Giroire-Nédélec Math. Comp. 1978; H. Han
Numer. Math. 1994; Bao-X.-Yin JCP 2017, CMAME 2019
Solvability of the resulting boundary integral equations (Uniqueness, Lipschitz domain):
Burton-Miller, Proc. Roy. Soc. London Ser. A, 1971; M. Costabel, SIAM Math. Anal.
1988; Yin-X.-Hsiao, SINUM 2017
Fast boundary integral equation methods (”Good” system, Preconditioning):
Hsiao-X.-Zhang, JSC 2014; Zhang-X.-Yin SISC 2021, Zhang-X.-Yin Preprint
Coupling methods of boundary elements and finite elements (Symmetric):
Johnson-Nédélec Math. Comp., 1980; M. Costabel, Boundary Element IX 1987; H. Han
J. Comput. Math. 1990
Applications: crack/eigenvalue/optimal/inverse problems, layered/porous/thermo-effect
medium, etc. Wendland-Stephan ARMA 1990, Bruno-X.-Yin, IJNME 2021, X.-Yin,
Preprint,
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Dynamic poroelasticity equation

The solid displacements u = (u1, u2)> and the pore pressure p satisfy (Biot-41,55,56)

∆∗u + (ρ− βρf )ω2u − (α− β)∇p = 0

∆p + qp + iωγ∇ · u = 0

in Ωc , together with the Neumann boundary condition

T̃ (∂, ν)U :=

[
T (∂, ν) −αν
−iωβν> iβ

ωρf
∂ν

]
U = F ,

on Γ. Here, U = (u>, p)>, Ωc = R2\Ω with Ω ⊂ R2 being a bounded domain with
smooth boundary Γ, T (∂, ν) is the traction operator defined as

T (∂, ν)u := 2µ∂νu + λν∇ · u + µν⊥(∂2u1 − ∂1u2), ν⊥ = (−ν2, ν1)> ,

and ∆∗ is the Lamé operator defined by

∆∗ := µ∆ + (λ+ µ)∇∇ · .



Fundamental solutions of Biot model

Let E(x , y) be the fundamental solution of the adjoint problem in R2 given by

E(x , y) =

[
E11(x , y) E12(x , y)
E>21(x , y) E22(x , y)

]
, x 6= y ,

with

E11(x , y) =
1
µ
γks I +

1
(ρ− βρf )ω2

∇x∇>x

[
γks −

k2
p − k2

2

k2
1 − k2

2
γk1 +

k2
p − k2

1

k2
1 − k2

2
γk2

]
,

E12(x , y) =
iωγ

(λ+ 2µ)(k2
1 − k2

2 )
∇x [γk1 − γk2 ],

E21(x , y) = −
γ

(λ+ 2µ)(k2
1 − k2

2 )
∇x [γk1 − γk2 ],

E22(x , y) =
iρfω

β(k2
1 − k2

2 )
[(k2

p − k2
1 )γk1 − (k2

p − k2
2 )γk2 ],

in which

γkt (x , y) =
i
4

H(1)
0 (kt |x − y |), x 6= y , t = s, p, 1, 2,

denotes the fundamental solution of the Helmholtz equation in R2 with wave number kt .



Fundamental solutions of Biot model

Here, kp and ks , referred as the compressional and shear wave numbers, respectively,
are given by

kp := ω

√
ρ− βρf

λ+ 2µ
, ks := ω

√
ρ− βρf

µ
.

The wave numbers k1, k2, satisfying Im(ki ) ≥ 0, i = 1, 2, are the roots of the
characteristic system

k2
1 + k2

2 = q(1 + ε) + k2
p , k2

1 k2
2 = qk2

p , ε =
iωγ(α− β)

q(λ+ 2µ)
.



Boundary integral representation

From the potential theory, the unknown function U can be represented as

U(x) = (D − iηS)(ϕ)(x), x ∈ Ωc , Re(η) 6= 0,

where

S(ϕ)(x) :=

∫
Γ
(E(x , y))>ϕ(y)dsy ,

D(ϕ)(x) :=

∫
Γ
(T̃∗(∂y , νy )E(x , y))>ϕ(y)dsy ,

denote the single-layer and double-layer potentials, respectively. Here, T̃∗ denotes the
corresponding Neumann boundary operator of adjoint problem given by

T̃∗(∂, ν) =

[
T (∂, ν) −iωαν
−βν> iβ

ωρf
∂ν

]
.



Combined boundary integral equation

Operating with the traction operator on boundary integral representation, taking the
limit as x → Γ, and applying the boundary condition, we obtain the BIE on Γ

[iη(
I
2
− K ′) + N](ϕ(x)) = F on Γ,

where the strong-singular BIO K ′ and the hyper-singular BIO N are defined by

K ′(ϕ(x)) = T̃ (∂x , νx )

∫
Γ

(E>(x , y))>ϕ(y)dsy ,

N(ϕ(x)) = T̃ (∂x , νx )

∫
Γ

(T̃∗(∂y , νy )E>(x , y))
>
ϕ(y)dsy .



Operator spectrum

Theorem (Zhang-X.-Yin 2021)

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ. Then K ′2−
[

C2
λ,µI 0
0 0

]
is compact where Cλ,µ is a constant that can be represented by Lamé parameters.

Cλ,µ =
µ

2(λ+ 2µ)
<

1
2

In addition, the spectrum of K ′ consists of three sequences of eigenvalues which
accumulate at 0, Cλ,µ and −Cλ,µ respectively.

Both theoretical and numerical proofs of this theorem can be given.

Figure: Eigenvalue distribution for the Integral operator K ′.



Operator spectrum

In view of the Calderón relation

NS = −
I
4

+ K ′2,

together with the inequalities 0 < Cλ,µ < 1/2, we conclude that the eigenvalues of the
composite operator NS are bounded away from zero and infinity.

Figure: Eigenvalue distribution for the Integral operator NS.



Regularized integral equation

Relying on the studies of the spectra of various relevant integral operators, we propose
the regularized combined field equations

U(x) = (DR − iηS)(ϕ)(x), x ∈ Ωc , Re(σ) 6= 0, (2)

[iη(
I
2
− K ′) + NR](ϕ(x)) = F on Γ. (3)

Note that for the elastic scattering problem, R usually takes the form R = S ( We could
simply choose the single-layer potential corresponding to the static problem as R
expressed as R = S0).



Operator spectrum of regularized integral equation

Theorem (Zhang-X.-Yin 2021)

The spectrum of the regularized combined field integral operator on the left hand side
of that equation consists of three non-empty sequences of eigenvalues which converge
to −1/4 + iη/2, −1/4 + C2

λ,µ + iη(1/2 + Cλ,µ) and −1/4 + C2
λ,µ + iη(1/2− Cλ,µ),

respectively.

The spectrum of the corresponding regularized combined field operator is displayed in
following Fig. Clearly the eigenvalues accumulate as prescribed by the theorem, and,
in particular, they do not accumulate either at zero or infinity.

Figure: Eigenvalue distribution for the Integral operator iη( I
2 − K ′) + NR.



Numerical Examples

Let Uexa = (uexa, pexa)> be the exact solution of the poroelastic problem given by

uexa(x) = E21(x , z), pexa(x) = E22(x , z), x ∈ Ωc ,

with z = (0, 0.5)> ∈ Ω.

Table: Number of iterations and computing time (seconds) required for the problem of poroelastic
scattering by a kite-shaped obstacle. GMRES tol: 10−5. Tp : Precomputation time, Nit : Number of
iterations, T tot

it : Total computing time

ω N CBIE RBIE
Tp Nit T tot

it Tp Nit T tot
it

1 15 0.06 30 0.15 0.07 19 0.09
10 150 1.63 136 5.30 1.93 77 3.78
20 300 7.58 232 32.0 7.97 119 21.0
50 750 40.0 456 342.4 42.1 177 162.4
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Application of Multigrid to BIE (Hsiao-X.-Zhang 2014)

We consider the following exterior Dirichlet problem in 2D (d = 2) or 3D (d = 3):

−∆u = 0 in Ωc := Rd \ (Ω ∪ Γ),

u = f0 on Γ := ∂Ω,

u = O(1) or O(|x|−1) as |x| → ∞ if d = 2 or 3,

where f0 ∈ H1/2(Ω) is a given function. Here Ω is assumed to be a smooth
domain.



Boundary integral equation

Boundary integral equation: the boundary integral equation reads

Vσ = −(
1
2

I − K )f0 on Γ.

Here, V and K denote the single-layer and double-layer potential

K (v)(x) =

∫
Γ

∂

∂ny
γ(x, y)v(y)dsy ∀v ∈ H1/2(Γ),

V (σ)(x) =

∫
Γ
γ(x, y)σ(y)dsy ∀σ ∈ H−1/2(Γ),

σ = ∂u+(y)
∂ny

is required to satisfy the condition
∫

Γ σds = 0 in the case that d = 2,
and

γ(xy) =

{
− log |x− y|/(2π) if d = 2,
1/(4π|x− y|) if d = 3.



Variable substitutions

Variational problem: Find σ ∈ H such that

〈Vσ, χ〉 = 〈f , χ〉 ∀χ ∈ H, (4)

where f = −( 1
2 I − K )f0.

Variable substitution for the unknown density function σ:

σ = W w → 〈V W w ,W v〉 = 〈f ,W v〉 ∀w , v ∈ H1/2
0 (Γ). (5)

Here, W is a hypersingular boundary integral operator defined by

W w(x) = −
∂

∂nx

∫
Γ

∂γ

∂ny
(x, y)w(y)dsy, x ∈ Γ.

The notation: Denote the space

H =

{
H−1/2(Γ) in 3D,
H−1/2

0 (Γ) =
{
χ ∈ H−1/2(Γ)| 〈1, χ〉 = 0

}
in 2D,

and introduce the notation

〈v , χ〉 =

∫
Γ

vχds ∀v ∈ H1/2(Γ), ∀χ ∈ H.



Equivalence

Theorem (Hsiao-X.-Zhang 2014)

For any Dirichlet data f ∈ H1/2+α(Γ) in (4), there is a unique solution σ ∈ H−1/2+α
0 (Γ)

in (4) such that
‖σ‖H−1/2+α(Γ) ≤ C ‖f‖H1/2+α(Γ) .

When we make variable substitution in (5), the original PDE solutions (4) are exactly
the same as that obtained from the potential solution:

〈V W w ,W v〉 = 〈f ,W v〉 ∀w , v ∈ H1/2
0 .

That is
σ = W w .



Discrete equations

Discretizing the equations by continuous boundary elements: Find
wh ∈ Hhk

=
{

v ∈ H1/2
0 (Γ) ∩ C0(Γ)| v |Ek,j

∈ P1 ∀Ek,j ∈ Γk

}
, such that〈

V W whk
,W vhk

〉
=
〈
f ,W vhk

〉
∀vhk

∈ Hhk
. (6)

Represent linear systems for (6) by Ak whk
= ghk

where

(Ak )ij =
〈
V W ψj ,W ψi

〉
,

(whk
)j = wj

so that whk
=

∑
1≤j≤Nk

wjψj ,

 ,

(ghk
)j =

〈
f ,W ψj

〉
.

The multigrid (MG) method: Given an initial w0 approximating the solution whk
in

(6), one k -th level multigrid iteration produces a new approximation wm+1.



Convergence

Theorem (Hsiao-X.-Zhang 2014)

(Constant-rate convergence for MG) For any positive γ < 1, there exist constants m
(large enough) and p(> 1), both independent of k, such that

9whk
− wm+19k,1/2 ≤ γ 9 whk

− w0 9k,1/2 .

Here whk
and wi are corresponding numerical solutions defined above.

Theorem (Hsiao-X.-Zhang 2014)

(Optimal order of computation) The multigrid solution w̃hk
(≈ whk

) of (6) approximates
the true solution σ of original variational problem (4) at the optimal order:∥∥σ −Ww̃hk

∥∥
L2(Γ)

≤ Ch2 ‖f0‖H1(Γ) .

However, numerically, we founded that it has the order 3 of convergence.



Numerical results

We solve a 2D exterior Laplace equation where the exact solution is

u = log
(x − 1)2 + (y − 1)2

(x − 1)2 + (y − 1)2
,

and the Γ is the circle of radius
√

8 centered at the origin.

Table: The errors and the iteration numbers

k The original method The W Substitution
‖σ − σhk

‖L2 hn
k iteration ‖Ikσ −W whk

‖L2 hn
k iteration

1 0.034393554 0.0 11 0.1480089367870 0.0 1
2 0.102470276 0.0 42 0.0136124673160 3.4 1
3 0.043419451 1.2 83 0.0124487509497 0.1 1
4 0.011132593 2.0 128 0.0015444779648 3.0 2
5 0.002731438 2.0 161 0.0001748794751 3.1 3
6 0.000674790 2.0 183 0.0000212825341 3.0 4
7 0.000167626 2.0 198 0.0000026419450 3.0 5
8 0.000041769 2.0 212 0.0000003296587 3.0 8
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Original Problem

Let us consider the following exterior Dirichlet problem
−∆u = f in Ωc ,

u = 0 on Γ,

u is bounded as |x| → ∞,

where Ω is a bounded domain in R2 with smooth boundary Γ, and ΩC is the
complement of Ω ∪ Γ, f has a compact support in ΩC and f ∈ L2(ΩC).



Reduced boundary value problem


−∆u = f in ΩR ,

u = 0 on Γ,

V
∂u
∂n

(x) = (−
1
2

I + K)u(x) on ΓR ,

where
V
∂u
∂n

(x) =

∫
ΓR

E(x , y)
∂u
∂n

(y)dSy ,

Ku(x) =

∫
ΓR

∂E(x , y)

∂ny
u(y)dSy ,

and
E(x , y) =

1
2π

ln|x − y |.

(Johnson-Nédelec,1980)



DtN-FEM

Natural boundary integral methods(Dirichlet-to-Neumann (DtN) methods, artificial
boundary integral methods)


−∆u = f in ΩR ,

u = 0 on Γ,

∂u
∂n

=
1

2πR

∫ 2π

0

1

2sin2 θ−ϕ
2

u(R, ϕ)dϕ on ΓR .

(Feng, 1980; Feng-Yu, 1982; Han-Ying, 1980)


−∆u = f in ΩR ,

u = 0 on Γ,

∂u
∂n

= −
∞∑

n=1

n
πR

∫ 2π

0
u(R, ϕ)cos(θ − ϕ)dϕ on ΓR .

(Han-wu, 1985; Yu, 1985; Givoli-Keller, 1989)



Numerical techniques

Some works on coupling of FEM-BEM: Johnson-Nédelec,1980; Costabel,
Boundary Element XI 1987; Han J. Comp. Math. 1990; Sayas SINUM 2009; SIAM
Review 2013; Gatica-Hsiao-Sayas Numer. Math. 2012

Some works on DtN-FEM: Feng, Proceeding of ICM 1983; Han-Wu Math. Comp.
1992; Grote-Keller JCP 1995; Nicholls-Nigam JCP 2004, Numer. Math. 2006;
Hsiao-Nigam-Pasiak-X. JCAM 2011; Geng-Yin-X. JCAM 2017; X.-Zhang-Hsiao
ANM 2019; Yin-X. Numer. Math. 2021; Wu-X.-Yin Preprint



Reduced/nonlocal boundary value problem

Given pinc , find u ∈
(

C2(Ω) ∩ C1(Ω)
)2

and p ∈ C2(ΩR) ∩ C1(ΩR) such that

∆∗u + ρω2u = 0 in Ω,

∆p + k2p = 0 in ΩR ,

ω2ρf u · n =
∂

∂n
(p + pinc) on Γ,

t = −n(p + pinc) on Γ,

∂p
∂n

= Sp on ΓR .

S, Hs(ΓR)→ Hs−1(ΓR), is called the DtN mapping (nonlocal) defined as:

Sϕ :=
∞∑

n=0

′ kH(1)
n
′
(kR)

πH(1)
n (kR)

∫ 2π

0
ϕ(R, φ) cos(n(θ − φ))dφ, ∀ϕ ∈ Hs(ΓR), 1/2 ≤ s ∈ R.



Weak formulation

Given pinc , find U = (u, p) ∈ H1 =
(
H1(Ω)

)2 × H1(ΩR) such that

A(U,V) = a1(u, v)+a2(p, q)+a3(u, q)+a4(p, v)+b(p, q) = `(V), ∀ V = (v, q) ∈ H1,

where

a1(u, v) = λ

∫
Ω

(∇ · u)(∇ · v̄)dx +
µ

2

∫
Ω

(
∇u + (∇u)T

)
:
(
∇v̄ + (∇v̄)T

)
dx

−ρω2
∫

Ω
u · v̄dx ,

a2(p, q) =

∫
ΩR

∇p · ∇q̄dx − k2
∫

ΩR

pq̄dx ,

a3(u, q) = ρfω
2
∫

Γ
u · nq̄ds, a4(p, v) =

∫
Γ

np · v̄ds,

b(p, q) = −
∫

ΓR

(Sp)q̄ds

are sesquilinear forms defined on corresponding function spaces, and `, defined by

`(V) =

∫
Γ

∂pinc

∂n
q̄ds −

∫
Γ

npinc · v̄ds ,

is a linear functional on H1.



Well-posedness

Theorem

The sesquilinear form A(U,V) satisfies

Re{A(V,V)} ≥ α‖V‖2
H1 − β

(
‖v‖2

(H1/2+ε(Ω))2 + ‖q‖2
H1/2+ε(ΩR )

)
, ∀V = (v, q) ∈ H1 ,

where α > 0, β ≥ 0 and 1/2 > ε > 0 are constants independent of V.

Theorem

Let the interface Γ and the material parameter (µ, λ, ρ) be such that there are no
traction free solutions, then the variational equation admits a unique solution U ∈ H1.



Property of DtN mapping

The truncated DtN mapping is written as,∀ϕ ∈ Hs(ΓR), s ≥ 1/2,

SNϕ :=
N∑

n=0

′ kH(1)
n
′(kR)

πH(1)
n (kR)

∫ 2π

0
ϕ(R, φ) cos(n(θ − φ))dφ.

Theorem (Yin-X. 2021)

Suppose that the DtN mappings S and SN are defined as above. Let p be a solution of
Helmholtz equation outside Ω satisfying either exact DtN or the truncated DtN
boundary condition. Then there exists a N0 > 0 such that for all N > N0,∥∥∥(S − SN )p

∥∥∥
Hs−1(ΓR )

≤ cqN‖p‖Hs+t+1/2(ΩR ), ∀ t ≥ 0, s ≥ 1/2,

where 0 < q < 1 is a constant independent of N.



Modified weak formulation

We consider the modified variational equation: Find UN = (uN , pN ) ∈ H1,

AN (UN ,V) = a1(uN , v) + a2(pN , q) + a3(uN , q) + a4(pN , v) + bN (pN , q) = `(V)

for ∀ V = (v, q) ∈ H1, where bN (pN , q) = −
∫

ΓR
(SNpN )q̄ds.

Boundedness, Gårding’s inequality

Loss of uniqueness? Indeed for modes with n > N the nonlocal boundary
condition is just ∂p/∂n = 0 on ΓR

No proof for time-harmonic acoustic and elastic wave equations

Harari and Hughes (1992) suggested choosing N > kR

Grote and Keller (1995) modified the DtN mapping as

∂u
∂n

= (SN − T N )u + Tu ,

where T is a linear operator satisfying Im{
∫

ΓR
µ̄Tµds} > 0, ∀µ 6= 0



Main results

Theorem (X.-Yin 2021)

Let the surface Γ and the material parameter (µ, λ, ρ) be such that there are no traction
free solutions, then there exists a constant N0 = N0 ≥ 0 such that the modified
variational equation has at most one solution for N ≥ N0.

+ Gårding’s inequality

Theorem (X.-Yin 2021)

Let the surface Γ and the material parameter (µ, λ, ρ) be such that there are no traction
free solutions, then there exists a constant N0 ≥ 0 such that the modified variational
equation admits a unique solution (uN , pN ) ∈ H1 for N ≥ N0.

Not get proved in a discrete function space as done in existing literature



Why uniqueness of modified weak formulation matters?

Why we need the uniqueness for the modified weak formulation under continuous
settings?

Theoretical definition required (good operator)

Convergence and error analysis for corresponding domain discretization methods
solving the reduced boundary value problem

Applications: eigenvalue/optimal/inverse problems, layered/porous medium, etc.



Outline

A simple example to illustrate boundary integral equation (BIE) methods

Regularity theory on the hypersingular boundary integral operators

Fast solutions for dynamic poroelasticity

Multigrid method via variable substitution for solving BIE with negative order

Uniqueness of the reduced boundary value problem with integral operators

Accurate solutions for the fluid-solid transmission problem

A new FE-BIE method for the exterior problem



Galerkin formulation

Given pinc , find Uh = (uh, ph) ∈ Hh, uh = (uh
x , uh

y ) such that

AN (Uh,Vh) = B(Uh,Vh) + bN (ph, qh) = `(Vh), ∀ Vh = (vh, qh) ∈ Hh, vh = (vh
x , v

h
y ),

where
B(Uh,Vh) = a1(uh, vh) + a2(ph, qh) + a3(uh, qh) + a4(ph, vh).

Remark: It can be shown that the discrete sesquilinear form AN (Uh,Vh) satisfies the
BBL-condition as implication of the following:
Gårding’s inequality + Uniqueness + Approximation property of Hh ⇒ BBL-condition.

Theorem

Let the surface Γ and the material parameter (µ, λ, ρ) be such that there are no traction
free solutions and suppose that the finite element space Hh ⊂ H1 satisfies the
standard approximation property, then there exist constants N0 ≥ 0 and h0 > 0 such
that AN (·, ·) for 0 < h ≤ h0,N ≥ N0 satisfies the BBL condition in the form

sup
(0,0) 6=Wh∈Hh

|AN (Vh,Wh)|
‖Wh)‖H1

≥ γ‖Vh‖H1 , ∀ Vh ∈ Hh.

Here γ > 0 is the inf-sup constant independent of h.



Asymptotic error estimates

Theorem

There exist constants h0 > 0 and N0 ≥ 0 such that for any h ∈ (0, h0] and N ≥ N0

‖U− Uh‖H1 ≤ c inf
Vh∈Hh

‖U− Vh‖H1

+ c sup
0 6=w2∈S′h

|(b(p,w2)− bN (p,w2)|
‖w2‖H1(ΩR )

where c > 0 is a constant independent of h and N.



Asymptotic error estimates

Theorem (X.-Yin 2021)

Suppose that U ∈ Ht for 2 ≤ t ∈ R. Then there exist constants h0 > 0 and N0 ≥ 0
such that for any h ∈ (0, h0] and N ≥ N0

‖U− Uh‖H1 ≤ c
{

ht−1‖U‖Ht + qN‖p‖H t (ΩR )

}
,

where c > 0 and 0 < q < 1 are constants independent of h and N.

Theorem (X.-Yin 2021)

Suppose that U ∈ Ht for 2 ≤ t ∈ R. Then there exist constants h0 > 0 and N0 ≥ 0
such that for any h ∈ (0, h0] and N ≥ N0

‖U− Uh‖H0 ≤ c
{

ht‖U‖Ht + qN‖p‖H t (ΩR )

}
where c > 0 and 0 < q < 1 are constants independent of h and N.



Numerical results

We consider the scattering of a plane incident wave pinc = eikx·d with direction
d = (1, 0) by a disc-shaped elastic body of radius R0

Figure: Nonlocal DtN-FEM: log-log plots for numerical errors (vertical) of U vs. 1/h (horizontal).
Left: H0-norm; right: H1-norm.
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Boundary value problem

We consider the following exterior Dirichlet problem in 2D (d = 2) or 3D (d = 3):

−∆u = f in Ωc := Rd \ (Ω ∪ Γ),

u = 0 on Γ := ∂Ω,

u = O(1) or O(|x|−1) as |x| → ∞ if d = 2 or 3,

where Ω is a bounded domain in Rd , and f is a given function with a compact
support near Ω.



Computational domain for the new coupling methods

Figure: A conventional boundary integral method (left), and a nonsingular kernel integral method.



New coupling methods (X.-Zhang-Hsiao 2019)

For the original model problem, the newly proposed nonsingular kernel integral method
reads: Find u ∈ H1(ΩF ) such that

−∆u = f in ΩF := Ω0 \ (Ω ∪ Γ),

u = 0, on Γ

u(x) =
|x|2 − R2

2d−1πR

∫
Γ1={|y|=R}

u(y)

|x− y|d
dsy x ∈ Γ0.

Here Γ0 and Γ1 are two artificial boundaries, circles or spheres, of radius R0 and R.


−∆u = f in ΩF ,

u = 0 on Γ,

V
∂u
∂n

(x) = (−
1
2

I + K)u(x) on Γ0,

where

V
∂u
∂n

(x) =

∫
ΓR

E(x , y)
∂u
∂n

(y)dSy , Ku(x) =

∫
ΓR

∂E(x , y)

∂ny
u(y)dSy .

(Johnson-Nédelec,1980)



Weak formulation

Multiplying a test function and integrating by parts, it follows that

a(u, v) = (f , v) ∀v ∈ H1
0 (ΩF ),

u(x) = Bu(x) x ∈ Γ0,

where H1
0 (ΩF ) := {v ∈ H1(ΩF ) | v |∂ΩF = 0}, and the linear operator

B : H1(ΩF )→ H1/2(Γ0) is defined by

Bu(x) :=
|x|2 − R2

2d−1πR

∫
Γ1={|y|=R}

u(y)

|x− y|d
dsy, ∀x ∈ Γ0.

Here we have standard notations:

a(u, v) =

∫
ΩF

∇u · ∇vdx,

(f , v) =

∫
ΩF

fvdx.



Galerkin equation

The finite element spaces on Th are the P1 conforming finite element:

Vh,0 = {vh ∈ H1
0 (ΩF ,h) | vh|K ∈ P1 ∀K ∈ Th},

Vh = {vh ∈ H1(ΩF ,h) | vh|Γ = 0, vh|K ∈ P1 ∀KTh}.

The finite element approximation reads: Find uh ∈ Vh such that

ah(uh, vh) = (f , vh)h ∀vh ∈ Vh,0,

uh(xi ) = Bhuh(xi ) ∀xi ∈ Γ0,h,

where the bilinear forms are defined by

ah(uh, vh) =

∫
ΩF,h

∇uh · ∇vhdx,

(f , vh)h =

∫
ΩF,h

fvhdx,

and the discrete operator is defined by

Bhu(xi ) =
|xi |2 − R2

2d−1πR

∫
Γ1,h

u(y)

|xi − y|d
dsy, ∀xi ∈ Γ0,h.



Numerical algorithm

In practical computation, we would solve the system of linear equations iteratively while
the domain equation can be solved effectively by the multigrid method. The algorithm is
defined as follows: Start with an iterate uh,0 = 0. For j = 1, 2, . . . ,m,

1 Let ûh,j ∈ Vh be defined by

ûh,j (xi ) =

{
(Bhuh,j−1)(xi ) if xi ∈ Γ0,h (FE nodes on Γ0),
0 if xi ∈ (Γ ∪ ΩF ) (rest FE nodes),

where the operator Bh is defined above;
2 Let uh,j ∈ Vh,0 solve the equations

ah(uh,j , vh) = (f , vh)h − ah(ûh,j , vh) ∀vh ∈ Vh,0.

3 End the iteration, when ‖uh,m − uh,m−1‖H1 ≤ ε, by defining

uh = uh,m + ûh,m.



Uniqueness and convergence (X.-Zhang-Hsiao 2019)

Theorem

The nonsingular kernel coupling problem has a unique solution which solves the
exterior boundary value problem. The system of coupled finite element equations has
a unique solution, when the grid size h is sufficiently small.

Theorem

The finite element solution uh of approximates that u of continuous problem at the
optimal order:

|u − uh|H1(ΩF,h) ≤ Ch(‖u‖H2(ΩF,h) + ‖u‖W 2
∞(ΩF,h)).

Theorem

The iterative solutions of converge at the following rate

‖uh − (uh,j + ûh,j )‖H1(ΩF,h) ≤ δ
j |uh|H1(ΩF,h),

where δ = (1 + Ch2)R2/R0
0 < 1, R and R0 are the radii of spheres Γ1 and Γ0,

respectively.



Numerical tests

We solve a 2D exterior Laplace equation where the exact solution is

u(x , y) = −
x

x2 + y2
,

and the domain is Ωc = {|x| >
√

2}.

Figure: Level 1, 2 and 3 grids for 2d problem.



Numerical results

The artificial outer boundary Γ0, and the internal representation boundary Γ1 are
chosen as,

Γ0 = {|x| = 5},
Γ1 = {|x| = 2}.

Table: The error and the order of convergence for 2D problem.

level ‖u − uh‖L2 hn |u − uh|H1 hn # it
1 0.425266 0.00 1.127571 0.00 12
2 0.101300 2.07 0.523291 1.11 15
3 0.025666 1.98 0.257112 1.03 15
4 0.006483 1.99 0.128261 1.00 15
5 0.001631 1.99 0.064117 1.00 15
6 0.000409 2.00 0.032058 1.00 15
7 0.000102 2.00 0.016029 1.00 15
8 0.000026 2.00 0.008014 1.00 15
9 0.000006 2.00 0.004007 1.00 15



Conclusions

Make a complement to the regularization theory of hypersingular boundary
integral operators and apply it to numerics

Give a proof on the uniqueness on a reduced boundary value problem with the
Fourier series DtN integral operator and apply it to numerical error analysis

Present a new variable substitution technique and a new coupling technique with
potentials to apply preconditioning associated to domain discretization methods
(multigrid methods)

Future attention: Investigate accurate/fast schemes for the boundary integral
equation methods and their coupling with DG/FE methods for time dependent or
harmonic scattering wave problems

Thanks for your attention


