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r é s u m é

Une condition quantitative dans le domaine fréquentiel liée à la stabilisabilité 
exponentielle des systèmes de contrôle linéaires en dimension ifinie est présentée. 
Nous prouvons que cette condition est nécessaire et suffisante pour la stabilisabilité 
de quelques systèmes, tandis qu’lle constitue une condition nécessaire pour la 
stabilisabilité en général. Plusieurs applications sont fournies.
© 2025 Elsevier Masson SAS. All rights are reserved, including those for text and 

data mining, AI training, and similar technologies.

1. Introduction

Stabilization for linear control systems is one of the most important directions of control theory. How to 
determine whether a linear control system is stabilizable is one of the largest concerns in this direction. Over 
the past half-century, researchers have obtained many useful results on this issue (see, for instance, [1--15] 
and the references therein). These works have laid a solid foundation for the study of the stabilization of 
linear control systems. For finite-dimensional linear control systems, there is a well-known frequency-domain 
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criterion to determine the stabilizability, which is the Hautus test condition (see [16]). Unfortunately, this 
criterion may not be valid in infinite-dimensional settings. For infinite-dimensional linear control systems, 
researchers have been trying to obtain the corresponding frequency-domain criteria for stabilization. This 
paper intends to provide a frequency-domain condition that is a necessary and sufficient condition for the 
stabilizability for special linear control systems, while it is a necessary condition in general. We begin by 
introducing the frequently used notation in this paper.

1.1. Notation

Let N+ := N \ {0}, R+ := (0,+∞) and R− := (−∞, 0). If γ ∈ R, we write C+
γ := {z ∈ C : Re z > γ}

and C−
γ := {z ∈ C : Re z < γ}. Let i be the unit imaginary number. If S is a subset of C, we denote its 

closure by S. If T > 0, we let [T ] := max{n ∈ N : n ≤ T}. If X is a Banach space, we denote its norm and 
dual space by ‖ · ‖X and X∗, respectively. If X is a Hilbert space, we use 〈·, ·〉X to denote its inner product. 
For Banach spaces X1 and X2, L(X1;X2) denotes the space of all bounded linear operators from X1 to X2. 
We write L(X1) := L(X1;X2) if X1 = X2. Given an unbounded (or bounded) linear operator L from X1
to X2, its domain, kernel, adjoint operator, resolvent set, and spectrum are D(L) := {f ∈ X1 : Lf ∈ X2}, 
Ker(L) := {f ∈ D(L) : Lf = 0}, L∗, ρ(L) and σ(L), respectively. Given two sets Λ1 and Λ2 in X, we 
let Span{Λ1,Λ2} be the space spanned by the elements of Λ1 and Λ2. We use C(· · · ) or D(· · · ) to denote 
constants that depend on what is enclosed in the brackets.

1.2. Control problem

Let H and U be two separable and complex Hilbert spaces. We consider the control system [A,B], i.e.,

y′(t) = Ay(t) + Bu(t), t ∈ R+, (1.1)

(where u ∈ L2(R+;U)) under the following assumptions:

(A1) Operator A with its domain D(A) generates a C0-semigroup S(·) on H.
(A2) Operator B belongs to L(U ;H−1), where H−1 is the completion of H with respect to the norm 

‖f‖−1 := ‖(ρ0I −A)−1f‖H (f ∈ H), and ρ0 ∈ ρ(A) ∩R+ is arbitrarily fixed.
(A3) For each T > 0, there is C(T ) > 0 such that

T∫
0 

‖B∗S∗(t)ϕ‖2
Udt ≤ C(T )‖ϕ‖2

H for ϕ ∈ D(A∗).

Remark 1. There are several remarks on the above assumptions as follows:

(i) In this paper, we write H1 for the space D(A∗) with the norm: ‖(ρ0I−A∗)ϕ‖H , ϕ ∈ D(A∗). (The space 
H−1 is the dual space of H1 with respect to the pivot space H, see [17, Section 2.9, Chapter 2]); Ã is the 
unique extension of A in L(H;H−1), which is provided in the following manner (see [17, Proposition 
2.10.3, Chapter 2]):

〈Ãϕ, ψ〉H−1,H1 = 〈ϕ,A∗ψ〉H for ϕ ∈ H, ψ ∈ H1. (1.2)

We let S̃(·) := (ρ0I − Ã)S(·)(ρ0I − Ã)−1, which is the C0-semigroup on H−1 generated by Ã (with its 
domain H) and an extension of S(·) (see [17, Proposition 2.10.4, Chapter 2]).
Moreover, by assumption (A2), we have B∗ ∈ L(H1;U) and B∗(ρ0I −A∗)−1 ∈ L(H;U).
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(ii) By assumption (A3), we have that for any u ∈ L2(R+;U) and y0 ∈ H, system (1.1), which corresponds 
to this u and with the initial condition y(0) = y0, has a unique solution in C(R+;H), and this solution 
can be expressed by y(t; y0, u) = S̃(t)y0 +

∫ t

0 S̃(t−s)Bu(s)ds, t ∈ R+. (See [17, Propositions 4.2.2, 4.2.5, 
Chapter 4].)

We are going to dfine the exponential/rapid stabilizability in H for system [A,B], and ‘in H’ will be 
omitted in what follows.

Definition 1. System [A,B] is said to be exponentially stabilizable (or ‘stabilizable’ for short) if there is a 
constant α > 0, a C0-semigroup S†(·) on H (with its generator A† : D(A†) ⊂ H → H), and an operator 
K† ∈ L(D(A†);U) such that

(a) there is a constant C1 > 0 such that ‖S†(t)‖L(H) ≤ C1e
−αt for all t ∈ R+;

(b) for each x ∈ D(A†), A†x = Ãx + BK†x, with Ã provided by (1.2);
(c) there is a constant C2 > 0 such that ‖K†S†(·)x‖L2(R+;U) ≤ C2‖x‖H for each x ∈ D(A†).

K† and α are called the feedback law and a stabilizable decay rate (or ‘a decay rate’ for short), respectively. 
If α, S†(·), and K† exist, system [A,B] is also said to be stabilizable with decay rate α.

Definition 2. System [A,B] is rapidly (or completely) stabilizable if for each α > 0, [A,B] is stabilizable 
with the decay rate α.

Remark 2. Several notes on Definition 1 are provided as follows:

(i) Definition 1 is originally from [18], where the authors proved that the solvability of the LQ problem: 
V (y0) = infu∈L2(R+;U)

∫ +∞
0 [‖y(t;u, y0)‖2

H + ‖u(t)‖2
U ]dt (i.e., V (y0) < +∞ for all y0 ∈ H) implies the 

stabilizability of system [A,B] in the sense of Definition 1. The reverse was proven in [8, Proposition 
3.9]. Hence, the solvability of the above LQ problem is equivalent to the stabilizability of system [A,B]
in the sense of Definition 1.

(ii) If B ∈ L(U ;H), the stabilizability of system [A,B] is dfined as follows: there is a K ∈ L(H;U) such 
that e(A+BK)t is exponentially stable. Using the weak observability inequality in [8,14], one can easily 
show that Definition 1 is an extension of the above definition if B ∈ L(U ;H).

(iii) If [A,B] is stabilizable in the sense of Definition 1, the feedback law can be constructed by the usual 
LQ theory.

1.3. Motivation and novelty

Motivation. The stabilizability of system [A,B] is equivalent to the weak observability inequality. This 
equivalence can be summarized as the following lemma:

Lemma 1. 

(i) The following statements are equivalent:
(a) System [A,B] is stabilizable.
(b) There are constants α > 0 and C(α) > 0 such that

‖S∗(t)ϕ‖2
H ≤ C(α)

⎛⎝ t ∫
0 

‖B∗S∗(s)ϕ‖2
Uds + e−αt‖ϕ‖2

H

⎞⎠ for t ∈ R+, ϕ ∈ H1. (1.3)
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(c) There are constants T > 0, δ ∈ (0, 1) and C > 0 such that

‖S∗(T )ϕ‖2
H ≤ C

T∫
0 

‖B∗S∗(s)ϕ‖2
Uds + δ‖ϕ‖2

H for ϕ ∈ H1. (1.4)

(ii) System [A,B] is rapidly stabilizable if and only if for each α > 0, there is C(α) > 0 that satifies (1.3).

Remark 3. The equivalence of (a) and (c) above was originally obtained in [14, Theorem 1] for the case that 
B is bounded, and then extended to the case where B is admissible. The equivalence between (b) and (c)
above was proved in [11, Proposition 3]. The conclusion (ii) of Lemma 1 was obtained in [8, Theorem 1.1, 
Theorem 3.4].

Inequality (1.3) (or (1.4)) can be considered as a time-domain criterion for the stabilizability of sys
tem [A,B]. Naturally, we would expect frequency-domain criteria for system [A,B]. For finite-dimensional 
settings, the following criterion on the stabilizability is well known:

Lemma 2. ([16, Theorems 3, 4]) Let H := Cn, U := Cm, A ∈ Cn×n and B ∈ Cn×m (n,m ∈ N+). Then, 
system [A,B] is stabilizable if and only if the pair (A∗, B∗) satifies the condition

(HSF) : Ker(λI −A∗, B∗)� = {0} for λ ∈ σ(A∗) ∩C+
0 .

The time-domain criterion and frequency-domain criterion have their own merits. Unfortunately, for 
general infinite-dimensional linear control systems, the equivalence in Lemma 2 may not be true. Coun
terexamples can be founded in [19] (see also [20, 3.4 in Section 3, Chapter 4]). Thus, it is natural to ask for 
frequency-domain criteria/conditions on the stabilization for system [A,B] in our setting.

Novelty. We provide a quantitative frequency-domain condition that can be considered as an extension of 
condition (HSF) in Lemma 2. We prove that this condition is a criterion on the stabilization for system 
[A,B] under additional conditions beyond (A1)-(A3), while it is a necessary condition for the stabilization 
in general. Our method of proving these results uses the weak observability inequality in Lemma 1. Combin
ing time domain with frequency domain concepts appears to be novel for ifinite dimensional stabilization 
problems.

1.4. Main results

To state our main results, we need the following definition:

Definition 3. (i) The pair (A∗, B∗) satifies (HESI)β for β > 0 if there exists C(β) > 0 such that

‖ϕ‖2
H ≤ C(β) 

(Reλ + β)2
(
‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U

)
for λ ∈ C+

−β , ϕ ∈ H1, (1.5)

or equivalently, there exists C(β) > 0 such that

‖ϕ‖2
H ≤ C(β)(‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U ) for λ ∈ C+

−β , ϕ ∈ H1. (1.6)

(ii) The pair (A∗, B∗) satifies (HESI) if it satifies (HESI)β for each β > 0.

Remark 4. Several notes on Definition 3 are as follows:
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(i) ‘(HESI)’ is the abbreviation of ‘Hautus test condition for Exponential Stabilizability of Infinite
dimensional systems’. The subscript β is used to characterize the boundary of the frequency-domain 
(i.e., the boundary of C+

−β) that appears in (1.5) (or (1.6)).
(ii) The constants (including β) in (HESI)β, (1.5) and (1.6) are allowed to be different. The proof of the 

equivalence between (1.5) and (1.6) will be given in Appendix of the paper (see Proposition 4). It is 
worth mentioning that (1.5) is sharper than (1.6) to characterize the optimal decay rate of system 
[A,B]. For more details, we refer readers to Remark 13.

(iii) (HESI)β (for some β > 0) is a type of quantitative frequency-domain condition. The connection to 
(HSF) (in Lemma 2) is as follows: if (A∗, B∗) satifies (HESI)β for some β > 0, then Ker(λI −
A∗, B∗)� = {0} for each λ ∈ C+

−β .
(iv) (HESI)β (for some β > 0) can be considered as an extension of the classical frequency-domain 

criterion for the exponential stability of the C0-semigroup S(·). Indeed, if B∗ = 0 and the pair 
(A∗, 0) satifies (HESI)β for some β > 0, then it follows from (1.5) that C+

−β ⊂ ρ(A∗) and 
supλ∈C+

−α
‖(λI − A∗)−1‖L(H) < +∞ for each α ∈ (0, β). Thus, by [20, Theorem 1.11, Chapter V] 

(see also [19,21]), we see that S∗(·) is exponentially stable, and so is S(·).

The first two main theorems show that under additional conditions beyond (A1)-(A3), (HESI)β for some 
β > 0 is a necessary and sufficient condition on the stabilizability of system [A,B].

Theorem 1. Suppose that assumptions (A1)-(A3) hold. Further assume that A is a normal operator, and for 
each γ > 0, σ(A) ∩C+

−γ is bounded. Then, the following conclusions are true:

(i) System [A,B] is stabilizable if and only if the pair (A∗, B∗) satifies (HESI)β for some β > 0.
(ii) System [A,B] is rapidly stabilizable if and only if the pair (A∗, B∗) satifies (HESI).

Remark 5. Two notes on the assumptions in Theorem 1 are as follows:

(i) If A is a normal operator, A∗ is also normal and has a unique spectral measure (see [22, Chapter 6]). 
The corresponding spectral measure can be used to dfine an orthogonal projection on H which plays a 
key role in the proof of Theorem 1. The application of normal operators in partial differential equations 
covers a considerable wide. It includes self-adjoint operators and linear partial differential operators 
on the entire space with (real/complex-valued) constant coefficients among others (see [23, Theorem 
13.24, Chapter 13]).

(ii) If the semigroup S(·) is uniformly continuous/analytical/differentiable/compact, then σ(A) ∩ C+
−γ is 

bounded for each γ > 0 (see [24, Sections 2.3-2.6, Chapter 2]).

Theorem 2. Suppose that the assumptions (A1)-(A3) hold. Assume that one of the following assumptions 
holds:

(a) The semigroup S∗(·) is uniformly bounded;
(b) For each α > 0, there are two closed subspaces Q1 := Q1(α) and Q2 := Q2(α) of H (depending on α) 

such that (b1) H = Q1⊕Q2; (b2) Q1 and Q2 are invariant subspaces of S∗(·); (b3) A∗|Q1 , the restriction 
of A∗ on Q1 is bounded and satifies that σ(A∗|Q1) ⊂ C+

−α; (b4) S∗(·)|Q2 , the restriction of S∗(·) on Q2
is exponentially stable.

Then, system [A,B] is stabilizable if and only if the pair (A∗, B∗) satifies (HESI)β for some β > 0.

Remark 6. Several notes on Theorem 2 are as follows:
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(i) If A is skew-adjoint (i.e., A = −A∗), then the semigroup S∗(·) is uniformly bounded.
(ii) If the semigroup S(·) is compact, then for each α > 0, we can find two closed subspaces Q1 and Q2 of 

H such that Q1 is finite-dimensional; conditions (b1)-(b4) in (b) of Theorem 2 hold. (See [20, Section 
3, Chapter IV, Section 3, Chapter V].)

(iii) In assumption (b) of Theorem 2, it is not required that Q1 has a finite dimension.
(iv) By the spectral theorem (e.g., [22, Theorem 6.47, Chapter 6]), one can check that if A satifies the 

assumptions of Theorem 1, then it also satifies assumption (b) in Theorem 2. Thus, (i) in Theorem 1
can be regraded as an application of Theorem 2. But, there are some difficulties in applying Theorem 2
to characterize the rapid stabilizability. Indeed, when A satifies the assumptions of Theorem 1, A+βI

also satifies these assumptions for each β > 0. This property plays a crucial role in the proof of (ii)
of Theorem 1. It is not known to us if assumption (b) in Theorem 2 can guarantee this property for 
the general cases.

The last main result of this paper shows that (HESI)β (for some β > 0)/(HESI) is a necessary condition 
on the exponential/rapid stabilizability for system [A,B], with (A1)-(A3) holding.

Theorem 3. Under assumptions (A1)-(A3), the following conclusions are true:

(i) If system [A,B] is stabilizable, then the pair (A∗, B∗) satifies (HESI)β for some β > 0.
(ii) If system [A,B] is rapidly stabilizable, then the pair (A∗, B∗) satifies (HESI).

1.5. Related works

• H. O. Fattorini in [6] established a frequency-domain condition similar to Lemma 2 for the special 
infinite-dimensional setting, where B ∈ L(U ;H); system [A,B] can be decomposed into two decou
pled subsystems: one is in a finite-dimensional subspace and controllable; the other is in an infinite
dimensional subspace and exponentially stable. For more studies in this direction, we refer the readers 
to [2,25,12] and the references therein. The setting in [6] is covered by our setting, where (A1)-(A3) and 
(b) in Theorem 2 hold (see (ii) in Remark 6). Thus, Theorem 2 can be considered as an extension of 
the related result in [6].

• K. Liu proved in [9] that if A is skew-adjoint and B ∈ L(U ;H), then system [A,B] is stabilizable if 
and only if iR ∈ ρ(A − BB∗) and supω∈R ‖(iωI − A + BB∗)−1‖L(H) < +∞. Later, Q. Zhou and M. 
Yamamoto in [26] obtained that if A is skew-adjoint and B ∈ L(U ;H), then system [A,B] is stabilizable 
if and only if there was C > 0 such that

‖ϕ‖2
H ≤ C(‖(iωI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U ) for ω ∈ R, ϕ ∈ H1.

These are two frequency-domain criteria on the stabilizability for the case A = −A∗ and B ∈ L(U ;H). 
However, the condition that A = −A∗ implies condition (a) in Theorem 2. Thus, Theorem 2 can also 
be considered as an extension of the above frequency-domain criteria.

• R. Rebarber and H. Zwart in [13] introduced the concept of the open-loop stabilizability for system 
[A,B] and provided necessary conditions in the frequency-domain for the open-loop stabilizability in 
ifinite dimensional settings. Such stabilizability is dfined as follows: If there is σ > 0 such that 
for each y0 ∈ H, there is a control u ∈ D′(R+;U)(= (C∞

0 (R+;U))′) such that the solution (in the 
sense of distribution) y(·;u, y0) to system (1.1) (with the initial condition y(0) = y0 and the control 
u) satifies eσ·y(·;u, y0) ∈ L2(R+;H), then system [A,B] is called open-loop stabilizable. Clearly, the 
open-loop stabilizability is weaker than the closed-loop stabilizability. (Several examples that are open
loop stabilizable but not closed-loop stabilizable were provided in [13].) For more studies on the open
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loop stabilizability in ifinite dimensional settings, we refer the readers to [27,15,28--30]. Our condition 
(HESI)β is partially inspired by [13] and related works.

1.6. Plan of this paper

This paper is organized as follows: In Section 2, we present some criteria on the stabilizability for system 
[A,B]. In Section 3, we prove our main theorems. In Section 4, we provide selected applications. Section 5
is Appendix.

2. Other criteria on the stabilization

This section provides criteria on stabilizability for system [A,B] from the perspective of integral trans
formation. Although they are not easily verfiable, they play important roles in the proofs of our main 
theorems.

To present them, we must introduce the following function spaces: Let X be a sparable, complex Hilbert 
space and α ≥ 0. For each open and connected subset S ⊂ C, we let H(S;X) be the set of all X-valued 
holomorphic functions on S. We dfine the following Hardy space:

H2(C+
−α;X) :=

{
f ∈ H(C+

−α;X) :Mα(f) < +∞
}

withMα(f) := sup 
ω1>−α

∫
R 

‖f(ω1 + iω2)‖2
Xdω2,

and the following weighted L2-space:

L2
α(R+;X) := {h : R → X : eα·h(·) ∈ L2(R;X); h(·) = 0 on R−},

with the inner product:

〈g, h〉L2
α(R+;X) :=

∫
R+

e2αt〈g(t), h(t)〉Xdt.

One can easily check that L2
α(R+;X) is a Hilbert space and continuously embedded into L2(R+;X). 

Throughout this paper, we extend each f ∈ L2(R+;X) over R by setting it to be zero over R− (we 
denote this extension in same way). We have L2

0(R+;X) = L2(R+;X).

Theorem 4. Suppose that (A1)-(A3) hold. Then, the following statements are equivalent:

(i) System [A,B] is stabilizable.
(ii) There is α > 0 such that for each β ∈ [0, α) and y0 ∈ H, there is (ξ(·; y0), η(·; y0)) ∈ H2(C+

−β ;H) ×
H2(C+

−β ;U) such that

〈ξ(λ; y0), (λ̄I −A∗)ϕ〉H + 〈η(λ; y0), B∗ϕ〉U = 〈y0, ϕ〉H for λ ∈ C+
−β , ϕ ∈ H1; (2.1)

‖ξ(λ; y0)‖H ≤ C(β) 
Reλ + β

‖y0‖H , ‖η(λ; y0)‖U ≤ D(β) √
Reλ + β

‖y0‖H for λ ∈ C+
−β , (2.2)

where C(β) > 0 and D(β) > 0 are two constants independent of y0.
(iii) There is β ≥ 0 such that for each y0 ∈ H, there is (ξ(·; y0), η(·; y0)) ∈ H2(C+

−β ;H) × H2(C+
−β ;U)

satisfying (2.1).
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To prove Theorem 4, we need the following lemmas: The first lemma contains several results quoted from 
[25, Section A.6.3, Chapter A]:

Lemma 3. Let α ≥ 0. Then, the following statements are true:

(i) f ∈ H2(C+
−α;X) if and only if there is a unique h ∈ L2

α(R+;X) such that f(λ) =
∫
R+ e−tλh(t)dt

(λ ∈ C+
−α), i.e., H2(C+

−α;X) and L2
α(R+;X) are linear isomorphic. Moreover, 1 

2πMα(f) =∫
R+ e2αt‖h(t)‖2

Xdt.
(ii) For each f ∈ H2(C+

−α;X), there is a unique f∗
α ∈ L2(R;X) such that limω1→−α ‖f(ω1 + i·) −

f∗
α‖L2(R;X) = 0. Moreover, ‖f∗

α‖2
L2(R;X) =Mα(f).

(iii) H2(C+
−α;X), with inner product 〈f, g〉H2(C+

−α;X) := 〈f∗
α, g

∗
α〉L2(R;X) (f, g ∈ H2(C+

−α;X)), is a Hilbert 
space.

The second lemma is as follows, which is clear if B ∈ L(U ;H). However, for our framework, we do not 
find accurate literature that provides its proof. Thus, we provide it for the completeness of the paper.

Lemma 4. Suppose that (A1)-(A3) hold. If system [A,B] is stabilizable with decay rate α > 0, then for each 
β ∈ (0, α), system [A + βI,B] is stabilizable.

Proof. We arbitrarily fix β ∈ (0, α). Since system [A,B] is stabilizable with decay rate α > 0, we can use 
the same method as that used in Step 1 of the proof of [8, Theorem 3.4] to find a positive constant C(α)
such that

‖S∗(t)ϕ‖2
H ≤ C(α)

( t ∫
0 

‖B∗S∗(s)ϕ‖2
Uds + e−2αt‖ϕ‖2

H

)
for t ∈ R+, ϕ ∈ H1.

This yields that for each t ∈ R+,

‖S∗
β(t)ϕ‖2

H ≤ C(α)e2βt
t ∫

0 

‖B∗S∗
β(s)ϕ‖2

Hds + C(α)e−2(α−β)t‖ϕ‖2
H for ϕ ∈ H1, (2.3)

where Sβ(·) is the C0-semigroup on H generated by Aβ := A + βI with its domain D(Aβ) = D(A). Let 
T > 0 satisfy δT := C(α)e−2(α−β)T < 1. Then, it follows from (2.3) that

‖S∗
β(T )ϕ‖2

H ≤ C(α)e2βT
T∫

0 

‖B∗S∗
β(s)ϕ‖2

Hds + δT ‖ϕ‖2
H for ϕ ∈ H1.

With Lemma 1, the above shows that system [Aβ, B] is stabilizable. This completes the proof. �
Proof of Theorem 4. We organize the proof into the following steps.

Step 1. We prove (i) ⇒ (ii).
Suppose that system [A,B] is stabilizable with decay rate α > 0. We arbitrarily fix β ∈ [0, α). According 

to Lemma 4, system [Aβ, B] (where Aβ := A+βI) is stabilizable, i.e., there is γ > 0, a C0-semigroup Sβ,γ(·)
on H with the generator Aβ,γ : D(Aβ,γ) ⊂ H → H, and a Kβ,γ ∈ L(D(Aβ,γ);U) such that

(a1) there is Cβ,γ,1 > 0 such that ‖Sβ,γ(t)‖L(H) ≤ Cβ,γ,1e
−γt for all t ∈ R+;

(b1) for each x ∈ D(Aβ,γ), Aβ,γx = Ãβx + BKβ,γx, where Ãβ := Ã + βI, with Ã provided by (1.2);



K. Kunisch et al. / J. Math. Pures Appl. 196 (2025) 103690 9

(c1) there is Cβ,γ,2 > 0 such that ‖Kβ,γSβ,γ(·)x‖L2(R+;U) ≤ Cβ,γ,2‖x‖H for each x ∈ D(Aβ,γ).

From these properties we deduce the following facts:

(O1) Based on (b1) and (c1), for each y0 ∈ D(Aβ,γ),

uKβ,γ
(·; y0) := Kβ,γSβ,γ(·)y0 = Kβ,γyKβ,γ

(·; y0) ∈ L2
0(R+;U). (2.4)

and

yKβ,γ
(t; y0) := Sβ,γ(t)y0 = S̃β(t)y0 +

t ∫
0 

S̃β(t− s)BuKβ,γ
(s; y0)ds for all t ∈ R+,

where S̃β(·) := eβ·S̃(·) is the C0-semigroup generated by Ãβ on H−1 (see (i) in Remark 1).
(O2) We arbitrarily fix y0 ∈ D(Aβ,γ). By (a1) and (2.4), we obtain that if t ∈ R+,

‖uKβ,γ
(t; y0)‖U = ‖Kβ,γyKβ,γ

(t; y0)‖U = ‖Kβ,γSβ,γ(t)y0‖U
≤ ‖Kβ,γ(ρ1I −Aβ,γ)−1‖L(H;U)‖Sβ,γ(t)(ρ1I −Aβ,γ)y0‖H
≤ Cβ,γ,1e

−γt‖Kβ,γ(ρ1I −Aβ,γ)−1‖L(H;U)‖(ρ1I −Aβ,γ)y0‖H , (2.5)

where ρ1 ∈ ρ(Aβ,γ) ∩R+, and we use that Kβ,γ ∈ L(D(Aβ,γ);U).
(O3) We arbitrarily fix y0 ∈ D(Aβ,γ) and dfine

ξ(λ; y0) :=
∫
R+

e−λtyKβ,γ
(t; y0)dt; η(λ; y0) := −

∫
R+

e−λtuKβ,γ
(t; y0)dt, λ ∈ C+

0 . (2.6)

Considering the above two functions, we have the following conclusions: First, by (2.6) and (i) of 
Lemma 3, we see that ξ(·; y0) ∈ H2(C+

0 ;H) and η(·; y0) ∈ H2(C+
0 ;U). Second, based on (2.4)-(2.6), 

(a1) and (c1), we find

‖ξ(λ; y0)‖H ≤ Cβ,γ,1

Reλ 
‖y0‖H and ‖η(λ; y0)‖U ≤ Cβ,γ,2√

Reλ
‖y0‖H for λ ∈ C+

0 . (2.7)

Third, based on (a1), (c1), and Lemma 3, we obtain

‖ξ(·; y0)‖2
H2(C+

0 ;H) = 2π
∫
R+

‖yKβ,γ
(t; y0)‖2

Hdt ≤ γ−1πC2
β,γ,1‖y0‖2

H ; (2.8)

‖η(·; y0)‖2
H2(C+

0 ;U) = 2π
∫
R+

‖uKβ,γ
(t; y0)‖2

Udt ≤ 2πC2
β,γ,2‖y0‖2

H .

Next, we show Claim One: For each y0 ∈ H, there is (ξ(·; y0), η(·; y0)) ∈ H2(C+
0 ;H) ×H2(C+

0 ;U) that 
satifies (2.7) and

〈ξ(λ; y0), (λ̄I −A∗
β)ϕ〉H + 〈η(λ; y0), B∗ϕ〉U = 〈y0, ϕ〉H for λ ∈ C+

0 , ϕ ∈ H1. (2.9)

The proof of Claim One will be organized using two cases.

Case 1. We consider that y0 ∈ D(Aβ,γ).
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First, based on (O3), we have (2.7) for this case. We now show (2.9) for this case. For this purpose, we 
arbitrarily fix y0 ∈ D(Aβ,γ) and ϕ ∈ H1 = D(A∗

β). From (O1) and the main theorem in [31] (see also [24, 
Theorem on Page 259]), we obtain

{
d 
dt 〈yKβ,γ

(t; y0), ϕ〉H = 〈yKβ,γ
(t; y0), A∗

βϕ〉H + 〈uKβ,γ
(t; y0), B∗ϕ〉U , t ∈ R+,

yKβ,γ
(0) = y0.

(2.10)

The combination of this result, (a1), and (2.5) yield

e−λ· d 
dt

〈yKβ,γ
(·; y0), ϕ〉H ∈ L1(R+;C) for each λ ∈ C+

0 . (2.11)

Now, (a1), (2.11), and (2.6) lead to∫
R+

e−λt d 
dt

〈yKβ,γ
(t; y0), ϕ〉Hdt = 〈λξ(λ; y0), ϕ〉H − 〈y0, ϕ〉H = 〈ξ(λ; y0), λ̄ϕ〉H − 〈y0, ϕ〉H , λ ∈ C+

0 .

From the above and (2.10), one can directly obtain that (ξ(·; y0), η(·; y0)) (which is dfined by (2.6)) satifies 
(2.9).

Case 2. We consider that y0 ∈ H.
According to the density of D(Aβ,γ) in H, there is a sequence {yn0 }n∈N+ ⊂ D(Aβ,γ) such that yn0 → y0

in H as n → +∞. Thus, {yn0 }n∈N+ is a Cauchy sequence in H. Moreover, by (2.6) and (2.8), we have

‖ξ(·; yn0 ) − ξ(·; ym0 )‖H2(C+
0 ;H) = ‖ξ(·; yn0 − ym0 )‖H2(C+

0 ;H) ≤
√
γ−1πCβ,γ,1‖yn0 − ym0 ‖H ∀ n,m ∈ N+.

Hence, {ξ(·; yn0 )}n∈N+ is a Cauchy sequence in H2(C+
0 ;H). Then, according to (iii) in Lemma 3, there is 

ξ∗(·) ∈ H2(C+
0 ;H) such that

ξ(·; yn0 ) → ξ∗(·) in H2(C+
0 ;H) as n → +∞. (2.12)

By (i) in Lemma 3, we can find h∗(·) in L2(R+;H) such that ξ∗(·) =
∫
R+ e−·th∗(t)ds. The combination of 

this result, (2.6), (2.12) and (i) in Lemma 3 yield that if we write hn(t) := yKβ,γ
(t; yn0 ), t ∈ R+ (n ∈ N+), 

then we have ∫
R+

‖hn(t) − h∗(t)‖2
Hdt = 1 

2π ‖ξ(·; y
n
0 ) − ξ∗(·)‖2

H2(C+
0 ;H) → 0 as n → +∞.

Thus, for each λ ∈ C+
0 ,

‖ξ(λ; yn0 ) − ξ∗(λ)‖2
H ≤

( ∫
R+

e−Reλt‖hn(t) − h∗(t)‖Hdt
)2

≤ (2Reλ)−1‖hn − h∗‖2
L2(R+;H) → 0 as n → +∞. (2.13)

Similarly, we can show that there is η∗(·) ∈ H2(C+
0 ;U) such that for each λ ∈ C+

0 ,

‖η(λ; yn0 ) − η∗(λ)‖U → 0 as n → +∞. (2.14)

Therefore, by (2.9), (2.13) and (2.14), we obtain that for ϕ ∈ H1 and λ ∈ C+
0 ,
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〈ξ∗(λ), (λ̄I −A∗)ϕ〉H + 〈η∗(λ), B∗ϕ〉U
= lim

n→+∞
〈ξ(λ; yn0 ), (λ̄I −A∗)ϕ〉H + 〈η(λ; yn0 ), B∗ϕ〉U = lim

n→+∞
〈yn0 , ϕ〉H = 〈y0, ϕ〉H ,

which leads to (2.9). Meanwhile, based on (2.13) and (2.14), we can directly observe that (2.7) holds for all 
y0 ∈ H. Hence, Claim One has been proven.

Finally, we arbitrarily fix y0 ∈ H. Letting λ = β + μ with μ ∈ C+
−β , formulas (2.9) and (2.7) lead to

〈ξ(μ + β; y0), (μ̄I −A∗)ϕ〉H + 〈η(μ + β; y0), B∗ϕ〉U = 〈y0, ϕ〉H for μ ∈ C+
−β , ϕ ∈ H1; (2.15)

‖ξ(μ + β; y0)‖H ≤ Cβ,γ,1

Reμ + β
‖y0‖H and ‖η(μ + β; y0)‖U ≤ Cβ,γ,2√

Reμ + β
‖y0‖H for μ ∈ C+

−β . (2.16)

One can directly check that (ξ(·+β; y0), η(·+β; y0)) ∈ H2(C+
−β ;H)×H2(C+

−β ;U) (since (ξ(·; y0), η(·; y0)) ∈
H2(C+

0 ;H)×H2(C+
0 ;U)). Thus, (2.15) and (2.16) imply that (2.1) and (2.2) hold with C(β) := Cβ,γ,1 and 

D(β) := Cβ,γ,2, respectively. Hence, conclusion (ii) is true.

Step 2. The proof of (ii) ⇒ (iii) is trivial.

Step 3. We prove (iii) ⇒ (i).
Suppose that (iii) holds, i.e., there is β ≥ 0 such that for each y0 ∈ H, there is (ξ(·; y0), η(·; y0)) ∈

H2(C+
−β ;H) × H2(C+

−β ;U) satisfying (2.1). We arbitrarily fix y0 ∈ H. Then, based on (i) in Lemma 3, 
there is a unique (y(·), u(·)) ∈ L2

β(R+;H) × L2
β(R+;U) such that

ξ(λ; y0) =
∫
R+

e−λty(t)dt; η(λ; y0) = −
∫
R+

e−λtu(t)dt, λ ∈ C+
β . (2.17)

Let ω := max
{
1, limt→+∞ t−1 ln ‖S(t)‖L(H)

}
. Then, ξ(·; y0) and η(·; y0) are well dfined over C+

ω , and 
moreover, by [20, Proposition 2.2, Chapter IV], we have C+

ω ⊂ ρ(A)(= ρ(Ã)). We arbitrarily fix λ ∈ C+
ω . 

Then, we have that (λ̄I − A∗)−1 ∈ L(H;H1), and it follows from the proof of Theorem 3.1 in [24, Section 
1.3, Chapter 1] that

(λ̄I −A∗)−1ϕ =
∫
R+

e−λ̄tS∗(t)ϕ dt for each ϕ ∈ H. (2.18)

We arbitrarily fix ψ ∈ H1. There are two facts. First, replacing ϕ by (λ̄I −A∗)−1ψ in (2.1) (λ ∈ C+
ω ) leads 

to

〈ξ(λ; y0), ψ〉H + 〈η(λ; y0), B∗(λ̄I −A∗)−1ψ〉U = 〈y0, (λ̄I −A∗)−1ψ〉H . (2.19)

Second, with assumption (A2), we have B∗ ∈ L(H1;U) and B∗(λI −A∗)−1 ∈ L(H;U), thus,

〈η(λ; y0), B∗(λ̄I −A∗)−1ψ〉U = 〈Bη(λ; y0), (λ̄I −A∗)−1ψ〉H−1,H1 . (2.20)

Now, we claim that

e−Reλ·
· ∫

0 

S̃(· − s)Bu(s)ds ∈ L1(R+;H−1) ∩ L2(R+;H−1). (2.21)

For this purpose, we first recall that ρ0 is provided in assumption (A2), so we have (ρ0I−Ã)−1B ∈ L(U ;H). 
Moreover, by [17, Proposition 2.10.3, Chapter 2], we have that ρ0I − Ã is a unitary linear map from H to 
H−1. Hence, for each t ∈ R+,
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e−Reλt
∥∥∥ t ∫

0 

S̃(t− s)Bu(s)ds
∥∥∥
H−1

= e−Reλt
∥∥∥ t ∫

0 

S(t− s)(ρ0I − Ã)−1Bu(s)ds
∥∥∥
H

≤ C(ω)‖(ρ0I − Ã)−1B‖L(U ;H)e
−Reλt

t ∫
0 

eω(t−s)‖u(s)‖Uds

≤ C(ω)‖(ρ0I − Ã)−1B‖L(U ;H)e
−Reλt

( t ∫
0 

e2ωsds
) 1

2
( t ∫

0 

‖u(s)‖2
Uds

) 1
2

≤ C(ω)‖(ρ0I − Ã)−1B‖L(U ;H)(2ω)− 1
2 ‖u‖L2

β(R+;U)e
−(Reλ−ω)t.

Since Reλ > ω, the above leads to (2.21).
Based on (i) in Remark 1, (2.17), (2.18) and (2.21), using the Fubini theorem and u = 0 in (−∞, 0), we 

obtain

〈Bη(λ; y0), (λ̄I −A∗)−1ψ〉H−1,H1

= −
〈
B

∫
R+

e−λtu(t)dt,
∫
R+

e−λ̄tS∗(t)ψdt
〉
H−1,H1

= −
〈
(ρ0I − Ã)−1B

∫
R+

e−λtu(t)dt, (ρ0I −A∗)
∫
R+

e−λ̄tS∗(t)ψdt
〉
H

= −
∫
R+

+∞∫
t 

〈e−λ(σ−t)(ρ0I − Ã)−1Bu(σ − t), e−λ̄tS∗(t)(ρ0I −A∗)ψ〉Hdσdt

= −
∫
R+

e−λσ

σ∫
0 

〈(ρ0I − Ã)−1Bu(σ − t), S∗(t)(ρ0I −A∗)ψ〉Hdtdσ

= −
∫
R+

e−λσ
〈 σ∫

0 

S̃(σ − t)Bu(t)dt, ψ
〉
H−1,H1

dσ.

The combination of this result, (2.19) and (2.20) imply that∫
R 

e−λt 〈F (t), ψ〉H−1,H1
dt = 0 for λ ∈ C+

ω , ψ ∈ H1, (2.22)

where F (t) := y(t) − S̃(t)y0 −
∫ t

0 S̃(t− s)Bu(s)ds for t ≥ 0, while F (t) := 0 for t < 0. With (2.21), we can 
apply the inverse Fourier transform to (2.22) with respect to Imλ to conclude that

y(t) = S̃(t)y0 +
t ∫

0 

S̃(t− s)Bu(s)ds a.e. t ∈ R+,

which leads to y(·) = y(·; y0, u) a.e. in R+. With (y(·), u(·)) ∈ L2
β(R+;H) × L2

β(R+;U) ⊂ L2(R+;H) ×
L2(R+;U), we obtain

Uad(y0) := {u(·) ∈ L2(R+;U) : y(·; y0, u) ∈ L2(R+;H)} �= ∅. (2.23)
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Since y0 was arbitrarily taken from H, (2.23) and [8, Proposition 3.9] imply that system [A,B] is exponen
tially stabilizable. Hence, we have completed the proof of Theorem 4. �
3. Proofs of the main theorems

Before presenting the proofs of the main theorems, we need the following lemmas:

Lemma 5. Suppose that A ∈ L(H) and B ∈ L(U ;H). Then, the following statements are equivalent:

(i) System [A,B] is exactly controllable at some T > 0;
(ii) There are constants T > 0 and C(T ) > 0 such that

‖ϕ‖2
H ≤ C(T )

T∫
0 

‖B∗eA
∗tϕ‖2

Udt for ϕ ∈ H;

(iii) There is n ∈ N such that Span{BU,ABU, . . . , AnBU} = H;
(iv) For each λ ∈ C, there is C(λ) > 0 such that ‖ϕ‖2

H ≤ C(λ)(‖(λI −A∗)ϕ‖2
H + ‖B∗ϕ‖2

U ) for all ϕ ∈ H.

Proof. It is well-known that (i) ⇔ (ii) (e.g., [17, Theorem 11.2.1, Chapter 11]). Using Baire category 
theorem, one can directly verify that (i) ⇒ (iii), while the proof of (iii) ⇒ (i) can be found in [32, Theorem 
2.3]. The proof of (iii) ⇔ (iv) can be found in [33] (see the main theorem and the remark on it there). This 
completes the proof. �
Lemma 6. System [A,B] is rapidly stabilizable if and only if for each α > 0, system [Aα, B] is stabilizable, 
where Aα := A + αI.

If B ∈ L(U ;H), then Lemma 6 is well known. However, for our framework, we do not find an accurate 
literature with its proof. Thus, we prove it here.

Proof of Lemma 6. First, let Sα(·) be the C0-semigroup generated by Aα. Then, we have Sα(t) = eαtS(t), 
t ≥ 0.

Now, we suppose that system [A,B] is rapidly stabilizable. Then, according to [8, Theorem 3.4], for each 
α > 0, there is C(α) > 0 such that

‖S∗(t)ϕ‖2
H ≤ C(α)

⎛⎝ t ∫
0 

‖B∗S∗(s)ϕ‖2
Uds + e−(2α+1)t‖ϕ‖2

H

⎞⎠ for ϕ ∈ H1, t ∈ R+.

Hence, for α > 0,

‖S∗
α(t)ϕ‖2

H ≤ C(α)e2αt
t ∫

0 

‖B∗S∗
α(s)ϕ‖2

Uds + C(α)e−t‖ϕ‖2
H for ϕ ∈ H1, t ∈ R+. (3.1)

For each α > 0, we let T > 0 satisfy δ := D(α)e−T < 1. Then, based on (3.1), we have

‖S∗
α(T )ϕ‖2

H ≤ C1(α)e2αT
T∫

0 

‖B∗S∗
α(s)ϕ‖2

Uds + δ‖ϕ‖2
H for ϕ ∈ H1.
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The combination of this and (i) of Lemma 1 yield that system [Aα, B] is stabilizable.
Conversely, we suppose that, for each α > 0, system [Aα, B] is stabilizable. Then, according to (i) of 

Lemma 1, for each α > 0, there is C(α) > 0 such that

‖S∗
α(t)ϕ‖2

H ≤ C(α)

⎛⎝ t ∫
0 

‖B∗S∗
α(s)ϕ‖2

Uds + ‖ϕ‖2
H

⎞⎠ for ϕ ∈ H1, t ∈ R+,

which implies that if α > 0,

‖S∗(t)ϕ‖2
H ≤ C(α)

⎛⎝ t ∫
0 

‖B∗S∗(s)ϕ‖2
Uds + e−αt‖ϕ‖2

H

⎞⎠ for ϕ ∈ H1, t ∈ R+.

With (ii) of Lemma 1, the above leads to the rapid stabilizability of system [A,B]. This completes the proof 
of Lemma 6. �

We start with proving Theorem 3.

Proof of Theorem 3. We first prove (i). Suppose that system [A,B] is stabilizable. According to Theorem 4, 
there are constants β0 > 0, C(β0) ≥ 1 and D(β0) > 0 such that for each y0 ∈ H, there is (ξ(·; y0), η(·; y0)) ∈
H2(C+

−β0
;H) ×H2(C+

−β0
;U) that satifies (2.1) and (2.2). Then, based on (2.1) and (2.2), for λ ∈ C+

−β0

and y0 ∈ H,

|〈y0, ϕ〉H | ≤
( C(β0) 

Reλ + β0
‖(λ̄I −A∗)ϕ‖H + D(β0) √

Reλ + β0
‖B∗ϕ‖U

)
‖y0‖H for ϕ ∈ H1.

Thus, for each λ ∈ C+
−β0

,

‖ϕ‖H ≤ C(β0) 
Reλ + β0

‖(λ̄I −A∗)ϕ‖H + D(β0) √
Reλ + β0

‖B∗ϕ‖U for ϕ ∈ H1. (3.2)

Suppose that ‖S∗(t)‖ ≤ C(ω)eωt for each t ∈ R+ for some constants ω > 0 and C(ω) > 0. Taking β ∈ (0, β0). 
By [24, Theorem 5.3 and Remark 5.4, Section 1.5, Chapter 1], we have that, for each λ ∈ C+

max{ω,2|β−ω|−β},

‖ϕ‖H ≤ C(ω) 
Reλ− ω

‖(λI −A∗)ϕ‖H ≤ C(ω) 
(Reλ + β) − |β − ω| ‖(λI −A∗)ϕ‖H

= C(ω) 
1
2 (Reλ + β) + (1

2 (Reλ + β) − |β − ω|)
‖(λI −A∗)ϕ‖H

≤ 2C(ω) 
Reλ + β

‖(λI −A∗)ϕ‖H for ϕ ∈ H1. (3.3)

If λ ∈ C+
−β \C+

max{ω,2|β−ω|−β}, then

D(β) √
Reλ + β0

≤ D(β)(max{ω, 2|β − ω| − β} + β)√
β0 − β

1 
Reλ + β

.

The combination of this relation, (3.3), (3.2) and Definition 3 imply that the pair (A∗, B∗) satifies (HESI)β.
Next, we prove (ii). Suppose that system [A,B] is rapidly stabilizable. Lemma 6 implies that, for an 

arbitrarily fixed α > 0, system [A+αI,B] is stabilizable. Then, according to the conclusion (i) of Theorem 3, 
there is C(α) > 0 such that if λ ∈ C+

0 ,
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‖ϕ‖2
H ≤ C(α) 

(Reλ)2
(
‖(λI − (A∗ + αI))ϕ‖2

H + ‖B∗ϕ‖2
U

)
for ϕ ∈ H1.

Hence, if λ ∈ C+
−α,

‖ϕ‖2
H ≤ C(α) 

(Reλ + α)2
(
‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U

)
for ϕ ∈ H1.

Since α > 0 was arbitrarily taken, the above shows that the pair (A∗, B∗) satifies (HESI). This completes 
the proof of Theorem 3. �

We now prove Theorem 1.

The proof of Theorem 1. First, since A∗ is normal, we can write EA∗ for the unique spectral measure 
corresponding to A∗, which is provided by the spectral theorem (e.g., [22, Theorem 6.47, Chapter 6]). We 
divide the proof into two steps.

Step 1. We prove conclusion (i).
By Theorem 3, we have the necessity. The remainder is to show the sufficiency. We suppose that the pair 

(A∗, B∗) satifies (HESI)β for some β > 0. Then, there is β > 0 and C(β) > 0 satisfying (1.5). Without loss 
of generality, we can assume that C+

−ε ∩ σ(A∗) �= ∅ for each ε > 0. (Otherwise, there is ε∗ > 0 such that 
C+

−ε∗ ∩ σ(A∗) = ∅. Then, it follows from [20, Corollary 3.4, Section 3, Chapter IV and Lemma 1.9, Section 
1, Chapter V] that S∗(·) and S(·) are exponentially stable. Thus, by taking the feedback law as 0, we obtain 
the sufficiency.) We take ω > 0 such that ‖S∗(t)‖L(H) ≤ C(ω)eωt for each t ∈ R+. The remainder of the 
proof in this step is organized into two sub-steps.

Sub-step 1.1. We prove that for each β∗ ∈ (0, β), there are T := T (β∗) > 0 and C(T, β∗) > 0 such that

‖S∗(T )EA∗
(C+

−β∗)ϕ‖2
H ≤ C(T, β∗)

T∫
0 

‖B∗EA∗
(C+

−β∗)S∗(t)EA∗
(C+

−β∗)ϕ‖2
Udt for ϕ ∈ H1. (3.4)

We arbitrarily fix β∗ ∈ (0, β). Since σ(A∗)∩C+
−γ is bounded (by our assumption), it follows from the spectral 

theorem that

(a) A∗EA∗(C+
−β∗) = EA∗(C+

−β∗)A∗ is a bounded operator on H;
(b) EA∗(C+

−β∗)H is an invariant subspace of A∗EA∗(C+
−β∗).

Thus, we have EA∗(C+
−β∗)H = D(A∗EA∗(C+

−β∗)) and A∗EA∗(C+
−β∗) ∈ L(EA∗(C+

−β∗)H). Consequently, 
EA∗(C+

−β∗)S∗(·)(= S∗(·)EA∗(C+
−β∗)) is the C0-semigroup on H, which is generated by A∗EA∗(C+

−β∗). Based 
on (b), we know that EA∗(C+

−β∗)H is an invariant subspace of S∗(t) for each t ∈ R+, so EA∗(C+
−β∗)S∗(·) is 

a C0-semigroup on EA∗(C+
−β∗)H. Meanwhile, based on (a) and assumption (A2) (see also (i) in Remark 1), 

B∗EA∗(C+
−β∗) ∈ L(EA∗(C+

−β∗)H;U). Indeed, we have

‖B∗EA∗
(C+

−β∗)ϕ‖U ≤ ‖(B∗(ρ0I −A∗)−1)‖L(H;U)‖(ρ0I −A∗)EA∗
(C+

−β∗)‖L(H)‖ϕ‖H

for all ϕ ∈ EA∗(C+
−β∗)H.

Now, we claim that there is C(β, β∗) > 0 such that if λ ∈ C,

‖ϕ‖2
H ≤ C(β, β∗)(‖(λI −A∗EA∗

(C+
−β∗))ϕ‖2

H + ‖B∗EA∗
(C+

−β∗)ϕ‖2
U ) for ϕ ∈ EA∗

(C+
−β∗)H. (3.5)

Indeed, (1.5) implies that for λ ∈ C+
−β∗+β

2 
(⊂ C+

−β) and ϕ ∈ EA∗(C+
−β∗)H,
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‖ϕ‖2
H ≤ 4C(β) 

(β − β∗)2 (‖(λI −A∗EA∗
(C+

−β∗))ϕ‖2
H + ‖B∗EA∗

(C+
−β∗)ϕ‖2

U ). (3.6)

However, according to the spectral theorem,

‖(λI −A∗EA∗
(C+

−β∗))−1ϕ‖2
H ≤ 4 

(β − β∗)2 ‖ϕ‖
2
H for λ ∈ C−

−β∗+β
2 

, ϕ ∈ EA∗
(C+

−β∗)H,

which implies that

‖ϕ‖2
H ≤ 4 

(β − β∗)2 ‖(λI −A∗EA∗
(C+

−β∗))ϕ‖2
H for λ ∈ C−

−β∗+β
2 

, ϕ ∈ EA∗
(C+

−β∗)H.

This fact and (3.6) lead to (3.5) with C(β, β∗) := 4(1+C(β))
(β−β∗)2 . Since

(A∗EA∗
(C+

−β∗), B∗EA∗
(C+

−β∗)) ∈ L(EA∗
(C+

−β∗)H) ×L(EA∗
(C+

−β∗)H;U),

(3.5) and Lemma 5 imply that there is T := T (β∗) > 0 and C(T, β∗) > 0 that satifies (3.4). (Here, we 
use that ‖S∗(T )EA∗(C+

−β∗)ϕ‖H ≤ C(ω)eωT ‖EA∗(C+
−β∗)ϕ‖H for each ϕ ∈ H1.) Thus, we have completed 

Sub-step 1.1.

Sub-step 1.2. We prove that the system [A,B] is stabilizable.
We arbitrarily fix β∗ ∈ (0, β). The facts are as follows: First, according to Substep 1.1, there are con

stants T0 > 0 and C(T0, β
∗) > 0 such that (3.4) (where T = T0 and C(T, β∗) = C(T0, β

∗)) holds. Second, 
one can easily check that A∗EA∗(C−

−β∗) (with its domain EA∗(C−
−β∗)H1) generates the C0-semigroup 

S∗(·)EA∗(C−
−β∗) on EA∗(C−

−β∗)H. Third, the spectral theorem implies that σ(A∗EA∗(C−
−β∗)) ⊂ C−

−β∗

and thus

sup{Reλ : λ ∈ σ(A∗EA∗
(C−

−β∗))} ≤ −β∗. (3.7)

Since A∗ is a normal operator and EA∗(C−
−β∗) is an orthogonal projection, we have that A∗EA∗(C−

−β∗) is 
normal on EA∗(C−

−β∗)H. Then, by (3.7) and [20, Corollary 3.4, Section 3, Chapter IV and Lemma 1.9, 
Section 1, Chapter V], we obtain that for each η ∈ (0, β∗), there is C(η) > 0 such that

‖S∗(t)EA∗
(C−

−β∗)‖L(H) ≤ C(η)e−ηt for t ∈ R+. (3.8)

Now, we claim that for each T ≥ 2T0, there is C(T0, ω, β
∗, η) > 0 such that

‖S∗(T )ϕ‖2
H ≤ C(T0, ω, β

∗, η)
( T∫

0 

‖B∗S∗(t)ϕ‖2
Udt + e−2ηT ‖ϕ‖2

H

)
for ϕ ∈ H1. (3.9)

For this purpose, we arbitrarily fix T ≥ 2T0. Let N := [T/T0], then N ≥ 2 and NT0 ≤ T < (N + 1)T0. 
Based on (3.4) (with T = T0 and C(T, β∗) = C(T0, β

∗)) and (3.8), we have that, for each ϕ ∈ H1,

‖S∗(T )ϕ‖2
H = ‖S∗(T −NT0)S∗(NT0)ϕ‖2

H ≤ (C(ω))2e2ωT0‖S∗(NT0)ϕ‖2
H

= (C(ω))2e2ωT0
(
‖S∗(T0)EA∗

(C+
−β∗)S∗((N − 1)T0)ϕ‖2

H + ‖S∗(NT0)EA∗
(C−

−β∗)ϕ‖2
H

)
≤ (C(ω))2e2ωT0

(
C(T0, β

∗)
T0∫
0 

‖B∗S∗((N − 1)T0 + t)EA∗
(C+

−β∗)ϕ‖2
Udt + ‖S∗(NT0)EA∗

(C−
−β∗)ϕ‖2

H

)
≤ I1 + I2, (3.10)
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where

I1 := (C(ω))2e2ωT0
(
2C(T0, β

∗)
NT0∫

(N−1)T0

‖B∗S∗(t)ϕ‖2
Udt + (C(η))2e−2ηNT0‖ϕ‖2

H

)
,

and

I2 := 2(C(ω))2C(T0, β
∗)e2ωT0

T0∫
0 

‖B∗S∗((N − 1)T0 + t)EA∗
(C−

−β∗)ϕ‖2
Hdt.

Based on assumption (A3) and (3.8), one can directly check that

I1 ≤ 2(C(ω))2C(T0, β
∗)e2ωT0

T∫
0 

‖B∗S∗(t)ϕ‖2
Udt + (C(ω)C(η))2e2(ω+η)T0e−2ηT ‖ϕ‖2

H ; (3.11)

I2 = 2(C(ω))2C(T0, β
∗)e2ωT0

T0∫
0 

‖B∗S∗(t)S∗((N − 1)T0)EA∗
(C−

−β∗)ϕ‖2
Hdt

≤ 2(C(ω))2C(T0, β
∗)C(T0)e2ωT0‖S∗((N − 1)T0)EA∗

(C−
−β∗)ϕ‖2

H

≤ 2(C(ω))2C(T0, β
∗)C(T0)(C(η))2e2ωT0e−2η(N−1)T0‖EA∗

(C−
−β∗)ϕ‖2

H

≤ 2(C(ω)C(η))2C(T0, β
∗)C(T0)e2(ω+2η)T0e−2ηT ‖ϕ‖2

H .

The above, (3.10), and (3.11) lead to (3.9) with

C(T0, ω, β
∗, η) := (C(ω))2e2ωT0 max{2C(T0, β

∗), (C(η))2e2ηT0(1 + 2C(T0, β
∗)C(T0)e2ηT0)}.

Using (3.9), we can find T̂ > 0 such that

‖S∗(T̂ )ϕ‖2
H ≤ C(T0, ω, β

∗, η)
T̂∫

0 

‖B∗S∗(t)ϕ‖2
Udt + 1

2‖ϕ‖
2
H for ϕ ∈ H1.

The combination of this result and Lemma 1 yield that system [A,B] is stabilizable. Thus, we have completed 
Sub-step 1.2 and Step 1.

Step 2. We prove conclusion (ii).
The necessity is proven in Theorem 3. Thus, we must only prove the sufficiency. Suppose that the pair 

(A∗, B∗) satifies (HESI). Then, for each β > 0, there is C(β) > 0 such that

‖ϕ‖2
H ≤ C(β) 

(Reλ + 2β)2
(
‖(λI −A∗)ϕ‖2

H + ‖Bϕ‖2
U

)
for λ ∈ C+

−2β , ϕ ∈ H1,

which yields

‖ϕ‖2
H ≤ C(β) 

(Reλ + β)2
(
‖(λI − (A∗ + βI))ϕ‖2

H + ‖Bϕ‖2
U

)
for λ ∈ C+

−β , ϕ ∈ H1.
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The combination of this result and conclusion (i) of Theorem 1 imply that [A+βI,B] is stabilizable. (Since 
A is normal, A+ βI is also normal for any β ∈ R.) Since β > 0 can be arbitrarily chosen, Lemma 6 implies 
that [A,B] is rapidly stabilizable.

Thus, we complete the proof of Theorem 1. �
Finally, we prove Theorem 2.

Proof of Theorem 2. By Theorem 3, we only need to show the sufficiency. For this purpose, we suppose 
that there are constants β > 0 and C(β) > 0 that satisfy (1.5). We divide the remainder of the proof into 
two steps.

Step 1. We prove the stabilizability for system [A,B] for case (a).
First, (a) in Theorem 2 implies that there is CA > 0 such that ‖S∗(t)‖L(H) ≤ CA for each t ≥ 0.
Next, we arbitrarily fix τ > 0. Let

Θτ (t) :=
{

sin
(
πt
τ

)
, if t ∈ [0, τ ],

0, if t ∈ R \ [0, τ ],
(3.12)

which satifies

Θτ (·) ∈ H1(R) (3.13)

and

Θ′
τ (t) =

{
π
τ cos

(
πt
τ

)
, if t ∈ [0, τ ],

0, if t ∈ R \ [0, τ ].
(3.14)

Now, we arbitrarily fix ϕ ∈ H1 and dfine

w(t) := Θτ (t)z(t), t ∈ R, where z(t) :=
{
S∗(t)ϕ, if t ≥ 0,
0, if t < 0.

(3.15)

By assumption, we have ‖z(t)‖H ≤ CA‖ϕ‖H for each t ∈ R. The combination of this result, (3.15) and 
(3.13) imply that w ∈ H1(R;H) and

w′(t) =
{
A∗w(t) + Θ′

τ (t)z(t) if t ≥ 0,
0, if t < 0.

(3.16)

Thus, we can apply the Fourier transform to (3.16) to obtain

(iςI −A∗)F [w](ς) = F [g](ς) a.e. ς ∈ R, (3.17)

where g(·) := Θ′
τ (·)z(·), and F [f ] denotes the Fourier transform of f ∈ L2(R;H). Integrating (1.5) (where 

ϕ and λ are replaced by F [w](ς) and iς) with respect to ς over R, using (3.17), we obtain

∫
R 

‖F [w](ς)‖2
Hdς ≤ β−2C(β)

⎛⎝∫
R 

‖F [g](ς)‖2
Hdς +

∫
R 

‖B∗F [w](ς)‖2
Udς

⎞⎠ . (3.18)

It is clear that
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F [g](·) ∈ L2(R;H). (3.19)

Thus, the first integral on the right-hand side of (3.18) is finite. We now claim

B∗F [w](·) ∈ L2(R;U). (3.20)

Two facts ensuring (3.20) are as follows: First, we have

F [B∗w](·) ∈ L2(R;U). (3.21)

Indeed, it follows from (3.13) and assumption (A2) (see (i) in Remark 1) that

‖B∗w(·)‖U = ‖Θτ (·)B∗(ρ0I −A∗)−1S∗(·)(ρ0I −A∗)ϕ‖U
≤ CA|Θτ (·)|‖B∗(ρ0I −A∗)−1‖L(H;U)‖(ρ0I −A∗)ϕ‖H ∈ L2(R+;R),

while it follows from (3.12) and (3.15) that ‖B∗w(t)‖U = 0 when t ∈ R−. These relations lead to (3.21). 
Second, one can check that for a.e. ς ∈ R,

F [B∗w](ς) =
∫
R 

e−iςtB∗w(t)dt =
∫
R+

e−iςtB∗(ρ0I −A∗)−1Θτ (t)S∗(t)(ρ0I −A∗)ϕdt

= B∗(ρ0I −A∗)−1
∫
R+

e−iςtΘτ (t)S∗(t)(ρ0I −A∗)ϕdt = B∗
∫
R+

e−iςtΘτ (t)S∗(t)ϕdt

= B∗
∫
R 

e−iςtw(t)dt = B∗F [w](ς), (3.22)

where we used the fact w(·) ∈ L2(R;H). Clearly, (3.20) follows from (3.21) and (3.22).
Now, based on (3.19), (3.20), (3.18), (3.12), (3.13) and Plancherel’s theorem, we obtain

τ∫
0 

‖Θτ (t)z(t)‖2
H ≤ β−2C(β)

⎛⎝ τ∫
0 

‖B∗Θτ (t)z(t)‖2
Udt +

τ∫
0 

‖Θ′
τ (t)z(t)‖2

Hdt

⎞⎠ . (3.23)

We will use (3.23) to obtain the weak observability, which leads to the stabilizability of [A,B]. Indeed, 
since ‖S∗(t)‖L(H) ≤ CA for all t ≥ 0, it follows from (3.12) that

1
2τC

−2
A ‖S∗(τ)ϕ‖2

H = C−2
A

3τ
4 ∫

τ
4 

‖S∗(τ)ϕ‖2
Hds ≤

3τ
4 ∫

τ
4 

‖S∗(s)ϕ‖2
Hds;

τ∫
0 

‖Θτ (t)z(t)‖2
Hdt =

τ∫
0 

sin2
(
πt

τ

)
‖S∗(t)ϕ‖2

Hdt ≥

3τ
4 ∫

τ
4 

sin2
(
πt

τ

)
‖S∗(t)ϕ‖2

Hdt ≥ 1
2

3τ
4 ∫

τ
4 

‖S∗(t)ϕ‖2
Hdt.

These relations yield that

1
4τC

−2
A ‖S∗(τ)ϕ‖2

H ≤
τ∫

0 

‖Θτ (t)z(t)‖2
Hdt. (3.24)
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Using (3.12) and (3.14), we further have

τ∫
0 

‖B∗Θτ (t)z(t)‖2
Udt ≤

τ∫
0 

‖B∗S∗(t)ϕ‖2
Udt;

τ∫
0 

‖Θ′
τ (t)z(t)‖2

Hdt ≤ τ−2π2
τ∫

0 

‖S∗(t)ϕ‖2
Hdt ≤ τ−1(πCA)2‖ϕ‖2

H .

With (3.23) and (3.24), these relations imply

‖S∗(τ)ϕ‖2
H ≤ 4τ−1β−2C(β)C2

A

τ∫
0 

‖B∗S∗(t)ϕ‖2
Udt + 4τ−2β−2C(β)π2C4

A‖ϕ‖2
H . (3.25)

Taking τ̃ > 0 such that 4τ̃−2β−2C(β)π2C4
A ≤ 1

2 in (3.25) leads to

‖S∗(τ̃)ϕ‖2
H ≤ 4τ̃−1β−2C(β)C2

A

τ̃∫
0 

‖B∗S∗(t)ϕ‖2
Udt + 1

2‖ϕ‖
2
H .

The combination of this result and conclusion (i) in Lemma 1 imply that system [A,B] is stabilizable.

Step 2. We prove the stabilizability for system [A,B] for case (b).
According to assumption (b) (in Theorem 2), there are two closed subspaces Q1 := Q1(β) and Q2 := Q2(β)

of H satisfying (b1)-(b4) (where α is replaced by β). Based on (b1), we can dfine P : H → Q1 in the following 
manner: Pf = f1, for each f ∈ H, where f = f1 + f2 with fj ∈ Qj (j = 1, 2). Based on assumption (b2), 
one can directly check the following:

PS∗(t) = S∗(t)P, t ≥ 0; PH1 ⊂ H1; A∗P = PA∗ on H1. (3.26)

We write S∗
1(·) := PS∗(·) and S∗

2(·) := (I −P )S∗(·); A∗
1 = A∗|Q1 and A∗

2 = A∗|Q2 . Based on (3.26), one can 
easily check that S∗

j (·) is the C0-semigroup on Qj , generated by A∗
j , j = 1, 2.

Two facts are as follows: First, by (b3), we have that A∗
1 ∈ L(Q1), which implies D(A∗

1) = Q1. The 
combination of this result and assumption (A2) (see also (i) in Remark 1) yield that

B∗P |Q1 = (B∗(ρ0I −A∗)−1)(ρ0I −A∗
1) ∈ L(Q1;U). (3.27)

Second, by (b3), we have σ(A∗
1) ⊂ C+

−β which implies

C−
−β ⊂ ρ(A∗

1). (3.28)

Based on (3.28) and (1.5), for each λ ∈ C, there is C(λ) > 0 such that

‖ϕ‖2
H ≤ C(λ)(‖(λI −A∗

1)ϕ‖2
H + ‖B∗Pϕ‖2

U ) for ϕ ∈ Q1. (3.29)

(Indeed, if λ ∈ C+
−β , we can use (1.5) to find C(λ) above, while when λ / ∈ C+

−β , we can choose C(λ) =
‖(λI −A∗

1)−1‖2
L(H) because of (3.28).)

Now, based on (3.29), (3.27) and boundedness of A∗
1, we can apply Lemma 5 to find T > 0 and C(T ) > 0

such that
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‖S∗
1 (T )ϕ‖2

H ≤ C(T )
T∫

0 

‖B∗PS∗
1 (t)ϕ‖2

Udt for ϕ ∈ Q1.

The combination of this result and (b2) yield

‖PS∗(T )ϕ‖2
H = ‖S∗

1 (T )Pϕ‖2
H

≤ C(T )
T∫

0 

‖B∗PS∗
1 (t)Pϕ‖2

Udt = C(T )
T∫

0 

‖B∗PS∗(t)ϕ‖2
Udt for ϕ ∈ H1. (3.30)

Based on (b4) and (3.30), using a similar method as in Sub-step 1.2 of the proof of Theorem 1, there are 
T̂ > 0 and C(T̂ ) > 0 such that

‖S∗(T̂ )ϕ‖2
H ≤ Ĉ(T̂ )

T̂∫
0 

‖B∗S∗(t)‖2
Udt + 1

2‖ϕ‖
2
H for ϕ ∈ H1,

The combination of this result and (i) of Lemma 1 lead to the stabilizability of system [A,B].
Hence, we have completed the proof of Theorem 2. �

4. Applications

This section provides several applications of our main theorems to specific control PDEs. We start with 
introducing the concept of ‘thick sets’: We say a measurable subset E ⊂ RN (with N ∈ N+) to be thick, if 
there is ε > 0 and L > 0 such that

|E ∩QL(x)| ≥ εLN for each x ∈ RN ,

where QL(x) denotes the closed cube in RN , centered at x and of side length L, and |E ∩ QL(x)| denotes 
the Lebesgue measure of E ∩QL(x). Then, we quote the following lemma, which is related to the thick sets 
and will be used later:

Lemma 7. ([34, Theorem 1]) If ω is a thick set, then for each R > 0, there exists C(R,ω) > 0 such that, for 
each f ∈ L2(RN ) with supp(F [f ]) ⊂ [−R,R]N , the following estimate holds

‖f‖L2(RN ) ≤ C(R,ω)‖χωf‖L2(RN ).

4.1. Ginzburg–Landau equation in RN

Let a ∈ R+ and b ∈ R. Let ω ⊂ RN (with N ∈ N+) be a measurable set with its characteristic function 
χω. We consider the controlled Ginzburg–Landau equation in RN :{

yt = (a + ib)�y + χωu in R+ ×RN ,

y(0, ·) = y0(·) ∈ L2(RN ),
(4.1)

where u ∈ L2(R+;L2(RN )). Equation (4.1) can be put into our framework by setting: H = U = L2(RN ); 
A := (a+ib)�, with its domain H2(RN ); B := χω. One can directly check that (A1)-(A3) are true. One can 
also check that A is normal (using Fourier transform) and generates an analytic semigroup. The latter and 
(ii) of Remark 5 yield that σ(A)∩C+

−γ is bounded for each γ > 0. Therefore, Theorem 1 can be applied. It 
provides the following results:
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Theorem 5. If ω is a thick set, then equation (4.1) is rapidly stabilizable.

Proof. According to (ii) in Theorem 1 and Definition 3, we only need to show the following: For each β > 0, 
there is C(β) > 0 such that

‖ϕ‖2
L2(RN ) ≤ C(β)(‖(λI − (a− ib)�)ϕ‖2

L2(RN ) + ‖χωϕ‖2
L2(RN )) for λ ∈ C+

−β , ϕ ∈ H2(RN ). (4.2)

For this purpose, we arbitrarily fix ϕ ∈ H2(RN ), β > 0 and λ ∈ C+
−β . Plancherel’s theorem implies that

‖(λI − (a− ib)�)ϕ‖2
L2(RN ) = ‖(λ + (a− ib)|ξ|2)F [ϕ]‖2

L2(RN )

=
∫
RN

(
|Reλ + a|ξ|2|2 + |Imλ− b|ξ|2|2

)
|F [ϕ](ξ)|2dξ

≥ β2
∫
RN

χ|ξ|≥
√

2a−1β |F [ϕ](ξ)|2dξ.

The combination of this result, Lemma 7, and the Plancherel theorem yield that there is C1(β, a, ω) > 0
such that

‖ϕ‖2
L2(RN ) ≤ β−2‖(λI − (a− ib)�)ϕ‖2

L2(RN ) +
∫
RN

χ|ξ|≤
√

2a−1β |F [ϕ](ξ)|2dξ

≤ β−2‖(λI − (a− ib)�)ϕ‖2
L2(RN ) + C1(β, a, ω)

∫
RN

χω(x)|F−1[χ|ξ|≤
√

2a−1βF [ϕ]](x)|2dx

≤ β−2‖(λI − (a− ib)�)ϕ‖2
L2(RN ) + 2C1(β, a, ω)

∫
RN

χω(x)|ϕ(x)|2dx

+2C1(β, a, ω)
∫
RN

|F−1[χ|ξ|≥
√

2a−1β |F [ϕ]](x)|2dx

≤ β−2(2C1(β, a, ω) + 1)‖(λI − (a− ib)�)ϕ‖2
L2(RN ) + 2C1(β, a, ω)‖χωϕ‖2

L2(RN ),

which leads to (4.2) and completes the proof. �
Remark 7. Theorem 5 tells us that, if ω is a thick set, then, for each α > 0, there is K := K(α) ∈ L(L2(RN ))
such that the closed-loop system: yt = (a+ ib)� y +χωK

†y in R+ ×RN is exponentially stable with decay 
rate α. In this case, the corresponding feedback law can be constructed by the classical LQR theory on 
[0,+∞).

4.2. Fractional heat equation in RN

Let s ∈ (0, 1) and N ∈ N+. Let ω ⊂ RN be a measurable set with its characteristic function χω. We 
consider the following controlled fractional heat equation:{

∂ty + (−�) s 
2 y = χωu in R+ ×RN ,

y(0, ·) = y0(·) ∈ L2(RN ),
(4.3)

where u ∈ L2(R+;RN ) and (−�) s 
2 is dfined by
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(−�) s 
2 f := F−1[|ξ|sF [f ]], f ∈ C∞

c (RN ). (4.4)

Equation (4.3) can be put into our framework by setting: H = U = L2(RN ); A := −(−�) s 
2 with domain 

D(A) := Hs(RN ); B := χω(∈ L(L2(RN ))). One can easily check that (A1)-(A3) hold, A∗ = A, and A
generates an analytic semigroup. The latter and (ii) of Remark 5 yield that σ(A)∩C+

−γ is bounded for each 
γ > 0. Therefore, Theorem 1 can be applied. Moreover, the spectral measure EA∗ (corresponding to A∗) is 
provided as follows: for each Borel set Ω ⊂ C,

[EA∗
(Ω)]f := F−1[χ−|ξ|s∈(Ω∩R−)F [f ]] for f ∈ L2(RN ). (4.5)

Regarding equation (4.3), we have the following: Fact 1: If ω is thick, then equation (4.3) is not null 
controllable in general (see [35]). Fact 2: Equation (4.3) is rapidly stabilizable if and only if ω is thick 
(see [8, Theorem 4.5]), where it was proven by the weak observability inequality. Next, we utilize (ii) of 
Theorem 1 to provide a proof for the sufficiency by the frequency-domain inequality.

Proposition 1. If ω is a thick set, then for each β > 0, there is C(β) > 0 such that

‖ϕ‖2
L2(RN ) ≤

C(β) 
(Re λ + β)2

(
‖(λI −A∗)ϕ‖2

L2(RN ) + ‖B∗ϕ‖2
L2(RN )

)
for λ ∈ C+

−β , ϕ ∈ Hs(RN ). (4.6)

Proof. We arbitrarily fix β > 0. Let k := k(β) = [β] + 2. We set Ek := EA∗({z ∈ C : Rez ∈ [−k, 0]}), where 
EA∗ is provided in (4.5). Then, [7, Lemma 3.1] implies that

‖Ekϕ‖2
L2(RN ) ≤ eC0k

1
s ‖B∗Ekϕ‖2

L2(RN ) for ϕ ∈ L2(RN ), (4.7)

where C0 > 0 is a constant, which is independent of k. Let A∗
k := A∗ + (k − 1

2 )I. Now we claim

‖(I − Ek)ϕ‖2
L2(RN ) ≤

1 
(Reλ + 1

2 )2
‖(λI −A∗

k)(I − Ek)ϕ‖L2(RN ) for λ ∈ C+
− 1

2
, ϕ ∈ Hs(RN ). (4.8)

For this purpose, we arbitrarily fix λ ∈ C+
− 1

2
, ϕ ∈ Hs(RN ). Since A = A∗, it follows from (4.4) and (4.5) 

that

(λI −A∗
k)(I −Ek)ϕ = F−1

[
χ{|ξ|s>k}

(
λ− k + 1

2 + |ξ|s
)
F [ϕ]

]
.

The combination of this result and the Plancherel theorem yield

‖(λI −A∗
k)(I −Ek)ϕ‖2

L2(RN ) =
∫
RN

∣∣∣χ{|ξ|s>k}

(
λ− k + 1

2 + |ξ|s
)
F [ϕ](ξ)

∣∣∣2dξ
≥
∣∣∣λ + 1

2

∣∣∣2 ∫
RN

|χ{|ξ|s>k}F [ϕ](ξ)|2dξ ≥
(
Reλ + 1

2

)2
‖(I − Ek)ϕ‖2

L2(RN ),

which leads to (4.8).
Next, since A∗Ek = EkA

∗, (4.7) and (4.8) imply that for λ ∈ C+
− 1

4
and ϕ ∈ Hs(RN ),

‖ϕ‖2
L2(RN ) ≤ ‖(I −Ek)ϕ‖2

L2(RN ) + ‖Ekϕ‖2
L2(RN ) ≤ ‖(I −Ek)ϕ‖2

L2(RN ) + eC0k
1
s ‖B∗Ekϕ‖2

L2(RN )

≤
(
1 + 2eC0k

1
s 
)
‖(I −Ek)ϕ‖2

L2(RN ) + 2eC0k
1
s ‖B∗ϕ‖2

L2(RN )

≤ 16
(
1 + 2eC0k

1
s 
)
‖(λI −A∗

k)ϕ‖2
L2(RN ) + 2eC0k

1
s ‖B∗ϕ‖2

L2(RN ).
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The combination of this result and Definition 3 (see also Proposition 4 in Appendix) imply that there are 
γ > 0 and C(γ, k) > 0 such that

‖ϕ‖2
L2(RN ) ≤

C(γ, k) 
(Re η + γ)2

(
‖(ηI −A∗

k)ϕ‖2
L2(RN ) + ‖B∗ϕ‖2

L2(RN )

)
for η ∈ C+

−γ , ϕ ∈ Hs(RN ). (4.9)

Since β + 1 ≤ k, letting η = λ + k − 1
2 in (4.9) leads to (4.6) with C(β) := C(γ, k). This completes the 

proof. �
Remark 8. Proposition 1, together with Theorem 1, yields that, for each α > 0, there is a K := K(α) ∈
L(L2(RN )) such that the closed-loop system yt +(−�) s 

2 y = χωKy in R+×RN is exponentially stable with 
the decay rate α. Again, the corresponding feedback law can be constructed by LQR theory on [0,+∞).

4.3. One-dimensional heat equation with point-wise controls

Let c > π2, x0 ∈ (0, 1), and δ(·) be the Dirac function at x = 0 ∈ R. We consider the following heat 
equation with point-wise controls:⎧⎪⎪⎨⎪⎪⎩

yt = (∂2
x + c)y + δ(· − x0)u in R+ × (0, 1),

y(·, 0) = y(·, 1) = 0 in R+,

y(0, ·) = y0(·) ∈ L2(0, 1),
(4.10)

where u ∈ L2(R+). Equation (4.10) can be put into our framework by setting: H := L2(0, 1); U := R; 
A := ∂2

x + c (with its domain D(A) := H1 = H1
0 (0, 1) ∩ H2(0, 1)); B := δ(· − x0) (which is considered 

as a bounded operator from R to in H−1, see (i) in Remark 1 for the definition of H−1). One can easily 
check that assumptions (A1)-(A3) are true, A is self-adjoint, and A generates an analytic semigroup (see [8, 
Example 4.3]). The latter and (ii) of Remark 5 yield that σ(A)∩C+

−γ is bounded for each γ > 0. Therefore, 
Theorem 1 can be applied. Moreover, since A generates a compact semigroup, assumption (b) in Theorem 2
holds (see (ii) in Remark 6). Thus, Theorem 2 can also be applied.

Regarding equation (4.10), we have the following: Fact 1: For some irrational number x0 ∈ (0, 1), equation 
(4.10) is not null controllable (see [8, Example 4.3]). Fact 2: Equation (4.10) is rapidly stabilizable if and 
only if x0 ∈ (0, 1) is irrational (see [8, Theorem 4.9]). Thus, a natural question is what happens about equation 
(4.10) when x0 is rational? We will give the answer for this question by using Theorem 1 or Theorem 2.

Theorem 6. System (4.10) is stabilizable in L2(0, 1) if and only if x0 / ∈ {k/n ∈ (0, 1) : k ∈ N+, n =
1, 2, . . . , [

√
c/π]}.

Proof. First of all, we give two facts. Fact One: The eigenvalues and the corresponding normalized eigen
functions of A∗ are as follows: λn := −(nπ)2 + c; en(x) :=

√
2 sin(nπx), x ∈ (0, 1), n ∈ N+. Fact Two: 

B∗ϕ = ϕ(x0) for ϕ ∈ H1 which is bounded from H1 to R.
Now we prove the necessity. By contradiction, we suppose that there is x0 = k/n ∈ (0, 1) (with n ∈

{1, 2, . . . , [√c/π]}, k ∈ N+) such that system (4.10) is stabilizable. Then, we have en(x0) =
√

2 sin(nπx0) =
0, which implies that B∗en = 0. Since 1 ≤ n ≤ [

√
c/π], one can directly check that

λn = −(nπ)2 + c ≥ −([
√
c/π]π)2 + c ≥ 0, and thus λn ∈ C+

0 .

For any β > 0, the right-hand side of (1.5) (where λ = λn and ϕ = en) is 0, while the left-hand side of (1.5) 
(where λ = λn and ϕ = en) is 1. So (1.5) is not true for any β > 0. Thus, it follows from (i) of Theorem 1
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(or Theorem 2) that system (4.10) is not stabilizable, which causes a contradiction and completes the proof 
of the necessity.

We next prove the sufficiency. We will show that if x0 / ∈ {k/n ∈ (0, 1) : k ∈ N+, n = 1, 2, . . . , [
√
c/π]}, 

then there is β > 0 such that the pair (A∗, B∗) satifies (HESI)β . We let n∗ := [
√
c/π]. Since x0 / ∈ {k/n ∈

(0, 1) : k ∈ N+, n = 1, 2, . . . , n∗}, we have

en(x0) �= 0 for each n ∈ {1, 2, . . . , n∗}. (4.11)

We dfine the following projection operator: Pn∗ϕ :=
∑n∗

n=1〈ϕ, en〉Hen (ϕ ∈ H). Let β := −1
2λn∗+1. Since 

n∗ = [
√
c/π], one can directly check that β > 0. Now, we claim that there is C(β) > 0 such that

‖ϕ‖2
H ≤ C(β)(‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U ) for λ ∈ C+

−β , ϕ ∈ H1. (4.12)

Indeed, based on (4.11), one can easily check that Ker
(
(λI −A∗Pn∗ , B∗Pn∗)�|Pn∗H

)
= {0} for λ ∈

C. Since Pn∗H and U are finite-dimensional, this, along with Kalman’s controllability condition, yields 
that system [Pn∗A,Pn∗B] is controllable (consequently, is rapidly stabilizable) on Pn∗H. Thus, by (ii) in 
Theorem 3, there is C0(β) > 0 such that

‖Pn∗ϕ‖2
H ≤ C0(β)(‖(λI −A∗)Pn∗ϕ‖2

H + ‖B∗Pn∗ϕ‖2
U ) for λ ∈ C+

−β , ϕ ∈ H1. (4.13)

Meanwhile, by the definition of β, one can directly check that, for λ ∈ C+
−β ,

‖(λI −A∗)ϕ‖2
H ≥ ‖(λI −A∗)(I − Pn∗)ϕ‖2

H ≥ β2‖(I − Pn∗)ϕ‖H for ϕ ∈ H1. (4.14)

Moreover, by the Hölder inequality, there exists C1(β) > 0 such that, for λ ∈ C+
−β and ϕ ∈ H1,

‖B∗Pn∗ϕ‖2
U ≤ 2‖B∗ϕ‖2

U + 2‖B∗(I − Pn∗)ϕ‖2
U ≤ 2‖B∗ϕ‖2

U + 4
∣∣∣ +∞ ∑
n=n∗+1

an sin(nπx0)
∣∣∣2

≤ 2‖B∗ϕ‖2
U + 4

( +∞ ∑
n=n∗+1

|an(λ− λn)|2
)( +∞ ∑

n=n∗+1
|β + λn|−2

)
≤ 2‖B∗ϕ‖2

U + C1(β)‖(λI −A∗)ϕ‖2
H .

With (4.13) and (4.14), the above yields that for any λ ∈ C+
−β and ϕ ∈ H1,

‖ϕ‖2
H ≤ ‖Pn∗ϕ‖2

H + ‖(I − Pn∗)ϕ‖2
H ≤ (1 + C0(β))(1 + β−2 + C1(β))‖(λI −A∗)ϕ‖2

H + 2C0(β)‖B∗ϕ‖2
U ,

which leads to (4.12). So (A∗, B∗) satifies (HESI)β . Then, according to (i) in Theorem 1 (or Theorem 2), 
system (4.10) is stabilizable. Thus, the sufficiency has been proven.

Hence, we have completed the proof of Theorem 6. �
Remark 9. From Theorem 6, we can claim that, when x0 / ∈ {k/n ∈ (0, 1) : k ∈ N+, n = 1, 2, . . . , [

√
c/π]}, 

there is K ∈ L(L2(0, 1)) such that the closed-loop system: yt == (∂2
x + c)y + δ(· − x0)Ky in R+ × (0, 1) is 

exponentially stable. The feedback law K can be constructed by two manners: The first one is LQR theory 
on the ifinite time horizon with unbounded controllers (see [18]); The second one is the Fattorini’s strategy 
(see [2,6]).
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4.4. Heat equation with time delay in RN

Let τ > 0, N ∈ N. Let ω ⊂ RN be a subset of positive measure. Let χω be the characteristic function of 
ω. We consider the following controlled heat equation with time delay in RN :⎧⎪⎪⎨⎪⎪⎩

yt(t, x) = (�− I)y(t, x) + y(t− τ, x) + χωu(t, x), (t, x) ∈ R+ ×RN ,

y(0, x) = y0(x), x ∈ RN ,

y(t, x) = f(t, x), (t, x) ∈ (−τ, 0) ×RN ,

(4.15)

where I is the identity operator on L2(RN ), y0 ∈ L2(RN ), f ∈ L2(−τ, 0;L2(RN )) and u ∈ L2(R+;L2(RN )). 
It is well known that (4.15) has a unique solution in C([0,+∞);L2(RN )) (see [36, Theorem 2.1]). We denote 
this solution by y(·, ·; y0, f, u) if it is viewed as a real-valued function of (t, x), while by y(·; y0, f, u) if it is 
viewed as an L2(RN )-valued function of t.

In this subsection, we will apply Theorem 2 to show the stabilizability of (4.15) in the sense of the 
following definition:

Definition 4. System (4.15) is said to be stabilizable if there is α > 0, C > 0 and a feedback law K ∈
L(L2(RN ) × L2(−τ, 0;L2(RN ));L2(RN )) such that for any y0 ∈ L2(RN ) and f ∈ L2(−τ, 0;L2(RN )), the 
solution yK(·; y0, f) of the closed-loop system:⎧⎪⎪⎨⎪⎪⎩

yt(t, x) = (�− I)y(t, x) + y(t− τ, x) + χω[K(y(t), y(t + ·))�](x), (t, x) ∈ R+ ×RN ,

y(0, x) = y0(x), x ∈ RN ,

y(t, x) = f(t, x), (t, x) ∈ (−τ, 0) ×RN ,

(4.16)

satifies that

‖yK(t; y0, f)‖L2(RN ) ≤ Ce−αt(‖y0‖L2(RN ) + ‖f‖L2(−τ,0;L2(RN ))) for t ∈ R+. (4.17)

For this purpose, we first embed system (4.15) into our framework. Let U := L2(RN ) and H := L2(RN )×
L2(0, 1;L2(RN )) with the inner product:

〈(ϕ1, ϕ2)�, (f1, f2)�〉H := 〈ϕ1, f1〉L2(RN ) + τ

1 ∫
0 

〈ϕ2(·, ρ), f2(·, ρ)〉L2(RN )dρ

for (ϕ1, ϕ2)�, (f1, f2)� ∈ L2(RN ) × L2(0, 1;L2(RN )). We dfine an unbounded operator on H by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aϕ :=
(
A1ϕ

A2ϕ

)
for ϕ =

(
ϕ1

ϕ2

)
∈ D(A),

with
(

[A1ϕ](x)
[A2ϕ](x, ρ)

)
=

⎛⎝ (�− I)ϕ1(x) + ϕ2(x, 1)

−τ−1∂ρϕ2(x, ρ)

⎞⎠ , (x, ρ) ∈ RN × (0, 1),

D(A) := {(f1, f2)� ∈ H : f1 ∈ H2(RN ), f2 ∈ H1(0, 1;L2(RN )), f1(x) = f2(x, 0) a.e. x ∈ RN}.
(4.18)

Let B := (χω, 0)�. Then one can easily check that D(A) is dense in H and B ∈ L(U;H). Moreover, we 
have the following result:

Lemma 8. The operator A generates a C0-semigroup of contractions on H .
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Proof. We first prove that A is dissipative, i.e.,

Re〈Aϕ,ϕ〉H ≤ 0 for ϕ ∈ D(A). (4.19)

Indeed, it follows from (4.18) that for ϕ = (ϕ1, ϕ2)� ∈ D(A),

〈Aϕ,ϕ〉H =
〈(
A1ϕ

A2ϕ

)
,

(
ϕ1
ϕ2

)〉
H

= 〈(�− I)ϕ1, ϕ1〉L2(RN ) + 〈ϕ2(·, 1), ϕ1(·)〉L2(RN ) − 〈∂ρϕ2, ϕ2〉L2(0,1;L2(RN ))

≤ −1
2‖ϕ1‖2

L2(RN ) + 〈ϕ2(·, 1), ϕ1(·)〉L2(RN ) −
1
2‖ϕ2(·, 1)‖2

L2(RN ) ≤ 0,

which leads to (4.19).
Next, we show that for any λ > 0 and f ∈ H , there is a unique ϕ = (ϕ1, ϕ2)� ∈ D(A) such that

(λI −A)ϕ = f. (4.20)

To this end, we arbitrarily fix λ > 0 and f = (f1, f2)� ∈ H . Then by (4.18), we see that (4.20) is equivalent 
to the system: ⎧⎪⎪⎨⎪⎪⎩

(λI − (�− I))ϕ1(x) − ϕ2(x, 1) = f1(x), x ∈ RN ,

λϕ2(x, ρ) + τ−1∂ρϕ2(x, ρ) = f2(x, ρ), (x, ρ) ∈ RN × (0, 1),
ϕ2(x, 0) = ϕ1(x), x ∈ RN .

(4.21)

Meanwhile, after some simple computations, one can easily see that the (4.21) is equivalent to the following 
system: {

ϕ2(x, ρ) = e−τλρϕ1(x) + τ
∫ ρ

0 e−τλ(ρ−s)f2(x, s)ds, (x, ρ) ∈ RN × (0, 1),
((λ + 1 − e−τλ)I −�)ϕ1(x) = f1(x) + τ

∫ 1
0 e−τλ(1−s)f2(x, s)ds, x ∈ RN .

(4.22)

However, since λ + 1 − e−τλ > 0, we can use the Fourier transform to obtain that (λ + 1 − e−τλ)I −� is 
invertible from H2(RN ) to L2(RN ). Therefore, the second equation in (4.22) has a unique solution ϕ1 in 
H2(RN ). This, along with the first equation in (4.22), implies that (4.20) has a unique solution in D(A).

Finally, by (4.19) and (4.20), we can apply the Lumer-Phillips theorem (see [24, Theorem 4.3, Chapter 1]) 
to conclude that A generates a C0-semigroup of contractions on H . This completes the proof of Lemma 8. �

Now we consider the following system in H :{
Yt(t) = AY (t) + Bu(t) t ∈ R+,

Y (0) = Y0,
(4.23)

where u ∈ L2(R+;U) and Y0 ∈ H .

Remark 10. By Lemma 8, we have the following two facts: Fact 1. For each Y0 ∈ H and each u ∈ L2(R+;U), 
system (4.23) has a unique solution Y (·;Y0, u) in C([0,+∞);H); Fact 2. The pair (A,B) satifies assump
tions (A1)-(A3) (with (H,U) = (H ,U)).

We now give relationships between (4.15) and (4.23), which show that (4.15) can be embedded into our 
framework (4.23).
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Proposition 2. (i) The relationship of solutions to (4.15) and (4.23) is as follows:

(a) If y(·; y0, f, u), with y0 ∈ L2(RN ), f ∈ L2(−τ, 0;L2(RN )) and u ∈ L2(R+;L2(RN )), is the solution of 
(4.15), then Y (·) := (Y1(·), Y2(·))� is the solution of (4.23) with Y0 := (y0, f(−·τ))�, where [Y1(t)](x) :=
y(t, x; y0, f, u) and [Y2(t)](x, ρ) := y(t− ρτ, x; y0, f, u) for (t, x, ρ) ∈ R+ ×RN × (0, 1).

(b) If Y (·;Y0, u) = (Y1(·;Y0, u), Y2(·;Y0, u))�, with Y0 := (h, g)� ∈ H and u ∈ L2(R+;U), is the solution 
of (4.23), then the function y(·, ·) dfined by

y(t, x) :=
{

[Y1(t;Y0, u)](x), (t, x) ∈ R+ ×RN ,

g(x,−tτ−1), (t, x) ∈ (−τ, 0) ×RN ,
(4.24)

is the solution of (4.15) with y0 = h and f(t, x) = g(x,−tτ−1) for (t, x) ∈ (−τ, 0) ×RN . Moreover,

[Y2(t;Y0, u)](x, ρ) = y(t− ρτ, x) for (t, x, ρ) ∈ R+ ×RN × (0, 1). (4.25)

(ii) The relationship of the stabilizability of (4.15) and (4.23) is as follows: System (4.15) is stabilizable 
in the sense of Definition 4 if and only if system (4.23) is stabilizable, i.e., there is a K ∈ L(H ;U) such 
that e(A+BK)t is exponentially stable.

Proof. We first prove (a) of (i). For this purpose, we arbitrarily fix y0 ∈ L2(RN ), f ∈ L2(−τ, 0;L2(RN ))
and u ∈ L2(R+;L2(RN )). Let

z(t, x, ρ; y0, f, u) := y(t− ρτ, x; y0, f, u) for (t, x, ρ) ∈ R+ ×RN × (0, 1).

Then, by (4.15), (y(·, ·; y0, f, u), z(·, ·, ·; y0, f, u)) satifies the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yt(t, x) = (�− I)y(t, x) + z(t, x, 1) + χωu(t, x), (t, x) ∈ R+ ×RN ,

zt(t, x, ρ) = −τ−1∂ρz(t, x, ρ), (t, x, ρ) ∈ R+ ×RN × (0, 1),
z(t, x, 0) = y(t, x), (t, x) ∈ R+ ×RN ,

y(0, x) = y0(x), x ∈ RN ,

z(0, x, ρ) = f(−ρτ, x), (x, ρ) ∈ RN × (0, 1).

(4.26)

Let

[Y1(t)](x) := y(t, x; y0, f, u); [Y2(t)](x, ρ) := z(t, x, ρ; y0, f, u) for (t, x, ρ) ∈ R+ ×RN × (0, 1).

It is clear that

[Y1(0)](x) := y0(x); [Y2(0)](x, ρ) := f(−ρτ, x) for x ∈ RN , ρ ∈ (0, 1).

Then, by (4.18) and (4.26), we see that Y (·) := (Y1(·), Y2(·))� is the solution to (4.23), with Y0 := (y0, f(−·
τ))�, which leads to (a) of (i).

We next prove (b) of (i). To this end, we arbitrarily fix Y0 = (h, g)� ∈ H and u ∈ U. Let Y (·;Y0, u) =
(Y1(·;Y0, u), Y2(·;Y0, u))� be the solution of (4.23), with Y0 = (h, g)� ∈ H . Then we have

[Y1(0;Y0, u)](x) = h(x); [Y2(0;Y0, u)](x, ρ) = g(x, ρ) for x ∈ RN , ρ ∈ (0, 1).

Let y(·, ·) be dfined by (4.24). Then it is clear that y(t, x) := [Y1(t;Y0, u)](x) in (t, x) ∈ R+ × RN . Let 
z(t, x, ρ) := [Y2(t;Y0, u)](x, ρ) for (t, x, ρ) ∈ R+×RN×(0, 1). By (4.18), we have that the pair (y(·, ·), z(·, ·, ·))
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satifies that equation (4.26) with y0 = h and f(t, x) = g(x,−tτ−1) for (t, x) ∈ (−τ, 0)×RN . By the second, 
third and fifth equations in (4.26), we can directly check that

z(t, x, ρ) =
{
y(t− ρτ, x) if t ≥ ρτ,

g(x,−(t− ρτ)τ−1) if t < ρτ,
(t, x, ρ) ∈ R+ ×RN × (0, 1). (4.27)

This, along with the first equation in (4.26) and (4.24), implies

yt(t, x) = (�− I)y(t, x) + y(t− τ, x) + χωu(t, x), (t, x) ∈ R+ ×RN .

Since y(0) = Y1(0;Y0, u) = h, the above shows that the function y(·, ·), dfined by (4.24), is the solution 
of (4.15), with y0(x) = h(x) and f(t, x) = g(x,−tτ−1) for (t, x) ∈ (−τ, 0) × RN . Meanwhile, (4.25) follows 
from (4.24), (4.27) and the definition of z(·, ·, ·) at once. These lead to (b) of (i).

We finally prove (ii). First, we suppose that system (4.23) is stabilizable, i.e., there is α > 0, C > 0, and 
K ∈ L(H ;U) such that for any Y0 ∈ H , the solution Y K(·;Y0) of the following equation:

{
Yt(t) = AY (t) + BKY (t), t ∈ R+,

Y (0) = Y0,

satifies

‖Y K(t;Y0)‖H ≤ Ce−αt‖Y0‖H for any t ≥ 0. (4.28)

We arbitrarily fix (y0, f)� ∈ L2(RN ) × L2(−τ, 0;L2(RN )). Then we dfine

h(x) := y0(x); g(x, ρ) := f(−ρτ, x) for (x, ρ) ∈ RN × (0, 1). (4.29)

Let Y0 := (h, g)�. We write

Y K(t;Y0) := (Y k
1 (t), Y K

2 (t))�; uK(t) := KY K(t;Y0) for t ∈ R+. (4.30)

Since K ∈ L(H ;U), it follows from (4.30) and (4.28) that uK ∈ L2(R+;U). Then, according to (b) in (i)
of Proposition 2, the function, dfined by

yK(t, x) :=
{

[Y K
1 (t)](x) (t, x) ∈ R+ ×RN ,

g(x,−tτ−1) (t, x) ∈ (−τ, 0) ×RN ,
(4.31)

satifies

yKt (t, x) = (�− I)yK(t, x) + yK(t− τ, x) + χωu
K(t, x), (t, x) ∈ R+ ×RN ;

yK(0, x) = h(x), x ∈ RN ;

yK(t, x) = g(x,−tτ−1), (t, x) ∈ (−τ, 0) ×RN ;

[Y K
2 (t)](x, ρ) = yK(t− ρτ, x) for (t, x, ρ) ∈ R+ ×RN × (0, 1). (4.32)

These, along with (4.31), (4.28) and (4.29), yield
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‖yK(t)‖2
L2(RN ) ≤ ‖Y K(t;Y0)‖2

H ≤ C2e−2αt

⎛⎝‖h‖2
L2(RN ) +

1 ∫
0 

‖g(·, ρ)‖2
L2(RN )dρ

⎞⎠
≤ C2e−2αt

⎛⎝‖h‖2
L2(RN ) +

0 ∫
−τ

‖f(s, ·)‖2
L2(RN )ds

⎞⎠ for t ∈ R+. (4.33)

Next, we will rewrite uK in the feedback form required by Definition 4. To this end, we dfine an operator 
Λτ in the manner: for each f̂ ∈ L2(0, 1;L2(RN )), we let

Λτ [f̂ ](t, x) := f̂(x,−tτ−1), (t, x) ∈ (−τ, 0) ×RN .

One can directly check that Λτ : L2(0, 1;L2(RN )) → L2(−τ, 0;L2(RN )) is isomorphic. Then, by (4.30) and 
(4.32), we find that

uK(t) = K

(
I 0
0 Λ−1

τ

)(
yK(t)

yK(t + ·)

)
.

The above, along with (4.33) and Definition 4, shows that system (4.15) is stabilizable in the sense of 

Definition 4 with the feedback law K

(
I 0
0 Λ−1

)
.

Conversely, we suppose that system (4.15) is stabilizable in the sense of Definition 4, i.e., there is α > 0, 
C > 0 and a feedback law K ∈ L(L2(RN ) × L2(−τ, 0;L2(RN ));L2(RN )) such that for any y0 ∈ L2(RN )
and f ∈ L2(−τ, 0;L2(RN )), the solution yK(·; y0, f) of the closed-loop system (4.16) satifies (4.17). We 
arbitrarily fix Y0 = (h, g)� ∈ H . Let

y0(x) = h(x); f(t, x) = g(x,−tτ−1), (x, t) ∈ RN × (−τ, 0).

Then (y0, f) ∈ L2(RN ) × L2(−τ, 0;L2(RN )). Let

uK(t) := K(yK(t; y0, f), y(t + ·; y0, f))�, t ≥ 0. (4.34)

By (4.34), one can easily check that

yK(t, x; y0, f) = y(t, x; y0, f, uK), t ≥ 0, x ∈ RN . (4.35)

Given t ≥ 0, x ∈ RN and ρ ∈ (0, 1), we let

[Y K
1 (t)](x) := y(t, x; y0, f, uK); [Y K

2 (t)](x, ρ) := y(t− ρτ, x; y0, f, uK). (4.36)

By (4.36), (4.35) and (a) in (i) of Proposition 2, we see that Y K(·) := (Y K
1 (·), Y K

2 (·))� is the solution of 
(4.23), with Y0 := (y0, f(− · τ))� and u = uK . This, together with (4.34), (4.36) and (4.17), yields

‖Y K(t)‖2
H = ‖yK(t)‖2

L2(RN ) +
1 ∫

0 

‖yK(t− ρτ, ·; y0, f)‖2
L2(RN )dρ ≤ C2(1 + e2τ )e−2αt‖Y0‖2

H for t ∈ R+.

With (4.34), the above leads to

Uad(Y0) := {u ∈ L2(R+;U) : Y (·;Y0, u) ∈ L2(R+;H)} �= ∅, (4.37)
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where Y (·;Y0, u) is the solution of (4.23), with the initial value Y0 and the control u. By (4.37), we can 
apply [8, Proposition 3.9] to see that system (4.23) is stabilizable.

Thus, we complete the proof of Proposition 2. �
Remark 11. From Proposition 2 and its proof, if system (4.15) is stabilizable in the sense of Definition 4, 
then a feedback law can be constructed by LQR theory on the ifinite time horizon.

Next, we will show that system (4.15), with u = 0, is not exponentially stable in L2(RN ). This shows 
the importance of studying the stabilizability of system (4.15).

Proposition 3. System (4.15), with u = 0, is not exponentially stable.

Proof. First of all, according to (i) in Proposition 2, system (4.15) (with u = 0) is exponentially stable if 
and only if system (4.23) (with u = 0) is exponentially stable.

Now, we let λj := j−1 (j ∈ N+). Then let f j := (f j
1 , 0) ∈ H , with ‖f j‖H = 1 and supp(F [f j

1 ]) ⊂
{ξ ∈ RN ||ξ| ≤

√
λj}. It is obvious that λj + 1 − e−τλj > λj > 0 for all j ∈ N+. Thus, equation (4.21) 

(equivalently, (4.22)), with λ = λj and f = f j , has a unique solution ϕj := (ϕj
1, ϕ

j
2) in D(A). Applying 

the Fourier transform to the second equation in (4.22) (with λ = λj), using the fact that f2 = 0 and the 
Plancherel theorem, we obtain that as j → +∞,

‖ϕj‖2
H ≥ ‖ϕj

1‖2
L2(RN ) =

∫
RN

(λj + 1 − e−τλj + |ξ|2)−2|F [f j
1 ](ξ)|2dξ

≥ (2λj + 1 − e−τλj )−2
∫
RN

|F [f j
1 ](ξ)|2dξ = (2j−1 + (1 − e−τj−1

))−1 → +∞.

This yields that ‖(λjI −A)−1‖L(H) → +∞ as j → +∞. Thus, we have

sup 
λ∈C,Reλ>0

‖(λI −A)−1‖L(H) = +∞.

The above, along with [20, Theorem 1.11, Chapter V], yields that (4.23) (with u = 0) is not exponentially 
stable. This completes the proof. �

The main result of this subsection concerns with the stabilizability of system (4.15), which is proved by 
making use of Theorem 2.

Theorem 7. If ω is a thick set, then system (4.15) is stabilizable in the sense of Definition 4.

Proof. According to [37, Theorem 1.1 and Remark (b1)], the controlled heat equation yt = �y + χωu (in 
R+ ×RN ), with ω a thick set, is null controllable, and consequently is rapidly stabilizable. Thus, by (ii) in 
Theorem 3, we can conclude that for each γ > 0, there is C0(γ) > 0 such that

‖ϕ‖2
L2(Rn) ≤ C0(γ)(‖(λI −�)ϕ‖2

L2(RN ) + ‖χωϕ‖2
L2(RN )) for λ ∈ C+

−γ , ϕ ∈ H2(RN ). (4.38)

Meanwhile, one can easily check that B∗ = (χω, 0) and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗ϕ :=
(
A�

1ϕ

A�
2ϕ

)
for ϕ =

(
ϕ1

ϕ2

)
∈ D(A∗),

with
(

[A�
1ϕ](x)

[A�
2ϕ](x, ρ)

)
=

⎛⎝ (�− I)ϕ1(x) + ϕ2(x, 0)

τ−1∂ρϕ2(x, ρ)

⎞⎠ (x, ρ) ∈ RN × (0, 1),

D(A∗) := {(f1, f2)� ∈ H : f1 ∈ H2(RN ), f2 ∈ H1(0, 1;L2(RN )), f1(x) = f2(x, 1) a.e. x ∈ RN}.
(4.39)

We arbitrarily fix γ0 ∈ R+. We claim that the pair (A∗,B∗) satifies (HESI)γ0 , i.e., there is C(γ0) > 0
such that

‖ϕ‖2
H ≤ C(γ0)(‖(λI −A∗)ϕ‖2

H + D(γ0)‖B∗ϕ‖2
U) for λ ∈ C+

−γ0
, ϕ ∈ D(A∗). (4.40)

For this purpose, we arbitrarily fix λ ∈ C+
−γ0

and ϕ = (ϕ1, ϕ2)� ∈ D(A∗). Let

f = (f1, f2)� := (λI −A∗)ϕ. (4.41)

By (4.39), we have ⎧⎪⎪⎨⎪⎪⎩
((λ + 1)I −�)ϕ1(x) − ϕ2(x, 0) = f1(x), x ∈ RN ,

(λI − τ−1∂ρ)ϕ2(x, ρ) = f2(x, ρ), (x, ρ) ∈ RN × (0, 1),
ϕ1(x) = ϕ2(x, 1), x ∈ RN .

(4.42)

From the second and third equations in (4.42), we deduce that for each ρ ∈ (0, 1),

ϕ2(x, ρ) = e−τλ(1−ρ)ϕ1(x) + τ

1 ∫
ρ 

e−τλ(s−ρ)f2(x, s)ds, x ∈ RN . (4.43)

The combination of (4.43) and the first equation in (4.42) leads to

((λ + 1 − e−τλ)I −�)ϕ1(x) = f1(x) + τ

1 ∫
0 

e−τλsf2(x, s)ds, x ∈ RN . (4.44)

Since

Re(λ + 1 − e−τλ) ≥ Reλ + 1 − e−τReλ ≥ −(γ0 + eτγ0 − 1) for each λ ∈ C+
−γ0

and

γ0 + eτγ0 − 1 > 0,

the combination of (4.38) (with γ := γ0 + eτγ0 − 1) and (4.44) yields that there is C1(γ0) > 0 such that

‖ϕ1(·)‖2
L2(RN ) ≤ C1(γ0)

⎛⎜⎝
∥∥∥∥∥∥f1(·) + τ

1 ∫
0 

e−τλsf2(·, s)ds

∥∥∥∥∥∥
2

L2(RN )

+ ‖χωϕ1(·)‖2
L2(RN )

⎞⎟⎠
≤ 2C1(γ0)(1 + τe2τγ0)‖f‖2

H + C1(γ0)‖B∗ϕ‖2
U. (4.45)
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Meanwhile, it follows from (4.43) that

‖ϕ2(·, ·)‖2
L2(0,1;L2(RN )) ≤ 2e2τγ0‖ϕ1(·)‖2

L2(RN ) + 2τ2e2τγ0

1 ∫
0 

‖f2(·, s)‖2
L2(RN )ds

≤
[
4C1(γ0)e2τγ0(1 + τe2τγ0) + 2τe2τγ0

]
‖f‖2

H

+2C1(γ0)e2τγ0‖B∗ϕ‖2
U. (4.46)

Now, by (4.41), (4.45) and (4.46), we obtain (4.40), with

C(γ0) := 4C1(γ0)(1 + τe2τγ0)(1 + τe2τγ0) + 2τ2e2τγ0 , D(γ0) := C1(γ0)(1 + 2e2τγ0).

Finally, according to Lemma 8, the C0-semigroup generated by A∗ is uniformly bounded, which leads 
to the condition (a) in Theorem 2. Thus, we can apply Theorem 2 and (4.40) to conclude that system 
(4.23) is stabilizable. Then by (ii) of Proposition 2, we find that system (4.15) is stablilizable in the sense 
of Definition 4. This completes the proof. �
Remark 12. It appears to us that Theorem 7 is new. It serves well to illustrate the strength of our results.

5. Appendix

Proposition 4. Suppose that (A1)-(A3) hold. Then the inequalities (1.5) and (1.6) are equivalent.

Proof. We first show (1.5)⇒ (1.6). Suppose that (1.5) holds. Let β1 ∈ (0, β). Then, it follows from (1.5) 
that for λ ∈ C+

−β1
,

‖ϕ‖2
H ≤ C(β) 

(β − β1)2
(
‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U

)
for ϕ ∈ H1,

which leads to (1.6) with a different C(β) > 0.
Next, we show (1.6)⇒ (1.5). Suppose that (1.6) is true. First, there are two constants ω > 0 and C(ω) > 0

such that ‖S∗(t)‖ ≤ C(ω)eωt for all t ∈ R+, which implies that C+
ω ⊂ ρ(A∗) and that for each λ ∈ C+

ω , 
‖(λI − A∗)−1‖L(H) ≤ C(ω)(Reλ − ω)−1 (see [24, Theorem 5.3 and Remark 5.4, Section 1.5, Chapter 1]). 
These facts, together with the same argument in (3.3), imply that for each λ ∈ C+

max{ω,2|β−ω|−β},

‖ϕ‖H ≤ 2C(ω) 
Reλ + β

‖(λI −A∗)ϕ‖H for ϕ ∈ H1. (5.1)

Meanwhile, it follows from (1.6) that for λ ∈ C+
−β \C+

max{ω,2|β−ω|−β}, we have

‖ϕ‖2
H ≤ (β + max{ω, 2|β − ω| − β})2

(Reλ + β)2 C(β)
(
‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U

)
for ϕ ∈ H1,

where we recall that the quotient in front of C(β) is larger than or equal to 1. The combination of this 
result and (5.1) yield

‖ϕ‖2
H ≤ C(β, ω) 

(Reλ + β)2
(
‖(λI −A∗)ϕ‖2

H + ‖B∗ϕ‖2
U

)
for λ ∈ C+

−β , ϕ ∈ H1,

where C(β, ω) := (β+max{ω, 2|β−ω|−β})2C(β)+4(C(ω))2. This implies that (1.5) holds. This completes 
the proof. �
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Remark 13. The following example shows that (1.5) is more sharp than (1.6) to describe the optimal decay 
rate of system [A,B]: Suppose that A ∈ Rn×n and B ∈ Rn×m (n,m ∈ N+), i.e., system [A,B] is a finite
dimensional system in Rn. Further, we assume that [A,B] is stabilizable, but not controllable. It follows 
that there is an invertible matrix P ∈ Rn×n such that

PAP−1 =
(
A1 A2
0 A3

)
, PB =

(
B1
0

)
,

where [A1, B1] is controllable and σ(A3) is non-empty and in C−
0 , i.e., σ∗ := max{Reλ : λ ∈ σ(A3)} < 0. 

We dfine the optimal decay rate of system [A,B] as follows:

σ� := inf{α ∈ R : ∃F ∈ Rm×n s.t. A + BF is exponentially stable with the decay rate α}.

One can directly check that σ� = −σ∗. If there is F � ∈ Rm×n such that A + BF � is exponentially stable 
with decay rate α�, then we say the optimal decay rate of [A,B] can be reached, otherwise, we say that 
it can not be reached. We take λ∗ ∈ σ(A3)(⊂ σ(A)) such that Reλ∗ = σ∗ and suppose Reλ < σ∗ for any 
λ ∈ σ(A3)\{λ∗}. If the geometric multiplicity of λ∗ equals to its algebraic multiplicity, then, by the classical 
argument, we can directly check that the optimal decay rate of [A,B] can be reached. Moreover, by the 
Laplace transform, we can conclude that (1.5) holds for β = σ�, but (1.6) holds only for β < σ�. If the 
geometric multiplicity of λ∗ is strictly less than its algebraic multiplicity, then, we can directly check that 
the optimal decay rate of [A,B] can not be reached. In this case, we can show that (1.5) and (1.6) hold only 
for β < σ�. In summary, (1.5) holds for β = α� in some cases, while (1.6) holds only for β < α�. Therefore, 
we say that (1.5) is more sharp than (1.6).
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