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Abstract—The rapid development of Intelligent Transportation
Systems (ITS) and the Internet of Vehicles (IoV) has revolution-
ized transportation networks by enabling real-time communi-
cation between vehicles, road infrastructure, and cloud systems.
One such advancement is the vehicular reverse offloading system,
which allows Road Side Units (RSUs) to offload tasks to vehicles
on the road. This paradigm makes full use of the dynamic
computational resources available on vehicles and helps reduce
the overall carbon emissions of IoV systems. In this paper, we
establish a multi-hop reverse offloading vehicular edge computing
model, enabling RSUs to utilize dynamic computational resources
beyond their communication range. Considering the potential
variations in power supply sources for RSUs, we further construct
a carbon intensity adaptive carbon emission optimization model
for RSUs and optimize the system’s overall carbon emissions
through deep reinforcement learning(DRL). Through extensive
simulations, we demonstrate that our DRL-based approach
significantly reduces carbon emissions compared to traditional
task-offloading methods.

Index Terms—Reverse offloading, Vehicular edge computing,
Carbon emission, Deep Reinforcement Learning

I. INTRODUCTION

The rapid development of Intelligent Transportation Sys-
tems (ITS) and the Internet of Vehicles (IoV) has revolu-
tionized modern transportation networks by enabling real-
time communication between vehicles, road infrastructure, and
cloud systems [1]–[3]. With the growing demand for sustain-
ability in intelligent transportation systems, optimizing carbon
emissions has become a key challenge in vehicular commu-
nication networks. This interconnected environment provides
opportunities for improved traffic management, safety, and
efficiency. One such advancement is the vehicular reverse
offloading system, where Road Side Units (RSUs) offload
computational tasks to vehicles, which effectively utilizes the
computational resources of vehicles, which are often under-
utilized, thus enhancing the overall network efficiency and
resource utilization [4]–[6].

In addition to improving resource efficiency, the task of-
floading paradigm offers environmental benefits by reducing
overall carbon emissions. Song et al. [7] propose a carbon
emission optimization model in a Mobile Edge Comput-
ing(MEC) scenario. By employing an adaptive sensor node de-
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ployment strategy, it optimizes network channel allocation and
minimizes carbon emission. Yang et al. [8] propose a carbon-
aware dynamic task offloading online algorithm for the MEC
system, which reduces carbon emissions while ensuring ser-
vice latency. These approaches make task offloading decisions
by considering the associated carbon costs, demonstrating that
tasks can be offloaded in a carbon-efficient manner, thereby
reducing the overall environmental carbon emissions of the
MEC system.

Over the past few years, some approaches have been
employed for the vehicular reverse offloading system. Gu
et al. [5] propose a Deep Q-Network(DQN) based method
to minimize the energy consumption and task delay of the
vehicular reverse offloading system. Feng et al. [9] propose
a joint alternative optimization-based bi-section searching for
partial reverse offloading to minimize the latency in Vehic-
ular Edge Computing(VEC) scenarios. These methods have
demonstrated the potential for improving decision-making pro-
cesses by dynamically adjusting reverse offloading strategies in
VEC scenarios. Song et al. [10] propose a Deep Deterministic
Policy Gradient(DDPG) based method to minimize the delay
of the vehicular reverse offloading system. However, few
studies have integrated carbon emission optimization within
the vehicular edge offloading decision framework, and even
fewer have considered the variability of power supply modes
at RSUs.

The variability of power supply modes introduces significant
challenges in energy consumption and carbon emissions in
the offloading process [7], [11]. The energy supply to RSUs
can vary depending on factors such as time of day, weather
conditions, and the availability of renewable energy sources
like hydropower, wind power, and solar energy [12]. Further-
more, the power supply mode changes can lead to situations
where offloading decisions may increase carbon emissions if
not correctly accounted for in the offloading decision-making
process.

In this work, we consider a carbon emission optimization
model for the vehicular reverse offloading system with the
RSU and different power supply modes. Therefore, we propose
a novel carbon emission optimization framework for multi-hop
vehicular reverse offloading systems, which extends the com-
munication and computational reach of the RSU by offloading
tasks to vehicles beyond their direct communication range.

2025 IEEE/CIC International Conference on Communications in China (ICCC)

979-8-3315-4444-7/25/$31.00 ©2025 IEEE

20
25

 IE
EE

/C
IC

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
 in

 C
hi

na
 (I

C
C

C
) |

 9
79

-8
-3

31
5-

44
44

-7
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

C
C

65
52

9.
20

25
.1

11
49

05
5

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 12,2025 at 10:27:20 UTC from IEEE Xplore.  Restrictions apply. 



This framework incorporates a power supply mode-adaptive
optimization algorithm based on DRL methods, which dy-
namically adjusts the offloading decisions based on the power
supply mode of the RSU.

The main contributions of this paper are summarized as
follows:

• We build a carbon emission optimization model for the
multi-hop vehicle reverse offloading system, enabling ef-
ficient resource utilization and carbon emission reduction.

• We further propose a power supply mode-adaptive opti-
mization algorithm based on deep reinforcement learning.
Through deep neural networks, feature representations
of input states are extracted, thereby achieving adaptive
carbon emission optimization for different power supply
modes of the RSU.

• We use real-world carbon intensity data to simulate the
experiments. The results demonstrate that the proposed
method outperforms the greedy-based approach, high-
lighting its effectiveness in optimizing carbon emissions.

II. SYSTEM MODEL AND FORMULATIONS

Fig. 1. The proposed vehicular reverse offloading system

In this paper, we consider a vehicular reverse offloading
system, as illustrated in Fig. 1. The system consists of an
RSU R and N vehicles with different speeds and directions,
denoted by V = {V0, V1, . . . , VM}, where M is the number of
the vehicles and V0 represents the RSU. The speed of vehicle
Vi is denoted by vi, i = 0, . . . ,M . v0 = 0 represents the RSU
is stationary, a positive speed means the vehicle is moving
to the right, and a negative speed indicates the vehicle is
moving to the left. At each time slot t, the RSU generates
a task task0t , t = 1, . . . , T . For each task, we define w0

t as the
required computational resources, D0

t as the task size, and ϕ0
t

as the time constraint of the task of the RSU. In the proposed
reverse offloading scenario, the RSU can choose to compute
tasks locally or offload its tasks to vehicles on the road while
the vehicles process their own tasks locally. We define the
offload decision as It = {0, 1, . . . ,M}, where It = 0 means
computing the task on the RSU and It = i, i = 1, . . . ,M
means computing the task the task on the i-th vehicle Vi.

However, among the possible offload choices, some are out
of the RSU’s communication range. For example, the green,
orange, and blue vehicles in Fig. 1 are idle, but they are

outside the communication range of the RSU. In the model we
propose, the RSU can offload tasks to idle vehicles by utilizing
other vehicles within its communication range to relay the
data. To make full use of the computational resources available
on the road, we utilize devices within the communication range
as intermediaries to enable offloading to devices outside the
communication range. Additionally, when the RSU transmits a
task to a vehicle, the vehicle may already be occupied with its
own tasks, thus causing a waiting delay in the offloading task.
Therefore, carbon emissions are generated from three types of
processes: transmission, waiting, and computing.

A. Transmission Process
The RSU and vehicles have limited communication ranges

and cannot communicate with devices beyond their coverage
areas. We denote Cov = {Cov0, Cov1, . . . , CovM} as the
communication coverage set of the RSU and vehicles, where
Cov0 is the the communication coverage of the RSU.

In a vehicular network, the relative dynamics between two
devices determine the duration of the communication link
between them. We build a communication graph G = (V,E),
where E is the set of edges whose weights are the durations
of the communication links, denoted as T link

i,j , i ̸= j and
i, j = 0, . . . ,M :

T link
Vi,Vj

=
min(CovVi , CovVj )−DisVi,Vj

|vi − vj |
, (1)

where Disi,j =
√
(yi − yj)2 + (xi − xj)2 is the distance

between the devices Vi and Vj , whose positions are loci =
(xi, yi) and locj = (xj , yj), respectively. |vi − vj | is the
relative speed between the devices Vi and Vj .

If T link
i,j > 0, Vi and Vj can communicate. The transmission

rate between Vi and Vj is as follows:

RVi,Vj = BVi,Vj log2(1 +
P tr
Vi
C

ω0DisϑVi,Vj

), (2)

where BVi,Vj
is the bandwidth between two devices, P tr

Vi
is

the transmission power of the device Vi, C is the constant
loss, ω0 represents the noise power, and ϑ represents the path
loss factor.

We define the set of vehicles within the RSU range as V in,
and the set of vehicles outside the RSU range as V out.

1) 1-hop communication: : For Vi ∈ V in, the transmission
time is the one-hop transmission time of taskRSU from the
RSU to the vehicle Vi, which is as follows:

T tr1
i =

{
D0

RV0,Vi
, D0

RV0,Vi
< T link

V0,Vi

+∞, else
(3)

where D0 is the data size of the RSU and R0,i is the
transmission rate from the RSU to the device Vi. T tr1

i = +∞
represents the vehicle Vi drive out of the communication range
before the task is transmitted. The carbon emission of the 1-
hop communication process is as follows:

Ctr1
i =

{
D0

RV0,Vi
P tr
0 C0,

D0

RV0,Vi
< T link

V0,Vi

Carbonc, else
(4)

2025 IEEE/CIC International Conference on Communications in China (ICCC)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 12,2025 at 10:27:20 UTC from IEEE Xplore.  Restrictions apply. 



where P tr
0 is the transmission power of the RSU, C0 is the

carbon intensity of the RSU, and Carbonc is the carbon
emission estimate value for offloading the task to the cloud.
The cloud setting ensures that the task can still be successfully
executed even when there is no feasible solution in the current
vehicular reverse offloading system.

2) multi-hop communication: : For Vi ∈ V out, we
use multi-hop transmission. Suppose the communication
between node V0 and node Vi goes through multiple
intermediate nodes, forming multi-hop paths Pathi =
{Pathi

1, . . . , Pathi
Ki

}, where Ki is the number of paths
between the RSU and Vi. Pathi

k is from the RSU through
devices V

pathi
k

1 , . . . , V
pathi

k

Li
k

to the device Vi, where Li
k is the

length of the Pathi
k. For simplicity, we represent lik as l and

V
pathi

k

l as V k
l . We denote the duration of the k-th path Pathi

k

from the RSU to the device Vi as the bottleneck time T trbot
i,k

of Pathi
k:

T bot
i,k = min

l
{T link

V k
l ,V k

l+1
, T link

V k
L ,Vi

} (5)

where l = 0, 1, . . . , L− 1 and l = 0 represent the link is from
the RSU.

Considering there are multiple paths between the RSU and
the device Vi, we select the path with the longest transmission
time among all paths Pathi

k from the RSU to the vehicle Vi,
k = 1, . . . ,Ki, to transmit the task, which corresponds to the
path with the maximum bottleneck time for communication.
So the best path to device i among all path Pathi

k is
determined by the following formula:

k∗i = argmax
k

{T bot
i,k }, (6)

Transmitting taskRSU from the RSU to the device Vi by
the multi-hop paths costs T̂ tr

i,k∗ :

T̂ tr
i,k∗ =

L∑
l=0

D0

RV k∗
l ,V k∗

l+1

+
D0

RV k∗
L ,Vi

, (7)

The carbon emission of when transmitting by the multi-hop
path is as follows:

Ĉtr
i,k∗ =

D0

RV0,V k∗
1

P tr
0 C0 +

L∑
l=1

D0

RV k∗
l ,V k∗

l+1

P tr
v CV k∗

l

+
D0

RV k∗
L ,Vi

P tr
v CV k∗

L
,

(8)

where P tr
v is the transmission power of vehicles, CV k∗

l
and

CV k∗
L

are the carbon intensity of vehicles V k∗

l and V k∗

L ,
which corresponds to the relay sub-paths for multi-hop task
offloading and the last path belong the chosen path k∗i .

The transmission time for multi-hop paths from the RSU to
the device Vi is as follows:

T tr2
i =

{
T̂ tr
i,k∗ , T̂ tr

i,k∗ < T bot
i,k∗

+∞, else
(9)

The actual carbon emission for transmission process along
multi-hop paths from the RSU to the device Vi is as follows:

Ctr2
i =

{
Ĉtr

i,k∗ , T̂ tr
i,k∗ < T bot

i,k∗

Carbonc, else
(10)

So the transmission time for the offloading decision It is as
follows:

T tr(It) =

{
T tr1
It

, if It ∈ V in,t

T tr2
It

, if It ∈ V out,t
(11)

where V in,t and V out,t are the vehicle sets for vehicles in the
RSU communication range and out of the RSU communication
range in time slot t, respectively.

The carbon emission in the transmission process for the
offloading decision It is as follows:

Ctr(It) =

{
Ctr1

It
, if It ∈ V in,t

Ctr2
It

, if It ∈ V out,t
(12)

B. Waiting Process

At time t = 0, the initial queues of the RSU and vehicles
are set as Γ0

0 = w0
0 and Γi

0 = wi
0, where w0

0 and wi
0 initial

computational resource requirements for the tasks at the RSU
and vehicles, respectively. Each device generates a task at each
slot. If there are incomplete tasks on device Vi, the offloaded
task needs to wait.

We define the indicator function I(It = i)) to indicate
whether the task is executed on device Vi. The queue of the
RSU at t+ 1 is as follows:

Γ0(t+ 1, It) = max
(
0,Γ0(t) + w0

t · I(It = 0)− F 0
)

(13)

where t = 0, 1, . . . , T − 1, Γ0(t) represents the queue at the
RSU at t, w0

t is the computational resource requirements of
the task generated by the RSU at time t, and F 0 = f0△t is
the amount of the task the RSU can process within a slot. f0 is
the computational capability of the RSU, and △t is the length
of a time slot.

The vehicle Vi prioritizes tasks that remain unfinished from
the previous slot, followed by tasks generated locally in the
current slot, and finally processes tasks offloaded from the
RSU. Therefore, the queue of the vehicle Vi at t+ 1 is:

Γi(t+ 1, It) = max
(
0,Γi(t) + wi

t+1 + w0
t · I(It = i)− F i

)
(14)

where i = 1, . . . ,M , t = 0, 1, . . . , T − 1, Γi(t) is the queue
of Vi at t, wi

t+1 is the computational resource requirements
of the task generated by Vi at t + 1, w0

t · I(It = i) is the
computational resource requirements of the task offloaded by
the RSU to Vi at time t, and F i = fi△t is the amount of
the task the vehicle Vi can process within a slot. fi is the
computational capability of Vi.

The wait time at t is:

TW (It) =

M∑
i=0

Γi(t, It)

fi
(15)

We compute the carbon emission at waiting process CW (It)
as follows:

CW (It) =

M∑
i=1

Γi(t, It)

fi
PW
v CVi

+
Γ0(t, It)

f0
PW
0 C0 (16)

where PW
0 and PW

v are the idle power of the RSU and
vehicles, respectively. CVi is the carbon intensity of Vi
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C. Computing Process

The execution time TP (It) for the task of the RSU at t is:

TE(It) =

M∑
i=0

w0
t · I(It = i)

fi
(17)

The carbon emission for computing process is as follows:

CE(It) =

M∑
i=1

w0
t · I(It = i)

fi
PE
v CVi +

w0
t · I(It = 0)

fi
PE
0 C0

(18)
where PE

0 and PE
v are the execution power of the RSU and

vehicles, respectively.

D. Optimization Model under Different Power Supply Modes

Different power supply modes have varying carbon inten-
sities. For instance, power sourced from fossil fuels leads
to higher carbon emissions, while renewable energy sources
result in significantly lower emissions. By adjusting offloading
decisions based on the carbon intensity of the available power
mode, the system can effectively reduce its overall carbon
emission.

In this paper, we consider a carbon emission optimiza-
tion model for the vehicular reverse offloading system with
the RSU that has different power supply modes. We define
Λ = {αq | q ∈ N, 1 ≤ q ≤ |Λ|} as the set of different
power supply modes, each of which is associated with a carbon
intensity C0(αq). The carbon emissions in the transmission
process under different power supply modes are as follows:

Ctr
αq
(It) =

{
Ctr1

It
(C0(αq)), if It ∈ V in,t

Ctr2
It

(C0(αq)), if It ∈ V out,t
(19)

where Ctr1
It

(C0(αq)) and Ctr2
It

(C0(αq)) is computed by Eq (4)
and Eq (10) where C0 = C0(αq), respectively. Similarly,
the carbon emission in waiting and computing process under
different power supply modes are defined as CW

αq
(It), CE

αq
(It)

computed by Eq (16) and Eq (18) where C0 = C0(αq),
respectively.

This model aims to minimize the total carbon emissions
associated with the system’s communication and computation
processes. The formulation of this optimization problem can
be expressed as follows:

C∗
αq
(I∗) = min

It

T∑
t=1

(Ctr
αq
(It) + CW

αq
(It) + CE

αq
(It)),

s.t. C1: It ∈ V, (20a)

C2: T tr(It) + TW (It) + TE(It) ≤ ϕ0
t ,

(20b)

C3: RV k∗
l ,V k∗

l+1
≥ Rmin, V

k∗

l ∈ V, V k∗

l+1 ∈ V

(20c)

where C∗
αq
(I∗) is the minimum carbon emission under the

power mode αq with the optimal reverse offloading set I∗ =
{I∗1 , . . . , I∗T }. Constraint C1 guarantees that the offloading
decision is computed in the devices of the road. Constraint

C2 guarantees that the total time for the task of the RSU is
no more than its time constraint. Constraint C3 guarantees the
communication quality by letting the transmission rate of the
links along the transmission path no less than Rmin.

III. DRL-BASED VEHICULAR REVERSE OFFLOADING
FRAMEWORK

In this section, we address the dynamic decision-making
optimization problem by modeling it as a Markov decision
process(MDP) and applying DRL methods for solutions. By
integrating deep neural networks into reinforcement learning,
DRL is able to extract state features from observations,
enabling adaptive offloading decision-making under different
power supply modes of the RSU to minimize carbon emis-
sions. We model the MDP as follows:

1) State: We define the state to include the following
information: the current queue Γt of tasks for all devices, the
computational resources required for unit data size δ, the time
constraints of the tasks ϕt, the carbon intensity C0(alphaq)
under different power supply modes of the RSU, the devices’
position loci, the computational capacity fi of the devices,
the vehicles’ speed v, the communication range Cov of the
devices. The state is as follows:

st = {Γt, δ, ϕt, CVi
, C0(αq), loct, f, v, Cov} (21)

where Γt = {Γi(t) | i = 0, . . . ,M}, wi
t = δDi

t, loct =
{loci(t) | i = 0, . . . ,M}, f = {fi | i = 0, . . . ,M}, v = {vi |
i = 1, . . . ,M}.

2) Action: We define the action as at ∈ V , which is
corresponding to the offloading decision It.

3) Reward: We define the reward function based on the
carbon emission for the task of the RSU, which is as follows:

rt =

{
Ctr

αq
(at) + CW

αq
(at) + CE

αq
(at), if T sum

t ≤ ϕt

λ, else
(22)

where T sum
t = T tr(at) + TW (at) + TE(at) and λ is the

punishment value for the situation that the delay for the task
is more than the time constraint ϕt.

Since the action is in the discrete space, we choose Deep Q-
Network(DQN) [13] or Double Deep Q-Network(DDQN) [14]
to obtain the optimal reverse offloading decision. DQN em-
ploys a deep neural network to approximate the Q-value func-
tion, while DDQN utilizes two networks: the main network
for action selection of the current state and the target network
for action evaluation of the next state-action pair.

In DQN, the Q-function is updated based on the following
modified Bellman equation:

Q(st, at) = rt + γmax
at+1

Q(st+1, at+1)) (23)

where Q(st, at) is the action-value. The network input is
st, and the output is a vector of Q-values for all possible
actions. By utilizing a deep neural network to extract the
representation of the state, including the information related
to carbon intensity, the decision-making process is adaptive to
the power supply modes of the RSU.
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TABLE I
PARAMETER SETTINGS.

Parameter Value
v [30, 40] m/s
δ 300 cycles/bit
D [1, 10]× 106 MB
x, y [0,800],[0,50] m
ϕ [20, 25]s
ω0 0.001 W/Hz
ϑ 2
f0 [2.5, 3]×104Mcycles/s
fi [2, 2.5]×104Mcycles/s
Covi 200 m
BV0,Vi

, BVi,Vj
20, 40 Mbps

P tr
V0

, P tr
Vi

2, 0.2 W
PW
0 , PW

v 1, 4.5 W
PE
0 , PE

v 10, 20 W
C0(αq) {11, 13, 40, 91} CO2eq/(kWh)
CVi

[10, 20] CO2eq/(kWh)
Carbonc 500 CO2eq

IV. SIMULATION RESULTS

A. Simulation Settings

In this simulation, we aim to optimize carbon emissions in
the vehicular reverse offloading system by deep reinforcement
learning algorithms under the context of various energy supply
modes. The simulation setup follows the approach described
in [15], with adjustments to align with our specific application.
Carbon intensity values, based on the UK’s average from
December 31st, 2024 to January 3rd 2025 [16], are used
in the simulation, where hydropower, wind power, and solar
power are associated with carbon intensities of 11, 13, 40
CO2eqkWh, respectively, while the overall carbon intensity in
UK is 91 CO2eqkWh. These values reflect typical emissions
for various power supply modes. The reinforcement learning
setup employs DQN and DDQN, with training parameters
including a learning rate of 0.00005, γ of 0.90, and a batch
size of 64. The training utilizes a replay buffer size of 1×105

and updates the target network every 4 steps. Training spans
1000 episodes, and the testing covers 1000 initial states.

We compare the proposed reverse offloading method based
on DQN and DDQN with the greedy and random methods,
where the greedy method chooses the device with the mini-
mum queue to offload, and the random method chooses the
random device to offload.

B. Performance Evaluations

Fig. 2(a) shows the performance of DDQN and DQN in
terms of carbon emissions and task completion rates under
different learning rates when M = 5. The learning rates are
set to 1× 10−5, 3× 10−5, 5× 10−5, 7× 10−5, 9× 10−5. The
results indicate that DQN exhibits similar carbon emissions
with DDQN; the best learning rates for DQN and DDQN are
5× 10−5. As the learning rate decreases, the training fails to
adequately learn, leading to deteriorating results for both DQN
and DDQN. This suggests that a too-low learning rate inhibits
the models from effectively exploring and optimizing, result-
ing in lower task completion and higher carbon emissions.

(a) Learning rate (b) Seed

Fig. 2. The carbon emissions and task completion rates under different
learning rates and seeds.

Fig. 2(b) illustrates the performance under different seeds,
which are set to 0, 50, 100, 200, and 500. The results
show that the influence of the seed on the outcome is less
significant than that of the learning rate. When the seed is set
to 200, DDQN and DQN exhibit carbon emissions of 7558.2
and 7092.06, respectively, with task completion rates of 0.96
and 0.97. In contrast, the results for the greedy and random
methods are 11934.85 and 14900.14 for carbon emissions,
with task completion rates of 0.83 and 0.81. When comparing
DQN with the greedy method, DQN’s performance is notably
better, with a reduction in carbon emissions by approximately
40%, and a task completion rate that is about 12% higher,
which demonstrates the benefits of reinforcement learning
approaches over the greedy-based method.

We set the learning rate as 5× 10−5 and the seed as 0. In
the proposed carbon emission optimization model, the power
supply mode of the RSU is adaptive, while the power supply
mode of the vehicle is fixed. We compared the results under
several different vehicle carbon emission intensities. As shown
in Fig. 3, when the carbon intensity of vehicles is 13, DQN
achieves a carbon emission of 8872.76, while DDQN results
in 8306.87. In contrast, Greedy and Random have emissions of
11934.85 and 14900.14, respectively. DQN reduces emissions
by approximately 25.66% compared to Greedy and 40.45%
compared to Random. DDQN outperforms Greedy by 30.40%
and Random by 44.25%. These results demonstrate that DQN
and DDQN significantly reduce carbon emissions compared
to Greedy and Random at different carbon intensity levels of
vehicles.

We compared the results under different number of vehicles.
As shown in the Fig. 4, the results of DDQN and DQN are
better than those of the Greedy and Random methods. As the
number of vehicles increases, carbon emissions decrease and
task completion rates improve. This is because the increase in
the number of vehicles implies a larger action space and more
available computing resources on the road, thus resulting in
lower carbon emissions and better task completion rates.

Fig. 5 depicts the average rewards of different epochs, which
illustrates the convergence of DDQN and DQN. The average
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Fig. 3. The carbon emissions and task completion rates of different number
of vehicles.

Fig. 4. The carbon emissions and task completion rates of different number
of vehicles.

reward curves for both methods initially exhibit an upward
trend and then stabilize as the iteration number increases.

Fig. 5. The average rewards of different epochs.

V. CONCLUSION

In this paper, we focus on the carbon emission optimiza-
tion problem in the vehicle reverse offloading system. We
establish a vehicle reverse offloading system with multi-hop
transmission, enabling the tasks of the RSU to be offloaded to

vehicles beyond the communication range through multi-hop
transmission, thereby fully utilizing the available computing
resources. We further propose a power supply mode-adaptive
carbon emission optimization model and optimize it by deep
reinforcement learning. The experimental results demonstrate
that our results have a significant advantage over the greedy-
based method.
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