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Abstract

In recent years, malicious exploitation of Deepfakes technology has occurred frequently, posing a serious threat to society.
Although many post-facto detection methods have been developed for Deepfakes, these passive forensic techniques do not
take any preventive measures on the original face images before tampering occurs. To bridge this gap and improve the forensic
ecosystem, we propose a forward-looking solution called Multi-Domain Decoupled Watermarking (MDD-Watermark), which
aims to provide a unified framework for source tracking and Deepfake detection. MDD-Watermark is constructed by multi-
domain decoupling of the original image; when the image is forged, the image reconstructed based on the decoupling
information of the original image will be significantly different from the forged image in terms of features. This difference
can be quantitatively analyzed using traditional image evaluation metrics (e.g., PSNR, SSIM). We also design a deep learning-
based framework, XUNet. It can efficiently embed the MDD-Watermark into the carrier image and still stably extract the
watermark information in the face of multiple perturbations (e.g., noise, compression, rotation, etc.). Experimental results
demonstrate that while maintaining high visual quality, the proposed method not only effectively resists deepfake attacks
and preserves watermark robustness, but also enables significant stratification in image quality metrics such as PSNR when
comparing watermarked images with forged images against their respective reconstructed counterparts.
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1 Introduction
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zqh131@haut.edu.cn With the breakthroughs in deep generation technologies such
as Generative Adversarial Networks (GANs) [1] and Dif-
fusion Models [2], deep forgery technology has realized
a significant simplification of the operation process and
a leapfrog enhancement of the generation effect. Digital
content creation centered on deep face-swapping is acceler-
ating the penetration of the film and television entertainment
field [3]. However, social risks hidden behind technologi-
cal empowerment should not be ignored [4]. The serious
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disconnect between the current regulatory system and the
speed of technological development has made it possible
for unscrupulous elements to take advantage of the seam-
less connection between open-source algorithms and cloud
computing power so that malicious forgers can easily access
high-performance forgery models and then batch-generate
hyper-realistic digital doppelgangers of political figures and
public figures. This technological abuse has given rise to new
forms of crime, such as political manipulation, commercial
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fraud, and identity theft, posing a serious challenge to the
trust system in the digital age.

The current defense system against deep face forgery
mainly covers active defense and passive detection. Among
them, the mainstream method of passive detection tech-
nology is to train a forgery detector, which can determine
whether an image has been modified [5]. Researchers have
proposed many deep forgery detection methods from the
perspectives of deep feature discriminant analysis [6], deep
forgery technique defect analysis [7], and cross-data task
model generalization [8, 9]. However, the effectiveness of
their methods is overly dependent on high-quality datasets
with high resolution and clarity or on whether the detected
samples have a certain step of technical defects.

Watermark traceability is a widely studied active defense
scheme, through the special invisible logo information
deeply embedded in the carrier image, under the premise
of maintaining the indistinguishability of the carrier image
to achieve reliable storage and accurate extraction of hidden
information [10, 11]. According to the form of expression of
the information carrier, the current watermarking system is
mainly divided into the following: meaningful watermark-
ing will be digital images or audio clips encoded to generate
watermark signals, while meaningless watermarking uses
structured serial numbers as the information carrier. It is
worth noting that, at this stage, the mainstream research is
based on randomized meaningless watermarking to build a
training model [12, 13], and its technical path requires end
users to convert business information into sequence numbers
for embedding through preset coding rules. Although this
technical architecture can realize infringement traceability
and evidence fixation in increasingly complex digital forgery
scenarios, its single-dimensional robust design has shown
significant limitations. Relying only on the watermark trace-
ability mechanism makes it difficult to curb the occurrence of
the source of counterfeiting behavior effectively, and there is
an urgent need to break through the technical framework of
a single robust watermark and explore a new type of water-
mark authentication system combining the active traceability
mechanism with the passive detection capability.

As shown in Fig. 1, our Multi-Domain Decoupled Water-
marking (MDD-Watermark) realizes a double breakthrough:
on the one hand, it overcomes the inherent limitations of
traditional passive detection technology in terms of after-
the-fact authentication; on the other hand, it effectively
addresses the deficiencies of the existing source tracking
watermarks in terms of detecting forged images. To ensure
MDD-Watermark remains robust against deepfake attacks,
we developed a deep learning-based XUNet model. Deep
learning-based watermarking technology offers clear tech-
nical superiority over traditional methods and stands out as
an effective alternative [14]. MDD-Watermark shows unique
advantages when dealing with deep forgery attacks such
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Fig.1 Illustration of different types of Deepfake countermeasures: pas-
sive forensics focuses on the Deepfake detection task while the original
face is unprotected; active watermarking for traceability focuses on
post-Deepfake authentication; our active forensics focuses on trace-
ability tracking and Deepfake detection

as malicious face exchanges: MDD-Watermark is extracted
from the original image through compression and can be
regarded as the image’s “ID.” This watermark information
occupies only a portion of the watermark capacity, leaving the
remaining space available for users to embed custom identity
information. The combined effect of these two information
components ensures the watermark’s traceability. When the
original image A is subjected to deepfake attacks to generate a
forged image B, differences between B and A are inevitable.
If areconstructed image B is created using partial informa-
tion from A, significant inconsistencies will emerge between
B¢ and B. Conversely, reconstructing the original image A
itself using the same information yields A¢, which exhibits
minimal differences from A. By comparing the discrepancy
levels between A and A, and between B and B¢, a pro-
nounced distinction becomes apparent, revealing whether the
image has been tampered with.

2 Related work
2.1 Deepfake passive forensics

UCF [15] proposes a novel decoupling framework that
decomposes image information into three mutually inde-
pendent components: forgery-insensitive features, method-
specific forgery features, and universal forgery features.
Extensive experimental evaluations demonstrate that this
framework outperforms multiple state-of-the-art methods
in cross-domain generalization capabilities. DeepfakeBench
[16] includes 15 state-of-the-art detection methods, 9 deep-
fake datasets, a suite of deepfake detection evaluation proto-
cols and analysis tools, and comprehensive evaluation results.
Furthermore, based on a multi-faceted in-depth analysis of
these evaluations, DeepfakeBench provides new insights.
CNN-LSTM [3] proposes a facial geometry prior module
(FGPM) to extract the facial geometry feature maps, which
are embedded into the upsampled feature maps generated by
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the CNN-LSTM network. Finally, a decoder is used to learn
the mapping from low-resolution feature maps to pixels to
predict the manipulation localization. Alternatively, a soft-
max classifier is used to predict true and false face images.
Through experiments on several popular datasets, the pro-
posed detection model demonstrates the ability to localize
the manipulation at the pixel level, as well as a high predic-
tion ability for real or fake face images.

2.2 Watermarking method

Deep learning-based image digital watermarking techniques
show significant advantages in terms of attack robustness.
Deep neural networks can better adapt to unknown image
distortions and attack scenarios by virtue of their strong
nonlinear fitting ability and black-box characteristics, thus
significantly improving the robustness and concealment of
watermarking. Balujia et al. [17] propose a deep neural
network-based watermarking method, which is the first time
that deep neural networks are applied to the field of image
watermarking, and successfully achieves the goal of hid-
ing one color image into another image of the same size.
However, the method mainly focuses on the embedding and
extraction ability of the watermark, with less consideration
of robustness, and thus has limited performance in the face
of attacks. HiDDeN [18] is an end-to-end deep learning
watermarking framework consisting of an encoder, a dis-
criminator, a noise layer, and a decoder. The innovation of
the approach is the introduction of a noise layer to model var-
ious attacks (e.g., blurring, Gaussian noise, and cropping),
which enhances the robustness of the model during the train-
ing process. Experiments show that HIDDeN exhibits better
robustness against a wide range of common attacks. StegaS-
tamp [19] also employs a deep neural network to build the
encoder and decoder, but it focuses on improving robustness
against photo-taking attacks. The method simulates real-
world photographic distortions (e.g., lighting variations, lens
distortions, etc.) to enable watermarks to be reliably extracted
even after they have been photographed and printed, making
it suitable for watermarking applications in physical scenar-
ios. Sepmark [20] adopts an architecture with one encoder
and two decoders for extracting robust and vulnerable water-
marks, respectively. The robust watermark is used for forgery
forensics, while the vulnerability watermark is used to detect
forgeries. This dual watermarking strategy enables Sepmark
to fulfill robustness and vulnerability requirements for com-
plex application scenarios.

3 Method
3.1 MDD-watermark

By analyzing a large amount of experimental data, we found
an important phenomenon: although images embedded with
invisible watermarks are almost indistinguishable from the
original images under human visual perception, significant
differences can still be detected in some quantitative image
evaluation metrics (e.g., PSNR [21]). This difference reflects
the subtle alteration of the image’s pixel-level information
by the watermark embedding process. When these images
with invisible watermarks are used for face-swapping coun-
terfeiting, the difference is further amplified between the
counterfeited image and the original image. This amplifi-
cation effect may arise from the superimposed effect of the
initial differences introduced by the watermark embedding
and the secondary distortion caused by the face-swapping
operation.

Algorithm 1 Watermark Construction

Input: X, X», ...X, (Carrier images, watermarked images or forged
images);

Output: MDD-Watermark;

1: fori € [1,n] do

2: Xgi < X; convert to greyscale;

30 Xp &DCT(X)[0: H/2,0: W/2];

4 Xpfi < Xp; normalisation, magnification 255x;

5: LLy; < 2D-DCT(Xyy:);

6: LLy; < LL>; normalisation;

7‘

8:

Y =SVD(LLy);
end for

Based on this finding, we designed an innovative MDD-
Watermarking framework, as shown in Fig. 2, and the code
is shown in Algorithm 1. From Fig. 2, it can be seen that both
watermark construction and image reconstruction are based
on Algorithm 1, but their data processing strategies are differ-
ent: watermark generation encodes by extracting the larger
singular values in the singular value matrix, while image
reconstruction uses the remaining information to complete
the reconstruction. When the watermark and reconstructed
image originate from the same original image, the visual
difference between the reconstructed result and the original
image is relatively small; If the source images are different,
the difference in singular value distribution will lead to sig-
nificant deviations in the reconstructed images.

3.2 Model architecture

Our XUNet model adopts an encoder-decoder architecture
and combines with a Noise Pool (NP) to simulate various
interferences and common forgery models in the real world,
enhancing the robustness and covertness of watermarking. As
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Fig. 2 Illustration of Watermark Construction and reconstructing an
image using MDD-Watermark under a forged image. The blue area
represents the process of building MDD-Watermark, which does not
require U and V, where only half of ¥ is selected. U and V are unitary
matrices after singular value decomposition, and ¥ is the singular value
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shown in Fig. 3, the core components of the model include an
Encoder (En), a Decoder (De), and a Noise Pool (NP) with
the following workflow.

3.2.1 Encoder

Encoder is based on U-Net [22] and Xception [23] archi-
tectures. The carrier image X ¢ is first passed through the
Entry Flow module of the Xception architecture for initial
feature extraction and downsampling. This module gradu-
ally reduces the spatial dimensions of the image through a
series of convolutional and deconvolutional operations while
extracting high-level semantic features. These feature map-
pings will be used for subsequent watermark embedding and
feature fusion. Meanwhile, the watermark information M
is extended to L x L by the original information length L
through multiple diffusion modules to increase the redun-

Encoder

1 "
a ﬂ W@ ﬁ }j—’ — Noise Pool
Xo X\n

Fig. 3 Architecture diagram of XUNet. The subsampling in the
Encoder section adopts the Entry Flow and Middle Flow structures from
the Xception network. The overall architecture resembles U-Net, fea-
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dancy of the watermark. In the Middle Flow module, the
watermark information M is embedded into the hidden space
of the image for the first time. This step realizes the water-
mark embedding at the deep semantic level of the feature
map. To alleviate the gradient vanishing problem, the fea-
ture maps of the Middle Flow module are jump-connected to
the feature maps of the Entry Flow module. The SENet [24]
mechanism is introduced to adaptively adjust the channel
weights of the feature maps to enhance the expressiveness of
important features, thus improving the model performance.
During the up-sampling process, the watermark information
is redundantly embedded twice after one up-sampling and
at the completion of up-sampling, respectively. First embed-
ding: after one up-sampling, the watermark information is
embedded into the medium resolution feature map to real-
ize the watermark embedding at the medium semantic level.
Second embedding: after up-sampling, the watermark infor-
mation is embedded into the high-resolution feature map to
realize the watermark embedding in the spatial domain. Both
embeddings are concatenated with the encoded features cor-
responding to the spatial dimension in the down-sampling
stage, and SENet adjusts the channel weights of the spliced
features. Finally, the feature maps after upsampling and
watermark embedding are concatenated with the original car-
rier image X o, and the concatenated features are fused using
1x 1 convolution to generate the final coded image Xy .

To ensure the invisibility of the watermark, the Mean
Square Error Loss (MSE) between the encoded image Xw
and the original carrier image X is used to constrain the
model training. The MSE Loss achieves the level of invisibil-
ity perceived by the human eye by minimizing the pixel-level
differences that make the encoded image visually almost
indistinguishable from the original image. The loss for the
encoder is as follows:

1 n
Len = = Y (Eu(Xo,.0 M), Xo,) (1)
i=1

=Lis }}}m%@ oo

turing three skip connections between the subsampling and upscaling
paths. The Decoder employs the same model design as the Encoder
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where o adjusts the watermark information multiplier param-
eter, E,, is the Encoder M; is the watermark information, and
X, is the carrier image.

3.2.2 Decoder

Decoder adopts the Xception architecture as the front-end
framework. It uses its Depthwise Separable Convolution to
effectively remove the influence of the image color channels
and focus on extracting the watermark information from the
grayscale channels. This design allows the Decoder to decou-
ple the main information of the watermark from the encoded
image Xw while reducing the interference of the color chan-
nel on the watermark extraction. The output of the Decoder
is first passed through a diffusion module that integrates the
extracted redundant watermark information. Subsequently,
the redundant watermark information is mapped back to the
length of the original watermark information through a lin-
ear layer to recover the complete watermark content. The
Decoder and Encoder have the same overall structure, but
the model parameters are not shared.

The loss L4, of the Decoder uses the mean square error
loss, which is used to measure the difference between the
extracted watermarked information My, and the original
watermarked information M. The formula is expressed as:

l n
Lae = — > (De(Xw)), i), @
i=1
where M is the watermark information, D, is the Decoder
and X, is the encoded image.

4 Experiments
4.1 Experimental settings

Our experimental design is based on the CelebA-HQ dataset,
using smaller validation and test sets due to limited compu-
tational resources while ensuring that the training set is large
enough to guarantee the generalization ability of the model.
Training set: 15,107 images, validation set: 1,889 images,
and test set: 1,500 images.SimSwap is used as a typical
DeepFakes model for end-to-end training and testing. GAN-
imation [25] is used for generalizability testing to verify the
robustness of the MDD watermarking framework under dif-
ferent counterfeiting methods. The regular perturbation sets
are Identity, JpegTest, Resize, GaussianBlur, MedianBlur,
Brightness, Contrast, Saturation, Hue, Dropout, Saltpepper,
GaussianNoise. Cropping is not included in the set. The crop-
ping operation is difficult to regard as a common deformation
of the whole face and, therefore, not included in the noise
pool. We use PyTorch to implement MDD-Watermarking.

Training and testing are performed on NVIDIA RTX 4090.
The training period is 120 epochs, and the batch size is 16.
The Adam [26] optimizer is used with an initial learning
rate of 0.002 and a weight decay of 0.00001. The watermark
amplification factor o is set to 0.1. The Encoder loss factor
Aen 18 10, and the Decoder loss factor Az, is 1.

In our experiments, we use a variety of evaluation metrics
to comprehensively measure the performance of MDD-
Watermarking and XUNet, including the visual quality of
encoded images, the visual quality of reconstructed images,
and the robustness of watermark extraction. We use PSNR,
SSIM, and LPIPS [27] to evaluate the visual quality of coded
images and reconstructed images.PSNR is evaluated using
the whole test dataset. SSIM and LPIPS use only 50 random
test samples due to their small values and the difficulty of
visualizing the classification effect with too many test sam-
ples. The average bit error rate (BER) is used to measure the
accuracy of watermark extraction. The original watermark
information M and the extracted watermark information M,
are converted to binary form by B() operation. Then, the dif-
ference between the two is calculated using logical difference
or operation (XOR). The specific formula is as follows:

11 ixj Fixi
BER — EZI_:U;(XOR (B(M 7y, B(M )))
%100% 3)
By =1 M=0 )
"o, Mm<o

To ensure the accuracy and fairness of the experiments,
we selected a variety of existing watermarking methods
as baseline models and compared them with the MDD-
Watermarking framework. These baseline models include
MBRS [28], CIN [29], PIMoG [30], and SepMark [20],
where SepMark uses its robust watermarking module. In
order to fully evaluate the performance of different models in
different scenarios, we used two independent experimental
setups for training and testing for image sizes of 128 x 128
and 256 x 256.

4.2 Experimental results
4.2.1 Watermarking robustness

Table 1 shows the results of the MDD-Watermarking frame-
work compared with the baseline models (MBRS, CIN,
PIMoG, SepMark) on the visual quality assessment metrics
(PSNR, SSIM, LPIPS). The MDD-Watermarking framework
outperforms the best-performing CIN model on visual qual-
ity assessment metrics on 128 x 128 sized images, close to
the best-performing CIN model, while significantly outper-
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Table 1 Image quality evaluation metrics

Model MBRS [28] CIN [29] PIMOG [30] SepMark [20] MDD SepMark [20] MDD
Image Size 128x128 128x128 128x 128 128 %128 128 %128 256x256 256x256
PSNR 1 33.0456 42.4135 37.7271 38.5112 40.9913 38.5646 43.7579
SSIM 4 0.8106 0.9628 0.9470 0.9588 0.9538 0.9328 0.9558
LPIPS | 0.0141 0.0006 0.0086 0.0028 0.0046 0.0080 0.0098
Table 2 Watermark robustness test results under regular perturbation

128128 256 %256
Distortion MBRS [28] CIN [29] PIMoG [30] SepMark [20] MDD SepMark [20] MDD
Identity 0.0000% 0.0000% 0.0366% 0.0000% 0.0000% 0.0000% 0.0000%
JpegTest Q = 50 0.2597% 2.7514% 19.5562% 0.2136% 2.3215% 0.0075% 0.0659%
Resize p = 50% 0.0000% 0.0000% 0.0767% 0.0059% 0.0000% 0.0000% 0.0000%
GaussianBlurk =3,0 =2 0.0000% 22.7786% 0.1169% 0.0024% 0.0000% 0.0000% 0.0000%
MedianBlur k = 3 0.0000% 0.0307% 0.0992% 0.0012% 0.0020% 0.0000% 0.0000%
Brightness f = 0.5 0.0000% 0.0000% 1.3443% 0.0059% 0.0133% 0.0017% 0.0180%
Contrast f = 0.5 0.0000% 0.0000% 0.8121% 0.0012% 0.0020% 0.0000% 0.0041%
Saturation f = 0.5 0.0000% 0.0000% 0.0803% 0.0000% 0.0000% 0.0000% 0.0000%
Hue f =0.1 0.0000% 0.0000% 0.1523% 0.0000% 0.0000% 0.0000% 0.0000%
Dropout p = 50% 0.0000% 0.0000% 0.4828% 0.0000% 0.0000% 0.0058% 0.0000%
SaltPepper p = 10% 0.0000% 0.0378% 2.3667% 0.0413% 0.0000% 0.0008% 0.0007%
GaussianNoise o = 0.1 0.0000% 0.0000% 12.7396% 0.7460% 0.0685% 0.0578% 0.0021%

forming MBRS and PIMoG. Its superior performance on
PSNR and SSIM metrics indicates high visual quality at
the pixel level and structural similarity, while its perfor-
mance on LPIPS metrics verifies the superiority in perceptual
quality. The MDD-Watermarking framework significantly
outperforms SepMark in PSNR and SSIM metrics at 256 x
256 image size, indicating its superior performance in visual
quality. Although it is slightly inferior to SepMark in LPIPS
metrics, the difference is small, and the overall performance
is still excellent. These results fully demonstrate the compet-
itiveness of the MDD-Watermarking framework in terms of
visual quality.

Table 2 shows the average BER of MDD-Watermarking
with baseline models (MBRS, CIN, PIMoG, SepMark) under
different regular perturbation scenarios. At 128 x 128 image
size, the average BER of MDD is significantly better than
PIMoG and SepMark in most of the perturbation scenarios,
and is equal or close to MBRS and CIN. The average BER
of the MDD-Watermarking framework is equal to or lower
than that of SepMark under most perturbation scenarios at
256 %256 image size, indicating that it performs well in terms
of robustness. In particular, under Dropout and Gaussian-
Noise perturbations, the BER of MDD is significantly lower
than that of SepMark, verifying its superiority in these sce-
narios. These results further demonstrate the reliability and
superiority of MDD-Watermarking in practical applications.

@ Springer

Table3 Watermark robustness test results under malicious perturbation

Distortion SimSwap [31] GANimation [25]
128x 128 MBRS [28] 19.3744% 0.0000%
CIN [29] 48.5068% 0.0000%
PIMoG [30] 8.6745% 0.4802%
SepMark [20] 13.8255% 0.0000%
MDD 11.8817% 0.0000%
256x256 SepMark [20] 7.9068% 0.0020%
MDD 1.7209% 0.0000%

Under the malicious distortion shown in Table 3, the
MDD-Watermarking framework outperforms the BER under
both SimSwap and GANimation deep forgery models. In
particular, under the GANimation perturbation, the BER of
MDD is 0.0000%, which is on par with MBRS, CIN, and
SepMark and significantly better than PIMoG. Under the
SimSwap perturbation, the BER of MDD is significantly
lower than that of CIN and MBRS, slightly lower than that
of SepMark, and close to that of PIMoG. These results ver-
ify the MDD-Watermarking framework under the robustness
and adaptability in deep forgery scenarios.
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Fig. 4 Distribution of image evaluation metrics for the reconstructed
image of the watermarked image and the reconstructed image after Sim-
Swap forgery for 256 x256 image size, green dots are the watermarked

4.2.2 Face forgery detection

In this section, we discuss the effectiveness of MDD-
Watermarking for detecting face forgery images. We test
it under the SimSwap forgery model and the GANima-
tion forgery model, respectively. It is worth mentioning that
our MDD-Watermarking is designed based on 256x256
size images. Although we also conducted experiments at
128 x 128, the detection of the realized watermark is far less
effective than the 256 x256 size image.

Figure 4 shows the test results under the two forgery mod-
els, SimSwap. From the PSNR metrics, the watermarked
images are generally concentrated in the higher image quality
region, while the forged images are mainly distributed in the
lower image quality region, which creates an obvious strati-
fication between the two. In testing with 1,500 image pairs,
32 watermarked images exhibited a PSNR below 50 com-
pared to their reconstructed counterparts, while 11 forged
images showed a PSNR above 50 against their reconstruc-
tions. Using PSNR exceeding 50 as the authenticity criterion,
this method achieves an accuracy rate (ACC) of 99.97%.
As clearly demonstrated by the SSIM and LPIPS metrics in
Fig. 4, significant gaps exist between watermarked images
and forged images when compared against their respec-
tive reconstructions. We propose that when both genuine
and forged image samples are available, directly compar-
ing the quality metric differences between each image and
its reconstruction enables more intuitive and reliable authen-
ticity discrimination. Detection results for 256 x256 sized
images under GANimation attacks, along with detection per-
formance for 128 x 128 sized images under both SimSwap
and GANimation attacks, can be found in the supplementary
materials. Current experimental results demonstrate that the
MDD-watermarking technique exhibits a pronounced lay-
ered effect in image quality assessment metrics, providing
a reliable theoretical foundation and data support for subse-
quent deep learning detection. Future research may explore

image, orange dots are the forged image, PSNR evaluation metrics are
used on the left side, SSIM evaluation metrics are used on the center,
and LPIPS evaluation metrics are used on the right side

passive detection methods integrating deep learning models
based on this approach to further enhance detection accuracy.

4.3 Ablation study

In order to improve the performance of the coded images
in terms of the human eye perception effect, instead of
focusing only on the pixel-level accuracy, we introduce the
discriminator of GAN in XUNet. Specifically, the discrimi-
nator discriminates the carrier image and the coded image,
and the loss of the discriminator is back-propagated into the
loss function of the encoder to optimize the coding process.
However, this approach faces some challenges: first, the dis-
criminator loss itself is volatile, resulting in a less stable
training process; second, since the watermark information
embedded in different images varies and the perturbations
introduced by the coded image after NP vary, these factors
together lead to large fluctuations in the decoder loss and the
encoder loss. This volatility affects the convergence and final
performance of the model.

5 Conclusion

In this paper, we propose a watermarking method with detec-
tion and traceability functions, called MDD-Watermarking,
and innovatively apply it to the field of active Deepfake foren-
sics, realizing a unified framework for source tracking and
Deepfake detection. In order to support the efficient embed-
ding and extraction of MDD-Watermarking, we design
a specialized watermarking Encoder and Decoder named
XUNet. XUNet can fully use the characteristics of MDD-
Watermarking, efficiently embed the watermark into the
carrier image, and accurately extract the watermark informa-
tion under various interference conditions. The experimental
results show that XUNet is significantly robust to multiple
distortions, while the reconstructed image based on MDD
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watermarking can effectively distinguish the forged image
from the encoded image, which further verifies the prac-
ticality and reliability of MDD-Watermarking in Deepfake
forensics. This research result provides a new solution for
digital image authenticity verification and forgery traceabil-

1ty.
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