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Abstract
Vehicular edge computing (VEC), which extends the computing, storage, and networking resources from the cloud center to 
the logical network edge through the deployment of edge servers at the road-side unit (RSU), has aroused extensive attention 
in recent years, by virtue of the advantages in meeting the stringent latency requirements of vehicular applications. VEC 
enables the tasks and data to be processed and analyzed in close proximity to data sources (i.e., vehicles). VEC reduces the 
response latency for vehicular tasks, but also mitigates the burdens over the backhaul networks. However, how to achieve 
cost-effective task offloading in VEC remains a challenging problem, owing to the fact that the computing capabilities of the 
edge server are not sufficient enough compared to the cloud center and the uneven distribution of computing resources among 
RSUs. In this paper, we consider an urban VEC scenario and model the VEC system in terms of delay and cost. The goal of 
this paper is to minimize the weighted total latency and vehicle cost by balancing the bandwidth and migrating tasks while 
satisfying multiple constraint conditions. Specifically, we model the task offloading problem as a weighted bipartite graph 
matching problem and propose a Kuhn-Munkres (KM) based Task Matching Offloading scheme (KTMO) to determine the 
optimal offloading strategy. Furthermore, considering the dynamic time-varying features of the VEC environment, we model 
the task migration problem as a Markov Decision Process (MDP) and propose a Deep Reinforcement Learning (DRL) based 
online learning method to explore optimal migration decisions. The experimental results demonstrate that our strategy has 
better performance compared to other methods.

Keywords Vehicular edge computing · Bandwidth fairness · Task offloading · Task migration · Deep reinforcement 
learning

1 Introduction

With the rapid development of the fifth generation (5 G) 
mobile networks, the Internet of Things (IoT) and artificial 
intelligence (AI), intelligent transport systems (ITS) have 
attracted considerable attention from both industry and aca-
demia in recent years. As an important branch of IoT, the 
Internet of Vehicles (IoV) system is of particular signifi-
cance in the development of ITS and smart cities (Tang et al. 
2022; Liu et al. 2017). The IoV is an interactive network that 

consists of intelligent vehicles, stationary infrastructures, 
travelling roads and other entities, with the abilities to com-
municate, store and process vehicular requests. Deploying an 
array of sensing devices and intelligent modules on the vehi-
cles enables the dynamic collection of data about vehicles 
and surrounding environments, which can guarantee driving 
safety to a great degree. Generally, the rapid development of 
the IoV has facilitated the widespread use of intelligent vehi-
cle services for autonomous driving, entertainment applica-
tions, smart navigation, and intelligent parking (Tang et al. 
2018; Zeng et al. 2021). Such applications usually generate 
a mass of data that need to be handled immediately to satisfy 
the ultra-low response latency requirement in IoV.

Although vehicles have certain storage and comput-
ing capabilities, various vehicular applications are mak-
ing these vehicles increasingly inadequate to support the 
latency-sensitive and computation-intensive tasks (Liu 
et al. 2019). To address the shortage of resources for IoV, 
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extensive research has been conducted to incorporate 
cloud resource (Wang et al. 2020). However, explosively 
growing number of tasks offloaded to the cloud consumes 
large backhaul networking resources, thus incurring long 
response latency for the vehicular tasks. In this case, the 
response latency may hardly meet the stated Quality of 
Service (QoS) or the Quality of Experience (QoE) from 
the viewpoint of resource requestors.

Accordingly, vehicular edge computing (VEC) is pro-
posed in response to the above challenges (Tang et al. 2022). 
VEC pushes various computing, storage, and networking 
resources to the network edge through deploying basic com-
puting and communication facilities at the road-side unit 
(RSU). By doing so, these resources can be provisioned in 
close proximity to data sources (e.g., smart vehicles), thus 
significantly reducing various networking latency (Han et al. 
2019; Qiao et al. 2018). However, several issues around 
VEC still need to be addressed. For instance, the comput-
ing resources are not evenly distributed among RUSs and 
the bandwidth resources of RSUs are also limited. Inap-
propriate task offloading will cause network congestion and 
long transmission latency. Therefore, designing appropriate 
task offloading strategy plays a significant role in reduc-
ing response delay and improving the efficiency of VEC 
systems.

At the same time, various network operators are begin-
ning to realize the potential opportunities and benefits of 
RSUs. The deployment of RSUs by multiple operators on 
the road can achieve wider coverage, provide real-time traffic 
information and services, and facilitate data exchange and 
collaboration among operators. However, there are various 
costs associated with the deployment of RSUs, including 
purchase, installation and maintenance, as well as energy 
consumption during operation. Operators may determine the 
charges for RSU resources according to their own strategies, 
business models and market competition. On the other hand, 
the computing resources are also provisioned in a pay-as-
you-go fashion (Tang and Wu 2021). Therefore, the cost of 
requesting resources is a matter of consideration for users, 
in addition to a better quality of service. It easily occurs to 
people that task migration among RUSs may be a viable 
option to minimize the overall costs. However, it remains a 
major challenge for traditional methods to find an appropri-
ate migration strategy in such a dynamic VEC environment. 
In recent years, Deep Reinforcement Learning (DRL) has 
become widely used in edge computing due to its powerful 
perception and decision-making abilities. DRL introduces 
neural networks with perceptual capabilities that explore 
the best actions to take by constantly interacting with the 
environment, with the aim of maximizing future cumulative 
rewards. Thus, DRL as a machine learning method is well 
suited for finding optimal migration strategies in dynamic 
and complex VEC environments.

To overcome the aforementioned issues such as central-
ized offloading and the uneven distribution of computing 
resources, in this paper, we study and analyse the task sched-
uling and migration problems in VEC, respectively. We try 
to minimize the weighted sum of the processing latency of 
tasks and vehicle cost. The main contributions of this paper 
are listed as follow:

• Considering the impact of uneven offloading of tasks, we 
model the task scheduling problem as a weighted bipar-
tite graph best matching problem. A matching offload-
ing scheme based on the Kuhn-Munkres (KM) (Munkres 
1957) algorithm is proposed to keep the bandwidth allo-
cation and interference relatively balanced for all tasks.

• As the unit price of resources varies among edge serv-
ers and has time-varying characteristics, we design an 
efficient migration strategy to reduce the overall cost of 
the vehicle. Specifically, we model task migration as a 
Markov Decision Process (MDP), defining the system 
state space, action space and reward function. An adap-
tive migration algorithm is proposed based on Actor-
Critic(AC).

• Extensive simulation is carried out to evaluate the pro-
posed offloading scheme compared to other methods. 
The results show that our proposed method has better 
performance in both transmission delay and vehicle cost.

The rest of the paper is organized as follows. In Sect. 2, we 
review some related works on this topic. We present the 
system model in Sect. 3. In Sect. 4, we formulate the opti-
mization problem and design the corresponding strategies 
to solve it. Simulation results are presented and analyzed 
in Sect. 5. In Sect. 6, we summarize the work of this paper.

2  Relate work

In VEC, as the edge servers are located close to the vehicles, 
it is feasible for the vehicles to utilize edge servers to offload 
computing tasks, which not only reduces the computational 
loads on vehicles, but also enables more real-time responses 
to vehicular offloading requests. In addition, edge servers are 
able to provide better QoS for vehicular applications com-
pared to remote clouds (Raza et al. 2019). Many researchers 
have contributed to overcome the challenges of VEC (Ana-
war et al. 2018; Hou et al. 2016), especially in offloading 
decisions and resource allocation, while taking into account 
a number of factors, such as task characteristics, network 
traffic, edge node resources, energy consumption, and QoS. 
Related research is focused on developing intelligent offload-
ing decision-making algorithms to optimize the selection 
and collaboration of edge nodes with the goal of improving 
system efficiency and QoS (Kim et al. 2018; Liu et al. 2021). 
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The elaborate resource allocation aims to provision efficient 
and elastic services, given limited resources and various task 
constraints. By optimizing offloading decisions and resource 
allocation, better overall performance, energy efficiency, and 
user experience can be achieved while maximizing the ben-
efits and potential of edge computing.

The authors in Dai et al. (2019) try to maximize system 
utility via a joint load balancing and offloading approach. 
The system utility is expressed as the task computation 
delay in VEC networks. They proposed an efficient algo-
rithm with low time complexity to jointly optimize selection 
decision, offloading ratio, and computation resource among 
edge servers. In Zhang et al. (2020), the authors proposed 
an approximate computational offloading scheme to achieve 
load balancing of computing resources among edge servers. 
The method aims to reduce processing delay by appropri-
ately allocating the computational resources among the edge 
servers. The authors in Guo et al. (2019) proposed a VEC 
network that incorporates Fiber-Wireless enhanced capabili-
ties. They studied the cooperative task scheduling problem, 
in the hope to reduce the latency in processing tasks. Two 
task offloading approaches were proposed and their superior 
performance was verified through simulation experiments. 
The authors in Yuan and Zhou (2021) studied a cloud-edge 
collaborative computing problem that jointly considered 
the features of edge servers (e.g., the mount of resources, 
the load balance of edge nodes) and the cloud center (e.g., 
the task queue stability). A fine-grained collaborative task 
scheduling strategy has been put forward, with the goal of 
profit maximization from the angles of cloud and edge com-
puting systems.

However, the research works mentioned above do not 
fully consider the dynamic nature of the VEC networks. On 
the other hand, some researchers have shifted their attention 
to the applicability of machine learning (ML) in VEC net-
works, since ML technologies have presented broad appli-
cability in dynamic environments, by virtue of powerful 
capabilities in dealing with variable data distributions and 
patterns (Sun et al. 2019; Qi et al. 2019).

The authors in Qi et al. (2019) proposed a knowledge-
driven service offloading scheme for the IoV that com-
bines DRL to explore optimal task offloading strategy. This 
knowledge-driven mechanism supports pre-training and 
online learning to effectively adapt to any changes in the 
environment. To avoid service-disruption-incurred failures 
when vehicles leave the server coverage, service migration 
has been proposed as an efficient countermeasure in Taleb 
et al. (2019). Depending on the movement trajectory of the 
vehicle, the relevant computing services can be migrated to 
another edge server that may be associated with the vehicle 
in the future. Moon et al. (2021) defined a task migration 
problem that aims to balance the computational load of edge 
servers through task migration. The authors introduced a 

DRL algorithm to explore the optimal migration strategy 
while reducing the migration cost according to the observed 
environmental state. Huang et al. (2020) proposed a Deep 
Reinforcement Learning-based Online Offloading (DROO) 
framework to optimally adapt to time-varying wireless chan-
nel and wireless devices with different transmit power. Addi-
tionally, a novel order-preserving action generation method 
is developed to efficiently generate binary offloading actions 
and significantly reduce the execution time.

Liu et al. (2022) proposed a Deep Learning-based Edge 
Cache Optimization method (DLECO) to reduce the cost 
of the cache planning process. The method used the Long 
Short-Term Memory (LSTM) unit as the core component 
of the deep learning model and combined pointer networks 
with attention mechanisms as a novel deep neural architec-
ture. The experimental results confirm the superior perfor-
mance of their proposed approach. Ning et al. (2019) con-
structed an intelligent offloading system for VEC by DRL. 
The communication and computation states were modeled as 
finite Markov chains. In addition, with the overall objective 
of maximizing the quality of the user experience, a two-
sided matching scheme and a DRL approach were developed 
to schedule task requests and allocate network resources, 
respectively.

In VEC, when multiple vehicles choose to offload tasks 
to a particular RSU at the same time, it can cause network 
congestion and increase transmission delay. The aforemen-
tioned works have rarely taken into account this situation. 
Compared to the existing works, we pay more attention to 
the impact of balancing bandwidth allocation and transmis-
sion interference. More importantly, we simultaneously con-
sider task migration in the context of uneven distribution of 
computing resources to reduce the computing time and cost.

3  System model

Figure 1 shows the considered application architecture 
which consists of four streets and related intersections. 
Base station (BS) and RSUs are deployed in this area with 
edge servers to provide computing resources for passing 

Edge Server

RSU

Wireless link

Optical fiber

BS

Fig. 1  System model
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vehicles. They are connected by optical fiber, allowing 
task migration and ensuring transmission quality.

In this paper, the VEC system consists of one BS, M 
RSUs and N vehicles. The sets of vehicles and RSUs are 
indexed by N = {1, ...,N} and M = {1, ...,M} , respec-
tively. To provide a clear definition, we add the BS to the 
set of RSUs with index 0. The BS covers all vehicles and 
RSUs in the current area and each vehicle is in the com-
munication range of at least one RSU. It is assumed that 
there exists a global controller on the BS that not only has 
full knowledge of the system but also makes decisions for 
all the vehicles in a centralized manner. At the start of 
each time slot, the vehicles and RSUs send their own task 
and resource information to the BS, which is handed over 
to the global controller for decision-making. The vehicles 
on the roads are spaced following a random distribution, 
and the velocity of vehicle i is veli . Within the communica-
tion range of RSUs, the vehicles can offload their tasks to 
them. In addition, time is divided into a set of discrete time 
slots, indexed by {0, 1, ...,T − 1} , where T is the number 
of time slots. At each time slot, vehicle n will generate a 
computation-intensive task Taskn . Taskn can be described 
as Taskn = {Dn,Wn, T

max
n

} , where Dn denotes the size of 
the computing task, Wn = 𝜏Dn represents the computing 
resources required to process the task where 𝜏 denotes the 
required CPU cycles per data bit, and Tmax

n
 indicates the 

latency requirement of the task.

3.1  Communication model

The communication model depicts the transmission time 
for a computing task offloaded from vehicle n to RSU m 
via a wireless channel. The data transmission rate between 
vehicle n and RSU m is given as

where Bm represents the total bandwidth of the RSU m and 
ai,m is a binary variable indicating whether the vehicle i 
offloads its task to RSU m. If Taski is offloaded to RSU m, 
ai,m = 1 , otherwise ai,m = 0 . Hn,m = 4.11(

3∗108

4𝜋fcdn,m
)de represents 

the channel gain between vehicle n and RSU m, where dn,m 
denotes the distance, fc denotes the carrier frequency and de 
denotes the path loss exponent (Huang et al. 2020). Pn is the 
transmission power of vehicle n and 𝜎 is the white gaussian 
noise power. Each vehicle can only offload its computing 
task to one RSU, so the following constraint should be 
satisfied

(1)
Rn,m =

Bm∑
i∈N ai,m

log (1 +
PnHn,m

𝜎 +
∑N

i∈N∕{n}
ai,mPiHi,m

),

The transmission delay for offloading the computing task of 
vehicle n is given as follows:

3.2  Migration model

Migration time refers to the duration required for trans-
ferring a computing task from one edge server to another. 
Usually, the migration time depends upon the task size, the 
transmission rate among RSUs, and the number of migra-
tion hops between the source RSU and destination RSU. We 
assume that the optical fiber is used for the wired commu-
nication among servers to guarantee a higher transmission 
rate. The migration time of the Taskn is expressed as follows:

where Ro represents the transmission rate of optical fiber. 
bn,m′ ∈ {0, 1} indicates whether the Taskn is eventually pro-
cessed by RSU m′ and hm,m′ is a non-negative integer indi-
cating the least number of hops between RSU m and RSU 
m′ . If m = m′ , the task does not migrate and thus hm,m′ = 0 . 
Each task can only be processed by one server, and thus the 
following constraint should be satisfied

3.3   Computation model

The computation model describes the time required to 
accomplish a computing task at the edge server. Let fn,m′ be 
the computing resources allocated to the Taskn by the edge 
server in RSU m′ , so the computing delay for the task Taskn 
is expressed as follows:

The total latency for Taskn is given as

The processing result of the task is transmitted to the RSU 
closest to the vehicle via optical fiber and then returned to 
the vehicle over the wireless channel. Since the computing 

(2)
M∑

m=1

an,m = 1, ∀n ∈ N.

(3)Ttrans
n

=
Dn∑M

m=1
an,mRn,m

.

(4)Tmig
n

=
Dn

Ro

M∑
m=1

an,m(

M∑
m′=1

bn,m′hm,m′),

(5)
M∑

m′=1

bn,m′ = 1, ∀n ∈ N.

(6)Tcom
n

=
Wn∑M

m′=1
bn,m′ fn,m′

.

(7)Ttotal
n

= Ttrans
n

+ Tmig
n

+ Tcom
n

.
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result is smaller than that of the offloading task, we ignore 
the time spent on the transmission of computing result in 
this paper.

3.4  Cost model of requesting vehicle

We study the energy consumption and cost of the vehicles 
when they use the RSU services. Certain energy on the link 
communication is consumed when vehicle offloads a task 
to the RSU. Additionally, the services at the edge server 
including storage and computing are all provisioned in a 
pay-as-you-go model. Accordingly, we assume that the net-
work operators will charge the served vehicles. Note that 
from the viewpoint of vehicles, the cost mainly includes the 
migration cost and computing cost.

3.4.1  Communication energy consumption

Transferring tasks from the vehicle to the RSU will consume 
energy, which is directly related to the vehicle’s transmis-
sion power and transmission time. The energy consumption 
generated by vehicle n in link communication is

where Pn is the transmission power of vehicle n.

3.4.2  Migration cost

Costs are generated during task migration including com-
puting replication from source server to destination server 
and resources releasing at the currently hosted edge server 
(Yuan et al. 2020). In addition, the bandwidth resources of 
the optical fiber are also occupied during task migration. 
Therefore, taking these factors into account, the migration 
cost is jointly determined by the data size and the number of 
migration hops for Taskn migrated from RSU m to m′ . The 
migration cost is given as follows, where Pmig represents the 
unit price for migrating one bit of data.

3.4.3  Computing cost

After task migration, each task eventually arrives at an edge 
server and are executed there. Certain amount of energy is con-
sumed in each CPU cycle during task execution. To motivate 

(8)Etrans
n

= Pn

M∑
m=1

an,mT
trans
n,m

,

(9)Costmig
n

= Dn

M∑
m=1

an,m(

M∑
m′=1

bn,m′hm,m′)Pmig.

RSUs to contribute their computing resources, the operator 
usually sets appropriate prices for computing resources to 
guarantee the profits of RSUs. We define the initial unit price 
for the computing resources of the edge server m′ as Pcom

m′,init
 . 

Besides, we assume that the price of computing resources 
denoted Pcom

m′  is variable. For instance, Pcom
m′  usually increases, 

when the amount of the available resources decrease. As a 
result, we can define Pcom

m′  as

where 𝛽(> 1) represents the growth factor for unit price of 
the computing resources. Fm′ and fm′ denote total resources 
and remaining resources of edge server m′ , respectively. The 
server operator will give an appropriate discount on the cost 
based on the time that the resource is rented. The longer 
the resource is rented, the greater the discount. We define a 
discount function for the rental time which is expressed as 
follows:

where 𝜇(> 0) is a hyperparameter used to control the dis-
count intensity. The computing cost required for the Taskn 
is given as follows:

Therefore, the total cost for the Taskn can be expressed as 
the weighted sum of energy consumption, migration cost 
and computating cost,

where 𝜑i, i ∈ {1, 2, 3} , is a weight coefficient used to balance 
the corresponding cost among the above three metrics. For 
example, more attention is focused on energy consumption 
when 𝜑1 is larger than the other two weights. When the size 
of the task data is large, more attention should be paid to the 
migration cost, so 𝜑2 can be set to a larger value than others. 
Conversely, when the vehicle is concerned with the price of 
computing resources, 𝜑3 will be set to a larger value.

4  Problem formulation

In this section, we formulate the optimization problem and 
design the offloading and migration strategies.

(10)Pcom
m′ = Pcom

m′,init
𝛽
(1−

fm′

Fm′
)
,

(11)g(x) =
𝜇

x + 𝜇
,

(12)
Costcom

n
=

M∑
m′=1

bn,m′Pcom
m′ fn,m′g(

Wn

fn,m′

)

=

M∑
m′=1

bn,m′

Pcom
m′ 𝜇f 2

n,m′

Wn + 𝜇fn,m′

.

(13)Costtotal
n

= 𝜑1E
trans
n

+ 𝜑2Cost
mig
n

+ 𝜑3Cost
com
n

,
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4.1  Optimization objective

As assumed earlier, the global controller can acquire nec-
essary information about the VEC system and network. On 
one hand, it detects the mobility information of an arbi-
trary vehicle n(∈ N) and the achievable RSUs that vehicle 
n can communicate with. On the other hand, the control-
ler develops appropriate policies to decide whether and 
where to offload and migrate the computing tasks among 
RSUs. In this study, we aim to minimize the total delay 
and vehicle cost while satisfying multiple constraints. The 
two objectives are defined as a weighted sum with the 
weight factor 𝜔 ∈ (0, 1) . Consequently, the objective func-
tion is defined as

w h e r e 
a = {an,m|n ∈ N,m ∈ M}, b = {bn,m′ |n ∈ N,m′ ∈ M} and 
f = {fn,m′ |n ∈ N,m′ ∈ M} . The problem P1 is formulated 
as

Specifically, C1 indicates that a task can only be offloaded 
to one RSU. C2 represents that a task only be eventually 
processed at one RSU (edge server). C3 indicates that the 
resources allocated to the Taskn must be non-negative. C4 
shows that the sum of computing resources allocated to the 
tasks by the server cannot exceed the remaining resources. 
C5 ensures that hm,m′ is a non-negative integer. C6 and C7 
mean that an,m and bn,m′ are both binary variables.

Problem P1 is a mixed integer programming problem, 
which is hard to solve. However, once a and b are given, 

(14)U(a, b, f ) =

N∑
n=1

(𝜔Ttotal
n

+ (1 − 𝜔)Costtotal
n

),

(15)

P1 ∶ min
a,b,f

U

s.t.

C1 ∶

M∑
m=1

an,m = 1, ∀n ∈ N,

C2 ∶

M∑
m′=1

bn,m′ = 1, ∀n ∈ N,

C3 ∶ fn,m′ ≥ 0, ∀n ∈ N,∀m′ ∈ M,

C4 ∶

N∑
n=1

bn,m′ fn,m′ ≤ fm′ , ∀m′ ∈ M,

C5 ∶ hm,m′ ≥ 0, ∀m,∀m′ ∈ M,

C6 ∶ an,m ∈ {0, 1} ∀n ∈ N,∀m ∈ M,

C7 ∶ bn,m′ ∈ {0, 1} ∀n ∈ N,∀m′ ∈ M.

the problem is reduced to a multi-objective optimiza-
tion problem for resource allocation on each server. It is 
assumed that there are K =

∑N

n=1
bn,m tasks to be executed 

by server m. From the viewpoint of RSU m, the optimi-
zation problem P1 can decomposed into the optimiza-
tion of minimizing the total delay and vehicle cost for 
all the tasks offloaded to RSU m. In particular, denote by 
Gm(f1,m, ..., fK,m) the total delay and vehicle cost for all the 
tasks processed by RSU m, given a and b, and Gm can be 
expanded as

Up to now, the original optimization problem P1 can be 
transformed into the following subproblems P2, which aims 
to separately minimize the computing delay and comput-
ing cost for all the tasks processed by RSU m (∀m ∈ M) 
by designing an optimal resource allocation scheme 
f = {fn,m|n ∈ N},

The optimization function Gm ( ∀m ∈ M ) is convex, which 
can be proved as follows. We calculate the hessian matrix 
for Gm with regards (w.r.t.) to f as follows:

where H(Gm) is a diagonal matrix and the second-order 
mixed partial derivative on the diagonal are expressed as 
follows, ∀k ∈ {1, ...,K}

Therefore, H(Gm) is a positive definite matrix and Gm(f ) is 
a convex problem. Therefore, the problem P2 can be solved 
by existing optimization technologies such as interior point 
method. And the resource allocation optimization for all 
servers is also a convex problem that can be expressed as ∑M

m=1
Gm.

(16)
Gm(f1,m, ..., fK,m) =

K∑
k=1

(𝜔Tcom
k

+ (1 − 𝜔)Costcom
k

)

=

K∑
k=1

(
𝜔Wk

fk,m
+ (1 − 𝜔)

Pcom
m

𝜇f 2
k,m

Wk + 𝜇fk,m
).

(17)
P2 ∶ min

f
Gm

s.t. C3,C4.

(18)H(Gm) =

⎡
⎢
⎢
⎢⎣

𝜕2Gm

𝜕f 2
1,m

... 0

⋮ ⋱ ⋮

0 ...
𝜕2Gm

𝜕f 2
K,m

⎤
⎥
⎥
⎥⎦
,

(19)
𝜕2Gm

𝜕f 2
k,m

=
2𝜔Wk

f 3
k,m

+
2(1 − 𝜔)Pcom

m
𝜇W2

k

(Wk + 𝜇fk,m)
3

> 0.
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To sum up, problem P1 can be decomposed into three 
sub-problems, namely, offloading decision, migration policy 
and resource allocation. The resource allocation problem can 
be solved by existing approaches. In the next, we can pay our 
attention to the offloading decision and migration strategy 
problems. The overall algorithmic framework is shown in 
the Fig. 2.

4.2  Offloading task scheduling

When multiple tasks are offloaded to a particular RSU at 
the same time, it can cause network congestion and increase 
transmission delay. High transmission delay is also partly 
attributed to the bandwidth sharing as shown in Eq. (1). To 
avoid these effects, a KM-based Task Matching Offloading 
scheme (KTMO) is proposed to achieve bandwidth-fair task 
offloading among RSUs in this paper.

The KM algorithm, well known as the bipartite graph best 
matching algorithm, is utilized to solve the best matching 
problem in weighted bipartite graphs. It is an extension of 
the Hungarian algorithm and aims at maximizing the weight 
sum of matching edges in the weighted bipartite graph by 
continually searching for augmented paths. The optimal time 
complexity of KM algorithm is O(n3).

Bipartite graph is a special model in graph theory. Let 
G = (V ,E) be an undirected graph. A graph G is considered 
as a bipartite graph if the vertex set V can be divided into 
two disjoint subsets (A, B), where each edge (i, j) in the 
graph is connected to two vertices i and j belonging to dif-
ferent vertex sets (i ∈ A, j ∈ B) . In short, the vertex set V can 
be divided into two disjoint subsets, and the two vertices 
attached to each edge in the graph belong to the two disjoint 
subsets.

Our task offloading problem can be mapped into the 
bipartite graph as follows. We can respectively view the 
sets of vehicular tasks and RSUs as two different vertex 
sets in the graph, similar to the sets (A, B) above. Nota-
bly, the two sets are also disjoint with each other. Let the 
task vertex set be X = {X1,X2, ...,XN} , and the RSU vertex 
set be Y = {Y0, Y1, Y2, ..., YM} . A vehicle may offload its 
task to any of the candidate RSUs that wirelessly cover 
it. We define a weight function to evaluate the weight of 
the edge (Xi, Yi) . The weight value of (Xi, Yi) can indicate 
the efficiency of task offloading from the vehicle to the 

RSU. Usually, the larger the weight value, the higher the 
efficiency of task offloading. Thus, the task offloading 
decision can be abstracted as a weighted bipartite graph 
matching problem, with the goal of maximizing the total 
weight of the edges between the tasks and the RSUs.

Algorithm 1  The description of KTMO Algorithm
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Generally, the number of tasks is much larger than that 
of RSUs. However, the KM algorithm requires that the 
number of task vertices is the same as the number of RSU 
vertices. Considering the effect of time complexity, we 
take the side with the fewer elements as the benchmark. It 
should be noted that, for the sake of clarity, we include BS 
in the set of RSUs so that the total number is M + 1 . Spe-
cifically, we firstly prioritize the vehicular tasks according 
to their urgency to form a task queue. In each round of 
matching, M + 1 tasks with the highest priority are popu-
lated from the task queue as a set of tasks to be matched. 
If the length of the task queue is less than M + 1 , virtual 
tasks will be added. For this batch of tasks, we calcu-
late the weight of each edge that links a task and an RSU 
according to Eq.(20). Note that if the vehicle generating 
the task is not covered by an RSU, or the task is virtual, 
the corresponding weight edge is set to zero. From this, 
a weighted bipartite graph is obtained and the KM algo-
rithm is applied to return a set of matching results. To 
ensure accurate matching results, it is crucial to take into 
account tasks and RSUs with zero edge weights. A virtual 
task can be safely ignored as it will not affect the offload 
decision. However, if the vehicle generating the task is 
not wirelessly covered by the RSU it matches, then a false 
match has certainly been generated. Tasks that are incor-
rectly matched will be pushed to the top of the queue for 
the next round of matching. Finally, the offloading deci-
sion is updated based on the matching results, ending the 
round of matching. The KTMO algorithm is terminated 
when the task queue is empty, indicating that all tasks have 
successfully found the offloading target. The process and 
detail of the KTMO algorithm is depicted in Fig. 3 and 
Algorithm 1, respectively.

Multiple factors may influence the task offloading deci-
sion and further significantly affect system efficiency. It is 
efficient and important to consider the sigmoidal behavior 
feature in the users’ utility function for resource allocation 
(Wang et al. 2017). Following the work (Ning et al. 2019) 
in which the authors adopt a sigmoid-like function to model 
the utility of vehicles, we in this paper also adopt this kind of 
function to describe the weights between vehicles and RSUs. 
For example, the weight function in this paper between vehi-
cle n and RSU m is defined as follows,

where dn,m denotes the distance between vehicle n and RSU 
m, 𝜌n = Dn

Tmax
n

 indicates the urgency of the task, and hn,m is the 
channel gain. w0 is a weight factor that can be set to a larger 
value. w1 and w2 control the magnitude of the parameter dn,m 
and 𝜌n , respectively. In the task scheduling phase, our pur-
pose is to fairly allocate tasks to each RSU in such a way as 
to balance bandwidth allocation and transmission interfer-
ence, and ultimately reduce transmission latency.

Complexity Analysis. In each round, taking M + 1 tasks 
from the task queue in O(M) time (lines 5-10). Calcu-
late the weights between this group of tasks and RSUs 
with time complexity O(M2) (lines 11-18). Then, the KM 
algorithm with time complexity O(M3) is used to get one 
round of matching results (line 19). Finally, checking the 
results and update offloading decisions in O(M) time (lines 
20-25). Therefore, the time complexity of each round is 
O(M3) . Since the number of tasks is larger than that of 
RSUs, multiple rounds of matching are required to obtain 
offloading decisions, at least ⌈N∕(M + 1)⌉ rounds. The best 
time complexity of the KTMO algorithm is O(NM2) , and 
the worst is O(NM3).

(20)Weightn,m =
w0

(w1dn,m + ew2𝜌nhn,m)
.

Fig. 2  Overall algorithmic framework
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4.3  Migration decision

Due to the mobility of the vehicles, the stochasticity of the 
tasks and the time-varying characteristics of the resource 
prices, it is very challenging to solve task offloading and 
migration problems using traditional approaches. There-
fore, we introduce a DRL approach to solve it in this paper.

DRL is a technique born from the combination of Deep 
Neural Networks(DNN) and Reinforcement Learning(RL). 
DNN consist of an input layer, multiple hidden layers, and 
an output layer, which provide them with strong perceptual 
capabilities. After continuous training on a specific dataset, 
it is possible to identify the internal connections between the 
data and output the corresponding predictions. DNN play 
a crucial role in various fields of AI owing to their excep-
tional perceptual abilities. Reinforcement learning has a 
strong decision-making capability where the agent interacts 
with the environment by performing actions and continu-
ously learns the optimal action with the goal of maximizing 
future cumulative rewards. DRL combines the perceptual 
ability of DNN with the decision-making capability of RL 
by inputting the state of the environment to DNN, directly 
outputting the corresponding actions, and training the net-
work parameters based on the feedback rewards.

Specifically, denote by st the VEC environment in time 
step t, and at denotes a migration action performed by 
the agent in time step t. Then, the current state st may 
transfer to any achievable following state st+1 . The agent 
then receives a feedback reward rt . In the long run, 
the agent takes a policy 𝜋 to maximize future rewards 
Rt =

∑∞
k=0

𝛾krt+k , where 𝛾 denotes the discount factor for 
future rewards. The policy 𝜋 generates one action based 
on the observations on the environment.

In this paper, we propose a migration strategy based 
on Actor-Critic to explore and learn optimal actions. 

Specifically, we consider the global controller as an agent 
for the AC model. The agent constantly interacts with the 
VEC environment via a series of observations, actions, and 
rewards and makes migration decisions. The target is to 
choose appropriate actions to reduce vehicular cost in the 
system. The AC algorithm is shown in Algorithm 2. The 
elements in the DRL model which corresponds to our task 
migration problem are respectively defined as follows 

1. State: The state information, as an input to the neural 
network in the DRL, needs to reflect the overall state of 
the system environment. The system state consists of 
the vehicle’s mobility, task information, initial policy 
for task offloading, remaining resources of the edge 
server, and the unit price of resources. Therefore, state 
st is defined as 

 where Vn = {locn, veln, pn, dirn, un, Taskn} . These param-
eters represent the vehicle’s location, velocity, trans-
mission power, direction, offloading target and the task 
information generated by the vehicle, which include the 
data size, cpu cycles and constraint latency, respectively. 
Rm = {fm,P

com
m

} , where fm denotes the available com-
puting resources and Pcom

m
 denotes the unit price of the 

resources in the current time slot.
2. Action: For each step, the controller chooses an action 

according to the current state. In the environment, the 
controller decides to migrate tasks from source server 
to optimize the resource cost in the system. Migration 
action is defined as a vector with each element indicat-
ing the migration destination for the corresponding task. 
Particularly, action at is described as follows 

 where en ∈ M,∀n ∈ N  denotes the migration target 
for the Taskn . If en = un , the task does not migrate, oth-
erwise the task is migrated to en.

3. Reward: At the end of each step, the controller receives 
feedback from the environment as a reward. The objec-
tive of our optimization problem is to minimize the 
weighted total delay and vehicle cost, while the objec-
tive of DRL is to maximize the long-term reward of the 
system. Therefore, we formulate the reward function as 
the negative of the objective function 

Usually, AC adopts the policy gradient which comprises two 
networks, i.e., the actor and critic networks, respectively. 

(21)st = {V1, ...,VN ,R1, ...,RM},

(22)at = {e1, ..., eN},

(23)rt = −U.

Fig. 3  The process of the KTMO algorithm
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The actor network generates a policy action to interact with 
the environment based on the system state, and the critic 
network fits a value function V(st) to evaluate the action gen-
erated by the actor. It is assumed that the parameters of the 
actor network and critic network are 𝜃 and 𝜃′.

To evaluate the action in the current state, we take the 
temporal difference (TD) error, which is defined as the dif-
ference between the estimated value and the real value, with 
the following expression:

The TD error represents the distance between the real value 
and the estimated value. The smaller the TD error, the better 
the critic network is fitted. Therefore, to reduce the TD error, 
the critic network will be updated, so as to minimize the TD 
error with a loss function expressed as follows:

Then, the parameter 𝜃 of actor network is updated by policy 
gradient, which is given as follows:

Here, N denotes the size of the action space. The gradient of 
𝜃 can be expressed as

The Actor and Critic networks both consist of four layers. 
The layers of the Actor network are presented as follows: 

1) First Layer: The layer takes the environment state as 
input, with the number of neurons consistent with the 
state space, which is then transformed by a Sigmoid 
function.

2) Second Layer: This is a hidden layer with 128 neurons, 
which is then transformed by the Relu function.

3) Third Layer: It’s exactly the same as the previous layer.
4) Last Layer: This is the output layer. The layer is first 

reshaped into a matrix with the same number of rows 
and columns as the tasks and edge servers, respec-
tively. Each row of the matrix is then normalized using 
Softmax function to derive the probability of each task 
migrating to each server.

The Critic network also has four layers, and unlike the Actor, 
the last layer has a neuron which directly outputs the fitted 
state value. The training process of DRL does not require 
a dataset, the agent acquires the state space from the envi-
ronment at each time slot, performs the migration actions, 
and then updates the network gradient based on the reward 
feedback for online decision updating.

(24)𝛿t = rt + 𝛾V(st+1;𝜃
′

) − V(st;𝜃
′

).

(25)loss𝜃′ = (rt + 𝛾V(st+1;𝜃
′

) − V(st;𝜃
′

))2.

(26)Loss𝜃 =
1

N

∑
log𝜋(at|st;𝜃)𝛿t.

(27)𝜃t+1 = 𝜃t + 𝛼∇𝜃log𝜋(at|st;𝜃)𝛿t.

Algorithm 2  The description of the Actor-Critic

5  Performance evaluation

In this section, we evaluate the performance of the pro-
posed KTMO scheme through extensive simulations. First, 
the simulation scenario and basic parameters of the VEC 
environment are introduced. Then, the task offloading policy 
based on the KTMO algorithm is evaluated and compared 
with three other algorithms: 

1. AC: The offloading decision is given directly by the AC 
with the reward function defined as the total transmis-
sion delay. Note that since each vehicle is not covered 
by all RSUs, so incorrect offloading actions may occur. 
To suppress incorrect actions, it is necessary to impose 
a penalty term on the reward function, which is related 
to the number of wrong actions.

2. DVIM (Ning et al. 2019): DVIM is a dynamic algorithm 
that matches vehicle-to-infrastructure communications. 
Each infrastructure has an accepted list and a forbidden 
list, and the overall system utility is optimized by updat-
ing these lists dynamically through Eq. (20).

3. Greedy approach: The greedy method prefers to select 
the RSU with the maximum weight.

5.1  Simulation setup

We abstract the set of edge servers linked by optical fiber 
as a connected graph and preserve the minimum number 
of hops between any two edge nodes using a shortest path 
algorithm. At the beginning, the environment is established 
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by initializing both vehicles and edge servers. Then, at each 
time slot, the KTMO algorithm is implemented to determine 
the offloading policy for vehicular tasks, which is then fed 
into the AC network along with the vehicle information and 
edge server information to obtain the migration strategy. 
Next, the optimal resource allocation scheme is implemented 
for the tasks received on each edge server. Finally, the state 
information of the vehicles and edge servers is updated at 
the end of each time slot.

We consider four traffic roads that intersect each other 
vertically with vehicles following a random distribution. It 
is assumed that the number of vehicles remains constant at 
each time slot. To this end, we assume one vehicle enters 
the considered zone if a vehicle within the zone leaves. BS 
and Four RSUs are uniformly distributed in this area and 
connected to each other through optical fiber to form a con-
nected graph. Each vehicle has only one computing task to 
be completed in each time slot, and the size of its input data 
is randomly generated between the interval [100, 200]KB. 
In addition, the CPU cycles required for accomplishing the 
task range from 100 MHz to 200 MHz, and the maximum 
allowable processing delay is 0.5–1.0s.

The coverage area for BS is assumed to be 500  m, 
while each RSU is 300 m, with a bandwidth of 100MHz, 
and the CPU cycle frequency of edge server being 
[40, 20, 30, 30, 20]GHz, respectively. The initial price 
for computing resource of each server can be expressed 
[0.003, 0.001, 0.002, 0.002, 0.001]/MHz and the price of data 
migration is a constant 0.0002/KB. It should be noted that in 
the simulation, the migration cost is set relatively lower, as 
we pay more attention to the cost of computing resources. 
The discount factor 𝛾 = 0.9 in the AC model. For your easy 
reference, some key parameters to be used in the simulation 
are listed in Table 1.

5.2  Simulation results

In this study, the 𝜔 serves as a strategy parameter. The objec-
tive function balances the 𝜔 between total delay and vehicle 
cost. To determine the optimal 𝜔 for the objective function, 
performance is measured by varying the weight factor 𝜔 as 
presented in Fig. 4. It is apparent that the impact on delay 
and cost is similar when 𝜔 is approximately 0.57. To take 
account of the importance of time, we set the weight factor 
𝜔 to 0.6 in the next few experiments.

The simulation result shown in Fig. 5 reveals how the 
fairness of the offloading decision changes with the num-
ber of tasks under different offloading schemes. Based on 
bandwidth allocation method, the fairer the task offload-
ing, the fairer the bandwidth allocation will be. Here, we 
measure the degree of fairness based on the standard devi-
ation of the number of tasks offloaded to each RSU, which 

is defined as DF =

√∑M

m=1
(𝜆m − 𝜆̄)2

M
 , where 𝜆m =

∑N

i=1
ai,m 

indicates the number of tasks received by the RSU m and 
𝜆̄ = N

M
 represents the mean value. The smaller the DF, the 

higher the fairness in bandwidth allocation. It is evident 
that our proposed KTMO matching scheme has a lower 
DF. The reason is that, an RSU is matched to only one task 
during each round of the KTMO algorithm, which can 
obtain an offloading strategy in a fairer way compared to 
other algorithms. This means that there is little difference 
in the number of tasks accepted by each RSU so does the 

Table 1  Simulation Parameters

Notation Description Value

M The number of RSUs 4
N The number of vehicles 20–40
Dn The data size of a task 100–200KB
Wn CPU cycles required for a task 100–200MHz
Tmax
n

Maximum delay constraint 0.5–1.0s
veln The velocity of a vehicle 10–20m/s
R Communication range of RSUs 300 m
B Bandwidth 100MHz
Ro Transmission rate of optical fiber 1 ∗ 1e9bits/s
F Computing resources [40, 20, 30, 30, 20]GHz
Pcom
m

Initial unit price for each server [0.003, 0.001, 0.002,
0.002, 0.001] /MHz

Pmig Unit price for task migration 0.0002/KB
P Transmission power of the vehicle 0.5w
fc Carrier frequency 615MHz
de Path loss exponent 2.0
𝜎 Communications noise 10−11

Fig. 4  Effect of weight factor 𝜔 on total delay and vehicle cost



 C. Tang et al.

bandwidth, as the bandwidth is evenly distributed to each 
task. The greedy algorithms are more likely to centralize 
offloading, leading to a gradual increase in DF with the 
number of tasks. The AC algorithm adapts automatically 
as environmental parameters change to improve the strat-
egy. Furthermore, it maintains a relatively lower DF value, 
which substantiates the benefits of fair offloading.

Figure 6 shows a comparison of the average transmission 
delay that is determined by offloading decision for different 
number of tasks. It can be seen that the KTMO offloading 
scheme shows the minimum total transmission delay com-
pared to the other three algorithms. In our model, we evenly 
distribute the communication bandwidth of an RSU to the 
vehicles. When numerous tasks are offloaded to one spe-
cific RSU, the average bandwidth allocated to the vehicle 
decreases and the interference increases, which will lead 

to a significant increase in the transmission delay for this 
group of tasks. As depicted in Fig. 5, the KTMO algorithm 
can achieve a better fairness in task offloading and reduce 
the negative effects mentioned above. The other algorithms, 
particularly the greedy algorithm, could lead to a concentra-
tion of certain tasks on a specific RSU, resulting in higher 
transmission latency. However, we note that the AC has a 
less transmission time than KTMO for a vehicle number of 
twenty-five. It is true that balanced offloading is advanta-
geous most of the time, but the dynamics of the environment 
and the stochastic nature of the task bring other possibilities.

Figure 7 shows the effect of weight factor 𝜔 on task com-
pletion rate, and we can see that the task completion rate 
rises as the weight factor increase. Firstly, it is worth noting 
that the values of transmission time and migration time do 
not fluctuate with changes in the weight factor 𝜔 , as the 
former depends on the offloading decision and the latter is 
determined by the migration policy. We put restrictions on 
the number of hops connecting any two edge servers via 
optical fiber which has a very fast transmission rate. There-
fore, the migration time have less impact on the total pro-
cessing delay of tasks. Given the offloading and migration 
decisions, the problem P2 is directly related to the weight 
factor. Normally, the weight factor in the simulation is 
intended for a trade-off between computing time and com-
puting cost. When the weight factor increases, the objective 
function pays more attention to time and thus the edge server 
allocates more computing resources to the task to reduce 
the computing time and increase the task completion rate. 
Moreover, the KTMO scheme has better performance in the 
total delay reduction, compared to other approaches. When a 
task spends more time in transmission, its urgency increases, 
taking a greater risk of failure within limited resource con-
straints. The transmission time under the KTMO scheme is 
shorter than that of other schemes, and hence, KTMO is able 
to achieve higher task completion rates.

Fig. 5  Comparison of fairness in bandwidth with different numbers 
of vehicles

Fig. 6  The average transmission delay comparison under different 
numbers of vehicles Fig. 7  Task completion rate comparison with different weights
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Figure 8 demonstrates the clear relationship between the 
value of objective function and weight factor. When the 
weight factor increases, the objective function focuses more 
on time and the server allocates more computing resources 
to the task to reduce the computing time. If the decrease in 
time is less than the increase in cost, the value of the objec-
tive function will increase. Conversely, a downward trend 
can be observed. As you can see from Fig.4, both indica-
tors are of the same magnitude and have similar vertical 
scales. Before the crossover point, the delay is greater than 
the cost, so the objective function rises as 𝜔 increases. And 
after the intersection point, the delay is less than the cost, so 
the objective function decreases.

In Fig. 9, We study the effect of the learning rate on the 
convergence performance of the AC model. In Fig. 9(a), 
we set the learning rate of the critic network to 0.001 and 
compare the performance of the AC model for the actor 
network at different learning rates. Similarly, in Fig. 9(b), 
we fix the learning rate of the actor network and observe 
the performance of the AC model by varying the learn-
ing rate of the critic network. It is observed that a larger 
learning rate makes the training curve oscillate constantly, 
while a smaller learning rate produces stable curve but 
converges too slowly. Considering the trade-off between 
stability and training speed, we set the learning rate to 
3*1e-4 for the actor network and 1e − 3 for the critic net-
work in the experiments.

In the resource allocation problem P2, computing time 
decreases as computing resources increase, while computing 
cost increases. When the unit price of computing resources 
is lower, more attention is paid to latency optimization and 
more computing resources are allocated to reduce com-
puting latency. Therefore, transferring tasks from a server 
with a higher unit cost to a lower one can effectively reduce 
computing latency as shown in Fig. 10. Despite increased 
resource requirements, computing cost has shown a down-
ward trend, as shown in Fig. 11. Our proposed KTMO 
scheme, which is slightly better in terms of transmission 
time, has only slightly less computation delay than AC, 
which is more intelligent in making decisions for each task.

Figure 12 shows the changes in average task completion 
latency for different number of tasks. As the number of 
tasks grows, the average task execution latency gradually 
increases. An increase in the number of vehicles reduces 
the bandwidth allocated to each task, resulting in a higher 
transmission delay. On the other hand, as the number of 

Fig. 8  Comparison of the objective value with the weight factor 
under four different offloading schemes

(a) Actor (b) Critic

Fig. 9  Training processes comparison of with different learning rates
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task increases, so does the demand for finite resources. 
Resources should be allocated more rationally to meet 
the demands of a greater number of tasks. Our proposed 
KTMO scheme achieves a lower execution delay by taking 
advantage of the transmission phase.

Figure 13 illustrates how the objective function value 
changes with different number of tasks. It is obvious that 
as the number of tasks increases, so does the value of the 
objective function. As mentioned earlier, with a growing 
number of tasks, the average bandwidth allocated to the 
vehicle diminishes and the interference increases, resulting 
in an increase in transmission delay and computing cost. 
Additionally, the more tasks, the more computing resources 
required, and at each time slot, the unit price of the resources 
increases dramatically, which also has a direct impact on 
the overall cost of the tasks. Generally, when the computing 
resources of the edge servers with lower prices are running 
out, tasks are forced to migrate to edge servers with rela-
tively higher prices. This case can also increase the total 
cost. For these reasons, the value of the objective function 
increases as the number of tasks grows.

6  Conclusion

In this paper, we have mainly studied the offloading strat-
egy and migration policy for VEC. For the task scheduling 
problem, we have designed a fair offloading scheme for tasks 
named KTMO based on weighted bipartite graph match-
ing to balance the bandwidth resources allocated to each 

Fig. 10  Comparison of the computing time along the training steps

Fig. 11  Comparison of the computing cost along the training steps

Fig. 12  Comparison of average completion delay with different num-
bers of vehicles

Fig. 13  Comparison of objective value with different numbers of 
vehicles
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task. Furthermore, considering the time-varying features of 
the computing resources, we modeled the task migration 
process as a MDP that determines the system state, action, 
and reward function by continuously exploring the environ-
ment to find the optimal strategy and reduce vehicle cost. 
Finally, we verified the performance of our proposed method 
through simulation experiments. The simulation results have 
demonstrated the advantages compared to other approaches. 
For the future works, we will focus on the fair caching of 
service in VEC.
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