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Abstract— Joint Vehicle-to-vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) offloading presents an efficient approach to
leverage surplus computing resources from neighboring devices,
thereby expanding the coverage of computing resources supply
in the context of the Internet of Vehicles. However, many
studies overlook the significance of topological communications
caused by the rapid movement of vehicles, privacy, and com-
munication intentions. To achieve efficient task offloading when
facing various topological link structures, we first propose a
novel topological link-aware task co-offloading (TLCO) method
designed for partially offloading in the joint V2V and V2I system.
Next, we model the sequential subtasks offloading process as the
Markov Decision Process (MDP) and utilize the Double Deep
Q-Network (DDQN) algorithm to optimize the total delay of
the proposed system. Additionally, we put forth a prediction
framework named Sliding Time Windows and TLCO algorithm
(STW-TLCO) to accurately forecast the computation load at
various time windows using pulsed parameters. Extensive exper-
imental results demonstrate the effectiveness and superiority of
the proposed TLCO-DDQN algorithm in comparison to other
Deep Reiforcement Learning (DRL)-based and Greedy-based
approaches. Furthermore, the STW-TLCO algorithm exhibits
high accuracy, with an R-squared value exceeding 96%, con-
firming its predictive capabilities.

Index Terms— Vehicle-to-vehicle, vehicle-to-infrastructure,
deep reinforcement learning, task offloading.

I. INTRODUCTION

IN RECENT years, the advancement of communication
technologies has led to the emergence of innovative

paradigms, e.g., Vehicle-to-Vehicle (V2V) communication
establishes direct and decentralized links among nearby
vehicles and Vehicle-to-Infrastructure (V2I) communications
through which vehicles establish connections and exchange
information with infrastructure elements. These paradigms
enable vehicles to effectively exchange real-time information,
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providing a foundation for numerous applications including
collision avoidance [1], [2], cooperative driving [3], [4], [5],
[6], and traffic management [7], [8].

In high-demand scenarios like traffic congestion or emer-
gencies, vehicles can pool their computing power and work in
coordination to handle the increased load, and nearby vehicles
and infrastructures can share computing resources [9], [10],
[11]. Wang et al. [12] proposed a cluster-based algorithm that
regards buses as cluster heads and overcomes the limitation of
resources to meet the Quality of Service (QoS) requirements of
emergency messages. Zhao et al. [13] optimized the transmis-
sion modes and power levels in a V2V and V2I environment
to maximize the total capacity of V2I links and ensure the
requirements of QoS. He et al. [14] proposed a NOMA-
enhanced V2V and V2I collaboration framework to optimize
the total power consumption. Nguyen et al. [15] establish a
multi-hop path adaptive method to maintain the connectivity
and enhance the achieved throughput. Fan et al. [16] utilize
Generalized Benders Decomposition and Reformulation Lin-
earization methods to minimize the delays of all vehicles.
It is evident that the V2V and V2I collaborative computing
paradigm enables efficient utilization of resources, improve
response times, and enhance overall system performance.

The rapid movement of vehicles is one of the reasons
for changes in network topology and hinders the develop-
ment of the Internet of Vehicles (IoV) [12]. In addition,
some studies also explore other factors affecting link topol-
ogy, such as security, link duration, and idle computational
resources. Kadam et al. [17] attempt to address the challenges
related to security and reliability in VANET communications
by computing the direct and indirect trust scores of each
vehicle belonging to each cluster to form security links.
De Souza et al. [18] select service vehicles by consider-
ing link duration and distance between nodes, utilizing the
idle resources on vehicle nodes to offload computational
tasks. By considering factors such as link reliability, dis-
tance, available computational resources, and relative velocity,
Bute et al. [19] propose a method to select nearby vehicles
with available idle computational resources to enable concur-
rent task processing. Additionally, V2V communication raises
concerns regarding potential privacy rights infringements and
unauthorized exposure of personal data to external parties,
causing some vehicle owners may opt not to participate in
V2V communication so that a subset of vehicles is unable
to establish connections with others [20]. Therefore, links
between vehicles form a certain topology to ensure different
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Fig. 1. The changes in topology links under offloading decisions. Different
colors represent different vehicles. Hollow circles indicate that the vehicle
has available computing resources to execute tasks, while solid circles mean
that the vehicle has no available computing resources. Initial topology links
influence the preferences for offloading decisions, which in turn affect the
system’s available computing capacity, thereby impacting the subsequent
offloading decisions.

demands on communication quality, reliable communication,
and privacy security.

In a static IoV environment, topological links are usually
treated as fully connected plus constraints. However, in a
dynamic IoV environment, as shown in Fig. 1, full connectivity
is just one form of the initial state. Specifically, a solid
red dot indicates that the device has no idle computational
resources, meaning the vehicle cannot provide computational
resources or can only do so with a certain waiting cost.
We use a dashed line to indicate a link interruption or
additional cost incurred. Thus, at different time steps, the
links between devices in the vehicular network system are
dynamically changing. We refer to the changes in links due to
task computation in the vehicular network as the topological
trajectory. Each topology trajectory starts from an initial
topology, and the topology at the current time step is only
related to the topology of the previous time step. Different
link topologies mean different total available computational
resources for the system, resulting in significant differences
in the topological trajectories from different initial topologies.
In conclusion, The initial topological structure will affect the
available computational resources of the vehicular network,
which in turn affects the offloading decisions, ultimately
forming different topological trajectories. However, most stud-
ies usually consider dynamic offloading optimization starting
from a fully connected initial topology, while neglecting the
impact of other initial topological links on the decision-making
process.

Aiming to achieve efficient resource allocation and task
offloading based on various topological link structures,
we propose a topological link-aware co-offloading method to
minimize the total delay of the joint V2V and V2I systems
that are composed of multiple moving vehicles. The main
contributions of this paper are outlined as follows:

• Topological Link-aware Task Co-Offloading (TLCO)
method: To find the best offloading policies in varying
topological link structures, we model the topological
link-aware partially offloading process in the joint V2V
and V2I system as a Markov Decision Process (MDP)
and utilize Double Deep-Q-Network (DDQN) to solve
the optimization problem in joint V2V and V2I systems,

which encodes the topological structure as a part of the
input state of DDQN.

• Slide time windows method based on TLCO (STW-
TLCO): We further propose an innovative prediction
framework based on TLCO with a sliding time win-
dows module STW-TLCO to predict the computational
workload of the joint V2V and V2I systems at different
time slices under different offloading strategies. This
prediction is achieved through the analysis of pulsed
parameters, which play a crucial role in determining the
arrival time of tasks within the system.

• Effective Performance: Extensive experiments have been
conducted to evaluate the performance of the proposed
algorithm. The simulation results demonstrate the effec-
tiveness and superiority of TLCO, especially compared
to other DRL-based methods and greedy-based methods.
Furthermore, our experiments validate the accuracy of the
prediction results generated by the proposed prediction
framework.

• Cluster Computation Capability Index (3C Index) to
evaluate coputational ability of V2I and V2V cluster: The
computing ability of an individual device is an attribute
of the device itself, while the computing ability of a
V2V and V2I cluster varies depending on the offloading
strategy. After the task arrival distribution is known,
STW-TLCO predicts the task computation curves for
multi-hop partial offloading, whose slope reflects the
computing capability of the V2I and V2V cluster, termed
the 3C index. The 3C index indicates the computing
power of a cluster under a given offloading strategy; a
higher 3C index means the offloading method is more
effective for the cluster. Experimental results show that
TLCO-DDQN achieves a higher 3C index than other
methods for the same cluster, indicating it better utilizes
cluster computing resources.

The rest of the paper is organized as follows. The related
works are shown in Sec. II. The system model and problem
formulation are provided in Sec. III. Then, we elaborate
on the design of the topological link-aware DDQN-based
task co-offloading algorithm and the prediction framework
of the amount of computation in Sec. IV. We present the
implementation and then evaluate the proposed method in
Sec. V. We conclude the paper in Sec. VI.

II. RELATED WORK

Recently, several works have focused on the
offloading-decision method on the V2V system.
Zhao et al. [28] propose a Vehicle Edge Computing
(VEC) offloading scheme where parked vehicles can be used
as assisted vehicles of the V2V system and minimize the
energy consumption and computation overhead of vehicles
communication system under the limited vehicular terminal
capacity constraints. Huang et al. [29] designed a V2V-
and V2I-based unsignalized intersection collision warning
system (UICWS) to enhance driver safety. Saleem et al. [30]
proposed DOVEQ algorithm that models the connectivity of
vehicles with roadside units (RSUs) and vehicles to estimate
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TABLE I
THE QUALITATIVE COMPARISON OF THE CURRENT LITERATURE

ON V2V SCHEMES BASED ON RL METHOD

the connectivities among vehicles and the offloading capacity
by traffic classification, overload control, and admission
control. Zhao et al. [31] propose an intelligent partial
offloading scheme, namely, Digital Twin-Assisted Intelligent
Partial Offloading (IGNITE) to optimize computational
delay and vehicle service price. Determining which vehicles
provide computing resources based on statistical information
of resource demands is impractical in practice because
choices made solely on statistical information cannot adapt to
time-varying requirements [27], [32], [33], [34]. Therefore,
many works utilize reinforcement learning (RL) to optimize
the offloading policies in the IoV environment because RL
allows vehicles to learn and optimize their communication
strategies based on punishment and reward from the
environment.

As shown in Table I, some works optimize the V2V
scheme using the RL method. To make the edge server in
a V2V scenario able to scheme the cooperative perception
of the vehicle, Xu and Liu [21] proposed a deep reinforce-
ment learning (DRL) framework that effectively improves
perception synergy. Gupta et al. [22] proposed a cluster-head
selection algorithm based on double deep Q-network (DDQN)
to minimize energy and latency to meet the intelligent trans-
portation system (ITS) requirements. Hazarika et al. [9]
proposed a DRL-based algorithm to maximize the mean
utility of their proposed V2V framework that consists of
assisted vehicles and task vehicles. Shi et al. [35] proposed
a DRL-based offloading algorithm for the V2V system to
minimize the delay with the consideration of task priority,
mobility, and the service availability of vehicles. Alam and
Jamalipour [23] proposed a multi-agent DRL-based Hungarian
algorithm for solving the dynamic task offloading problem.
Liu et al. [24] proposed a Q-learning-based algorithm to
choose transmission parameters by interacting with a dynamic
vehicular network to ensure reliable delivery. Shi et al. [25]
proposed a V2V partial computation offloading algorithm,
where tasks are divided into several parts and executed
on neighboring vehicles. Li et al. [26] propose a two-tier
hybrid partial offloading architecture to meet the computation
requirements of vehicle tasks. By employing reinforcement
learning techniques, vehicles can learn how to dynamically
optimize important factors such as transmission power, chan-
nel allocation, and resource allocation, thereby achieving more
efficient and reliable V2V communication. Unfortunately,
these studies have overlooked the topological links between

Fig. 2. The overall architecture of the joint V2I and V2V system. After
V1 completes its first subtask, it offloads its second subtask to the RSU.
After the RSU completes the second task, V1’s third task is offloaded to the
assisted vehicle. After finishing the third task, V1’s fourth task is offloaded to
V2. Finally, the task result of V1 is transmitted back.

vehicles, which are crucial in real-world V2V communication
scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a joint V2V and V2I system
model as depicted in Fig. 2, which is composed of multi-
ple general vehicles V1, V2, . . . , Vm , an assisted vehicle V0,
and an RSU, where m ∈ {0, 1, 2, . . . , M}. General vehicles
selectively connect with other general vehicles (V2V link),
the assisted vehicle can connect with any vehicle (V2A link),
and the RSU can connect with any vehicle (V2I link). Within
this framework, all vehicles may generate task. Additionally,
the RSU and the assisted vehicle are endowed with the
capability to execute tasks originating from the assisted vehicle
itself, as well as tasks offloaded from the general vehicles.
Furthermore, the general vehicles are equipped to execute
their designated tasks, alongside tasks offloaded from other
connected vehicles. To simplify, we only depict the task
offloading decisions of V1 in Fig. 2, whereas tasks from
different vehicles can appear simultaneously.

A. Subtask Offloading Path

V2V partial computation offloading is a promising solution,
involving the division of a task into multiple segments that are
executed across several neighboring vehicles [25]. Inspired
by this approach, we divide the task of vehicle Vm into
a sequence of subtasks, each with a length less than K ,
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where m ∈ {0, 1, 2, . . . , M}. The subtasks for each vehi-
cle follow a sequential order, with each subsequent subtask
generated based on the preceding one. The tasks assigned
to each vehicle arrive at random arrival times, with T start

m
denoting the arrival time of the task for vehicle Vm , which
is equivalent to the arrival time of its initial task. For each
vehicle Vm , the set of subtasks is denoted as T askm =

{taskm,1, taskm,2, . . . , taskm,K }. Specifically, the first sub-
task, taskm,1, of vehicle Vm can either be executed within
the confines of the vehicle itself or be offloaded to the RSU,
the assisted vehicle V0, or other connected vehicles. Upon
completion of the final subtask, taskm,K , the result must be
transmitted back to vehicle Vm .

A task can be rigidly constrained by a sequential order [36],
so we divided the task into sequential subtasks. Take the
scenario in Fig. 2 as an example. Tasks arrive randomly within
a given time, and the start time distribution represents the
distribution of initial task arrival times. For the case where
M = 3, we have partitioned the tasks of the general vehicle
V1 into 4 distinct subtasks each, and the latter subtask can
be executed only when its former subtask is done for the
execution of a subtask usually depends on the output of
other tasks. The first subtask of V1 executes on local. Sub-
sequently, upon successful completion of the first subtask, the
second subtask for the general vehicle V1 is generated on the
current device V1 and then offloaded to RSU . Furthermore,
the third subtask of the general vehicle V1, which is also
generated within the RSU’s domain, is offloaded and executed
at the assisted vehicle. Lastly, the final subtask of vehicle
V1 is executed within vehicle V2, and the resulting data is
transmitted back to V1.

In our model, tasks randomly arrive at every vehicle and
every task can be divided into a subtasks sequence shorter than
K subtasks. Subtasks wander on the topological links and we
want to find an offloading decision sequence to minimize the
sum of the delay of subtasks, which can be regarded as a paths
search process. By thoroughly investigating and optimizing the
various offloading paths for these subtasks, we can discern
the most advantageous and optimal offloading policies for the
integrated V2V and V2I system. Such an analysis aids in
identifying the most efficient approach to task allocation and
execution in this joint communication framework.

B. Delay Computing Model

The delay computing model consists of three parts: i) The
execution time, which depends on the amount of computation
and the computing capability of devices; ii) The transmission
time, calculated based on the data size and the transmission
rate if a link exists; and iii) The waiting time, resulting from
the offloading policies of previous subtasks and the limitations
posed by the available computing resources.

1) Execution Time: In the proposed joint V2I and V2V
system, all devices Devl , where l ∈ {0, 1, . . . , M +1}, possess
the capability to execute subtasks assigned to them. Here,
Dev0 corresponds to the assisted vehicle V0, DevM+1 cor-
responds to the RSU and Dev1, Dev2, . . . , DevM correspond
to the general vehicles V1, V2, . . . , VM , respectively.

The execution time of taskm,k is denoted as T exe
m,k .

T exe
m,k =

M+1∑
l=0

T exe
m,k,l =

M+1∑
l=0

wm,k

fl
I exe
m,k,l , (1)

where wm,k represents the computation workload of taskm,k
(m ∈ {1, 2, . . . , M} and k ∈ {1, 2, . . . , K }). Additionally, fl
denotes the computing capability of device Devl , measured in
cycles per second.

Furthermore, we define an indicator Im,k,l , which serves to
determine whether taskm,k is executed on device Devl . The
calculation of this indicator is given by:

I exe
m,k,l =

{
1 if taskm,k is executed on Devl ,

0 otherwise.
(2)

2) Transmission Time: In the proposed system, both
the RSU and the assisted vehicle are capable of com-
municating with all general vehicles. However, communi-
cation links between general vehicles are restricted due
to privacy concerns, trust authorizations, and communi-
cation intentions. These restrictions are represented by
maskm = [maskm,1, maskm,2, . . . , maskm,M ], where m ∈

{1, 2, . . . , M}.

maskm,m′ =

{
1 if Vm can communicate with Vm′ ,

0 otherwise.
(3)

In the given context, it is important to note that taskm,k
is not always transmitted from vehicle Vm , except when
k = 1. We introduce C Dm,k to represent the current device
responsible for executing taskm,k . When k > 1, C Dm,k is
equal to the device that executes taskm,k−1. Consequently, the
transmission time of taskm,k is calculated by:

T tr
m,k =

M+1∑
l=0

T tr
m,k,l =

M+1∑
l=0

Dm,k

Rcur,l
I tr
m,k,lmaskcur,l , (4)

where cur represents C Dm,k and Dm,k represents the data
size of taskm,k . Additionally, I tr

m,k,l is an indicator value that
denotes whether taskm,k is transmitted to the target device
Devl . Rcur,l is the transmission rate from the current device
C Dm,k to the target device Devl . Moreover, we have the
indicator maskcur,l , which specifies whether a link exists
from C Dm,k to Devl . The calculation of Rcur,l is given
by:

Rcur,l = Bcur,l log2

(
1 +

P|h|
2

ω0(dcur,l)ϑ

)
, (5)

where h is the channel fading coefficient, P is the trans-
mission power, ϑ is the path loss exponent, and ω0 is the
white Gaussian noise power. Furthermore, we have Bcur,l
and dcur,l which stand for the bandwidth and the distance
between the current device C Dm,k and the target device Devl ,
respectively.

3) Waiting Time: When the vehicle or the RSU is occupied
by the current subtask taskm,k , other subtasks offloaded to
the occupied device need to wait until subtask taskm,k is
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Fig. 3. The overall architecture of the proposed TLCO-DDQN and STW-TLCO frameworks. Vehicle tasks arrive randomly, and each task is divided into
fewer than L sequential subtasks. The computation workloads and data size of each subtask constitute its subtask information. Steps 1 to 8 represent the
process of completing one subtask. Topological information is encoded by link modes, while environmental information includes vehicle speeds, locations,
and task start times. After the proposed TLCO-DDQN framework, we input offloading decisions into the STW-TLCO framework and utilize sliding time
windows to compute the system’s computation load within a time slot. This enables us to predict the computation load by fitting the relationship between
computation load and pulse parameters, which represent various start time distributions of vehicle tasks.

completed. The waiting time T W
m,k,l when taskm,k chooses to

be executed on the device Devl is calculated by:

T W
m,k,l = max{T occ

l − T A
m,k,l , 0}I exe

m,k,l , ∀l ∈ {0, 1, . . . , M + 1},

(6)

where T occ
l is the occupied time of the device Devl and

calculated by T occ
l = max{

∑M
j=1(T start

j +
∑k j

i=1 △T j,i,l)}, k j is
the number of finished subtasks of V j , and T A

m,k,l is the arrival
time of taskm,k when it arrives at the device Devl , which is
calculated by T A

m,k,l = T start
m +

∑k−1
i=1

∑M+1
l=0 △Tm,i,l + T tr

m,k,l .
△Tm,k,l is the total delay of taskm,k executed on the device
Devl , which is calculated by:

△Tm,k,l = T exe
m,k,l + T tr

m,k,l + T W
m,k,l . (7)

C. Problem Formulation

In order to optimize the utilization of limited computing
resources and expedite task completion, we minimize the total
delay of tasks by identifying the best offloading policies.
To achieve this, we formulate the delay minimization problem
for the dynamic joint V2I and V2V system as a path optimiza-
tion problem, taking into account the possibility of offloading
tasks based on their sequential subtask dependencies. The
formulation of the problem is as follows:

(P1) min
I exe
m,k,l ,I T r

m,k,l

: T sum
=

M∑
m=1

K∑
k=1

M+1∑
l=0

△Tm,k,l , (8)

s.t. :

L∑
l=0

I exe
m,k,l = 1, (9)

M+1∑
l=0

I T r
m,k,l = 1, (10)

M+1∑
l=0

I T r
l,K ,m = 1, (11)

I exe
m,k,l , I T r

m,k,l ∈ {0, 1}, (12)

where m ∈ {1, 2, . . . , M} and k ∈ {1, 2, . . . , K }. Eq. (9)
indicates that taskm,k can only be executed on one device,
Eq. (10) indicates that taskm,k can only be transmitted to one
device, and Eq. (11) indicates that the last subtask taskm,K
needs to be transmitted back to its vehicle.

IV. TOPOLOGICAL LINK-AWARE DDQN-BASED TASK
CO-OFFLOADING ALGORITHM

Fig. 3 illustrates the overall framework of our pro-
posed method, which is composed of TLCO-DDQN and
STW-TLCO, where fi denotes the computing capability of
device Devl . Tasks arrive at the joint V2V and V2I system
randomly and can be divided into less than K sequential
subtasks. As shown in Fig. 3, when the computing capability
of RSU is tripled then V0, V1 and V3, subtasks of V0,
V1 and V3 tend to offload subtasks to devices that have larger
computing capability than itself so that the whole tasks can
be done as soon as possible. However, a device that has
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Fig. 4. Possible structures modes of topological links when M = 4.

a larger computing capability can only serve one task at
one moment for good quality of service (QoS). Therefore,
to achieve the lowest delay for the joint V2V and V2I
system, collaborative offloading-decision making is necessary.
We propose TLCO-DDQN to provide optimal collaborative
offloading decisions for the joint V2V and V2I system with
topological links and further propose STW-TLCO frame-
works to fit the amount of computation curve and predict
the computation capacity of the joint V2V and V2I system
at any time window. In TLCO-DDQN, we utilize Double
Deep-Q Network (DDQN) [37] to determine the optimal
offloading policies, which employs two deep neural networks
with identical structures as function approximators to create a
more stable and accurate estimate of the Q-values, mitigating
the overestimation problem of Deep-Q Network (DQN) [38].
In STW-DDQN, we propose a prediction framework for the
amount of computation based on TLCO-DDQN.

A. Topological Communication Structure

Due to the rapid movement of vehicles, privacy concerns,
and specific communication intentions among the general
vehicles, various possible communication link structures can
emerge. These link structures are visually depicted in Fig. 4
when M = 4 and the degree of each node exceeds two.
To denote the set of these topological structure modes, we use
ModeM = {M O1, M O2, . . . , M OOM }, where M represents
the total number of general vehicles, and OM denotes the
number of modes with nodes having degrees greater than two.

B. TLCO

To address the problem of finding the optimal offloading
policies, we formulate the delay minimization problem for
sequential subtasks in the joint V2I and V2V system as a
path optimization problem. This problem can be modeled as a
Markov Decision Process (MDP), where the transition to the
next state depends solely on the current state. Leveraging the
capabilities of Deep Reinforcement Learning (DRL), we can
efficiently identify the best offloading policies. Here, we repre-
sent the state, action, and reward at time step tp as s(tp), a(tp),
and r(tp), respectively. By employing DRL, we dynamically
learn and update the most effective offloading decisions based
on the current state of the system, leading to improved task
execution and minimized delays.

1) State Space: In the proposed V2I and V2V system,
we define the state of the time step tp as:

s(tp) = (s p
1 , s p

2 , · · · , s p
M )

=



w
p
1,1 w

p
2,1 · · · w

p
M,1

D p
1,1 D p

2,1 · · · D p
M,1

...
...

. . .
...

w
p
1,K w

p
2,K · · · w

p
M,K

D p
1,K D p

2,K · · · D p
M,K

D p
1,K+1 D p

2,K+1 · · · D p
M,K+1

M O M O · · · M O
x p

1 x p
2 · · · x p

M
v

p
1 v

p
2 · · · v

p
M

T start
1 T start

2 · · · T start
M


(13)

where D p
m,K+1 is the result of the last subtask that needs to

be transmitted back to the vehicle Vm , M O ∈ ModeM is the
mode of topological link. x p

m is the current location of Vm in
the p-th time step, and v

p
m is the speed of Vm . w

p
m,k and D p

m,k
are calculated by:

w
p
m,k =

{
0, if taskm,k has been executed before tp,

wm,k, otherwise.

(14)

D p
m,k =

{
0, if taskm,k has been executed before tp,

Dm,k, otherwise.

(15)

2) Action Space: In each time step, we execute the earliest
subtasks and get the vehicle index of the subtask tasktp in tp
by:

m p = argmin

{
T start

m +

km∑
k=1

M+1∑
l=0

△Tm,k,l

}
, (16)

where km is the number of finished subtasks of Vm . We further
get the current subtask index by:

kp = km p + 1. (17)

The action space is A = [a0, a1, · · · , aM+1], where
a(tp) = a0 means the subtask taskm p,kp is executed on the
assisted vehicle, a(tp) ∈ [a1, a2, . . . , aM ] means the sub-
task taskm p,kp is executed on a certain general vehicle, and
a(tp) = aM+1 means the subtask taskm p,kp is executed on the
RSU.

3) Reward: Significantly, when tp > 1, the tasks taskm p,kp

are generated on C Dm p,kp−1 instead of on Vm p . We denote the
device on which taskm p,kp is generated as cdp = C Dm p,kp−1.
Therefore, it is necessary to check whether the action a(tp) is
present in maskcdp .

We define Condition 1 as follows: If a(tp) is not in
maskcdp and kp = K + 1, then the result of tasks is preferred
to be transmitted back to the Vm p . Similarly, we define
Condition 2 as follows: If a(tp) is not in maskcdp and
kp < K + 1, then taskm p,kp is preferred to be transmitted
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Fig. 5. An illustration of the proposed TLCO-DDQN algorithm.

to the connected devices that are in maskcdp .

r(tp) =


−C1, if Condition 1 holds,
−C2, if Condition 2 holds,
−△T (tp) + C3, otherwise,

(18)

where △T (tp) = T exe
m p,kp,a(tp) + T tr

cdp,kp,a(tp) + T W
cdp,kp,a(tp), C1,

C2 and C3 are three different constants to adjust the punish-
ment and reward based on the preference of the optimization
problem.

As shown in Fig. 5, the idea of DDQN is to decouple action
selection from action evaluation, effectively mitigating the
overestimation bias commonly observed in Q-Learning algo-
rithms. To achieve this, DDQN utilizes two distinct Q-value
approximations: MainNet and TargetNet, where MainNet
serves as a deep neural network responsible for approximat-
ing the Q-values QM for various state-action pairs, while
TargetNet, another separate deep neural network, provides
the target Q-values QT used during the training process.
DDQN estimates the value of an action based on one set
of weights while selecting actions based on another set of
weights. The TargetNet operates as an independent copy of
the MainNet and undergoes periodic updates with the weights
from the main network. The Q-function of MainNet is updated
by:

Q̂M (tp) = r(tp) + γ QT
(
s(tp+1), arg max

a(tp+1)

QM (tp+1)
)
, (19)

where s(tp+1) and a(tp+1) are the next state and the
action, respectively; Q̂M (tp) is the prediction of the Q-value
of the MainNet in tp and QT (tp+1) is the Q-value of
the TargetNet when choosing action a(tp+1) under state
s(tp+1). The detailed algorithmic process is as described in
Algorithm 1.

C. STW-TLCO

In the proposed V2V and V2I system, communication
between devices occurs through topological links, and the
TLCO algorithm is employed to determine the most optimal
offloading policies. To accurately calculate the computation
load of the entire V2V and V2I system at different times,
sliding time windows are utilized. This approach involves
computing the computing capacity within each time window
in a pulsed workflow, wherein tasks arrive randomly during

Algorithm 1 TLCO: Topological Link-Aware Task Co-
Offloading Algorithm Based on DDQN for Joint V2V and
V2I System
Input: The initial subtask feature and vehicle feature
Output: optimal offloading policies for input

1: Initialize network parameters θ , update steps n, D,
structure mode ModeM

2: for episode do
3: while not all subtasks are executed do
4: Get the current vehicle index m p by Eq. (16).
5: Get the current subtask index by Eq. (17).
6: Get maskm p of vehicle Vm p

7: Calculate the current location x(m p) of Vm p

8: Input s(tp) to MainNet and get QM (tp), al), l =

0, 1, 2, · · · , M + 1, and choose a(tp) = arg maxa QM (tp)

according to ϵ−greedy policy
9: if k = K then

10: a(tp) = am p

11: end if
12: Compute r(tp) by Eq. (18)
13: Generate the new state s(tp+1)

14: Save [s(tp), a(tp), r(tp), s(tp+1)] in D
15: if Training Step then
16: Sample memories from D
17: Input s(tp) to MainNet and get QM (tp)

18: Input s(tp+1) to MainNet and get a(tp+1) =

arg maxal
QM (tp+1)

19: Input s(tp+1) to TargetNet and get QT (tp+1)

20: Compute the prediction Q-value by Eq. (19)
21: Update the parameter of the MainNet by

minimizing |QM (s, a) − Q̂M (s, a)|2

22: Copy the parameter of the MainNet to the
TargetNet, every n steps

23: end if
24: end while
25: end for
26: return optimal offloading decision for input

a slot. Specifically, when a task from vehicle Vm enters the
system, it arrives at time T start

m , where T start lies within
the range of (0, T start

max (δ)). Here, δ represents the pulsed
parameter, and T start

max (δ) corresponds to the time slot of the
pulsed workflow where tasks from multiple vehicles arrive
randomly during the duration of the multiple of δ. To effec-
tively model the entire process, timelines are constructed for
pulsed workflows of δ. This facilitates the organization and
analysis of tasks and computation loads within the defined time
intervals.

Thus, the start time of subtask taskm,k is calculated by:

T start
m,k (δ) =

{
T start

m (δ), if k = 1,

T start
m (δ) +

∑k−1

k=1
△Tm,k,ak , otherwise,

(20)

where ak ∈ [0, M + 1] is the result of the TLCO
algorithm. T start

m (δ) ∈ [0, Cδ] and C is a constant. The
end time of subtask taskm,k is equal to the start time of
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taskm,k+1:

T End
m,k (δ) = T start

m,k+1(δ). (21)

Based on the outcomes of the TLCO algorithm, it is deter-
mined that taskm,k should be executed on Devak , which
possesses a computing capability denoted as fak . Conse-
quently, the computation executed for taskm,k when the sliding
time window starts at twd can be calculated by:

Com(twd , δ)m,k =



fak (min{T End
m,k (δ), twd + tu} − T start

m,k (δ)),

if twd < T start
m,k (δ) < twd + tu;

fak (min{T End
m,k (δ), twd + tu} − twd),

if max{twd − tu, 0} < T start
m,k (δ) < twd;

0, otherwise.

(22)

To simplify, we consider non-overlapping time windows,
so the total computation of the proposed V2V and V2I system
is:

Com(twd , δ) =

M∑
m

K∑
k

Com(twd , δ)m,k . (23)

The detailed algorithmic process is as described in
Algorithm 2.

D. Complexity Analysis

The complexity of the proposed TLCO-DDQN algorithm is
O(Ntrain), where Ntrain is the number of training epochs [37].
The complexity of the proposed STW-TLCO algorithm is
O(Nw × episode × M × L), where Nw is the number
of time windows. Inference complexity of TLCO-DDQN is
(Ninput × Nhide1 × Nhide2 × Noutput ) FLOPs, where Ninput is
M × (2× K +7)+1, Noutput is M +2, and Nhide1 and Nhide2

are the number of nodes in hidden layers.

V. PERFORMANCE EVALUATION

A. Baselines

We compare the proposed algorithm TLCO-DDQN with
six other offloading algorithms to validate the superiority of
TLCO-DDQN, as shown below:

• TLCO algorithm based on DQN (TLCO-DQN):
DQN has emerged as one of the prominent algo-
rithms for addressing Markovian decision-making pro-
cesses. However, it differs from the TLCO-DDQN
algorithm in terms of Q-value computation. Specifically,
in DQN, the Q-value is calculated as Q̂M (tp) = r +

γ max ap+1 QT (tp+1).
• TLCO algorithm based on DuelingDQN (TLCO-

DuelingDQN): Dueling Deep Q-learning Network (Duel-
ingDQN) is the improved version of DQN, which aims
to solve the overestimation issue that may occur in DQN.
Compared with TLCO-DQN, the output layer of TLCO-
DuelingDQN is divided into two parts: one is the value
of the state V s(stp ), and the other one is the advantages
for each action Adv(stp , atp ). The Q-value of the target

Algorithm 2 STW-TLCO: Prediction Framework of the
Amount of Computation Based on Sliding Time Windows on
TLCO for Joint V2V and V2I System
Input: The window size tu , T start

max
Output: The predicted value of the amount of computation

1: Initialize well-trained model of TLCO, pulsed parameter
δ

2: for δ do
3: for episode do
4: Initialize twd = 0 and the amount of computation

Com(t0, δ) = 0
5: for window iter do
6: for subtasks do
7: Obtain Optimal offloading decisions

{a0, a1, . . . , aK } by TLCO
8: Compute T start

m,k (δ) by Eq. (20)
9: Compute T task

end (δ) by Eq. (21)
10: Compute Com(twd , δ)m,k by Eq. (22)
11: end for
12: Compute Com(twd , δ) by Eq. (23)
13: twd = twd + tu
14: end for
15: end for
16: Compute the average amount of computation over

episodes
17: Gaussian fitting get Gaussian parameters set G(δ) =

{aδ, bδ, cδ
}

18: end for
19: Predict âδ′

, b̂δ′

and ĉδ′

for the pulsed workflow of δ′ and
further predict the amount curve of computation

20: return The prediction of the amount curve for δ′

net is QT (tp) = V s(stp ) + Adv(stp , atp ) and QM (tp) =

r(tp) + γ maxatp+1
QT (stp+1 , atp+1).

• Greedy: The determination of offloading decisions for
subtasks relies on the order in which they are generated.
Specifically, we compare the time delay of all available
policies for the current subtask taskm p,kp and select the
most optimal policy that incurs the least delay in the
current step, taking into account the completion time of
all tasks. This process continues iteratively until all tasks
are successfully finished.

• Greedy-Noseg: Compare the time delay of all available
policies for the whole task taskm and select the most
optimal policy that incurs the least delay for the vehicle.
This process continues iteratively until all tasks are suc-
cessfully finished. We utilize the Greedy-Noseg method
to provide proof of the effectiveness of the sequential
partial offloading scheme.

• All Edge: This approach enables multiple vehicles to
offload their tasks to the RSU in the proposed V2I
and V2V system. Subsequently, the RSU processes these
tasks and transmits the results back to the respective
vehicles.

• All Local: To emphasize the significance of the RSU in
expediting task completion, we incorporate the All Local
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TABLE II
PARAMETER SETTINGS

algorithm into our baseline comparison, where multiple
vehicles execute their own tasks.

• Random: To simulate a realistic stochastic environment,
we also compare our algorithm with the Random offload-
ing algorithm, which involves the random assignment
of subtasks to any available device within the network,
including the RSU, assisted vehicles, and other connected
general vehicles.

B. Parameter Settings

The simulation settings are presented in Table II, which
are primarily based on [39]. We assume that the tasks of all
vehicles arrive at random moments within 1s, and the task
size is randomly generated according to the range specified in
Table II. Both the training set and test set are generated in the
same manner, with the training set consisting of 10,000 data
samples and the test set consisting of 200 data samples. For the
training process of DDQN, DQN, and DuelingDQN, we con-
figure the following parameters: a maximum training episode
of Maxiter = 15, 000, a learning rate of lr = 0.005, a reward
decay rate of 0.99, a ϵ-greedy rate of 0.99, a replace target
iter of 350, and a memory size of 13,000. As for the TLCO-
DDQN architecture, it comprises three layers: the first layer
serves as the input layer with dimensions M ×(2× K +7)+1,
the subsequent layer is the hidden layer containing 128 nodes,
and the last layer is the output layer with M + 2 nodes.

C. Experimental Results

1) Impact of the Number of Subtasks: We calculate the
average delay of the different methods for different K used
to explore the effect of the number of subtasks K on the
results. As depicted in Fig. 6, emTLCO-DDQN demonstrates
significantly superior performance compared to other methods.
For instance, when M = 5 and K = 5, TLCO-DDQN exhibits
noteworthy improvements over TLCO-DQN by 5.19%, TLCO-
DuelingDQN by 3.23%, Greedy by 22.57%, Greedy-Noseg by

Fig. 6. The average delay of different numbers of subtasks, where
K = [5, 6, 7].

Fig. 7. The average delay of different numbers of vehicles, where
M = [5, 6, 7].

43.34%, All Edge by 58.72%, All Local by 136.12%, and Ran-
dom by 186.82%. As K increases, the average execution time
also increases due to the rise in the total computation work-
load of subtasks. Meanwhile, the total computing capacity of
devices remains unchanged, leading to a narrower optimization
space. Consequently, the advantages of DRL-based algorithms
diminish. Nonetheless, Greedy achieves the best offloading
decision among the non-DRL-based algorithms, while the
three DRL-based algorithms, TLCO-DDQN, TLCO-DQN, and
TLCO-DuelingDQN, consistently outperform the non-DRL-
based algorithms across varying K values.

2) Impact of the Number of Devices: Fig. 7 shows the
results of the average delay of different methods under differ-
ent M . We set M = 5, 6, 7 and we recommend establishing
a separate V2V and V2I cluster with other RSUs for sce-
narios involving more vehicles because of communication
qualities and the limitation of the computing resources of
RSUs. As depicted in Fig. 7, emTLCO-DDQN achieves
significantly better results than other methods. For instance,
when the experimental setup is M = 6 and K = 5,
TLCO-DDQN achieves remarkable improvements over TLCO-
DQN by 7.57%, TLCO-DuelingDQN by 1.52%, Greedy by
11.44%, Greedy-Noseg by 30.35%, All Edge by 66.47%, All
Local by 96.91%, and Random by 162.31%. As the value
of M increases, the average execution time also increases.
Interestingly, the results of the DRL-based algorithms show
more efficiency improvements compared to when K increases.
This is due to the fact that with an increase in M , the
available devices for vehicles also increase, thereby expanding
the optimization space. The Greedy algorithm achieves the
best offloading decision among the non-DRL-based algo-
rithms, while the three DRL-based algorithms TLCO-DDQN,
TLCO-DQN, and TLCO-DuelingDQN consistently outperform
the non-DRL-based algorithms for various M values. The
superiority of DRL-based approaches becomes evident as the
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Fig. 8. The average delay of different speeds of the assisted vehicle, where
v0 = [16, 18, 20] m/s.

Fig. 9. Comparing the effect of learning rate, seed, and speed on the reward
of the training process.

optimization space widens with the increment in available
devices, showcasing their effectiveness in handling diverse
offloading scenarios within the V2I and V2V system.

3) Impact of the Speed of the Assisted Vehicle: The
speeds of the task vehicles are randomly selected from the
range [15, 20] m/s, so we conduct a comparison by setting
the speeds of the assisted vehicle to 16, 18, and 20 m/s.
As depicted in Fig. 8, the variation in the speed of the assisted
vehicle has a negligible effect on the experimental delay.
This observation demonstrates the robustness of our algorithm
in identifying the optimal offloading strategy, irrespective of
changes in vehicle speed.

4) Convergence Performance: Considering the randomness
of the results caused by different random seeds, we set seeds
as 0, 500, and 1000 for TLCO-DDQN to reduce the effect of
randomness on the experimental results. In addition to this,
we also compare the effect of different learning rates and
speeds of the assisted vehicle on the experimental results, with
its learning rate set at 0.005, 0.007, 0.01 and speed set at 16,
18, and 20 m/s. As depicted in Fig. 9, the different color of the
scope indicates the average rewards of the different parameter
sets of TLCO-DDQN. The narrower the scope, the smaller the
effect of different parameters. Different speeds and seeds have
almost no effect on the convergence rate and results, while
different learning rates only accelerate the convergence rate,
and the convergence results are consistent with the different
speeds and seeds situation.

5) Impact of the Pulsed Parameter δ: We set the pulsed
parameter δ ∈ [1/9, 1/7, 1/5, 1/3, 1], which corresponds to

Fig. 10. The amount of computation in varying time windows when
δ ∈ [1/9, 1/7, 1/5, 1/3, 1].

Fig. 11. The amount of cumulative computation in varying time windows
when δ ∈ [1/9, 1/7, 1/5, 1/3, 1].

the degree of task crowding. As δ increases, the arrival time
of tasks is delayed, resulting in a decrease in task density. The
time window size is set to 0.1 seconds, with an interval of
0.02 seconds between time windows. As depicted in Fig. 10,
decreasing δ results in the wave crest of computation arriving
earlier and reaching higher levels, which leads to earlier task
completion. For instance, the computation amount drops to
0 around the 100-th slide window for δ = 1, whereas it
falls to zero around the 90-th slide window for δ = 1/7.
Additionally, the wave crest for δ = 1/7 is higher and
arrives earlier. When tasks are sparse, the peak of computation
occurs later, while for dense tasks, the peak appears sooner.
However, due to limitations in overall computational resources,
when the task density becomes sufficiently high, there is no
significant difference in computational peaks, although these
peaks occur earlier. To better illustrate the impact of different
pulse parameters on computation, we report the curve of
cumulative computation over the time window in Fig. 11.
Curves with smaller pulse parameters exhibit steeper slopes,
indicating a faster rate of increase in computation over time.
In contrast, curves with larger pulse parameters, such as δ = 1,
show more gradual slopes, reaching a maximum value within
the 0-20 time window, which implies a slower, more gradual
increase in computation.

6) Gaussian Curve Fitting: Inspired by the graphics of the
amount of computation in Fig. 10, we conjecture that the
variation of the amount of computation in the sliding window
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Fig. 12. The difference between the predicted and actual value of the amount
of computation with varying δ.

conforms to a Gaussian distribution. Thus, we employ Eq. (24)
to fit the data and obtain estimates for the Gaussian parameters.
We set δ ∈ [1/9, 1/7, 1/5, 1/3, 1], along with the parameters
a, b, and c for the Gaussian curve. Here, a determines the
amplitude of the Gaussian curve corresponding to the peak
of computation, b determines the position of the curve’s
peak corresponding to the sliding window’s position, and c
determines the width of the Gaussian curve corresponding to
the time needed for all tasks to be completed.

y = a · exp
[
−

( x − b
c

)2]
. (24)

7) Prediction for the Computation Load: We make predic-
tions for the parameters of the Gaussian curve corresponding
to the amount of computation within the sliding window
for different values of δ ∈ [1/10, 1/8, 1/6]. Specifically,
we predict δ = 1/6 by δ ∈ [1/5, 1/3, 1], and similarly,
δ = 1/8 by δ ∈ [1/7, 1/5, 1/3, 1], and δ = 1/10 by
δ ∈ [1/9, 1/7, 1/5, 1/3, 1]. The process of predicting the
parameters of the computation curve for the target δ involves
fitting the parameters in Eq. 24 by new Gaussian curves.

TABLE III
PREDICTION ACCURACY FOR DIFFERENT δ

Fig. 13. Comparison of the amount of cumulative computation between
TLCO and Greedy algorithms in different modes.

Finally, we draw the computational curve for the target δ

based on the predicted parameters. These predicted values
are compared to the actual values computed by TLCO. The
results of these fits for various δ values are presented in
Fig. 12. Moreover, we calculate R2 and RMSE, respectively,
as follows:

R2
= 1 −

∑m
i=1(yi − ŷi )

2∑m
i=1(ȳi − yi )2 , (25)

RMSE =

√√√√ 1
m

m∑
i=1

(yi − ŷi )2, (26)

where R2 shows the goodness of fit between the predicted
values and the corresponding ground truth data. A higher
R2 value approaching 1 indicates a more accurate prediction.
RMSE quantifies the deviation between the predicted values
and the actual ground truth values. The results are presented
in Table III, which indicate that the R-squared values for the
fit-based predictions with ground truth at various δ are all
consistently higher than 96%. Moreover, the RMSE values
also demonstrate excellent results.

8) Impact of the Connection Mode MO: As shown in
Fig. 13, we chose three different connection modes for ana-
lyzing the effect of different connection modes on TLCO.
To better illustrate the differences in computational progress
among different methods under the same task density,
we added horizontal and vertical auxiliary lines, with lines of
different colors corresponding to different methods. To better
compare the superiority of TLCO, we additionally report the
performance of the greedy algorithm under different con-
nection modes. For a clear presentation of the experimental
results, we only show the results of three modes that are
shown in Fig. 14. The cumulative computation curves of
TLCO under three different connection modes nearly overlap,
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Fig. 14. Connection scenarios for modes 1, 2 and 3, where V1 represents
the assistance vehicle.

TABLE IV
3C INDEX OF DIFFERENT METHODS IN DIFFERENT

LINK STRUCTURES

which indicates that TLCO achieves the optimal offloading
strategy for different complex connection modes. In contrast,
the greedy algorithm has different cumulative computation
curves under different connection modes.

We calculate the slope of the midpoint of the curve in
normalized coordinates, referred to as the Cluster Computation
Capability Index (3C Index), to indicate the computational
ability of V2V and V2I clusters. The results are shown
in Table IV. Under the TLCO-DDQN offloading strategy,
clusters with different link structures exhibit similar 3C Index
values, indicating that computational capability is consis-
tent across varying link structures. In contrast, under the
greedy algorithm offloading strategy, clusters with different
link structures show varying 3C Index values, suggesting that
computational capability is influenced by link structures. These
results demonstrate that TLCO is link-aware and effectively
utilizes computational resources within V2V and V2I clusters
across different link structures, while the greedy algorithm
does not achieve the same level of adaptability.

VI. CONCLUSION

To achieve efficient task offloading when facing vari-
ous topological link structures, we develop a fine-grained
partially offloading model for sequential subtasks to opti-
mal co-offloading policies in a dynamic V2I and V2V
system with topological links, which allows for efficient
utilization of computing resources. Additionally, we pro-
pose a topological links-aware offloading algorithm based on
DDQN to minimize the overall delay. Through comprehensive
experimental evaluations, we demonstrate that the proposed
TLCO-DDQN algorithm significantly outperforms other
DRL-based offloading algorithms and traditional greedy-based
offloading approaches. Furthermore, we present a predic-
tion framework based on the proposed TLCO algorithm
and sliding time windows. This framework enables us to
predict the Gaussian curve for the amount of computation.
Consequently, with knowledge of the pulsed parameter δ,

we can forecast the amount of computation within dif-
ferent time windows using the predicted Gaussian curve.
The experimental results illustrate the high accuracy of the
proposed STW-TLCO algorithm, with an R-squared value
exceeding 96%.

For our future research, we intend to incorporate cloud com-
puting into the joint V2V and V2I system and explore adaptive
optimization techniques for vehicle-edge-cloud collaboration
among different vehicles, aiming to further enhance the overall
system performance.
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