CCF Transactions on Pervasive Computing and Interaction
https://doi.org/10.1007/542486-024-00156-x

REGULAR PAPER q

Check for
updates

A bandwidth-fair migration-enabled task offloading for vehicular
edge computing: a deep reinforcement learning approach

Chaogang Tang' - Zhao Li' - Shuo Xiao' - Huaming Wu? - Wei Chen'

Received: 14 December 2023 / Accepted: 10 April 2024
© China Computer Federation (CCF) 2024

Abstract

Vehicular edge computing (VEC), which extends the computing, storage, and networking resources from the cloud center to
the logical network edge through the deployment of edge servers at the road-side unit (RSU), has aroused extensive attention
in recent years, by virtue of the advantages in meeting the stringent latency requirements of vehicular applications. VEC
enables the tasks and data to be processed and analyzed in close proximity to data sources (i.e., vehicles). VEC reduces the
response latency for vehicular tasks, but also mitigates the burdens over the backhaul networks. However, how to achieve
cost-effective task offloading in VEC remains a challenging problem, owing to the fact that the computing capabilities of the
edge server are not sufficient enough compared to the cloud center and the uneven distribution of computing resources among
RSUs. In this paper, we consider an urban VEC scenario and model the VEC system in terms of delay and cost. The goal of
this paper is to minimize the weighted total latency and vehicle cost by balancing the bandwidth and migrating tasks while
satisfying multiple constraint conditions. Specifically, we model the task offloading problem as a weighted bipartite graph
matching problem and propose a Kuhn-Munkres (KM) based Task Matching Offloading scheme (KTMO) to determine the
optimal offloading strategy. Furthermore, considering the dynamic time-varying features of the VEC environment, we model
the task migration problem as a Markov Decision Process (MDP) and propose a Deep Reinforcement Learning (DRL) based
online learning method to explore optimal migration decisions. The experimental results demonstrate that our strategy has
better performance compared to other methods.

Keywords Vehicular edge computing - Bandwidth fairness - Task offloading - Task migration - Deep reinforcement
learning

1 Introduction consists of intelligent vehicles, stationary infrastructures,

travelling roads and other entities, with the abilities to com-

With the rapid development of the fifth generation (5 G)
mobile networks, the Internet of Things (IoT) and artificial
intelligence (Al), intelligent transport systems (ITS) have
attracted considerable attention from both industry and aca-
demia in recent years. As an important branch of IoT, the
Internet of Vehicles (IoV) system is of particular signifi-
cance in the development of ITS and smart cities (Tang et al.
2022; Liu et al. 2017). The IoV is an interactive network that

> Shuo Xiao
sxiao@cumt.edu.cn

School of Computer Science and Technology, China
University of Mining and Technology, Xuzhou 221116,
Jiangsu, China

Center for Applied Mathematics, Tianjin University,
Tianjin 300072, China

Published online: 26 May 2024

municate, store and process vehicular requests. Deploying an
array of sensing devices and intelligent modules on the vehi-
cles enables the dynamic collection of data about vehicles
and surrounding environments, which can guarantee driving
safety to a great degree. Generally, the rapid development of
the IoV has facilitated the widespread use of intelligent vehi-
cle services for autonomous driving, entertainment applica-
tions, smart navigation, and intelligent parking (Tang et al.
2018; Zeng et al. 2021). Such applications usually generate
a mass of data that need to be handled immediately to satisfy
the ultra-low response latency requirement in IoV.
Although vehicles have certain storage and comput-
ing capabilities, various vehicular applications are mak-
ing these vehicles increasingly inadequate to support the
latency-sensitive and computation-intensive tasks (Liu
et al. 2019). To address the shortage of resources for loV,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42486-024-00156-x&domain=pdf

C.Tang et al.

extensive research has been conducted to incorporate
cloud resource (Wang et al. 2020). However, explosively
growing number of tasks offloaded to the cloud consumes
large backhaul networking resources, thus incurring long
response latency for the vehicular tasks. In this case, the
response latency may hardly meet the stated Quality of
Service (QoS) or the Quality of Experience (QoE) from
the viewpoint of resource requestors.

Accordingly, vehicular edge computing (VEC) is pro-
posed in response to the above challenges (Tang et al. 2022).
VEC pushes various computing, storage, and networking
resources to the network edge through deploying basic com-
puting and communication facilities at the road-side unit
(RSU). By doing so, these resources can be provisioned in
close proximity to data sources (e.g., smart vehicles), thus
significantly reducing various networking latency (Han et al.
2019; Qiao et al. 2018). However, several issues around
VEC still need to be addressed. For instance, the comput-
ing resources are not evenly distributed among RUSs and
the bandwidth resources of RSUs are also limited. Inap-
propriate task offloading will cause network congestion and
long transmission latency. Therefore, designing appropriate
task offloading strategy plays a significant role in reduc-
ing response delay and improving the efficiency of VEC
systems.

At the same time, various network operators are begin-
ning to realize the potential opportunities and benefits of
RSUs. The deployment of RSUs by multiple operators on
the road can achieve wider coverage, provide real-time traffic
information and services, and facilitate data exchange and
collaboration among operators. However, there are various
costs associated with the deployment of RSUs, including
purchase, installation and maintenance, as well as energy
consumption during operation. Operators may determine the
charges for RSU resources according to their own strategies,
business models and market competition. On the other hand,
the computing resources are also provisioned in a pay-as-
you-go fashion (Tang and Wu 2021). Therefore, the cost of
requesting resources is a matter of consideration for users,
in addition to a better quality of service. It easily occurs to
people that task migration among RUSs may be a viable
option to minimize the overall costs. However, it remains a
major challenge for traditional methods to find an appropri-
ate migration strategy in such a dynamic VEC environment.
In recent years, Deep Reinforcement Learning (DRL) has
become widely used in edge computing due to its powerful
perception and decision-making abilities. DRL introduces
neural networks with perceptual capabilities that explore
the best actions to take by constantly interacting with the
environment, with the aim of maximizing future cumulative
rewards. Thus, DRL as a machine learning method is well
suited for finding optimal migration strategies in dynamic
and complex VEC environments.

@ Springer

To overcome the aforementioned issues such as central-
ized offloading and the uneven distribution of computing
resources, in this paper, we study and analyse the task sched-
uling and migration problems in VEC, respectively. We try
to minimize the weighted sum of the processing latency of
tasks and vehicle cost. The main contributions of this paper
are listed as follow:

e Considering the impact of uneven offloading of tasks, we
model the task scheduling problem as a weighted bipar-
tite graph best matching problem. A matching offload-
ing scheme based on the Kuhn-Munkres (KM) (Munkres
1957) algorithm is proposed to keep the bandwidth allo-
cation and interference relatively balanced for all tasks.

e As the unit price of resources varies among edge serv-
ers and has time-varying characteristics, we design an
efficient migration strategy to reduce the overall cost of
the vehicle. Specifically, we model task migration as a
Markov Decision Process (MDP), defining the system
state space, action space and reward function. An adap-
tive migration algorithm is proposed based on Actor-
Critic(AC).

e Extensive simulation is carried out to evaluate the pro-
posed offloading scheme compared to other methods.
The results show that our proposed method has better
performance in both transmission delay and vehicle cost.

The rest of the paper is organized as follows. In Sect. 2, we
review some related works on this topic. We present the
system model in Sect. 3. In Sect. 4, we formulate the opti-
mization problem and design the corresponding strategies
to solve it. Simulation results are presented and analyzed
in Sect. 5. In Sect. 6, we summarize the work of this paper.

2 Relate work

In VEC, as the edge servers are located close to the vehicles,
it is feasible for the vehicles to utilize edge servers to offload
computing tasks, which not only reduces the computational
loads on vehicles, but also enables more real-time responses
to vehicular offloading requests. In addition, edge servers are
able to provide better QoS for vehicular applications com-
pared to remote clouds (Raza et al. 2019). Many researchers
have contributed to overcome the challenges of VEC (Ana-
war et al. 2018; Hou et al. 2016), especially in offloading
decisions and resource allocation, while taking into account
a number of factors, such as task characteristics, network
traffic, edge node resources, energy consumption, and QoS.
Related research is focused on developing intelligent offload-
ing decision-making algorithms to optimize the selection
and collaboration of edge nodes with the goal of improving
system efficiency and QoS (Kim et al. 2018; Liu et al. 2021).

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

The elaborate resource allocation aims to provision efficient
and elastic services, given limited resources and various task
constraints. By optimizing offloading decisions and resource
allocation, better overall performance, energy efficiency, and
user experience can be achieved while maximizing the ben-
efits and potential of edge computing.

The authors in Dai et al. (2019) try to maximize system
utility via a joint load balancing and offloading approach.
The system utility is expressed as the task computation
delay in VEC networks. They proposed an efficient algo-
rithm with low time complexity to jointly optimize selection
decision, offloading ratio, and computation resource among
edge servers. In Zhang et al. (2020), the authors proposed
an approximate computational offloading scheme to achieve
load balancing of computing resources among edge servers.
The method aims to reduce processing delay by appropri-
ately allocating the computational resources among the edge
servers. The authors in Guo et al. (2019) proposed a VEC
network that incorporates Fiber-Wireless enhanced capabili-
ties. They studied the cooperative task scheduling problem,
in the hope to reduce the latency in processing tasks. Two
task offloading approaches were proposed and their superior
performance was verified through simulation experiments.
The authors in Yuan and Zhou (2021) studied a cloud-edge
collaborative computing problem that jointly considered
the features of edge servers (e.g., the mount of resources,
the load balance of edge nodes) and the cloud center (e.g.,
the task queue stability). A fine-grained collaborative task
scheduling strategy has been put forward, with the goal of
profit maximization from the angles of cloud and edge com-
puting systems.

However, the research works mentioned above do not
fully consider the dynamic nature of the VEC networks. On
the other hand, some researchers have shifted their attention
to the applicability of machine learning (ML) in VEC net-
works, since ML technologies have presented broad appli-
cability in dynamic environments, by virtue of powerful
capabilities in dealing with variable data distributions and
patterns (Sun et al. 2019; Qi et al. 2019).

The authors in Qi et al. (2019) proposed a knowledge-
driven service offloading scheme for the IoV that com-
bines DRL to explore optimal task offloading strategy. This
knowledge-driven mechanism supports pre-training and
online learning to effectively adapt to any changes in the
environment. To avoid service-disruption-incurred failures
when vehicles leave the server coverage, service migration
has been proposed as an efficient countermeasure in Taleb
et al. (2019). Depending on the movement trajectory of the
vehicle, the relevant computing services can be migrated to
another edge server that may be associated with the vehicle
in the future. Moon et al. (2021) defined a task migration
problem that aims to balance the computational load of edge
servers through task migration. The authors introduced a

DRL algorithm to explore the optimal migration strategy
while reducing the migration cost according to the observed
environmental state. Huang et al. (2020) proposed a Deep
Reinforcement Learning-based Online Offloading (DROO)
framework to optimally adapt to time-varying wireless chan-
nel and wireless devices with different transmit power. Addi-
tionally, a novel order-preserving action generation method
is developed to efficiently generate binary offloading actions
and significantly reduce the execution time.

Liu et al. (2022) proposed a Deep Learning-based Edge
Cache Optimization method (DLECO) to reduce the cost
of the cache planning process. The method used the Long
Short-Term Memory (LSTM) unit as the core component
of the deep learning model and combined pointer networks
with attention mechanisms as a novel deep neural architec-
ture. The experimental results confirm the superior perfor-
mance of their proposed approach. Ning et al. (2019) con-
structed an intelligent offloading system for VEC by DRL.
The communication and computation states were modeled as
finite Markov chains. In addition, with the overall objective
of maximizing the quality of the user experience, a two-
sided matching scheme and a DRL approach were developed
to schedule task requests and allocate network resources,
respectively.

In VEC, when multiple vehicles choose to offload tasks
to a particular RSU at the same time, it can cause network
congestion and increase transmission delay. The aforemen-
tioned works have rarely taken into account this situation.
Compared to the existing works, we pay more attention to
the impact of balancing bandwidth allocation and transmis-
sion interference. More importantly, we simultaneously con-
sider task migration in the context of uneven distribution of
computing resources to reduce the computing time and cost.

3 System model

Figure 1 shows the considered application architecture
which consists of four streets and related intersections.
Base station (BS) and RSUs are deployed in this area with
edge servers to provide computing resources for passing

A B
@
A RSU

Edge Server

3]
k Wireless link

Optical fiber

Fig. 1 System model

@ Springer

C.Tang et al.

vehicles. They are connected by optical fiber, allowing
task migration and ensuring transmission quality.

In this paper, the VEC system consists of one BS, M
RSUs and N vehicles. The sets of vehicles and RSUs are
indexed by N'={1,..,N} and M = {1,..,M}, respec-
tively. To provide a clear definition, we add the BS to the
set of RSUs with index 0. The BS covers all vehicles and
RSUs in the current area and each vehicle is in the com-
munication range of at least one RSU. It is assumed that
there exists a global controller on the BS that not only has
full knowledge of the system but also makes decisions for
all the vehicles in a centralized manner. At the start of
each time slot, the vehicles and RSUs send their own task
and resource information to the BS, which is handed over
to the global controller for decision-making. The vehicles
on the roads are spaced following a random distribution,
and the velocity of vehicle i is vel;. Within the communica-
tion range of RSUs, the vehicles can offload their tasks to
them. In addition, time is divided into a set of discrete time
slots, indexed by {0, 1,...,T — 1}, where T is the number
of time slots. At each time slot, vehicle n will generate a
computation-intensive task Task, . Task, can be described
as Task, = {D,, W,, T)""}, where D, denotes the size of
the computing task, W, = =D, represents the computing
resources required to process the task where denotes the
required CPU cycles per data bit, and 7,"** indicates the
latency requirement of the task.

3.1 Communication model

The communication model depicts the transmission time
for a computing task offloaded from vehicle n to RSU m
via a wireless channel. The data transmission rate between
vehicle n and RSU m is given as

Rn,m =

B Pan m
—=———log(1 + - :), D
Eie/\fai,m o+ Eie./\//{n] a;,,P;H;,

where B,, represents the total bandwidth of the RSU m and
a;,, is a binary variable indicating whether the vehicle i
offloads its task to RSU m. If Task; is offloaded to RSU m,

3%108
=0.H,, = 4.11(4”ff‘dnm

the channel gain between vehicle n and RSU m, where d,, ,,
denotes the distance, f, denotes the carrier frequency and d,
denotes the path loss exponent (Huang et al. 2020). P,, is the
transmission power of vehicle n and o is the white gaussian
noise power. Each vehicle can only offload its computing
task to one RSU, so the following constraint should be
satisfied

= 1, otherwise q;)% represents

a im

im

@ Springer

M=s

=1, YneN.)

m=1

The transmission delay for offloading the computing task of
vehicle n is given as follows:

D

trans __ n
"=

-
Zm:l an,mRn,m

3

3.2 Migration model

Migration time refers to the duration required for trans-
ferring a computing task from one edge server to another.
Usually, the migration time depends upon the task size, the
transmission rate among RSUs, and the number of migra-
tion hops between the source RSU and destination RSU. We
assume that the optical fiber is used for the wired commu-
nication among servers to guarantee a higher transmission
rate. The migration time of the 7ask, is expressed as follows:

. Dn M M
T”Z’”g = R_ Z an,m(Z bn,m’hm,m’)’ (4)
0 m=1 m'=1

where R, represents the transmission rate of optical fiber.
b, € {0, 1} indicates whether the Task,, is eventually pro-
cessed by RSU m’ and 1, ,, is a non-negative integer indi-
cating the least number of hops between RSU m and RSU
m'. If m = m’, the task does not migrate and thus £, ,, = 0.
Each task can only be processed by one server, and thus the
following constraint should be satisfied

M
Y by =1 VnEN. (5)

m'=1

3.3 Computation model

The computation model describes the time required to
accomplish a computing task at the edge server. Let f, ,, be
the computing resources allocated to the Task, by the edge
server in RSU m?/, so the computing delay for the task Task,,

is expressed as follows:

com — Wn (6)
n M .
Zm/=1 bn,m’fn,m’
The total latency for Task, is given as
total __ 1 3] g
Tn(] a — an(ll’lé + Tr}:’llg + T;Om. (7)

The processing result of the task is transmitted to the RSU
closest to the vehicle via optical fiber and then returned to
the vehicle over the wireless channel. Since the computing

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

result is smaller than that of the offloading task, we ignore
the time spent on the transmission of computing result in
this paper.

3.4 Cost model of requesting vehicle

We study the energy consumption and cost of the vehicles
when they use the RSU services. Certain energy on the link
communication is consumed when vehicle offloads a task
to the RSU. Additionally, the services at the edge server
including storage and computing are all provisioned in a
pay-as-you-go model. Accordingly, we assume that the net-
work operators will charge the served vehicles. Note that
from the viewpoint of vehicles, the cost mainly includes the
migration cost and computing cost.

3.4.1 Communication energy consumption

Transferring tasks from the vehicle to the RSU will consume
energy, which is directly related to the vehicle’s transmis-
sion power and transmission time. The energy consumption
generated by vehicle » in link communication is

M
trans __ trans
En - Pn Z a",an,m ’ ®)
m=1
where P, is the transmission power of vehicle n.

3.4.2 Migration cost

Costs are generated during task migration including com-
puting replication from source server to destination server
and resources releasing at the currently hosted edge server
(Yuan et al. 2020). In addition, the bandwidth resources of
the optical fiber are also occupied during task migration.
Therefore, taking these factors into account, the migration
cost is jointly determined by the data size and the number of
migration hops for Task, migrated from RSU m to m’. The
migration cost is given as follows, where P™ represents the
unit price for migrating one bit of data.

M M
Cost™ =D, Y a,,(D" Byl)P)

m=1 m'=1

3.4.3 Computing cost

After task migration, each task eventually arrives at an edge
server and are executed there. Certain amount of energy is con-
sumed in each CPU cycle during task execution. To motivate

RSUs to contribute their computing resources, the operator
usually sets appropriate prices for computing resources to
guarantee the profits of RSUs. We define the initial unit price
for the computing resources of the edge server m' as P";;if'lfni -
Besides, we assume that the price of computing resources
denoted P;'f,’” is variable. For instance, Pf:,"“ usually increases,
when the amount of the available resources decrease. As a
result, we can define P;';i’” as
peom = peon 1) (10)
m m’ init ’
where f(> 1) represents the growth factor for unit price of
the computing resources. F,, and f,, denote total resources
and remaining resources of edge server m’, respectively. The
server operator will give an appropriate discount on the cost
based on the time that the resource is rented. The longer
the resource is rented, the greater the discount. We define a
discount function for the rental time which is expressed as
follows:

U
x+u

gx) = an
where p(> 0) is a hyperparameter used to control the dis-
count intensity. The computing cost required for the Task,
is given as follows:

M
com Wn
Z bn,m’Pml n,m’g(_)
m'=1 f n,m’
% i
n’m Wn + an,m’ ‘

m'=1

Cost,™™

12)

Therefore, the total cost for the Task, can be expressed as
the weighted sum of energy consumption, migration cost
and computating cost,

Costﬁf’“l =@ EM" + (pZCOSIZ’ig + @3 Cost", (13)

where @;,i € {1,2,3}, is a weight coefficient used to balance
the corresponding cost among the above three metrics. For
example, more attention is focused on energy consumption
when ¢, is larger than the other two weights. When the size
of the task data is large, more attention should be paid to the
migration cost, so @, can be set to a larger value than others.
Conversely, when the vehicle is concerned with the price of
computing resources, @; will be set to a larger value.

4 Problem formulation

In this section, we formulate the optimization problem and
design the offloading and migration strategies.

@ Springer

C.Tang et al.

4.1 Optimization objective

As assumed earlier, the global controller can acquire nec-
essary information about the VEC system and network. On
one hand, it detects the mobility information of an arbi-
trary vehicle n(€ N) and the achievable RSUs that vehicle
n can communicate with. On the other hand, the control-
ler develops appropriate policies to decide whether and
where to offload and migrate the computing tasks among
RSUs. In this study, we aim to minimize the total delay
and vehicle cost while satisfying multiple constraints. The
two objectives are defined as a weighted sum with the
weight factor w € (0, 1). Consequently, the objective func-
tion is defined as

N
Ua,b.f) = Z(wrg’m’ + (1 — w)Cost™™), (14)

n=1

w h e r e
a={a,,lneN.me M},b={b,,,|neN,m e M}and
f={fwln€N,m" € M}. The problem P1 is formulated
as

Pl : minU
ab.f
S.t.
M
cr:Ya,,=1, VneN,
m=1

C2: byw=1 VYneN,
m'=l 15)
C3:fw>0, VYneNVm'eM,

N
C4 2 Y by <hour Y € M,
n=1

C5: hy 20, Vm,Vm' € M,
C6:a,,€ (0,1} VneNVmeM,
C7:b,,, €{0,1} VneN,Vm' e M.

Specifically, C1 indicates that a task can only be offloaded
to one RSU. C2 represents that a task only be eventually
processed at one RSU (edge server). C3 indicates that the
resources allocated to the Task, must be non-negative. C4
shows that the sum of computing resources allocated to the
tasks by the server cannot exceed the remaining resources.
C5 ensures that &, ,, is a non-negative integer. C6 and C7
mean that a, ,, and b, ,, are both binary variables.

Problem P1 is a mixed integer programming problem,
which is hard to solve. However, once a and b are given,

@ Springer

the problem is reduced to a multi-objective optimiza-
tion problem for resource allocation on each server. It is
assumed that there are K = Z,,N=1 b, ., tasks to be executed
by server m. From the viewpoint of RSU m, the optimi-
zation problem P1 can decomposed into the optimiza-
tion of minimizing the total delay and vehicle cost for
all the tasks offloaded to RSU m. In particular, denote by
G,.(fi.m» - Jx) the total delay and vehicle cost for all the
tasks processed by RSU m, given a and b, and G,, can be
expanded as

K
Golfrm o) = D@ + (1= @)Costi?™
k=1

COMm (16)
i(ww" 41—y P Wiy)
= - .
= fem Wi+ Ufim

Up to now, the original optimization problem P1 can be
transformed into the following subproblems P2, which aims
to separately minimize the computing delay and comput-
ing cost for all the tasks processed by RSU m (Vm € M)
by designing an optimal resource allocation scheme

f= {f;umln EN}’
P2 : minG,,
g 17)
s.t. C3,C4.

The optimization function G,, (Vm € M) is convex, which
can be proved as follows. We calculate the hessian matrix
for G,, with regards (w.r.t.) to f as follows:

°G

ﬁ .. 0
HG,) = G (18)
G,
0 - F

where H(G,,) is a diagonal matrix and the second-order
mixed partial derivative on the diagonal are expressed as
follows, Vk € {1, ...,K}

’G,, _ 20W;
Nem fim

2(1 — @)PO" u W3
Wi+ ufin)?

> 0. (19)

Therefore, H(G,,) is a positive definite matrix and G,,(f) is
a convex problem. Therefore, the problem P2 can be solved
by existing optimization technologies such as interior point
method. And the resource allocation optimization for all
servers is also a convex problem that can be expressed as

M
=1 G

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

To sum up, problem P1 can be decomposed into three
sub-problems, namely, offloading decision, migration policy
and resource allocation. The resource allocation problem can
be solved by existing approaches. In the next, we can pay our
attention to the offloading decision and migration strategy
problems. The overall algorithmic framework is shown in
the Fig. 2.

4.2 Offloading task scheduling

When multiple tasks are offloaded to a particular RSU at
the same time, it can cause network congestion and increase
transmission delay. High transmission delay is also partly
attributed to the bandwidth sharing as shown in Eq. (1). To
avoid these effects, a KM-based Task Matching Offloading
scheme (KTMO) is proposed to achieve bandwidth-fair task
offloading among RSUs in this paper.

The KM algorithm, well known as the bipartite graph best
matching algorithm, is utilized to solve the best matching
problem in weighted bipartite graphs. It is an extension of
the Hungarian algorithm and aims at maximizing the weight
sum of matching edges in the weighted bipartite graph by
continually searching for augmented paths. The optimal time
complexity of KM algorithm is O(n?).

Bipartite graph is a special model in graph theory. Let
G = (V, E) be an undirected graph. A graph G is considered
as a bipartite graph if the vertex set V can be divided into
two disjoint subsets (A, B), where each edge (i, j) in the
graph is connected to two vertices i and j belonging to dif-
ferent vertex sets (i € A,j € B). In short, the vertex set V can
be divided into two disjoint subsets, and the two vertices
attached to each edge in the graph belong to the two disjoint
subsets.

Our task offloading problem can be mapped into the
bipartite graph as follows. We can respectively view the
sets of vehicular tasks and RSUs as two different vertex
sets in the graph, similar to the sets (A, B) above. Nota-
bly, the two sets are also disjoint with each other. Let the
task vertex set be X = {X;, X,, ..., Xy}, and the RSU vertex
set be Y = {Y,,Y,,Y,,..., Y} }. A vehicle may offload its
task to any of the candidate RSUs that wirelessly cover
it. We define a weight function to evaluate the weight of
the edge (X;, Y;). The weight value of (X;,Y;) can indicate

|2}

the efficiency of task offloading from the vehicle to the

RSU. Usually, the larger the weight value, the higher the
efficiency of task offloading. Thus, the task offloading
decision can be abstracted as a weighted bipartite graph
matching problem, with the goal of maximizing the total
weight of the edges between the tasks and the RSUs.
Algorithm 1 The description of KTMO Algorithm

Input: A, M.

Output: Matching results, mat-res.

1: Gather all task information through interac-
tions and form a task queue T'Q in descending
order of urgency.

2: Initialize the matching task queue mtq.

3: while T'Q) is not empty do

4: Clear mitq

5: forie[1,M +1] do

6: if T'Q is not empty then

7: Pop a task and add it to mtq.

8: else Add a virtual task to migq.

o: end if

10: end for

11: for each task X; € mtq,i € [1,M + 1] do
12: for each RSU Yj,j € [1, M + 1] do
13: if task X; is outside the commu-

nication range of the RSU Yj or task Xj; is
virtual then

14: BG[X;][Y;] =0

15: else Update BG[X;][Y;] through
Eq. (20)

16: end if

17: end for

18: end for

19: Use KM algorithm to get one round of
matching results km-res
20: for task, RSU in km-res do

21: if The weight of the edge (task, RSU)
is 0 then

22: Push the task to T'Q.

23: else Add the tuple (taks, RSU) to
mat-res

24: end if

25: end for

26: end while
27: return mat-res;

@ Springer

C.Tang et al.

VEC
Environment

KTMO H Ofﬂ"‘?‘dmg
policy

Update the environment

Actor-Critic

Migration Resource Compute
action allocation objective

Fig.2 Overall algorithmic framework

Generally, the number of tasks is much larger than that
of RSUs. However, the KM algorithm requires that the
number of task vertices is the same as the number of RSU
vertices. Considering the effect of time complexity, we
take the side with the fewer elements as the benchmark. It
should be noted that, for the sake of clarity, we include BS
in the set of RSUs so that the total number is M + 1. Spe-
cifically, we firstly prioritize the vehicular tasks according
to their urgency to form a task queue. In each round of
matching, M + 1 tasks with the highest priority are popu-
lated from the task queue as a set of tasks to be matched.
If the length of the task queue is less than M + 1, virtual
tasks will be added. For this batch of tasks, we calcu-
late the weight of each edge that links a task and an RSU
according to Eq.(20). Note that if the vehicle generating
the task is not covered by an RSU, or the task is virtual,
the corresponding weight edge is set to zero. From this,
a weighted bipartite graph is obtained and the KM algo-
rithm is applied to return a set of matching results. To
ensure accurate matching results, it is crucial to take into
account tasks and RSUs with zero edge weights. A virtual
task can be safely ignored as it will not affect the offload
decision. However, if the vehicle generating the task is
not wirelessly covered by the RSU it matches, then a false
match has certainly been generated. Tasks that are incor-
rectly matched will be pushed to the top of the queue for
the next round of matching. Finally, the offloading deci-
sion is updated based on the matching results, ending the
round of matching. The KTMO algorithm is terminated
when the task queue is empty, indicating that all tasks have
successfully found the offloading target. The process and
detail of the KTMO algorithm is depicted in Fig. 3 and
Algorithm 1, respectively.

@ Springer

Multiple factors may influence the task offloading deci-
sion and further significantly affect system efficiency. It is
efficient and important to consider the sigmoidal behavior
feature in the users’ utility function for resource allocation
(Wang et al. 2017). Following the work (Ning et al. 2019)
in which the authors adopt a sigmoid-like function to model
the utility of vehicles, we in this paper also adopt this kind of
function to describe the weights between vehicles and RSUs.
For example, the weight function in this paper between vehi-
cle n and RSU m is defined as follows,

~ id, "0l 20)

nm

Weight, ,,
where d,, ,, denotes the distance between vehicle n and RSU
m,p, = Tl,)”'; - indicates the urgency of the task, and £, ,, is the
channel g;in. w, 1s a weight factor that can be set to a larger
value. w; and w, control the magnitude of the parameter d, ,,
and p,,, respectively. In the task scheduling phase, our pur-
pose is to fairly allocate tasks to each RSU in such a way as
to balance bandwidth allocation and transmission interfer-
ence, and ultimately reduce transmission latency.

Complexity Analysis. In each round, taking M + 1 tasks
from the task queue in O(M) time (lines 5-10). Calcu-
late the weights between this group of tasks and RSUs
with time complexity O(M?) (lines 11-18). Then, the KM
algorithm with time complexity O(M?) is used to get one
round of matching results (line 19). Finally, checking the
results and update offloading decisions in O(M) time (lines
20-25). Therefore, the time complexity of each round is
O(M?). Since the number of tasks is larger than that of
RSUs, multiple rounds of matching are required to obtain
offloading decisions, at least [N /(M + 1)]rounds. The best
time complexity of the KTMO algorithm is O(NM?), and
the worst is O(NM?).

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

Task queue
il M+1 tasks Task
Matching

Success

Task Matching Failure

Add to task queue header

Fig.3 The process of the KTMO algorithm

4.3 Migration decision

Due to the mobility of the vehicles, the stochasticity of the
tasks and the time-varying characteristics of the resource
prices, it is very challenging to solve task offloading and
migration problems using traditional approaches. There-
fore, we introduce a DRL approach to solve it in this paper.

DRL is a technique born from the combination of Deep
Neural Networks(DNN) and Reinforcement Learning(RL).
DNN consist of an input layer, multiple hidden layers, and
an output layer, which provide them with strong perceptual
capabilities. After continuous training on a specific dataset,
it is possible to identify the internal connections between the
data and output the corresponding predictions. DNN play
a crucial role in various fields of Al owing to their excep-
tional perceptual abilities. Reinforcement learning has a
strong decision-making capability where the agent interacts
with the environment by performing actions and continu-
ously learns the optimal action with the goal of maximizing
future cumulative rewards. DRL combines the perceptual
ability of DNN with the decision-making capability of RL
by inputting the state of the environment to DNN, directly
outputting the corresponding actions, and training the net-
work parameters based on the feedback rewards.

Specifically, denote by s, the VEC environment in time
step ¢, and a, denotes a migration action performed by
the agent in time step ¢. Then, the current state s, may
transfer to any achievable following state s, ;. The agent
then receives a feedback reward r,. In the long run,
the agent takes a policy # to maximize future rewards
R, = X2, v*ri» where y denotes the discount factor for
future rewards. The policy 7 generates one action based
on the observations on the environment.

In this paper, we propose a migration strategy based
on Actor-Critic to explore and learn optimal actions.

Specifically, we consider the global controller as an agent
for the AC model. The agent constantly interacts with the
VEC environment via a series of observations, actions, and
rewards and makes migration decisions. The target is to
choose appropriate actions to reduce vehicular cost in the
system. The AC algorithm is shown in Algorithm 2. The
elements in the DRL model which corresponds to our task
migration problem are respectively defined as follows

1. State: The state information, as an input to the neural
network in the DRL, needs to reflect the overall state of
the system environment. The system state consists of
the vehicle’s mobility, task information, initial policy
for task offloading, remaining resources of the edge
server, and the unit price of resources. Therefore, state
s, is defined as

s, ={V,... Vi, Ry, . Ry} 21

whereV, = {loc,,vel,, p,, dir,, u,, Task, }. These param-
eters represent the vehicle’s location, velocity, trans-
mission power, direction, offloading target and the task
information generated by the vehicle, which include the
data size, cpu cycles and constraint latency, respectively.
R, = {f,,, P>}, where f, denotes the available com-
puting resources and P¢" denotes the unit price of the
resources in the current time slot.

2. Action: For each step, the controller chooses an action
according to the current state. In the environment, the
controller decides to migrate tasks from source server
to optimize the resource cost in the system. Migration
action is defined as a vector with each element indicat-
ing the migration destination for the corresponding task.
Particularly, action a, is described as follows

a, ={ey,....ex}, 22)

where e, € M,Vn € N denotes the migration target
for the Task,. If e, = u,,, the task does not migrate, oth-
erwise the task is migrated to e,,.

3. Reward: At the end of each step, the controller receives
feedback from the environment as a reward. The objec-
tive of our optimization problem is to minimize the
weighted total delay and vehicle cost, while the objec-
tive of DRL is to maximize the long-term reward of the
system. Therefore, we formulate the reward function as
the negative of the objective function

r,=-=U. (23)

Usually, AC adopts the policy gradient which comprises two
networks, i.e., the actor and critic networks, respectively.

@ Springer

C.Tang et al.

The actor network generates a policy action to interact with
the environment based on the system state, and the critic
network fits a value function V(s,) to evaluate the action gen-
erated by the actor. It is assumed that the parameters of the
actor network and critic network are 6 and 6'.

To evaluate the action in the current state, we take the
temporal difference (TD) error, which is defined as the dif-
ference between the estimated value and the real value, with
the following expression:

8, =1, +1V(s,,:0) — V(s;:0). 24)

The TD error represents the distance between the real value
and the estimated value. The smaller the TD error, the better
the critic network is fitted. Therefore, to reduce the TD error,
the critic network will be updated, so as to minimize the TD
error with a loss function expressed as follows:

lossy = (r, + YV (5,430 — V(s;30)). (25)

Then, the parameter 8 of actor network is updated by policy
gradient, which is given as follows:

1
Lossy = N Z logr(a,|s,;0)0,. (26)

Here, N denotes the size of the action space. The gradient of
0 can be expressed as

0,11 =0, + aVylogr(a,ls,;0)s,. 27)

The Actor and Critic networks both consist of four layers.
The layers of the Actor network are presented as follows:

1) First Layer: The layer takes the environment state as
input, with the number of neurons consistent with the
state space, which is then transformed by a Sigmoid
function.

2) Second Layer: This is a hidden layer with 128 neurons,
which is then transformed by the Relu function.

3) Third Layer: It’s exactly the same as the previous layer.

4) Last Layer: This is the output layer. The layer is first
reshaped into a matrix with the same number of rows
and columns as the tasks and edge servers, respec-
tively. Each row of the matrix is then normalized using
Softmax function to derive the probability of each task
migrating to each server.

The Critic network also has four layers, and unlike the Actor,
the last layer has a neuron which directly outputs the fitted
state value. The training process of DRL does not require
a dataset, the agent acquires the state space from the envi-
ronment at each time slot, performs the migration actions,
and then updates the network gradient based on the reward
feedback for online decision updating.

@ Springer

Algorithm 2 The description of the Actor-Critic

Input: System state s;.

Output: Migration strategy.

1: Initialize actor and critic networks with ran-
dom weights 6 and 6.

2: Initialize initial observation sg

3: for each time slot t =1,2,.. T — 1 do

4: actor generates an action a;

5: Agent performs a;, observes the next
observation s;y; and gets reward 7y

6: Compute the TD error:

7 6,5 =Tt +"}/V(St+1;0/) *V(St;el)

Compute the loss of the critic network and
perform gradient decent:)
9 O,y =0, —aVy V(s 03,
10: Update the gradient of the actor network:
11: Oi11 = 0; — aVlogm(a|se; 0)0:
12: end for

5 Performance evaluation

In this section, we evaluate the performance of the pro-
posed KTMO scheme through extensive simulations. First,
the simulation scenario and basic parameters of the VEC
environment are introduced. Then, the task offloading policy
based on the KTMO algorithm is evaluated and compared
with three other algorithms:

1. AC: The offloading decision is given directly by the AC
with the reward function defined as the total transmis-
sion delay. Note that since each vehicle is not covered
by all RSUs, so incorrect offloading actions may occur.
To suppress incorrect actions, it is necessary to impose
a penalty term on the reward function, which is related
to the number of wrong actions.

2. DVIM (Ning et al. 2019): DVIM is a dynamic algorithm
that matches vehicle-to-infrastructure communications.
Each infrastructure has an accepted list and a forbidden
list, and the overall system utility is optimized by updat-
ing these lists dynamically through Eq. (20).

3. Greedy approach: The greedy method prefers to select
the RSU with the maximum weight.

5.1 Simulation setup

We abstract the set of edge servers linked by optical fiber
as a connected graph and preserve the minimum number
of hops between any two edge nodes using a shortest path
algorithm. At the beginning, the environment is established

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

by initializing both vehicles and edge servers. Then, at each
time slot, the KTMO algorithm is implemented to determine
the offloading policy for vehicular tasks, which is then fed
into the AC network along with the vehicle information and
edge server information to obtain the migration strategy.
Next, the optimal resource allocation scheme is implemented
for the tasks received on each edge server. Finally, the state
information of the vehicles and edge servers is updated at
the end of each time slot.

We consider four traffic roads that intersect each other
vertically with vehicles following a random distribution. It
is assumed that the number of vehicles remains constant at
each time slot. To this end, we assume one vehicle enters
the considered zone if a vehicle within the zone leaves. BS
and Four RSUs are uniformly distributed in this area and
connected to each other through optical fiber to form a con-
nected graph. Each vehicle has only one computing task to
be completed in each time slot, and the size of its input data
is randomly generated between the interval [100, 200]KB.
In addition, the CPU cycles required for accomplishing the
task range from 100 MHz to 200 MHz, and the maximum
allowable processing delay is 0.5-1.0s.

The coverage area for BS is assumed to be 500 m,
while each RSU is 300 m, with a bandwidth of 100MHz,
and the CPU cycle frequency of edge server being
[40,20, 30, 30,20]GHz, respectively. The initial price
for computing resource of each server can be expressed
[0.003, 0.001, 0.002,0.002, 0.001 YMHz and the price of data
migration is a constant 0.0002/KB. It should be noted that in
the simulation, the migration cost is set relatively lower, as
we pay more attention to the cost of computing resources.
The discount factor y = 0.9 in the AC model. For your easy
reference, some key parameters to be used in the simulation
are listed in Table 1.

5.2 Simulation results

In this study, the @ serves as a strategy parameter. The objec-
tive function balances the @ between total delay and vehicle
cost. To determine the optimal w for the objective function,
performance is measured by varying the weight factor w as
presented in Fig. 4. It is apparent that the impact on delay
and cost is similar when w is approximately 0.57. To take
account of the importance of time, we set the weight factor
o to 0.6 in the next few experiments.

The simulation result shown in Fig. 5 reveals how the
fairness of the offloading decision changes with the num-
ber of tasks under different offloading schemes. Based on
bandwidth allocation method, the fairer the task offload-
ing, the fairer the bandwidth allocation will be. Here, we
measure the degree of fairness based on the standard devi-
ation of the number of tasks offloaded to each RSU, which

Table 1 Simulation Parameters

Notation Description Value
M The number of RSUs 4
N The number of vehicles 20-40
D, The data size of a task 100-200KB
W, CPU cycles required for a task 100-200MHz
e Maximum delay constraint 0.5-1.0s
vel, The velocity of a vehicle 10-20m/s
R Communication range of RSUs 300 m
B Bandwidth 100MHz
R, Transmission rate of optical fiber 1 * 1e9bits/s
F Computing resources [40, 20, 30, 30, 20]GHz
P Initial unit price for each server [0.003,0.001, 0.002,
0.002,0.001] /MHz
Pmig Unit price for task migration 0.0002/KB
P Transmission power of the vehicle 0.5w
fe Carrier frequency 615MHz
. Path loss exponent 2.0
Communications noise 1071
16
—&— delay —&— cost |,
14 t18
2 "
> %]
% 12 1 » o
o ©
I 14 §
-
5
F12
8 4
F1o
03 0.4 05 06 07 058

Weight factor

Fig.4 Effect of weight factor w on total delay and vehicle cost

M 72
Ay — 4
is defined as DF = Z’"ZI(T"’), where 4, = YV a;

indicates the number of tasks received by the RSU m and
A= %represents the mean value. The smaller the DF, the
higher the fairness in bandwidth allocation. It is evident
that our proposed KTMO matching scheme has a lower
DF. The reason is that, an RSU is matched to only one task
during each round of the KTMO algorithm, which can
obtain an offloading strategy in a fairer way compared to
other algorithms. This means that there is little difference
in the number of tasks accepted by each RSU so does the

@ Springer

C.Tang et al.

@ AC _»
61 @~ KTMO e BT
- DVIM /,4‘
-®- Greed -
5 P
-7
_ A
4 4 -0 -
. O E
= -
L - ‘/’
o, o _-—k

01— - T
20 25 30 35 40
The number of vehicles

Fig.5 Comparison of fairness in bandwidth with different numbers
of vehicles

bandwidth, as the bandwidth is evenly distributed to each
task. The greedy algorithms are more likely to centralize
offloading, leading to a gradual increase in DF with the
number of tasks. The AC algorithm adapts automatically
as environmental parameters change to improve the strat-
egy. Furthermore, it maintains a relatively lower DF value,
which substantiates the benefits of fair offloading.

Figure 6 shows a comparison of the average transmission
delay that is determined by offloading decision for different
number of tasks. It can be seen that the KTMO offloading
scheme shows the minimum total transmission delay com-
pared to the other three algorithms. In our model, we evenly
distribute the communication bandwidth of an RSU to the
vehicles. When numerous tasks are offloaded to one spe-
cific RSU, the average bandwidth allocated to the vehicle
decreases and the interference increases, which will lead

0.10 1 DVIM

0.08 -

0.06 -

0.04

0.02 A

Average transmission delay(s)

AANNANNNNANNNNNNN

=4

=}

o
I

30 35 40
The number of vehicles

Fig.6 The average transmission delay comparison under different
numbers of vehicles

@ Springer

to a significant increase in the transmission delay for this
group of tasks. As depicted in Fig. 5, the KTMO algorithm
can achieve a better fairness in task offloading and reduce
the negative effects mentioned above. The other algorithms,
particularly the greedy algorithm, could lead to a concentra-
tion of certain tasks on a specific RSU, resulting in higher
transmission latency. However, we note that the AC has a
less transmission time than KTMO for a vehicle number of
twenty-five. It is true that balanced offloading is advanta-
geous most of the time, but the dynamics of the environment
and the stochastic nature of the task bring other possibilities.

Figure 7 shows the effect of weight factor w on task com-
pletion rate, and we can see that the task completion rate
rises as the weight factor increase. Firstly, it is worth noting
that the values of transmission time and migration time do
not fluctuate with changes in the weight factor @, as the
former depends on the offloading decision and the latter is
determined by the migration policy. We put restrictions on
the number of hops connecting any two edge servers via
optical fiber which has a very fast transmission rate. There-
fore, the migration time have less impact on the total pro-
cessing delay of tasks. Given the offloading and migration
decisions, the problem P2 is directly related to the weight
factor. Normally, the weight factor in the simulation is
intended for a trade-off between computing time and com-
puting cost. When the weight factor increases, the objective
function pays more attention to time and thus the edge server
allocates more computing resources to the task to reduce
the computing time and increase the task completion rate.
Moreover, the KTMO scheme has better performance in the
total delay reduction, compared to other approaches. When a
task spends more time in transmission, its urgency increases,
taking a greater risk of failure within limited resource con-
straints. The transmission time under the KTMO scheme is
shorter than that of other schemes, and hence, KTMO is able
to achieve higher task completion rates.

1.000 A
0.998
[}
-+
(]
—
c
5] 0.996
=
aQ
Q
E 0.994
o
Q
/ & AC
4 :
0.992 / -~ KMo
/’ =i DVIM
& -&- Greed
0.3 0.4 0.5 0.6 0.7 0.8

Weight factor

Fig. 7 Task completion rate comparison with different weights

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

Objective value

0.3 0.4 0.5 0.6 0.7 0.8

Weight factor

Fig.8 Comparison of the objective value with the weight factor
under four different offloading schemes

Figure 8 demonstrates the clear relationship between the
value of objective function and weight factor. When the
weight factor increases, the objective function focuses more
on time and the server allocates more computing resources
to the task to reduce the computing time. If the decrease in
time is less than the increase in cost, the value of the objec-
tive function will increase. Conversely, a downward trend
can be observed. As you can see from Fig.4, both indica-
tors are of the same magnitude and have similar vertical
scales. Before the crossover point, the delay is greater than
the cost, so the objective function rises as w increases. And
after the intersection point, the delay is less than the cost, so
the objective function decreases.

-8 4 — actor learning rate=3 * le-2 N R DR

——— actor learning rate=3 * le-3
_g 4 — actor learning rate=3 * le-4
—— actor learning rate=3 * le-5

6 10I00 20|00 30I00 40I00 502)0
Training steps

(a) Actor

Fig. 9 Training processes comparison of with different learning rates

In Fig. 9, We study the effect of the learning rate on the
convergence performance of the AC model. In Fig. 9(a),
we set the learning rate of the critic network to 0.001 and
compare the performance of the AC model for the actor
network at different learning rates. Similarly, in Fig. 9(b),
we fix the learning rate of the actor network and observe
the performance of the AC model by varying the learn-
ing rate of the critic network. It is observed that a larger
learning rate makes the training curve oscillate constantly,
while a smaller learning rate produces stable curve but
converges too slowly. Considering the trade-off between
stability and training speed, we set the learning rate to
3*]e-4 for the actor network and le — 3 for the critic net-
work in the experiments.

In the resource allocation problem P2, computing time
decreases as computing resources increase, while computing
cost increases. When the unit price of computing resources
is lower, more attention is paid to latency optimization and
more computing resources are allocated to reduce com-
puting latency. Therefore, transferring tasks from a server
with a higher unit cost to a lower one can effectively reduce
computing latency as shown in Fig. 10. Despite increased
resource requirements, computing cost has shown a down-
ward trend, as shown in Fig. 11. Our proposed KTMO
scheme, which is slightly better in terms of transmission
time, has only slightly less computation delay than AC,
which is more intelligent in making decisions for each task.

Figure 12 shows the changes in average task completion
latency for different number of tasks. As the number of
tasks grows, the average task execution latency gradually
increases. An increase in the number of vehicles reduces
the bandwidth allocated to each task, resulting in a higher
transmission delay. On the other hand, as the number of

—8 4 — critic learning rate=1 * le-2
—— critic learning rate=1 * 1le-3 N
| — critic learning rate=1 * 1e-4 4
-re

0 mbo 20;2)0 30|00 4()'00 50:30
Training steps

(b) Critic

@ Springer

C.Tang et al.

10.5 4 - AC
—— KTMO
— — DVIM
£ 100 —— Greed
[
£
=
o 95
c
=
3
o
E 9.0 A
[o]
(&)
E 8.5
5 8
[-
v
e
8.0 !
0 1000 2000 3000 4000 5000 6000

Training steps

Fig. 10 Comparison of the computing time along the training steps

— AC
—— KTMO
16 A — DVIM -
JJ; — Greed
o
o
o 15 1
=
et
3
Q.
£ 14 -
Q
[¥]
®
o 13 A
'_
SRp— »
Yy u:
12 - el
0 1000 2000 3000 4000 5000 6000

Training steps

Fig. 11 Comparison of the computing cost along the training steps

e e o e
N N w w
[S] w o vl
L L

Average completion time
G

A
ENANNANNNANANNANANNNANN NN NN
WY
RSN N RN NN AN NN A NNNN NN

é
g
%

20 25 30 35 40
The number of vehicles

Fig. 12 Comparison of average completion delay with different num-
bers of vehicles

@ Springer

Objective value

AN NN NNN NN NN ANNANNAN
AN NN NN NN ANNANNANNANNNNNNNNNN

1

INONONONNANNANNNANNNNNNNNN]

#d
?
é
¢
%
4
4
4

20 25 30 35
The number of vehicles

Fig. 13 Comparison of objective value with different numbers of
vehicles

task increases, so does the demand for finite resources.
Resources should be allocated more rationally to meet
the demands of a greater number of tasks. Our proposed
KTMO scheme achieves a lower execution delay by taking
advantage of the transmission phase.

Figure 13 illustrates how the objective function value
changes with different number of tasks. It is obvious that
as the number of tasks increases, so does the value of the
objective function. As mentioned earlier, with a growing
number of tasks, the average bandwidth allocated to the
vehicle diminishes and the interference increases, resulting
in an increase in transmission delay and computing cost.
Additionally, the more tasks, the more computing resources
required, and at each time slot, the unit price of the resources
increases dramatically, which also has a direct impact on
the overall cost of the tasks. Generally, when the computing
resources of the edge servers with lower prices are running
out, tasks are forced to migrate to edge servers with rela-
tively higher prices. This case can also increase the total
cost. For these reasons, the value of the objective function
increases as the number of tasks grows.

6 Conclusion

In this paper, we have mainly studied the offloading strat-
egy and migration policy for VEC. For the task scheduling
problem, we have designed a fair offloading scheme for tasks
named KTMO based on weighted bipartite graph match-
ing to balance the bandwidth resources allocated to each

A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep...

task. Furthermore, considering the time-varying features of
the computing resources, we modeled the task migration
process as a MDP that determines the system state, action,
and reward function by continuously exploring the environ-
ment to find the optimal strategy and reduce vehicle cost.
Finally, we verified the performance of our proposed method
through simulation experiments. The simulation results have
demonstrated the advantages compared to other approaches.
For the future works, we will focus on the fair caching of
service in VEC.

Acknowledgements This work is supported by the National Natu-
ral Science Foundation of China under Grant Number 62071327,
62271486 and 62071470.

Data availability The data supporting the findings of this work can
be obtained from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

References

Tang, C., Chen, W., Zhu, C., et al.: When cache meets vehicular edge
computing: architecture, key issues, and challenges. IEEE Wirel.
Commun. 29(4), 56-62 (2022). https://doi.org/10.1109/MWC.202.
2100159

Liu, B., Jia, D., Wang, J., et al.: Cloud-assisted safety message dissemi-
nation in VANET—cellular heterogeneous wireless network. IEEE
Syst. J. 11(1), 128-139 (2017). https://doi.org/10.1109/ISYST.2015.
2451156

Tang, C., Wei, X., Zhu, C., et al.: Towards smart parking based on fog
computing. IEEE Access 6, 70172-70185 (2018). https://doi.org/
10.1109/ACCESS.2018.2880972

Zeng, F., Chen, Q., Meng, L., et al.: Volunteer assisted collaborative off-
loading and resource allocation in vehicular edge computing. IEEE
Trans. Intell. Transp. Syst. 22(6), 3247-3257 (2021). https://doi.org/
10.1109/TITS.2020.2980422

Liu, S, Liu, L., Tang, J., et al.: Edge computing for autonomous driving:
opportunities and challenges. Proc. IEEE 107(8), 1697-1716 (2019).
https://doi.org/10.1109/JPROC.2019.2915983

Wang, B., Wang, C., Huang, W, et al.: A survey and taxonomy on task
offloading for edge-cloud computing. IEEE Access 8, 186080—
186101 (2020). https://doi.org/10.1109/ACCESS.2020.3029649

Tang, C., Zhu, C., Wu, H.,, et al.: Toward response time minimization
considering energy consumption in caching-assisted vehicular edge
computing. IEEE Internet Things J. 9(7), 5051-5064 (2022). https://
doi.org/10.1109/J10T.2021.3108902

Han, S., Li, Y., Meng, W., et al.: Indoor localization with a single Wi-Fi
access point based on OFDM-MIMO. IEEE Syst. J. 13(1), 964-972
(2019). https://doi.org/10.1109/JSYST.2018.2823358

Qiao, G., Leng, S., Zhang, K., et al.: Collaborative task offloading in
vehicular edge multi-access networks. IEEE Commun. Mag. 56(8),
48-54 (2018). https://doi.org/10.1109/MCOM.2018.1701130

Tang, C., Wu, H.: Optimal computational resource pricing in vehicular
edge computing: a Stackelberg game approach. J. Syst. Architect.
121, 102331 (2021). https://doi.org/10.1016/j.sysarc.2021.102331

Munkres, J.: Algorithms for the assignment and transportation problems.
J. Soc. Ind. Appl. Math. 5(1), 32-38 (1957). https://doi.org/10.1137/
0105003

Raza, S., Wang, S., Ahmed, M., et al.: A survey on vehicular edge com-
puting: architecture, applications, technical issues, and future direc-
tions. Wirel. Commun. Mob. Comput. 2019, 1-19 (2019). https://
doi.org/10.1155/2019/3159762

Anawar, M.R., Wang, S., Azam Zia, M., et al.: Fog computing: an over-
view of big IoT data analytics. Wirel. Commun. Mob. Comput.
2018, 1-22 (2018). https://doi.org/10.1155/2018/7157192

Hou, X., Li, Y., Chen, M., et al.: Vehicular fog computing: a viewpoint
of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6),
3860-3873 (2016). https://doi.org/10.1109/TVT.2016.2532863

Kim, Y., Kwak, J., Chong, S.: Dual-side optimization for cost-delay trade-
off in mobile edge computing. IEEE Trans. Veh. Technol. 67(2),
1765-1781 (2018). https://doi.org/10.1109/TVT.2017.2762423

Liu, H., Zhao, H., Geng, L., et al.: A Distributed Dependency-Aware
Offloading Scheme for Vehicular Edge Computing Based on
Policy Gradient. In: 2021 8th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE
International Conference on Edge Computing and Scalable Cloud
(EdgeCom), pp 176181, https://doi.org/10.1109/CSCloud-EdgeC
0om52276.2021.00040 (2021)

Dai, Y., Xu, D., Maharjan, S., et al.: Joint load balancing and offloading
in vehicular edge computing and networks. IEEE Internet Things J.
6(3), 4377-4387 (2019). https://doi.org/10.1109/JI0T.2018.28762
98

Zhang, J., Guo, H., Liu, J., et al.: Task offloading in vehicular edge com-
puting networks: a load-balancing solution. IEEE Trans. Veh. Tech-
nol. 69(2), 2092-2104 (2020). https://doi.org/10.1109/TVT.2019.
2959410

Guo, H., Zhang, J., Liu, J.: FiWi-enhanced vehicular edge computing
networks: collaborative task offloading. IEEE Veh. Technol. Mag.
14(1), 45-53 (2019). https://doi.org/10.1109/MVT.2018.2879537

Yuan, H., Zhou, M.: Profit-maximized collaborative computation offload-
ing and resource allocation in distributed cloud and edge computing
systems. IEEE Trans. Autom. Sci. Eng. 18(3), 1277-1287 (2021).
https://doi.org/10.1109/TASE.2020.3000946

Sun, Y., Guo, X., Song, J., et al.: Adaptive learning-based task offloading
for vehicular edge computing systems. IEEE Trans. Veh. Technol.
68(4), 3061-3074 (2019). https://doi.org/10.1109/TVT.2019.28955
93

Qi, Q., Wang, J., Ma, Z., et al.: Knowledge-driven service offloading
decision for vehicular edge computing: a deep reinforcement learn-
ing approach. IEEE Trans. Veh. Technol. 68(5), 4192-4203 (2019).
https://doi.org/10.1109/TVT.2019.2894437

Taleb, T., Ksentini, A., Frangoudis, P.A.: Follow-me cloud: when cloud
services follow mobile users. IEEE Trans. Cloud Comput. 7(2),
369-382 (2019). https://doi.org/10.1109/TCC.2016.2525987

Moon, S., Park, J., Lim, Y.: Task migration based on reinforcement learn-
ing in vehicular edge computing. Wirel. Commun. Mob. Comput.
2021, 1-10 (2021). https://doi.org/10.1155/2021/9929318

Huang, L., Bi, S., Zhang, Y.J.A.: Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing
networks. IEEE Trans. Mob. Comput. 19(11), 2581-2593 (2020).
https://doi.org/10.1109/TMC.2019.292881 1

Liu, B,, Jiang, X., He, X., et al.: A deep learning-based edge caching
optimization method for cost-driven planning process over IIoT.
J. Parallel Distrib. Comput. 168, 80-89 (2022). https://doi.org/10.
1016/j.jpdc.2022.06.007

Ning, Z., Dong, P., Wang, X., et al.: Deep reinforcement learning for
vehicular edge computing an intelligent offloading system. ACM
Trans. Intell. Syst. Technol. 10(6), 1-24 (2019). https://doi.org/10.
1145/3317572

Yuan, Q., Li, J., Zhou, H., et al.: A joint service migration and mobility
optimization approach for vehicular edge computing. IEEE Trans.

@ Springer

https://doi.org/10.1109/MWC.202.2100159
https://doi.org/10.1109/MWC.202.2100159
https://doi.org/10.1109/JSYST.2015.2451156
https://doi.org/10.1109/JSYST.2015.2451156
https://doi.org/10.1109/ACCESS.2018.2880972
https://doi.org/10.1109/ACCESS.2018.2880972
https://doi.org/10.1109/TITS.2020.2980422
https://doi.org/10.1109/TITS.2020.2980422
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/ACCESS.2020.3029649
https://doi.org/10.1109/JIOT.2021.3108902
https://doi.org/10.1109/JIOT.2021.3108902
https://doi.org/10.1109/JSYST.2018.2823358
https://doi.org/10.1109/MCOM.2018.1701130
https://doi.org/10.1016/j.sysarc.2021.102331
https://doi.org/10.1137/0105003
https://doi.org/10.1137/0105003
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1155/2018/7157192
https://doi.org/10.1109/TVT.2016.2532863
https://doi.org/10.1109/TVT.2017.2762423
https://doi.org/10.1109/CSCloud-EdgeCom52276.2021.00040
https://doi.org/10.1109/CSCloud-EdgeCom52276.2021.00040
https://doi.org/10.1109/JIOT.2018.2876298
https://doi.org/10.1109/JIOT.2018.2876298
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/MVT.2018.2879537
https://doi.org/10.1109/TASE.2020.3000946
https://doi.org/10.1109/TVT.2019.2895593
https://doi.org/10.1109/TVT.2019.2895593
https://doi.org/10.1109/TVT.2019.2894437
https://doi.org/10.1109/TCC.2016.2525987
https://doi.org/10.1155/2021/9929318
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1016/j.jpdc.2022.06.007
https://doi.org/10.1016/j.jpdc.2022.06.007
https://doi.org/10.1145/3317572
https://doi.org/10.1145/3317572

C.Tang et al.

Veh. Technol. 69(8), 9041-9052 (2020). https://doi.org/10.1109/
TVT.2020.2999617

Wang, Z., Ng, D.W.K., Wong, V.W.S,, et al.: Robust beamforming design
in C-RAN with sigmoidal utility and capacity-limited backhaul.
IEEE Trans. Wirel. Commun. 16(9), 5583-5598 (2017). https://
doi.org/10.1109/TWC.2017.2712645

@ Springer

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/TVT.2020.2999617
https://doi.org/10.1109/TVT.2020.2999617
https://doi.org/10.1109/TWC.2017.2712645
https://doi.org/10.1109/TWC.2017.2712645
https://www.researchgate.net/publication/380269497

	A bandwidth-fair migration-enabled task offloading for vehicular edge computing: a deep reinforcement learning approach
	Abstract
	1 Introduction
	2 Relate work
	3 System model
	3.1 Communication model
	3.2 Migration model
	3.3 Computation model
	3.4 Cost model of requesting vehicle
	3.4.1 Communication energy consumption
	3.4.2 Migration cost
	3.4.3 Computing cost

	4 Problem formulation
	4.1 Optimization objective
	4.2 Offloading task scheduling
	4.3 Migration decision

	5 Performance evaluation
	5.1 Simulation setup
	5.2 Simulation results

	6 Conclusion
	Acknowledgements
	References

