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Abstract—Anomaly detection in solar photovoltaic panels using
uncrewed aerial vehicles (UAVs) faces challenges due to minimal
texture variations from surface anomalies (e.g., shadows, eddy
currents) in UAV-captured imagery, which constrain both detec-
tion precision and real-time performance. Existing approaches
often lack quantitative anomaly analysis that integrates aerial
imagery with operational data, thereby limiting their practi-
cal value and impeding sustainable industry advancement. To
address these limitations, we propose gate convolution support
vector data description (Gate-conv SVDD), a novel framework
that enhances the efficiency and accuracy (ACC) of anomaly
detection through rapid parallel gated feature compression
and hypersphere-based support vector data description (SVDD)
clustering. This approach enables precise anomaly localization in
high-resolution UAV imagery, as validated through simulations
and controlled experimental datasets. Gate-conv SVDD further
supports quantitative assessments of anomaly severity, thereby
bridging the gap between image-based detection and actionable
analysis. Designed for computational efficiency, the framework
demonstrates strong potential for fast inference in support of
real-time UAV imaging, subject to further hardware integration
and field validation. Extensive experiments demonstrate that
Gate-conv SVDD outperforms state-of-the-art methods, offering
superior ACC and robustness in controlled settings.

Index Terms—Anomaly detection, intelligent inspection,
uncrewed aerial vehicle (UAV), urban infrastructure.
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I. INTRODUCTION

IN RECENT years, with rapid global economic growth,
nations have prioritized sustainable clean energy, and

the solar photovoltaic industry [1] has garnered significant
attention due to its environmental benefits, high efficiency,
and cost-effectiveness. New photovoltaic power stations are
often established in remote areas to enhance efficiency and
mitigate light pollution, yet they are susceptible to dust accu-
mulation, debris obstruction, and component damage, leading
to reduced efficiency and safety hazards [2]. Traditional
manual inspections are constrained by weather conditions,
high-altitude risks, and limited coverage, making them inad-
equate for these challenges [3]. Advances in uncrewed aerial
vehicle (UAV) technology have driven the development of
automated inspections, offering low cost, strong adaptability,
and ease of operation, with the capability to rapidly cover
large areas and transmit high-resolution images in real time.
High-efficiency, high-precision intelligent analysis algorithms
for UAV-captured images have become a research focus in
photovoltaic panel anomaly detection, serving as a critical
technology for ensuring the safe operation of photovoltaic
systems. Developing an efficient and accurate anomaly detec-
tion framework for UAV-captured images is urgently needed
to satisfy practical demands.

Recently, research on anomaly detection methods for solar
photovoltaic panels using drone-captured imagery has surged,
yet significant challenges persist. We analyze current methods
and their associated challenges as follows.

1) Diversity and Complexity of Datasets: Photovoltaic
panel performance degradation and anomalies manifest
in various forms (e.g., hot spots and micro-cracks),
influenced by environmental factors, such as illumi-
nation, temperature, and shading, resulting in noisy,
highly nonlinear sensor data [4]. Moreover, datasets used
for training and testing anomaly detection models are
inherently complex and diverse, encompassing different
photovoltaic panel types, tilt angles, flight conditions
(vertical, horizontal, oblique), and weather conditions
(e.g., sunlight reflection, shadows). Existing models,
such as Region-Based convolutional neural network
(CNN) for Anomaly Detection, combine multilevel CNN
features to enhance sensitivity to small-scale anoma-
lies. However, practical applications require consistent
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model performance across diverse scenarios, and current
algorithms struggle to distinguish between degradation-
related anomalies and normal fluctuations accurately.

2) Processing Demands for High-Speed Flight Imagery:
Images captured by high-speed drones are relatively
sparse, necessitating high-precision feature extraction
and anomaly detection for subtle texture changes
caused by surface anomalies (e.g., shadows, turbu-
lence). Additionally, real-time requirements impose
stringent demands on algorithm inference speed, com-
putational efficiency, and operational consistency of
drones. Existing CNN-based anomaly detection tech-
niques [5] exhibit precision and real-time performance
limitations. Furthermore, there is a lack of quantitative
analysis for anomaly detection under real-world operat-
ing conditions, underscoring the urgent need for efficient
processing techniques that balance accuracy (ACC) and
speed.

3) Bottlenecks Due to Insufficient Datasets and Resources:
The application of drone-captured imagery for pho-
tovoltaic panel anomaly detection is hindered by a
scarcity of dataset resources, particularly the lack of
publicly available annotated datasets [4]. This severely
limits the training and validation of algorithmic models,
resulting in poor generalization. Due to the absence
of sufficiently large annotated public datasets, detecting
complex photovoltaic panel anomalies still relies heavily
on expert manual intervention to ensure ACC, signifi-
cantly increasing detection costs and time.

Recent research to improve anomaly detection in pho-
tovoltaic panels has leveraged supervised learning models
trained on labeled abnormal instances. For instance, a
Transformer-based self-supervised model has enhanced image
anomaly recognition ACC and efficiency [6], and a
novel segmentation approach has effectively handled com-
plex anatomical structures with minimal labeled data [7].
Supervised anomaly detection methods in the photovoltaic
domain are hindered by scarce labeled abnormal samples,
which limits their practical utility. Consequently, unsuper-
vised anomaly detection methods require less labeled data
and are gaining traction. Such as Siamese networks [8]
differentiate features between normal and synthetic defec-
tive samples for anomaly identification, while local and
global network branches [9] address structural and logical
surface defects. Graph neural networks and attention mech-
anisms [10], [11] further integrate logical constraints into
unsupervised frameworks. For UAV-based photovoltaic panel
anomaly detection [12], existing unsupervised methods often
demonstrate poor classification ACC and limited generaliza-
tion capability, making them unsuitable for precise solar panel
fault detection.

Anomaly detection in solar photovoltaic panels using UAVs
is crucial for ensuring operational reliability, but it is chal-
lenged by subtle surface anomalies and the requirement for
real-time processing. Existing methods struggle with precision,
computational efficiency, and quantitative analysis of anoma-
lies under operational conditions. To address these issues,
we introduce gate convolution support vector data description

(Gate-conv SVDD), a framework combining gated convolu-
tions with support vector data description (SVDD) for precise
and efficient anomaly detection. The approach systematically
tackles the challenges of anomaly analysis in UAV-captured
imagery. The main contributions of this article are as follows.

1) The proposed method employs gate convolution
(Gate-conv) Blocks for robust feature extraction and
integrates SVDD for hypersphere-based feature cluster-
ing, achieving precise anomaly detection while enabling
quantitative assessment of anomaly severity.

2) This study develops a parallel gated convolutional
feature extraction component addressed for diverse,
sparse imagery captured by UAVs at high alti-
tudes. The component integrates Gated Convolution
for adaptive high-fidelity feature extraction, Causal
Convolution to preserve temporal dependencies through
strict input-output causality, and Dilated Convolution
with adjustable rates for multiscale feature aggregation.
This parallel architecture not only enables lightweight
and efficient feature extraction but also achieves high-
efficiency feature extraction for complex, diverse image
data.

3) To accelerate progress in UAV-based defect detection
for photovoltaic panels and address model ACC and
generalization deficiencies due to limited datasets and
resources, we publicly release the Battery-SL dataset.
This significant contribution expands available resources
and promotes reproducible research in this critical field.

4) Extensive experiments confirm that Gate-conv SVDD
outperforms state-of-the-art methods in real-world pho-
tovoltaic anomaly detection while maintaining strong
generalization. Real-time validation further demonstrates
its efficient live data processing capability, verifying
practical applicability.

Our approach has been validated through simulations and
controlled experiments using UAV-captured imagery, demon-
strating superior ACC and potential for real-time applications.
However, further hardware tests and field validations are
needed to confirm its performance in operational UAV deploy-
ments. This article presents the methodology, experimental
results, and future directions for enhancing the framework’s
real-world applicability. The remainder of the article is orga-
nized as follows. We review the related work in Section II.
Section III describes the proposed Gate-conv SVDD in detail.
Section IV presents the experimental results and their analysis.
Finally, Section V concludes this article.

II. RELATED WORK

Current mainstream solutions for abnormal detection in
photovoltaic panels are primarily focused on image-based
detection techniques. These techniques mostly utilize deep
neural network models to identify abnormal images or areas
deviating from normal image structures.

This is typically accomplished through the application
of unsupervised or semi-supervised learning methodologies.
These models can be broadly classified into four distinct
categories based on their algorithmic design principles.
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Specifically, they are engineered to detect anomalous images
or localized abnormal regions that diverge from the expected
normative image structure, relying on unsupervised or semi-
supervised learning frameworks [13]. According to their
conceptual foundations, they can be systematically grouped
into the following four types.

A. Feature Distance Measure-Based Methods

The traditional SVDD model [14] incorporates deep learn-
ing techniques to preserve data structure for unsupervised
anomaly detection. Their deep SVDD framework leverages
a neural network to learn feature representations end-to-end,
reducing the reliance on manual feature engineering. However,
it struggles with handling high-dimensional feature spaces, and
complex nonlinear data distributions, and lacks mechanisms
to focus on critical information, limiting its robustness in
detecting subtle anomalies.

Additionally, it faces challenges related to the curse of
dimensionality and computational inefficiencies when scaling
to large datasets. Similarly, Fan et al. [15] proposed a semi-
supervised video anomaly detection method using a Gaussian
mixture fully convolutional variational autoencoder (GM-
FCVAE), which is efficient when labeled abnormal data is
scarce. However, the model’s reliance on the assumption that
anomalies are Gaussian outliers limits its ability to capture
subtle or dynamic anomalies, particularly in high-dimensional
data. Hassanat et al. [16] introduced a novel outlier-robust
ACC measure for regression models based on the Hassanat
distance metric, which is invariant to outliers and offers
an easily interpretable ACC-like value. While this approach
demonstrates robustness across multiple benchmarks, it is
focused on regression models, making it less applicable to
anomaly detection tasks or complex, high-speed data.

B. Feature-Surface Construction for Detection Methods

A deep learning-based framework for detecting out-of-
distribution (OOD) [17] and adversarial samples in videos has
been developed using unsupervised learning, where a neural
network is trained solely on normal data to identify anomalies
by comparing new frames to learned patterns [18]. This
mitigates data imbalance by not requiring abnormal samples,
but its dependence on a single normal distribution limits the
detection of complex or multiscale anomalies, risking false
positives from normal variations. An energy-based method
enhances reliability in safety-critical applications using energy
scores, which align more closely with input probability density
than softmax confidence, yet it focuses narrowly on anomalies,
struggling with subtle or high-speed image cases and lacking
the ability to quantitatively analyze anomaly severity.

A spatiotemporal transform network-based framework [19]
is proposed for anomaly detection and localization in dis-
tributed parameter systems, such as lithium-ion battery short
circuits, using nonlinear space-time separation, Gaussian pro-
cess regression, and combined statistics. Though effective
for its target application, its complex models struggle to
generalize across domains or process high-dimensional image
data. PatchCore [20], on the other hand, uses a pretrained CNN

to build a patch-based feature memory, achieving high area
under the curve (AUC) and localization ACC on datasets like
MVTec AD with only normal samples, yet it is limited by
sensitivity to positional changes, dependence on the pretrained
model, and moderate computational demands.

C. Image Reconstruction-Based Methods

A road anomaly detection method [21] for autonomous
vehicles employs partial image reconstruction coupled with
semantic segmentation to identify anomalies by detecting
reconstruction failures in regions outside known categories,
such as roads, in an unsupervised setting. Although effective
for distinguishing unknown anomalies, it struggles with subtle
anomalies and complex, multiscale patterns, and its reliance
on reconstruction may hinder performance in dynamic or
cluttered environments.

Similarly, a self-supervised reconstruction-by-inpainting
(RIAD) method [22] trains an auto-encoder on normal images
and detects anomalies by reconstructing partial images through
random inpainting. While promising, RIAD has limitations
with large, complex anomalies and scenarios where inpainting
cannot adequately represent missing parts, assuming anomalies
are sufficiently distinct for inpainting to fail. The dual deep
reconstruction networks-based image decomposition (DDR-
ID) approach decomposes unseen images [23] into normal
class and residual components to calculate two anomaly
scores. Despite strong performance on benchmarks, DDR-ID’s
reliance on reconstruction errors and lack of normal-class-
specific information limits its ability to detect subtle anomalies
in high-speed datasets.

D. Hybrid Approaches Combining Traditional Methods With
Deep Neural Networks

A range of sophisticated approaches has been devised to
address anomaly detection across various domains, effectively
integrating traditional methodologies with state-of-the-art deep
neural networks. One such method leverages self-supervised
learning to identify defects in high-resolution images, con-
structing models solely from normal data and extracting
feature representations through carefully designed proxy
tasks [24]. This semi-supervised technique demonstrates par-
ticular efficacy in scenarios with imbalanced datasets or
scarce anomaly instances. Nevertheless, its performance may
diminish when subtle irregularities elude detection due to
insufficiently representative proxy tasks, potentially undermin-
ing its precision in complex, real-world applications.

A GAN-based technique [25] identifies anomalies in high-
dimensional images by seeking effective latent representations,
flagging those without as anomalous and delivering strong
benchmark results, though it grapples with training instability,
misses subtle anomalies in complex data, and demands high
computational effort and tuning. In contrast, AdaCLIP [26],
a zero-shot approach, adapts the pretrained CLIP model with
hybrid static and dynamic prompts to enhance generaliza-
tion, excelling across industrial and medical datasets without
task-specific training, yet it relies on CLIP’s quality, faces
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computational costs from prompt generation, and struggles
with noisy or highly variable data.

In the realm of real-time crowd anomaly detection, a com-
prehensive survey highlights deep learning methods integrated
with the Web of Things (WoT) platform for secure video
surveillance [27]. It categorizes approaches into tracking,
feature-based, deep learning, and hybrid methods, with the
latter two showing superior performance. Yet, issues like pixel
occlusion and computational demands limit their adaptability
beyond crowded scenes to broader, high-dimensional anomaly
tasks.

Focusing on sustainable healthcare systems, a hybrid
quantum-classical optimization method enhances energy effi-
ciency in AIoT networks using deep learning and edge
computing [28]. While achieving high ACC and low carbon
emissions, its specificity to healthcare and energy optimization
restricts its relevance to domains like image anomaly detection.

Similarly, an interference hypergraph-based algorithm opti-
mizes energy harvesting for UAV-assisted TinyML in IoT
networks, improving throughput and UAV lifespan. However,
its emphasis on resource allocation in communication systems
limits its applicability to image-based anomaly detection
challenges.

To meet the specific demands of quantitatively analyzing
anomalies in high-speed UAV-captured imagery and overcome
the shortcomings of existing methods, we propose the Gated-
conv SVDD framework. This approach integrates traditional
techniques with deep learning, leveraging their complementary
strengths to deliver a rapid and precise anomaly detection
solution tailored to real-world UAV applications.

III. METHODOLOGY

A. Problem Definition

The objective of image anomaly detection for photovoltaic
panels is to evaluate the presence of abnormalities within
a given photovoltaic panel image, quantify the degree of
abnormality, and provide actionable insights into their severity
and impact on operational performance. This process aims
to enhance maintenance efficiency and ensure the reliability
of solar energy systems by identifying and assessing defects,
such as dust accumulation, component damage, or other
irregularities in UAV-captured imagery. This process can be
expressed mathematically as follows:

score = f (D(xi); θ) ∈ [0, 1] (1)

where D = {x1, x2, . . . , xn}, and xi ∈ RC×H×W is the image
tensor data of the photovoltaic panel. Then, anomaly detection
for the photovoltaic panel is defined as the mapping function:
score = f (xi; θ) ∈ [0, 1]. Through this definition, it can be
seen that the design of an effective and reasonable neural
network f (·) is the key to abnormality detection. It is also the
research priority of this paper. The symbols used in this article
are described in Table I.

B. Proposed Framework

This article presents an anomaly detection framework based
on Gate-conv SVDD, the structure of which is illustrated in

TABLE I
SYMBOLS AND THEIR MEANINGS

Fig. 1. The framework first applies the single shot multibox
detector (SSD) algorithm [29] to a series of preprocessing
operations on aerial images of photovoltaic power generation
systems collected by UAVs, including image cropping, anchor
frame positioning, perspective correction, etc., to generate the
sample dataset for training. Subsequently, it employs gated
convolutional modules (Gate-conv) for feature extraction, fol-
lowed by SVDD for hypersphere-based anomaly clustering.
The Gate-conv mechanism enhances feature extraction by
modulating hierarchical features, while SVDD constructs a
compact hypersphere to distinguish normal and anomalous
samples efficiently.

SVDD was selected as the primary module for extracting
anomaly features due to its enhanced suitability for UAV-based
anomaly detection. In contrast to alternative deep learning-
based one-class methods like Deep One-Class (DeepOC) or
autoencoder-based approaches, SVDD constructs a hyper-
sphere that encloses normal data in a high-dimensional feature
space, minimizing the radius while maximizing the separation
of anomalies. This approach excels in photovoltaic panel
inspection, where normal samples dominate and anomalies are
rare, demonstrating superior robustness.

Compared to DeepOC, which requires extensive training
data to learn a robust decision boundary, SVDD is less data-
intensive, making it suitable for scenarios with limited labeled
anomalies. Autoencoder-based methods, while effective for
reconstruction-based anomaly detection, often incur higher
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Fig. 1. Anomaly detection framework based on Gate-conv SVDD. This framework preprocesses photovoltaic images collected by UAVs using the SSD
algorithm, then extracts features using Gate-conv modules, and performs anomaly analysis within the hypersphere constructed by SVDD, including two key
steps: sample generation and anomaly detection.

computational costs due to their encoder-decoder architecture,
which is less feasible for real-time UAV applications. SVDD’s
computational efficiency, with a complexity of O(n2) for
training and O(n) for inference, aligns with the real-time
requirements of high-speed UAV imaging. Extensive experi-
ments (Section IV) demonstrate that SVDD, when combined
with Gate-conv, outperforms these alternatives in ACC and
speed on the Battery-SL10000 dataset.

C. Anomaly Sample Dataset of Photovoltaic Panel

1) Sample Dataset Generation: The advancement of deep
learning technology has promoted the widespread application
of intelligent inspection in photovoltaic power plants. UAVs
have shown significant advantages in power inspection due
to their low cost, small size, high adaptability, and ease of
operation. Equipped with multiple sensors, they can capture
high-resolution images in a short period, which is crucial for
identifying anomalies in photovoltaic systems. The flexibility
of UAVs also allows them to cover areas that are difficult to
reach with traditional methods, reducing costs and improving
inspection efficiency. In the sample generation phase of this
study, we used UAV technology to collect image data of
photovoltaic panels. With this technology, we can quickly
and comprehensively collect critical visual information on
photovoltaic power generation systems. To further optimize
the quality and usability of the data, we input the collected
image data into the SSD algorithm for preprocessing. This step
involves image cropping, anchoring, perspective correction,
etc., aiming to enhance the ACC and consistency of the
image data, laying a solid foundation for subsequent anomaly
detection analysis.

Fig. 2. Normal samples in the Battery-SL dataset.

Fig. 3. Anomaly samples in the Battery-SL dataset.

We manipulate the UAVs to fly at low altitudes of 20,
10, and 5 km/h with a uniform speed to images shot the
photovoltaic power generation systems in a certain area,
and sample the collected image data evenly in time without
repeatedly capturing the overall image of the photovoltaic
panel. Then, the edge data of each photovoltaic panel is
labeled. SSD is used in multiscale target detection for image
data. As shown in Figs. 2 and 3, the frontal image of each
photovoltaic panel is obtained after a perspective correction,
and is stored in the dataset. The SSD objective function is
expressed as follows:
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TABLE II
BATTERY-SL DATASETS

L(x, c, l, g) = 1

N
(Lconf(x, c)+ αLloc(x, l, g)) (2)

where Lconf(x, c) and Lloc(x, l, g) are the classification loss and
positioning loss of SSD.

2) Whitening Treatment: In the field of image detec-
tion, environmental factors, such as lighting intensity, object
reflectance, and camera characteristics may all interfere with
the detection results. In order to extract stable information
from images that are not affected by these external factors,
image whitening processing is particularly important [30].
Image whitening can be used to process overexposed or
underexposed pictures by changing the average pixel value of
the image to 0 and changing the square deviation of the image
to unit variance 1. First, the mean and variance of the original
image are calculated, and then each pixel value of the original
image is transformed. Suppose the image P has I rows and J
columns, namely, the value of each pixel is Pij. The formula
is expressed as follows:

μ =
∑I

i=1
∑J

j=1 Pij

IJ
(3)

σ =
∑I

i=1
∑J

j=1

(
Pij − μ

)2

IJ
(4)

xij = pij − μ

σ
(5)

where μ is the mean value, σ is the variance and Xij is the
pixel value of column j and row i. After whitening stabilizes
image features, the Gate-conv SVDD model leverages these
processed inputs for robust anomaly detection in photovoltaic
panels.

3) Battery-SL Dataset: The Battery-SL dataset we con-
structed is divided into three different scales, as detailed in
Table II. The dataset contains images with a wide range of
resolutions, ranging from lower resolutions of 64 × 32 pixels
to higher resolutions of 1280 × 640 pixels. These images
mainly focus on the detection of photovoltaic panels, covering
both normal and abnormal states. The abnormal categories
specifically include phenomena, such as cracking, blistering,
foreign object intrusion, and blade obstruction on photovoltaic
panels, all based on the classification criteria from previous
studies [31].

In this study, we particularly emphasize the detection of
abnormal obstruction, with solar panels as the primary test
object. The experimental dataset used in this study is char-
acterized by three key dimensions: the number of 1) image
channels; 2) image width; and 3) image height.1 The com-
prehensive consideration of these dimensions provides rich

1https://github.com/Wanllence-tju/Battery-dataset.

feature information for the abnormal detection of photovoltaic
panels, contributing to the improvement of detection algorithm
performance and ACC. Through the meticulously designed
and constructed Battery-SL dataset, we aim to provide high-
quality data support for the intelligent inspection and abnormal
detection of photovoltaic panels, thereby promoting research
progress in this field.

D. Core Module of Anomaly Detection

1) Gated Convolution Network: To capture the dependen-
cies between pixels with relatively long spans and avoid the
problems of gradient disappearance and gradient explosion, the
proposed model introduces a Gate-conv module. This module
is designed to selectively propagate critical features through a
bidirectional gating mechanism, filtering out key information
and suppressing invalid signals. As shown in Fig. 1, for an
input feature map x ∈ R

C×H×W , the Gate-conv operation is
defined as

z = σ
(
Wg ∗ x

) · (Wf ∗ x
)

(6)

where Wg and Wf are convolutional kernels for the gating
and feature transformation branches, respectively, σ is the
sigmoid activation, and ∗ denotes convolution. The gating
branch σ(Wg ∗ x) generates a spatial attention map that
modulates the feature branch Wf ∗ x, emphasizing anomaly-
relevant features. Unlike attention modules like CBAM, which
focus on global context modeling, Gate-conv operates within
convolutional layers to hierarchically refine local features,
reducing computational overhead while preserving critical
details for anomaly detection.

In detail, the Gated-conv module leverages gated con-
volution to process features extracted from high-speed
UAV imagery, effectively minimizing errors and improv-
ing precision. To capture temporal dependencies within the
image sequences, causal convolution is employed, allowing
the model to analyze the sequential relationships between
past and future frames. Furthermore, dilated convolution is
incorporated to compress feature dimensions while enabling
multiscale temporal feature extraction. To facilitate efficient
training and enhance convergence speed, residual connections
are introduced, with dimension-matching shortcuts ensuring
compatibility with the depth of subsequent residual layers, as
illustrated

y(k) = tanh
(

fFilter(x
k−1)

)
∗ σ

(
fGate(x

k−1)
)
+ xk−1 (7)

x(t) = tanh
(

wt ∗ x(t−1)
)

(8)

RFn+1 = RFn + (k + (k − 1)(d − 1) − 1)S (9)

where fFilter is the filter-inception network layer, and fGate is the
gate-inception network layer. Furthermore, x(t) is the output at
time step t, w, and b are convolution and bias parameters, RF
is the receptive field size, k is the kernel size, d is the dilation
rate, and S is the stride.

The Gated-conv module, as defined in (7), adaptively
regulates the flow of information through a set of gating
mechanisms. It effectively captures fine-grained dependencies,
extracts image features with high efficiency, and enhances
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Fig. 4. Schematic representation of the Inception structure.

the model’s representational capacity while suppressing noise
and irrelevant signals for rapid and accurate feature extrac-
tion. Specifically, the Gated-conv module processes input
image features through multiple parallel gated convolutional
branches, where each branch employs distinct convolutional
filters and gating units. This design enables the compression
of high-dimensional representations into a lower-dimensional
space while retaining anomaly-relevant information, a pro-
cess referred to as parallel gated feature compression.
Mathematically, the output across M parallel branches is
given by

zout =
M∑

m=1

σ
(
Wg,m ∗ x

) · (Wf ,m ∗ x
)

(10)

where Wg,m and Wf ,m are the gating and feature kernels for
the mth branch. This parallel structure enhances robustness by
capturing diverse feature representations, which are then fused
via dot-product concatenation for SVDD clustering.

Subsequently, causal Convolution shown in (8) ensures
outputs depend solely on current and past inputs, capturing
high-order dependencies by extracting contextual information
from image data features. Dilated Convolution presented in
(9) expands the receptive field in the temporal dimension by
systematically adjusting the dilation rate d, enabling rapid
expansion in a multilayer causal network, performing pro-
gressive information compression, and extracting multiscale
features to capture global temporal information across all
frequencies without increasing parameters or computational
costs.

2) Inception Structure: We adopted the optimized
Inception structure [32] to extract high-dimensional features.
Considering the potential issues of parameter expansion
and overfitting caused by deep convolutions, we selectively
retained the 3 × 3 and 1 × 1 convolutional units that are
most sensitive to photovoltaic panel anomaly detection. This
strategy not only reduces the model’s parameter count but
also improves computational efficiency.

As shown in Fig. 4, we simulated the biological neural
system through sparse connections, effectively expanding the
network’s perceptual capabilities. The multipath design of the
Inception structure allows the network to extract features at
different scales, enriching feature representation and enhanc-
ing the ability to capture details. With this design, we can
achieve precise detection of anomalies in photovoltaic panels
while keeping the model concise. For each Inception, the
model proposed in this article copies the input in two copies
for different path processing, one branch is 1× 3 convolution
and 3× 1 convolution stacked, and the other branch is 1× 1
convolution. Finally, the visual information is aggregated and

output at different sizes, and the structure enables the Gate-
conv SVDD to make more efficient use of parameters. The
formula is expressed as follows:

fFilter

(
x(k−1)

)
= f

(
x(k−1); θ1×3,3×1

)
⊕ f

(
x(k−1); θ1×1

)
(11)

fGate

(
x(k−1)

)
= f

(
x(k−1); θ1×3,3×1

)
⊕ f

(
x(k−1); θ1×1

)
(12)

where θ1×3,3×1 is 1× 3, 3× 1 convolutional layer parameters,
and θ1×1 is 1 × 1 convolutional layer parameters.

3) Normalized Output: As network depth increases, data
feature distributions often saturate nonlinear activation bound-
aries, causing vanishing gradients and slowing convergence.
This study employs batch normalization (BN) to normalize
neuron inputs to a standard distribution (mean 0, vari-
ance 1) [33], mitigating vanishing gradients, enhancing
convergence, and stabilizing training, while its decorrelation
property [34] reduces interdata dependencies for better classi-
fication. BN is thus applied within gated convolutional layers,
fusing shallow and deep features via skip connections, as
shown

x(k) = batchnorm
(

x(k)
)

(13)

y = concat
[
conv

(
x(1), . . . x(k)

)]
. (14)

4) Feature Dimension Reduction: Excessive feature dimen-
sions during model training can trigger the curse of
dimensionality, leading to overfitting, while reducing dimen-
sions may sparsify data, impairing generalization. To counter
this, we use max-pooling to lower dimensionality and noise
while preserving key information, followed by a 3 × 3
convolutional kernel to broaden the receptive field and capture
diverse features, with ReLU activation enhancing dimension-
ality reduction efficacy.

5) Hypersphere Model: During the training initialization
phase, the model is linked to a decoder comprising multiple
layers of deconvolution and upsampling, with training initial-
ization achieved by preprocessing the features of input image
data. This step aims to reconstruct an image matching the
input size while minimizing information loss, enabling the
identification of the centroid of normal sample features in a
high-dimensional space.

In the subsequent formal training phase, this pretrained
centroid is utilized to perform high-dimensional compression
on the hyperspherical model, progressively reducing the hyper-
sphere’s volume. This process encourages the aggregation of
similar features while distancing anomalous features from the
cluster center, thereby achieving efficient and rapid anomaly
detection.

The detection framework proposed in this article is based
on the SVDD model, as shown in Fig. 5. The feature rep-
resentation function �(·) maps image data sample features
x ∈ D to a high-dimensional feature space. The goal of the
detection module is to construct a feature hypersphere with
minimal volume in the high-dimensional feature space, defined
by its center c and radius R, enveloping the high-dimensional
features mapped from the image data and iteratively reducing
the vector radius to continuously compress the hypersphere’s
volume.
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Fig. 5. Schematic of SVDD-based hyperspherical abnormal detection.

In unsupervised anomaly detection, where training data
predominantly consists of normal samples, the focus lies on
minimizing the distance from sample points to the hyper-
sphere’s center c, rather than the radius R, thereby compressing
the hypersphere’s volume to cluster high-dimensional image
data features toward the center. For a given set of training
sample points, D = {x1, . . . , xn}, the defined objective function
is expressed as follows:

min
W
= 1

n

n∑

i=1

‖�(xi, W)− c‖2 + λ

2

L∑

l=1

‖Wl‖2F (15)

s.t. ‖�k(xi, W)− c‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i. (16)

where �(·) maps input samples xi to a high-dimensional
feature space using network weights W. The objective min-
imizes the average squared distance from mapped features
�(xi, W) to the hypersphere center c (with n samples),
while (λ/2)

∑L
l=1 ‖Wl‖2F regularizes the weights Wl across L

layers using the Frobenius norm and hyperparameter λ. The
constraint limits the distance of each feature �k(xi, W) from
c to the radius R2, with slack variables ξi ≥ 0 for flexibility.

For an image data test sample, the anomaly score is defined
as the distance from the sample point to the hyperspherical
center in the output space. After clustering high-dimensional
image data features near the center, points whose high-
dimensional features deviate significantly from the compressed
hypersphere’s center are identified as anomalous data features.
Furthermore, the high-dimensional distance of these outlier
features from the hypersphere center serves as a quantitative
metric of their anomaly severity. This metric is subsequently
used to assess the extent of anomalies, enabling the evaluation
of the severity of irregular information in UAV-captured
photovoltaic panel imagery.

E. Complexity Analysis

To evaluate the Gate-conv SVDD framework’s suitability
for real-time UAV anomaly detection, we analyze its computa-
tional complexity across key components: SSD preprocessing,
Gate-conv feature extraction, and SVDD clustering.

1) SSD Preprocessing: The SSD algorithm handles image
cropping, anchoring, and perspective correction. For an input
image xi ∈ R

C×H×W , SSD uses a CNN backbone (e.g., VGG-
16) with complexity O(C · H · W · F), where F is the filter
count, and detection layers with complexity O(B · S · (H ·W)).
With C = 3, H = 128, W = 64, F = 512, B · S ≈ 104, the

complexity is O(H ·W · F) ≈ O(106) per image, efficient for
high-resolution UAV images.

2) Gate-Conv Feature Extraction: The Gate-conv module
uses M parallel branches, each with a convolution of complex-
ity O(C ·H ·W · k2 ·Cout). For M branches and K layers, total
complexity is O(M · K · C · H · W · k2 · Cout). Using M = 4,
K = 4, C = 3, Cout = 64, H = 128, W = 64, k = 3, the
complexity is O(4 · 4 · 3 · 128 · 64 · 9 · 64) ≈ O(106) per image,
optimized by GPU parallelism (Section IV).

3) SVDD Clustering: SVDD constructs a hypersphere for
anomaly detection. For a dataset D = {x1, x2, . . . , xn}, training
complexity is O(n2), and inference complexity is O(n · d),
where d is the feature dimension (d = 64). For Battery-
SL10000 (n = 10000), training is O(106), inference is O(104 ·
64) ≈ O(106) per image, supporting real-time use.

4) Overall Complexity: Gate-conv dominates with O(106)

per image, followed by SSD and SVDD at O(106). Training
(O(n2)) is offline, while inference (O(108)) supports high-
speed UAV imaging, as shown in Section IV, with potential
for hardware optimization.

This analysis confirms Gate-conv SVDD’s efficiency for
real-time UAV anomaly detection, aligned with Section IV
performance metrics.

F. Model Optimization Algorithm

We have improved the SVDD model by employing bidi-
rectional diffusion convolution to perceive data features
in both forward and backward directions, implementing
an information expansion perception strategy that enhances
computational efficiency and ACC. The parallel gating mech-
anism enhances feature precision by selectively filtering key
information, followed by dilated convolution to compress
features and expand the receptive field, refining feature repre-
sentation across diverse tasks.

Thanks to the minimal computational overhead introduced
by the gating structure, the optimized convolutional parameters
efficiently manage model complexity, enabling the Gated-conv
SVDD model to achieve both high ACC and fast processing
speed. This makes it particularly well-suited for large-scale
datasets and real-time applications, such as anomaly detection
in UAV-captured photovoltaic panel imagery. By compressing
high-dimensional feature vectors into a hypersphere, the model
clusters normal image features near the center while effectively
isolating anomalous features. This compact representation
enhances the model’s ability to identify and distinguish anoma-
lies with greater precision and efficiency.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

The experiments in this study were conducted on a Linux
server equipped with a GeForce RTX 2080 Ti graphics card,
which provides 12 GB of graphics memory. To ensure rapid
convergence, the Adam optimizer was used during training.
The proposed Gate-conv SVDD model efficiently extracts
image features through gated convolutions and constructs a
hypersphere in high-dimensional feature space for anomaly
detection.
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Algorithm 1 Gate-Conv SVDD
Require: Training dataset D = {x1, x2, . . . , xn}, xi ∈

RC×H×W , maximum number of iterations T , number of
convolutional network layers K

Ensure: Optimal model parameters
1: procedure GATE-CONV-SVDD(D, T, K)
2: Unified image data for: xi ∈ R3×128×64

3: Initialize model parameters
4: Train encoders, decoders
5: for t← 1 to T do
6: for k← 1 to K do
7: Z = encoder(x)
8: Z = encoder(x)
9: loss = (y−x)2

n
10: end for
11: end for
12: Set the feature center
13: Save the pre-trained model
14: for t← 1 to T

2 do
15: for k← 1 to K do
16: Z = encoder(x)
17: Use Eq. (2) to get the loss
18: end for
19: end for
20: end procedure

1) Data Capture Conditions: The data for the experiments
were captured using a drone equipped with a high-resolution
camera. The drone was flown at an average altitude of 50 m
above the photovoltaic panels, ensuring a clear and detailed
view of the panel surfaces. The drone’s speed during image
capture was approximately 5–20 m per second, which allowed
for consistent image coverage without introducing motion blur.
The photovoltaic panel data were collected via drone and will
be made publicly available as open-source data for further
research by other scholars. The dataset includes three sample
sets of 2000, 5000, and 10 000 images, corresponding to
drone speeds of 20, 10, and 5 m/s, respectively, as previously
described.

The images were collected under clear and cloudy weather
conditions to simulate real-world scenarios. The experi-
ments were conducted on days with moderate winds (below
15 km/h), and temperatures ranging from 15 ◦C to 30 ◦C.
These conditions provided a suitable environment for image
capture, minimizing potential interference from extreme
weather while ensuring that typical operational conditions for
UAV-based inspections were represented. These conditions
ensured clear and detailed imagery without motion blur. The
experiments processed simulated UAV-captured data on the
server, and no hardware-specific tests (e.g., on embedded
UAV systems) were conducted in this study. Future work will
focus on integrating the framework with UAV hardware and
validating its performance in real-world settings.

2) Evaluation Methodology: The performance of the Gate-
conv SVDD model was evaluated from five key perspectives:
baseline comparison, ablation and component study, parameter

sensitivity, flight speed sensitivity, and computational scale and
efficiency. These evaluations comprehensively demonstrate the
effectiveness of the proposed model. The five baseline models
used for comparison are as follows.

1) Deep SVDD: This model is used for image-level
anomaly detection. A neural network extracts features
from the input data, and during training, normal samples
are contracted within a minimized hypersphere in the
feature space. Abnormal samples are placed farther from
the hypersphere. The model determines whether a test
sample is anomalous by measuring the distance between
the sample point and the center of the hypersphere.

2) CNN Autoencoder [35]: This model is based on an
unsupervised learning approach where the goal is to
reconstruct the input data without relying on labeled
samples. The architecture combines multiple layers of
convolutions with encoder-decoder structures to learn a
compact representation of the input and reconstruct it as
accurately as possible.

3) Region CNN [4]: This model utilizes region-based
CNNs to detect anomalies in photovoltaic panels. The
approach focuses on identifying localized defects or
irregularities within specific regions of the solar panels.

4) PatchCore [20]: PatchCore, which leverages pretrained
CNNs to create a feature patch memory bank, achieving
high AUROC and localization ACC on benchmarks
like MVTec AD using only normal data, yet it faces
challenges with positional variations, pretrained model
dependency, and moderate computational demands that
constrain its broader applicability.

5) AdaCLIP [26]: AdaCLIP adapts the pretrained CLIP
model with hybrid learnable prompts for zero-shot
anomaly detection, excelling across diverse domains like
industrial and medical datasets. However, it depends on
CLIP’s quality, incurs computational costs from prompt
generation, and struggles with highly variable or noisy
data.

B. Evaluating Metrics

In the context of anomaly detection, the primary focus is on
the model’s ability to effectively distinguish between normal
and abnormal samples, framing it as a classification task.
The model clusters feature information through hypersphere
compression, and the anomaly confidence score for each
sample is defined based on its deviation from the cluster center,
with outliers assigned higher scores according to their distance
from the center. Samples with relatively low confidence scores
are considered anomalous.

To objectively and comprehensively measure the
performance of the proposed method, we select two commonly
used evaluation indicators in image detection tasks: the
ACC [31] and the AUC [36]. These metrics are defined as
follows.

1) Definition of Accuracy: Considering the true normal
sample as a negative case and treating anomalies as positive
cases, the evaluation metrics include the following classifi-
cations: a successfully detected anomaly is labeled as a true
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positive case (TP), correctly identifying a normal sample is a
true negative case (TN), a normal sample incorrectly classified
as abnormal is a false-positive case (FP), and an abnormal
sample incorrectly classified as normal is a false-negative case
(FN) [37]. The calculation formula is as follows:

ACC = TP+ TN

TP+ TN+ FP+ FN
. (17)

2) Definition of AUC (Area Under the Receiver Operating
Characteristic Curve): Based on the results of the anomaly
score for the predicted data, we rank the samples and regard
those samples whose anomaly score is less than or equal to
the sample selected as positive examples to do predictions.
A series of true case rates (TPR) and FP rates (FPR) are
generated, from which we can plot the receiver operating
characteristic (ROC) curve. This curve is an analysis tool for
the classification effect of binary classification models and is
suitable for anomaly detection tasks. The formulas for TPR
and FPR are as follows:

TPR = TP

TP+ FN
= TP

P
(18)

FPR = FP

FP+ TN
= FP

N
. (19)

In a coordinate system, the diagonal line from (0, 0) to
(1, 1) divides the ROC space into two regions: the upper left
and the lower right. Points above this diagonal line represent
good classification results (better than random classification),
while points below this line represent poor classification
results (worse than random classification) [38]. The formula
for calculating AUC by approximating the area under the ROC
curve as the sum of areas of multiple trapezoids is

AUC =
n−1∑

i=1

(TPRi+1 − TPRi)× (FPRi+1 + FPRi)

2
(20)

where n denotes the number of points on the ROC curve. This
formula computes the Area Under the AUC by summing the
areas of trapezoids formed between successive points on the
curve, with each trapezoid’s area determined by the differences
in TPR and FPR values.

AUC measures the likelihood that the anomaly detection
model will rank a randomly chosen anomalous sample higher
than a randomly chosen normal sample. A higher AUC
value indicates a better model performance in distinguishing
between normal and anomalous samples.

While both ACC and AUC are important evaluation met-
rics, in this study, the AUC is of greater significance. This
is because AUC provides a more comprehensive measure
of model performance across various decision thresholds,
whereas ACC can be sensitive to class imbalances, especially
in anomaly detection tasks where the number of normal sam-
ples typically far exceeds the number of anomalous samples.
Therefore, AUC is a more robust indicator of the model’s
ability to distinguish between normal and abnormal instances
across different decision thresholds, making it the preferred
metric for evaluating the effectiveness of our anomaly detec-
tion model.

TABLE III
BASELINE COMPARING THE EXPERIMENTAL RESULTS ON THE

BATTERY-SL10000 DATASET

C. Baseline Comparisons

To evaluate the proposed Gate Convolutional SVDD model
in this article, we conducted experiments on the Battery-
SL10000 dataset. The experimental dataset consists of 15 000
UAV captured images, with 9968 normal samples included in
the training set. The test set comprises an equal number of
1000 normal and abnormal samples, all carefully selected from
the remaining images.

We selected Deep SVDD, CNN autoencoder, and Region
CNN as comparative models to ensure the comprehensiveness
and fairness of the experimental results. All experimental
results are presented in Table III.

The results in the table reveal that Gate-conv SVDD
outperforms all other models in the comprehensive evalua-
tion of the Battery-SL10000 dataset, with the highest AUC
(79.5836) and ACC (72.2987). This superior performance is
primarily attributed to the innovative gating mechanism, which
significantly enhances the feature extraction process within the
SVDD framework. By optimizing the information flow and
leveraging the hypersphere structure, Gate-conv SVDD excels
in anomaly detection tasks, demonstrating its effectiveness in
accurately identifying outliers.

While other methods like CFlow-AD and Anomalib show
competitive results, Gate-conv SVDD stands out due to its
advanced feature propagation strategy, which enables it to
better capture complex patterns and anomalies. These find-
ings underscore the professional capabilities and potential of
Gate-conv SVDD as a state-of-the-art solution for anomaly
detection, highlighting its edge over traditional and newer
models.

D. Ablation Study

In this section, we conduct a comprehensive ablation study
to investigate the effectiveness of various architectural choices
and structural components in improving the performance of
the proposed anomaly detection model. The study focuses
on several key aspects, including the comparison of dif-
ferent gating mechanisms, convolutional output structures,
and dimensionality reduction techniques. Through a series of
controlled experiments on the Battery-SL10000 dataset, we
aim to evaluate the impact of each design decision on model
performance, measured by AUC and ACC metrics.

The experiments are designed to highlight the importance
of bidirectional gating, the placement of normalization layers,
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TABLE IV
EXPERIMENTAL RESULTS COMPARING THE GATING STRUCTURES

ON THE BATTERY-SL10000 DATASET

the type of convolutional output structures, and the use of
dimensionality reduction techniques. By systematically testing
these configurations, we provide valuable insights into how
each component contributes to the overall model performance
and stability.

1) Comparison of Different Gating Structures: Multilayer
convolutional networks effectively extract high-dimensional
features containing rich texture and color information through
a deep hierarchical structure. These features play a key role in
improving model performance without increasing the amount
of data [39]. This study aims to verify the effectiveness of
the proposed structure in achieving this goal through the
following experimental settings. The experiment first com-
pared the settings of different numbers of parallel gated
convolutions to evaluate the difference in feature extraction
between bidirectional and unidirectional gating mechanisms.
Furthermore, we explored the fusion strategy of bidirectional
gating, comparing two information fusion methods: concate-
nation dot product and dot product concatenation, in order to
evaluate the comprehensive performance of the three gating
structures. The experimental results are shown in Table IV.

For the multiconvolutional framework designed for image
feature extraction, the ablation experiments first compared
different numbers of parallel gated convolution settings to
evaluate the differences between bidirectional and unidirec-
tional gating mechanisms in feature extraction. The role of the
gating structure is to eliminate errors by processing similar
data through different activation and convolution forms. This
enables the model to reduce errors and improve ACC.

The combination of the bidirectional gating mechanism
and dot-product fusion ensures superior feature integration
and transmission, contributing to better performance stability.
The bidirectional gated convolution design further enhances
model performance by leveraging smaller 1 × 3 and 3 × 1
convolutional kernels along with a 1 × 1 kernel. This design
reduces parameter complexity while improving the model’s
ability to learn global features, which is crucial for effective
anomaly detection. Therefore, we explored fusion strategies
for bidirectional gating and compared two information fusion
methods: direct concatenation and Hadamard product fusion,
to evaluate the overall performance of the three gating struc-
tures. The experimental results are presented in Table IV.

The experimental results of the “Comparison of Different
Gating Structures” on the Battery-SL10000 dataset clearly
demonstrate the effectiveness of the proposed dual-gating
mechanism with Hadamard product fusion in anomaly detec-
tion tasks, achieving an AUC of 78.0487 and an ACC
of 71.7358%, which represents a significant improvement
over other gating mechanisms. The results indicate that this

TABLE V
EXPERIMENTAL RESULTS COMPARISON OF DIFFERENT CONVOLUTION

OUTPUT STRUCTURES ON THE BATTERY-SL10000 DATASET

structure outperforms all other gating configurations in both
AUC and ACC, highlighting its superior ability to capture and
utilize key features for detection. This significantly enhances
the model’s ACC, stability, and overall anomaly detection
capability.

2) Comparison of Different Convolution Output Structures:
After each iteration of the parameters of the training cycle,
the distribution of the data features will change through the
convolutional layer, which will make subsequent learning
difficult [40]. To this end, we experiment with the insertion
position of the BatchNorm layer relative to the gated convo-
lutional layer. At the same time, the input-output relationship
between the multilayer networks will directly affect the appli-
cation effect of the model, so the output structure of serial and
parallel outputs is set up in this experiment. On the training
set of 10 000 normal samples, six output methods are tested
to verify the rationality of the structure selected in this article.
The experimental results are shown in Table V.

The experimental results on the Battery-SL10000 dataset
demonstrate the significant impact of the model’s decoding
output structure on enhancing anomaly detection performance.
Among the tested configurations, the combination of intralayer
normalization and parallel output achieved the best results,
with an AUC of 78.0487 and an ACC of 71.7358. This
structure outperforms all other configurations because normal-
ization effectively removes data noise and standardizes data
scaling. In contrast, serial processing in the decoding output
module leads to greater feature loss for image data due to the
weak sequential correlation in images. Therefore, a parallel
processing structure for decoding and outputting image data
features yields the best performance.

Moreover, configurations without normalization layers
result in significantly lower AUC values, regardless of whether
the decoding output module processes data sequentially or in
parallel. This confirms the critical role of normalization in
enhancing model performance. Specifically, BatchNorm helps
stabilize and optimize the information flow within convolu-
tional layers, preserving the distribution characteristics of the
data and improving the model’s ability to detect anomalies.

Furthermore, the parallel output structure consistently out-
performs the sequential output configuration, with AUC values
of 68.92 and 59.59, respectively. This indicates that the parallel
output structure is more effective at extracting image data
features, as sequential structures are better suited for capturing
sequential data characteristics. In contrast, parallel structures
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TABLE VI
RESULTS OF THE EXPERIMENTAL COMPARISON OF DIFFERENT

DIMENSIONALITY REDUCTION COMPONENTS ON THE

BATTERY-SL10000 DATASET

excel in anomaly detection tasks by capturing both local and
global features in image data. By identifying differences in
texture and color, as well as normalizing features, the model
significantly enhances its ability to distinguish between normal
and anomalous patterns.

In conclusion, the experimental results highlight the crucial
role of intralayer normalization and the parallel output struc-
ture in improving model ACC and robustness. These elements
play a vital role in enhancing feature extraction, ensuring that
the model can effectively detect anomalies.

3) Comparison of Different Dimensionality Reduction
Structures: Although multilayer convolution can effectively
map data features into high-dimensional space, directly par-
titioning hyperspheres in this space encounters challenges
due to high computational complexity and the inability to
meet real-time detection requirements [41]. Therefore, we
explored various methods to reduce the data dimensions while
maintaining the model’s performance.

This study examined five dimensionality reduction tech-
niques, and designed corresponding experiments. In these
experiments, we ensured the consistency of dimensions before
and after data reduction. We modified the position of the pool-
ing layer, creating post-pooling single-layer convolution and
prepooling single-layer convolution structures. Further modi-
fications included adjusting the number of convolution layers
to form double-layer convolution and prepooling double-layer
convolution structures. Additionally, a control group without
pooling was also implemented.

As presented in Table VI, the experimental results on the
Battery-SL10000 dataset highlight the importance of dimen-
sionality reduction in balancing computational efficiency and
model ACC. Among the five methods tested, the structure that
incorporates both pooling and convolutional layers achieved
the best performance, with an AUC of 79.5833 and an ACC
of 72.2933. The experimental results highlight the importance
of pooling before dimensionality reduction, as it helps to
filter out noise and preserve key features that are crucial for
effective anomaly detection. This method effectively combines
feature compression with the ResNet embeddings at each
layer, ensuring that the original information is gradually
integrated into the feature vectors during the dimensionality
reduction process, thereby enhancing both efficiency and ACC.
In contrast, the performance of the prepooling dual-layer
convolutional structure shows a slight decline, with an AUC of
76.0433 and an ACC of 70.7354. The dual-layer convolutional
structure not only increases the computational burden but also

Fig. 6. Comparative experimental results of the real data collected by UAV.

makes the model more prone to overfitting, leading to a decline
in ACC. Nonetheless, it still outperforms other configurations,
such as the single-layer convolution with post-pooling and the
dual-layer convolution without pooling.

Moreover, the design of multiple optimal dimensionality
reduction modules integrates layer-wise feature compression
with the continuous incorporation of ResNet embeddings,
successfully balancing feature retention and computational
complexity reduction. This approach enhances feature extrac-
tion while minimizing the number of parameters.

In conclusion, the experimental results confirm the neces-
sity of a well-structured dimensionality reduction strategy,
which integrates the placement of pooling layers and ResNet
embeddings. These elements enable the model to retain critical
features while optimizing efficiency and ACC. The combi-
nation of these strategies significantly enhances the model’s
anomaly detection capability while ensuring computational
feasibility for real-time applications.

E. Impact of Different Speeds and Datasets

In the experimental process, we simulated a real-world
inspection scenario and conducted anomaly analysis and
detection on images captured by drones at different flight
speeds, yielding some interesting results, as shown in Fig. 6.
Specifically, we set three distinct flight speeds: 5, 10, and
20 m/s. As the speed increased, the number of images captured
per unit of time correspondingly decreased. Specifically, at
a speed of 5 m/s, we obtained 10 000 images; at 10 m/s,
5000 images were collected; and at 20 m/s, only 2000 images
were captured. These images formed three datasets of varying
scales, which were utilized to evaluate the performance of the
anomaly detection model under different speed conditions.

During the optimization process, in order to balance rapid
progress and precise tuning, we initially adopted a higher
learning rate and then gradually decreased it, ensuring the
algorithm converged to the optimal solution [42]. By config-
uring the parameters of the Adam optimizer, including the
decay factors β1, β2 and the multistep decay parameter γ ,
we effectively regulate the minimization of the hypersphere
radius [43]. We compared three inspection speeds—20, 10,
and 5 m/s—across differently scaled datasets and summarize
the main findings as follows.
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1) Comparison of Detection Accuracy Across Different
Methods and Speeds: From the AUC and ACC metrics in the
experimental results, it is apparent that under speeds of 20 m/s,
10 m/s, and 5 m/s, the Gate-conv SVDD model outperforms
the other three methods (Deep SVDD, CNN Autoencoder, and
Region CNN). For instance, when operating at 20 m/s on a
small dataset of approximately 2000 images, Gate-conv SVDD
achieves an AUC of 92.97% and an ACC of 88.56%, which is
significantly higher than the other approaches. Deep SVDD,
though it obtains comparatively good results at 20 m/s (AUC
87.49%, ACC 81.98%), exhibits a notable performance drop
when the speed decreases to 10 m/s or 5 m/s, accompanied
by an increase in dataset size. Similarly, CNN Autoencoder
and Region CNN show weaker stability under all speeds,
particularly for medium-sized datasets (about 5,000 images)
collected at 10 m/s.

2) Performance Comparison Across Three Speeds: We
conduct the performance comparison across three different
speeds as follows.

1) Speed 20 m/s (Small Dataset, 2000 Images): The faster
flight speed covers a larger area in a single inspection,
but yields fewer images. Nevertheless, Gate-conv SVDD
and other deep models with robust feature extraction and
high-dimensional mapping capabilities can still achieve
high ACC even with a relatively limited amount of data.

2) Speed 10 m/s (Medium Dataset, 5000 Images): More
images are captured, but certain methods, such as
Deep SVDD, CNN Autoencoder, and Region CNN, are
more sensitive to shifts in data distribution or may be
insufficiently tuned for this volume of data, leading
to underwhelming performance. By contrast, Gate-conv
SVDD maintains robust ACC and stability at this speed.

3) Speed 5 m/s (Large Dataset, 10000 Images): This slower
speed produces the largest dataset, favoring deep models
that need extensive data for capturing subtle fault fea-
tures. Although Region CNN shows some improvements
in AUC under these conditions, Gate-conv SVDD still
stands out with the highest overall metrics, reflecting its
strong generalization on large-scale data.

3) Balances and Optimizations Among Speed and Data
Volume: The experiments indicate that at higher speeds (e.g.,
20 m/s), it is possible to inspect a wider area more efficiently,
but the total number of collected images is relatively small.
Thus, to further improve ACC, it may be necessary to employ
more powerful feature extraction or incremental data gathering
in subsequent training. Conversely, at slower speeds (e.g.,
5 m/s), although the model benefits from a significantly larger
dataset for more thorough learning, the inspection efficiency
is reduced. For extensive solar farms, prolonged slow-speed
inspections may increase operational costs. Therefore, to bal-
ance detection ACC and operational efficiency, one may rely
on larger datasets for model training and optimization while
considering real-world constraints, such as the solar farm’s
acreage and photovoltaic array arrangement to determine the
appropriate flight speed and data quality.

4) Conclusion and Practical Recommendations: From the
standpoint of balancing speed and ACC, it is advisable to
employ different strategies based on the scale of the photo-
voltaic system.

TABLE VII
COMPARISON OF DIFFERENT METHODS ON THE

BATTERY-SL10000 DATASET

1) Small Photovoltaic Installations: Since the inspection
area is limited, it is preferable to operate at slower speeds
(e.g., 5 m/s), allowing the collection of higher-resolution
images and improving fault detection ACC.

2) Medium and Large Photovoltaic Farms: To enhance
operational efficiency, faster speeds (e.g., 20 m/s) are
recommended for swift data collection. Coupled with
efficient deep anomaly detection models such as Gate-
conv SVDD, adequate ACC can still be maintained,
striking a balance between inspection speed and detec-
tion precision.

F. Efficiency Experiment

To evaluate the tradeoff between computational cost and
detection performance, we conducted an efficiency experi-
ment involving four representative methods: 1) Deep SVDD;
2) CNN Autoencoder; 3) Region CNN; and 4) Gate-conv
SVDD. As shown in Table VII, each method was assessed
based on model size, training time, inference time, and
detection metrics (AUC and ACC).

From the table, we observe that Gate-conv SVDD achieves
the highest anomaly detection performance, with an AUC
of 79.5836 and an ACC of 72.2987, albeit at the cost of
a relatively large model size (629 807 parameters). Region
CNN, Deep SVDD, and CNN Autoencoder demonstrate a
lower parameter count compared to Gate-conv SVDD. These
observations highlight a fundamental tradeoff in model design,
where more compact architectures, despite reducing computa-
tional demands, exhibit lower detection ACC compared to the
parametrically richer Gate-conv SVDD.

Furthermore, the training time and inference time reported
in Table VII highlight differing suitability for real-world
deployment scenarios. While Region CNN achieves faster
inference at 0.00210 s, Gate-conv SVDD delivers superior
detection ACC, rendering it a more suitable option when
performance is the priority. CNN Autoencoder and Deep
SVDD achieve shorter training times of 52.83 and 66.05 s,
respectively, while exhibiting reduced detection performance.
Overall, this efficiency experiment illustrates Gate-conv SVDD
effectively achieving high performance by optimizing ACC
while maintaining efficiency despite increased inference time
and parameter count.

G. Parametric Sensitivity Analysis

In order to examine the impact of different hyperpa-
rameters on anomaly detection performance, we followed
the methodology described in the original experiment.
Specifically, we selected seven equally spaced values for β1,
β2, and γ , then employed stepwise optimization and visual
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(a) (b) (c)

Fig. 7. Parametric sensitivity analysis curves. (a) Sensitivity analysis of parameter β1. (b) Sensitivity analysis of parameter β2. (c) Sensitivity analysis of
parameter β3.

comparison (see Fig. 7) to ascertain the influence of each
parameter on the model’s learning dynamics. This systematic
approach ensured a thorough exploration of the parameter
space and provided a reliable basis for subsequent conclusions.

The first stage of the sensitivity analysis focused on the
momentum term, β1. When β1 varied within [0.60, 0.90],
both AUC and ACC metrics underwent periodic fluctuations.
Notably, performance peaked at β1 = 0.75. This somewhat
lower momentum decay rate, relative to typical defaults in
Adam, enables more rapid adjustments in the early training
phases to better capture anomalous patterns. At the same
time, it avoids excessive gradient smoothing that can overlook
transient but critical features of the data.

Subsequent experiments investigated the second-moment
estimation parameter, β2. Varying β2 in the range [0.70, 0.999]
revealed a distinct U-shaped curve in the AUC metrics.
Significantly lower settings (e.g., 0.70 or 0.75) compro-
mised performance, indicating that an insufficiently smoothed
second-moment estimate hinders stable convergence. By con-
trast, a larger decay rate yielded smoother gradient updates.
The best anomaly detection results emerged at β2 = 0.999,
demonstrating that a highly smoothed variance accumulation
is advantageous for this task.

Finally, with β1 and β2 fixed at their optimal values, we
analyzed the effect of the learning rate adjustment factor, γ . As
γ increased from 0.04 to 0.16, both AUC and ACC exhibited
an overall decline. The optimal performance was achieved at
γ = 0.04, confirming that a relatively small adjustment factor,
combined with a carefully designed multistep learning rate
decay strategy, effectively refines model parameters in later
training stages without overshooting or converging too rapidly.

Overall, these findings support the efficacy of the Adam
algorithm’s adaptive properties [44], particularly its ability
to escape saddle points and dynamically adjust learning
rates. Moreover, employing a multistep decay strategy further
enhances convergence and stability as training progresses. In
practice, the best detection performance in these experiments
was reached by setting β1 near 0.75, β2 close to 0.999, and γ

at 0.04. These results provide valuable guidance for fine-tuning
model hyperparameters in anomaly detection scenarios, help-
ing to achieve both efficiency and ACC.

H. Anomaly Detection Case Study

This study adopts a case study approach to analyze surface
anomalies in photovoltaic panels recorded in the Battery-SL

Fig. 8. Abnormal detection effect.

dataset. These anomalies directly lead to a reduction in power
generation and even pose a risk of failure. In real-world
operations, such anomalies are difficult to detect due to the
remote locations of photovoltaic panels and their random
occurrence. In the case study, the Gated Conv-SVDD model
accurately identified anomalous photovoltaic panels in the
image data, as indicated by the red-boxed areas in Fig. 8.
The high label scores of these panels suggest the presence of
potential issues.

This case study validates the effectiveness of the Gated
Conv-SVDD model in real-world photovoltaic power station
monitoring and provides quantitative anomaly scores. The
findings offer crucial support for the automatic inspection and
anomaly detection of photovoltaic panels, further contributing
to intelligent maintenance in photovoltaic power stations and
enhancing smart applications in similar scenarios.

V. CONCLUSION AND DISCUSSION

This article introduces Gate-conv SVDD, a novel method for
anomaly detection on photovoltaic panel surfaces using drone-
captured images. It combines gated convolutional feature
extraction with SVDD clustering to enhance detection ACC
and computational efficiency. The approach excels in rapid,
high-precision anomaly detection for large-scale solar panels
under high-speed drone motion, advancing scalable and gen-
eralizable drone-based image analysis. However, the current
study is limited to server-based experiments, and claims of
deployment-readiness require further validation. Future work
will involve hardware integration tests on UAV platforms and
field validations under diverse environmental conditions to
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ensure robust performance in real-world applications. These
steps will bridge the gap between controlled experiments and
operational deployment, enhancing the framework’s practical
utility for sustainable solar energy systems.

In addition, despite the Gate-conv SVDD model demonstrat-
ing effective quantitative anomaly detection, its performance
in scenarios with limited labeled data or without labeled
data remains suboptimal. Future work will investigate unsu-
pervised, rapid, and efficient quantitative anomaly detection
methods using unlabeled data to improve the algorithm’s
efficiency and quality in large-scale system applications.
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