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Abstract—Optimizing multi-user Mobile Edge Computing
(MEC) networks, particularly those with time-varying wireless
channels and Backscatter communication (BackCom) models,
presents a significant challenge. To address this, we propose an
online offloading algorithm that maximizes system data through-
put while ensuring stable long-term average energy consump-
tion. This optimization problem is formulated as a multi-stage
stochastic Mixed Integer Non-Linear Programming (MINLP)
problem, where both binary offloading decisions and resource
allocation across multiple time slots are jointly optimized. To
handle the complexity introduced by coupled decision-making
at different time slots, we introduce LyDRL, a novel approach
that combines Lyapunov optimization with Deep Reinforcement
Learning (DRL). LyDRL is further enhanced with a threshold
quantization method, which significantly reduces computational
time and is well-suited for real-time implementation, particularly
in environments where channel fading is rapid and unpredictable.
Simulation results show that LyDRL reduces runtime by nearly
50% compared to state-of-the-art approaches, confirming its
effectiveness and efficiency in dynamic MEC networks.

Index Terms—Mobile Edge Computing, Backscatter Com-
munication, Task Offloading, Lyapunov Optimization, Energy
Harvesting

I. INTRODUCTION

MOBILE Edge Computing (MEC) technology is recog-
nized as a crucial solution for enhancing the computa-

tional efficiency of Mobile Devices (MDs), especially for In-
ternet of Things (IoT) devices, which often face limitations in
battery capacities and processing power [1], [2]. By offloading
computational and automation tasks to edge nodes closer to
the data source, resource-constrained devices can significantly
reduce energy consumption [3], [4]. However, optimizing a
multi-user MEC network presents challenges, particularly in
the context of time-varying wireless channels, which can
complicate resource allocation and network performance.

Backscatter communication (BackCom) is a promising next-
generation communication technique that supports wireless
connectivity for sensors and actuators, enables seamless data
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exchange between physical and digital components, and en-
hances energy efficiency in resource-constrained environ-
ments. BackCom separates the transmitter into two parts: one
responsible for emitting the Radio-Frequency (RF) carrier,
which includes power-intensive elements such as synthesizers
and amplifiers, and the other containing the information,
equipped with energy-efficient components like harvesters and
modulators.

To significantly extend the battery life of MDs while
optimizing spectrum utilization, this paper integrates Back-
Com technology into MEC. Unlike traditional Wireless Power
Transfer (WPT) approaches, the BackCom-based scenario
enables MDs to modulate received energy signals, allowing
them to transmit a portion of their task data during offloading
to the MEC server. This not only enhances the durability and
operational lifespan of MDs. but also improves overall system
efficiency. Furthermore, to further boost the performance of the
BackCom model, we incorporate a non-orthogonal multiple
access (NOMA) communication model, we introduce a Non-
Orthogonal Multiple Access (NOMA) communication scheme,
which allows multiple MDs to simultaneously communicate
with MEC servers using the same spectral resources. We
explore a multi-user MEC network assisted by a BackCom
model and design an online computation offloading algorithm
that maximizes system data throughput under long-term av-
erage power stability constraints. To address this challenge,
we propose an online Lyapunov-guided task offloading algo-
rithm called LyDRL, specifically tailored for NOMA-based
and Wireless-Powered MEC with BackCom. This algorithm
leverages the strengths of Lyapunov optimization and Deep
Reinforcement Learning (DRL) [5]. The primary contributions
of this paper are summarized as follows:

• To address the energy limitation of MDs, both WPT-
assisted MEC and backscatter-assisted MEC can improve
the endurance of MDs. This paper integrates these two
models within a binary offloading decision framework in
edge computing. Specifically, when the MD opts for local
processing, WPT is utilized to extend the MD’s battery
life; when the MD decides to offload tasks to the MEC
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server, the backscatter method is employed.
• We have introduced modifications to the data transmis-

sion and energy harvesting components of the backscatter
model. To enhance spectrum utilization, we employ the
NOMA model in the data transmission phase, allowing
for more efficient communication among multiple MDs.
In the energy harvesting phase, we adopt a nonlinear
energy harvesting model to more accurately reflect real-
world energy harvesting dynamics, providing a more
realistic and effective approach to energy collection.

• We design an innovative order-preserving threshold quan-
tization technique. This method effectively balances the
exploration-exploitation trade-off in the design of the
DRL algorithm, ensuring swift training convergence. This
approach effectively reduces time complexity while max-
imizing system data throughput.

The remainder of this paper is organized as follows: In
Section II, we provide an overview of related work in this
field. The system model can be found in Section III. Section IV
formulates the MINLP problem about maximizing system data
throughput and provides an efficient algorithm for making of-
floading decisions and resource allocation. Simulation results
are provided in Section V. Section VI concludes this paper.

II. RELATED WORK

To optimize the computational performance of multi-user
MEC networks, extensive research has focused on computation
offloading strategies. A significant portion of this research
addresses the optimization of computation offloading, often
involving Mixed-Integer Nonlinear Programming (MINLP)
problems. These problems typically involve jointly deter-
mining binary offloading decisions and resource allocation
choices. The complexity of such optimization problems pri-
marily arises from the challenge of efficiently optimizing
the binary offloading decision variables, making the problem
inherently difficult to solve.

Most communication models in MEC systems are based
on Time Division Multiple Access (TDMA) [6] or Frequency
Division Multiple Access (FDMA) [7]. However, these models
often suffer from low communication spectrum utilization.
Recently, backscatter-aided MEC networks have gained in-
creasing popularity [8]. For instance, Shi et al. [9] focused on
optimizing the total computation rate of MDs in a BackCom-
MEC system. In their scenario, the computing task is divisible,
partial offloading is used, and the MD’s computing resources
are optimized. Xie et al. [10] explored the use of RF commu-
nication and BackCom for offloading computational tasks. Ad-
ditionally, many studies have leveraged Deep Neural Network
(DNN) technology to design online offloading algorithms in
MEC networks [11]. By exploiting the data fitting capabilities
of DNNs, these methods can capture data characteristics from
large volumes of historical data, enabling the prediction and
classification of new data for future decision-making.

The majority of previous research typically incorporates
only one or two technical methodologies. To enhance system
performance, this paper adopts an MEC system assisted by

the BackCom model. By leveraging the benefits of Lyapunov
optimization and DRL, it develops a more robust algorithmic
model suited for this particular scenario.

III. SYSTEM MODEL

As illustrated in Fig. 1, we consider an edge computing
system based on the BackCom model, consisting of a Power
Beacon (PB), an Access Point (AP) equipped with a MEC
server, and K MDs. Each MD is equipped with an Energy Har-
vesting (EH) circuit or a WPT circuit, a BackCom circuit, and
a local processor. We assume that each circuit and processor
operates independently, allowing each MD to backscatter task
data without any interference. In addition to locally processing
task data, each MD can simultaneously offload and process
task data while harvesting energy, thanks to the independence
of the circuits.

Fig. 1: An overall BackCom-assisted MEC network

The system’s operation time is divided into discrete time
slots, each with a duration of τ . During the t-th time slot,
let hB

i [t] and hA
i [t] denote the channel gains from the PB to

the i-th MD and from the i-th MD to the AP during the t-
th time slot, respectively, where i ∈ {1, 2, . . . ,K}. It’s worth
noting that, in this paper, all the channel models are assumed
to be quasi-stationary [9], meaning that the channel conditions
remain constant within each time slot but may vary between
consecutive time slots.

Additionally, we assume that the Access Point (AP) has
perfect knowledge of the Channel State Information (CSI)
for all involved channels. While obtaining accurate CSI is
typically challenging in real-world deployments, the proposed
approach can be viewed as an idealized simulation that closely
approximates real-world conditions. This setup provides an
upper bound on the model’s performance, offering valuable
insights into its potential in practical scenarios. To simplify
the subsequent calculation of the data throughput for different
MDs, we assume that the communication channel gains are
sorted in descending order based on the MD’s ordinal number.

A. Task Offloading and Energy Harvesting Model

This paper primarily focuses on indivisible computational
tasks. We use the binary variable xt

i to represent the offloading
decision of the i-th MD in the t-th slot.

When xt
i = 0, it corresponds to a scenario similar to the

standard WPT process. However, in this context, both energy
harvesting and local processing can occur simultaneously,
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allowing for enhanced system performance. We define the
CPU frequency of the i-th MD’s local processor in the t-
th time slot as f t

i . Since each circuit and device operate
independently, the amount of data that the MD can process
within one time slot is: Dt

i,L =
ft
i τ

Ci
cpu

, where Ci
cpu represents

the CPU cycles required by the i-th MD’s local processor to
process 1 bit of data. The energy consumed by the MD within
this time slot can be expressed as: Et

i,L = k(f t
i )

3
τ , where k is

the Energy Consumption Coefficient (ECC) of the processor
chip on the MD.

Previous studies typically use a linear energy harvesting
model, where energy received by each MD is proportional
to the PB’s emission power. However, this model overlooks
the nonlinear characteristics of the MD’s energy harvesting
circuit, leading to performance degradation. To address this,
we propose a nonlinear energy harvesting model that better
reflects the circuit’s actual behavior. The amount of energy
that i-th MD can harvest in the current time slot is EH

i,L =(
ciPth

B
i [t]+di

PthB
i [t]+vi

− di

vi

)
τ , where ci, di and vi are parameters

characterizing the nonlinear energy harvesting model of the
i-th MD, and Pt is the energy emission power of PB [12].

When xt
i = 1, the BackCom technique is employed for

task offloading. To enhance communication performance, the
NOMA communication mode is used to efficiently utilize
spectrum resources in conjunction with BaFckCom. In this
scenario, MDs opting to offload tasks to the MEC server
experience simultaneous backscatter and wireless charging.
The i-th MD divides the energy signal emitted by the received
PB into two parts based on the backscatter coefficient a
(0 ≤ a ≤ 1). A portion of the energy signal, aPt, is used
to backscatter part of the mission data to the MEC server via
the upstream NOMA, while the remaining portion, (1− a)Pt,
is used to charge the MD and replenish its energy reserves.

In the t-th time slot, given the CSI between the MD and the
AP, as well as the PB, the total data throughput of all MDs
selected with xt

i = 1 can be calculated as follows:∑
xt
i=1

Dt
i = τBlog2

(
1 +

∑
xt
i=1

aPtH
t
i

σ2

)
, (1)

where Ht
i = hB

i [t]× hA
i [t].

The energy that the i-th MD can harvest in the t-th time
slot is Et

i,o =
(

ci(1−a)Pth
B
i [t]+di

(1−a)PthB
i [t]+vi

− di

vi

)
τ . In this phase, due

to the inherent circuit consumption of the BackCom circuit,
we express the inherent circuit power consumption of the
BackCom circuit as Et

i,o = Psτ . Due to the small amount
of data returned by the task under normal circumstances, and
the powerful computing power of the MEC server, similar to
[13], we ignore both the processing time of the MEC server
and the return time for the MD’s computational results.

IV. PROBLEM FORMULATION AND SOLUTION

This paper aims to design an online algorithm that maxi-
mizes the long-term average weighted computational through-
put of all MDs, while maintaining stability in the long-term

average energy consumption. To achieve this, we optimize
various aspects within each time slot, including offload deci-
sions denoted as Xt = [xt

1, x
t
2, · · · , xt

K ], the backscatter factor
a, the CPU frequency f t = [f t

1, f
t
2, · · · , f t

K ] for the local
processor. Specifically, when xt

i = 0, we set a = 0, and when
xt
i = 1, we assign f t

i = 0. This problem is conceptualized as
a multi-stage stochastic MINLP problem:

P1 : max
{Xt}T

t=1,a,{ft}T
t=1

lim
T→∞

1

T

T∑
t=1

K∑
i=1

wir
t
i (2)

s.t. lim
T→∞

1

T

T∑
t=1

E (Qi[t]) < ∞; (2a)

0 ≤ a ≤ 1; (2b)
0 ≤ f t

i ≤ fmax
i ,∀i; (2c)

xt
i ∈ {0, 1} ,∀i; (2d)

where rti denotes the computational workload achieved by the
i-th MD during the t-th time slot:

∑K
i=1 r

t
i =

∑
xt
i=0 D

t
i,L +∑

xt
i=1 D

t
i . To address the long-term average energy con-

sumption stability constraint, a model is introduced for the
MD’s energy consumption queue [13], as follows: Qi[t +
1] = max

{
Qi[t]− EH

i + Et
i , 0

}
, where EH

i = xt
iE

H
i,o +

(1− xt
i)E

H
i,L and Et

i = xt
iE

t
i,o + (1− xt

i)E
t
i,L. Qi[t] rep-

resents the energy consumption of the i-th MD in the t-
th time slot, which can be seen as a queue with “energy
arrival”, while EH

i behaves as a queue with a “service rate”.
When the energy queue achieves stability, constraint (2a) is
satisfied. Constraint (2b) restricts the allowable range of values
for the backscatter factor; Constraint (2c) ensures that the
CPU calculation frequency of the local processor of the i-
th MD does not exceed the local maximum CPU calculation
frequency; Constraint (2d) represents that the binary offloading
decision factor must adhere to certain conditions.

A. Lyapunov Optimization-based Multi-stage MINLP Problem

In this section, we employ Lyapunov optimization the-
ory to decouple constraint (2a) into individual determinis-
tic constraints for each time frame. We define the Lya-

punov function as L (Q[t]) = 1
2

K∑
i=1

Q2
i [t], and the Lyapunov

drift ∆L (Q[t]) as: E {L (Q[t+ 1])− L (Q[t]) |Q[t]}, where
Q[t] = {Qi[t]}Ki=1. Let’s find the upper bound of ∆L (Q[t]),
which can be calculated as follows: ∆L (Q[t]) ≤ Q1 +
K∑
i=1

Qi[t]E
[(
Et

i − EH
i

)
|Qi[t]

]
.

Proposition 1: As the transmit power of the PB continues to
increase, the energy harvesting power of the MD also increases
until it reaches a convergence point.

Proof: First, let us define the function F (α) as follows:

F (α) =
ci(1− a)Pth

B
i [t] + di

(1− a)PthB
i [t] + vi

− di
vi

(0 ≤ a ≤ 1),

where we introduce a variable y = (1−a)Pth
B
i [t] to represent

the transmit power of the PB. Importantly, F (y) exhibits

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 13,2025 at 03:55:58 UTC from IEEE Xplore.  Restrictions apply. 



monotonic behavior with respect to y and remains unaffected
by the sign of the first-order derivative of F (y).

Furthermore, considering the range of possible channel
values, we can establish that maxF (y) = ciPt+di

Pt+vi
− di

vi
.

Similarly, for the expression ciPth
B
i [t]+di

PthB
i [t]+vi

− di

vi
. We can deduce

that its maximum value is also maxF (y).
According to Proposition 1, with respect to Q1 we obtain:

Q1
∆
=

1

2

K∑
i=1

[((ciPt + di
Pt + vi

− di
vi

)
τ
)2

+max
{
Psτ, k

(
f t
i

)3
τ
}]

.

(3)

In the t-th time slot, we apply opportunity expectation
minimization techniques to decouple long-term energy con-
sumption into individual time slots for processing. For the
original problem, the objective function seeks to maximize the
amount of long-term data computation. This can be achieved
by maximizing the amount of MD data computation in each
time slot as much as possible. To summarize, we decompose
the problem P1 into deterministic optimization problem P2

for each time frame:

P2 : min
Xt,a,ft

K∑
i=1

Qi[t]
(
Et

i − EH
i

)
− V

K∑
i=1

wir
t
i (4)

s.t. (2b); (2c); (2d); (5)

where V is used to measure the “degree” of punishment.
It is evident that because of the discontinuity of offloading
decision factor xt

i, certain conventional convex optimization
methods may not effectively address the optimization problem
P2. Generally speaking, obtaining an approximate solution
often requires resorting to convex relaxation or near-convex
optimization methods. However, these methods tend to have
high computational complexity, and deriving an approximate
solution can be challenging.

B. Lyapunov Optimization-Aided DRL

In order to determine the optimal value in the t-th time slot,
each MD primarily observes a partial system state denoted as
St =

{
dAi [t], d

B
i [t], h

A
i [t], h

B
i [t], Qi[t]

}K

i=1
. This state includes

information on the distances between the i-th MD and the AP
and PB in the t-th time slot, the channel states between the
MD and the AP and PB, and the energy consumption queue
data for each MD. Additionally, the corresponding model
needs to provide binary offloading decisions and resource
allocation actions At = {xt

i, y
t
i}

K
i=1, where yti = {f t

i , a}
K
i=1

represents the result of resource allocation. If we denote
Y
(
{xt

i}
K
i=1 , S

t
)

as the optimal value of problem P2 given

{xt
i}

K
i=1 and observed state St, then the selection of {xt

i}
K
i=1

can be determined by:

Xt
best = argmax

Xt∈{0,1}K

Y
({

xt
i

}K

i=1
, St

)
, (6)

where Xt = [xt
1, x

t
2, · · · , xt

K ] represents the offloading deci-
sion of all MDs in the t-th time slot.

We leverage the powerful capabilities of DRL to develop a
model with reduced complexity. which is designed to identify
the best course of action by considering different states,
making it well-suited for scenarios with frequent changes in
channel states and other dynamic conditions. The algorithm
proposed in this paper consists of the following key modules:

1) Actor Module: The performer module comprises primar-
ily two components: a neural network and an action quantizer.
At the outset of the current time slot, the neural network’s
parameters are initialized as θt, following a standard Gaussian
distribution. Subsequently, the neural network receives a set
of state inputs St, and then outputs a continuous offloading
decision after passing through the fully connected layer:

Πθt : St → Xt =
{
Xt

i ∈ [0, 1] , i = 1, 2, · · · ,K
}
. (7)

Following the passage through the action quantizer, the con-
tinuous value is quantized into discrete binary offloading de-
cisions. Building on the advantages of order-preserving quan-
tization [13], we propose a novel multi-threshold sequence-
preserving quantizer. This quantizer helps alleviate the high
complexity associated with greedy algorithms while generating
a sufficient number of offloading decisions, thus improving the
overall algorithm’s performance.

In scenarios involving K MDs, we can establish multiple
thresholds in the following manner: {1/K, 2/K, · · · , i/K},
i = {1, 2, · · · ,K}. Each threshold, denoted as i/K, cor-
responds to a set of candidate offloading decision factors,
represented by:

xt
i =

{
1 if Xt ≥ i

K

0 otherwise.
(8)

This threshold-based approach produces i candidate offloading
decision factors and inherently applies the concept of sequen-
tial quantization due to the way thresholds are set. More-
over, implementing the multi-threshold sequence-preserving
quantizer in code is more straightforward than using noise-
sequencing quantization, making it a more practical solution
for real-time system deployment.

2) Critic Module: The critic module primarily focuses on a
set of candidate offloading decisions and employs the objective
function to filter out the optimal offloading decision.

3) Storage Module: The memory module primarily func-
tions as a storage repository for preserving the optimal of-
floading decisions that have been selected, along with the cor-
responding state inputs, as samples within the replay memory.

4) Update Module: The primary role of the update module
is to randomly select a set of samples from the replay memory
and utilize them to update the network parameters.

C. Sub-Optimization Problems

In the context of two distinct offloading methods, we define
M0 and M1 as the sets of MDs that choose local computing
and those that offload tasks to the MEC server, respectively.
This differentiation naturally leads to the decomposition of
the optimization problem P2 into two separate parts, each
requiring an individual solution process.
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1) Local Processing (j ∈ M0):

P4 : min
ft
j

Qj [t]
[
k
(
f t
j

)3
τ − (

cjPth
B
j [t] + dj

PthB
j [t] + vj

− dj
vj

)τ
]
−

V wjf
t
j

Cj
cpu

(9)
s.t. 0 ≤ f t

j ≤ fmax
j ,∀j; (9a)

By setting the derivative of the objective function to zero,
we can get

(
f t
j

)∗
= min

{√
V wj

3Qj(t)kτC
j
cpu

, fmax
j

}
.

2) Offload to the MEC server (i ∈ M1): In this context,
since data throughput cannot be expressed as a single for-
mula for an individual MD when offloading is performed via
BackCom, we choose to directly optimize all MDs using the
selected offloading mode.

P5 : min
∑
i∈M1

Qi[t]

[
Psτ −

(ci (1− a)Pth
B
i [t] + di

(1− a)PthB
i [t] + vi

− di
vi

)
τ

]
− V wiBlog2(1 +

∑
i∈M1

aPtH
t
i

σ2
) (10)

s.t. 0 ≤ a ≤ 1; (10a)

It is evident that the sub-optimization problem is a convex
constrained optimization problem. Considering the unique
characteristics of the model presented in this paper, which
focuses on optimizing a single reflection factor a, we propose a
binary search method to reduce the algorithm’s complexity. By
employing binary search, we can efficiently find the derivative
of the sub-optimization objective function, thereby simplifying
the computation process. This approach not only reduces
the overall complexity but also allows us to obtain a good
approximate solution. The detailed step-by-step algorithm is
provided in Algorithm 1.

Algorithm 1 LyDRL for P2.

1: Input: Parameters V , K, training interval δ, T ;
2: Output: offloading factor xi and yti = {f t

i , a}
K
i=1;

3: Initialize the DNN parameters;
4: Empty initial energy consumption queue Qi(1) = 0;
5: for i = 1 to T do
6: Each MD observes its own state St;
7: Generate a set of candidate offloading actions xi via

DNN and the Action Quantizer;
8: For each candidate offloading decision factor xi; For

MD in local offload mode, we can obtain the optimal
local calculation frequency

(
f t
j

)∗
, and then we find the

optimal a by binary search.
9: if mod (t, δ) = 0 then

10: Random sampling of samples from memory;
11: Update DNN parameters with extracted samples;
12: end if
13: end for

V. PERFORMANCE EVALUATION

A. Parameters Setup
We set the AP at coordinates [0, 0, 10] (m) and the PB at

coordinates [50, 10, 5] (m). Each time slot is defined to be 1

second long. To ensure a more realistic simulation, we define
the movement range of each MD as a circular area centered
around the AP with a radius of 3 (m). This approach prevents
instances where, over a certain period, MDs move too far
from the AP and PB, which could negatively impact system
performance. We set the noise power σ2 to 10−20.4, β0 to -20
dB, the ECC of the processor chip on the MD to 10−26, and
the channel bandwidth B to be 2 MHz. Additionally, the local
maximum calculated frequency fmax

i for the i-th MD is set at
0.3 GHz. The following baselines are selected for comparison:

• Order-preserving (OP): A typical DRL method utiliz-
ing sequence-preserving sequence retention quantization
[13];

• OP with noise (OPN): An extension of the OP method
where noise is added to the quantization process;

• All Local: All tasks are processed locally on the MD;
• All MEC: All tasks are offloaded and processed on the

MEC server;
• Threshold (Reverse quantization): A method that re-

verses the order of quantization, where values below a
certain threshold are quantized as one.

B. Simulation Results

1) Impact of Different Numbers of MDs: As shown in
Fig. 2, we analyze the average data throughput of the system
under varying numbers of MD. It can be observed that as
the number of MDs increases, the total data throughput of
the system also increases, but the average data throughput
decreases. This is because, as the number of MDs grows,
the system gradually approaches its maximum performance
capacity, leading to a decrease in the average data throughput.

Fig. 2: Average data throughput of the system under different
numbers of MD

2) Running Time Comparison: As shown in Table I, the
runtime of LyDRL is significantly improved compared to the
OP and OPN schemes. The most substantial improvement
is observed when LyDRL is compared to OPN. This im-
provement is particularly important because OPN requires
additional noise to the output of the DNN model, whereas
LyDRL avoids this overhead, resulting in enhanced efficiency.

3) Comparison with Different Algorithms: As illustrated
in Fig. 3, when compared to the All Local and All MEC
schemes, the proposed LyDRL exhibits significant advantages
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(a) System data throughput (b) System energy consumption

Fig. 3: System performance under different algorithms.

TABLE I: Comparison of running time of different algorithms

Index LyDRL OP OPN OP
LyDRL

OPN
LyDRL

System data throughput (Mbits) 5.4 5.4 5.4 1.0 1.0
CPU computation time (second) 77.71 141.93 305.68 1.82 3.93

in terms of the total average data throughput of the system.
Furthermore, in comparison to the OP and OPN schemes,
our method achieves a similar level of system performance. A
noteworthy aspect of this approach is its simplicity and ease of
implementation. To emphasize this feature, we controlled other
variables and only modified the quantization model, recording
the time it took for different models to run 500 iterations with
the same parameters. This comparison highlights the efficiency
and practicality of our proposed method.

We also explored the system’s total data throughput trends
under varying quantization orders. We established a quantiza-
tion order wherein values greater than a predefined threshold
are quantized to 1. This aligns with the intuitive approach of
general order-preserving quantization models. To validate the
accuracy of this intuition, we designed the Threshold (Reverse
quantization) algorithm. While keeping all other parameters
constant, we compared the impact of these two distinct quanti-
zation methods on system performance. As depicted in Fig. 3a,
it’s evident that the system’s behavior remains consistent with
the chosen quantization method. In summary, our proposed
model not only accelerates convergence speed but also delivers
commendable system performance, affirming its effectiveness.

VI. CONCLUSION

In this paper, we propose the LyDRL algorithm, which
combines the advantages of Lyapunov optimization and DRL
to tackle the challenge of online energy consumption stability
computation offloading in multi-user MEC networks. Both the-
oretical and simulation results demonstrate that this approach
achieves optimal computation rate performance while satisfy-
ing the long-term energy consumption constraints. Moreover,
we employ a threshold quantization method for generating
online actions, which converges in fewer iterations, resulting in
a lower overall time complexity compared to previous noise-
order preservation methods, while maintaining consistent sys-
tem performance. LyDRL has broad applicability in MEC

networks, contributing to improved computational efficiency
and the robustness of computing performance.
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