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1. Introduction

Stabilization for linear control systems is one of the most important directions of control theory. How to
determine whether a linear control system is stabilizable is one of the largest concerns in this direction. Over
the past half-century, researchers have obtained many useful results on this issue (see, for instance, [1-15]
and the references therein). These works have laid a solid foundation for the study of the stabilization of
linear control systems. For finite-dimensional linear control systems, there is a well-known frequency-domain
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criterion to determine the stabilizability, which is the Hautus test condition (see [16]). Unfortunately, this
criterion may not be valid in infinite-dimensional settings. For infinite-dimensional linear control systems,
researchers have been trying to obtain the corresponding frequency-domain criteria for stabilization. This
paper intends to provide a frequency-domain condition that is a necessary and sufficient condition for the
stabilizability for special linear control systems, while it is a necessary condition in general. We begin by
introducing the frequently used notation in this paper.

1.1. Notation

Let N* := N\ {0}, R" := (0,400) and R™ := (—00,0). If y € R, we write CI := {z € C : Rez > v}
and CJ = {z € C : Rez < 7}. Let i be the unit imaginary number. If S is a subset of C, we denote its
closure by S. If T > 0, we let [T] := max{n € N :n <T}. If X is a Banach space, we denote its norm and
dual space by || - || x and X*, respectively. If X is a Hilbert space, we use (-, ) x to denote its inner product.
For Banach spaces X7 and Xo, £(X7; X5) denotes the space of all bounded linear operators from X; to Xo.
We write L(X7) := £L(X1; X2) if X1 = X»5. Given an unbounded (or bounded) linear operator L from X3
to Xo, its domain, kernel, adjoint operator, resolvent set, and spectrum are D(L) := {f € X; : Lf € X},
Ker(L) := {f € D(L) : Lf = 0}, L*, p(L) and o(L), respectively. Given two sets A; and Ay in X, we
let Span{A1, A2} be the space spanned by the elements of A; and As. We use C(---) or D(---) to denote
constants that depend on what is enclosed in the brackets.

1.2. Control problem
Let H and U be two separable and complex Hilbert spaces. We consider the control system [A, B], i.e.,
y'(t) = Ay(t) + Bu(t), t € RT, (1.1)
(where u € L?(R™;U)) under the following assumptions:

(Ay) Operator A with its domain D(A) generates a Cp-semigroup S(-) on H.

(A2) Operator B belongs to L(U; H_1), where H_; is the completion of H with respect to the norm
Ifll=1 == ll(pol — A~ fllg (f € H), and pg € p(A) NRT is arbitrarily fixed.

(Az) For each T > 0, there is C(T") > 0 such that

T
/IIB*S*(t)SOII%dt < CMell for ¢ € D(AT).
0

Remark 1. There are several remarks on the above assumptions as follows:

(i) In this paper, we write H; for the space D(A*) with the norm: ||(pol — A*)¢|lm, ¢ € D(A*). (The space
H_ is the dual space of H; with respect to the pivot space H, see [17, Section 2.9, Chapter 2]); A is the
unique extension of A in L(H; H_1), which is provided in the following manner (see [17, Proposition
2.10.3, Chapter 2]):

<g¢a"/)>H_1,H1 = (p, A")g for o € H, ¢ € H;. (1.2)

We let S(-) := (pol — A)S(-)(pol — A)~L, which is the Cy-semigroup on H_; generated by A (with its
domain H) and an extension of S(-) (see [17, Proposition 2.10.4, Chapter 2]).
Moreover, by assumption (Az), we have B* € L(H;;U) and B*(pol — A*)~! € L(H;U).
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(ii) By assumption (As3), we have that for any u € L?(R*;U) and yo € H, system (1.1), which corresponds
to this u and with the initial condition y(0) = yo, has a unique solution in C(R™; H), and this solution
can be expressed by y(; yo,u) = §(t)y0 —|—f0t S(t— s)Bu(s)ds, t € R*. (See [17, Propositions 4.2.2, 4.2.5,
Chapter 4].)

We are going to define the exponential/rapid stabilizability in H for system [A, B], and ‘in H’ will be
omitted in what follows.

Definition 1. System [A, B] is said to be exponentially stabilizable (or ‘stabilizable’ for short) if there is a
constant a > 0, a Cop-semigroup Si(-) on H (with its generator A; : D(A;) C H — H), and an operator
K; € L(D(A;); U) such that

(a) there is a constant C1 > 0 such that ||S;(¢)|| gy < Cre™® for all t € RT;
(b) for each x € D(A;), Arx = Az + BKx, with A provided by (1.2);
(c) there is a constant Cy > 0 such that || K;S;(-)z||L2®+,0) < Collz||n for each 2 € D(Ay).

K and « are called the feedback law and a stabilizable decay rate (or ‘a decay rate’ for short), respectively.
If o, S¢(-), and K} exist, system [A, B] is also said to be stabilizable with decay rate a.

Definition 2. System [A, B] is rapidly (or completely) stabilizable if for each o > 0, [A, B] is stabilizable
with the decay rate a.

Remark 2. Several notes on Definition 1 are provided as follows:

(i) Definition 1 is originally from [18], where the authors proved that the solvability of the LQ problem:
V(yo) = inf,cr2m+;0) f0+m[||y(t;u, vo)l%; + [Ju(t)||?]dt (ie., V(yo) < +oc for all yo € H) implies the
stabilizability of system [A, B] in the sense of Definition 1. The reverse was proven in [8, Proposition
3.9]. Hence, the solvability of the above LQ problem is equivalent to the stabilizability of system [A, B]
in the sense of Definition 1.

(i1) If B € L(U; H), the stabilizability of system [A, B] is defined as follows: there is a K € L(H;U) such
that e(A+tBE)t i5 exponentially stable. Using the weak observability inequality in [8,14], one can easily
show that Definition 1 is an extension of the above definition if B € L(U; H).

(#4i) If [A, B] is stabilizable in the sense of Definition 1, the feedback law can be constructed by the usual
LQ theory.

1.3. Motivation and novelty

Motivation. The stabilizability of system [A, B] is equivalent to the weak observability inequality. This
equivalence can be summarized as the following lemma:

Lemma 1.
(i) The following statements are equivalent:

(a) System [A, B] is stabilizable.
(b) There are constants o > 0 and C(a) > 0 such that

t
IS* (W)l < Cla) /IIB*S*(S)sOII?JdS+€“”|I<P|Ifq for teRT, p € Hy. (1.3)
0
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(¢) There are constants T > 0, 6 € (0,1) and C > 0 such that

T
IS*(T)ell7 < C/ 1B*S* (s)pllErds + dllell; for ¢ € Hy. (1.4)
0

(i1) System [A, B] is rapidly stabilizable if and only if for each o > 0, there is C(«) > 0 that satisfies (1.3).

Remark 3. The equivalence of (a) and (¢) above was originally obtained in [14, Theorem 1] for the case that
B is bounded, and then extended to the case where B is admissible. The equivalence between (b) and (c)
above was proved in [11, Proposition 3]. The conclusion (i7) of Lemma 1 was obtained in [8, Theorem 1.1,
Theorem 3.4].

Inequality (1.3) (or (1.4)) can be considered as a time-domain criterion for the stabilizability of sys-
tem [A, B]. Naturally, we would expect frequency-domain criteria for system [A, B]. For finite-dimensional
settings, the following criterion on the stabilizability is well known:

Lemma 2. (/16, Theorems 3, 4]) Let H :== C", U := C™, A € C"™*" gnd B € C™™ (n,m € NT). Then,
system [A, B] is stabilizable if and only if the pair (A*, B*) satisfies the condition

(HSF): Ker(A[ — A*, B*)T = {0} for A€ o(A*)NC{.

The time-domain criterion and frequency-domain criterion have their own merits. Unfortunately, for
general infinite-dimensional linear control systems, the equivalence in Lemma 2 may not be true. Coun-
terexamples can be founded in [19] (see also [20, 3.4 in Section 3, Chapter 4]). Thus, it is natural to ask for
frequency-domain criteria/conditions on the stabilization for system [A, B] in our setting.

Novelty. We provide a quantitative frequency-domain condition that can be considered as an extension of
condition (HSF) in Lemma 2. We prove that this condition is a criterion on the stabilization for system
[A, B] under additional conditions beyond (A;)-(As), while it is a necessary condition for the stabilization
in general. Our method of proving these results uses the weak observability inequality in Lemma 1. Combin-
ing time domain with frequency domain concepts appears to be novel for infinite dimensional stabilization
problems.

1.4. Main results

To state our main results, we need the following definition:

Definition 3. (i) The pair (A*, B*) satisfies (HESI)g for 8 > 0 if there exists C'(8) > 0 such that

c(s " .
ol < gy (IO — A7)l + [1B6l5) for A€ T2y, € By (15)

or equivalently, there exists C(3) > 0 such that
el < CB)IAL = A%)elly + 1B¢llf) for A€ Chy, o € Hi. (1.6)
(#3) The pair (A*, B*) satisfies (HESI) if it satisfies (HESI)g for each 8 > 0.

Remark 4. Several notes on Definition 3 are as follows:
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(i) ‘(HESI)’ is the abbreviation of ‘Hautus test condition for Exponential Stabilizability of Infinite-
dimensional systems’. The subscript 3 is used to characterize the boundary of the frequency-domain
(i.e., the boundary of (Cfﬁ) that appears in (1.5) (or (1.6)).

(#3) The constants (including 3) in (HESI)g, (1.5) and (1.6) are allowed to be different. The proof of the
equivalence between (1.5) and (1.6) will be given in Appendix of the paper (see Proposition 4). It is
worth mentioning that (1.5) is sharper than (1.6) to characterize the optimal decay rate of system
[A, B]. For more details, we refer readers to Remark 13.

(7ii1) (HESI)g (for some § > 0) is a type of quantitative frequency-domain condition. The connection to
(HSF) (in Lemma 2) is as follows: if (A*, B*) satisfies (HESI)g for some 8 > 0, then Ker(A\l —
A*,B*)T = {0} for each A € C* .

(iv) (HESI)g (for some 5 > 0) can be considered as an extension of the classical frequency-domain
criterion for the exponential stability of the Cp-semigroup S(-). Indeed, if B* = 0 and the pair
(A*,0) satisfies (HESI)g for some 8 > 0, then it follows from (1.5) that CCJ_FB C p(A*) and
supyect |[(M — A*) Y| gy < +oo for each o € (0,3). Thus, by [20, Theorem 1.11, Chapter V]
(see alsg)a[19,21]), we see that S*(-) is exponentially stable, and so is S(-).

The first two main theorems show that under additional conditions beyond (A;)-(As), (HESI)g for some
B > 0 is a necessary and sufficient condition on the stabilizability of system [A, B].

Theorem 1. Suppose that assumptions (A1)-(As) hold. Further assume that A is a normal operator, and for
each v >0, o(A)N (Cf,y is bounded. Then, the following conclusions are true:

(1) System [A, B] is stabilizable if and only if the pair (A*, B*) satisfies (HESI)g for some > 0.
(13) System [A, B] is rapidly stabilizable if and only if the pair (A*, B*) satisfies (HESI).

Remark 5. Two notes on the assumptions in Theorem 1 are as follows:

(1) If A is a normal operator, A* is also normal and has a unique spectral measure (see [22, Chapter 6]).
The corresponding spectral measure can be used to define an orthogonal projection on H which plays a
key role in the proof of Theorem 1. The application of normal operators in partial differential equations
covers a considerable wide. It includes self-adjoint operators and linear partial differential operators
on the entire space with (real/complex-valued) constant coefficients among others (see [23, Theorem
13.24, Chapter 13]).

(#4) If the semigroup S(-) is uniformly continuous/analytical/differentiable/compact, then o(A) N (CJ_ZY is
bounded for each v > 0 (see [24, Sections 2.3-2.6, Chapter 2]).

Theorem 2. Suppose that the assumptions (A1)-(As) hold. Assume that one of the following assumptions
holds:

(a) The semigroup S*(-) is uniformly bounded;

(b) For each a > 0, there are two closed subspaces Q1 := Q1(a) and Q2 := Q2(a) of H (depending on «)
such that (b1) H = Q1®Q2; (b2) Q1 and Q2 are invariant subspaces of S*(-); (bs) A*|qg,, the restriction
of A* on Q1 is bounded and satisfies that o(A*|g,) C CT_; (bs) S*(+)|q,, the restriction of S*(-) on Qa
is exponentially stable.

Then, system [A, B] is stabilizable if and only if the pair (A*, B*) satisfies (HESI)g for some (> 0.

Remark 6. Several notes on Theorem 2 are as follows:
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(i) If A is skew-adjoint (i.e., A = —A*), then the semigroup S*(+) is uniformly bounded.

(#4) If the semigroup S(-) is compact, then for each o > 0, we can find two closed subspaces @1 and Q3 of
H such that @ is finite-dimensional; conditions (b1)-(bs) in (b) of Theorem 2 hold. (See [20, Section
3, Chapter IV, Section 3, Chapter V].)

(#4i) In assumption (b) of Theorem 2, it is not required that @; has a finite dimension.

(tv) By the spectral theorem (e.g., [22, Theorem 6.47, Chapter 6]), one can check that if A satisfies the
assumptions of Theorem 1, then it also satisfies assumption (b) in Theorem 2. Thus, (7) in Theorem 1
can be regraded as an application of Theorem 2. But, there are some difficulties in applying Theorem 2
to characterize the rapid stabilizability. Indeed, when A satisfies the assumptions of Theorem 1, A+ 31
also satisfies these assumptions for each 5 > 0. This property plays a crucial role in the proof of (i)
of Theorem 1. It is not known to us if assumption (b) in Theorem 2 can guarantee this property for
the general cases.

The last main result of this paper shows that (HESI)s (for some 8 > 0)/(HESI) is a necessary condition
on the exponential/rapid stabilizability for system [A, B], with (A;)-(As3) holding.

Theorem 3. Under assumptions (A1)-(As), the following conclusions are true:

(1) If system [A, B] is stabilizable, then the pair (A*, B*) satisfies (HESI)g for some 3 > 0.
(1) If system [A, B] is rapidly stabilizable, then the pair (A*, B*) satisfies (HESI).

1.5. Related works

o H. O. Fattorini in [6] established a frequency-domain condition similar to Lemma 2 for the special
infinite-dimensional setting, where B € L(U; H); system [A, B] can be decomposed into two decou-
pled subsystems: one is in a finite-dimensional subspace and controllable; the other is in an infinite-
dimensional subspace and exponentially stable. For more studies in this direction, we refer the readers
to [2,25,12] and the references therein. The setting in [6] is covered by our setting, where (A4;)-(As) and
(b) in Theorem 2 hold (see (i) in Remark 6). Thus, Theorem 2 can be considered as an extension of
the related result in [6].

o K. Liu proved in [9] that if A is skew-adjoint and B € L(U; H), then system [A, B] is stabilizable if
and only if iR € p(A — BB*) and sup,cg ||(iwl — A+ BB*)"!|| zary < +oc. Later, Q. Zhou and M.
Yamamoto in [26] obtained that if A is skew-adjoint and B € L(U; H), then system [4, B] is stabilizable
if and only if there was C' > 0 such that

lelif < C(lGw! = Al + 1B ¢l7) for weR, ¢ € Hi.

These are two frequency-domain criteria on the stabilizability for the case A = —A* and B € L(U; H).
However, the condition that A = —A* implies condition (a) in Theorem 2. Thus, Theorem 2 can also
be considered as an extension of the above frequency-domain criteria.

o R. Rebarber and H. Zwart in [13] introduced the concept of the open-loop stabilizability for system
[A, B] and provided necessary conditions in the frequency-domain for the open-loop stabilizability in
infinite dimensional settings. Such stabilizability is defined as follows: If there is ¢ > 0 such that
for each yo € H, there is a control u € D' (RT;U)(= (C§°(RT;U))') such that the solution (in the
sense of distribution) y(-;u,yo) to system (1.1) (with the initial condition y(0) = yo and the control
u) satisfies €7 y(-;u,yo) € L*(RT; H), then system [A, B] is called open-loop stabilizable. Clearly, the
open-loop stabilizability is weaker than the closed-loop stabilizability. (Several examples that are open-
loop stabilizable but not closed-loop stabilizable were provided in [13].) For more studies on the open-
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loop stabilizability in infinite dimensional settings, we refer the readers to [27,15,28-30]. Our condition
(HESI) s is partially inspired by [13] and related works.

1.6. Plan of this paper

This paper is organized as follows: In Section 2, we present some criteria on the stabilizability for system
[A, B]. In Section 3, we prove our main theorems. In Section 4, we provide selected applications. Section 5
is Appendix.

2. Other criteria on the stabilization

This section provides criteria on stabilizability for system [A, B] from the perspective of integral trans-
formation. Although they are not easily verifiable, they play important roles in the proofs of our main
theorems.

To present them, we must introduce the following function spaces: Let X be a sparable, complex Hilbert
space and « > 0. For each open and connected subset S C C, we let H(S;X) be the set of all X-valued
holomorphic functions on S. We define the following Hardy space:

w1>—a

H*(CE; X) = {f e H(CI;X): Ma(f) < +oo} with Ma(f) = sup /||f(w1 + iwo) || % dwa,
R

and the following weighted L2-space:
LZRT; X):={h:R— X :e*h(-) € L*(R; X); h(-)=0 on R™},
with the inner product:
(M) ame) = [ g(e) he)xt.
R+

One can easily check that L2(R*;X) is a Hilbert space and continuously embedded into L*(R*;X).
Throughout this paper, we extend each f € L?(R*;X) over R by setting it to be zero over R~ (we
denote this extension in same way). We have L3(RT; X) = L*(R*; X).

Theorem 4. Suppose that (A1)-(As) hold. Then, the following statements are equivalent:
(i) System [A, B] is stabilizable.

(13) There is o > 0 such that for each € [0,a) and yo € H, there is (£(-;v0),n(;Y0)) € Wz(Cfﬂ;H) X
Wz(Cfﬁ; U) such that

(€N 0), A = Ao i + (A wo), B*0)u = (yo,)m for A€ CLy, ¢ € Hy; (2.1)
C
603wl < oy sl o)l < 2O lnlln for A€ €L,y (22

where C(B) > 0 and D(B) > 0 are two constants independent of yo.
(#ii) There is > 0 such that for each yo € H, there is (§(-;v0),n(-;y0)) € Wz(CfB;H) X WQ(Cfﬂ;U)
satisfying (2.1).
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To prove Theorem 4, we need the following lemmas: The first lemma contains several results quoted from
[25, Section A.6.3, Chapter Al:

Lemma 3. Let o > 0. Then, the following statements are true:

(i) f € H*(CT; ) if and only if there is a unique h € LZ(RT;X) such that f(\) = [p. e " h(t)dt
(A € Ct,), e, H*>(C*,;X) and L2(R*;X) are linear isomorphic. Moreover, =Mo(f) =

Jr+ €2 IIR(t )det
(ii) For each f € H?*(CT_;X), there is a unique f: € L?*(R;X) such that lim,, , o | f(wi + i) —

filluami) = 0. Moreover, 1751 g, = Mal):
(i) HA(C,; X), with inner product (f, g)ye e ) = (Fr g1 @ex) (F.9 € HACH 43 X)), is a Hilbert
space.

The second lemma is as follows, which is clear if B € L(U; H). However, for our framework, we do not
find accurate literature that provides its proof. Thus, we provide it for the completeness of the paper.

Lemma 4. Suppose that (A1)-(As) hold. If system [A, B] is stabilizable with decay rate o > 0, then for each
B € (0,a), system [A+ BI, B] is stabilizable.

Proof. We arbitrarily fix 5 € (0, ). Since system [A, B] is stabilizable with decay rate a > 0, we can use
the same method as that used in Step I of the proof of [8, Theorem 3.4] to find a positive constant C(«)
such that

15" (elly < Cla /wa<wmw+e%W@m)mweR+¢eH1

This yields that for each t € R,

I1S5(#)ellE < Cla 2Bt/IIB Sh(8)ellfrds + Cla)e > jglffy for o € Hy, (2.3)

where Sg(-) is the Cy-semigroup on H generated by Ag := A + I with its domain D(Az) = D(A). Let
T > 0 satisfy o7 := C(a)e=2(@=AT < 1. Then, it follows from (2.3) that

T
IS5(D)ell < C(a)ezﬁT/HB*SE(S)@H?IdSJr%II@II% for o € Hy.

With Lemma 1, the above shows that system [Ag, B] is stabilizable. This completes the proof. O

Proof of Theorem 4. We organize the proof into the following steps.

Step 1. We prove (i) = (ii).

Suppose that system [A, B] is stabilizable with decay rate oz > 0. We arbitrarily fix 5 € [0, ). According
to Lemma 4, system [Ag, B] (where Ag := A+ 1) is stabilizable, i.e., there is v > 0, a Cy-semigroup Sg - (-)
on H with the generator Ag -, : D(Ag,) C H— H, and a K3, € L(D(Ap~);U) such that

(al) there is Cg 5,1 > 0 such that [|Sg,(t)[| () < Cp e for all t € RY;
(b1) for cach = € D(Ag,), Ap & = Agx + BKp ,x, where Ag := A 4 BI, with A provided by (1.2);
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(c1) there is Cp 2 > 0 such that ||[Ks~,Ss(-)2|2®+;0) < Cpy.2l|z| 5 for each x € D(Az ).
From these properties we deduce the following facts:
(O1) Based on (bl) and (cl1), for each yo € D(Ag ),

urcy , (590) = KpSp()yo = Kp 1y, , (590) € LERY; ). (2.4)

and

t

Yrs., (ty0) == Sp~(t)yo = gg(t)yo + /gg(t - s)BuK[M(s; yo)ds for all t € R,
0

where 55() := P 5(-) is the Cy-semigroup generated by ;{ﬂ on H_; (see (i) in Remark 1).
(02) We arbitrarily fix yo € D(Ag,,). By (al) and (2.4), we obtain that if t € RT,

lurc, ., (tyo)llu = 1Ks4yxs., (Eyo)llu = 1K ~Sp()yollu
<N Kpq(prI — Apy) oo 1Ss.4 ) (o1 — Ag 5 )yoll u
< Cpyae "MKpy(prI — Ap )"l s (o1l — Ag ol o, (2.5)

where p1 € p(Ap ) NRT, and we use that Kz, € L(D(Az);U).
(O3) We arbitrarily fix yo € D(Ag,) and define

(N yo) = /e_ktyKB,w(tyo)dt; n(A;vo) == — /e_AtUKB,V(t;?Jo)dta AeCy. (2.6)
R+ R+

Considering the above two functions, we have the following conclusions: First, by (2.6) and (¢) of
Lemma 3, we see that £(;y0) € H2(C; H) and n(+;y0) € H*(Cg;U). Second, based on (2.4)-(2.6),
(al) and (cl), we find

C C
leCswo)lln < R ol and In(so)llu < =2 lollar for A € CF (2.7)

Third, based on (al), (c1), and Lemma 3, we obtain

€€ 900 B ey = 2 | s, (s e < 917Gl (2.8)
R+
I 0 By = 2 [ ey (0) e < 20C
R+

Next, we show Claim One: For each yo € H, there is (£(+;v0),7(5;%0)) € H?(Cg; H) x H?(CJ;U) that
satisfies (2.7) and

EN o), A = AR + (n(X90), B*o)u = (yo, o) for A€ Cf, ¢ € Hy. (2.9)

The proof of Claim One will be organized using two cases.

Case 1. We consider that yo € D(Ag ~).
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First, based on (O3), we have (2.7) for this case. We now show (2.9) for this case. For this purpose, we
arbitrarily fix yo € D(Ag ) and p € Hy = D(A}). From (O1) and the main theorem in [31] (see also [24,
Theorem on Page 259]), we obtain

{%(znx,M (ty0)s ) = (Yry ., (t90), Age)m + (uk, , (t90), B p)u, t€RT, (2.10)
Yis ., (0) = yo.
The combination of this result, (al), and (2.5) yield

2 d 1+ +

e a(ngﬁ(ﬁyo),cp)H € L'(R™;C) foreach A e Cy. (2.11)

Now, (al), (2.11), and (2.6) lead to

p ]
/ ™M = (s, (o) @) mdt = (AN wo), b — (Yo, b = (€5 o), Ap) i = (w0, @), A € Cf.
R+

From the above and (2.10), one can directly obtain that (£(:;y0),n(+; yo)) (which is defined by (2.6)) satisfies
(2.9).

Case 2. We consider that yo € H.
According to the density of D(Ap ) in H, there is a sequence {y{ }nen+ C D(Ag,4) such that yi — yo
in H as n — +o00. Thus, {y{ }.en+ is a Cauchy sequence in H. Moreover, by (2.6) and (2.8), we have

1€C595) — G v gz ey = €G3 90 — U0 gz ey < VY 7084 0llY5 — vo'llm ¥ n,m € NT.
(CF3H) (on

Hence, {£(+;98) nen+ is a Cauchy sequence in H?(Cg; H). Then, according to (iii) in Lemma 3, there is
£*(-) € H3(C{; H) such that

E(5y0) = €°(1) in 7—(2((CO+;H) as n — +oo. (2.12)

By (i) in Lemma 3, we can find h*(-) in L*(R*; H) such that £*(-) = [g. e *h*(t)ds. The combination of
this result, (2.6), (2.12) and () in Lemma 3 yield that if we write h"(t) := yx,  (t;yg), t € RT (n € NT),
then we have

[ W0 = Ot = 5l 08) - €0 S0 as m s foe.

R+

2
H2(Cy ' H)
Thus, for each A € C{,

2
o) — € I < ([ e I e) 0 uat)
R+
< (QRQ/\)ilnhn — h*H%Q(R‘*';H) — 0 as n — +oo. (213)

Similarly, we can show that there is n*(-) € H?(Cg;U) such that for each A € C{,
In(Nyg) =" (Mo — 0 as n — +oo. (2.14)

Therefore, by (2.9), (2.13) and (2.14), we obtain that for ¢ € Hy and A € C{,
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(€ (N, M = Ao + (" (\), By
= lim (€(Xu5), (M = A)e)m + (1N v5), B o)o = lim (yf,0)m = (vo, 9)

n—-+oo

which leads to (2.9). Meanwhile, based on (2.13) and (2.14), we can directly observe that (2.7) holds for all
Yo € H. Hence, Claim One has been proven.
Finally, we arbitrarily fix yo € H. Letting A = 8 + p with u € (Cfﬁ, formulas (2.9) and (2.7) lead to

€+ Bsyo), (I — A)p) i + (0 + Bsy0), B p)v = (yo, o) for pe Cry, € Hy; (2.15)

Cgy1 Cg.~.2
: < P d : < ZBWE f eCt,. 2.16
1€+ B3 y0) |l < Reu+6HyOHH and ||n(p+ B;yo0)llv < Reu+ﬁ”y°”H or peCry (2.16)

One can directly check that (£(-+58;y0),n(-+8;%0)) € WQ(Cfﬁ;H) X?‘(Q((Ci_ﬁ; U) (since (£(-;90),m(5;90)) €
H2(Cd; H) x H?(CF; U)). Thus, (2.15) and (2.16) imply that (2.1) and (2.2) hold with C(8) := Cj.,.1 and
D(p) := Cg,4,2, respectively. Hence, conclusion (i) is true.
Step 2. The proof of (i) = (ii%) is trivial.
Step 3. We prove (iii) = (4).

Suppose that (ii7) holds, i.e., there is 8 > 0 such that for each yo € H, there is (£(+;40),7(;%0)) €
H?(CEy; H) x H?(CHy;U) satisfying (2.1). We arbitrarily fix yo € H. Then, based on (i) in Lemma 3,
there is a unique (y(-),u(-)) € L3(R*; H) x L3(R*;U) such that

E(Asyo0) = /e’Aty(t)dt; (A y0) = —/G*MU(t)dt AeCj. (2.17)
R+ R+

Let w := max {1,lim¢ 400t~ In[|S(#)| z(ary }- Then, £(-;90) and n(-;y0) are well defined over CJ, and

w

moreover, by [20, Proposition 2.2, Chapter IV], we have C} C p(A)(= p(A)). We arbitrarily fix A € C}.
Then, we have that (A — A*)~' € L£(H; H,), and it follows from the proof of Theorem 3.1 in [24, Section
1.3, Chapter 1] that

(A — A*) Ly = /e_;\tS*(t)go dt for each ¢ € H. (2.18)
R+

We arbitrarily fix ¢» € H;. There are two facts. First, replacing ¢ by (Al — A*)~14 in (2.1) (A € C}) leads
to

€Ny ) + (n(Nsy0), BX (A — A") ")y = (yo, (M — A*) ') mr. (2.19)
Second, with assumption (A3), we have B* € L(H;U) and B*(A\ — A*)~! € L(H;U), thus,
(n(Xiyo), B* (N — A) ™M)y = (Bn(Asyo), M — A) )iy, (2.20)

Now, we claim that

e~ Red /§(- — s)Bu(s)ds € L*(RT; H_y) N L*(RT; H_y). (2.21)
0
For this purpose, we first recall that p is provided in assumption (As), so we have (pol —A) LB € L£(U; H).

Moreover, by [17, Proposition 2.10.3, Chapter 2], we have that pol — A is a unitary linear map from H to
H_;. Hence, for each t € RT,
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t t

e_REAtH /g(t - s)Bu(s)cl:sHm1 = e‘ReAtH /S(t —8)(pol — g)_lBu(s)dsHH

t
C@)(pol — A B grmye RN / €09 |lu(s)|rds

t t
C)lonl = A Bllzwme ™ ( [ as)*( [ luto)las)”
0 0

< C@)Il(poT = A) 7 Bll g (2)7* ull g sy 27"

Since ReA > w, the above leads to (2.21).
Based on (i) in Remark 1, (2.17), (2.18) and (2.21), using the Fubini theorem and v = 0 in (—o00,0), we
obtain

(Bn(Aiyo), M — A" ") g, m,

(o [ o [ Fsna),

R+ R+

—<(p01—2)—13/e—“u(t)dt, (pOI—A*)/e_’_\tS*(t)wdt>H

R+

/ / —A(o— t)(p = A) 1Bu(a—t) MS*( )(P I— A" )1/}>Hd0'dt

/ / (pol — A)~'Bu(o —t), S*(t)(pol — A*)) ydtdo

_ / —Ao /s (0 — t)Bu(t)dt, ¢> e

R+

The combination of this result, (2.19) and (2.20) imply that

/e*M (F(t), )y, g, dt =0 for A\ C}, ¢ € Hy, (2.22)
R

where F(t) := y(t) — S(t)yo — fo (t — s)Bu(s)ds for t > 0, while F(t) := 0 for ¢t < 0. With (2.21), we can
apply the inverse Fourier transform to (2.22) with respect to ImA to conclude that

y(t) = S(t)yo + /g(t — 5)Bu(s)ds a.e. t € R,
0

which leads to y(-) = y(;;y0,u) a.e. in RT. With (y(-),u(-)) € L3(R"; H) x L3(R*;U) C L*(R*; H) x
L?(R*;U), we obtain

Uaa(yo) :={u(-) € L*(RT;U) : y(90,u) € L*(RT; H)} # 0. (2.23)
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Since yo was arbitrarily taken from H, (2.23) and [8, Proposition 3.9] imply that system [A, B] is exponen-
tially stabilizable. Hence, we have completed the proof of Theorem 4. O

3. Proofs of the main theorems
Before presenting the proofs of the main theorems, we need the following lemmas:
Lemma 5. Suppose that A € L(H) and B € L(U; H). Then, the following statements are equivalent:
(i) System [A, B] is exactly controllable at some T > 0;

(i9) There are constants T > 0 and C(T') > 0 such that

T
Il < C@) [ 1B e for ¢ < 1

0
(i#i) There is n € N such that Span{BU, ABU,...,A"BU} = H;
(iv) For each X € C, there is C(\) > 0 such that |¢||3; < CN)(|[(M — A%)ol|%, + | B*¢||%) for all p € H.
Proof. It is well-known that (i) < (i7) (e.g., [17, Theorem 11.2.1, Chapter 11]). Using Baire category
theorem, one can directly verify that (i) = (¢i¢), while the proof of (iii) = (7) can be found in [32, Theorem
2.3]. The proof of (iii) < (iv) can be found in [33] (see the main theorem and the remark on it there). This

completes the proof. O

Lemma 6. System [A, B] is rapidly stabilizable if and only if for each a > 0, system [A, B] is stabilizable,
where A, == A+ al.

If Be L(U;H), then Lemma 6 is well known. However, for our framework, we do not find an accurate
literature with its proof. Thus, we prove it here.

Proof of Lemma 6. First, let S,(-) be the Cp-semigroup generated by A,. Then, we have S, (t) = e**S(t),
t>0.

Now, we suppose that system [A, B] is rapidly stabilizable. Then, according to [8, Theorem 3.4], for each
a > 0, there is C(«) > 0 such that

¢
I5° @l < CGa) | [ 15" ()elpds + el | tor o€ iy, e RE,
0
Hence, for o > 0,
¢
1S5 (0ll7 < Cla)e / 1B* S5 (s)pllErds + Cla)e ™ [lgllFy for ¢ € Hy, t € RT. (3.1)
0
For each o > 0, we let T > 0 satisfy § := D(a)e~? < 1. Then, based on (3.1), we have

T
ISa(D)¢llFr < Cr(a)e* ™ / 1B* S5 (s)ellErds + llpl|7y for ¢ € Hi.
0
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The combination of this and (7) of Lemma 1 yield that system [A,, B] is stabilizable.
Conversely, we suppose that, for each a > 0, system [A,, B] is stabilizable. Then, according to () of
Lemma 1, for each o > 0, there is C'(«) > 0 such that

1S5 (0el7 < Cla /llB Sa(s)elids + el | for € Hi, t € RY,

which implies that if a > 0,
18* (el < Cla /IIB S*(s)elids +e gl | for p € Hi, t € RT.

With (i¢) of Lemma 1, the above leads to the rapid stabilizability of system [A, B]. This completes the proof
of Lemma 6. O

We start with proving Theorem 3.

Proof of Theorem 3. We first prove (). Suppose that system [A, B] is stabilizable. According to Theorem 4,
there are constants > 0, C(Bo) > 1 and D(fBp) > 0 such that for each yo € H, there is (£(;90),n(-;y0)) €
ﬂQ(Cfﬁ s H) x HY(CT T4, U) that satisfies (2.1) and (2.2). Then, based on (2.1) and (2.2), for A € Cfﬁo
and yo € H,

C(Bo)

{yo, p)u| < (m D(Bo)

A — A — f € H;.
[T = Al + = Bl ol for & € Iy

Thus, for each A € (Cfﬁ

CBo) /5 . D(fo) .
lella < Ror+ B [(AT — A%l o + mHB ollu for ¢ € Hy. (3.2)

Suppose that || S*(t)|| < C(w)e“! for each t € R for some constants w > 0 and C'(w) > 0. Taking 3 € (0, ).

By [24, Theorem 5.3 and Remark 5.4, Section 1.5, Chapter 1], we have that, for each \ € Cmax{w 2|5}

Cw) . C(w) )
lellr < g = I = ANella < R h) 15wl (A — A%l
C(w) *
= M- A
IReA+B) + (L(ReA+B) — |5fw\)”( )ollm
2C
< oD\t = Al o € i .
IfT A S (C+ﬂ \ Cmax{w 2|B—w|— B} then

D) _ D(E)max{w. 218 —w| - B} +5) 1
vRe A+ 5y Vo — P Re)\-i-ﬁ

The combination of this relation, (3.3), (3.2) and Definition 3 imply that the pair (A*, B*) satisfies (HESI)g.
Next, we prove (ii). Suppose that system [A, B] is rapidly stabilizable. Lemma 6 implies that, for an

arbitrarily fixed « > 0, system [A+«l, B] is stabilizable. Then, according to the conclusion () of Theorem 3,
there is C'(a) > 0 such that if A € C{,
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Cla . .
el < gz (IO = (4 + aDholls +15°13) for € Hi

Hence, if \ € C*_,

C(a)

el < oy yage (IT = A0l + IB*lE) for o € .

Since o > 0 was arbitrarily taken, the above shows that the pair (A*, B*) satisfies (HESI). This completes
the proof of Theorem 3. O

We now prove Theorem 1.

The proof of Theorem 1. First, since A* is normal, we can write E4~ for the unique spectral measure
corresponding to A*, which is provided by the spectral theorem (e.g., [22, Theorem 6.47, Chapter 6]). We
divide the proof into two steps.

Step 1. We prove conclusion (7).

By Theorem 3, we have the necessity. The remainder is to show the sufficiency. We suppose that the pair
(A*, B*) satisfies (HESI) g for some 8 > 0. Then, there is § > 0 and C(8) > 0 satisfying (1.5). Without loss
of generality, we can assume that C_ N o(A*) # ) for each ¢ > 0. (Otherwise, there is ¢* > 0 such that
Cfs* No(A*) = (. Then, it follows from [20, Corollary 3.4, Section 3, Chapter IV and Lemma 1.9, Section
1, Chapter V] that S*(-) and S(-) are exponentially stable. Thus, by taking the feedback law as 0, we obtain
the sufficiency.) We take w > 0 such that [|S*(t)||zz) < C(w)e** for each t € R*. The remainder of the
proof in this step is organized into two sub-steps.

Sub-step 1.1. We prove that for each 8* € (0,8), there are T :=T(8*) > 0 and C(T, 8*) > 0 such that

IS*(T)EY (CEy)ellE < O(T, ) /HB EA(CL5)S™ (1) EY (Cy)pllfdt for o € Hy (3-4)

We arbitrarily fix 8* € (0, 8). Since o(A*) ﬂ(CJ_r,Y is bounded (by our assumption), it follows from the spectral
theorem that

(a) A*EA ((Cirﬁ*) = ((Cjﬁ*)A* is a bounded operator on H;
(b) BEA ((Cfﬁ*)H is an invariant subspace of A*EA*((CfB*).

Thus, we have B4 (C*,.)H = D(A*E*"(C1j.)) and A*EA (CH,.) € L(EA(CT,.)H). Consequently,
EA (Cfﬂ*)S*(~)(: S*(EA ((C:B*)) is the Cp-semigroup on H, which is generated by A*E4” (Cfﬁ* ). Based
on (b), we know that EA*((CJ_FB*)H is an invariant subspace of S*(t) for each t € R*, so B4 (C* 5 )S™ (") is

a Cp-semigroup on E4” ((Cfﬁ*)H. Meanwhile, based on (a) and assumption (As) (see also (i) in Remark 1),

B*EA (Cfﬁ*) € L(EY ((C:@*)H; U). Indeed, we have

1B EA(CE 5 )0llu < 1(B*(pol — A" ciasonll(pod — AV EY (CEa) | oo el

for all o € EA(C* ) H.
Now, we claim that there is C'(8, *) > 0 such that if A € C,

leliz < OB, B ) (I — AEA (Cp))ellf + B EY (CE5.)¢llf) for p € BA(CE)H.  (3.5)

Indeed, (1.5) implies that for A € Ctﬁ*;ﬁ (cCty)and p € EA(CT 0 H
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ol < 2C0)
H= G2

However, according to the spectral theorem,

S(IAL = A*EY (CH,0)ell3 + 1B EY (CE ) 0ll?)- (3.6)

(AL — A" EA" (CHy)) ! sllgllfy for A€ Co s, p € BA(CH)H

ol < —
CEYR)

which implies that

1 . A - .
lll? < Gl -4 EV(CE, )l for A€ C sy, 9 € BV (CL 0 H

This fact and (3.6) lead to (3.5) with C(8, 5*) := %. Since

(A*EY(CH,.), B*EA (CL,.)) € LEY (CH4)H) x L(EA (CT,.)H; V),

(3.5) and Lemma 5 imply that there is T := T(8*) > 0 and C(T,8*) > 0 that satisfies (3.4). (Here, we
use that ||S*(T)EA*((C‘I3*)<,0||H < C’(w)e“THEA*((Cfﬁ*)gOHH for each ¢ € H;.) Thus, we have completed
Sub-step 1.1.

Sub-step 1.2. We prove that the system [A, B] is stabilizable.

We arbitrarily fix * € (0,8). The facts are as follows: First, according to Substep 1.1, there are con-
stants Ty > 0 and C(Tp, *) > 0 such that (3.4) (where T' = Ty and C(T, 8*) = C(Ty, £*)) holds. Second,
one can easily check that A*EA*((C_ .) (with its domain EA*((C_ .)H7) generates the Cp-semigroup
S*(~)EA*(G) on B4 ((C* .)H. Third, the spectral theorem implies that J(A*EA*(C—H*)) C a
and thus

sup{ReA: A € o(A*EA"(C—,. Tge))} < B (3.7)

Since A* is a normal operator and EA*((C:ﬁ*) is an orthogonal projection, we have that A*EA*(C:W) is
normal on EA*((C:ﬁ*)H. Then, by (3.7) and [20, Corollary 3.4, Section 3, Chapter IV and Lemma 1.9,
Section 1, Chapter V], we obtain that for each n € (0, 5*), there is C'(n) > 0 such that

15* () EA(CZ g )| geary < C)e™ for t € RT. (3.8)

Now, we claim that for each T > 2Ty, there is C'(Tp,w, 8*,n) > 0 such that

IS @)l < 0o [ IB"S" @l + >y tor ¢ € . (3.9)

For this purpose, we arbitrarily fix T > 2T. Let N := [T/Tp], then N > 2 and N1y, < T < (N 4+ 1)Tp
Based on (3.4) (with T'= Ty and C(T, 8*) = C(Ty, 8*)) and (3.8), we have that, for each p € Hy,

1S*(T)el3s = 15°(T = NTo)S* (NTo)gll3y < (C(w))?e2 T | S*(NTo) %
= (C@))2e® ™ (||S* (T) A (CF5.) 8™ (N = DTo)@lly + 15" (NTo) A (€25 )l )

< (€)™ (O(m. B / 1B*S* (N = 1T + B (CF . )l Bt + 15 (NTy) EA (€50 el

< + I, (3.10)
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where
NT,
I 1= (C(@))%e*™ (20(Ty, 8") / |B*S* Ollfdt + (Cn)2e >N |lgll ).
(N=1)Tp
and

Ty
I = 2(C/(w))*C(Ty, B*)e*T / 1B*S* (N = 1)To + ) E*" (CZg. ) 3yt
0

Based on assumption (As) and (3.8), one can directly check that

T
I < 2(C@)PC(T0 )T [ B8 Ol + (C@)Cm) P Pe Mgl (311)
0

To
I = 2(C(w))*C(To, B*)e* ™ / |B*S*(£)S™((N = 1)To) B4 (C~ 5. )ep | it
0

< 2(C(w))*C(To, B*)C(To)e* ™| S*((N = D)To) B (CZg. )l

IN

(C(w))2C(Ty, B*)C(To)(C(n)) e Toe~ 21N =DTo | PA™(C= |13

2
—B*
2(C(w)C()*C(To, B7)C(Tp)e*H2MToe=21T o3,

IN

The above, (3.10), and (3.11) lead to (3.9) with

C(Ty,w, 5", 1) := (C(w))*e** ™ max{20(Ty, %), (C(n))?e*" (1 + 20(Ty, B*)C(To)e™ ™) }.

Using (3.9), we can find 7 > 0 such that

* 7 * * * 1
15" (T)ellf < C(To,w, B*,m) [ 1B*S* ()l dt + §H<PH?{ for ¢ € Hi.

S~

The combination of this result and Lemma 1 yield that system [A, B] is stabilizable. Thus, we have completed
Sub-step 1.2 and Step 1.

Step 2. We prove conclusion (ii).

The necessity is proven in Theorem 3. Thus, we must only prove the sufficiency. Suppose that the pair
(A*, B*) satisfies (HESI). Then, for each 5 > 0, there is C(5) > 0 such that

c(p .
Il < (o ags (IO = A7)l + [Belfy) for A€ Cyo € Ha

which yields

ol < < OB) (1AL — (A" + BI)@l% + 1Boll?) for Ae CFy. o€ Hy.

Re X+ )2
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The combination of this result and conclusion (i) of Theorem 1 imply that [A+ §1, B] is stabilizable. (Since
A is normal, A+ (1 is also normal for any 5 € R.) Since 8 > 0 can be arbitrarily chosen, Lemma 6 implies
that [A, B] is rapidly stabilizable.

Thus, we complete the proof of Theorem 1. O

Finally, we prove Theorem 2.

Proof of Theorem 2. By Theorem 3, we only need to show the sufficiency. For this purpose, we suppose
that there are constants 8 > 0 and C(f) > 0 that satisfy (1.5). We divide the remainder of the proof into
two steps.

Step 1. We prove the stabilizability for system [A, B] for case (a).
First, (a) in Theorem 2 implies that there is C4 > 0 such that |[S*()|| gy < Ca for each ¢ > 0.
Next, we arbitrarily fix 7 > 0. Let

. (1) = sin (Z4), if t€[0,7], (3.12)
0, if teR\0,7],
which satisfies
0,(-) € H'(R) (3.13)
and
T oos (FE if
o (1) = T cos (Z), if t€[0,7], (3.14)
0, if teR\]|0,7].

Now, we arbitrarily fix ¢ € H; and define

S*(t)p, if t>0,

(3.15)
0, if ¢ <0.

w(t) := 0,(t)z(t), t € R, where z(¢) := {

By assumption, we have ||z2(t)||g < Call¢|lg for each t € R. The combination of this result, (3.15) and
(3.13) imply that w € H'(R; H) and

A*w(t) + 0L (t)z(t) if ¢t >0,
0, if t<0.
Thus, we can apply the Fourier transform to (3.16) to obtain
(ic] — AMFwl(s) = Flgl(s) ae. ¢ €R, (3.17)

where g(-) := ©”(-)2(+), and F[f] denotes the Fourier transform of f € L?(R; H). Integrating (1.5) (where
¢ and A are replaced by Flw](s) and ic) with respect to ¢ over R, using (3.17), we obtain

[l < 5720@) | [ 17l 5ds + [ 157 wl©lpds | (.19
R R R

It is clear that
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Flol(-) € L*(R; H). (3.19)
Thus, the first integral on the right-hand side of (3.18) is finite. We now claim
B*Flw](-) € L*(R; U). (3.20)
Two facts ensuring (3.20) are as follows: First, we have
(3.21)

F[B*w|(-) € L*(R; U).
Indeed, it follows from (3.13) and assumption (As) (see (i) in Remark 1) that
IB*w() v = ©7()B*(pol — A*)7'S*(-)(pol — A*)llu
< CalO7()IIB* (pol = A*) "l grn | (ol — A%)¢llm € L*(RT;R),
) that |[B*w(t)||y = 0 when ¢t € R—. These relations lead to (3.21).

while it follows from (3.12) and (3.15
Second, one can check that for a.e. ¢ € R,

F[B*w](s) = /efi‘tB*w(t)dt = /eiigtB*(pQI — AN, (1)S* (1) (pol — A*)pdt

R R+
=B (ol = A)7 [ R0, (00l ~ A)pdt = B [ 005" (s
R+ R+
= B* /e_i<tw(t)dt = B*Flw](s), (3.22)
R
where we used the fact w(-) € L?(R; H). Clearly, (3.20) follows from (3.21) and (3.22).
Now, based on (3.19), (3.20), (3.18), (3.12), (3.13) and Plancherel’s theorem, we obtain
/ [0:(0):0) 5 < 572C(9) | [ 18- 0=(0)f e + / 1% 6)2(0) Byt ) (3:23
0

We will use (3.23) to obtain the weak observability, which leads to the stabilizability of [A4, B]. Indeed,
since [|S*(t)||z(ay) < Ca for all t > 0, it follows from (3.12) that

STCRIS (el = O / 15% (r)eoll3ds < / 15% ()3 ds;

3T

[ . mt N T, mt N 1 r N
/ -0t = [ sin® (L) 5ol > [ sin® () 5 el = 5 [ 15" el
0 I i

These relations yield that

1oy r
ZTCAQHS (T)ellH < /HQT(t)Z(t)H%{dt- (3.24)
0
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Using (3.12) and (3.14), we further have

/ 1B, (t)=(t) |3 dt < / 1B 8" (t)p|[3 dt:

/ 1€ (@)2(0) e < 72 / I5* Ol < 7 (=C el

With (3.23) and (3.24), these relations imply
18*(r)ellfy < 477 1672C(B)CA / 1B*S*(t)llfrdt + 47 2B72C(B)n* Chll ol (3.25)

Taking 7 > 0 such that 4772372C(B8)m2C% < % in (3.25) leads to

IS*(F)plfy < 4771 672C(8 CA/IIB S*(t )@IIUdtJr—IIwIIH

The combination of this result and conclusion (i) in Lemma 1 imply that system [A, B] is stabilizable.

Step 2. We prove the stabilizability for system [A, B] for case (b).

According to assumption (b) (in Theorem 2), there are two closed subspaces Q1 := Q1(8) and Q3 := Q2(5)
of H satisfying (b1)-(bs4) (where « is replaced by ). Based on (b1 ), we can define P : H — ()7 in the following
manner: Pf = fi, for each f € H, where f = fi; + fo with f; € Q; (j = 1,2). Based on assumption (bs),
one can directly check the following:

PS*(t)=S*(t)P,t >0; PHy C Hy; A*P=PA*on H;. (3.26)
We write S} (-) := PS*(-) and S5(-) := (I — P)S*(-); A} = A*|g, and A5 = A*|q,. Based on (3.26), one can
easily check that Sj*() is the Co-semigroup on @);, generated by A7, j =1,2.

Two facts are as follows: First, by (b3), we have that A7 € L£(Q1), which implies D(A}) = Q1. The
combination of this result and assumption (As) (see also (i) in Remark 1) yield that

B*Plq, = (B*(pol — A")"")(pol — A}) € L(Q;U). (3.27)

Second, by (bs), we have d(A}) C (Cfﬂ which implies

CZ5 C p(A7). (3.28)
Based on (3.28) and (1.5), for each A € C, there is C'(A\) > 0 such that
lellz < COVIA = ADellFy + |1 B*Pollf) for ¢ € Qu. (3.29)
(Indeed, if A € (Cfﬂ, we can use (1.5) to find C()\) above, while when A\ ¢ (CJ_FB, we can choose C(\) =
(AT — AT)*IHi(H) because of (3.28).)

Now, based on (3.29), (3.27) and boundedness of A}, we can apply Lemma 5 to find T'> 0 and C(T) > 0
such that
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ST ()¢l < C(T)/IIB*PST(t)wII%dt for ¢ € Q1.

The combination of this result and (by) yield
IPS*(T)ell3 = 15T (T) Pl

T)/||B*P5f(t)P<p||2Udt:C(T)/||B*PS*(t)gp||2Udt for o€ Hy. (3.30)
0

Based on (by) and (3.30), using a similar method as in Sub-step 1.2 of the proof of Theorem 1, there are
T >0 and C(T) > 0 such that

T
15" (D)ol /|B S (e + 3ol for ¢ € Hy,
0

The combination of this result and (¢) of Lemma 1 lead to the stabilizability of system [A, B].
Hence, we have completed the proof of Theorem 2. O

4. Applications

This section provides several applications of our main theorems to specific control PDEs. We start with
introducing the concept of ‘thick sets’: We say a measurable subset E C RN (with N € N*) to be thick, if
there is € > 0 and L > 0 such that

|IENQr(z)| > eL™ for each € RY,

where Qr(z) denotes the closed cube in RY, centered at x and of side length L, and |E N Qp(x)| denotes
the Lebesgue measure of ENQr(x). Then, we quote the following lemma, which is related to the thick sets
and will be used later:

Lemma 7. ([34, Theorem 1]) If w is a thick set, then for each R > 0, there exists C(R,w) > 0 such that, for
each f € L2(RN) with supp(F[f]) C [-R, RN, the following estimate holds

[fllzz@yy < C(R,w)l[Xe fll L2y
4.1. Ginzburg-Landau equation in R

Let a € Rt and b € R. Let w C RY (with N € NT) be a measurable set with its characteristic function
Xw- We consider the controlled Ginzburg-Landau equation in RV:

{yt =(a+ib)Ay+xou  in RT x RV, 1)

y(o’ ) = yO() € L2(RN)a

where u € L?(R*; L2(RY)). Equation (4.1) can be put into our framework by setting: H = U = L?(R");
A= (a+1b)A, with its domain H?(RY); B := x,,. One can directly check that (A;)-(A3) are true. One can
also check that A is normal (using Fourier transform) and generates an analytic semigroup. The latter and
(i7) of Remark 5 yield that o(A4)N (Cf7 is bounded for each v > 0. Therefore, Theorem 1 can be applied. It
provides the following results:
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Theorem 5. If w is a thick set, then equation (4.1) is rapidly stabilizable.

Proof. According to (é¢) in Theorem 1 and Definition 3, we only need to show the following: For each 8 > 0,
there is C'(5) > 0 such that

||80||2L2(RN) < CBYIAN = (a — ib)A)(pHZL?(]RN) + HXw‘P||2L2(RN)) for A e Cfﬁa ¢ € H*(RY). (4.2)
For this purpose, we arbitrarily fix ¢ € H?(RY), 8> 0 and \ € (CJ_F,B. Plancherel’s theorem implies that

1A = (a = i) A)lZ2@ny = (A + (a = b)[E)F [Pl 72®n)

[ (Rex-+ aleP? + tma — bigP?) 17 (el ) Pt
RN

> 8 [ s sl FIRI(E) P
RN

The combination of this result, Lemma 7, and the Plancherel theorem yield that there is C1(8,a,w) > 0
such that

Iolzay < 521 = (@ = D)A)lEammy + [ XgeymmralFlAOPdE

RN
< B2\ — (a— 6)A)p 2, + Cr (B a,) / Vo @)IF ¢ <z P [l () 2
]RN
< B2 (M = (a — ) D)l g, +2C1 (B, 0,w) / Yo (@))p(@) Pdz
RN

#201(8,0,0) [ 17 (s armmal el (o) P
RN

< B72(2C1(B, a,w) + DM — (a — i) D)@ L2y +201(8, 4, w) Ixwll72®r):
which leads to (4.2) and completes the proof. O

Remark 7. Theorem 5 tells us that, if w is a thick set, then, for each a > 0, there is K := K(a) € L(L*(R"))
such that the closed-loop system: y; = (a +1ib) Ay + x, KTy in RT x RV is exponentially stable with decay
rate «. In this case, the corresponding feedback law can be constructed by the classical LQR theory on
[0, +00).

4.2. Fractional heat equation in RY

Let s € (0,1) and N € N*. Let w C RY be a measurable set with its characteristic function x,,. We
consider the following controlled fractional heat equation:

{E)ty +(=A)2y = xou in R* x RV, (4.3)

y(o, )= yO() € LQ(RN)7

where u € L2(R*;RY) and (—A)? is defined by
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(=) f =FEPFIf, feCERY). (4.4)

Equation (4.3) can be put into our framework by setting: H = U = L?(R"); A := —(—A)2 with domain
D(A) := H*(RY); B := xu(€ L(L*(RY))). One can easily check that (A;)-(A3) hold, A* = A, and A
generates an analytic semigroup. The latter and (ii) of Remark 5 yield that o(4)N (CJ_F,Y is bounded for each
~ > 0. Therefore, Theorem 1 can be applied. Moreover, the spectral measure E4” (corresponding to A*) is

provided as follows: for each Borel set Q2 C C,
[EY Q) =T X jeeeqormr T LA for e L2RY). (4.5)

Regarding equation (4.3), we have the following: Fact 1: If w is thick, then equation (4.3) is not null
controllable in general (see [35]). Fact 2: Equation (4.3) is rapidly stabilizable if and only if w is thick
(see [8, Theorem 4.5]), where it was proven by the weak observability inequality. Next, we utilize (i7) of
Theorem 1 to provide a proof for the sufficiency by the frequency-domain inequality.

Proposition 1. If w is a thick set, then for each 8 > 0, there is C(f) > 0 such that

B . " s
HQOH%%RN) < ﬁ (”()\I —A )(,OH%Q:(RN) + ||B QO”%z(RN)) fOT’ A€ (Cfﬂ, pe H (RN) (46)

Proof. We arbitrarily fix 8 > 0. Let k := k(8) = [8] +2. We set By := E4™ ({z € C : Rez € [~k,0]}), where
E4" is provided in (4.5). Then, [7, Lemma 3.1] implies that

1
HEk@H%%RN) < ok HB*Ek‘PH%%RN) for ¢ € L*(RY), (4.7)

where Cp > 0 is a constant, which is independent of k. Let A} := A* + (k — 1)I. Now we claim

1

I = Bl € oyl ~ ADU — Bjglliz) for A€ CH, o e IURY). (48)
2

For this purpose, we arbitrarily fix A € C*,, ¢ € H*(RY). Since A = A*, it follows from (4.4) and (4.5)
2
that

* - 1 S
M = AD)I = E)p=F"" {X{|£|S>k} (/\ —k+ 5+ )77[90]]
The combination of this result and the Plancherel theorem yield
* 2 1 s 2
IO = A0 = Eel3agny = | [xersn (A= k+ 5+ 167) Flel©)| de
RN

1,2 2 Ly?
> ‘A+ 5‘ / IX{igle>m T [l(E)7dE = (Re)”L 5) ”
RN

(I = Br)ollz2@nys

which leads to (4.8).
Next, since A*E), = EpA*, (4.7) and (4.8) imply that for A € CT, and ¢ € H*(RY),
4

1
lelZ2@ny < 1T = Er)ellfamny + 1Brela@may < I — Bi)pll72@ay + €% | B* Expll 72

1 1
< (1 + 9¢Cok ) I(I = Ex)ell7mny + 2% | B*oll72 @)

1 1
< 16(1+ 268" ) (A = 4Dl 3amm) + 265 Bl 32 p)-
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The combination of this result and Definition 3 (see also Proposition 4 in Appendix) imply that there are
v >0 and C(v,k) > 0 such that

C(y,k) . . s
Il < m (10T = 4@l + 1B 0l3agen)) for n€ CL, € H'RY).  (49)

Since B+ 1 < k, letting n = A+ k — 3 in (4.9) leads to (4.6) with C(8) := C(v,k). This completes the
proof. O

Remark 8. Proposition 1, together with Theorem 1, yields that, for each «a > 0, there is a K := K(«a) €
L(L*(RY)) such that the closed-loop system y; + (—A) 3y = x, Ky in RT x RY is exponentially stable with
the decay rate a. Again, the corresponding feedback law can be constructed by LQR theory on [0, +00).

4.8. One-dimensional heat equation with point-wise controls

Let ¢ > 72, 2o € (0,1), and (-) be the Dirac function at x = 0 € R. We consider the following heat
equation with point-wise controls:

yr = (024 c)y+6(-—z0)u in RT x (0,1),
y(,0)=y(-,1) =0 in RT, (4.10)
y(0,-) =yo(-) € L2(07 1),

where u € L?(R*). Equation (4.10) can be put into our framework by setting: H := L?(0,1); U := R;
A = 02 + ¢ (with its domain D(A) := H; = H}(0,1) N H?*(0,1)); B := §(- — z0) (which is considered
as a bounded operator from R to in H_q, see (i) in Remark 1 for the definition of H_;). One can easily
check that assumptions (A;)-(As) are true, A is self-adjoint, and A generates an analytic semigroup (see [8,
Example 4.3]). The latter and (ii) of Remark 5 yield that o(A)NC¥_ is bounded for each v > 0. Therefore,
Theorem 1 can be applied. Moreover, since A generates a compact semigroup, assumption (b) in Theorem 2
holds (see (i7) in Remark 6). Thus, Theorem 2 can also be applied.

Regarding equation (4.10), we have the following: Fact 1: For some irrational number z( € (0, 1), equation
(4.10) is not null controllable (see [8, Example 4.3]). Fact 2: Equation (4.10) is rapidly stabilizable if and
only if g € (0,1) is irrational (see [8, Theorem 4.9]). Thus, a natural question is what happens about equation
(4.10) when xq is rational? We will give the answer for this question by using Theorem 1 or Theorem 2.

Theorem 6. System (4.10) is stabilizable in L?(0,1) if and only if xo ¢ {k/n € (0,1) : k € N*t,n =
12, [e/xl).

Proof. First of all, we give two facts. Fact One: The eigenvalues and the corresponding normalized eigen-
functions of A* are as follows: A\, := —(nm)? + ¢; e,(z) := V2sin(nmz), z € (0,1), n € NT. Fact Two:
B*¢ = ¢(x¢) for ¢ € Hy which is bounded from H; to R.

Now we prove the necessity. By contradiction, we suppose that there is g = k/n € (0,1) (with n €
{1,2,...,[y/c/x]}, k € NT) such that system (4.10) is stabilizable. Then, we have e, (z) = v/2sin(nrzo) =
0, which implies that B*e,, = 0. Since 1 < n < [/¢/7], one can directly check that

A = —(nm)? + ¢ > —([Ve/7]m)? +¢ >0, and thus A, € C.

For any 8 > 0, the right-hand side of (1.5) (where A = \,, and ¢ = ¢,,) is 0, while the left-hand side of (1.5)
(where A = )\, and ¢ = ¢,) is 1. So (1.5) is not true for any 8 > 0. Thus, it follows from (i) of Theorem 1
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(or Theorem 2) that system (4.10) is not stabilizable, which causes a contradiction and completes the proof
of the necessity.

We next prove the sufficiency. We will show that if zo ¢ {k/n € (0,1) : k € Nt n=1,2,...,[/¢/n]},
then there is 8 > 0 such that the pair (A*, B*) satisfies (HESI)z. We let n* := [y/c/n]. Since x¢ ¢ {k/n €
(0,1): ke NT n=1,2,...,n*}, we have

en(z9) # 0 for each n € {1,2,...,n"}. (4.11)

We define the following projection operator: P« = 22;1(% enymen (¢ € H). Let B := —i\,-41. Since
n* = [/c/x], one can directly check that 8 > 0. Now, we claim that there is C'(3) > 0 such that

el < CB)IAL = A%)elly + 1B ¢llf) for Ae CFy, € Hy. (4.12)
Indeed, based on (4.11), one can easily check that Ker (A — A*P,+,B*P,-)"|p,.u) = {0} for X €
C. Since P,+H and U are finite-dimensional, this, along with Kalman’s controllability condition, yields

that system [P« A, P,«B] is controllable (consequently, is rapidly stabilizable) on P,«H. Thus, by (i) in
Theorem 3, there is Cy(/5) > 0 such that

1Pa-llE < Co(B)(IM — A™)Poxgllfy + | B* Pr-olfy) for A€ CXy, o € Hi. (4.13)
Meanwhile, by the definition of 5, one can directly check that, for A € C fﬂ,
I = A%)ellf > [ = A*)(I = Pa)ellly 2 B2 = Pas)ellm for ¢ € Hi. (4.14)

Moreover, by the Holder inequality, there exists C1(8) > 0 such that, for A € (Ci'ﬁ and ¢ € Hy,

+o0 2
1B* Pl < 21B°6ll} +20B*(1 — Pa)elly < 20B%ll} +4] Y ausin(omao)
n=n*+1
+oo “+oo
<2l +4( Y e =) (D 18+ Al 2)
n=n*-+1 n=n*-+1

< 2B ¢l + CL(B)II(M — Al

With (4.13) and (4.14), the above yields that for any A € (Cfﬁ and ¢ € Hy,

el < 1Pallfs + 1 = Pas)ellf < (14 Co(B8))(1+ 572 + CLBDI — A%)pll; + 2Co(B) | B¢l

which leads to (4.12). So (A*, B*) satisfies (HESI)g. Then, according to (i) in Theorem 1 (or Theorem 2),
system (4.10) is stabilizable. Thus, the sufficiency has been proven.
Hence, we have completed the proof of Theorem 6. O

Remark 9. From Theorem 6, we can claim that, when zo ¢ {k/n € (0,1) : k € NT,n=1,2,...,[\c¢/7|},
there is K € £(L?(0,1)) such that the closed-loop system: y; == (0% + ¢)y + §(- — 79) Ky in RT x (0,1) is
exponentially stable. The feedback law K can be constructed by two manners: The first one is LQR theory
on the infinite time horizon with unbounded controllers (see [18]); The second one is the Fattorini’s strategy
(see [2,6]).
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4.4. Heat equation with time delay in RV

Let 7 >0, N € N. Let w C R¥ be a subset of positive measure. Let ., be the characteristic function of
w. We consider the following controlled heat equation with time delay in R:

yt(t7x) = (A - I)y(tvx) + y(t - T,.T) + qu(t,$), (t,lﬁ) € R x RNa
y(0,2) = yo(), zeRN, (4.15)
y(t,x) = f(t,x), (t,z) € (—7,0) x RN,

where I is the identity operator on L?(RY), yo € L2(RN), f € L?(—7,0; L>(RY)) and u € L*(R*; L2(RY)).
It is well known that (4.15) has a unique solution in C'([0, +00); L?(RY)) (see [36, Theorem 2.1]). We denote
this solution by y(-, ; yo, f, ) if it is viewed as a real-valued function of (¢, ), while by y(; yo, f,u) if it is
viewed as an L?(R")-valued function of .

In this subsection, we will apply Theorem 2 to show the stabilizability of (4.15) in the sense of the
following definition:

Definition 4. System (4.15) is said to be stabilizable if there is a > 0, C' > 0 and a feedback law K €
L(L2RYN) x L2(—7,0; L2(RY)); L2(RY)) such that for any yo € L2(RY) and f € L?(—7,0; L2(RY)), the
solution yx (+; Yo, f) of the closed-loop system:

yt<tﬂ 37) = (A - I)y(t7x) + y(t -7, :L‘) + Xw[K(y(t)vy(t + ))T](x)7 (t7x) € R* x RN?
y(va) = yO(x)a S RNv (416)
y(t,z) = f(t,x), (t,z) € (—7,0) x RN,

satisfies that

—at

lyx (590, F)ll2@yy < Ce™** (yoll L2y + | fll 2 (= 70,22 N))) for t € RT. (4.17)

For this purpose, we first embed system (4.15) into our framework. Let U := L?(R") and H := L?(RY) x
L2(0,1; L2(RY)) with the inner product:

1
((p1,02) T, (f1: f2) e := (o1, fr) r2mey) +T/ 5 P)) L2 ®N)dp
0

for (p1,02)", (f1, f2)" € L2(RY) x L2(0,1; L>(R")). We define an unbounded operator on H by

A
Ap = Y for p= ) e D(A),
Az P2

. ( [Arp] () ) _ (A =Der@) + pa(a1)
[A2¢](z, p) _Tilap@Q(xap)
D(A) == {(f1,fo)T € H: f1 € HXRYN), fo € HY(0,1; L2 (RY)), fi(x) = fa(z,0) a.e. x € RV},
(4.18)

Let 8 := (Xw,0)". Then one can easily check that D(A) is dense in H and B € L(U;H). Moreover, we
have the following result:

, (7,p) € RN x (0,1),

Lemma 8. The operator A generates a Cy-semigroup of contractions on H.
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Proof. We first prove that A is dissipative, i.e.,
Re(Ap, p)g <0 for ¢ € D(A). (4.19)

Indeed, it follows from (4.18) that for ¢ = (1, p2)T € D(A),

meon=((m2)-(2)),

= ((A = D1, 01)L2@®yy + (0205, 1), 01()) L2®Y) — (Fp2, P2) 12(0,1;L2(RN))
1 1
< —§H<P1||2L2(RN) +{p2( 1), 01()) Loy — §||<P2(', D)|[72r~y <0,

which leads to (4.19).
Next, we show that for any A > 0 and f € H, there is a unique ¢ = (1, p2) " € D(A) such that

(A — A)p = f. (4.20)

To this end, we arbitrarily fix A > 0 and f = (f1, f2) " € H. Then by (4.18), we see that (4.20) is equivalent
to the system:

(A = (A =1))pi(x) = pa(2,1) = fi(z), z€RY,
)\(,02(1‘,,0) + 7—7139902(55’/0) = fQ(JJ,,O), (x,p) € RN x (Oa 1)7 (421)
p2(z,0) = p1(x), r € RN,

Meanwhile, after some simple computations, one can easily see that the (4.21) is equivalent to the following
system:

{soz(w) = e o (x) +7 [T e TN fy (2, 8)ds,  (x,p) € RN x (0,1), (422)

(A+1 =™ = A)pi(x) = fi(x) + 7 fy e ™09 fo(w, s)ds, = €RN.

However, since A +1 — e~ ™

> 0, we can use the Fourier transform to obtain that (A +1 —e™™)I — A is

invertible from H2?(R™) to L?(RY). Therefore, the second equation in (4.22) has a unique solution ¢ in

H?(RY). This, along with the first equation in (4.22), implies that (4.20) has a unique solution in D(A).
Finally, by (4.19) and (4.20), we can apply the Lumer-Phillips theorem (see [24, Theorem 4.3, Chapter 1])

to conclude that A generates a Cp-semigroup of contractions on H. This completes the proof of Lemma 8. O

Now we consider the following system in H:

{Yt(t) =AY (t) + Bu(t) teRY, (4.23)

Y (0) = Yo,
where u € L2(R*;U) and Yy € H.
Remark 10. By Lemma 8, we have the following two facts: Fact 1. For each Y € H and each u € L?(R*;U),
system (4.23) has a unique solution Y (+; ¥y, ) in C([0, +00); H); Fact 2. The pair (A, B) satisfies assump-
tions (A;)-(4s) (with (H,U) = (H,U)).

We now give relationships between (4.15) and (4.23), which show that (4.15) can be embedded into our
framework (4.23).
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Proposition 2. (i) The relationship of solutions to (4.15) and (4.23) is as follows:

(a) If y(:;y0, fru), with yo € L2(RY), f € L2(—7,0; L2RYN)) and u € L>(R*; L2(RY)), is the solution of
(4.15), then Y () := (Y1(+), Ya(:)) T is the solution of (}.23) with Yy := (yo, f(—-7)) ", where [Y1(t)](z) :=
y(t, 2390, f,10) and [Ya(0)](z, p) = y(t — o7, 7350, fru) for (£, p) € R* x RN x (0,1).

(b) If Y (3 Yo,u) = (Y1(5; Yo, u), Ya(+; Yo,u)) T, with Yy := (h,g)T € H and u € L>(R*T;U), is the solution
of (4.23), then the function y(-,-) defined by

- {mu;Yo,un(x), (t,x) € RT x RV, (4.24)

g(z, —tt1), (t,z) € (—7,0) x RV,
is the solution of (4.15) with yo = h and f(t,x) = g(x,—t7~1) for (t,z) € (—7,0) x RYN. Moreover,
[Ya(t; Yo, w)|(x, p) = y(t — pr,2) for (t,z,p) € RT x RY x (0,1). (4.25)
(#4) The relationship of the stabilizability of (4.15) and (4.23) is as follows: System (4.15) is stabilizable
in the sense of Definition / if and only if system (}.23) is stabilizable, i.e., there is a K € L(H;U) such

that eAHBEIt s exponentially stable.

Proof. We first prove (a) of (i). For this purpose, we arbitrarily fix yo € L2(RY), f € L?(—7,0; L2(RY))
and u € L2(R*; L2(RY)). Let

z(t7m7pa y07fa ’LL) = y(t _pT7m;y07fa ’LL) for (ta$7[)) € R* x RN X (071)

Then, by (4.15), (y(-, 3o, f,u), 2(, -, s Yo, f,u)) satisfies the following equation:

ye(t,z) = (A — Dy(t,z) + 2(t, 2, 1) + xou(t,z), (t,z) € RT xRN,

zi(t, @, p) = =77 10,2(t, z, p), (t,z,p) € RT x RN x (0,1),

z(t,x,0) = y(t, z), (t,z) € R* x RV, (4.26)
y(0,2) = yo(z), z € RV,

2(0,z, p) = f(—pT, ), (z,p) € RN x (0,1).

Let
Yi(t)](2) = y(t, x50, f,u); [Ya()](x,p) := 2(t, 2, 0390, f,u) for (t,2,p) € RY xRY x (0,1).
It is clear that
[Y1(0)](2) := yo(2): [Y2(0)](z,p) := f(~pr,2) for z € RY, pe (0,1).

Then, by (4.18) and (4.26), we see that Y (-) := (Y1(+), Y2(+)) T is the solution to (4.23), with Y := (yo, f(— -
7)), which leads to (a) of ().

We next prove (b) of (7). To this end, we arbitrarily fix Yy = (h,g)" € H and u € U. Let Y (-;Yp,u) =
(Y1(+; Yo, u), Ya(+; Yo, u)) T be the solution of (4.23), with Yy = (h,g)" € H. Then we have

[Y1(0; Yo, w))(2) = h(x); [Ya(0; Yo, w))(x,p) = g(x,p) for z € RN, pe(0,1).

Let y(-,-) be defined by (4.24). Then it is clear that y(t,z) := [Y1(¢; Yo, w)](z) in (t,z) € RT x RV, Let
z(t,z,p) == [Ya(t; Yo, u)](x, p) for (¢,z,p) € RT xRY x(0,1). By (4.18), we have that the pair (y(-,-), 2(-, -, "))
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satisfies that equation (4.26) with yo = h and f(t,z) = g(x, —t7~1) for (t,7) € (—7,0) x RV. By the second,
third and fifth equations in (4.26), we can directly check that

t— pr, if ¢ > pr,
stz p) = A VETPTT) BEEPT p) e RY X RY x (0,1). (4.27)
gz, —(t —pr)r=1) if t < pr,

This, along with the first equation in (4.26) and (4.24), implies

y(t,x) = (AN = Dy(t,z) +y(t — 7,2) + xou(t,z), (t,z) € RT xRV,
Since y(0) = Y1(0; Yy, u) = h, the above shows that the function y(-,-), defined by (4.24), is the solution
of (4.15), with yo(x) = h(z) and f(t,2) = g(z, —t71) for (t,x) € (—7,0) x RY. Meanwhile, (4.25) follows
from (4.24), (4.27) and the definition of z(-,-,) at once. These lead to (b) of (7).

We finally prove (i7). First, we suppose that system (4.23) is stabilizable, i.e., there is a > 0, C' > 0, and
K € L(H;U) such that for any Yy € H, the solution Y (-;Yy) of the following equation:

Yi(t) =AY (t) + BKY (t), teRT,
Y(O) = YOa

satisfies
V5 (8 Y0) lne < Ce|[Yo|lg for any t > 0. (4.28)
We arbitrarily fix (yo, )T € L2(RY) x L2(—7,0; L2(R")). Then we define
h(x) = yo(); g(x,p) = f(—pr,x) for (z,p) € RY x (0,1). (4.29)
Let Yy := (h,g)". We write
YE(:Y0) == (Y (1), Y (1) 5w () := KYX(;Yp) for t € RT. (4.30)

Since K € L(H;U), it follows from (4.30) and (4.28) that v’ € L2(R*;U). Then, according to (b) in (i)
of Proposition 2, the function, defined by

Ky o [DE@IE (o) R xR,
yhe) = {g(x, —tr=Y) (t,z) € (—7,0) x RY, (4:31)
satisfies
ytK(tvx) = (A I)yK(t,CL') + yK(t —T,z)+ quK(tal')’ (t,z) € R* x RN;
y5(0,2) = h(z), = cRY;
y®(t,x) = g(x, —tr7Y), (t,z) € (—7,0) x RY;
Y55 (0)](x, p) = y™ (t = pr,2) for (t,z,p) € R x RN x (0,1). (4.32)

These, along with (4.31), (4.28) and (4.29), yield
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1

g™ ()72 @ny < IYE (5 Y0) |13 < CPe™ ||h||%2<RN)+/Hg(-,p>\|%zm)dp
0

0
< 22 | [B]3e g, + / 1£(5.) 3o guyds | for t € R, (4.33)

Next, we will rewrite € in the feedback form required by Definition 4. To this end, we define an operator
A, in the manner: for each f € L?(0,1; L2(RY)), we let

A

A [f](t ) == f(m,—tr_l), (t,xz) € (—7,0) x RV,

One can directly check that A, : L?(0,1; L2(RY)) — L?(—,0; L>(RY)) is isomorphic. Then, by (4.30) and

(4.32), we find that
_x(f 0 y" (1)
uK(t)_K<O A;1><yK(t+-)>'

The above, along with (4.33) and Definition 4, shows that system (4.15) is stabilizable in the sense of
0
AL
Conversely, we suppose that system (4.15) is stabilizable in the sense of Definition 4, i.e., there is a > 0,
C > 0 and a feedback law K € L(L?(RY) x L?(—7,0; L2(RY)); L3(R¥)) such that for any yo € L%(RY)
and f € L?(—7,0; L2(RY)), the solution yx(-;vo, f) of the closed-loop system (4.16) satisfies (4.17). We
arbitrarily fix Yo = (h,g)" € H. Let

Definition 4 with the feedback law K

yo(z) = h(z); f(t,2) =glz,~tr7"), (2,t) € RY x (~7,0).

Then (yo, f) € L*(RY) x L2(—7,0; L*(RY)). Let

uk (t) := K (yre (90, ), y(t + 590, F)) T, ¢ >0. (4.34)
By (4.34), one can easily check that

v (t @390, f) = y(t. @390, fouk), ¢ =0,z € RY. (4.35)
Given t > 0, 2 € RN and p € (0,1), we let

Y @)](2) = y(t, 290, frur); [Ys (O](z,p) = y(t — p7, 2390, f,ur)- (4.36)

By (4.36), (4.35) and (a) in (i) of Proposition 2, we see that Y% (-) := (Y/5(.),Y£(-)) T is the solution of

(4.23), with Yy := (yo, f(— - 7)) and v = u®. This, together with (4.34), (4.36) and (4.17), yields

||YK(t) 3{ for t e RT.

1
Fo=lyx®) 7@y + / lyxc (¢ = o7, 90, P72 @vydp < C?(1 4 €*T)e™ 2|V
0

With (4.34), the above leads to

Uaq(Yo) :i={uec L*(RT;U) - Y (Yo, u) € L*(RT;H)} # 0, (4.37)
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where Y (+; Yo, u) is the solution of (4.23), with the initial value Yy and the control u. By (4.37), we can
apply [8, Proposition 3.9] to see that system (4.23) is stabilizable.
Thus, we complete the proof of Proposition 2. 0O

Remark 11. From Proposition 2 and its proof, if system (4.15) is stabilizable in the sense of Definition 4,
then a feedback law can be constructed by LQR theory on the infinite time horizon.

Next, we will show that system (4.15), with u = 0, is not exponentially stable in L?(R”). This shows
the importance of studying the stabilizability of system (4.15).

Proposition 3. System (/.15), with u =0, is not exponentially stable.

Proof. First of all, according to (¢) in Proposition 2, system (4.15) (with u = 0) is exponentially stable if
and only if system (4.23) (with u = 0) is exponentially stable.

Now, we let \; := j~' (j € N*t). Then let f/ := (f,0) € H, with ||f/|j¢s = 1 and supp(F[fi])
{¢ € RYN||¢] < \/A;}. Tt is obvious that A; +1 —e™™ > A; > 0 for all j € NT. Thus, equation (4.21)
(equivalently, (4.22)), with A = A; and f = f7, has a unique solution ¢’ := (¢}, ¢3) in D(A). Applying
the Fourier transform to the second equation in (4.22) (with A = A;), using the fact that fo = 0 and the
Plancherel theorem, we obtain that as j — 400,

197 B = Ny = [ O+ 1= 7™ +16) PP

RN

> (2 +1- )2 [IF(HI©OPdE = 257+ (1 - 5 e
RN

This yields that [|(A;I — A) ™| gz — +00 as j — +o0. Thus, we have

sup  [|(AT = A) 7 gg0) = +oo.
AeC,Rex>0

The above, along with [20, Theorem 1.11, Chapter V], yields that (4.23) (with u = 0) is not exponentially
stable. This completes the proof. O

The main result of this subsection concerns with the stabilizability of system (4.15), which is proved by
making use of Theorem 2.

Theorem 7. If w is a thick set, then system (4.15) is stabilizable in the sense of Definition /.

Proof. According to [37, Theorem 1.1 and Remark (b1)], the controlled heat equation y; = Ay + x,u (in
R* x RY), with w a thick set, is null controllable, and consequently is rapidly stabilizable. Thus, by (i7) in
Theorem 3, we can conclude that for each v > 0, there is Cp(y) > 0 such that

||90||%2(]R") < Co()(IIAM — A)WH%%R”) + ||Xw<PH%2(RN)) for N\e CE,, pe H*(RY). (4.38)

Meanwhile, one can easily check that 8* = (x.,0) and
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A
A= ( ;<P> for p = (4'01) € D(AY),
Ay P2

with <[[ﬂ§¢](“@> ) _ (& = D1 (x) + p2(2,0)

(z,p) € RN x (0,1),
Apl(x, p) 710,00 (, p)

D) = {(f1, f2)T € H: fi € HXRY), fo € H'(0,1;L3(RY)), fi(z) = folx,1) ae. x € RV}

(4.39)

We arbitrarily fix 79 € RT. We claim that the pair (A*, 8*) satisfies (HESI),,, i.e., there is C'(y9) > 0

such that

leli7e < COOUN = A)pl3 + D)8 llz) for A€ CE

Yo?
For this purpose, we arbitrarily fix A € (CJ_FW0 and ¢ = (p1,p2) " € D(A*). Let
f=(f)T = (M = A)p.

By (4.39), we have

(A+ 1) = D)pi(a) = pa(2,0) = fr(z), = €RN,

()‘I - Tﬁlap)902(xap) = f2($,/0), (l',p) € RN X (0’1)3

(,01(1’) :<)02(I71)a I’ERN.

From the second and third equations in (4.42), we deduce that for each p € (0, 1),

1
@a(x,p) = e 17 —&—T/e_”\(s P fo(x,s)ds, xRV,
p

The combination of (4.43) and the first equation in (4.42) leads to

1

(A+1=e ™)1 = A)pr(a) = fr(x) + T/e—me(a:, s)ds, =RV

0

Since

Re(A+1—e ™) >Red+1—e ™8 > (45 +¢e™° — 1) for each \ € c*,

and

Yo+e—=1>0,

p € D(A").

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

the combination of (4.38) (with v := 9+ €™ — 1) and (4.44) yields that there is C1(vp) > 0 such that

2

1
ler(MZ2®ny < Ci(r0) [ || A1() + T/e_”sfz(', s)ds + w172 @)
0

L2(RN)

< 2C1 () (1 4 7*7°) || f 17 + C1(v0) 1B 2|1 %-

(4.45)
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Meanwhile, it follows from (4.43) that

lo2(, M Ze 0,522y < 267 o1 ()22 @y + 27%€ 2”“/\\f2 8|22y ds

< [401(70)627'70(1_’_7_62770) —1—27627—70] ||f||3{
+2C1 (0)e* ™ |B* ¢ |- (4.46)

Now, by (4.41), (4.45) and (4.46), we obtain (4.40), with
C(70) = 4C1(70)(1 + 7> ) (1 + 7e*770) + 277>, D(9) 1= C1(70)(1 + 2¢°7°).

Finally, according to Lemma 8, the Cy-semigroup generated by A* is uniformly bounded, which leads
to the condition (a) in Theorem 2. Thus, we can apply Theorem 2 and (4.40) to conclude that system
(4.23) is stabilizable. Then by (i) of Proposition 2, we find that system (4.15) is stablilizable in the sense
of Definition 4. This completes the proof. 0O

Remark 12. It appears to us that Theorem 7 is new. It serves well to illustrate the strength of our results.
5. Appendix

Proposition 4. Suppose that (A1)-(As) hold. Then the inequalities (1.5) and (1.6) are equivalent.

Proof. We first show (1.5)= (1.6). Suppose that (1.5) holds. Let 81 € (0,8). Then, it follows from (1.5)
that for A € C*

_c®
lellZ S BB

which leads to (1.6) with a different C(3) > 0

Next, we show (1.6)= (1.5). Suppose that (1.6) is true. First, there are two constants w > 0 and C'(w) > 0
such that [|S*(t)|| < C(w)e“* for all t € R*, which implies that CJ C p(A*) and that for each A € C},
(A — A*) " gy < C(w)(Red —w) ™t (see [24, Theorem 5.3 and Remark 5.4, Section 1.5, Chapter 1]).
These facts, together with the same argument in (3.3), imply that for each X € (Cmdx{w 2f—w|— B}

(I = Al + 1B*¢l7;) for ¢ € Hy,

20 .
Il < 2C) A= A%gllg for ¢ € Hy. (5.1)
ReA+

Meanwhile, it follows from (1.6) that for A € C +ﬁ \C* we have

max{w,2|f—w|-B}’
s _ (B+max{w,218 — w| - §))’

lellz < Rer+ A2 C(B) (M = A%l + |1 B*llty) for ¢ € Hi,

where we recall that the quotient in front of C(3) is larger than or equal to 1. The combination of this
result and (5.1) yield

CB,w)

lellf < mo—avg (I = A%)ell3 + 1B ellfy) for A e CFy, v € Hy,
(ReX + )

where C(3,w) := (8+max{w, 2|3 —w|—B})2C(B) +4(C(w))?. This implies that (1.5) holds. This completes
the proof. O
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Remark 13. The following example shows that (1.5) is more sharp than (1.6) to describe the optimal decay
rate of system [A, B]: Suppose that A € R™*" and B € R™™™ (n,m € NT), i.e., system [A, B] is a finite-
dimensional system in R™. Further, we assume that [A, B] is stabilizable, but not controllable. It follows
that there is an invertible matrix P € R™*™ such that

A As
0 As

B,

PAP™! = ,
0

, PB=

where [A1, B1] is controllable and o(A3) is non-empty and in Cg, i.e., 0* := max{ReA: X € o(A43)} < 0.
We define the optimal decay rate of system [A, B] as follows:

o :=inf{a € R: IF € R™*" s.t. A+ BF is exponentially stable with the decay rate a}.

One can directly check that of = —¢*. If there is F* € R™*™ such that A + BF* is exponentially stable
with decay rate of, then we say the optimal decay rate of [A, B] can be reached, otherwise, we say that
it can not be reached. We take A* € o(A3)(C o(A)) such that ReA* = ¢* and suppose Re\ < o* for any
A € 0(As)\{\*}. If the geometric multiplicity of A* equals to its algebraic multiplicity, then, by the classical
argument, we can directly check that the optimal decay rate of [A, B] can be reached. Moreover, by the
Laplace transform, we can conclude that (1.5) holds for 8 = oF, but (1.6) holds only for 3 < o*. If the
geometric multiplicity of \* is strictly less than its algebraic multiplicity, then, we can directly check that
the optimal decay rate of [A, B] can not be reached. In this case, we can show that (1.5) and (1.6) hold only
for 8 < of. In summary, (1.5) holds for 3 = of in some cases, while (1.6) holds only for 3 < af. Therefore,
we say that (1.5) is more sharp than (1.6).
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