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Abstract—Reconfigurable intelligent Surfaces (RIS) and half-
duplex decoded and forwarded (DF) relays can collaborate to
optimize wireless signal propagation in communication systems.
Users typically have different rate demands and are clustered
into groups in practice based on their requirements, where the
former results in the trade-off between maximizing the rate
and satisfying fine-grained rate demands, while the latter causes
a trade-off between inter-group competition and intra-group
cooperation when maximizing the sum rate. However, traditional
approaches often overlook the joint optimization encompassing
both of these trade-offs, disregarding potential optimal solutions
and leaving some users even consistently at low date rates. To
address this issue, we propose a novel joint optimization model
for a RIS- and DF-assisted multiple-input single-output (MISO)
system where a base station (BS) is with multiple antennas
transmits data by multiple RISs and DF relays to serve grouped
users with fine-grained rate demands. We design a new loss
function to not only optimize the sum rate of all groups but
also adjust the satisfaction ratio of fine-grained rate demands
by modifying the penalty parameter. We further propose a
two-phase graph neural network (GNN) based approach that
inputs channel state information (CSI) to simultaneously and
autonomously learn efficient phase shifts, beamforming, and relay
selection. The experimental results demonstrate that the proposed
method significantly improves system performance.

Index Terms—Reconfigurable intelligent surface, decoded and
forwarding relay, graph neural network, fine-grained rate
demands.
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I. INTRODUCTION

HE exponential growth of wireless data traffic, which

is driven by the proliferation of smart devices and
the advent of the Internet of Things (IoT), has posed
substantial challenges to existing communication infrastruc-
tures [1], [2], [3], [4]. Traditional methods to address these
challenges, such as deploying additional base stations and
leveraging more spectrum, have often entailed high costs
and increased energy consumption. References citebib:5, [6],
and [7]. Reconfigurable intelligent Surfaces (RIS), which
intelligently reconfigures the propagation environment through
passive, low-power, and controllable surfaces, has gained
significant attention as a compelling alternative in wireless
communication research.

An RIS comprises a set of low-cost and reflecting elements
capable of manipulating electromagnetic waves incident upon
them, thereby controlling, amplifying, or attenuating elec-
tromagnetic waves. These reflective components, controllable
and configurable, provide superior communication objectives
compared to conventional wireless systems [8], [9], [10],
[11], [12]. Simultaneously, the relay decodes, remodulates,
and retransmits signals, thereby mitigating error propagation
and enhancing signal reliability. Additionally, deploying a
relay also for flexible network expansion to maintain stable
connectivity across all areas [13], [14], [15]. Consequently,
in 6G communications, the hybridization of RIS and relays
has swiftly garnered attention, with the objective of enhancing
wireless network coverage and signal integrity through their
integration. By dynamically adjusting the reflection coeffi-
cients of the RIS and the amplification factor of the relay, a
more flexible and efficient communication link has been real-
ized in [16]. The researchers conducted an in-depth analysis of
the performance of the relay-assisted reflection intelligent sur-
face network. The research focused on evaluating the effective-
ness of RIS under different relay strategies, including ampli-
fied forwarded (AF) and decoded and forwarded (DF) relays.
The results show that a well-configured RIS enhances signal
quality and mitigates system complexity. This technology
leverages the synergies of RIS and relays, offering extended
coverage and active relay signal processing, along with the
energy efficiency and cost benefits inherent to RIS [17], [18].

Optimizing both the RISs and relays can enhance the cov-
erage and data transmission rate of the communication system
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Fig. 1. Classify device rate demands into three granularities: coarse-grained,
group-grained, and fine-grained.

by leveraging the signal amplification characteristics of RISs’
beamforming and relaying to overcome signal attenuation and
transmission distance limitations. This approach is applicable
to various communication scenarios, such as indoor/outdoor
environments and mobile/fixed communication setups. Tran
et al. [19] utilized multi-RISs with a relay to enhance the
performance of a low-power wide-area network. Nguyen
et al. [20] explored how reflective smart surfaces can be inte-
grated with relays to adapt to complex wireless environments.
Therefore, research in joint optimization for both the RISs and
relays is of paramount importance as it significantly enhances
communication system performance and user experience [21],
[22]. To unleash the potential of RIS and relay-assisted multi-
antenna systems in supporting high data rates, beamforming
has been optimized through various works. For instance, Guo
et al. [23] proposed an algorithm grounded in block coordinate
descent (BCD) that aims to simultaneously optimize both
transmit beamforming and RIS phase shifts, thereby achieving
the highest possible sum rate for RIS-assisted communication
systems. Hu et al. [24] addressed the challenge of maximizing
the weighted sum rate in non-convex scenarios by employing
a combination of fractional programming (FP) and alternating
optimization (AO) techniques.

However, these prior works overlook user aggregation and
spatial distribution, which are crucial for the optimization of
the RIS-relay integration, since beamforming techniques rely
on the positions of users to adjust the phases and magnitudes
of antennas to ensure that the signals precisely target the
intended user locations. In practice, users and devices are
often clustered in various geographic areas such as office
buildings, factories, and residential apartments. As shown in
Fig. 1, we categorize various locations into distinct groups
and classify device date rate demands into three granularities:
coarse-grained, group-grained, and fine-grained. Prior works
have focused on coarse-grained optimization, but they often
overlook the impact of geographical distribution on beam-
forming. The group granularity takes geographical distribution
into account. In particular, if one particular group’s total rate
demand is high, the decision-making process will prioritize
that group, which is called intra-group cooperation. Con-
versely, differing geographical locations among groups lead to
rate demand-induced resource competition, termed inter-group
competition. These groups exhibit diverse characteristics, lead-
ing to varying data rate demands among different devices.
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For instance, industrial IoT devices in factories may require
highly reliable low-latency connections, whereas consumer
electronics in residential areas may demand a high data
throughput for their such as streaming and gaming. In the
current 6G communication scenario, the spatial distribution of
user devices is highly heterogeneous. For example, sensors in
industrial IoT are densely distributed in factory areas, requiring
low-latency and highly reliable connections; while streaming
media devices in residential areas require high throughput.
Traditional optimization methods treat users as uniformly
distributed individuals, ignoring their grouping characteristics
and geographic correlation, resulting in inefficient resource
allocation. In addition, although existing deep neural network
(DNN) based methods can handle high-dimensional channel
state information (CSI), it is difficult to capture the topological
dependencies among users, RISs, and relays, especially when
multiple groups of users are competing for resources, and
DNNss are not globally-aware enough and are prone to fall into
a local optimum. This heterogeneity in spatial distribution and
service requirements necessitates sophisticated network man-
agement strategies, while group-grained granularity neglects
individual device requirements.

Considering the impact of the heterogeneity in spatial
distribution and rate demands, we propose the joint opti-
mization with fine-grained demands (JOFD) method, aiming
to maximize the sum rate while simultaneously meeting the
specific needs of each device, which can prevent users from
monopolizing excessive resources and enable accurate and
fine-grained management of network resources. The main
contributions of this paper are summarized as follows:

e [nter- and Intra-group sum rate joint optimization: This
paper proposes an innovative optimization model for
RIS- and DF-assisted MISO systems to achieve optimal
strategy in sum rate after making a trade-off between
inter-group competition and intra-group cooperation. Due
to clustering, optimization outcomes within the same
group tend to confusing, while the between positions
fosters competition among different groups. To our
knowledge, this is the first study addressing joint sum rate
optimization that incorporates both inter-group rivalry
and intra-group collaboration.

o Fine-grained rate demands gratification: We propose a
device-grained demands guarantee algorithm to satisfy
the different rate demands of devices, which affords
a more comprehensive exploration of the optimization
space than coarse granularity. To achieve this, we design
a novel loss function with a penalty term to optimize the
sum rate and ensure fine-grained rate demands, where
the satisfaction ratio of fine-grained rate demands can be
tuned by modifying the penalty parameter.

e Model and Algorithm Design: We innovatively model
the RIS- and DF-assisted MISO system as a graph and
introduce a two-phase GNN to solve the optimal strategy
for the active beamforming at the base station (BS)
and DF relays, the passive beamforming at the RIS and
the selection of the relays.Simulation data indicates that
the proposed GNN-based joint optimization approach
surpasses conventional methods, and the accuracy and
robustness of the network are verified by the test data
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set. Furthermore, the proposed GNN exhibits strong
generalization capabilities across varying numbers of
users.

The remainder of the paper are organized as follows: Sec-
tion II reviews the related work, Section III details the system
model and the problem formulation, Section IV describes
the proposed GNN-based architecture, Section V presents the
simulation results for the proposed approach, and Section VI
concludes the paper.

II. RELATED WORK

In recent years, the optimization of sum rate and energy
efficiency in RIS-aided communication systems has garnered
significant attention. Traditional methods primarily focus on
leveraging mathematical optimization techniques to enhance
system performance. For example, convex optimization and
iterative algorithms are extensively studied to maximize the
sum rate by optimizing the phase shifts of RIS elements [23],
[24]. An efficient channel estimation method is designed using
the sparsity and correlation of the channel, and combined with
a discrete phase offset passive beamforming strategy [35], or
by reducing pilot overhead, the transmission performance of
the system is improved, which is suitable for high-frequency
band scenarios such as millimeter wave communications [36].
However, the numerical algorithm of traditional methods still
results in high computational complexity.

Machine learning (ML) techniques have become promi-
nent for tackling optimization issues in RIS-assisted systems,
presenting reduced complexity in contrast to model-driven
methods. Supervised learning techniques, in particular, have
shown promise in predicting the optimal configuration of
RIS elements. Ahn and Shim [25] proposed a deep neu-
ral networks model that jointly optimizes beamforming and
RIS phase shifts. This approach utilizes neural networks to
determine optimal vectors and matrices, enhancing signal
reception quality. Xu et al. [26] proposed a three-phase joint
channel decomposition and prediction framework based on
deep learning by optimizing the phase offset and channel state
information acquisition of RIS, which solves the problems of
channel estimation accuracy as well as channel decomposition
in RIS-assisted MU-MISO networks. Ni et al. [37] presented
a federated learning model designed to tackle the concur-
rent optimization challenges of beamforming and RIS phase
reflection. This method enables parallel model training across
multiple terminal devices and aggregates learned update infor-
mation into a global model, enhancing data privacy protection
and system optimization efficiency, which is particularly suit-
able for large-scale wireless networks. Moreover, He et al.
[38] proposed a convolutional neural networks (CNN) based
framework to solve beamforming and RIS phase optimization
problems in large-scale communication systems. By learning
the spatial features of the wireless environment, CNN models
can accurately predict optimal beamforming vectors and RIS
phase configurations, significantly improving communication
efficiency and quality. Traditional DNNs and CNNs have
limitations in handling non-Euclidean data. In contrast, GNN
directly models the interactions of nodes among users, RISs,
and relays through the message passing mechanism, and can
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dynamically adapt to channel changes and user grouping
structure. For example, in a RIS-assisted multiuser MISO
system, the GNN can map base stations, RISs, and relays
as nodes in the graph, and the channel states are modeled
as edge weights to jointly optimize beamforming and phase
offset. This graph structure learning not only improves the
fine-grained resource allocation, but also reduces the com-
putational complexity through local information aggregation
and overcomes the high computational overhead problem of
traditional convex optimization methods.

Unsupervised learning methods have also been explored due
to their potential to optimize RIS-aided systems without the
need for labeled data [30]. These methods are particularly use-
ful in scenarios where obtaining accurate CSI is challenging
[32], [39], [40]. For instance, Song et al. [39] designed an
unsupervised learning framework to jointly optimize beam-
forming and reflection phases in RIS-assisted communication
systems has been introduced. By utilizing CSI as inputs,
this method can learn optimal beamforming strategies and
RIS configurations without the need for explicit supervi-
sion signals. The concept has been extended to multi-user
environments by integrating active and passive beamform-
ing strategies within a dual-layer neural network framework
[32]. Comparable methodologies leveraging CSI as inputs
have been tailored to diverse scenarios with distinct model
configurations [33]. Additionally, reinforcement learning (RL)
has emerged as a potent approach for optimizing sum rate
and energy efficiency in RIS-assisted wireless communication
systems. The dynamic nature of RL makes it well-suited for
addressing the complex and time-varying characteristics of
wireless channels. Abdallah et al. [28] crafted a multi-agent
deep reinforcement learning model designed to concurrently
optimize active beamforming at the base station and reflected
beamforming by the RIS, utilizing solely received power
measurements for this purpose. Xu et al. [29] solved the
beamforming problem in RIS-assisted millimeter-wave MIMO
systems by optimizing the relevant parameters in the beam-
forming design and using location-aware mimicry environment
and deep reinforcement learning (DRL) algorithms. Wang
et al. [41] proposed an algorithm based on deep Q-network
(DQN). By discretization of trajectories, RIS can be used to
assist unmanned aerial vehicle (UAV) communication systems
to improve the communication quality between UAVs and UE.
Yang et al. [27] employed reinforcement learning algorithms to
attain concurrent optimization of beamforming and RIS phase
tuning. By designing a reward function to quantify communi-
cation performance, this algorithm autonomously learns how
to adjust beamforming and phase configurations to enhance
overall system performance.

However, existing works predominantly focus on optimizing
the deployment and configuration of RISs without considering
the diverse spatial distribution of users and their varying data
rate demands, limiting the effectiveness of RIS optimization
strategies in practical scenarios where users are distributed
non-uniformly across the coverage area and exhibit varying
communication needs. To address these issues, we propose
an RIS- and DF-assisted MISO system with grouped users
and fine-grained rate demands and introduce a two-phase
GNN to facilitate the exchange and update of relational data
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Fig. 2. The proposed downlink communication for RIS-DF assisted MISO systems with multiple user groups, in which a group communicates through an
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TABLE I

THE QUALITATIVE COMPARISON OF THE CURRENT LITERATURE. THE SYMBOL ’v'> MEANS THAT THE FACTOR IS TAKEN INTO ACCOUNT, AND THE
SymBoL * X’ MEANS NOT TAKING THIS FACTOR INTO ACCOUNT

Approaches BS beam- RIS phase Multiple Relay Relay Fine-grained rate Method
forming shifts RISs beamforming selection demands
Zaid et al. [17] X X v v v X SDP! PSO?
Zaid et al. [18] X v X v X X EPAJ OPA*
Ahn er al. [25] v v X X X X DNN°
Xu et al. [26] X v v X X X LSTM®
Yang et al. [27] v v X X X X DRL’
Asmaa et al. [28] v v X X X X DRL
Xu et al. [29] v v X X X X DRL
Tao et al. [30] v v X X X X GNN?®
Chen et al. [31] v v X v X X GNN?®
Wang et al. [32] v v X X X X FPY SDRISROCR”
Ma et al. [33] v v X X X X FP’
Huang et al. [34] v v X X v X DRL’
Ours v v v v v v GNN?®

ISDP: semidefinite programming, 2PSO: particle swarm optimization, 3EPA: equal power allocation, *OPA: optimal power allocation, SDNN: deep
neural network,°LSTM: long short-term memory,’DRL: deep reinforcement learning,*GNN: graph neural network, °FP: fractional programming,
10SDR: semidefinite relaxation, '!SROCR: sequential rank-one constraint relaxation.

within the graph-based model of a conjunct RIS- and DF-
assisted multi-user MISO system, thereby acquiring efficient
joint beamforming strategies through channel information
extraction.

III. PROBLEM FORMULATION

In this paper, we consider a multiple RIS- and relay-assisted
MISO system with multiple grouped users in the context of a
large communication environment, as shown in Fig. 2. Each
user group is equipped with one RIS, and multiple user groups
share a set of relays. By associating the RIS reflector with spe-
cific user groups, interference can be reduced and customized

services can be achieved. This approach also enhances system
flexibility by allowing for configurable relationships between
RIS reflectors and user groups based on different communica-
tion scenarios and network topologies. Additionally, the shared
use of relays optimizes resource utilization, avoids redundant
deployment, improves system performance, and reduces con-
struction and operation costs [42], [43]. We also consider
different user groups with significant differences in geographic
distribution. Groupl is densely populated with users requiring
low latency, while Group?2 has dispersed users requiring high
throughput. The GNN models intra-group collaboration and
inter-group competition through a graph structure, user nodes
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TABLE I
NOTATIONS AND THEIR DEFINITIONS

Notations | Definitions Notations | Definitions

M Number of antennas at the BS N Number of RIS elements

L Number of antennas at the DF K Number of users

J Number of DF 1 Number of groups

P Transmit power 'yf{h The threshold of DF

o7 Additive white Gaussian-noise of users oh Additive white Gaussian-noise of DF

G; The channel from the BS to the RIS; H JB The channel from the BS to the DF};
H fk The directed channel from the BS to user k& of Group; H l.Rk The channel from the RIS; to user k

hi The channel between the RIS; and the DF} h;y b The channel from the DF} to user k

Yk The BS transmits to user k H; The cascaded channel between BS and user k£ by RI.S;
0° The reflection coefficient at RIS} T The transmit signal

Ik BS beamforming vector Sk The source signal
Yik The SINR for user k of Group; D The update layers

YR The relay decodes signal of each user k R ; The cascaded channel between BS and DI by RIS;
'yfk The SINR corresponding to user k after filtering by DF; ag The combining filter for user k£ at the relay

TR The relay conveys signal fr Relay beamforming vector
C} i The cascaded channel between DF); and user k by RIS; R; k The sum rate of Group;
Rf}; The minimum rate threshold for user k of Group; R;?h The minimum rate threshold for each Group;

within a group share RIS reflection resources to achieve
collaboration, while inter-group competition is dynamically
balanced through relay selection. This topology-based learning
mechanism enables the GNN to adaptively adjust beamform-
ing strategies while meeting fine-grained rate requirements.
The major notations used in this paper are defined in Table II.
Lower case letters represent scalars. Lower case bold-faced
letters represent column vectors. Upper case bold-faced letters
represent matrices. The transpose and Hermitian transpose of
matrices are denoted by ()7 and (-)H, respectively. CN(-, )
stands for a complex Gaussian distribution.

A. System Model

As shown in Fig. 2, we examine a two-phase multi-RIS-
supported cooperative network, which includes a BS equipped
with M antennas, I user groups with K single-antenna users
per group, each group being served by an RIS comprising
N elements, and J semi-duplex DF relays, each featuring
L antennas. In half duplex mode, beamforming and phase
offset strategies are designed according to the relayed frame
protocol to maximize the throughput of the system and meet
the user’s rate requirements. Assuming full-duplex limited
scenario, users need to transmit simultaneously to meet real-
time requirements. Each RIS is equipped with a controller
capable of adjusting the phases of array elements to reflect
the incident signal in the desired direction. Furthermore, we
assume that the channels from the BS to DF, BS to users,
and DF to users are characterized as NLoS Rayleigh fading
channels, while on the other hand, channels to and from the
RIS are presumed to have LoS components modeled by Rician
fading [8], [44], [45]. In addition to the channels mentioned
above, the DF relays play a crucial role in enhancing the com-
munication between the BS and the users, which decode the
signals received from the BS, re-encode and retransmit them
to the users. This process helps in mitigating the effects of
signal attenuation and improving the overall signal quality. The
channels between the DF relays and the users are also modeled
as NLoS Rayleigh fading channels, which are characterized by
the presence of multipath propagation and significant signal

scattering. The DF relays are strategically positioned to ensure
effective coverage and reliable communication with the users,
especially in areas where direct communication with the BS
may be challenging due to obstacles or long distances. Hence,
we denote the channel coefficient h,; between nodes a and b
as:

Rayleigh,

aba
1 N @))
—h Rici
Y " + 1 +4/ | ab, Rician,

where k,;, represents the Rician factor between nodes x and y.

In a NLoS Rayleigh fading channel, h,, = g.d, ;" 2 ay€
{BS,DF,U},x # y, where g,, is modeled through zero-
mean and unit-variance complex Gaussian small-scale fading,
dqp represents the distance between nodes x and y, @ denotes
the path loss exponent for the NLoS Rayleigh fading channel,
and it is assumed that all channels remain constant without any
change during the two phases. On the other hand, in the LoS
Rician fading channel, hab = gabdab , where & denotes the
path loss exponent for the LoS (Line- of-Slght) Rician fading
channel, and g, can be represented as:

gab =V 60[1ae_jﬂ—Sinwaba .., €

where 3y is the path loss at the reference distance dy = 1m,
1qp 18 the angle of departure (AoD) or angle of arrival (AoA)
of the signal between nodes a and b [45].

We denote the downlink channel matrix from the BS to
the i-th RIS as G; € CM*Ni denote the downlink channel
matrix from the BS to the j-th DF as HJB € CMxL;j  denote
the directed downlink channel vectors from the BS to user k
of a different group as H?, € CM*!, denote the downlink
channel vectors from the i-th RIS to the matched group’s user k
as HZ . € CN*1 denote the downlink channel matrix between
the i-th RIS and the j-th DF as h; ; € CNixLi | and denote
the downlink channel vectors from the j-th DF to user k of a
different group as hg’ s € CE*!, The communication process

—jm(M—-1) Sinwab]T’ (2)
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is divided into two phases. Initially, the BS sends signals to
the users, with the signal received by user k£ expressed as:

yk = (G, d7ag(01)Hl v+ (HB % + n(l)

= (0} + (H)") "x + 0y, 3
where H;, = G;diag(H; ) represents the cascaded channel

between the BS and user k through a RIS;, and n,(f) ~
CN (0702) represents the additive white Gaussian noise
(AWGN). 0! = [011,...,01 N]T represents the reflection
coefficient at RIS; in the initial phase, the BS transmits the
signal x, which is a sum of the source signals s, and the
beamforming vectors gy, for each user k. This can be expressed
as x = Gs, where G = [g1,...,8Kk]| is the matrix of
beamforming vectors and s = [s1,...,Sx]T is the vector of
source signals with E[ss!'] = I. The signal-to-interference-
plus-noise ratio (SINR) for user k is:

. 2
(B0} + (HE,) e

Z]K:Lj;ék ‘(Hﬂﬁ + (ka>T)g]‘

In the subsequent stage, the relay transmits the decoded sig-
nals from the initial stage to users, assuming perfect decoding
for each user k signal received in the first phase [44].

yr = (b dzag(@l)G + H )X+ ng
= (Rl’]ell +H] )X+IIR, (5)

Yk = 3 “4)

where R;; = hfldiag(G;) represents the cascaded chan-
nel between the BS and jth relay through an RIS;, and
np ~ CN(0,0%), considering the SINR for user k after the
application of matched filter combining at the relay, i.e.,

o | *

Vop = (6)

H K )

D imt ek QO o + oo ?

The SINR for user k£ exceeds the threshold 7% when using
matched filter combining at the relay. The combining filter
for user k is given by oy = (h/[/; dlag(ez)G +HP)gy,. The
relay then forwards the signal xp = Zk:l fisx = F's, where

F = [fi,...,fx] represents the relay beamforming matrix,
and s = [s1,...,sx]T is the vector of source signals with
E[ssf] =L The 31gna1 received by user k is:

(2) ( i jdiag( 0’ Hl . T ( )T)Tx + n(2)
( k0§ +(

P 0" xp 402, 7

where C ik =hi szag(H
between DF; and user k through a RIS;, and n,g, )~
CN(0,02). 05 = [021,...,05 N]T represents the reflection
coefficient at RIS; in the second phase. The SINR for user k
in the next stage is expressed as:

) Tepresents the cascaded channel

A . 2
(C} 105+ (0],) )8
K 7 i r
2=,k ‘(Cj,k‘g? + (05 )1

Following the dual-phase transmission, the received signal
at each user k is processed using maximum ratio combining

’Y»L'k = 2 (8)
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(MRC), resulting in an overall SINR, i.e., v; ; = ’Yz(k) + 7(2)

Thus, the sum rate from the BS to the user k is as follows:

R; = logy(1+ vik)- &)

B. Fine-Grained Demands

We design an MISO system with grouped users where each
user has a minimum rate threshold R;hk, which is termed
the fine-grained rate demand. By satisfy’ing a minimum rate
threshold, we can ensure that each user can obtain at least
enough data rates to meet their basic communication needs.
This is critical to maintaining the user experience and meeting
the underlying quality of service requirements. By personal-
izing rate settings for different users, network resources can
be allocated more accurately, improving the overall network
efficiency and resource utilization.

C. Problem Formulation

The primary goal is to utilize the adopted GNN model to
optimize the BS beamforming matrix, reflection coefficients
phase shifts, and DF beamforming matrix. The optimization
problem can be described as:

Py max R; (10)
! {gr}.{fx},0% 9‘2; .
s.t. Cy: B[] x ||?] = tr(GGM) < P, (10a)

J J
CatE Y |l xp, 2] =) tr (F;F) <Pper,
j=1 j=1

(10b)
Cyi VN >y Ve =1,2,... K, (10c)
CyiRip > R R VEk=1,2,... K,

(10d)
C.: 0,0, cov, (10e)

where C7 and Cs represent the BS and relay trans-
mission power constraints, respectively. C3 ensures that
the relay decoding is without issues. C4 is the condi-
tion for group granularity and fine granularity require-
ments, and the user rate needs to exceed a minimum
threshold. C5 represents the RIS phase constraints, where

. B7 .
0= {e”’" ©On € {0, 2., W}} , the finite resolu-
tion is B bits.

IV. JOINT OPTIMIZATION WITH FINE-GRAINED DEMANDS
BASED ON TwWO-PHASE GNN

We introduce a GNN-driven approach for the communi-
cation system, where nodes represent network entities and
possess features that encapsulate relational information. The
GNN layers enhance data exchange and node updates, facil-
itating the simultaneous optimization of the base station’s
beamforming matrix G, the relay’s beamforming matrix
F, and the RIS phase shifts matrix 6. This methodology
is designed for two-stage transmissions within hybrid RIS
and relay networks, with each stage utilizing a compara-
ble GNN framework but with unique input data and graph
configurations.
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A. The First Phase

During the first phase, a fully connected graph is estab-
lished, comprising K + 1 nodes, which lacks edge weights
and is undirected. It consists of one node dedicated to the
RIS for acquiring the phase shifts 8], along with K nodes
assigned to the users for the acquisition of their respective BS
beamforming, i.e., g,k =1,..., K.

1) Initial Layer: The input encompasses the channel infor-
mation related to the first-phase transmission from the BS to
the relay and the uesr in the initial layer, as described in (3)
and (5), respectively. Particularly, the inputs are denoted as:

(1)
12)

H) £ [H;, (B k=1, K,
HR £ [Ri,ja H]B]a

We establish the initial feature vector 7(°) for the RIS nodes
by leveraging the aggregated channel data between the users
and the relay, encapsulated in H,(Cl) and Hgr. The feature
extraction function f(0) . R2Nxix1 y Ra/2X1 " capturing
data from Hg), where ¢ is a tunable parameter. Similarly,

f}({O) . R2MLxjx1 y Ra/2x1 extracting data from Hg.
Initially, f(® is applied to H,(Clzn, which is m-th column

of H,(fl). Subsequently, the mean operation over elements
between k and m is employed to ensure permutation invariance
in the GNN, denoted as @mean(*)-

rem = fO ([REL)TSEL)TTT) € RV v,
(13)

r= Qomean({rk,m}k’:l,...,K,m:l,...,M) S Rq/2><13 (14)

where R and < represent the real part and the imaginary part
respectively. The initial features of RIS nodes are are acquired
through combining the features extracted from H,(:) using f(©)
and from Hg using f(o), i.e.,

MO [rT, f§£>([%(vec(HR)),%(vec(HR))])T}T e RI¥1,

15)

The initial feature set for the k-th user node ug)) is

derived from Hg), using the extraction function flgo)
R2M (N xi+1) | Rq/2><1, ie.,

ul” = o) m(vec(H,(j)),%(vec(Hg)))]T) e R, (16)

2) Node Update Layers: Within the update layers, node
features are updated through information aggregation and
combination with neighbor nodes. The parameter D, which
signifies the number of update layers, is adjustable and can be
configured as needed. During the d-th layer (d = 1,...,D),
the RIS node features are updated according to:

rl = [f(d)([r(dil)’@mcan({ul(cd_l)}k=1,...,K)])vr(dil)}
c Rq(d+l)><1, (17)

where f(@ : R%44x1  RI*1 j5 a node update function at
the dth layer. Utilizing an element-wise averaging mechanism,
each RIS node is allocated an equivalent volume of data from
all user node. Moreover, to preserve the information from the
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preceding layer, the features are merged via concatenation. At
the same time, the k-th user node features are modified by:

W= [0 (0 e (07 ) 56
c Rq(dJrl)Xl’ (18)

At each layer, the node update function fqu) : R3dgdx1
R?*!, and the element-wise max function @y (-) is applied.
This function ensures permutation invariance and enables each
user node to identify maximum interference. The features
extracted from the previous layer are incorporated to maintain
historical data.

3) Readout Layer: Following the layers of node updates,
the concluding features of the RIS and the user k£ nodes are
processed through the readout layer to determine the RIS phase
shifts O’i and the BS beamforming gy, k =1, ..., K. We refer
the readout layer as layer D + 1 for ease of notation. In the
case of the RIS node, the output undergoes a linear function:

r(P+D) _ [T§D+1) T(D—&-l)}T _ f(D+1)(r(D)) c R2N><17

e ToN

(19)
where f(P+D) . Ra(P+1)x1 , R2NX1 The RIS phase shifts
01 = [01,]n=1,..,n are achieved from r(P+1) by initially

calculating the continuous-phase éin, ie.,
~i 1
1n —
’ D+1 D+1
VP 4 0Py

(2 + 57D,

(20)

Followed by the quantization of Gllm to the closest discrete
phase in ©. It should be emphasized that the continuous phase
is utilized during training to enable backpropagation.

Similarly, final features of user nodes are processed by the
readout layer to generate:

(D+1)

(D+1) _
u, =lugy -

T
-~7U;(£2JX41)} :f£D+1)(u§€D)) e R2Mx1
2y

where fl(LD'H) : RI(D+ X1y R2MX1 The BS beamforming
for user k is contained as gy, = u,(CDJ 2 +7 - u,(c]’j];ﬁr)m, which

is normalized to satisfy the constraint of power in (10a).

B. The Second Phase

In the subsequent phase of the GNN, the methodology is
akin to the initial phase. Specifically, during this phase, the RIS
node determines the phase shifts 0%, and each of the K user
nodes calculates the relay beamforming fj for k=1,... K.
The node features established in the first phase of the GNN
serve as the basis for this subsequent phase.

1) Initial Layer: The initial features of RIS node incorpo-
rate the channel information for the transmission phase from
the DF to the user, as specified (7). The corresponding input

is referred to as:
A i
HP 2[C ()], k=1,..., K. 22)

The initial features of RIS node s(°) incorporate the aggre-
gated channel information regarding the users and the relay,

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 17,2025 at 03:26:30 UTC from IEEE Xplore. Restrictions apply.



9996

2). Define feature extraction function

as encapsulated in H;C

g0 R2Nxix1 _, Rax1 o extract information from H,(f),
where ¢ is a tunable parameter. Firstly, g(o) 1s utilized on
each column of H k , which is expressed as Hk - Next is the
average operation of elements between k and / to maintain the

permutation invariance of the GNN, expressed as @mean(*)-

sie = 9O (RED)T, SHZ)TT) e RV ve,  (23)
S = Omean({Sk.tYh=1.. Ko=1,..1) € RI*L (24)

Additionally, in the second phase, the initial features of the
RIS node are represented as:

SO _ [ST’ (rw))T]
(©)

The initial features for the k-th user node v,

T

c RQ(D+2)X1 (25)

are derived
from Hfé using the feature extraction function gl(,o)
R2LXI(N+1)x1y RI*L in conjunction with the final node

features obtained from the initial phase of the GNN, i.e.,

T
v = o ([Revec(E!™), S(vee®))] ) uf”]
e RY(D+2)x1 (26)

2) Node Update Layers: At layer d (d = 1,...,D), the
features for both the RIS node and user nodes are updated
accordingly through:

ek

s — {gw)([s(d—l)’ wmean({v,(f

D))

c RQ(D+d+2)><1’ (27)

d d—1 -1 — d—1
v’g ) _ [gz(;d)<[";(¢ ),SDmax({V]( )}Vj;ék)7s(d 1)])",](c )}
c Rq(D+d+2)Xl. (28)

3) Readout Layer: Consistent with the function of the
readout layer during the first phase, the relay beamform—
ing fj is derlved from V(D+1) = (D+1)( (b ) €
R2EX1 | = , K, and the RIS phase shifts 6, are derived
from s(D“) = g(D+1)( (D)) € R?2N*1 Both are obtained by
applying normalization and quantization to meet the conditions
outlined in equations (10b) and (10c). g(P+1 : R2a(P+1)x1
R2NX1 and g{PTY . R2a(D+Dx1 y R2LX1 gre the layer
functions.

The proposed framework is trained offline in an unsu-
pervised manner, using diverse channel instances as training
samples. We design loss function based on the objective in
equation (10), including an extra penalty term to address the
constraint detailed in equation (10d) as follows:

I K J K
fZZRi,kaZZmin(O

i=1 k=1 j=1k=1

A=), (29)

where the weighting factor 5 is ascertained based on empir-
ical observation. The constraints in (10a)—(10d) are satisfied
through the processes of normalization and quantization.

The fine-grained division of group and user level allows
for the selection of appropriate levels based on different
environments. The group granularity involves establishing a
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minimum threshold rate for each group to ensure satisfying
its total demand. The loss function is formulated as follows:

I K J K
DD Rk =8y min (0,95, — )

i=1 k=1 j=1k=1
I K
. th
-\ g E min(0, R; , — R;"),
i=1 k=1

where p is the weight coefficient of the penalty term, R is
the minimum group rate we set. In this manner, a penalty
term can be incorporated into the loss function to impose a
higher penalty for failing to satisfy group granularity demands,
thereby catering to the fine-grained rate demands of different
groups. This approach allows for the flexible setting of fairness
objectives and weights, balancing the rates based on different
application scenarios.

Meanwhile, the fine granularity involves establishing a
minimum threshold rate for each user to ensure satisfying
users’ fine-grained demands. The loss function is formulated
as follows:

(30)

I K J K
=22 R =52 3 win (09 =)
i=1 k=1 j=1k=1
I K
=A> Y min(0,R; x — RY,), (31)

i=1 k=1

where ) is the weight coefficient of the penalty term, R,
is the minimum user rate we set. Through a combination of
normalization in the readout layer, penalty terms in the loss
functions, and quantization operations, the constraints in P
are effectively satisfied during the training and optimization
process of the proposed two phase GNN based method.

V. PERFORMANCE EVALUATION
A. Simulation Setting

This section provides a numerical examination of the sug-
gested algorithm. We focus on a multi-user MISO wireless
communication setup, which is supported by two RISs, and
two shared relays. The simulation parameters used for the
analysis are shown in Table III. Following the setup described
in [31] and [34], we adopt the Adam optimizer to update the
weights for network training, and set the initial learning rate
to 0.001, with a learning rate decay coefficient to 1le — 6, the
batch size to 512, and the number of hidden layer neurons to
128 [30], [31]. The Rician factor k,; between nodes is set to
10 for LoS channels, consistent with typical urban micro-cell
environments [38]. The system features a BS equipped with
8 antennas. Additionally, it includes four single-antenna users
in each of the two considered groups, whose positions are
randomly assigned within a circular area and are determined
by the center of the circle [44]. We model the following
topology with different node distances (units are meters): the
BS, RIS, RIS;, DF; and DF, are positioned at coordinates
(0,0), (50,100), (50, —80), (100, —10), (80, 25), respectively.
Groupl users are scattered randomly within a circle of radius
10 centered at coordinates (200, 75), while Group2 users are
distributed within a circle of the same radius centered at
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Algorithm 1 Joint Optimization With Fine-Grained Demands
Based on Two-Phase GNN(JOFD-TG) Algorithm

Require: Initialize the parameters for First phase Hl((l), Hg,
Rthk, Second phase H(z),
Ensure: First phase 0%, G; Second phase 6"
I: Initial: 7(©) « Hgl JHg; ul” « H(lg Rghk,

2. for episode =1 to T do

3: Small batch training samples are used;

4: Initialize 7(°) and u(O)

5: for d=1to D do

6 r@ « COMB(AG u%d € N(k)),r@=D);

7: u® — COMB(AGG(u; ) V) # k,r(@=D),
(d=1)y.

8: end for

9. Initialize s(© and v,io);

10: Initial2: s© « HE #0); 00 HP P

11: for d =1to D do

12: s « COMB(AGG(v\” k € N(k)), s~ D);
13: V@ « COMB(AGG(v;"™V ¥j # k,
14: sld=1)y, vlidfl));

15: end for

16: According to (29)—(31), calculating the loss £ of batch
samples, updating parameters using gradient descent.
Select the appropriate relay to calculate the sum rate;

17: end for

18: Readoutl: 6} « rP+1) G u("*Y;
19: Readout2: 6, « s(P+D  F « v(DH)

(200, 10). The minimum user rate threshold R?fk = 1bps/Hz
is uniformly applied to all users to ensure fine-grained rate
demands.

The channels for RIS-assisted and non-RIS-assisted sys-
tems are respectively characterized as quasi-static Rician and
Rayleigh flat-fading models, as referenced in [34] and [44].
The functions f 1(%0), ), f&d), ¢® and gq(,d) are realized using
multi-layer perceptrons (MLP) with two suitable hidden layers
for layers d = 0,1, ..., D, and serve as linear transformations
in the final layer d = D + 1.

In the testing phase, our simulation refers to the proposed
neural network model [25], [30], [31] and the adopted bench-
marking schemes are listed as follows:

e JOGD-TG: the optimization of RIS and relay is per-
formed jointly based on two-phase GNN, considering the
threshold setting of groups, and maximizing the sum rate
with group granularity.

e JOCD-TG: the optimization of RIS and relay is per-
formed jointly based on two-phase GNN, regardless of
the threshold setting, and aims to maximize the sum rate
with coarse granularity.

e JOFD-DNN: the optimization of RIS and relay is per-
formed jointly based on DNN, considering the threshold
setting of users, and maximizing the sum rate with fine
granularity.

e JOFD-PSO: a joint optimization scheme based on par-
ticle swarm optimization (PSO) searches for optimal
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beamforming and phase offset by iteratively updating
the particle positions, and we uses pySwarms [46] to
implement the JOFD-PSO. _

e JOFD-Random: random 6 and 6, without performing
relay selection. Range reference Egs. (10e) for randomly
generating 0° and 05.

B. Experimental Results

1) Effect of the 0%, 9% and Relay Selection: Fig. 4 depicts
the comparison of the sum rate performance. In the mixed
setup, the proposed JOCD-TG method, utilizing both 67
and 65, demonstrates superior performance compared to its
simplified counterparts, and the performance of JOCD-TG
surpasses that of JOCD-DNN. The variants employing only
0’ or 05 exhibit slight performance degradation compared to
the combined JOCD-TG scheme, highlighting the increased
flexibility of JOCD-TG (6] and 6%) in designing RIS phase
shifts. The performance of JOFD-PSO in this scenario is
slightly inferior to that of DNN, confirming its insufficient
adaptability to high-dimensional optimization problems. In
addition, GNN-based relay selection optimization is better than
the case with a single relay. The appropriate relay can be
selected for forwarding to enhance the final sum rate. Through
joint optimization of RIS and relays, the impact of relay
selection on system performance may be more significant than
that of RIS phase tuning, attributing to the direct influence
of relay positions and configurations on relay paths and
attenuation, thus playing a more direct and prominent role in
signal transmission. In contrast, the effect of RIS primarily
manifests in signal reflection and phase adjustment, which
have a relatively indirect impact on the signal. Therefore,
in certain scenarios, relay selection may have a more direct
influence on system performance compared to RIS phase
tuning.

2) Effect of the Location of RISs and DFs: Fig. 5 sets four
different locations of the RIS, RIS,, DF;, DF, and the center
of Groupl and Group2 with a radius of 10. We denote Locl
to represents the positions set includes (50, 100), (50, —80),
(100, —-10), (80,25), (200,75), and (200,10), while the
Loc2 set includes (75,100), (75, —80), (100, —10), (80, 25),
(200,75), (200,10), the Loc3 set includes (150,100),
(150, —80), (300, —10), (240,25), (600,75), (600,10), and
the Loc4 set includes (225,100), (225,—80), (300,—10),
(240, 25), (600,75), (600,10). When comparing different
deployment locations, it was observed that RISs perform more
effectively when located in proximity to the base station and
relays are positioned closer to the user base. The proximity of
RISs to the base station enables more efficient manipulation
of the wireless signal, leading to optimized transmission to
the user base. This closeness enables finer control over signal
reflection, absorption, and redirection, resulting in improved
signal quality and coverage. Additionally, reduced distance
minimizes path losses and enhances the SINR, thereby enhanc-
ing overall system performance. Similarly, positioning the
relays closer to the user base facilitates more efficient ampli-
fication and relay of signals with less attenuation. Proximity
reduces transmission distance, path loss, and signal attenua-
tion, resulting in a stronger received signal at the user terminal.
Furthermore, the relays can operate at lower transmit power
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Fig. 3. (a) The graph neural network architecture in different phases. Aggregation and combination operations of the dth layer for (b) the IRS node, and

(c) the user nodes.
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Fig. 4. The sum rate of different designs with or without o, 0% and DFs.

levels, reducing interference and improving signal clarity.
JOFD-PSO is slightly worse and JOFG-Random performs the
worst, highlighting the limitations of traditional heuristic algo-
rithms and random strategies in multi-variable collaborative
optimization scenarios.
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Fig. 5. The sum rate of different locations of RIS, relays and users.

As depicted in Fig. 5, GNN consistently outperforms tradi-
tional algorithms when different sets of RIS, relay, and user
groups are placed at various locations. The message-passing
mechanism enables GNN to capture the dynamic topolog-
ical information of local node neighborhoods, endowing it
with strong generalization capabilities that allow for better
adaptation to diverse environmental conditions compared to
traditional algorithms.

3) Effect of the Number of BS Antennas and Relay Anten-
nas: Fig. 6a shows the correlation between the sum rate and
the quantity of base station antennas. It is observed that, across
all assessed schemes, the effect of increasing M on the sum
rate ranges from moderate to negligible. This is attributed to
the topology of the network where the sum rate is primarily
constrained by the second-stage transmission, characterized by
a weak direct link. Consequently, enhancements in M slightly
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Fig. 6. The sum rate of different numbers of BS antennas and relay antennas.

improve the SINR for the first-stage end-user, yielding only
marginal gains.

Fig. 6b explores the correlation between the relay antenna
count and the sum rate. The results indicate that as L increases,
the sum rate for all schemes shows an enhancement. This
improvement stems from the increased degrees of freedom
available during the second stage, allowing for more precise
tuning of the relaying beamforming vector, which optimally
supports the relay-assisted second-stage transmission to the
end-user across auxiliary and direct joint channels. JOFD-TG,
which incorporates intra-group cooperation via group-level
rate thresholds, outperforms JOCD-TG by 15% in sum rate,
highlighting the significance of intra-group resource balancing.
JOFD-PSO still performs slightly worse in this case. Because
it is limited by the heuristic search mechanism, its sum rate
remains lower, which verifies the limitations of traditional
optimization algorithms in complex interaction case.

4) Effect of the Number of Users: Table IV evaluates the
proposed GNN model’s ability to generalize across differ-
ent user counts. It shows that the model, trained with a
smaller K, maintains acceptable performance when evaluated
with a larger K. This resilience is attributed to the user-
independent feature extraction and permutation invariance of
the model. Nonetheless, performance degrades as the discrep-
ancy between training and testing K values grows. The GNN’s
permutation-invariant design, as validated in Table IV, ensures
robust generalization across varying user counts by extracting
user-independent features. The offline unsupervised training,
validated cross-K performance by Table IV, avoids the need
for labeled data by directly optimizing system objectives. This
aligns with practical scenarios where labeled data is scarce.

9999
TABLE III
SIMULATION PARAMETERS
Paramter Value
Number of antennas at the BS, M 8
Number of DF, J 2
Number of antennas at the DF, L 4
Number of RIS elements, N 50
Number of Groups, 2
Number of Users, K 4
Transmit power, P]‘;‘Sﬂx = Pg"‘”‘ 20mW
Additive white Gaussian-noise, ai = Ul%( 2%10-5
Threshold of DF, 7! 0.01
User rate threshold, Rt 1bps/Hz
Phase Shifts Parameter, B 2
Number of node update layers, D 3
weighting factor, 5 1000
weighting factor, A 1000
Adjustable parameter, ¢ 128
Rician factor, kqp 10
TABLE IV
SUM RATE VS. TRAINING (ROW) AND TESTING (COLUMN)
USER COUNTS K
Sum rate (bps/Hz) K =20 K =25 K =30
Same K as testing 19.34 19.25 19.08
K =10 18.27(94.5%) | 17.98(93.4%) | 17.76(93.1%)
K =15 18.62(96.3%) | 18.33(95.2%) | 18.06(94.7%)
K =20 19.25(99.5%) | 19.17(99.1%) | 18.79(98.5%)
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Fig. 7. The sum rate of different numbers of RIS elements.

Previous experiments have focused on addressing the chal-
lenge of the rate maximization. As mentioned in Section III-B,
we divided the user fine granularity and each user has a
minimum rate threshold. As depicted in Fig. 7, the sum rate
of fine-grained granularity is superior to that of coarse-grained
granularity, and the sum rate at the user level is better than
at the group level. Fine-grained granularity excels primarily
because it offers greater flexibility and precision, allowing
for more detailed and personalized resource management and
service customization. Our approach to designing thresholds
for different users enhances adaptability and improves both
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Fig. 8. The sum rate, satisfaction rate and loss of different epochs.
the specificity and efficiency of services. In the meantime, our 50
approach offers several advantages over alternative methods. e 2

5) Convergence Performance: Fig. 8 demonstrates the
convergence of all models after numerous epochs. The con-
vergence of the iterative optimization process signifies that
further iterations do not yield significant changes in the
output, indicating that the model has effectively learned and
adapted to the training data, achieving a stable and satisfactory
level of performance. with the JOFD-TG model consistently
outperforming others in terms of maximum sum rate and
satisfaction rate. In addition to JOFG-Random, it is noteworthy
that the loss function value for JOFD-TG is the highest among
all models, primarily due to the user’s rate exceeding the
threshold, resulting in negligible penalty term loss and a
predominant influence from maximum user and rate.

6) Effect of the Weight Coefficient \: In Fig. 9a, we use
varying minimum rate thresholds for different numbers of
groups and individual users, and can observe the effects by
adjusting the weight coefficient \. After the weight coefficient
exceeds 1000, the maximum sum rate of several models and
the satisfaction rate of coarse-grained and fine-grained tend
to stabilize. Then, when the weight coefficient is 2000, the
satisfaction rate of JOFD-TG tends to be 100%. It is notewor-
thy that JOFD-TG consistently outperforms other models in
terms of the maximum sum rate of users and the percentage
of users surpassing the threshold. Meanwhile, user-level fine
granularity enables personalized resource allocations tailored
to individual requests and usage patterns, whereas group-level
granularity determines resource allocation based on average
or collective needs. This user-level granularity facilitates rapid
response to fluctuations in individual user needs, while fine-
ness at the group level may exhibit limitations in responding
to sudden changes due to considerations of resource allocation
and balance across the entire group, potentially resulting in
reduced overall performance.

In Fig. 9b, it is evident that as the weight coefficient of
the penalty term increases, the satisfaction rate also increases
in all models. Ultimately, the satisfaction rate based on the
fine-grained model was close to 100 %. This demonstrates the
viability of our proposed fine-grained partitioning based on
minimum thresholds in ensuring that model outputs adhere to
threshold constraints. Furthermore, it provides further evidence
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Fig. The sum rate and satisfaction rate of different weight coefficients A.

for the adaptability and flexibility of the model to accom-
modate different performance requirements through parameter
adjustments, thus showcasing its robustness. The experimental
results validate that neglecting either inter-group competition
or intra-group cooperation leads to suboptimal performance.
JOCD-TG achieves lower satisfaction rate than JOFD-TG,
while JOFD-DNN fails to generalize across diverse node
deployments.

Regarding the experimental analysis of Fig. 9b, it further
supports the effectiveness of our method, showing the changes
in the total system rate and user rate requirement satisfaction
rate under different weight coefficients A. As A increases,
the satisfaction rate gradually increases, which shows that by
adjusting A, we can effectively control the degree of constraint
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satisfaction. When A reaches 2000, the satisfaction rate of
the JOFD-TG method approaches 100%, which means that
almost all user rate requirements are met. This proves that our
loss function design can effectively ensure the satisfaction of
constraints under appropriate parameter settings.

VI. CONCLUSION

In this paper, we proposed a novel joint optimization
method for multiple RISs- and DFs-assisted MISO systems
that serves to maximize the sum rate while meeting grouped
user fine-grained demands. We designed a new loss function
to accommodate the diverse demands of user groups by
incorporating minimum thresholds. The proposed GNN model
can be tailored to autonomously learn efficient phase shifts and
beamforming directly from input CSI, while also performing
simultaneous relay selection. Simulation results demonstrated
the superior performance of this approach, as well as its
scalability across varying numbers of users.

In the future work, we will explore the development of
systems based on Stacked Intelligent Metasurfaces (SIM),
incorporating one SIM at the transmitter and another at the
receiver. Unlike conventional architectures, SIM enables direct
precoding during transmission and merging during reception
within the electromagnetic wave propagation process. Tradi-
tional communication systems necessitate a substantial number
of RF links, while SIM technology facilitates signal processing
directly in the electromagnetic domain, thereby substantially
reducing the reliance on RF links [47].
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