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 A B S T R A C T

We show that if R𝑛 is equipped with a certain non-doubling metric and an Orlicz-Sobolev 
inequality holds for a special family of Young functions 𝛷, then weak solutions to quasilinear 
infinitely degenerate elliptic equations of the form −div (𝑥, 𝑢) ∇𝑢 = 𝜙0 − div𝐴𝜙1 are locally 
bounded. This is obtained by the implementation of a Moser iteration method, what constitutes 
the first instance of such technique applied to infinite degenerate equations. The results 
presented here partially extend previously known estimates for solutions of similar equations 
in which the right hand side does not have a drift term. We also obtain bounds for small 
negative powers of nonnegative solutions, which will be applied in a subsequent paper to 
prove continuity of solutions. We also provide examples of geometries in which our abstract 
theorem is applicable. We consider the family of functions 𝑓𝑘,𝜎 (𝑥) = |𝑥|

(

ln(𝑘) 1
|𝑥|

)𝜎

, 𝑘 ∈ N, 𝜎 >
0, −∞ < 𝑥 < ∞, infinitely degenerate at the origin, and show that all weak solutions to 
−div𝐴 (𝑥, 𝑦, 𝑢) ∇𝑢 = 𝜙 (𝑥, 𝑦) − div𝐴𝜙1 (𝑥, 𝑦) , 𝐴 (𝑥, 𝑦, 𝑧) ∼

[

1 0
0 𝑓𝑘,𝜎 (𝑥)

2

]

, with rough data 
𝐴,𝜙0, 𝜙1, are locally bounded when 𝑘 = 1 and 0 < 𝜎 < 1.

. Introduction and main results

We consider divergence form quasilinear degenerate elliptic equations of the form 
𝑢 ≡ −∇tr (𝑥, 𝑢 (𝑥)) ∇𝑢 = 𝜙0 − div𝐴𝜙1, 𝑥 ∈ 𝛺 (1)

n a bounded domain 𝛺 ⊂ R𝑛. The matrix  (𝑥, 𝑧) ∈ A (𝐴,𝛬, 𝜆) uniformly in 𝑧 ∈ R, where A (𝐴,𝛬, 𝜆) denotes the class of nonnegative 
ymmetric matrices 𝐴̃ (𝑥) satisfying 

0 ≤ 𝜆 𝜉tr𝐴 (𝑥) 𝜉 ≤ 𝜉tr 𝐴̃ (𝑥) 𝜉 ≤ 𝛬𝜉tr𝐴 (𝑥) 𝜉 , (2)

or a.e. 𝑥 ∈ 𝛺, 𝜉 ∈ R𝑛, and some fixed 0 < 𝜆 ≤ 𝛬 < ∞; i.e.  (𝑥, ⋅) is assumed to be equivalent to a degenerate elliptic matrix 𝐴 (𝑥)
n the sense of quadratic forms. We further assume that the reference matrix 𝐴 satisfies that 

√

𝐴 is a bounded Lipschitz continuous 
× 𝑛 real-valued nonnegative definite matrix in 𝛺, and define the 𝐴-gradient and the 𝐴-divergence operators by 

∇𝐴 =
√

𝐴 (𝑥)∇ , div𝐴 = div
(

√

𝐴 (𝑥)⋅
)

, (3)
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To obtain local bounds for weak solutions 𝑢 of the second order quasilinear equation (1) it suffices to consider the linear operator
𝐿𝐴̃𝑢 = −div𝐴̃∇𝑢 = −div𝐴̃∇𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1, 𝑥 ∈ 𝛺 (4)

where the matrix 𝐴̃ ∈ A (𝐴,𝛬, 𝜆), i.e. it satisfies the equivalences (2).
We first work in an abstract setting which requires the existence of an underlying metric 𝑑 satisfying some geometric compatibility 

with the differential structure induced by 𝐴, including the validity of a certain Orlicz-Sobolev inequality (Definition  1.4) for 
compactly supported Lipschitz functions on 𝑑-metric balls.

The Moser iteration developed here is the first instance of such technique being implemented for infinite degenerate equations, 
and as such it has an interest on its own. This iteration scheme requires the composition of Orlicz norms, which has been so far 
an insurmountable technical obstacle. We overcome this problem by considering a specially designed family of Young functions 
𝛷𝑚 (𝑡) ∼ 𝑡 exp

(

(ln 𝑡)
𝑚−1
𝑚

)

 as 𝑡→ ∞, 𝑚 > 1, which are well-behaved under successive compositions. These ‘‘exp-log’’ Young functions1 
were introduce in the study of bump conditions in weighted norm inequalities by Cruz-Uribe and Fiorenza [1], and were later shown 
by Cruz-Uribe et al. [2] to have properties more akin to Lebesgue norms2 than to the Orlicz norms induced by the so-called log-
bump functions 𝐴(𝑡) = 𝑡𝑝 log (𝑒 + 𝑡)𝑞 . Note that the Young functions 𝛷𝑚 are much larger than the log-bump functions 𝐴1,𝑁  considered 
in [9], so in the end our results hold in a more restrictive family of geometries. Nevertheless, we do extend in these geometries the 
boundedness results in [9] to operators in which the right hand side also has a drift term.

Another reason to implement the Moser iteration is that it yields 𝐿2-𝐿∞ estimates for small negative powers 𝑢𝛼 of nonnegative 
solutions 𝑢, which combined with similar estimates for small positive powers of nonnegative solutions can render a Harnack-type 
inequality which, in turn, can be used to obtain continuity of solutions. We have been unable to obtain these same estimates with 
the De Giorgi approach used in [9]. On the other hand, our present methods require convexity of the power functions 𝑡𝛼 , limiting 
our results to exponents 𝛼 < 0 or 𝛼 ≥ 1. In a subsequent work we will establish estimates for small positive powers of nonnegative 
solutions via the De Giorgi method, and we will combine these results to prove continuity of solutions .

The abstract results are of interest in themselves because of their greater generality, but they prove their true relevance in actual 
geometric settings where they can yield new boundedness theorems. We provide in this paper an application of our abstract theory 
to a two-dimensional quasilinear operator comparable to a diagonal linear operator with degeneracy controlled by a function 𝑓 that 
only depends on one of the variables. The current implementation of the Moser method requires a rather restrictive assumption on 
the type of the degeneracy that is allowed, and does not handle as large a range of degeneracies as is covered by the De Giorgi 
iteration in [9], or by the trace method in [10]. However, it does guarantee boundedness of solutions to degenerate quasilinear 
equations as in [9,10] while including the case of non-zero right hand side. In this application, the structural assumptions on 𝐴 will 
ensure that 𝐴 is elliptic away from the hyperplane 𝑥1 = 0, and that the Carnot-Carathéodory metric 𝑑𝐴 induced by 𝐴 is topologically 
equivalent to the Euclidean metric 𝑑E, although these will not be equivalent metrics since the 𝑑𝐴-balls are not doubling when centered 
on that hyperplane. We prove that the assumptions necessary for the abstract theory, including an Orlicz-Sobolev embedding, all 
hold, thereby obtaining boundedness of weak solutions to −div (𝑥, 𝑢) ∇𝑢 = 𝜙0 − div𝐴𝜙1 for these operators in the plane (Theorem 
1.1). The right hand side pair 

(

𝜙0, 𝜙1

)

 is required to be admissible as given in Definition  1.5 below, which basically requires the 
(

𝜙0, 𝜙1

)

 to belong to the dual of the homogeneous degenerate Sobolev space 𝑊 1,1
𝐴,0 (see Section 1.2 for the definition of these spaces).

We now present the two-dimensional geometric application, the boundedness Theorem  1.1. For this result we will specifically 
consider the geometry of balls induced by diagonal matrices 

𝐴(𝑥) =
[

1 0
0 𝑓 (𝑥)2

]

(5)

where 𝑓 = 𝑓𝑘,𝜎 = 𝑒−𝐹𝑘,𝜎  with

𝐹𝑘,𝜎 (𝑟) =
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎
, 𝑟 > 0, 𝑘 ∈ N, and 𝜎 > 0.

That is, 𝑓𝑘,𝜎 (𝑟) = 𝑒−𝐹𝑘,𝜎 (𝑟) = 𝑟
(

ln(𝑘) 1
𝑟

)𝜎

 vanishes to infinite order at 𝑟 = 0, and 𝑓𝑘,𝜎 vanishes faster than 𝑓𝑘′ ,𝜎′  if either 𝑘 < 𝑘′ or  if 
𝑘 = 𝑘′ and 𝜎 > 𝜎′. These geometries are particular examples of the general geometries 𝐹  considered in our abstract theory defined 
by the structural conditions 5.1 in Section 5 below. In [9] we consider 𝐹𝜎 = 𝐹0,𝜎 = 𝑟−𝜎 (𝑘 = 0) with 0 < 𝜎 < 1, so 𝑓1,𝜎 (𝑟)≫ 𝑓𝜎 = 𝑒−

1
𝑟𝜎

near 𝑟 = 0. The boundedness results obtained here, albeit having a drift term on the right hand side and being able to treat small 
negative powers of supersolutions, do not include the case 𝑘 = 0, 0 < 𝜎 < 1, as in [9]; this is due to the current technical limitations 
for implementing a Moser iteration in the infinite degenerate setting.

Theorem 1.1 (Geometric Local Boundedness). Let {(0, 0)} ⊂ 𝛺 ⊂ R2 and (𝑥, 𝑧) be a nonnegative semidefinite matrix in 𝛺 × R that 
satisfies the degenerate elliptic condition (2) where 𝐴(𝑥) is given by (5) with 𝑓 = 𝑓𝑘,𝜎 . Then every weak subsolution of (1):

𝑢 ≡ −∇tr (𝑥, 𝑢 (𝑥)) ∇𝑢 = 𝜙0 − div𝐴𝜙1

is locally bounded above in 𝛺 ⊂ R2 provided that:

1 We want to thank the referee for pointing out the earliest introduction of these ‘‘exp-log’’ bump functions 𝛷𝑚, together with their applications to weighted 
norm inequalities and the analysis of some their properties.

2 In particular, the Orlicz norms determined by 𝛷𝑚 are one-sided comparable to the non-homogenous quasi-norms given in Definition  1.4 below. See also 
Lemma  3.2.
2 
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1. the right hand side pair 
(

𝜙0, 𝜙1

)

 satisfies 𝜙0 ∈ 𝐿𝛷∗

loc (𝛺), where 𝛷∗ is the adjoint Young function to 𝛷𝑚, for some 𝑚 > 2, and 
|

|

|

𝜙1
|

|

|

∈ 𝐿∞
loc (𝛺),

2. at least one of the following two conditions hold:

(a) 𝑘 = 1 and 0 < 𝜎 < 1,
(b) 𝑘 ≥ 2 and 𝜎 > 0.

1.1. Relation to other results in the literature

Apart from the two papers by the authors [9,10] , mentioned earlier, there have been very few related results obtained by other 
authors, since this current paper first appeared on the arXiv in 2015. The two most recent and relevant ones are Cruz-Uribe and 
Rodney [3] and Di Fazio et al. [5]. In [3] the authors obtain boundedness of weak solutions to a certain class of degenerate elliptic 
Dirichlet problems using an adaptation of the De Giorgi technique developed in [9]. The results there are of abstract type where 
one assumes a weighted Sobolev inequality, and these results are similar, but incomparable, to our abstract results. However, they 
obtain a quantitative bound for a much larger class of inhomogeneous data. On the other hand, there are no geometric theorems 
there, which would require verification of complicated hypotheses, such as a Sobolev inequality. In this paper, as in the original 
version in the arXiv in 2015 [8], the use of the Moser iteration is crucial, this despite the comment made in ([3], page 5) to the effect 
that ‘‘We were unable to adapt Moser iteration to work in the context of Orlicz norms, and it remains an open question whether 
such an approach is possible in this setting’’.

More recently in [5] the authors consider quasilinear degenerate equations of this nature, and they use Moser iteration to obtain 
abstract results on Harnack inequalities and Hölder continuity of solutions. Similar to Cruz-Uribe and Rodney [3], the authors use 
an axiomatic approach, where the relevant (weighted) Sobolev and Poincaré inequalities, as well as the doubling property of the 
weights on the metric balls, are assumed to hold a priori. Since there are no geometric theorems established in [5], their results are 
also incomparable to those in our paper.

From the point of view of abstract results, the current paper also makes a new significant contribution. In both Cruz-Uribe 
and Rodney [3] and Di Fazio et al. [5] the authors use (𝑞, 𝑝) Sobolev inequalities with 𝑞 > 𝑝 and do not perform Moser or De 
Giorgi iterations using a weaker Orlicz-Sobolev inequality employed in this paper. Due to the inhomogeneous nature of the Orlicz 
norm, adapting these techniques to this new setting was a highly technical nontrivial task which required new ideas. This allows to 
establish regularity of solutions in the case when the metric balls are non-doubling with respect to Lebesgue measure, that is, the 
metric space is not of homogenous type; see [7].

1.2. The abstract setting

We work in an open, bounded domain 𝛺 ⊂ R𝑛 and as described above we consider nonnegative symmetric real valued matrices 
𝐴 in 𝛺 such that 

√

𝐴 (𝑥) is uniformly bounded and uniformly Lipschitz in 𝛺. The degenerate Sobolev space 𝑊 1,2
𝐴 (𝛺) associated to 

𝐴 has norm

‖𝑣‖𝑊 1,2
𝐴

≡

√

∫𝛺
|𝑣|2 +

(

(∇𝑣)tr 𝐴∇𝑣
)

=

√

∫𝛺

(

|𝑣|2 + |

|

∇𝐴𝑣||
2
)

.

Since 
√

𝐴 is Lipschitz then div
√

𝐴 (𝑥) ∈ (𝐿∞ (𝛺))𝑛, hence the space 𝑊 1,2
𝐴 (𝛺) is a Hilbert space (see [13], Theorem 2) contained in 

𝐿2 (𝛺), with inner product given by the bilinear form

𝑎1 (𝑢, 𝑣) = ∫𝛺
∇𝐴𝑣 ⋅ ∇𝐴𝑤 𝑑𝑥 + ∫𝛺

𝑣𝑤 𝑑𝑥, 𝑣,𝑤 ∈ 𝑊 1,2
𝐴 (𝛺)

where ∇𝐴𝑣 =
√

𝐴∇𝑣. The associated homogeneous subspace 𝑊 1,2
𝐴,0 (𝛺) is defined as the closure in 𝑊 1,2

𝐴 (𝛺) of Lipschitz functions 
with compact support, Lipc (𝛺). If a global (1-1)-Sobolev inequality holds in 𝛺, i.e. 

∫𝛺
|𝑔| 𝑑𝑥 ≤ 𝐶𝛺 ∫𝛺

|

|

∇𝐴𝑔|| 𝑑𝑥 for some 𝐶𝛺 > 0 and all 𝑔 ∈ Lipc (𝛺) , (6)

it follows that the Hilbert space structure in 𝑊 1,2
𝐴,0 (𝛺) has the equivalent inner product

𝑎 (𝑢, 𝑣) = ∫𝛺
𝐴 (𝑥) ∇𝑣 ⋅ ∇𝑤 𝑑𝑥 = ∫𝛺

∇𝐴𝑣 ⋅ ∇𝐴𝑤 𝑑𝑥, 𝑣,𝑤 ∈ 𝑊 1,2
𝐴,0 (𝛺) .

In this case we have that ‖𝑣‖𝑊 1,2
𝐴 (𝛺) ≈

‖

‖

∇𝐴𝑣‖‖𝐿2(𝛺) for all 𝑣 ∈ 𝑊 1,2
𝐴,0 (𝛺). In ([9], Section 8.2) we show that inequality (6) holds for a 

wide variety of infinitely degenerate geometries.
Note that ∇𝐴 ∶ 𝑊 1,2

𝐴 (𝛺) →
(

𝐿2 (𝛺)
)𝑛 and div𝐴 ∶

(

𝐿2 (𝛺)
)𝑛

→
(

𝑊 1,2
𝐴,0 (𝛺)

)∗
 are bounded linear operators, where 

(

𝑊 1,2
𝐴,0 (𝛺)

)∗

is the dual space of 𝑊 1,2
𝐴,0 (𝛺). The derivatives in 𝑊 1,2

𝐴 (𝛺) are understood in the weak sense, i.e., 𝑓 = ∇𝐴𝑢 in 𝛺 if and only if 
𝑓 ∈

(

𝐿1 (𝛺)loc
)𝑛 and for all 𝑣 ∈ (

Lipc (𝛺)
)𝑛

𝑓 ⋅ 𝑣 𝑑𝑥 = 𝑢div𝐴𝑣 𝑑𝑥,
∫𝛺 ∫𝛺

3 
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note that the right hand side is integrable since div𝐴𝑣 ∈ 𝐿∞ (𝛺) and 𝑢 ∈ 𝐿2 (𝛺). When 𝑢 ∈ 𝑊 1,2
𝐴 (𝛺) and 𝐴̃ ∈ A (𝐴,𝛬, 𝜆) we define the 

equivalent 𝐴̃ -gradient and div𝐴̃ operators associated to by setting ∇𝐴̃𝑣 =
√

𝐴̃∇𝑣 and ⟨div𝐴̃𝑤⃗, 𝑣
⟩

= − ∫ 𝑤⃗ ⋅ ∇𝐴̃𝑣 for all 𝑣 ∈ Lipc (𝛺). 
From (2) it is clear that |

|

∇𝐴̃𝑣 (𝑥)|| ≈ |

|

∇𝐴𝑣 (𝑥)|| for a.e. 𝑥 ∈ 𝛺. Each 𝑢 ∈ 𝑊 1,2
𝐴 (𝛺) then defines the bilinear form

𝑎̃ (𝑣,𝑤) = ∫𝛺
𝐴̃ (𝑥) ∇𝑣 ⋅ ∇𝑤 = ∫𝛺

∇𝐴̃𝑣 ⋅ ∇𝐴̃𝑤 𝑑𝑥, 𝑣,𝑤 ∈ 𝑊 1,2
𝐴 (𝛺) .

The assumptions (2) imply that 𝑎̃ ≈ 𝑎 as bilinear forms, which are bounded on 𝑊 1,2
𝐴 (𝛺), that is |𝑎̃ (𝑣,𝑤)| ≲ |𝑎 (𝑣,𝑤)| ≲

‖𝑣‖𝑊 1,2
𝐴

‖𝑤‖𝑊 1,2
𝐴
. In the presence of a (1-1)-Sobolev inequality (6) we moreover have that 𝑎 and 𝑎̃ are coercive on 𝑊 1,2

𝐴,0 (𝛺), 
i.e. 𝑎̃ (𝑣, 𝑣) ≳ 𝑎 (𝑣, 𝑣) ≳ ‖𝑣‖2

𝑊 1,2
𝐴 (𝛺)

.

Definition 1.2 (Weak Solutions). Let 𝛺 be a bounded domain in R𝑛. Assume that 𝜙0,
|

|

|

𝜙1
|

|

|

∈ 𝐿2
loc (𝛺). We say that 𝑢 ∈ 𝑊 1,2

𝐴 (𝛺) is a
weak solution to 𝐿𝐴̃𝑢 = −div𝐴̃∇𝑢 = 𝜙0 − div𝐴𝜙1 provided 

∫𝛺
𝐴̃ (𝑥) ∇𝑢 ⋅ ∇𝑤 𝑑𝑥 = ∫𝛺

𝜙0𝑤 + 𝜙1 ⋅ ∇𝐴𝑤 𝑑𝑥 (7)

for all 𝑤 ∈ Lipc (𝛺). Eq. (7) may be written as 𝑎̃ (𝑢,𝑤) = 𝐹 (𝑤) where 𝐹  is the operator defined by the right hand side of (7), which 
is a bounded linear operator on 𝑊 1,2

𝐴,0 (𝛺). With this notation we similarly define the notion of subsolution (supersolution) by saying 
that 𝑢 ∈ 𝑊 1,2

𝐴 (𝛺) is a (weak) subsolution (supersolution) to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1, and write 𝐿𝐴̃𝑢 ≤ 𝜙0 − div𝐴𝜙1 (𝐿𝐴̃𝑢 ≥ 𝜙0 − div𝐴𝜙1), if 
and only if

𝑎̃ (𝑢,𝑤) ≤ 𝐹 (𝑤) (𝑎̃ (𝑢,𝑤) ≥ 𝐹 (𝑤)) 𝑓𝑜𝑟 𝑎𝑙𝑙 nonnegative 𝑤 ∈ Lipc (𝛺) .

Finally, we say that 𝑢 ∈ 𝑊 1,2
𝐴 (𝛺) is a weak solution (subsolution, supersolution) to 𝑢 = −div (𝑥, 𝑢) ∇𝑢 = 𝜙0 − div𝐴𝜙1 provided 𝑢 is 

a weak solution (subsolution, supersolution) to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 for 𝐴̃ (𝑥) =  (𝑥, 𝑢 (𝑥)).

Note that our structural condition (2) implies that the integral on the left above is absolutely convergent, and our assumption 
that 𝜙0,

|

|

|

𝜙1
|

|

|

∈ 𝐿2
loc (𝛺) implies that the integrals on the right above are absolutely convergent. In Definition  1.5 below we weaken 

the assumptions on the right hand side pair 
(

𝜙0, 𝜙1

)

.
In this abstract setting we work with the differential structure defined through the matrix 𝐴, inducing the Sobolev spaces 𝑊 1,2

𝐴 (𝛺). 
We further assume the existence of a metric 𝑑 ∶ R𝑛 × R𝑛 → [0,∞) satisfying certain geometric compatibility with this differential 
structure, namely conditions (i), (ii), and (iii) in Theorem  1.6. We now describe each assumption in more detail.

Definition 1.3 (Standard Sequence of Accumulating Lipschitz Functions). Let 𝛺 be a bounded domain in R𝑛 and let 𝑑 ∶ R𝑛×R𝑛 → [0,∞)
be a metric. Fix 𝑟 > 0, 𝜈 ∈ (0, 1), and 𝑥 ∈ 𝛺. We define an (𝐴, 𝑑)- standard sequence of Lipschitz cutoff functions {𝜓𝑗

}∞
𝑗=1 at (𝑥, 𝑟), 

along with sets 𝐵(𝑥, 𝑟𝑗 ) ⊃ supp𝜓𝑗 , to be a sequence satisfying 𝜓𝑗 = 1 on 𝐵(𝑥, 𝑟𝑗+1), 𝑟1 = 𝑟, 𝑟∞ ≡ lim𝑗→∞ 𝑟𝑗 = 𝜈𝑟, 𝑟𝑗 − 𝑟𝑗+1 = 𝑐
𝑗2 (1 − 𝜈) 𝑟

for a uniquely determined constant 𝑐, and ‖‖
‖

∇𝐴𝜓𝑗
‖

‖

‖∞
≲ 𝑗2

(1−𝜈)𝑟  with ∇𝐴 as in (3) (see e.g. [12]).

A sufficient condition for the existence of these cutoffs would be the existence of a constant 𝐶𝑑 > 0 such that whenever 
0 < 𝑟 < 𝑅 < ∞ and 𝐵 (𝑥,𝑅) ⊂ 𝛺, then there exists a Lipschitz function 𝜓 = 𝜓𝑥,𝑟,𝑅 ∈ Lipc

(

𝐵𝑅
) such that 0 ≤ 𝜓 ≤ 1, 𝜓 ≡ 1 in 

𝐵𝑟 and ‖‖∇𝐴𝜓‖‖∞ ≤ 𝐶𝑑
𝑅−𝑟 . This is indeed the case 𝑑 = 𝑑𝐴 is the Carnot-Carathéodory metric induced by a continuous matrix 𝐴, and 

this metric is topologically equivalent to the Euclidean metric (see Lemma  5.3).
We will need to assume the following single scale (𝛷,𝐴, 𝜑)-Orlicz-Sobolev bump inequality:

Definition 1.4 (Orlicz-Sobolev Inequality). Let 𝛺 be a bounded domain in R𝑛, the (𝛷,𝐴)-Orlicz-Sobolev bump inequality for 𝛺 is 

𝛷−1
(

∫𝛺
𝛷 (𝑤) 𝑑𝑥

)

≤ 𝐶 ‖

‖

∇𝐴𝑤‖‖𝐿1(𝛺) , 𝑤 ∈ Lipc (𝛺) , (8)

where 𝑑𝑥 is Lebesgue measure in R𝑛 and 𝐶 depends on 𝑛, 𝐴, 𝛷, and 𝛺 but not on 𝑤.
Fix 𝑥 ∈ 𝛺 and 𝑟 > 0 such that 𝐵 (𝑥, 𝑟) ⊂ 𝛺, the (𝛷,𝐴, 𝜑)-Orlicz-Sobolev bump inequality at (𝑥, 𝑟) is: 

𝛷(−1)
(

∫𝐵(𝑥,𝜌)
𝛷 (𝑤) 𝑑𝜇𝑥,𝜌

)

≤ 𝜑 (𝜌) ‖

‖

∇𝐴𝑤‖‖𝐿1(𝜇𝑥,𝜌
) , 0 < 𝜌 ≤ 𝑟, (9)

for all 𝑤 ∈ Lipc (𝐵 (𝑥, 𝜌)), where 𝑑𝜇𝑥,𝜌 (𝑦) = 1
|𝐵(𝑥,𝜌)|𝟏𝐵(𝑥,𝜌) (𝑦) 𝑑𝑦, and the function 𝜑 (𝑟), dubbed the superradius, is continuous, 

nondecreasing, and it satisfies 𝜑 (0) = 0, 𝜑 (𝜌) ≥ 𝜌 for all 0 ≤ 𝜌 ≤ 𝑟.
Finally, we say that the single scale3 (𝛷,𝐴, 𝜑) -Orlicz-Sobolev bump inequality holds at (𝑥, 𝑟) if (9) holds for 𝜌 = 𝑟 (and not 

necessarily for 0 < 𝜌 < 𝑟).

3 As opposed to the multi-scale Sobolev bump inequalities assumed for continuity, that require 0 < 𝜌 < 𝑟 .
0

4 
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The particular family of Orlicz bump functions 𝛷𝑚 required above that is crucial for our theorem is the family 

𝛷𝑚 (𝑡) = 𝑒

(

(ln 𝑡)
1
𝑚 +1

)𝑚

, 𝑡 > 𝐸𝑚 = 𝑒2
𝑚
, 𝑚 > 1, (10)

which is then extended in (34) below to be linear on the interval [0, 𝐸𝑚
]

, continuous and submultiplicative on [0,∞); we discuss 
this in more detail in Section 5.1.

Finally, we describe the notion of admissible right hand side pair.

Definition 1.5 (Admissible Right Hand Sides). Let 𝛺 be a bounded domain in R𝑛 and let 𝜙0 ∶ 𝛺 → R, 𝜙1 ∶ 𝛺 → R𝑛 be locally 
integrable. We call

(

𝜙0, 𝜙1

)

 a right hand side pair (although we may just refer them as just a ‘‘pair’’). Fix 𝑥 ∈ 𝛺 and 𝜌 > 0, we say 
that the right hand side pair 

(

𝜙0, 𝜙1

)

 is 𝐴-admissible at (𝑥, 𝜌) if 

‖

‖

‖

‖

(

𝜙, 𝜙1

)

‖

‖

‖

‖(𝐵(𝑥,𝜌))
≡ sup
𝑣∈1

|

|

|

|

|

∫𝐵(𝑥,𝜌)
𝑣𝜙0 𝑑𝑦

|

|

|

|

|

+ sup
𝑣∈1

|

|

|

|

|

∫𝐵(𝑥,𝜌)
∇𝐴𝑣 ⋅ 𝜙1 𝑑𝑦

|

|

|

|

|

< ∞. (11)

where 1 =
{

𝑣 ∈
(

𝑊 1,1
𝐴,0

)

(𝐵 (𝑥, 𝜌)) ∶ ∫𝐵(𝑥,𝜌) ||∇𝐴𝑣|| 𝑑𝑦 = 1
}

. Similarly, we say the pair 
(

𝜙0, 𝜙1

)

 is 𝐴-admissible for 𝛺 if (11) holds with 
𝛺 replacing 𝐵 (𝑥, 𝜌).

For convenience we also introduce the concept of strongly 𝐴-admissible pair. We say that 
(

𝜙0, 𝜙1

)

 is strongly 𝐴-admissible at 
(𝑥, 𝜌) if

‖

‖

‖

‖

(

𝜙, 𝜙1

)

‖

‖

‖

‖∗(𝐵(𝑥,𝜌))
≡ sup
𝑣∈1

∫𝐵(𝑥,𝜌)
|

|

𝑣𝜙0
|

|

𝑑𝑦 + sup
𝑣∈1

∫𝐵(𝑥,𝜌)
|

|

|

∇𝐴𝑣 ⋅ 𝜙1
|

|

|

𝑑𝑦 < ∞.

It is clear that if 
(

𝜙0, 𝜙1

)

 is strongly 𝐴 -admissible at (𝑥, 𝜌) then it is 𝐴-admissible at (𝑥, 𝜌).
In the above definition an 𝐴-admissible right hand side pair at (𝑥, 𝑟) defines a bounded linear operator 𝑇(

𝜙,𝜙1
) on the space 

𝑊 1,1
𝐴,0 (𝐵 (𝑥, 𝑟)) by setting

𝑇(
𝜙,𝜙1

) (𝑣) = ∫𝐵(𝑥,𝜌)
𝑣𝜙0 𝑑𝑦 + ∫𝐵(𝑥,𝜌)

∇𝐴𝑣 ⋅ 𝜙1 𝑑𝑦.

Recall that a measurable function 𝑢 in 𝛺 is  locally bounded above at 𝑥 if 𝑢 can be modified on a set of measure zero so that the 
modified function ̃𝑢 is bounded above in some neighborhood of 𝑥.

Theorem 1.6 (Abstract Local Boundedness). Let 𝛺 be a bounded domain in R𝑛. Suppose that (𝑥, 𝑧) is a nonnegative semidefinite matrix 
in 𝛺 × R that satisfies the degenerate elliptic condition (2). Let 𝑑(𝑥, 𝑦) be a symmetric metric in 𝛺, and suppose that 𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝛺 ∶
𝑑(𝑥, 𝑦) < 𝑟} with 𝑥 ∈ 𝛺 are the corresponding metric balls. Fix 𝑥 ∈ 𝛺. Then every weak  subsolution (supersolution) of (1) is locally 
bounded above ( locally bounded below) at 𝑥 provided there is 𝑟0 > 0 such that:

i. the right hand side pair 
(

𝜙0, 𝜙1

)

 is 𝐴-admissible at (𝑥, 𝑟0
)

,

ii. the single scale (𝛷,𝐴, 𝜑) -Orlicz-Sobolev bump inequality (9) holds at (𝑥, 𝑟0
) with 𝛷 = 𝛷𝑚 as in (10) for some 𝑚 > 2,

iii. there exists an (𝐴, 𝑑)-standard accumulating sequence of Lipschitz cutoff functions at (𝑥, 𝑟0
)

.
Similarly, under the above three conditions every weak supersolution of (1) is locally bounded below at 𝑥, and every weak solution
of (1) is locally bounded at 𝑥.
In particular, every weak solution (supersolution) of (1) is locally bounded at 𝑥.

Proof.  This local boundedness result is an immediate consequence of Theorem  4.1 for 𝛽 = 1, proven in Section 4.1. Indeed, setting 
𝐴̃ (𝑥) =  (𝑥, 𝑢 (𝑥)) because of the equivalences (2) we have that 𝐴̃ satisfies (2). By hypothesis, the (𝛷,𝐴, 𝜑)-Orlicz-Sobolev bump 
inequality (9) holds at (𝑥, 𝑟0

) with 𝛷 = 𝛷𝑚 for some 𝑚 > 2 and an (𝐴, 𝑑)-standard accumulating sequence of Lipschitz cutoff functions 
at (𝑥, 𝑟0

)

.
Thus, if 𝑢 is a weak subsolution of (1), then it is a weak subsolution of 𝐿𝐴̃𝑢 = −div𝐴̃∇𝑢 = 𝜙0 − div𝐴𝜙1, and all the hypotheses of 

Theorem  4.1 are satisfied, therefore 𝑢 is locally bounded above (𝑢+ ∈ 𝐿∞
loc (𝛺)). In fact, Theorem  4.1 provides precise estimates: for 

𝜈0 ≤ 𝜈 < 1, with 𝜈0 = 1− 𝛿0(𝑟)
𝑟 , where 𝛿𝑥 (𝑟) is the doubling increment of 𝐵 (𝑥, 𝑟), defined by (12), we have that there exists a constant 

𝐶 = 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈) such that
‖

‖

𝑢+ + 𝜙∗
‖

‖𝐿∞(𝐵(𝑥,𝜈𝑟)) ≤ 𝐶 ‖

‖

𝑢+ + 𝜙∗
‖

‖𝐿2(𝐵(𝑥,𝑟),𝑑𝜇𝑟)
<∞

where . The last inequality follows form the fact that since 𝑢 ∈ 𝑊 1,2
𝐴 (𝐵 (𝑥, 𝑟)), then

‖

‖

𝑢+ + 𝜙∗
‖

‖𝐿2(𝐵(𝑥,𝑟),𝑑𝜇𝑟)
=
(

1
|𝐵 (𝑥, 𝑟)| ∫𝐵(𝑥,𝑟)

(

𝑢+ + 𝜙∗)2 𝑑𝑥
)

1
2
<∞.

Similarly, if 𝑢 is a weak supersolution of (1) we conclude that
‖𝑢− + 𝜙∗

‖ ≤ 𝐶 ‖𝑢− + 𝜙∗
‖ <∞. □
‖ ‖𝐿∞(𝐵(𝑥,𝜈𝑟)) ‖ ‖𝐿2(𝐵(𝑥,𝑟),𝑑𝜇𝑟)

5 



L. Korobenko et al. Nonlinear Analysis 261 (2025) 113888 
Remark 1.7.  The hypotheses required for local boundedness of weak solutions to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 at a single fixed point 𝑥 in 𝛺
are quite weak; namely we only need the existence of cutoff functions for 𝐵 (

𝑥, 𝑟0
) for some 𝑟0 > 0, that the inhomogeneous couple 

(

𝜙0, 𝜙1

)

 is 𝐴-admissible at just one point (𝑥, 𝑟0
)

, and the single scale condition relating the geometry to the equation at the one
point (𝑥, 𝑟0

)

.

Remark 1.8.  We could take the metric 𝑑 to be the Carnot-Carathéodory metric associated with 𝐴, but the present formulation 
allows for additional flexibility in the choice of balls used for Moser iteration.

The specific relation between the metric and the Orlicz-Sobolev embedding will be given in terms of the concept of doubling 
increment of a ball and its connection with the superradius 𝜑. The bounds in Theorems  4.1 and 4.2 are the embedding norms of 
𝐿∞

(

𝐵𝑟−𝛿𝑥(𝑟)
)

 into 𝐿2 (𝐵𝑟
)

.

Definition 1.9.  Let 𝛺 be a bounded domain in R𝑛. Let 𝛿𝑥 (𝑟) be defined implicitly by 
|

|

|

𝐵
(

𝑥, 𝑟 − 𝛿𝑥 (𝑟)
)

|

|

|

= 1
2
|𝐵 (𝑥, 𝑟)| , (12)

We refer to 𝛿𝑥 (𝑟) as the doubling increment of the ball 𝐵 (𝑥, 𝑟).

2. Caccioppoli inequalities for weak subsolutions and supersolutions

In this section we establish various Caccioppoli inequalities for subsolutions and supersolutions of (4) (see Definition  1.2). In 
order to prove a Caccioppoli inequality, we assume that the inhomogeneous pair 

(

𝜙0, 𝜙1

)

 in (7) is admissible for 𝐴 in the whole 
domain 𝛺 in sense of Definition  1.5.

What is usually called a Caccioppoli inequality is a reverse Sobolev inequality which is valid only for functions satisfying an 
equation of the form 𝐿𝐴̃𝑢 ≥ 𝜙0 − div𝐴𝜙1 or 𝐿𝐴̃𝑢 ≤ 𝜙0 − div𝐴𝜙1. The Moser iteration is based on these type of inequalities obtained 
from the equation when the test function is an appropriate function of the solution. If 𝑢 ∈ 𝑊 1,2

𝐴 (𝛺), and ℎ is a 𝐶0,1 or 𝐶1,1 function 
on [0,∞), then ℎ (𝑢) formally satisfies the equation

𝐿𝐴̃ (ℎ (𝑢)) = −div𝐴̃∇ (ℎ (𝑢)) = −div𝐴̃ℎ′ (𝑢) ∇𝑢 = ℎ′ (𝑢)𝐿𝑢 − ℎ′′ (𝑢) |
|

∇𝐴̃𝑢||
2 .

Indeed, if 𝑤 ∈ 𝑊 1,2
𝐴,0 (𝛺) and 𝑢 is a positive subsolution or supersolution of (4) in 𝛺, we have

∫ ∇𝐴̃𝑤 ⋅ ∇𝐴̃ℎ (𝑢) = ∫ ℎ′ (𝑢) ∇𝐴̃𝑤 ⋅ ∇𝐴̃𝑢

= ∫ ∇𝐴̃
(

ℎ′ (𝑢)𝑤
)

⋅ ∇𝐴̃𝑢 − ∫ 𝑤ℎ′′ (𝑢) ∇𝐴̃𝑢 ⋅ ∇𝐴̃𝑢

≤ ∫ 𝑤ℎ′ (𝑢)𝜙0 + ∫ ∇𝐴
(

𝑤ℎ′ (𝑢)
)

⋅ 𝜙1

− ∫ 𝑤ℎ′′ (𝑢) |
|

∇𝐴̃𝑢||
2

provided that 𝑤ℎ′ (𝑢) ∈ 𝑊 1,2
𝐴,0 (𝛺) and that it is nonnegative if 𝑢 is a subsolution, and nonpositive if 𝑢 is a supersolution. Note that 

𝑤ℎ′ (𝑢) ∈ 𝑊 1,2
𝐴,0 (𝛺) if in addition we have that ℎ′ is bounded.

We will establish two Caccioppoli inequalities. Lemma  2.1 holds for convex increasing functions ℎ applied to 𝑢±; this estimate 
is utilized to implement a Moser iteration scheme to obtain boundedness of solutions without restrictions on their sign. The other 
result, Lemma  2.3, applies to convex functions of nonnegative subsolutions or supersolutions, and the function ℎ will satisfy suitable 
structural properties which will allow us to obtain (through a Moser iteration) inner ball inequalities for negative powers 𝑢𝛽 of the 
solution,.

Lemma 2.1.  Assume that 𝑢 ∈ 𝑊 1,2
𝐴 (𝐵) is a weak subsolution to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 in 𝐵 = 𝐵 (𝑥, 𝑟), where 

(

𝜙0, 𝜙1

)

 is an admissible pair 
and 𝐴̃ ∈ A (𝐴,𝛬, 𝜆) (i.e. it satisfies the equivalences (2) for some 0 < 𝜆 ≤ 𝛬 < ∞). Let ℎ(𝑡) ≥ 0 be a Lipschitz convex function which satisfies 
0 < ℎ′− (𝑡) ≤ 𝐶ℎ

ℎ(𝑡)
𝑡 , for 𝑡 > 0 and it is piecewise twice continuously differentiable except possibly at finitely many points, where 𝐶ℎ ≥ 1 is a 

constant. Then the following reverse Sobolev inequality holds for any 𝜓 ∈ Lipc (𝐵): 

∫𝐵
𝜓2 |

|

|

∇𝐴
[

ℎ
(

𝑢+ + 𝜙∗)]|
|

|

2
𝑑𝑥 ≤ 𝐶𝜆,𝛬𝐶

2
ℎ ∫𝐵

ℎ
(

𝑢+ + 𝜙∗)2
(

|

|

∇𝐴𝜓||
2 + 𝜓2

)

, (13)

where 𝜙∗ = 𝜙∗ (𝑥, 𝑟) =
‖

‖

‖

‖

(

𝜙, 𝜙1

)

‖

‖

‖

‖𝑋(𝐵(𝑥,𝑟))
 as given in Definition  1.5. Moreover, if 𝑢 ∈ 𝑊 1,2

𝐴 (𝐵) is a weak supersolution to 𝐿𝐴̃𝑢 = 𝜙0−div𝐴𝜙1

in 𝐵, then (13) holds with 𝑢+ replaced by 𝑢−.
6 
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Proof.  From the hypothesis, if 𝑡 > 0 is a discontinuity point of ℎ′, then ℎ′ has simple jump discontinuity there, and both the left 
and right derivatives are defined with ℎ′+ (𝑡) − ℎ′− (𝑡) > 0. Following the proof of Theorem 8.15 in [6], for 𝑁 ≫ 𝜙∗ ≥ 0 larger than 
the last point of discontinuity of ℎ′, we define 𝐻 ∈ 𝐶0,1 ([𝜙∗,∞)) by

𝐻 (𝑡) =
{

ℎ (𝑡) − ℎ (𝜙∗) 𝑡 ∈ [𝜙∗, 𝑁]
ℎ (𝑁) − ℎ (𝜙∗) + ℎ′− (𝑁) (𝑡 −𝑁) 𝑡 > 𝑁

,

and let 𝜔 (𝑡) = ∫ 𝑡𝜙∗
(

𝐻 ′ (𝑠)
)2 𝑑𝑠 for 𝑡 ≥ 𝜙∗, i.e.

𝜔 (𝑡) =

{

∫ 𝑡𝜙∗
(

ℎ′ (𝑠)
)2 𝑑𝑠 𝑡 ∈ [𝜙∗, 𝑁]

∫ 𝑁𝜙∗
(

ℎ′ (𝑠)
)2 𝑑𝑠 +

(

ℎ′− (𝑁)
)2 (𝑡 −𝑁) 𝑡 > 𝑁

.

Then 𝜔 is continuous and piecewise differentiable for all 𝑡 ≥ 0, with 𝜔′ (𝑡) having at most finitely many simple jump discontinuities. 
Since ℎ is convex we have that 𝐻 ′ (𝑡) is increasing, and therefore 

𝜔 (𝑡) = ∫

𝑡

𝜙∗

(

𝐻 ′ (𝑠)
)2 𝑑𝑠 ≤ 𝐻 ′ (𝑡)∫

𝑡

𝜙∗
𝐻 ′ (𝑠) 𝑑𝑠 = 𝐻 ′ (𝑡)𝐻 (𝑡) . (14)

Note also that, since ℎ is convex, 𝐻 (𝑡) ≤ ℎ (𝑡) for all 𝑡 ≥ 0. Now, since both ℎ and ℎ′ are locally bounded on [0,∞), it follows the 
function 𝑤 (𝑥) = 𝜔

(

𝑢+ (𝑥) + 𝜙∗) ∈ 𝑊 1,2
𝐴 (𝛺) whenever 𝑢 ∈ 𝑊 1,2

𝐴 (𝛺), moreover, supp𝑤 = supp𝑢+ and ∇𝐴𝑤 =
(

𝐻 ′ (𝑢+ (𝑥) + 𝜙∗))2 ∇𝐴𝑢+.
If 𝑢 is a subsolution to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 in 𝐵(0, 𝑟) and 𝜓 ∈ Lipc (𝐵 (0, 𝑟)), then we have that 𝜓2𝑤 ∈ 𝑊 1,2

𝐴,0 (𝛺) and we have

∫ ∇𝐴̃𝑢 ⋅ ∇𝐴̃
(

𝜓2𝑤
)

≤ ∫ 𝜓2𝑤𝜙0 + ∫ ∇𝐴
(

𝜓2𝑤
)

⋅ 𝜙1.

Write 𝑣 (𝑥) = 𝐻
(

𝑢+ (𝑥) + 𝜙∗), and 𝑣′ (𝑥) = 𝐻 ′ (𝑢+ (𝑥) + 𝜙∗) then the left hand side equals

∫ ∇𝐴̃𝑢 ⋅ ∇𝐴̃
(

𝜓2𝑤
)

= ∫ 𝜓2∇𝐴̃𝑢 ⋅ ∇𝐴̃𝑤 + 2∫ 𝜓𝑤∇𝐴̃𝑢 ⋅ ∇𝐴̃𝜓

= ∫ 𝜓2 (𝑣′
)2 ∇𝐴̃𝑢

+ ⋅ ∇𝐴̃𝑢
+ + 2∫ 𝜓𝑤∇𝐴̃𝑢

+ ⋅ ∇𝐴𝜓

= ∫ 𝜓2
|

|

∇𝐴̃𝑣||
2 + 2∫ 𝜓𝑤∇𝐴̃𝑢

+ ⋅ ∇𝐴𝜓,

where we used that supp𝑤 = supp𝑢+; we obtain

∫ 𝜓2
|

|

∇𝐴̃𝑣||
2 ≤ −2∫ 𝜓𝑤∇𝐴̃𝑢

+ ⋅ ∇𝐴̃𝜓 + ∫ 𝜓2𝑤𝜙0 + ∫ ∇𝐴
(

𝜓2𝑤
)

⋅ 𝜙1.

From (14) we have
𝑤 (𝑥) = 𝜔

(

𝑢+ (𝑥) + 𝜙∗) ≤ 𝐻 ′ (𝑢+ (𝑥) + 𝜙∗)𝐻
(

𝑢+ (𝑥) + 𝜙∗) = 𝑣′ (𝑥) 𝑣 (𝑥) ,

so we can estimate the first term on the right hand side by

2∫ 𝜓𝑤 |

|

∇𝐴𝑢+|| ||∇𝐴𝜓|| ≤ 2∫ 𝜓𝑣𝑣′ |
|

∇𝐴̃𝑢
+
|

|

|

|

∇𝐴̃𝜓|| = 2∫ 𝜓𝑣 |
|

∇𝐴̃𝑣|| ||∇𝐴̃𝜓||

≤ 1
2 ∫ 𝜓2

|

|

∇𝐴̃𝑣||
2 + 2∫

|

|

∇𝐴̃𝜓||
2 𝑣2,

Substituting above and absorbing into the left, we obtain 

∫ 𝜓2
|

|

∇𝐴̃𝑣||
2 ≤ 4∫

|

|

∇𝐴̃𝜓||
2 𝑣2 + 2∫ 𝜓2𝑤𝜙0 + 2∫ ∇𝐴

(

𝜓2𝑤
)

⋅ 𝜙1. (15)

Now, since 
(

𝜙0, 𝜙1

)

 is admissible, we have that
|

|

|

|

∫ 𝜓2𝑤𝜙0
|

|

|

|

+
|

|

|

|

∫ ∇𝐴
(

𝜓2𝑤
)

⋅ 𝜙1
|

|

|

|

≤ 𝜙∗
∫

|

|

|

∇𝐴
(

𝜓2𝑤
)

|

|

|

≤ 2𝜙∗
∫ 𝜓 |

|

∇𝐴𝜓||𝑤 + 𝜙∗
∫ 𝜓2

|

|

∇𝐴𝑤|| . (16)

We assume now that 𝜙∗ > 0, if this is not the case, then we substitute 𝜙∗ by a small constant 𝑐 > 0 and let 𝑐 → 0 at the end of the 
proof. By the inequality ℎ′ (𝑡) ≤ 𝐶ℎ

ℎ(𝑡)
𝑡  and the definition of 𝐻 we have that 

𝐻 ′ (𝑡) =
{

ℎ′ (𝑡) 𝑡 ∈ [𝜙∗, 𝑁]
ℎ′ (𝑁) 𝑡 > 𝑁

≤ 𝐶ℎ

{

ℎ(𝑡)
𝑡 𝑡 ∈ [𝜙∗, 𝑁]
ℎ(𝑁)
𝑁 𝑡 > 𝑁

≤ 𝐶ℎ
ℎ (𝑡)
𝜙∗ . (17)

Then by (17) we have that 𝑣′ (𝑥) ≤ 𝐶ℎ
ℎ
(

𝑢+(𝑥)+𝜙∗
)

𝜙∗ , and writing 𝑣̃ (𝑥) = ℎ
(

𝑢+ (𝑥) + 𝜙∗), the first term on the right of (16) is bounded 
by

2𝜙∗ 𝜓 |∇𝐴𝜓|𝑤 ≤ 2𝜙∗ 𝜓 |∇𝐴𝜓| 𝑣𝑣′ ≤ 2𝐶ℎ 𝜓 |∇𝐴𝜓| 𝑣𝑣̃
∫ | | ∫ | | ∫ | |

7 
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≤ 𝐶ℎ ∫

(

𝜓2𝑣̃2 + |

|

∇𝐴𝜓||
2 𝑣2

)

.

Similarly, the second term on the right of (16) is bounded by

𝜙∗
∫ 𝜓2

|

|

∇𝐴𝑤|| = 𝜙∗
∫ 𝜓2 (𝑣′

)2
|

|

∇𝐴𝑢+|| = 𝜙∗
∫ 𝜓2𝑣′ |

|

∇𝐴𝑣||

≤ 𝐶ℎ ∫ 𝜓2𝑣̃ |
|

∇𝐴𝑣|| ≤
𝜆
4 ∫ 𝜓2

|

|

∇𝐴𝑣||
2 +

𝐶2
ℎ
𝜆 ∫ 𝜓2𝑣̃2.

where 𝜆 > 0 is as in (2) and we also used (17). Plugging these estimates into (16) and substituting into (15) yields

∫ 𝜓2
|

|

∇𝐴̃𝑣||
2 ≤ 4∫

|

|

∇𝐴̃𝜓||
2 𝑣2 + 2𝐶ℎ ∫

(

𝜓2𝑣̃2 + |

|

∇𝐴𝜓||
2 𝑣2

)

+ 𝜆
2 ∫ 𝜓2

|

|

∇𝐴𝑣||
2 +

2𝐶2
ℎ
𝜆 ∫ 𝜓2𝑣̃2.

Using the structural assumptions (2) yields

𝜆∫ 𝜓2
|

|

∇𝐴𝑣||
2 ≤ 4𝛬∫

|

|

∇𝐴𝜓||
2 𝑣2 + 2𝐶ℎ ∫

(

𝜓2𝑣̃2 + |

|

∇𝐴𝜓||
2 𝑣2

)

+𝜆
2 ∫ 𝜓2

|

|

∇𝐴𝑣||
2 +

2𝐶2
ℎ
𝜆 ∫ 𝜓2𝑣̃2,

absorbing in to the left we obtain

∫ 𝜓2
|

|

∇𝐴𝑣||
2 ≤ 16𝐶2

ℎ

(

𝛬
𝜆

+ 1
𝜆2

)

∫

(

𝜓2 + |

|

∇𝐴𝜓||
2
)

𝑣̃2,

where we used the inequality 𝑣 (𝑥) = 𝐻
(

𝑢+ (𝑥) + 𝜙∗) ≤ ℎ
(

𝑢+ (𝑥) + 𝜙∗) = 𝑣̃ (𝑥). This is

∫ 𝜓2 |
|

|

∇𝐴
[

𝐻
(

𝑢+ + 𝜙∗)]|
|

|

2
𝑑𝑥 ≤ 𝐶𝜆,𝛬𝐶

2
ℎ ∫

(

𝜓2 + |

|

∇𝐴𝜓||
2
)

(

ℎ
(

𝑢+ (𝑥) + 𝜙∗))2 ,

the lemma the follows in this case by letting 𝑁 → ∞.
When 𝑢 is a weak supersolution to 𝐿𝐴̃𝑢 = 𝜙0 −div𝐴𝜙1 in 𝐵, then −𝑢 is a weak subsolution to 𝐿 (−𝑢) = −𝜙0 −div𝐴

(

−𝜙1

)

 with the 
same admissible norm 𝜙∗, and (−𝑢)+ = 𝑢−, so (13) holds in this case with 𝑢+ replaced by 𝑢−. □

Remark 2.2.  Taking ℎ (𝑡) ≡ 𝑡 in Lemma  2.1 we have that

∫𝐵(0,𝑟)
𝜓2

|

|

∇𝐴𝑢+||
2 𝑑𝑥 ≤ 𝐶𝜆,𝛬 ∫𝐵(0,𝑟)

(

𝑢+ + 𝜙∗)2 (
|∇𝐴𝜓|

2 + 𝜓2) 𝑑𝑥

when 𝑢 is a subsolution to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1, and the same estimate holds for 𝑢− (|𝑢|) when 𝑢 is a supersolution (solution).
The following variation of Caccioppoli requires stronger hypotheses on the function ℎ, however ℎ is allowed to be decreasing when 

applied to supersolutions. In particular, ℎ needs to be 𝐶1,1 since the second derivative of ℎ explicitly appears within the integrals 
in the calculations. When ℎ is 𝐶1,1 the second derivative may be discontinuous (piece-wise discontinuous in our applications) but 
discontinuities will only be jump discontinuities, which do not affect the integrals.

Lemma 2.3.  Assume that 𝑢 ∈ 𝑊 1,2
𝐴 (𝛺) is a nonnegative weak subsolution or supersolution to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 in 𝐵(0, 𝑟), where 

(

𝜙0, 𝜙1

)

 is an 𝐴-admissible pair with norm 𝜙∗ and 𝐴̃ satisfies the equivalences (2) for some 0 < 𝜆 ≤ 𝛬 < ∞. Let ℎ(𝑡) ≥ 0 be a convex 
monotonic 𝐶1 and piecewise twice continuously differentiable function on (0,∞) that satisfies the following conditions except possibly at 
finitely many points when 𝑡 ∈ (0,∞):

I. 𝛶 (𝑡) = ℎ (𝑡)ℎ′′ (𝑡) +
(

ℎ′ (𝑡)
)2 satisfies 𝑐1

(

ℎ′ (𝑡)
)2 ≤ 𝛶 (𝑡) ≤ 𝐶1

(

ℎ′ (𝑡)
)2 at every point of continuity of ℎ′′, where 0 < 𝑐1 ≤ 1 ≤ 𝐶1 <∞

are constant;
II. The derivative ℎ′ (𝑡) satisfies the inequality 0 < |

|

ℎ′ (𝑡)|
|

≤ 𝐶2
ℎ(𝑡)
𝑡 , where 𝐶2 ≥ 1 is a constant;

Furthermore, we assume that
III. if 𝑢 is a weak subsolution then ℎ′ ≥ 0, and if 𝑢 is a weak supersolution then ℎ′ ≤ 0.

Then the following reverse Sobolev inequality holds for any 𝜓 ∈ Lipc(𝐵(0, 𝑟)): 

∫𝐵(𝑥,𝑟)
𝜓2 |

|

|

∇𝐴
[

ℎ
(

𝑢 + 𝜙∗)]|
|

|

2
𝑑𝑥 ≤ 𝐶𝜆,𝛬

𝐶2
1𝐶

2
2

𝑐21
∫𝐵(𝑥,𝑟)

ℎ
(

𝑢 + 𝜙∗)2
(

|

|

∇𝐴𝜓||
2 + 𝜓2

)

. (18)

Proof.  We will prove the lemma with an extra assumption that ℎ′(𝑡) is bounded and ℎ (𝑢 + 𝜙∗) ∈ 𝐿2 (𝐵 (0, 𝑟)). These assumptions 
can be dropped by the following limiting argument. Using standard truncations as in [12]. If ℎ is increasing we define for 𝑁 ≫ 1,

ℎ𝑁 (𝑡) ≡
{

ℎ (𝑡)  if 0 ≤ 𝑡 ≤ 𝑁
′ .
ℎ (𝑁) + ℎ (𝑁) (𝑡 −𝑁)  if 𝑡 ≥ 𝑁

8 
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while if ℎ is decreasing we let

ℎ𝑁 (𝑡) ≡

{

ℎ
(

1
𝑁

)

+ ℎ′
(

1
𝑁

)(

𝑡 − 1
𝑁

)

 if 0 ≤ 𝑡 ≤ 1
𝑁

ℎ (𝑡)  if 𝑡 ≥ 1
𝑁

We note that either function ℎ𝑁  still satisfy conditions (I)–(III) in the lemma with the same constants 𝐶1 and 𝐶2, if we can 
obtain a reverse Sobolev inequality similar to (18) for ℎ𝑁 , then the dominated converge theorem applies to establish (18) in 
general. Moreover, note that since ℎ𝑁  is linear for large 𝑡 when ℎ is increasing and for small 𝑡 when ℎ is decreasing, then 
ℎ (𝑢 + 𝜙∗) ∈ 𝐿2 (𝐵 (0, 𝑟)) ⟺ 𝑢 ∈ 𝐿2 (𝐵 (0, 𝑟)). Hence, if 𝜙∗ > 0 from (II) it follows that also (ℎ′ (𝑢 + 𝜙∗)

)2 and 𝛶 (𝑢 + 𝜙∗) ∈ 𝐿1 (𝐵 (0, 𝑟)). 
If 𝜙∗ = 0 we replace it by a small positive 𝜀 > 0 and then let 𝜀→ 0 at the end. Thus, in what follows we will assume that ℎ′ (𝑡) and 
ℎ′′ (𝑡) are bounded on the range of 𝑢 + 𝜙∗, and that all integrals below are finite.

Assume that ℎ is 𝐶1, convex, and piecewise twice differentiable in (0,∞) with bounded first and second derivatives. By 
these assumptions it follows that ℎ is twice differentiable everywhere except a finitely many points where ℎ′′ has finite jump 
discontinuities.

Let 𝜓 ∈ Lipc(𝐵(0, 𝑟)), 𝑣 (𝑥) = ℎ (𝑢 (𝑥) + 𝜙∗) and write 𝑣′ (𝑥) = ℎ′ (𝑢 (𝑥) + 𝜙∗), 𝑣′′ (𝑥) = ℎ′′ (𝑢 (𝑥) + 𝜙∗). Then we have that 
𝑤 (𝑥) = 𝜓2 (𝑥) 𝑣 (𝑥) 𝑣′ (𝑥) is in the space 𝑊 1,2

𝐴,0 (𝐵(0, 𝑟)). Now, by assumption (III) we have that 𝑤 ≥ 0 when 𝑢 is a subsolution, and 
𝑤 ≤ 0 when 𝑢 is a supersolution, then we have 

∫ ∇𝐴̃𝑢 ⋅ ∇𝐴̃𝑤 ≤ ∫ 𝑤𝜙0 + ∫ ∇𝐴𝑤 ⋅ 𝜙1 (19)

Since ∇𝐴̃𝑣 = 𝑣′∇𝐴̃𝑢, and 
(

𝑣′
)2 + 𝑣𝑣′′ = 𝛶 (𝑢 + 𝜙∗), the left side of (19) equals

∫ ∇𝐴̃𝑢 ⋅ ∇𝐴̃𝑤 = ∫ ∇𝐴̃𝑢 ⋅ 𝑣
′∇𝐴̃

(

𝜓2𝑣
)

+ ∫ 𝜓2𝑣𝑣′′∇𝐴̃𝑢 ⋅ ∇𝐴̃𝑢

= ∫ ∇𝐴̃𝑣 ⋅ ∇𝐴̃
(

𝜓2𝑣
)

+ ∫ 𝜓2𝑣𝑣′′ |
|

∇𝐴̃𝑢||
2

= 2∫ 𝜓𝑣∇𝐴̃𝑣 ⋅ ∇𝐴̃𝜓 + ∫ 𝜓2𝛶
(

𝑢 + 𝜙∗)
|

|

∇𝐴̃𝑢||
2 .

Combining this and (19), we obtain 

∫ 𝜓2𝛶
(

𝑢 + 𝜙∗)
|

|

∇𝐴̃𝑢||
2 ≤ −2∫ 𝜓𝑣∇𝐴̃𝑣 ⋅ ∇𝐴̃𝜓 + ∫ 𝑤𝜙0 + ∫ ∇𝐴𝑤 ⋅ 𝜙1. (20)

By property (I) and the equivalences (2) we obtain:

𝑐1𝜆∫ 𝜓2
|

|

∇𝐴𝑣||
2 ≤ 2𝛬∫ 𝜓𝑣 |

|

∇𝐴𝑣|| ||∇𝐴𝜓|| + ∫ 𝑤𝜙0 + ∫ ∇𝐴𝑤 ⋅ 𝜙1

By Schwartz inequality we can estimate the first term on the right hand side by

2𝛬∫ 𝜓𝑣 |
|

∇𝐴𝑣|| ||∇𝐴𝜓|| ≤
𝑐1𝜆
2 ∫ 𝜓2

|

|

∇𝐴𝑣||
2 + 4𝛬2

𝑐1𝜆 ∫ 𝑣2 |
|

∇𝐴𝜓||
2 .

Substituting above and absorbing into the left, we obtain 
𝑐1𝜆
2 ∫ 𝜓2

|

|

∇𝐴𝑣||
2 ≤ 4𝛬2

𝑐1𝜆 ∫ 𝑣2 |
|

∇𝐴𝜓||
2 + ∫ 𝑤𝜙0 + ∫ ∇𝐴𝑤 ⋅ 𝜙1. (21)

Since 
(

𝜙0, 𝜙1

)

 is admissible, we have that
|

|

|

|

∫ 𝜓2𝑣𝑣′𝜙0
|

|

|

|

+
|

|

|

|

∫ ∇𝐴
(

𝜓2𝑣𝑣′
)

⋅ 𝜙1
|

|

|

|

≤ 𝜙∗
∫

|

|

|

∇𝐴
(

𝜓2𝑣𝑣′
)

|

|

|

≤ 2𝜙∗
∫ 𝜓 |

|

∇𝐴𝜓|| 𝑣 ||𝑣
′
|

|

+𝜙∗
∫ 𝜓2𝛶

(

𝑢 + 𝜙∗)
|

|

∇𝐴𝑢||

By property (II) we have that |
|

𝑣′|
|

= |

|

ℎ′ (𝑢 + 𝜙∗)|
|

≤ 𝐶2
ℎ
(

𝑢+𝜙∗
)

𝑢+𝜙∗ = 𝐶2
𝑣

𝑢+𝜙∗ ; applying this to the first term on the right, and properties 
(I)–(II) to the second, we obtain

|

|

|

|

∫ 𝑤𝜙0
|

|

|

|

+
|

|

|

|

∫ ∇𝐴𝑤 ⋅ 𝜙1
|

|

|

|

≤ 2𝐶2𝜙
∗
∫ 𝜓 |

|

∇𝐴𝜓||
𝑣2

𝑢 + 𝜙∗ + 𝐶1𝜙
∗
∫ 𝜓2 (𝑣′

)2
|

|

∇𝐴𝑢||

≤ 2𝐶2 ∫ 𝜓 |

|

∇𝐴𝜓|| 𝑣
2 + 𝐶1𝐶2𝜙

∗
∫ 𝜓2 𝑣

𝑢 + 𝜙∗
|

|

∇𝐴𝑣|| .

≤ 𝐶2

(

𝜓2 + |∇𝐴𝜓|
2
)

𝑣2 + 𝐶1𝐶2 𝜓2𝑣 |∇𝐴𝑣|
∫ | | ∫ | |

9 
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≤ 𝐶2 ∫

(

𝜓2 + |

|

∇𝐴𝜓||
2
)

𝑣2 +
2𝐶2

1𝐶
2
2

𝑐1𝜆 ∫ 𝜓2𝑣2 +
𝑐1𝜆
4 ∫ 𝜓2

|

|

∇𝐴𝑣||
2 . (22)

Replacing this on the right of (21) and operating yields

∫ 𝜓2
|

|

∇𝐴𝑣||
2 ≤ 16𝛬2

𝑐21𝜆
2 ∫ 𝑣2 |

|

∇𝐴𝜓||
2 + 4

𝐶2
𝑐1𝜆 ∫

(

𝜓2 + |

|

∇𝐴𝜓||
2
)

𝑣2 +
8𝐶2

1𝐶
2
2

𝑐21𝜆
2 ∫ 𝜓2𝑣2

≤ 16
𝐶2
1𝐶

2
2

𝑐21

(

𝛬2

𝜆2
+ 1
𝜆2

+ 1
𝜆

)

∫

(

𝜓2 + |

|

∇𝐴𝜓||
2
)

𝑣2. □

3. Preliminaries on Young functions

In this section introduce some basic concepts from Orlicz spaces and define the particular families of Young function that we 
will use in our applications. We also compute successive compositions of these functions and their inverses and obtain estimates for 
their derivatives.

3.1. The Orlicz norm and the Orlicz quasidistance

Suppose that 𝜇 is a 𝜎-finite measure on a set 𝑋, and 𝛷 ∶ [0,∞) → [0,∞) is a Young function, which for our purposes is an 
increasing, convex, piecewise differentiable (meaning there are at most finitely many points where the derivative of 𝛷 may fail 
to exist, but right and left hand derivatives exist everywhere) function such that 𝛷 (0) = 0. The homogeneous Luxemburg norm 
associated to a Young function 𝛷 is given by 

‖𝑓‖𝐿𝛷(𝑋,𝑑𝜇) = inf
{

𝑡 > 0 ∶ ∫𝑋
𝛷
(

|𝑓 |
𝑡

)

𝑑𝜇 ≤ 1
}

∈ [0,∞] , (23)

where it is understood that inf (∅) = ∞. The completion of the space of 𝜇-measurable functions in 𝑋 with respect to this norm 
(see [11], page 20 for more details) is the Orlicz space 𝐿𝛷 (𝑋, 𝑑𝜇) which is a Banach space by definition. The conjugate Young 
function 𝛷∗ is defined through the relation (𝛷∗)′ =

(

𝛷′)−1 and it can be used to give an equivalent norm

‖𝑓‖𝐿𝛷∗ (𝜇) ≡ sup
{

∫𝑋
|𝑓𝑔| 𝑑𝜇 ∶ ∫𝑋

𝛷∗ (|𝑔|) 𝑑𝜇 ≤ 1
}

.

The conjugate function 𝛷∗ is equivalently defined as 
𝛷∗ (𝑠) = sup

𝑡>0
(𝑠𝑡 −𝛷 (𝑡)) , for all 𝑠 > 0. (24)

If 𝛷 and 𝛷∗ are conjugate Young functions, then we have the Orlicz-Hölder inequality 

∫𝑋
|𝑓𝑔| 𝑑𝜇 ≤ 2 ‖𝑓‖𝐿𝛷(𝜇) ‖𝑔‖𝐿𝛷∗ (𝜇) (25)

for all 𝑓 ∈ 𝐿𝛷 (𝑋, 𝑑𝜇) and 𝑔 ∈ 𝐿𝛷 (𝑋, 𝑑𝜇) (see [11], (4)-page 58).
Given a Young function 𝛷 and a measure 𝜇 we will define a non-homogeneous norm as follows. We let 𝐿𝛷∗ (𝜇) be the set of 

measurable functions 𝑓 ∶ 𝑋 → R such that the integral

∫𝑋
𝛷 (|𝑓 |) 𝑑𝜇,

is finite, where as usual, functions that agree almost everywhere are identified. The set 𝐿𝛷∗ (𝜇) may not in general be closed under 
scalar multiplication, but if 𝛷 is 𝐾 -submultiplicative for some constant 𝐾 > 0, i.e.

𝛷 (𝑠𝑡) ≤ 𝐾𝛷 (𝑠)𝛷 (𝑡) for all 𝑠, 𝑡 ≥ 0

then clearly ∫𝑋 𝛷 (|𝐶𝑓 |) 𝑑𝜇 ≤ 𝐾𝛷 (𝐶) ∫𝑋 𝛷 (|𝑓 |) 𝑑𝜇 and 𝐿𝛷∗ (𝜇) is a vector space because if 𝑓, 𝑔 ∈ 𝐿𝛷∗ (𝜇) then

∫𝑋
𝛷 (|𝑓 + 𝑔|) 𝑑𝜇 = ∫

∞

0
𝛷′ (𝑡)𝜇 {|𝑓 + 𝑔| > 𝑡} 𝑑𝑡

≤ ∫

∞

0
𝛷′ (𝑡)𝜇

{

|𝑓 | > 𝑡
2

}

𝑑𝑡 + ∫

∞

0
𝛷′ (𝑡)𝜇

{

|𝑔| > 𝑡
2

}

𝑑𝑡

= ∫𝑋
𝛷 (2 |𝑓 |) 𝑑𝜇 + ∫𝑋

𝛷 (2 |𝑔|) 𝑑𝜇

< 𝐾𝛷 (2)
{

∫𝑋
𝛷 (|𝑓 |) 𝑑𝜇 + ∫𝑋

𝛷 (|𝑔|) 𝑑𝜇
}

<∞.

We claim that if 𝛷 is an 𝐾-submultiplicative Young function then the function 

‖𝑓‖𝛷(𝜇) ≡ 𝛷−1
(

𝛷 (|𝑓 |) 𝑑𝜇
)

(26)
∫𝑋

10 
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is a nonhomogeneous quasi-norm in 𝐿𝛷∗ (𝜇), that is, ‖⋅‖𝛷(𝜇) ∶ 𝐿𝛷∗ (𝜇) → [0,∞) satisfies
‖𝑓‖𝛷(𝜇) = 0 ⟺ 𝑓 ≡ 0

‖𝑓 + 𝑔‖𝛷(𝜇) ≤ 𝐶𝛷
(

‖𝑓‖𝛷(𝜇) + ‖𝑔‖𝛷(𝜇)
)

.

Indeed, it is clear that ‖𝑓‖𝛷(𝜇) ≥ 0 and ‖𝑓‖𝛷(𝜇) = 0 ⟺ 𝑓 = 0, and that ‖𝑓 − 𝑔‖𝛷(𝜇) = ‖𝑔 − 𝑓‖𝛷(𝜇). From the above computation 
we also have that

𝛷
(

‖𝑓 + 𝑔‖𝛷(𝜇)
)

= ∫𝑋
𝛷 (|𝑓 + 𝑔|) 𝑑𝜇

≤ 𝐾𝛷 (2)
{

∫𝑋
𝛷 (|𝑓 |) 𝑑𝜇 + ∫𝑋

𝛷 (|𝑔|) 𝑑𝜇
}

= 𝐾𝛷 (2)
{

𝛷
(

‖𝑓‖𝛷(𝜇)
)

+𝛷
(

‖𝑔‖𝛷(𝜇)
)}

≤ 2𝐾𝛷 (2) 𝛷
(

‖𝑓‖𝛷(𝜇) + ‖𝑔‖𝛷(𝜇)
)

≤ 𝛷
(

2𝐾𝛷 (2)
{

‖𝑓‖𝛷(𝜇) + ‖𝑔‖𝛷(𝜇)
})

where we used that 𝛷 is increasing and that 𝐶𝛷 (𝑡) ≤ 𝛷 (𝐶𝑡) since 𝛷 is increasing convex with 𝛷 (0) = 0. Thus, we have
‖𝑓 + 𝑔‖𝛷(𝜇) ≤ 𝐶𝛷

(

‖𝑓‖𝛷(𝜇) + ‖𝑔‖𝛷(𝜇)
)

for all 𝑓, 𝑔 ∈ 𝐿𝛷∗ (𝜇) .

The same proof provides an inequality for any general finite sum of functions ∑𝑁
𝑗=1 𝑓𝑗 : 

‖

‖

‖

‖

‖

‖

𝑁
∑

𝑗=1
𝑓𝑗
‖

‖

‖

‖

‖

‖𝛷(𝜇)

≤ 𝐶𝛷,𝑁

( 𝑁
∑

𝑗=1

‖

‖

‖

𝑓𝑗
‖

‖

‖𝛷(𝜇)

)

whenever 𝑓𝑗 ∈ 𝐿𝛷∗ (𝜇) , 𝑗 = 1,… , 𝑁, (27)

where 𝐶𝛷,𝑁 = 𝑁𝐾 𝛷 (𝑁).
The function ‖⋅‖𝛷(𝜇) in general would not be a quasinorm because it may fail to be absolutely homogeneous, i.e., in 

general‖𝐶𝑓‖𝛷(𝜇) = |𝐶| ‖𝑓‖𝛷(𝜇) may not hold. It is clear though that 𝑑𝛷 (𝑓, 𝑔) = ‖𝑓 − 𝑔‖𝛷(𝜇) is a quasi-distance in 𝐿𝛷∗ (𝜇), i.e. the 
function 𝑑𝛷 (⋅, ⋅) ∶ 𝐿𝛷∗ (𝜇) × 𝐿𝛷∗ (𝜇) → [0,∞) is symmetric, 𝑑𝛷 (𝑓, 𝑔) = 0 ⟺ 𝑓 ≡ 𝑔, and satisfies a triangle inequality with a constant 
𝐶𝛷 that may be bigger than 1. We note that the same conclusion may be reached if 𝛷 is 𝐾 -supermultiplicative, i.e.

𝐾𝛷 (𝑠𝑡) ≥ 𝛷 (𝑠)𝛷 (𝑡) for all 𝑠, 𝑡 > 0.

Indeed, we have that for any 𝐶 > 0 and 𝑓 ∈ 𝐿𝛷∗ (𝜇)

∫𝑋
𝛷 (|𝐶𝑓 |) 𝑑𝜇 = 1

𝛷
(

1
𝐶

) ∫𝑋
𝛷
( 1
𝐶

)

𝛷 (|𝐶𝑓 |) 𝑑𝜇 ≤ 𝐾

𝛷
(

1
𝐶

) ∫𝑋
𝛷 (|𝑓 |) 𝑑𝜇 < ∞,

and it similarly follows as above that 𝑓 + 𝑔 ∈ 𝐿𝛷∗ (𝜇) for all 𝑓, 𝑔 ∈ 𝐿𝛷∗ (𝜇). We have shown the following:

Proposition 3.1.  If 𝛷 is a 𝐾-submultiplicative or 𝐾 -supermultiplicative Young function in [0,∞) for some 𝐾 > 0 then the space

𝐿𝛷∗ (𝜇) =
{

𝑓 ∶ ∫𝑋
𝛷 (|𝑓 |) 𝑑𝜇 < ∞

}

is a vector space and the function ‖⋅‖𝛷(𝜇) ∶ 𝐿𝛷∗ (𝜇) → [0,∞) defined in (26) is a nonhomogeneous quasi-norm in 𝐿𝛷∗ (𝜇).

In this paper we consider Young functions which satisfy the hypotheses of the above proposition, so our Moser iteration may be 
considered as an iteration scheme in quasi-metric spaces. The homogeneity of the norm ‖𝑓‖𝐿𝛷(𝜇) is not that important, but rather 
it is the iteration of Orlicz expressions that is critical. The following lemma shows the relations between the Orlicz norm and the 
quasi-norm when the Young function is sub- or supermultiplicative.

Lemma 3.2.  If a Young function 𝛷 is 𝐾-submultiplicative for some constant 𝐾 ≥ 1, then

𝛷−1
(

∫𝐵(𝑥,𝜌)
𝛷 (𝑣) 𝑑𝜇𝑥,𝜌

)

≤ 𝐾 ‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
) .

On the other hand, if 𝛷 is a 𝐾-supermultiplicative Young function for some 𝐾 ≥ 1, then

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
) ≤ 𝐾𝛷(−1)

(

∫𝐵(𝑥,𝜌)
𝛷 (𝑣) 𝑑𝜇𝑥,𝜌

)

.

Proof.  Recall that we have by definition

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
) = inf

{

𝑡 > 0 ∶ ∫𝐵(𝑥,𝜌)
𝛷
(

|𝑣|
𝑡

)

𝑑𝜇𝑥,𝜌 ≤ 1
}

.

Let 𝜅 = ‖𝑣‖𝛷(𝜇) = 𝛷−1
(

∫𝐵(𝑥,𝜌)𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌
)

, by the submultiplicativity of 𝛷 we have

𝛷 (|𝑣|) = 𝛷
(

|𝑣|
⋅ 𝜅

)

≤ 𝐾𝛷
(

|𝑣|
)

𝛷 (𝜅) = 𝐾𝛷
(

|𝑣|
)

𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌
𝜅 𝜅 𝜅 ∫𝐵(𝑥,𝜌)

11 
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≤ 𝛷
(

𝐾
|𝑣|
𝜅

)

∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌,

where we used that 𝐶𝛷 (𝑡) ≤ 𝛷 (𝐶𝑡) for all 𝐶 ≥ 1. Integrating gives

∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌 ≤ ∫𝐵(𝑥,𝜌)

𝛷
(

𝐾
|𝑣|
𝜅

)

𝑑𝜇𝑥,𝜌 ⋅ ∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌

so that ∫𝐵(𝑥,𝜌)𝛷
(

𝐾 |𝑣|
𝜅

)

𝑑𝜇𝑥,𝜌 ≥ 1, which yields

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
) ≥ 𝜅

𝐾
= 1
𝐾
𝛷−1

(

∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌

)

.

Now assume that 𝛷 is a 𝐾-supermultiplicative Young function, i.e. 𝐾𝛷 (𝑠𝑡) ≥ 𝛷 (𝑠)𝛷 (𝑡) for all 𝑠, 𝑡 ≥ 0. We have

𝐾 ∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌 = 𝐾 ∫𝐵(𝑥,𝜌)

𝛷

(

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
)

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

)

)

𝑑𝜇𝑥,𝜌

≥ 𝛷
(

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
)

)

∫𝐵(𝑥,𝜌)
𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

)

)

𝑑𝜇𝑥,𝜌.

By Fatou’s lemma we see that for any 𝛿 > 0

0 ≤ ∫𝐵(𝑥,𝜌)
𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝛿

)

𝑑𝜇𝑥,𝜌 − ∫𝐵(𝑥,𝜌)
lim sup
𝜀→0+

𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝜀

)

𝑑𝜇𝑥,𝜌

= ∫𝐵(𝑥,𝜌)
lim inf
𝜀→0+

(

𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝛿

)

−𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝜀

))

𝑑𝜇𝑥,𝜌

≤ lim inf
𝜀→0+ ∫𝐵(𝑥,𝜌)

(

𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝛿

)

−𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝜀

))

𝑑𝜇𝑥,𝜌

= ∫𝐵(𝑥,𝜌)
𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝛿

)

𝑑𝜇𝑥,𝜌 − lim sup
𝜀→0+ ∫𝐵(𝑥,𝜌)

𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝜀

)

𝑑𝜇𝑥,𝜌.

Hence

𝐾 ∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌 ≥ 𝛷

(

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
)

)

∫𝐵(𝑥,𝜌)
lim sup
𝜀→0+

𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝜀

)

𝑑𝜇𝑥,𝜌

≥ 𝛷
(

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
)

)

lim sup
𝜀→0+ ∫𝐵(𝑥,𝜌)

𝛷

(

|𝑣|
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

) − 𝜀

)

𝑑𝜇𝑥,𝜌

≥ 𝛷
(

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
)

)

.

where we applied the definition of ‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌). Then, since 𝛷−1 (𝑐𝑠) ≤ 𝑐𝛷−1 (𝑠) for all 0 < 𝑐 ≤ 1, we have that

𝛷−1
(

∫𝐵(𝑥,𝜌)
𝛷 (|𝑣|) 𝑑𝜇𝑥,𝜌

)

≥ 𝛷−1
( 1
𝐾
𝛷
(

‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌
)

))

≥
‖𝑣‖𝐿𝛷(𝜇𝑥,𝜌

)

𝐾
. □

3.2. Orlicz norms and admissibility

The next proposition gives sufficient conditions for strong admissibility.

Proposition 3.3.  Given a right hand side pair 
(

𝜙0, 𝜙1

)

 defined in a bounded domain 𝛺. Suppose that 𝜙1 ∈ 𝐿∞ (𝛺) and that there exists 
a submultiplicative bump function 𝛷 and a constant 𝐶𝛺 such that the global (𝛷,𝐴)-Orlicz-Sobolev bump inequality (8) holds, and such that 
𝜙0 ∈ 𝐿𝛷∗ (𝛺) where 𝛷∗ is the conjugate Young function to 𝛷. Then 

(

𝜙0, 𝜙1

)

 is strongly admissible in 𝛺 as given in Definition  1.5 with 
norm

‖

‖

‖

‖

(

𝜙, 𝜙1

)

‖

‖

‖

‖∗(𝛺)
≤ 2𝐶𝛺 ‖

‖

𝜙0
‖

‖𝐿𝛷∗ (𝛺) +
‖

‖

‖

𝜙1
‖

‖

‖𝐿∞(𝛺)
< ∞.

Proof.  First, note that for any 𝑣 ∈ Lipc (𝛺)

∫𝛺
|

|

|

∇𝐴𝑣⋅𝜙1
|

|

|

𝑑𝑥 ≤ ‖

‖

‖

𝜙1
‖

‖

‖𝐿∞(𝛺)
‖

‖

∇𝐴𝑣‖‖𝐿1(𝛺) ,

so ‖‖
‖

𝜙1
‖

‖

‖∗(𝛺)
≤ ‖

‖

‖

𝜙1
‖

‖

‖𝐿∞(𝛺)
. Next, by the Orlicz-Hölder inequality (25), the global Orlicz-Sobolev inequality (8), and Lemma  3.2, for 

any 𝑣 ∈ Lipc (𝛺)

|𝑣𝜙0
| 𝑑𝑥 ≤ 2 ‖𝜙0

‖ 𝛷∗ ‖𝑣‖𝐿𝛷(𝛺)
∫𝛺 | | ‖ ‖𝐿 (𝛺)

12 
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≤ 2𝐶𝛺 ‖

‖

𝜙0
‖

‖𝐿𝛷∗ (𝛺)
‖

‖

∇𝐴𝑣‖‖𝐿1(𝛺)

this is ‖
‖

𝜙0
‖

‖∗(𝐵
(

𝑦,𝑅0
)) ≤ 2𝐶𝛺 ‖

‖

𝜙0
‖

‖𝐿𝛷∗ (𝛺). □

3.3. Submultiplicative extensions

In our application to Moser iteration the convex bump function 𝛷 (𝑡) is assumed to satisfy in addition:

• The function 𝛷(𝑡)𝑡  is positive, nondecreasing and tends to ∞ as 𝑡→ ∞;
• 𝛷 is submultiplicative on an interval (𝐸,∞) for some 𝐸 > 1: 

𝛷 (𝑎𝑏) ≤ 𝛷 (𝑎)𝛷 (𝑏) , 𝑎, 𝑏 > 𝐸. (28)

Note that if we consider more generally the quasi-submultiplicative condition or 𝐾-submultiplicativity, 
𝛷 (𝑎𝑏) ≤ 𝐾𝛷 (𝑎)𝛷 (𝑏) , 𝑎, 𝑏 > 𝐸, (29)

for some constant 𝐾, then 𝛷 (𝑡) satisfies (29) if and only if 𝛷𝐾 (𝑡) ≡ 𝐾𝛷 (𝑡) satisfies (28). Thus we can always rescale a 
quasi-submultiplicative function to be submultiplicative.

Now let us consider the linear extension of 𝛷 defined on [𝐸,∞) to the entire positive real axis (0,∞) defined by

𝛷 (𝑡) =
𝛷 (𝐸)
𝐸

𝑡, 0 ≤ 𝑡 ≤ 𝐸.

We claim that this extension of 𝛷 is submultiplicative on (0,∞), i.e.
𝛷 (𝑎𝑏) ≤ 𝛷 (𝑎)𝛷 (𝑏) , 𝑎, 𝑏 > 0.

In fact, the identity 𝛷(𝑡)∕𝑡 = 𝛷(max{𝑡, 𝐸})∕max{𝑡, 𝐸} and the monotonicity of 𝛷(𝑡)∕𝑡 imply
𝛷(𝑎𝑏)
𝑎𝑏

≤ 𝛷(max{𝑎, 𝐸}max{𝑏, 𝐸})
max{𝑎, 𝐸}max{𝑏, 𝐸}

≤ 𝛷(max{𝑎, 𝐸})
max{𝑎, 𝐸}

⋅
𝛷(max{𝑏, 𝐸})
max{𝑏, 𝐸}

=
𝛷(𝑎)
𝑎

𝛷(𝑏)
𝑏

.

Conclusion 3.4.  If 𝛷 ∶ [𝐸,∞) → R+ is a submultiplicative piecewise differentiable convex function so that 𝛷(𝑡)∕𝑡 is nondecreasing, then 
we can extend 𝛷 to a submultiplicative piecewise differentiable convex function on [0,∞) that vanishes at 0 if and only if  

𝛷′ (𝐸) ≥ 𝛷 (𝐸)
𝐸

. (30)

3.4. An explicit family of Orlicz bumps

We now consider the near power bump case 𝛷 (𝑡) = 𝛷𝑚 (𝑡) = 𝑒

(

(ln 𝑡)
1
𝑚 +1

)𝑚

 for 𝑚 > 1. In the special case that 𝑚 > 1 is an integer 
we can expand the 𝑚th power in

ln𝛷 (𝑒𝑠) =
(

𝑠
1
𝑚 + 1

)𝑚
=

𝑚
∑

𝑘=0

(

𝑚
𝑘

)

𝑠
𝑘
𝑚 ,

and using the inequality 1 ≤
(

𝑠
𝑠+𝑡

)𝛼
+
(

𝑡
𝑠+𝑡

)𝛼
 for 𝑠, 𝑡 > 0 and 0 ≤ 𝛼 ≤ 1, we see that 𝛩𝑚 (𝑠) ≡ ln𝛷𝑚 (𝑒𝑠) is subadditive on (0,∞), hence 

𝛷𝑚 is submultiplicative on (1,∞). In fact, it is not hard to see that for 𝑚 > 1, 𝛩𝑚 (𝑠) =
(

𝑠
1
𝑚 + 1

)𝑚
 is subadditive on (0,∞), and so 𝛷𝑚

is submultiplicative on (1,∞).
We will show that 𝛷 is increasing and convex in [𝐸,∞). For any 𝑡 > 1 we have

𝛷′ (𝑡) = 𝛷 (𝑡)𝑚
(

(ln 𝑡)
1
𝑚 + 1

)𝑚−1 1
𝑚

(ln 𝑡)
1
𝑚−1 1

𝑡

=
𝛷 (𝑡)
𝑡

(

1 + 1

(ln 𝑡)
1
𝑚

)𝑚−1

≡ 𝛷 (𝑡)
𝑡
𝛺 (𝑡) , (31)

with 𝛺 (𝑡) = 𝛺𝑚 (𝑡) =
(

1 + (ln 𝑡)−
1
𝑚
)𝑚−1

> 1; and so for any 𝐸 > 1 we have 

𝛷′ (𝐸) >
𝛷 (𝐸)
𝐸

. (32)

Next, we compute

𝛷′′ (𝑡) =
𝛷 (𝑡)
𝑡2

(

(𝛺 (𝑡))2 −𝛺 (𝑡) + 𝑡𝛺′ (𝑡)
)

=
𝛷𝑚 (𝑡) (

(𝛺 (𝑡))2 −𝛺 (𝑡) + 𝑡𝛺′ (𝑡)
)

.

𝑡2

13 
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Fig. 1. The Young function 𝛷(5∕2)(𝑡).

Since 𝛺′ (𝑡) = −𝑚−1
𝑚

1
𝑡

(

1 + (ln 𝑡)−
1
𝑚
)𝑚−2

(ln 𝑡)−
1
𝑚−1 = −𝑚−1

𝑚
1
𝑡𝛺

𝑚−2
𝑚−1 (ln 𝑡)−1−

1
𝑚 , for 𝑡 > 1 we have

𝛷′′ (𝑡) =
𝛷 (𝑡)
𝑡2

(

(𝛺 (𝑡))2 −𝛺 (𝑡) − 𝑚 − 1
𝑚

𝛺
𝑚−2
𝑚−1 (ln 𝑡)−

1
𝑚−1

)

=
𝛷𝑚 (𝑡)
𝑡2

𝛺 (𝑡)
⎛

⎜

⎜

⎝

𝛺 (𝑡) − 1 −
𝑚−1
𝑚

𝛺
1

𝑚−1 (ln 𝑡)1+
1
𝑚

⎞

⎟

⎟

⎠

=
𝛷𝑚 (𝑡)
𝑡2

𝛺 (𝑡)𝛤 (𝑡) , (33)

where

𝛤 (𝑡) = 𝛤𝑚 (𝑡) = 𝛺 (𝑡) − 1 −
𝑚−1
𝑚

𝛺
1

𝑚−1 (ln 𝑡)1+
1
𝑚

.

since 𝛺 (𝑡) − 1 =
(

1 + (ln 𝑡)−
1
𝑚
)𝑚−1

− 1 ≥ (𝑚 − 1) (ln 𝑡)−
1
𝑚 , it follows that

𝛤 (𝑡) ≥ 𝑚 − 1

(ln 𝑡)
1
𝑚

⎛

⎜

⎜

⎝

1 −
1
𝑚

𝛺
1

𝑚−1 ln 𝑡

⎞

⎟

⎟

⎠

>
𝐶𝑚,𝐸

(ln 𝑡)
1
𝑚

> 0

for all 𝑡 ≥ 𝑒 and 𝑚 > 1. This shows that 𝛷 is convex on [𝑒,∞), and so by (32) and Conclusion  3.4 we can extend 𝛷 to a 
positive increasing  submultiplicative convex function on [0,∞). However, due to technical calculations below, it is convenient to 
take 𝐸 = 𝐸𝑚 = 𝑒2𝑚 , 𝐹 = 𝐹𝑚 = 𝑒3𝑚 , and so we will work from now on with the definition 

𝛷 (𝑡) = 𝛷𝑚 (𝑡) ≡
⎧

⎪

⎨

⎪

⎩

𝑒

(

(ln 𝑡)
1
𝑚 +1

)𝑚

 if 𝑡 ≥ 𝐸 = 𝑒2𝑚
𝐹
𝐸 𝑡  if 0 ≤ 𝑡 ≤ 𝐸 = 𝑒2𝑚

, (34)

where 𝑚 > 1 will be explicitly mentioned or understood from the context (see Fig.  1).
The function 𝛷𝑚 is clearly continuous and piecewise 𝐶∞. In some of our applications we will require that the Young function 

should be 𝐶1 and piece-wise smooth, so the second derivative only has at most jump discontinuities. For this reason we define a 
variation 𝛷̃𝑚 of the Young function 𝛷𝑚 which has the same growth as 𝑡→ ∞, and has the required smoothness. We define 

𝛷̃𝑚 (𝑡) ≡
⎧

⎪

⎨

⎪

𝛷𝑚 (𝑡)  if 𝑡 ≥ 𝐸
𝜚𝑚 (𝑡)  if 𝐵𝐸2

𝐹 ≤ 𝑡 ≤ 𝐸
1 𝐹 𝐵𝐸2

(35)
⎩𝐵 𝐸 𝑡  if 0 ≤ 𝑡 ≤ 𝐹

14 
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where 𝐵 > 1 and 𝜚𝑚 (𝑡) is an increasing convex function satisfying 
𝜚𝑚 (𝑎) = 𝐸, 𝜚𝑚 (𝐸) = 𝐹

𝜚′𝑚 (𝑎) = 1
𝐵
𝐹
𝐸 𝜚′𝑚 (𝐸) = 𝐹

𝐸

(

3
2

)𝑚−1 where 𝑎 = 𝐵𝐸2

𝐹
. (36)

For example, we can take 

𝜚𝑚 (𝑡) = 𝐸 + 1
𝐵
𝐹
𝐸

(𝑡 − 𝑎) + 𝛼 (𝑡 − 𝑎)𝛽 , (37)

where 𝛼 and 𝛽 are determined by (36):

𝛽 = 𝐵
𝐵 − 1

(

1 − 𝑎
𝐸

)

(

( 3
2

)𝑚−1
− 1
𝐵

)

, and 𝛼 = 𝐵 − 1
𝐵

𝐹
(𝐸 − 𝑎)𝛽

.

Indeed, since 𝛽 > 1 we have that both 𝛼 (𝑡 − 𝑎)𝛽 and its derivative vanish at 𝑡 = 𝑎, and so

𝜚𝑚 (𝑎) = 𝐸 and 𝜚′𝑚 (𝑡) = 1
𝐵
𝐹
𝐸
.

Moreover,

𝜚𝑚 (𝐸) = 𝐸 + 1
𝐵
𝐹
𝐸

(𝐸 − 𝑎) + 𝐵 − 1
𝐵

𝐹
(𝐸 − 𝑎)𝛽

(𝐸 − 𝑎)𝛽

= 𝐸 + 1
𝐵
𝐹
𝐸

(𝐸 − 𝑎) + 𝐵 − 1
𝐵

𝐹

= 𝐹 + 𝐸 − 1
𝐵
𝐹
𝐸
𝑎 = 𝐹 + 𝐸 − 1

𝐵
𝐹
𝐸
𝐵𝐸2

𝐹
= 𝐹 ,

and

𝜚′𝑚 (𝐸) = 1
𝐵
𝐹
𝐸

+ 𝛼𝛽 (𝐸 − 𝑎)𝛽−1 = 1
𝐵
𝐹
𝐸

+ 𝛽 𝐵 − 1
𝐵

𝐹
𝐸 − 𝑎

= 1
𝐵
𝐹
𝐸

+
(

1 − 𝑎
𝐸

)

(

( 3
2

)𝑚−1
− 1
𝐵

)

𝐹
𝐸 − 𝑎

= 1
𝐵
𝐹
𝐸

+
(

( 3
2

)𝑚−1
− 1
𝐵

)

𝐹
𝐸

= 𝐹
𝐸

( 3
2

)𝑚−1
.

This proves that 𝜚𝑚 defined by (37) satisfies (36). Note that since

𝛽 = 𝛽 (𝑚) = 𝐵
𝐵 − 1

(

1 − 𝑎
𝐸

)

(

( 3
2

)𝑚−1
− 1
𝐵

)

= 𝐵
𝐵 − 1

(

1 − 𝐵
𝑒3𝑚−2𝑚

)(

(3
2

)𝑚−1
− 1
𝐵

)

,

then 𝛽 is increasing in 𝑚, and therefore for each fixed 𝑚0 > 1 we have 𝛽 ≥ 𝛽 (𝑚) for all 𝑚 ≥ 𝑚0. Given a fixed 𝑚0 > 1 we will choose 
𝐵 so that 𝛽 (𝑚0

)

= 2, i.e. 𝐵 is a root of the quadratic equation 
(

1 − 𝐵
𝑒3𝑚0−2𝑚0

)(

( 3
2

)𝑚0−1
𝐵 − 1

)

= 2 (𝐵 − 1) . (38)

This choice of 𝐵 guarantees that 0 ≤ 𝜚′′𝑚 (𝑡) ≤ 𝑀 < ∞ for 𝑡 in [𝑎, 𝐸] for all 𝑚 ≥ 𝑚0, and hence the function 𝛷̃𝑚 is in 𝐶1,1 (R). To see 
that 𝐵 > 1 can be chosen we write Eq. (38) in the equivalent form

(𝜈 + 1) (𝐵 − 1)2 − (𝜈𝜇 − 𝜇 − 𝜈 − 2) (𝐵 − 1) − 𝜇𝜈 = 0

where 𝜈 =
(

3
2

)𝑚0−1
− 1 and 𝜇 = 𝑒3𝑚0−2𝑚0 − 1. The choice of root

𝐵 = 1 +
(𝜈𝜇 − 𝜇 − 𝜈 − 2) +

√

(𝜈𝜇 − 𝜇 − 𝜈 − 2)2 + 4𝜇𝜈 (𝜈 + 1)

2 (𝜈 + 1)

show that 𝐵 is clearly bigger than 1. In our applications it will suffice to take 𝑚0 = 2, for which we have

𝐵 = 1
3

(
√

5𝑒5 + 1
4
𝑒10 + 1 − 𝑒5 − 2

2

)

≈ 1.949450754..

Moreover, we have 𝜚′′𝑚 (𝑡) = 𝛼𝛽 (𝛽 − 1) (𝑡 − 𝑎)𝛽−2 > 0 for 𝑎 ≤ 𝑡 ≤ 𝐸, so 𝜚𝑚 is clearly convex (see Fig.  2).
In our application we will also require 𝛾 1

2
(𝑡) =

√

𝜚𝑚
(

𝑡2
) to be convex. Since

𝛾 ′1
2
(𝑡) =

(

√

𝜚𝑚
(

𝑡2
)

)′
=

𝑡𝜚′𝑚
(

𝑡2
)

√

(

2
)

= 𝑡
1
𝐵
𝐹
𝐸 + 𝛼𝛽

(

𝑡2 − 𝑎
)𝛽−1

√

1 𝐹 (

2
) (

2
)𝛽
𝜚𝑚 𝑡 𝐸 + 𝐵 𝐸 𝑡 − 𝑎 + 𝛼 𝑡 − 𝑎

15 
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Fig. 2. The Young function 𝛷̃2(𝑡) with 𝛽 = 2, 𝑎 ≈ 0.7 and 𝐸 ≈ 55.

for 𝑎 ≤ 𝑡2 ≤ 𝐸. With the change of variables 𝑠 = 𝑡2 − 𝑎 and since 1𝐵
𝐹
𝐸 = 𝐸

𝑎 , this is

𝛾 ′1
2

(

√

𝑠 + 𝑎
)

=
√

𝑠 + 𝑎
𝐸 + 𝐸

𝑎 𝑠 + 𝛼𝑠
𝛽

(𝐸
𝑎

+ 𝛼𝛽𝑠𝛽−1
)

, 0 ≤ 𝑠 ≤ 𝐸 − 𝑎

which is increasing in 𝑠 when 𝛽 ≥ 2. Indeed, the derivative of 
(

𝛾 ′1
2

(

√

𝑠 + 𝑎
)

)2
 is

𝑑
𝑑𝑠

{

𝑠 + 𝑎
𝐸 + 𝐸

𝑎 𝑠 + 𝛼𝑠
𝛽

(𝐸
𝑎

+ 𝛼𝛽𝑠𝛽−1
)2

}

=

(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)

− (𝑠 + 𝑎)
(

𝐸
𝑎 + 𝛼𝛽𝑠𝛽−1

)

(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)2

+
(𝑠 + 𝑎)

(

𝐸
𝑎 + 𝛼𝛽𝑠𝛽−1

)

2𝛼𝛽 (𝛽 − 1) 𝑠𝛽−2

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽

=
−𝛼𝑠𝛽 (𝛽 − 1) − 𝑎𝛼𝛽𝑠𝛽−1

(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)2

+
(𝑠 + 𝑎)

(

𝐸
𝑎 + 𝛼𝛽𝑠𝛽−1

)

2𝛼𝛽 (𝛽 − 1) 𝑠𝛽−2

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽

=
−𝛼𝑠𝛽 (𝛽 − 1) − 𝑎𝛼𝛽𝑠𝛽−1 + (𝑠 + 𝑎)

(

𝐸
𝑎 + 𝛼𝛽𝑠𝛽−1

)(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)

2𝛼𝛽 (𝛽 − 1) 𝑠𝛽−2

(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)2

≥
−𝛼𝑠𝛽 (𝛽 − 1) − 𝑎𝛼𝛽𝑠𝛽−1 + 2

(

𝐸
𝑎

)2
𝛼𝛽 (𝛽 − 1) 𝑠𝛽 + 2𝐸

2

𝑎 𝛼𝛽 (𝛽 − 1) 𝑠𝛽−1

(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)2

=

{

2
(

𝐸
𝑎

)2
𝛽 − 1

}

𝛼𝑠𝛽 (𝛽 − 1) +
{

𝐸2

𝑎2 (2𝛽 − 2) − 1
}

𝑎𝛼𝛽𝑠𝛽−1

(

𝐸 + 𝐸
𝑎 𝑠 + 𝛼𝑠

𝛽
)2

≥ 0.

Therefore 𝛾 ′1
2

(𝑡) is increasing in 𝑡, and so 𝛾 1
2
(𝑡) =

√

𝜚𝑚
(

𝑡2
) is convex. We also note that the upper bound 

𝛾 1
2
(𝑡) 𝛾 ′′1

2

(𝑡)

(

𝛾 ′1
2

(𝑡)
)2

≤ 𝐶𝑚 for 𝑎 ≤ 𝑡2 ≤ 𝐸, (39)

readily follows from the definitions.
16 
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Notice that 𝛷̃𝑚 (𝑡) ≡ 𝛷𝑚 (𝑡) for 𝑡 ≥ 𝐸, while 1
𝐶𝑚
𝛷𝑚 (𝑡) ≤ 𝛷̃𝑚 (𝑡) ≤ 𝛷𝑚 (𝑡) for all 𝑡 ≥ 0. It follows that if an Orlicz Sobolev inequality 

holds for 𝛷𝑚 with superradius 𝜑, then we have that the Orlicz Sobolev inequality holds for 𝛷̃𝑚 with superradius 𝐶𝑚𝜑 for some 
constant 𝐶𝑚. Indeed, if 𝑣 ∈ Lipc (𝐵 (𝑥, 𝑟)) for a ball 𝐵 (𝑥, 𝑟), then

𝛷̃(−1)
(

∫𝐵(𝑥,𝑟)
𝛷̃ (|𝑣|) 𝑑𝑥

|𝐵 (𝑥, 𝑟)|

)

≤ 𝛷(−1)
(

𝐶𝑚 ∫𝐵(𝑥,𝑟)
𝛷 (|𝑣|) 𝑑𝑥

|𝐵 (𝑥, 𝑟)|

)

≤ 𝛷(−1)
(

∫𝐵(𝑥,𝑟)
𝛷
(

𝐶𝑚 |𝑣|
) 𝑑𝑥
|𝐵 (𝑥, 𝑟)|

)

≤ 𝐶𝑚𝜑 (𝑥, 𝑟)∫𝐵(𝑥,𝑟)
|

|

∇𝐴𝑣||
𝑑𝑥

|𝐵 (𝑥, 𝑟)|
. (40)

Moreover, 𝛷̃𝑚 is defined to be linear on [0, 𝑎] with 𝛷̃ (𝑎) = 𝐸 to facilitate computing successive compositions 𝛷̃(𝑛)
𝑚 (𝑡); indeed, for 𝑡

small these compositions are just linear, for 𝑡 ≥ 𝐸 these are 𝛷̃(𝑛)
𝑚 (𝑡) = 𝛷(𝑛)

𝑚 (𝑡), and when 𝑎 ≤ 𝑡 ≤ 𝐸 then 𝛷 (𝑡) ≥ 𝐸, so the modified 
formula in the middle appears at most once in any composition. See Corollary  3.7 for details.

3.5. Iterates of increasing functions

In this subsection we consider the specific families of test functions ℎ that arise in our proofs. To implement the Moser iteration 
scheme we are interested in estimates for the iterates ℎ𝑗 (𝑡) = ℎ◦ℎ◦⋯◦ℎ (𝑗 times), in particular, to apply the previous Caccioppoli 
inequalities, we want to estimate the quotients 𝑡ℎ

′
𝑗 (𝑡)

ℎ𝑗 (𝑡)
 and 𝑡ℎ

′′
𝑗 (𝑡)

ℎ′𝑗 (𝑡)
, as well as the function 𝛶𝑗 (𝑡) =

(

1
2ℎ

2
𝑗 (𝑡)

)′′
= ℎ𝑗 (𝑡)ℎ′′𝑗 (𝑡) +

(

ℎ′𝑗 (𝑡)
)2
.

One family of test functions we consider is 
ℎ𝑗 (𝑡) = 𝛤 (𝑗)

𝑚 (𝑡) ≡ 𝛤𝑚◦𝛤𝑚◦…𝛤𝑚(𝑡) (𝑗 times), (41)

where the function 𝛤𝑚(𝑡) ≡
√

𝛷𝑚(𝑡2) for 𝑚 > 1. When 𝑡 > √

𝐸𝑚 = 𝑒2𝑚−1 , we have the explicit formula

𝛤𝑚 (𝑡) ≡
√

𝛷𝑚
(

𝑡2
)

= 𝑒
1
2

(

(2 ln 𝑡)
1
𝑚 +1

)𝑚

> 𝑡.

Proposition 3.5.  Let 𝑚 > 1, the function ℎ (𝑡) = ℎ𝑗 (𝑡) =
√

𝛷(𝑗)
𝑚

(

𝑡2
) defined in (41) for each 𝑗 ≥ 1 satisfies

ℎ′(𝑡)2 ≤ 𝛶 (𝑡) ≤ 2ℎ′(𝑡)2 and 1 ≤ 𝑡ℎ′ (𝑡)
ℎ (𝑡)

≤ 𝐶𝑚𝑗
𝑚−1,

where 𝛶 (𝑡) =
(

1
2ℎ

2 (𝑡)
)′′

= ℎ (𝑡)ℎ′′ (𝑡) +
(

ℎ′ (𝑡)
)2. Moreover, we have that ℎ′′ (𝑡) ≥ 0 for all 𝑡 > 0.

Proof.  From the definition (34) of 𝛷𝑚, we have

ℎ1 (𝑡) =

{

𝛾0 (𝑡) 0 ≤ 𝑡 < 𝑒2𝑚−1

𝛾1 (𝑡) 𝑒2𝑚−1 ≤ 𝑡
.

where 𝛾0 (𝑡) = 𝜏𝑡 with 𝜏 = exp
(

1
2 (3

𝑚 − 2𝑚)
)

, and 𝛾1 (𝑡) = 𝑒
1
2

(

(2 ln 𝑡)
1
𝑚 +1

)𝑚

. Then, defining the intervals 𝐼0 =
(

0, 𝜏−(𝑗−1)𝑒2𝑚−1
)

, 
𝐼𝑘 =

[

𝜏−(𝑗−𝑘)𝑒2𝑚−1 , 𝜏−(𝑗−𝑘−1)𝑒2𝑚−1
)

 for 𝑘 = 1,… , 𝑗 − 1, and 𝐼𝑗 =
[

𝑒2𝑚−1 ,∞
)

, we have the expression 

ℎ (𝑡) = ℎ𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛾 (𝑗)0 (𝑡) 𝑡 ∈ 𝐼0;
𝛾 (𝑘)1

(

𝛾 (𝑗−𝑘)0 (𝑡)
)

𝑡 ∈ 𝐼𝑘 𝑘 = 1,… , 𝑗 − 1;

𝛾 (𝑗)1 (𝑡) . 𝑡 ∈ 𝐼𝑗 .

. (42)

Since 𝛾 (𝑗)0 (𝑡) = 𝜏𝑗 𝑡 it is clear that for all 𝑗 ≥ 1 and for 𝑡 ∈ 𝐼0

𝛶𝑗 (𝑡) ≡ 𝛾 (𝑗)0 (𝑡)
(

𝛾 (𝑗)0 (𝑡)
)′′

+
(

(

𝛾 (𝑗)0 (𝑡)
)′
)2

=
(

(

𝛾 (𝑗)0 (𝑡)
)′
)2

 and

(

𝛾 (𝑗)0 (𝑡)
)′
𝑡

𝛾 (𝑗)0 (𝑡)
= 1 (43)

Now, for 𝓁 ≥ 1, and 𝑡 ≥ 𝑒2𝑚−1

(

𝛾 (𝓁)1 (𝑡)
)′

=
⎛

⎜

⎜

⎝

𝑒
1
2

(

(2 ln 𝑡)
1
𝑚 +𝓁

)𝑚
⎞

⎟

⎟

⎠

′

=
𝛾 (𝓁)1 (𝑡)
𝑡

𝛺∗
𝓁 (𝑡) (44)

with 𝛺∗
𝓁 (𝑡) =

(

1 + 𝓁

(2 ln 𝑡)
1
𝑚

)𝑚−1
, and 

(

𝛾 (𝓁) (𝑡)
)′′

=
𝛾 (𝓁)1 (𝑡) (

(

𝛺∗ (𝑡)
)2 −𝛺∗ (𝑡) + 𝑡

(

𝛺∗ (𝑡)
)′
)

. (45)
1 𝑡2 𝓁 𝓁 𝓁

17 
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So from (43) and (44) (since 𝛾 (𝑗−𝑘)0 (𝑡) ≥ 𝑒2𝑚−1  whenever 𝑡 ∈ 𝐼𝑘, 𝑘 = 1,… , 𝑗), for 𝑡 ∈ 𝐼𝑗 we obtain 

1 ≤
𝑡
(

𝛾 (𝑗)1 (𝑡)
)′

𝛾 (𝑗)1 (𝑡)
= 𝛺∗

𝑗 (𝑡) ≤
(

1 +
𝑗
2

)𝑚−1
, (46)

and

𝛶𝑗 (𝑡)
(

(

𝛾 (𝑗)1 (𝑡)
)′
)2

≡
𝛾 (𝑗)1 (𝑡)

(

𝛾 (𝑗)1 (𝑡)
)′′

+
(

(

𝛾 (𝑗)1 (𝑡)
)′
)2

(

(

𝛾 (𝑗)1 (𝑡)
)′
)2

=

(

𝛺∗
𝑗 (𝑡)

)2
−𝛺∗

𝑗 (𝑡) + 𝑡
(

𝛺∗
𝑗 (𝑡)

)′

(

𝛺∗
𝑗 (𝑡)

)2
+ 1. (47)

Since 
(

𝛺∗
𝑗 (𝑡)

)′
= −

𝑚−1
𝑚 𝑗

2
1
𝑚 (ln 𝑡)

1
𝑚 +1𝑡

(

1 + 𝑗

(2 ln 𝑡)
1
𝑚

)𝑚−2
, using the estimate

(1 + 𝑥)𝑚−1 − 1 ≥ (1 + 𝑥)−(2−𝑚)+ (𝑚 − 1) 𝑥 ≥ (1 + 𝑥)−1 (𝑚 − 1) 𝑥

when 𝑚 > 1, 𝑥 ≥ 0, we have that with 𝑥 = 𝑗

(2 ln 𝑡)
1
𝑚

𝛺∗
𝑗 (𝑡) − 1 + 𝑡

(

𝛺∗
𝑗 (𝑡)

)′

𝛺∗
𝑗 (𝑡)

= 𝛺∗
𝑗 (𝑡) − 1 −

𝑚−1
𝑚 𝑗

2
1
𝑚 (ln 𝑡)

1
𝑚+1

(

1 + 𝑗

(2 ln 𝑡)
1
𝑚

)

≥ 1
(

1 + 𝑗

(2 ln 𝑡)
1
𝑚

)

⎛

⎜

⎜

⎝

(𝑚−1)𝑗

(2 ln 𝑡)
1
𝑚

−
𝑚−1
𝑚 𝑗

2
1
𝑚 (ln 𝑡)

1
𝑚+1

⎞

⎟

⎟

⎠

=

(𝑚−1)𝑗

(2 ln 𝑡)
1
𝑚

(

1 + 𝑗

(2 ln 𝑡)
1
𝑚

)

⎛

⎜

⎜

⎝

1 −
1
𝑚
ln 𝑡

⎞

⎟

⎟

⎠

≥ 0, since 𝑡 ≥ 𝑒2
𝑚−1
.

It follows that 
(

𝛾 (𝑗)1 (𝑡)
)′′

≥ 0, and thus 

0 ≤
𝛾 (𝑗)1 (𝑡)

(

𝛾 (𝑗)1 (𝑡)
)′′

(

(

𝛾 (𝑗)1 (𝑡)
)′
)2

=

(

𝛺∗
𝑗 (𝑡)

)2
−𝛺∗

𝑗 (𝑡) + 𝑡
(

𝛺∗
𝑗 (𝑡)

)′

(

𝛺∗
𝑗 (𝑡)

)2
≤ 1 (48)

since 
(

𝛺∗
𝑗

)′
≤ 0. Substituting in (47) yields 

1 ≤
𝛶𝑗 (𝑡)

(

(

𝛾 (𝑗)1 (𝑡)
)′
)2

≤ 2. (49)

Then from the expression (42) for ℎ𝑗 and (43)–(46)–(49) it follows that ℎ𝑗 (𝑡) satisfies the estimates claimed in the proposition both 
for 𝑡 ∈ 𝐼0 and 𝑡 ∈ 𝐼𝑗 . Now, note that when 𝑡 ∈ 𝐼𝑘, 𝑘 = 1,… , 𝑗 − 1, we have 𝛾 (𝑗−𝑘)0 (𝑡) ∈ 𝐼𝑗 , and also

ℎ′𝑗 (𝑡) =
(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

𝛾 (𝑗−𝑘)0

)′
(𝑡)

ℎ′′𝑗 (𝑡) =
(

𝛾 (𝑘)1

)′′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

(

𝛾 (𝑗−𝑘)0

)′
(𝑡)
)2

+
(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

𝛾 (𝑗−𝑘)0

)′′
(𝑡)

=
(

𝛾 (𝑘)1

)′′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

(

𝛾 (𝑗−𝑘)0

)′
(𝑡)
)2

since 
(

𝛾 (𝑗−𝑘)0

)′′
≡ 0. Then, in these intervals, by (43) we have

𝑡ℎ′𝑗 (𝑡)

ℎ𝑗 (𝑡)
=
𝑡
(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

𝛾 (𝑗−𝑘)0

)′
(𝑡)

𝛾 (𝑘)
(

𝛾 (𝑗−𝑘) (𝑡)
)

1 0

18 
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=
𝛾 (𝑗−𝑘)0 (𝑡)

(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

𝛾 (𝑘)1

(

𝛾 (𝑗−𝑘)0 (𝑡)
)

𝑡
(

𝛾 (𝑗−𝑘)0

)′
(𝑡)

𝛾 (𝑗−𝑘)0 (𝑡)

=
𝛾 (𝑗−𝑘)0 (𝑡)

(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

𝛾 (𝑘)1

(

𝛾 (𝑗−𝑘)0 (𝑡)
)

so 1 ≤
𝑡ℎ′𝑗 (𝑡)

ℎ𝑗 (𝑡)
≤

(

1 + 𝑗
2

)𝑚−1
≤ 𝐶𝑚𝑗𝑚−1 by (46) for 𝑡 ∈ 𝐼𝑘, 𝑘 = 0,… , 𝑗; this finishes the proof of the second set of inequalities in the 

lemma. Also, for 𝑡 ∈ 𝐼𝑘, 𝑘 = 1,… , 𝑗 − 1

0 ≤
ℎ𝑗 (𝑡)ℎ′′𝑗 (𝑡)
(

ℎ′𝑗 (𝑡)
)2

=
𝛾 (𝑘)1

(

𝛾 (𝑗−𝑘)0

)

⋅
(

𝛾 (𝑘)1

)′′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

(

𝛾 (𝑗−𝑘)0

)′
(𝑡)
)2

(

(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0 (𝑡)

)

⋅
(

𝛾 (𝑗−𝑘)0

)′
(𝑡)
)2

=
𝛾 (𝑘)1

(

𝛾 (𝑗−𝑘)0

)

⋅
(

𝛾 (𝑘)1

)′′ (
𝛾 (𝑗−𝑘)0

)

(

(

𝛾 (𝑘)1

)′ (
𝛾 (𝑗−𝑘)0

)

)2
≤ 1

by (48). Hence we also have 1 ≤ 𝛶𝑗 (𝑡)
(

ℎ′𝑗 (𝑡)
)2 ≤ 2 for 𝑡 ∈ 𝐼𝑘, what finishes the proof of the first pair of inequalities. □

Remark 3.6.  Note that the identity, ℎ (𝑡) = 𝑡, trivially satisfies the conclusions in the previous proposition.
The following is a corollary of the proof of Proposition  3.5, which extends its conclusions for the Lipschitz Young function 𝛷𝑚

to the 𝐶1,1 Young functions 𝛷̃𝑚.

Corollary 3.7.  Let 𝑚 > 1, then for any integer 𝑗 ≥ 1 the function ℎ̃ (𝑡) = ℎ̃𝑗 (𝑡) =
√

𝛷̃(𝑗)
𝑚

(

𝑡2
) with 𝛷̃𝑚 (𝑡) defined in (35) satisfies

ℎ̃′(𝑡)2 ≤ 𝛶̃ (𝑡) ≤ 𝐶𝑚 ℎ̃
′(𝑡)2 and 1 ≤ 𝑡ℎ̃′ (𝑡)

ℎ̃ (𝑡)
≤ 𝐶𝑚𝑗

𝑚−1,

where 𝛶̃ (𝑡) =
(

1
2 ℎ̃

2 (𝑡)
)′′

= ℎ̃ (𝑡) ℎ̃′′ (𝑡) +
(

ℎ̃′ (𝑡)
)2. Moreover, we have that ℎ̃′′ (𝑡) ≥ 0 for all 𝑡 > 0.

Proof.  The proof is the same as for Proposition  3.5, with the appropriate modification of the explicit formula for the compositions. 
Indeed, for 𝑡 ∈

[

0,
(

2𝐸2

𝐹

)
1
2

]

≡ [0, 𝑎̃] we have that ℎ̃1 (𝑡) =
√

𝛷̃𝑚
(

𝑡2
)

= 𝜏𝑡, with 𝜏 =
√

1
2
𝐹
𝐸 . Using the definition (35) of 𝛷̃𝑚, we write

ℎ̃1 (𝑡) =
√

𝛷̃𝑚
(

𝑡2
)

≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

1
2
𝐹
𝐸 𝑡  if 0 ≤ 𝑡 ≤

(

2𝐸2

𝐹

)
1
2

√

𝜚𝑚
(

𝑡2
)  if 

(

2𝐸2

𝐹

)
1
2 ≤ 𝑡 ≤ 𝐸

1
2

√

𝛷𝑚
(

𝑡2
)  if 𝑡 ≥ 𝐸

1
2

≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾0 (𝑡)  if 0 ≤ 𝑡 ≤
(

2𝐸2

𝐹

)
1
2

𝛾 1
2
(𝑡)  if 

(

2𝐸2

𝐹

)
1
2 ≤ 𝑡 ≤ 𝐸

1
2

𝛾1 (𝑡)  if 𝑡 ≥ 𝐸
1
2

.

Then, defining the intervals 𝐼0 =
(

0, 𝜏−(𝑗−1)𝑎̃
)

, 𝐼𝑘 =
[

𝜏−(𝑗−𝑘)𝑎̃, 𝜏−(𝑗−𝑘−1)𝑎̃
) for 𝑘 = 1,… , 𝑗 − 1, 𝐼𝑗 =

[

𝑎̃, 𝐸
1
2
)

, and 𝐼𝑗+1 =
[

𝐸
1
2 ,∞

)

, we 
have that

ℎ̃𝑗 (𝑡) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾 (𝑗)0 (𝑡)  if 𝑡 ∈ 𝐼0
𝛾 (𝑘−1)1 ◦𝛾 1

2
(𝑡) ◦𝛾 (𝑗−𝑘)0 (𝑡)  if 𝑡 ∈ 𝐼𝑘, 𝑘 = 1,… , 𝑗

𝛾 (𝑗)1 (𝑡) = ℎ𝑗 (𝑡) =
√

𝛷(𝑗)
𝑚

(

𝑡2
)  if 𝑡 ∈ 𝐼𝑗+1

The proof when 𝑡 ∈ 𝐼0 or 𝑡 ∈ 𝐼𝑗+1 is the same as before (note that now 𝛾0 replaces 𝛾 1
2
 in the previous proof), while if 𝑡 ∈ 𝐼𝑘, 

𝑘 = 1,… , 𝑗,
(

ℎ̃𝑗 (𝑡)
)′ =

(

𝛾 (𝑘−1)
)′

(

𝛾 1 (𝑡)
(

𝛾 (𝑗−𝑘)
)

)

⋅
(

𝛾 1 (𝑡)
)′

(

𝛾 (𝑗−𝑘)
)

⋅
(

𝛾 (𝑗−𝑘)
)′
1 2 0 2 0 0
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(

ℎ̃𝑗 (𝑡)
)′′ =

(

𝛾 (𝑘−1)1

)′′
(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0 (𝑡)
)

)

⋅
((

𝛾 1
2
(𝑡)
)′

(

𝛾 (𝑗−𝑘)0

)

⋅
(

𝛾 (𝑗−𝑘)0

)′
)2

+
(

𝛾 (𝑘−1)1

)′
(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0

)

)

⋅
((

𝛾 1
2

)′′
(

𝛾 (𝑗−𝑘)0

)

)

⋅
(

(

𝛾 (𝑗−𝑘)0

)′
)2

where we used that 𝛾 ′′0 ≡ 0. Since by the chain rule we have that for any smooth functions 𝑎 (𝑡) , 𝑏 (𝑡) , 𝑐 (𝑡)
𝑎 (𝑏 (𝑐 (𝑡))) ⋅ (𝑎 (𝑏 (𝑐 (𝑡))))′′

(

(𝑎 (𝑏 (𝑐 (𝑡))))′
)2

=
𝑎 (𝑏 (𝑐)) ⋅ 𝑎′′ (𝑏 (𝑐))

(𝑎′ (𝑏 (𝑐)))2
+

𝑎 (𝑏 (𝑐))
𝑎′ (𝑏 (𝑐)) ⋅ 𝑏 (𝑐)

𝑏 (𝑐) ⋅ 𝑏′′ (𝑐)
(

𝑏′ (𝑐)′
)2

+
𝑎 (𝑏 (𝑐))

𝑎′ (𝑏 (𝑐)) ⋅ 𝑏 (𝑐)
𝑏 (𝑐)

𝑏′ (𝑐) ⋅ 𝑐
𝑐 ⋅ 𝑐′′

(𝑐′)2

we have

ℎ̃𝑗 (𝑡)
(

ℎ̃𝑗 (𝑡)
)′′

(

(

ℎ̃𝑗 (𝑡)
)′
)2

=
𝛾 (𝑘−1)1

(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0

)

)

⋅
(

𝛾 (𝑘−1)1

)′′
(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0 (𝑡)
)

)

(

(

𝛾 (𝑘−1)1

)′
(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0

)

))2

+
𝛾 (𝑘−1)1

(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0

)

)

(

𝛾 (𝑘−1)1

)′
(

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0

)

)

𝛾 1
2
(𝑡)

(

𝛾 (𝑗−𝑘)0

)

𝛾 1
2

(

𝛾 (𝑗−𝑘)0

)

(

𝛾 1
2

)′′
(

𝛾 (𝑗−𝑘)0

)

((

𝛾 1
2
(𝑡)
)′

(

𝛾 (𝑗−𝑘)0

)

)2

Then, since from (46) we have 𝛾 (𝑘−1)1 (𝑠) ∕
[

𝑠
(

𝛾 (𝑘−1)1 (𝑠)
)]

≤ 1, and from Proposition  3.5 we have

𝛾 (𝑘−1)1 (𝑠) ⋅
(

𝛾 (𝑘−1)1

)′′
(𝑠)

(

(

𝛾 (𝑘−1)1

)′
(𝑠)

)2
≤ 𝛶 (𝑠)
ℎ′(𝑠)2

≤ 2,

it follows that

0 ≤
ℎ̃𝑗 (𝑡)

(

ℎ̃𝑗 (𝑡)
)′′

(

(

ℎ̃𝑗 (𝑡)
)′
)2

≤ 2 +
𝛾 1
2

(

𝛾 (𝑗−𝑘)0

)

(

𝛾 1
2

)′′
(

𝛾 (𝑗−𝑘)0

)

((

𝛾 1
2
(𝑡)
)′

(

𝛾 (𝑗−𝑘)0

)

)2
≤ 𝐶𝑚

where we used inequality (39) and the fact that 
(

𝛾 1
2

)′′
≥ 0 (see the discussion just before (39)). Then 1 ≤ 𝛶̃ (𝑡)

ℎ̃′(𝑡)2 = ℎ̃𝑗 (𝑡)
(

ℎ̃𝑗 (𝑡)
)′′

(

(

ℎ̃𝑗 (𝑡)
)′
)2 + 1 ≤

𝐶𝑚. □

We now consider ℎ𝛽 (𝑡) ≡
√

𝛷(𝑗)
(

𝑡2𝛽
)

≡ 𝛤 (𝑗)
𝑚 (𝑡𝛽 ). We will show that this ℎ satisfies the hypotheses of Lemma  2.1 for 𝛽 < 0 and 

𝛽 ≥ 1.

Proposition 3.8.  The function ℎ𝑗,𝛽 (𝑡) = ℎ𝛽 = ℎ𝑗
(

𝑡𝛽
)

, 𝛽 < 0 or 𝛽 ≥ 1, where ℎ (𝑡) = ℎ𝑗 (𝑡) =
√

𝛷(𝑗)
𝑚

(

𝑡2
) is defined in (41) for each 𝑗 ≥ 1, 

satisfies ℎ′′𝛽 (𝑡) ≥ 0 and

1 ≤
𝛶𝑗,𝛽 (𝑡)

(

ℎ′𝑗,𝛽 (𝑡)
)2

≤ 2 +
|𝛽 − 1|
|𝛽|

and |𝛽| ≤
𝑡 ||
|

ℎ′𝑗,𝛽 (𝑡)
|

|

|

ℎ𝑗,𝛽 (𝑡)
≤ 𝐶𝑚 |𝛽| 𝑗𝑚−1,

where 𝛶𝛽 (𝑡) =
(

1
2ℎ

2
𝛽 (𝑡)

)′′
= ℎ𝛽 (𝑡)ℎ′′𝛽 (𝑡) +

(

ℎ′𝛽 (𝑡)
)2
. Moreover, when 𝛽 ≥ 1 we that have ℎ𝑗,𝛽 is increasing.

Moreover, if ℎ̃𝑗,𝛽 (𝑡) = ℎ̃𝛽 = ℎ̃𝑗
(

𝑡𝛽
) with ℎ̃𝑗 (𝑡) =

√

𝛷̃(𝑗)
𝑚

(

𝑡2
) as in Corollary  3.7, then for 𝛶̃𝛽 (𝑡) =

(

1
2 ℎ̃

2
𝛽 (𝑡)

)′′
= ℎ̃𝛽 (𝑡) ℎ̃′′𝛽 (𝑡) +

(

ℎ̃′𝛽 (𝑡)
)2

1 ≤
𝛶̃𝑗,𝛽 (𝑡)

(

ℎ̃′𝑗,𝛽 (𝑡)
)2

≤ 𝐶𝑚 +
|𝛽 − 1|
|𝛽|

 and |𝛽| ≤
𝑡 ||
|

ℎ̃′𝑗,𝛽 (𝑡)
|

|

|

ℎ̃𝑗,𝛽 (𝑡)
≤ 𝐶𝑚 |𝛽| 𝑗𝑚−1,

Proof.  Since for all 𝛽 ≠ 0

ℎ′𝛽 (𝑡) = 𝛽𝑡𝛽−1ℎ′
(

𝑡𝛽
)

and ℎ′′𝛽 (𝑡) = 𝛽 (𝛽 − 1) 𝑡𝛽−2ℎ′
(

𝑡𝛽
)

+ 𝛽2𝑡2𝛽−2ℎ′′
(

𝑡𝛽
)

. (50)

From the first equality it is clear that ℎ𝛽 is increasing when 𝛽 > 0, and therefore so it is ℎ𝑗,𝛽 . The lower bound ℎ′′𝛽 (𝑡) ≥ 0 follows 
from the second identity and the facts that ℎ is an increasing convex function, and 𝛽 𝛽 − 1 ≥ 0 when 𝛽 < 0 or 𝛽 ≥ 1. Now, by 
( )
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Proposition  3.5 we have 

|𝛽| ≤ |𝛽|
𝑡𝛽ℎ′

(

𝑡𝛽
)

ℎ
(

𝑡𝛽
) =

𝑡 ||
|

ℎ′𝛽 (𝑡)
|

|

|

ℎ𝛽 (𝑡)
≤ 𝐶𝑚 |𝛽| 𝑗𝑚−1. (51)

Similarly,

𝛶𝛽 (𝑡)
(

ℎ′𝛽 (𝑡)
)2

=

(

1
2ℎ𝛽 (𝑡)

2
)′′

ℎ′𝛽 (𝑡)
2

=
ℎ𝛽 (𝑡)ℎ′′𝛽 (𝑡) + ℎ

′
𝛽 (𝑡)

2

(

ℎ′𝛽 (𝑡)
)2

=
ℎ
(

𝑡𝛽
) (

𝛽 (𝛽 − 1) 𝑡𝛽−2ℎ′
(

𝑡𝛽
)

+ 𝛽2𝑡2𝛽−2ℎ′′
(

𝑡𝛽
))

(

𝛽𝑡𝛽−1ℎ′
(

𝑡𝛽
))2

+ 1

=
𝛽 − 1
𝛽

ℎ
(

𝑡𝛽
)

𝑡𝛽ℎ′
(

𝑡𝛽
) +

ℎ
(

𝑡𝛽
)

ℎ′′
(

𝑡𝛽
)

(

ℎ′
(

𝑡𝛽
))2

+ 1

=
𝛽 − 1
𝛽

ℎ
(

𝑡𝛽
)

𝑡𝛽ℎ′
(

𝑡𝛽
) +

𝛶
(

𝑡𝛽
)

(

ℎ′
(

𝑡𝛽
))2

. (52)

By Proposition  3.5 we have that 1
𝐶𝑚𝑗𝑚−1

≤ ℎ
(

𝑡𝛽
)

𝑡𝛽ℎ′
(

𝑡𝛽
) ≤ 1, and 1 ≤ 𝛶

(

𝑡𝛽
)

(

ℎ′
(

𝑡𝛽
))2 ≤ 2, so if 𝛽 < 0 or 𝛽 ≥ 1 we have

1 ≤ 𝛽 − 1
𝛽

1
𝐶𝑚𝑗𝑚−1

+ 1 ≤
𝛶𝛽 (𝑡)

(

ℎ′𝛽 (𝑡)
)2

≤ 𝛽 − 1
𝛽

+ 2,

where we used that 𝛽−1𝛽 ≥ 0. The proof for ℎ̃𝑗,𝛽 is identical, using instead the estimates from Corollary  3.7. □

3.6. The 𝐿∞ norm

The following proposition establishes sufficient conditions for the iterated integrals to converge to the supremum norm.

Proposition 3.9.  Suppose that 𝛩 is a nonnegative strictly increasing function such that 𝛩 (0) = 0 and with the following property: 

lim inf
𝑗→∞

𝛩(𝑗) (𝑀)
𝛩(𝑗)

(

𝑀1
) = ∞ for all 𝑀 > 𝑀1 > 0. (53)

Let 𝐷 ⋐ 𝐷1 be nonempty open bounded sets in R𝑛, and let 
{

𝐷𝑗
}∞
𝑗=1 be a sequence of nested open bounded sets satisfying

𝐷1 ⋑ 𝐷2 ⋑ ⋯ ⋑ 𝐷𝑗 ⋑ 𝐷𝑗+1 ⋑ ⋯ ⋑ 𝐷

and such that 𝐷 =
⋂∞
𝑗=1𝐷𝑗 , Let 𝜔 be a Borel measure in 𝐷1, with 𝜔

(

𝐷1
)

< ∞, such that m≪ 𝜔 where m denotes Lebesgue’s measure. 
Then, if 𝑓 is 𝜔-measurable in 𝐷1we have

‖𝑓‖𝐿∞(𝐷) ≤ lim inf
𝑗→∞

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

and

lim
𝑗→∞

‖𝑓‖𝐿∞(

𝐷𝑗
) ≥ lim sup

𝑗→∞
𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

.

Proof.  Since 𝛩 (0) = 0 and 𝛩 is strictly increasing, it is invertible, and 𝛩(𝑗), 𝛩(−𝑗) are nonnegative and strictly increasing for all 
𝑗 ≥ 1. From the hypothesis (53) on 𝛩 we have that for all 𝛿 ∈ (0, 1), the inequality 

𝛿𝛩(𝑗) (𝑀) ≥ 𝛩(𝑗) (𝑀1
)

(54)

holds for each sufficiently large 𝑗 > 𝑁
(

𝑀,𝑀1, 𝛿
)

. Note that if 𝛿 ≥ 1 the inequality trivially holds since 𝛩 is increasing. We have 
that (54) implies the range of 𝛩 is [0,∞), i.e. 𝛩 ([0,∞)) = [0,∞), so 𝛩−1 is also defined on [0,∞). Indeed, for any 𝐴 ≫ 1 there exists 
𝑁 ∈ N such that

𝛩(𝑗) (2)
𝛩(𝑗) (1)

≥ 𝐴
𝛩 (1)

if 𝑗 > 𝑁,

note that 𝛩 (1) > 0 since 𝛩 is strictly increasing and 𝛩 (0) = 0. It then follows that 𝛩(𝑗)(2)
𝛩(𝑗)(𝑡)

≥ 𝐴
𝛩(1)  for all 0 < 𝑡 ≤ 1, in particular for 

0 < 𝑡𝑗 < 1 given by 𝛩(𝑗) (𝑡𝑗
)

= 𝛩 (1). Thus, we see that for all 𝐴 ≫ 1 there exists 𝑁 such that 𝑗 > 𝑁 ⟹ 𝛩(𝑗) (2) ≥ 𝐴, since 𝐴 is 
arbitrary it follows that 𝛩(𝑗) 2 → ∞ as 𝑗 → ∞, so 𝛩 0,∞ = 0,∞ .
( ) ([ )) [ )
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Since m≪𝜔, we have that 𝜔 (

𝐷𝑗
)

> 0 and in general 𝜔 (𝑈 ) > 0 for all nonempty open sets 𝑈 . The sequence ‖𝑓‖𝐿∞(

𝐷𝑗
) is 

decreasing and bounded below by ‖𝑓‖𝐿∞(𝐷), it follows that 𝐹 = lim𝑗→∞ ‖𝑓‖𝐿∞(

𝐷𝑗
) exists, and 𝐹 ≥ ‖𝑓‖𝐿∞(𝐷). Now, for each fixed 

𝑘 ≥ 1 and 𝑗 ≥ 𝑘 we have

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

≤ 𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗)

(

‖𝑓‖𝐿∞(

𝐷𝑘
)

)

𝑑𝜔

)

(55)

≤ 𝛩(−𝑗)
(

𝜔
(

𝐷𝑘
)

𝛩(𝑗)
(

‖𝑓‖𝐿∞(

𝐷𝑘
)

))

.

For 𝜀 > 0 and 𝑗 ≥ 𝑁𝑘 = max
{

𝑘,𝑁
(

‖𝑓‖𝐿∞(

𝐷𝑘
) + 𝜀, ‖𝑓‖𝐿∞(

𝐷𝑘
) , 1

𝜔
(

𝐷𝑘
)

)}

, we have that 𝜔 (

𝐷𝑘
)

𝛩(𝑗)
(

‖𝑓‖𝐿∞(

𝐷𝑘
)

)

≤ 𝛩(𝑗)
(

‖𝑓‖𝐿∞(

𝐷𝑘
) + 𝜀

)

, so

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

≤ 𝛩(−𝑗)
(

𝛩(𝑗)
(

‖𝑓‖𝐿∞(

𝐷𝑘
) + 𝜀

))

= ‖𝑓‖𝐿∞(

𝐷𝑘
) + 𝜀

for all 𝑗 ≥ 𝑁𝑘. Then

lim sup
𝑗→∞

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

≤ ‖𝑓‖𝐿∞(

𝐷𝑘
) + 𝜀.

Since 𝑘, 𝜀 > 0 are arbitrary, this proves that lim sup𝑗→∞ 𝛩(−𝑗)
(

∫𝐷𝑗 𝛩
(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

≤ 𝐹 = lim𝑘→∞ ‖𝑓‖𝐿∞(

𝐷𝑘
).

On the other hand, for 0 < 2𝜀 < ‖𝑓‖𝐿∞(𝐷) (assume 𝑓 is not trivially zero in 𝐷), define 𝛥𝜀 =
{

𝑥 ∈ 𝐷 ∶ |𝑓 (𝑥)| ≥ ‖𝑓‖𝐿∞(𝐷) − 𝜀
}

. 
Then we have that 0 < 𝜔 (

𝛥𝜀
)

< ∞ (here we used that 𝜔 (

𝐷1
)

< ∞) and

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔 ≥ 𝜔

(

𝛥𝜀
)

𝛩(𝑗) (
‖𝑓‖𝐿∞(𝐷) − 𝜀

)

.

Hence, from (54), for 𝑗 ≥ 𝑁
(

‖𝑓‖𝐿∞(𝐷) − 𝜀, ‖𝑓‖𝐿∞(𝐷) − 2𝜀, 𝜔
(

𝛥𝜀
)) it follows that

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

≥ 𝛩(−𝑗) (𝜔
(

𝛥𝜀
)

𝛩(𝑗) (
‖𝑓‖𝐿∞(𝐷) − 𝜀

))

≥ 𝛩(−𝑗) (𝛩(𝑗) (
‖𝑓‖𝐿∞(𝐷) − 2𝜀

))

= ‖𝑓‖𝐿∞(𝐷) − 2𝜀.

Letting 𝑗 → ∞ we obtain

lim inf
𝑗→∞

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜇𝑗

)

≥ ‖𝑓‖𝐿∞(𝐷) − 2𝜀,

and since 𝜀 > 0 is arbitrary we conclude that

‖𝑓‖𝐿∞(𝐷) ≤ lim inf
𝑗→∞

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜇𝑗

)

.

This finishes the proof. □

Remark 3.10.  Note that in the previous result we cannot in general guarantee that

‖𝑓‖𝐿∞(𝐷) = lim
𝑗→∞

𝛩(−𝑗)

(

∫𝐷𝑗
𝛩(𝑗) (|𝑓 (𝑥)|) 𝑑𝜔

)

unless we have ‖𝑓‖𝐿∞(𝐷) = lim𝑗→∞ ‖𝑓‖𝐿∞(

𝐷𝑗
). This will be the case if, for example, 𝑓 is continuous.

Remark 3.11. Proposition  3.9 also holds with 𝑑𝜔 replaced by 𝑑𝜇𝑗 = 𝑑𝜔
𝜔
(

𝐷𝑗
)  in each 𝐷𝑗 , the proof is the same.

Remark 3.12.  The Young functions 𝛷 = 𝛷𝑚 defined on (34) satisfies the hypotheses of Proposition  3.9. Indeed, it is clear that 𝛷𝑚
is nonnegative, strictly increasing, and vanishes at the origin. Given any 𝑀 > 𝑀1 > 0, there exists 𝑁0 such that 𝛷

(

𝑁0
)

(

𝑀1
)

≥ 𝐸, 
so for all 𝑁 ≥ 1 we have

𝛷𝑁+𝑁0 (𝑀)
𝛷𝑁+𝑁0

(

𝑀1
) = exp

(

(𝑎 +𝑁)𝑚 − (𝑏 +𝑁)𝑚
)

,

where 𝑎 = (

ln𝛷𝑁0 (𝑀)
)

1
𝑚 >

(

ln𝛷𝑁0
(

𝑀1
))

1
𝑚 = 𝑏. Since for 𝑚 > 1, we have

lim
𝑁→∞

[

(𝑎 +𝑁)𝑚 − (𝑏 +𝑁)𝑚
]

≥ lim
𝑁→∞

(𝑎 − 𝑏) ⋅ 𝑚(𝑏 +𝑁)𝑚−1 = ∞,

we see that the growth condition (53) holds for 𝛷. Note that in terms of the associated Orlicz quasidistance (26) we have that 
𝑓 ≤ lim 𝑓 .
‖ ‖𝐿∞(𝐷) 𝑗→∞ ‖ ‖𝛷(𝑗) (𝐷,𝜇)
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In [4], Cruz-Uribe and Rodney established a general result for Orlicz norms with Young functions 𝐵𝑝𝑞 (𝑡) = 𝑡𝑝
(

log
(

𝑒0 + 𝑡
))𝑞 , 

1 ≤ 𝑝 < ∞, 𝑞 > 0, 𝑒0 = 𝑒− 1. They showed that if 𝑓 is measurable in a general measure space (𝑋,, 𝜇) then lim𝑞→∞ ‖𝑓‖𝐵𝑝𝑞 = ‖𝑓‖∞, 
where ‖𝑓‖𝐵𝑝𝑞  is the Orlicz norm of 𝑓 in 𝑋. Even though the results seem of a similar type, Proposition  3.9 neither contains nor it 
is contained in the theorem in [4], since the integrals 𝛩(−𝑗)

(

∫𝐷𝑗 𝛩
(𝑗) (|𝑓 |) 𝑑𝜔

)

 are not in general the Orlicz norms associated with 
the Young functions 𝛩(𝑗), but rather the quadi-distances ‖⋅‖𝐷𝛩(𝑗)  defined in Section 3.1.

4. The Moser method - Abstract local boundedness

In this section we prove the abstract boundedness result under the presence of an Orlicz-Sobolev inequality (9) and a standard 
sequence of Lipschitz cutoff functions (Definition  1.3) for the Young functions 𝛷𝑚 given in (10).

4.1. Boundedness of subsolutions and supersolutions

Recall that 
√

𝐴 (𝑥) is a bounded Lipschitz continuous 𝑛× 𝑛 real-valued nonnegative definite matrix in R𝑛, and A (𝐴,𝛬, 𝜆) denotes 
the set of symmetric 𝑛× 𝑛 matrices which are equivalent to 𝐴 within constants 0 < 𝜆 ≤ 𝛬 < ∞ as given in (2), i.e. 𝜆 𝐴 ≤ 𝐴̃ ≤ 𝛬 𝐴 in 
the sense of quadratic forms. In what follows 𝐵 = 𝐵 (𝑥, 𝑟), 0 < 𝑟 denotes a 𝑑-metric ball where 𝑑 is a fixed metric in R𝑛.

Theorem 4.1.  Let 𝛷(𝑡) = 𝛷𝑚(𝑡) be as in (34) with 𝑚 > 2; suppose that there exists a superradius 𝜑 so that the (𝛷𝑚, 𝐴, 𝜑
)

-Sobolev bump 
inequality (9) holds in 𝐵 = 𝐵 (𝑥, 𝑟) for some 0 < 𝑟 ≤ 1, and that an (𝐴, 𝑑)-standard sequence of Lipschitz cutoff functions, as given in 
Definition  1.3, exists.

Let 𝜈0 = 1 − 𝛿𝑥(𝑟)
𝑟 , where 𝛿𝑥 (𝑟) is the doubling increment of 𝐵 (𝑥, 𝑟), defined by (12). Then for all 𝜈 ∈ [

𝜈0, 1
) and 𝛽 ∈ [1,∞) there exists 

a constant 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽) such that if 𝐴̃ ∈ A (𝐴,𝛬, 𝜆), and 𝑢 is a weak subsolution to the equation 𝐿𝐴̃𝑢 = −div𝐴̃∇𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1
in 𝐵 (𝑥, 𝑟), with 𝐴-admissible right hand side 

(

𝜙0, 𝜙1

)

 (see Definition  1.5), then 
‖

‖

‖

(

𝑢+ + 𝜙∗)𝛽‖
‖

‖𝐿∞(𝐵(𝑥,𝜈𝑟))
≤ 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽) ‖

‖

‖

(

𝑢+ + 𝜙∗)𝛽‖
‖

‖𝐿2(𝐵(𝑥,𝑟),𝑑𝜇𝑟)
𝛽 ≥ 1, (56)

where 𝜙∗ =
‖

‖

‖

‖

(

𝜙, 𝜙1

)

‖

‖

‖

‖(𝐵(𝑥,𝑟))
 and .𝑑𝜇𝑟 = 𝑑𝑥

|𝐵(𝑥,𝑟)| . In fact, we can choose

𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽) = exp
(

𝐶𝑚,𝜆,𝛬

(

(𝛽 − 1)𝑚 +
(

ln
𝜑 (𝑟)

(1 − 𝜈) 𝑟

)𝑚))

.

Furthermore, if 𝑢 is a weak supersolution to the equation 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 in 𝐵 (𝑥, 𝑟), then (56) holds with 𝑢+ replaced by 𝑢−. In 
particular, if 𝑢 is a solution to 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴̃

(

𝜙1

)

 in 𝐵 (𝑥, 𝑟), then 𝑢 is locally bounded in 𝐵 (𝑥, 𝑟) and (56) holds for |𝑢| and all 
𝜈 ∈

[

𝜈0, 1
)

.

Proof.  Let us start by considering the standard sequence of Lipschitz cutoff functions {𝜓𝑗
}∞
𝑗=1 depending on 𝑟 as given in Definition 

1.3, along with the balls 𝐵𝑗 = 𝐵(𝑥, 𝑟𝑗 ) ⊃ supp𝜓𝑗 , so that 𝑟 = 𝑟1 > 𝑟2 >⋯ > 𝑟𝑗 > 𝑟𝑗+1 > ⋯ 𝑟∞ ≡ lim𝑗→∞ 𝑟𝑗 = 𝜈𝑟, and ‖‖
‖

∇𝐴𝜓𝑗
‖

‖

‖∞
≤ 𝐶𝑗2

(1 − 𝜈) 𝑟
with ∇𝐴 as in (3) and 1 − 𝛿𝑥(𝑟)

𝑟 = 𝜈0 ≤ 𝜈 < 1.
Note that a priori we do not know whether |𝑢|+ 𝜙∗ ∈ 𝐿2𝛽 (𝐵) when 𝛽 > 1, however, the proof will proceed with the assumption 

that |𝑢| + 𝜙∗ ∈ 𝐿2𝛽 (𝐵) for all 𝛽, and then, a posteriori, the case 𝛽 = 1 implies that 𝑢± + 𝜙∗ ∈ 𝐿2𝛽 (𝐵 (𝑥, 𝜈𝑟)) for all 0 < 𝜈 < 1, 𝜙∗ ≥ 0, 
𝛽 ≥ 1. Let 𝑢 be a subsolution or supersolution of 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 in 𝐵 (𝑥, 𝑟). Then we have that if 

𝑎̃ = 𝑒
2𝑚−1
𝛽

‖𝑢± + 𝜙∗
‖𝐿2𝛽 (𝑑𝜇𝑟)

(57)

then 𝑢̃ = 𝑎̃𝑢 is a subsolution or supersolution (respectively) of 𝐿𝐴̃𝑢̃ = 𝜙̃0 − div𝐴
(

⃖⃗̃𝜙1

)

 in 𝐵(𝑥, 𝑟) with 𝜙̃0 = 𝑎̃𝜙0, ⃖⃗̃𝜙1 = 𝑎̃𝜙1. Moreover, 

𝜙̃∗ ≡
‖

‖

‖

‖

(

𝜙̃0, ⃖⃗̃𝜙1

)

‖

‖

‖

‖𝑋(𝐵)
= 𝜙∗𝑒

2𝑚−1
𝛽

‖𝑢±+𝜙∗‖𝐿2𝛽 (𝑑𝜇𝑟)
≤ 𝑒

2𝑚−1
𝛽 , and 

‖

‖

‖

(

𝑢̃± + 𝜙̃∗)𝛽‖
‖

‖

1
𝛽

𝐿2(𝑑𝜇𝑟)
= ‖

‖

𝑢̃± + 𝜙̃∗
‖

‖𝐿2𝛽 (𝑑𝜇𝑟)
=
‖

‖

‖

‖

‖

𝑢± + 𝜙∗

‖𝑢± + 𝜙∗
‖𝐿2𝛽 (𝑑𝜇𝑟)

‖

‖

‖

‖

‖𝐿2𝛽 (𝑑𝜇𝑟)
𝑒
2𝑚−1
𝛽 = 𝑒

2𝑚−1
𝛽 . (58)

For simplicity, in what follows we write 𝑣 = 𝑢̃± + 𝜙̃∗, explicitly, 

𝑣 =

⎧

⎪

⎨

⎪

⎩

𝑢̃+ + 𝜙̃∗ if 𝐿𝐴̃𝑢̃ ≤ 𝜙̃0 − div𝐴
(

⃖⃗̃𝜙1

)

𝑢̃− + 𝜙̃∗ if 𝐿𝐴̃𝑢̃ ≥ 𝜙̃0 − div𝐴
(

⃖⃗̃𝜙1

) (59)

By Proposition  3.8 we have that ℎ (𝑡) = ℎ𝑗,𝛽 (𝑡) =
√

𝛷(𝑗−1)
𝑚

(

𝑡2𝛽
)

, 𝑗 ≥ 1, (where 𝛷(0) (𝑡) = 𝑡, see Remark  3.6) satisfies the hypotheses 
of Lemma  2.1 with constant 𝐶 = 𝐶 𝛽 𝑗𝑚−1, namely, ℎ′ 𝑡 = |ℎ′ 𝑡 | ≤ 𝐶 𝛽 𝑗𝑚−1

ℎ𝑗,𝛽 (𝑡) . We apply Lemma  2.1 to ℎ 𝑡 = ℎ 𝑡 , 
ℎ𝑗,𝛽 𝑚 | | 𝑗,𝛽 ( ) |

|

𝑗,𝛽 ( )|
|

𝑚 | | 𝑡 ( ) 𝑗,𝛽 ( )
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with 𝜓 = 𝜓𝑗 , 𝑑𝜇𝑗 ≡ 𝑑𝑥
|

|

|

𝐵𝑗
|

|

|

, to obtain 

∫𝐵𝑗
𝜓2
𝑗
|

|

|

∇𝐴
[

ℎ𝑗 (𝑣)
]

|

|

|

2
𝑑𝜇𝑗 ≤ 𝐶2

𝑚,𝜆,𝛬𝛽
2𝑗2(𝑚−1) ∫𝐵𝑗

(ℎ(𝑣))2
(

|∇𝐴𝜓|
2 + 𝜓2) 𝑑𝜇𝑗 , (60)

where we used the estimates in Proposition  3.8, namely, ||
|

ℎ′𝑗,𝛽 (𝑡)
|

|

|

≤ 𝐶𝑚 |𝛽| 𝑗𝑚−1
ℎ𝑗,𝛽 (𝑡)
𝑡 . It follows that

‖

‖

‖

∇𝐴[𝜓𝑗ℎ(𝑣)]
‖

‖

‖

2

𝐿2(𝜇𝑗 )
≤ 2 ‖‖

‖

𝜓𝑗∇𝐴ℎ (𝑣)
‖

‖

‖

2

𝐿2(𝜇𝑗
) + 2 ‖‖

‖

|

|

|

∇𝐴𝜓𝑗
|

|

|

ℎ (𝑣)‖‖
‖

2

𝐿2(𝜇𝑗
)

≤ 𝐶2
𝑚,𝜆,𝛬𝛽

2𝑗2(𝑚−1) ∫𝐵𝑗
ℎ(𝑣)2

(

|∇𝐴𝜓𝑗 |
2 + 𝜓2

𝑗

)

𝑑𝜇𝑗

+2 ‖‖
‖

|

|

|

∇𝐴𝜓𝑗
|

|

|

ℎ (𝑣)‖‖
‖

2

𝐿2(𝜇𝑗
)

≤ 𝐶2
𝑚,𝜆,𝛬 (𝛽 + 1)2 𝑗2(𝑚−1) ‖‖

‖

∇𝐴𝜓𝑗
‖

‖

‖

2

𝐿∞ ‖ℎ (𝑣)‖2
𝐿2(𝐵𝑗 ,𝜇𝑗

)

≤ 𝐶2
𝑚,𝜆,𝛬

(𝛽 + 1)2

(1 − 𝜈)2 𝑟2
𝑗2(𝑚+1) ‖ℎ (𝑣)‖2

𝐿2(𝐵𝑗 ,𝜇𝑗
) , (61)

where we used the inequalities ‖‖
‖

𝜓𝑗
‖

‖

‖∞
≤ 1 ≤ ‖

‖

‖

∇𝐴𝜓𝑗
‖

‖

‖𝐿∞ ≤ 𝐶𝑗2∕ ((1 − 𝜈) 𝑟), and the fact 𝑟𝑗 ≤ 𝑟 ≤ 1.

Taking 𝑤 = 𝜓2
𝑗 ℎ(𝑣)

2 in the Orlicz-Sobolev inequality (9), and since 
|

|

|

𝐵
(

𝑥,𝑟𝑗
)

|

|

|

|

|

|

𝐵
(

𝑥,𝑟𝑗+1
)

|

|

|

≤ 2 by the choice of the sequence of radii, yields

𝛷(−1)

(

∫𝐵𝑗+1
𝛷(ℎ(𝑣)2)𝑑𝜇𝑗+1

)

≤ 𝛷(−1)

(

∫𝐵𝑗
2𝛷(𝜓2

𝑗 ℎ(𝑣)
2)𝑑𝜇𝑗

)

≤ 𝛷(−1)

(

∫𝐵𝑗
𝛷(2𝜓2

𝑗 ℎ(𝑣)
2)𝑑𝜇𝑗

)

≤ 𝐶𝜑
(

𝑟𝑗
) ‖

‖

‖

‖

∇𝐴
(

(

𝜓𝑗ℎ (𝑣)
)2
)

‖

‖

‖

‖𝐿1(𝐵𝑗 ,𝜇𝑗
)

≤ 2𝐶𝜑
(

𝑟𝑗
)

‖

‖

‖

∇𝐴
(

𝜓𝑗ℎ(𝑣)
)

‖

‖

‖𝐿2(𝐵𝑗 ,𝜇𝑗
)

‖

‖

‖

𝜓𝑗ℎ(𝑣)
‖

‖

‖𝐿2(𝐵𝑗 ,𝜇𝑗
)

≤ 𝐶𝑚,𝜆,𝛬 (𝛽 + 1)
𝜑
(

𝑟𝑗
)

(1 − 𝜈) 𝑟
𝑗𝑚+1 ‖ℎ (𝑣)‖2

𝐿2(𝐵𝑗 ,𝜇𝑗
)

where we applied (61). Recalling the definition of ℎ(𝑣) =
√

𝛷(𝑗−1)
(

𝑡2𝛽
) with 𝛷 = 𝛷𝑚, this is

∫𝐵𝑗+1
𝛷(𝑗) (𝑣2𝛽

)

𝑑𝜇𝑗+1 = ∫𝐵𝑗+1
𝛷(ℎ(𝑣)2) 𝑑𝜇𝑗+1

≤ 𝛷

(

𝐶𝑚,𝜆,𝛬 (𝛽 + 1)
𝜑 (𝑟)

(1 − 𝜈) 𝑟
𝑗𝑚+1 ∫𝐵𝑗

𝛷(𝑗−1) (𝑣2𝛽
)

𝑑𝜇𝑗

)

.

Thus, setting 

𝐾 = 𝐾standard(𝜑, 𝑟) = 𝐶𝑚,𝜆,𝛬 (𝛽 + 1)
𝜑 (𝑟)

(1 − 𝜈) 𝑟
> 1, (62)

we have that 

∫𝐵(𝑥,𝑟𝑗+1
)

𝛷(𝑗) (𝑣2𝛽
)

𝑑𝜇𝑗+1 ≤ 𝛷

(

𝐾𝑗𝑚+1 ∫𝐵(𝑥,𝑟𝑗
)

𝛷(𝑗−1) (𝑣2𝛽
)

𝑑𝜇𝑗

)

. (63)

Now define a sequence by 

𝑏1 = ∫𝐵1

|𝑣|2𝛽 𝑑𝜇1, 𝑏𝑗+1 = 𝛷
(

𝐾𝑗𝑚+1𝑏𝑗
)

. (64)

The inequality (63) and a basic induction shows that 

∫𝐵𝑗
𝛷(𝑗−1) (𝑣2𝛽

)

𝑑𝜇𝑗 ≤ 𝑏𝑗 . (65)

Now we apply Lemma  4.3 with 𝑏1 = ∫𝐵(𝑥,𝑟1
)

|𝑣|2𝛽 𝑑𝜇𝑟1 , 𝑏𝑗+1 = 𝛷
(

𝐾𝑗𝛾𝑏𝑗
)

, and 𝛾 = 𝑚 + 1, then there exists a positive number 
𝐶∗ = 𝐶∗ (𝑏1, 𝐾, 𝑚

) such that the inequality 𝛷(𝑗) (𝐶∗) ≥ 𝑏𝑗+1 holds for each positive number 𝑗. Moreover, since from (58) we have 

that 𝑏1 = ‖𝑣‖2𝛽
𝐿2𝛽 (𝑑𝜇𝑟)

=
(

𝑒
2𝑚−1
𝛽

)2𝛽

= 𝑒2𝑚 , we can take

exp
((

𝐶𝑚 ln𝐾
)𝑚) ≤ exp

(

𝐶𝑚,𝜆,𝛬

(

(𝛽 − 1)𝑚 +
(

ln
𝜑 (𝑟)

)𝑚))

≡ 𝐶∗.

(1 − 𝜈) 𝑟
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It follows that

𝛷−(𝑗)

(

∫𝐵(𝑥,𝑟𝑗+1
)

𝛷(𝑗) (𝑣2𝛽
)

𝑑𝜇𝑗+1

)

≤ 𝛷−(𝑗) (𝑏𝑗+1
)

≤ 𝐶∗.

On the other hand, by Proposition  3.9 (and Remark  3.12) we have that

‖

‖

‖

𝑣2𝛽‖‖
‖𝐿∞(

𝐵∞
) ≤ lim inf

𝑗→∞
𝛷−(𝑗+1)

(

∫𝐵𝑗+1
𝛷(𝑗+1) (𝑣2

)

𝑑𝜇𝑗+1

)

,

hence
‖

‖

‖

𝑣2𝛽‖‖
‖𝐿∞(𝐵(𝑥,𝜈𝑟))

= ‖

‖

‖

(

𝑢̃+ + 𝜙̃
)2𝛽‖

‖

‖𝐿∞(𝐵(𝑥,𝜈𝑟))
= ‖

‖

𝑢̃+ + 𝜙̃‖
‖

2𝛽
𝐿∞(𝐵(𝑥,𝜈𝑟))

= 𝑒2
𝑚
‖

‖

‖

‖

‖

𝑢 + 𝜙∗

‖𝑢+ + 𝜙∗
‖𝐿2𝛽 (𝑑𝜇𝑟)

‖

‖

‖

‖

‖

2𝛽

𝐿∞(𝐵(𝑥,𝜈𝑟))

= 𝑒2
𝑚

‖

‖

‖

(𝑢 + 𝜙∗)𝛽‖‖
‖

2

𝐿∞(𝐵(𝑥,𝜈𝑟))

‖

‖

‖

(𝑢+ + 𝜙∗)𝛽‖‖
‖

2

𝐿2(𝐵(𝑥,𝑟),𝑑𝜇𝑟)

≤ exp
(

𝐶𝑚,𝜆,𝛬

(

(𝛽 − 1)𝑚 +
(

ln
𝜑 (𝑟)

(1 − 𝜈) 𝑟

)𝑚))

≡ (𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽))2 .

Recalling now that we wrote 𝑢 for 𝑢̃ defined in (57), and by the choice of 𝑣 in (59), this yields
‖

‖

‖

(

𝑢+ + 𝜙∗)𝛽‖
‖

‖𝐿∞(𝐵(𝑥,𝜈𝑟))
≤ 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽) ‖

‖

𝑢+ + 𝜙∗
‖

‖

𝛽
𝐿2𝛽 (𝐵(𝑥,𝑟),𝑑𝜇𝑟)

for all 𝛽 ≥ 1 when 𝐿𝐴̃𝑢 ≤ 𝜙0 − div𝐴
(

⃖⃗𝜙1

)

, while we obtain
‖

‖

‖

(

𝑢− + 𝜙∗)𝛽‖
‖

‖𝐿∞(𝐵(𝑥,𝜈𝑟))
≤ 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽) ‖

‖

𝑢− + 𝜙∗
‖

‖

𝛽
𝐿2𝛽 (𝐵(𝑥,𝑟),𝑑𝜇𝑟)

for all 𝛽 ≥ 1 when 𝐿𝐴̃𝑢 ≥ 𝜙0 − div𝐴
(

⃖⃗𝜙1

)

. □

In the previous theorem we obtain abstract local boundedness of weak solutions of 𝐿𝑢 = 𝜙0 − div𝐴𝜙1, when the right hand side 
only had the first term this was obtained in [9]. In order to obtain continuity, we need 𝐿∞ bounds for powers of solutions 𝑢𝛽 for 𝛽
in a neighborhood of 𝛽 = 0. When 𝛽 < 0 this can be done with a slight modification of the previous argument via the application of 
a different Caccioppoli estimate (Lemma  2.3). Note that we only consider nonnegative weak supersolutions, as this suffices for our 
applications.

Theorem 4.2.  Under the hypotheses of Theorem  4.1, for all 𝜈 ∈ [

𝜈0, 1
) and 𝛽 < 0 there exists a constant 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈) such that if 𝑢

is a nonnegative weak supersolution to the equation 𝐿𝐴̃𝑢 = 𝜙0 − div𝐴𝜙1 in 𝐵 (0, 𝑟), then 
‖

‖

‖

(

𝑢 + 𝜙∗)𝛽‖
‖

‖𝐿∞(𝐵(0,𝜈𝑟))
≤ 𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈, 𝛽) ‖

‖

‖

(

𝑢 + 𝜙∗)𝛽‖
‖

‖𝐿2(𝑑𝜇𝑟)
𝛽 < 0 (66)

In fact, we can choose

𝐶 (𝜑,𝑚, 𝜆, 𝛬, 𝑟, 𝜈) = exp
(

𝐶𝑚,𝜆,𝛬

(

(|𝛽| + 1)𝑚 +
(

ln
𝜑 (𝑟)

(1 − 𝜈) 𝑟

)𝑚))

.

Proof.  We proceed as in the proof of Theorem  4.1, to consider a standard sequence of Lipschitz cutoff functions {𝜓𝑗
}∞
𝑗=1 depending 

on 𝑟 as given in Definition  1.3, along with the balls 𝐵𝑗 = 𝐵(0, 𝑟𝑗 ) ⊃ supp𝜓𝑗 , so that 𝑟 = 𝑟1 > ⋯ > 𝑟𝑗 ↘ 𝑟∞ ≡ lim𝑗→∞ 𝑟𝑗 = 𝜈𝑟, and 
‖

‖

‖

∇𝐴𝜓𝑗
‖

‖

‖∞
≤ 𝐶𝑗2

(1 − 𝜈) 𝑟
 with 1 − 𝛿0(𝑟)

𝑟 = 𝜈0 ≤ 𝜈 < 1.

Let 𝑢 be a nonnegative supersolution of 𝐿𝐴̃𝑢 = −div𝐴̃∇𝐴̃𝑢 = 𝜙0−div𝐴𝜙1 in 𝐵 (0, 𝑟), then we have that (𝑢 + 𝜙∗)𝛽  is locally bounded 
for all 𝛽 < 0, 𝜙∗ > 0. If 𝜙∗ = 0 we replace it by a small positive 𝜀 and let 𝜀 → 0 at the end of the argument. As in the previous proof, 
we have that if

𝑎̃ = 𝑒
2𝑚−1
𝛽

‖𝑢 + 𝜙∗
‖𝐿2𝛽 (𝑑𝜇𝑟)

then 𝑢̃ = 𝑎̃𝑢 is a supersolution of 𝐿𝑢̃ = 𝜙̃0 − div𝐴
(

⃖⃗̃𝜙1

)

 in 𝐵(0, 𝑟) with

𝜙̃0 = 𝑎̃𝜙0, ⃖⃗̃𝜙1 = 𝑎̃𝜙1, 𝜙̃∗ ≡
‖

‖

‖

(

𝜙̃0, ⃖⃗̃𝜙1

)

‖

‖

‖

=
𝜙∗𝑒

2𝑚−1
𝛽

∗ ≤ 𝑒
2𝑚−1
𝛽 ,
‖ ‖𝑋(𝐵) ‖𝑢 + 𝜙 ‖𝐿2𝛽 (𝑑𝜇𝑟)
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and

‖

‖

‖

(

𝑢̃ + 𝜙̃∗)𝛽‖
‖

‖

1
𝛽

𝐿2(𝑑𝜇𝑟)
= ‖

‖

𝑢̃ + 𝜙̃∗
‖

‖𝐿2𝛽 (𝑑𝜇𝑟)
=
‖

‖

‖

‖

‖

𝑢 + 𝜙∗

‖𝑢 + 𝜙∗
‖𝐿2𝛽 (𝑑𝜇𝑟)

‖

‖

‖

‖

‖𝐿2𝛽 (𝑑𝜇𝑟)
𝑒
2𝑚−1
𝛽 = 𝑒

2𝑚−1
𝛽 .

By Proposition  3.8 we have that ℎ (𝑡) = ℎ𝑗,𝛽 (𝑡) =
√

𝛷̃(𝑗−1)
𝑚

(

𝑡2𝛽
)

, 𝑗 ≥ 1, (where 𝛷̃(0) (𝑡) = 𝑡, see Remark  3.6) satisfies the hypotheses 
of Lemma  2.3 . Explicitly, for 𝛶 (𝑡) = 𝛶𝑗,𝛽 (𝑡) = ℎ(𝑡)ℎ′′(𝑡) + ℎ′(𝑡)2 > 0, we have

1 ≤
𝛶𝑗,𝛽 (𝑡)

(

ℎ′𝑗,𝛽 (𝑡)
)2

≤ 𝐶𝑚 +
|𝛽 − 1|
|𝛽|

and |

|

|

ℎ′𝑗,𝛽
|

|

|

≤ 𝐶𝑚 |𝛽| 𝑗𝑚−1
ℎ𝑗,𝛽 (𝑡)
𝑡

,

and ℎ′ (𝑡) < 0. Notice that here we are using the modified Young function 𝛷̃𝑚 (35) so we may apply Lemma  2.3 with 𝑐1 = 1, 
𝐶1 = 𝐶𝑚𝑁𝑚−1 + |𝛽−1|

|𝛽| , 𝐶2 = 𝐶𝑚 |𝛽| 𝑗𝑚−1, and

𝐶2
1𝐶

2
2

𝑐21
=
(

𝐶𝑚 +
|𝛽 − 1|
|𝛽|

)2
(

𝐶𝑚,𝜆,𝛬 |𝛽| 𝑗𝑚−1
)2 ≤ 𝐶𝑚,𝜆,𝛬 |𝛽|2 𝑗2(𝑚−1),

to obtain for 𝑣 = 𝑢̃ + 𝜙̃∗, ℎ = ℎ𝑗,𝛽

∫𝐵𝑗
𝜓2
𝑗
|

|

∇𝐴ℎ (𝑣)||
2 𝑑𝜇𝑗 ≤ 𝐶𝑚,𝜆,𝛬 |𝛽|2 𝑗2(𝑚−1) ∫𝐵𝑗

ℎ (𝑣)2
(

|

|

|

∇𝐴𝜓𝑗
|

|

|

2
+ 𝜓2

𝑗

)

𝑑𝜇𝑗 .

This is a similar estimate to (60) in the previous proof of Theorem  4.1. Recall that since then (𝛷𝑚, 𝜑
)

-Sobolev bump inequality (9) 
holds in 𝐵, then for some 𝐶𝑚 ≥ 1 we have that from (40) then (𝛷̃𝑚, 𝐶𝑚𝜑

)

-Sobolev bump inequality holds in 𝐵. The proof proceeds 
now identically as before, to obtain (66) with the given constants. □

4.2. Proof of recurrence inequalities

Now we provide the proof of the recurrence estimate used in Section 4.1 to prove boundedness of solutions.

Lemma 4.3.  Let 𝑚 > 2, 𝐾 > 1 and 𝛾 > 0. Consider the sequence defined by
𝑏1 ≥ 𝑒2

𝑚
, 𝑏𝑛+1 = 𝛷(𝐾𝑛𝛾𝑏𝑛).

Then there exists a positive number 𝐶∗ = 𝐶∗ (𝑚, 𝑏1, 𝐾, 𝛾
)

, such that the inequality 𝛷(𝑛−1)(𝐶∗) ≥ 𝑏𝑛 holds for each positive integer 𝑛. In fact, 
we can choose

𝐶∗ = exp
(

(

ln 𝑏1
)

1
𝑚 + 𝐶𝑚 (𝛾 + ln𝐾)

)𝑚

where 𝐶𝑚 only depends on 𝑚. Now we prove the growth estimate which allowed the Moser iteration to yield the boundedness theorem.

Proof.  Let 𝑚 > 2, 𝐾 > 1, 𝛾 > 0, and

𝑏1 = ∫𝐵(0,𝑟1
)

|𝑢|2 𝑑𝜇𝑟1 ≥ 𝑒2
𝑚
, 𝑏𝑛+1 = 𝛷(𝐾𝑛𝛾𝑏𝑛).

We want to estimate 𝛷(−𝑗) (𝑏𝑗+1
)

. Let us define another sequence by
𝛽1 = 𝐶∗, 𝛽𝑛+1 = 𝛷(𝛽𝑛), 𝑛 ≥ 0

Thus we are trying to find a number 𝐶∗ such that 𝛽𝑛 = 𝛷(𝑛−1) (𝛽1
)

≥ 𝑏𝑛 holds for all 𝑛 ≥ 0. Next we define the two related sequences:

𝛼𝑛 =
(

ln 𝛽𝑛
)1∕𝑚 , and 𝛽𝑛 =

(

ln 𝑏𝑛
)1∕𝑚 .

The sequence {𝛼𝑛} satisfies 𝛼1 = (ln𝐶∗)1∕𝑚 and
𝛼𝑛+1 =

(

ln 𝛽𝑛+1
)1∕𝑚 =

(

ln𝛷
(

𝛽𝑛
))1∕𝑚 = (ln 𝛽𝑛)1∕𝑚 + 1 = 𝛼𝑛 + 1

for all 𝑛 ≥ 1. As for the other sequence, it is clear that 𝛽1 =
(

ln 𝑏1
)1∕𝑚 > 2, but the recurrence relation for 𝑏𝑛 is a bit more complicated, 

we have:
𝛽𝑛+1 =

(

ln 𝑏𝑛+1
)1∕𝑚 =

(

ln𝛷
(

𝐾𝑛𝛾𝑏𝑛
))1∕𝑚 =

(

ln
(

𝐾𝑛𝛾𝑏𝑛
))1∕𝑚 + 1

=
(

𝛽𝑚𝑛 + ln (𝐾𝑛𝛾 )
)1∕𝑚 + 1.

This is clear that 𝛽𝑛+1 > 𝛽𝑛 + 1 thus we have a rough lower bound 
𝛽𝑛+1 ≥ 𝑛 + 𝑏1. (67)

Since the function 𝑔(𝑥) = 𝑥1∕𝑚 is concave, we have

𝛽𝑛+1 =
(

𝛽𝑚𝑛 + ln (𝐾𝑛𝛾 )
)1∕𝑚 + 1 = 𝛽𝑛

{

1 +
ln (𝐾𝑛𝛾 )

𝑚

}1∕𝑚
+ 1 ≤ 𝛽𝑛 +

ln (𝐾𝑛𝛾 )
𝑚−1

+ 1.

𝛽𝑛 𝑚 ⋅ 𝛽𝑛
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Thus 

𝛽𝑛+1 ≤ 𝑏1 + 𝑛 +
1
𝑚

𝑛
∑

𝑗=1

ln (𝐾𝑗𝛾 )
𝛽𝑚−1𝑗

⟹ 𝛼𝑛 − 𝛽𝑛 ≥ 𝛼1 − 𝑏1 −
1
𝑚

𝑛
∑

𝑗=1

ln (𝐾𝑗𝛾 )
𝛽𝑚−1𝑗

. (68)

Because 𝑚 > 2, by (67) we have
𝑛
∑

𝑗=1

ln (𝐾𝑗𝛾 )
𝛽𝑚−1𝑗

<
∞
∑

𝑗=1

ln (𝐾𝑗𝛾 )
(𝛽1 + 𝑗 − 1)𝑚−1

≤
𝐶𝑚
𝛽𝑚−21

(𝛾 + ln𝐾) ≤ 𝐶𝑚 (𝛾 + ln𝐾) <∞,

where we used that 𝛽1 =
(

ln 𝑏1
)

1
𝑚 ≥ 2. Therefore, choosing 𝛼1 = 𝛽1 + 𝐶𝑚 (𝛾 + ln𝐾), (68) guarantees 𝛼𝑛 > 𝛽𝑛 for all 𝑛 ≥ 1, and so

𝛷(𝑛−1) (𝐶∗) = 𝛷(𝑛−1) (𝑎1
)

> 𝑏𝑛,

where 𝐶∗ = 𝐶∗(𝑏1, 𝐾, 𝛾) is
𝐶∗ = exp

(

𝛼𝑚1
)

= exp
(

𝛽1 + 𝐶𝑚 (𝛾 + ln𝐾)
)𝑚

= exp
(

(

ln 𝑏1
)

1
𝑚 + 𝐶𝑚 (𝛾 + ln𝐾)

)𝑚
. □

Remark 4.4. Lemma  4.3 fails for 𝑚 ≤ 2 even with 𝛾 = 0 and 𝐾 > 𝑒. Indeed, then from the calculations above we have

𝛽𝑛+1 = 𝛽𝑛

(

1 +
ln (𝐾𝑛𝛾 )
𝛽𝑚𝑛

)1∕𝑚
+ 1

≥ 𝛽𝑛 +
ln (𝐾𝑛𝛾 )
𝑚𝛽𝑚−1𝑛

+ 1 ≥ 𝛽𝑛 +
ln𝐾
𝑚𝛽𝑚−1𝑛

+ 1

which when iterated gives

𝛽𝑛+1 ≥ 𝛽1 + 𝑛 +
𝑛
∑

𝑗=1

ln𝐾
𝑚𝛽𝑚−1𝑗

≥ 𝛽1 + 𝑛 +
ln𝐾
2

𝑛
∑

𝑗=1

1
𝛽𝑗
.

So if there is a positive constant 𝐴 such that 𝛽𝑛+1 ≤ 𝑛 + 𝐴 for 𝑛 large, then we would have

𝛽𝑛+1 ≥ 𝛽1 + 𝑛 +
ln𝐾
2
𝑐 ln 𝑛

for some positive constant 𝑐, which is a contradiction to our assumption. Thus 𝛽𝑛+1 ≤ 𝛼0 + 𝑛 for all 𝑛 ≥ 1 is impossible. That is, we 
have

𝛷(−𝑛) (𝑏𝑛
)

= 𝑒

[

(

ln 𝑏𝑛
)
1
𝑚 −𝑛

]𝑚

= 𝑒
[

𝛽𝑛−𝑛
]𝑚

≥ 𝑒
[

𝛽1+
ln𝐾
2 𝑐 ln 𝑛

]𝑚

↗ ∞

as 𝑛→ ∞, so Lemma  4.3 does not hold.

5. The geometric setting

In order to obtain geometric applications, we will take the metric 𝑑 in Theorem  1.6 to be the Carnot-Carathéodory metric 
associated with the vector field ∇𝐴 for appropriate matrices 𝐴, and we will show that the hypotheses of our abstract theorems 
hold in this geometry. For this we need to introduce a family of infinitely degenerate geometries that are simple enough so that 
we can compute the balls explicitly, prove the required Orlicz-Sobolev bump inequality, and define an appropriate accumulating 
sequence of Lipschitz cutoff functions. We will work solely in the plane and consider linear operators of the form

𝐿𝑢 (𝑥, 𝑦) ≡ ∇tr𝐴 (𝑥, 𝑦) ∇𝑢 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ 𝛺,

where 𝛺 ⊂ R2 is a planar domain, and where the 2 × 2 matrix is

𝐴 (𝑥, 𝑦) =
[

1 0
0 𝑓 (𝑥)2

]

,

where 𝑓 (𝑥) = 𝑒−𝐹 (𝑥) is even and there is 𝑅 > 0 such that 𝐹  satisfies the following five structure conditions for some constants 𝐶 ≥ 1
and 𝜀 > 0:

Definition 5.1 (Structural Conditions).
1. lim𝑥→0+ 𝐹 (𝑥) = +∞;
2. 𝐹 ′ (𝑥) < 0 and 𝐹 ′′ (𝑥) > 0 for all 𝑥 ∈ (0, 𝑅);
3. 1

𝐶
|

|

𝐹 ′ (𝑟)|
|

≤ |

|

𝐹 ′ (𝑥)|
|

≤ 𝐶 |

|

𝐹 ′ (𝑟)|
|

 for 12 𝑟 < 𝑥 < 2𝑟 < 𝑅;
4. 1

−𝑥𝐹 ′(𝑥)  is increasing in the interval (0, 𝑅) and satisfies 
1

−𝑥𝐹 ′(𝑥) ≤
1
𝜀 for 𝑥 ∈ (0, 𝑅);

5. 𝐹 ′′(𝑥) ≈ 1  for 𝑥 ∈ (0, 𝑅).
−𝐹 ′(𝑥) 𝑥
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Remark 5.2.  We make no smoothness assumption on 𝑓 other than the existence of the second derivative 𝑓 ′′ on the open interval 
(0, 𝑅). Note also that at one extreme, 𝑓 can be of finite type, namely 𝑓 (𝑥) = 𝑥𝛼 for any 𝛼 > 0, and at the other extreme, 𝑓 can be 
of strongly degenerate type, namely 𝑓 (𝑥) = 𝑒−

1
𝑥𝛼  for any 𝛼 > 0. Assumption (1) rules out the elliptic case 𝑓 (0) > 0.

Under the general structural conditions 5.1 we will find further sufficient conditions on 𝐹  so that the (𝛷,𝐴, 𝜑)-Orlicz-Sobolev 
bump inequality (9) holds for a particular 𝛷 in this geometry, where the superradius 𝜑 will depend on 𝐹  (see Proposition  5.6). 
In ([9], Section 8.2) we showed that these geometries support both the (1, 1)-Poincaré and the (1, 1)-Sobolev inequalities.

In particular, we consider specific functions 𝐹  satisfying the structural conditions 5.1, namely, the geometries 𝐹𝑘,𝜎 defined by

𝐹𝑘,𝜎 (𝑟) =
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎
, 𝑘 ∈ N, 𝜎 > 0.

Note that 𝑓𝑘,𝜎 = 𝑒−𝐹𝑘,𝜎 (𝑟) = 𝑒−
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎

 vanishes to infinite order at 𝑟 = 0, and that 𝑓𝑘,𝜎 vanishes to a faster order than 𝑓𝑘′ ,𝜎′  if 
either 𝑘 < 𝑘′ or  if 𝑘 = 𝑘′ and 𝜎 > 𝜎′.

To see that in the geometries 𝐹𝑘,𝜎 there exists a standard sequence of Lipschitz cutoff functions in 𝐵 = 𝐵 (𝑥, 𝑟), as given in 
Definition  1.3, we will prove the following general lemma for the Carnot-Carathéodory metric induced by a continuous nonnegative 
semidefinite quadratic form.

Lemma 5.3.  Let 𝜉𝑡𝐴(𝑥)𝜉 be a continuous nonnegative semidefinite quadratic form. Suppose that the subunit metric 𝑑 associated to 𝐴(𝑥)
is topologically equivalent to the Euclidean metric 𝑑𝐸 in the sense that for all 𝐵 (𝑥, 𝑟) ⊂ 𝛺 there exist Euclidean balls 𝐵𝐸

(

𝑥, 𝑟𝐸 (𝑥, 𝑟)
) and 

𝐵𝐸
(

𝑥,𝑅𝐸 (𝑥, 𝑟)
) such that 

𝐵𝐸
(

𝑥, 𝑟𝐸 (𝑥, 𝑟)
)

⊆ 𝐵 (𝑥, 𝑟) ⊆ 𝐵𝐸
(

𝑥,𝑅𝐸 (𝑥, 𝑟)
)

. (69)

Then for each ball 𝐵 (𝑥,𝑅) ⊂ 𝛺 and 0 < 𝑟 < 𝑅 there exists a cutoff function 𝜙𝑟,𝑅 ∈ Lip(𝛺) satisfying 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

supp
(

𝜙𝑟,𝑅
)

⊆ 𝐵 (𝑥,𝑅) ,
{

𝑥 ∶ 𝜙𝑟,𝑅(𝑥) = 1
}

⊇ 𝐵 (𝑥, 𝑟) ,
‖

‖

∇𝐴𝜙𝑟,𝑅‖‖𝐿∞(𝐵(𝑥,𝑅)) ≤
𝐶𝑛
𝑅 − 𝑟

.

(70)

Proof.  For any 𝜀 ≥ 0 let 𝐴𝜀(𝑥, 𝜉) = 𝜉𝑡𝐴(𝑥)𝜉 + 𝜀2|𝜉|2. It has been shown in ([12], Lemma 65) that under the hypothesis of Lemma  5.3 
the subunit metric 𝑑𝜀(𝑥, 𝑦) associated to 𝐴𝜀 satisfies

|

|

∇𝐴𝑑𝜀 (𝑥, 𝑦)|| ≤
√

𝑛, 𝑥, 𝑦 ∈ 𝛺

uniformly in 𝜀 > 0. Moreover, 𝑑𝜀(⋅, 𝑦) ↗ 𝑑(⋅, 𝑦), the convergence is monotone and 𝑑 is continuous (in the Euclidean distance), 
therefore, 𝑑𝜀(⋅, 𝑦) → 𝑑(⋅, 𝑦) uniformly on compact subsets of 𝛺.

Define 𝑔(𝑡) to vanish for 𝑡 ≥ 𝑅 − 𝑅−𝑟
4 , to equal 1 for 𝑡 ≤ 𝑟 and to be linear on the interval [𝑟, 𝑅 − 𝑅−𝑟

4 ]. Let 𝜙𝑟,𝑅(𝑥) = 𝑔(𝑑𝜀∗ (𝑥, 𝑦)), 
with 𝜀∗ to be chosen later. Since 𝑑𝜀∗ (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑦) we have

𝜙𝑟,𝑅(𝑥) = 1 when 𝑑(𝑥, 𝑦) ≤ 𝑟.

And since 𝜙𝑟,𝑅(𝑥) = 0 when 𝑑𝜀∗ (𝑥, 𝑦) ≥ 𝑅 − 𝑅−𝑟
4 , by choosing 𝜀∗ small enough, we obtain that 𝜙𝑟,𝑅(𝑥) = 0 when 𝑑(𝑥, 𝑦) ≥ 𝑅. This 

shows that supp (𝜙𝑟,𝑅
)

⊆ 𝐵 (𝑥,𝑅) and {𝑥 ∶ 𝜙𝑟,𝑅 (𝑥) = 1
}

⊇ 𝐵 (𝑥, 𝑟). Next, 

|

|

∇𝐴𝜙𝑟,𝑅(𝑥)|| ≤ ‖

‖

𝑔′‖
‖∞

|

|

|

∇𝐴𝑑𝜀
∗
|

|

|

≤ 4
3

1
𝑅 − 𝑟

√

𝑛 =
𝐶𝑛
𝑅 − 𝑟

. (71)

This completes the proof. □

Remark 5.4.  Note that the condition that 𝐴(𝑥) is continuous cannot be easily omitted. In [14] the author constructs an example 
of a locally unbounded (therefore discontinuous) solution to a degenerate linear elliptic equation (see Theorem 1.3 and Conjecture 
7). However, the matrix 𝑄 in that case is discontinuous and this requirement seems to be essential for the construction.

5.1. Geometric Orlicz-Sobolev inequality

In this section we use subrepresentation inequalities proved in [9] to prove the relevant Sobolev and Poincaré inequalities. More 
precisely, we will use ([9], Lemma 58), which says that for every Lipschitz function 𝑤 there holds 

|

|

|

𝑤 (𝑥) − E𝑥,𝑟1𝑤
|

|

|

≤ 𝐶 ∫𝛤 (𝑥,𝑟)
|

|

∇𝐴𝑤 (𝑦)|
|

𝑑 (𝑥, 𝑦)
|𝐵 (𝑥, 𝑑 (𝑥, 𝑦))|

𝑑𝑦, (72)

where 

𝑑 (𝑥, 𝑦) ≡ min

⎧

⎪

⎨

⎪

𝑑 (𝑥, 𝑦) , 1
|

|𝐹 ′
(

𝑥1 + 𝑑 (𝑥, 𝑦)
)

|

|

⎫

⎪

⎬

⎪

. (73)
⎩

| |

⎭

28 



L. Korobenko et al. Nonlinear Analysis 261 (2025) 113888 
Here 𝛤 (𝑥, 𝑟) is a cusp-like region defined as

𝛤 (𝑥, 𝑟) =
∞
⋃

𝑘=1
co

[

𝐸
(

𝑥, 𝑟𝑘
)

∪ 𝐸
(

𝑥, 𝑟𝑘+1
)]

,

where the sets 𝐸 (

𝑥, 𝑟𝑘
) are curvilinear trapezoidal sets on which the function 𝑓 does not change much, and which satisfy 

|

|

|

𝐸
(

𝑥, 𝑟𝑘
)

|

|

|

≈ |

|

|

𝐸
(

𝑥, 𝑟𝑘
)
⋂

𝐵
(

𝑥, 𝑟𝑘
)

|

|

|

≈ |

|

|

𝐵
(

𝑥, 𝑟𝑘
)

|

|

|

 for all 𝑘 ≥ 1. (74)

Finally, we use the following notation for averages

E𝑥,𝑟1𝑤 ≡ 1
|

|

𝐸(𝑥, 𝑟1)|| ∫ ∫𝐸(𝑥,𝑟1)
𝑤.

In our setting of infinitely degenerate metrics in the plane, the metrics we consider are elliptic away from the 𝑥2 axis, and 
are invariant under vertical translations. As a consequence, we need only consider Sobolev inequalities for the metric balls 𝐵 (0, 𝑟)
centered at the origin. So from now on we consider 𝑋 = R2 and the metric balls 𝐵 (0, 𝑟) associated to one of the geometries 𝐹
considered in ([9], Part 2).

First we recall that the optimal form of the degenerate Orlicz-Sobolev  norm inequality for balls is
‖𝑤‖

𝐿𝛩
(

𝜇𝑟0

) ≤ 𝐶𝑟0 ‖‖∇𝐴𝑤‖‖𝐿𝛺
(

𝜇𝑟0

) ,

where 𝑑𝜇𝑟0 (𝑥) =
𝑑𝑥

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

, the balls 𝐵 (

0, 𝑟0
) are control balls for a metric 𝐴, and the Young function 𝛩 is a ‘bump up’ of the Young 

function 𝛺. We will instead obtain the nonhomogeneous form of this inequality where 𝐿𝛺
(

𝜇𝑟0
)

= 𝐿1
(

𝜇𝑟0
)

 is the usual Lebesgue 
space, and the factor 𝑟0 on the right hand side is replaced by a suitable superradius 𝜑

(

𝑟0
)

, namely 

𝛷(−1)

(

∫𝐵(0,𝑟0
)

𝛷 (𝑤) 𝑑𝜇𝑟0

)

≤ 𝐶𝜑
(

𝑟0
)

‖

‖

∇𝐴𝑤‖‖𝐿1
(

𝜇𝑟0

) , 𝑤 ∈ Lipc (𝑋) , (75)

which we refer to as the (𝛷,𝐴, 𝜑)-Sobolev Orlicz bump inequality. In fact, consider the positive operator 𝑇𝐵(0,𝑟0) ∶ 𝐿1
(

𝜇𝑟0
)

→ 𝐿𝛷
(

𝜇𝑟0
)

defined by

𝑇𝐵(0,𝑟0
)𝑔(𝑥) ≡ ∫𝐵(0,𝑟0)

𝐾𝐵(0,𝑟0
) (𝑥, 𝑦) 𝑔(𝑦)𝑑𝑦

with kernel 𝐾𝐵(0,𝑟0) defined as 

𝐾𝐵(0,𝑟0
)(𝑥, 𝑦) =

𝑑 (𝑥, 𝑦)
|𝐵 (𝑥, 𝑑 (𝑥, 𝑦))|

𝟏𝛤 (𝑥,𝑟0
) (𝑦) . (76)

We will obtain the following stronger inequality, 

𝛷(−1)

(

∫𝐵(0,𝑟0
)

𝛷
(

𝑇𝐵(0,𝑟0
)𝑔
)

𝑑𝜇𝑟0

)

≤ 𝐶𝜑
(

𝑟0
)

‖𝑔‖
𝐿1

(

𝜇𝑟0

) , (77)

which we refer to as the strong (𝛷,𝐴, 𝜑) -Sobolev Orlicz bump inequality, and which is stronger by the subrepresentation inequality 
𝑤 ≲ 𝑇𝐵(0,𝑟0

)∇𝐴𝑤 on 𝐵 (

0, 𝑟0
)

. But this inequality cannot in general be reversed. When we wish to emphasize that we are working 
with (75), we will often call it the standard (𝛷,𝐴, 𝜑)-Sobolev Orlicz bump inequality.

Recall the operator 𝑇𝐵(0,𝑟0) ∶ 𝐿1
(

𝜇𝑟0
)

→ 𝐿𝛷
(

𝜇𝑟0
)

 defined by

𝑇𝐵(0,𝑟0
)𝑔(𝑥) ≡ ∫𝐵(0,𝑟0)

𝐾𝐵(0,𝑟0
) (𝑥, 𝑦) 𝑔(𝑦)𝑑𝑦

with kernel 𝐾 defined as in (76). We begin by proving that the bound (77) holds if the following endpoint inequality holds: 

𝛷−1
(

sup
𝑦∈𝐵 ∫𝐵

𝛷 (𝐾(𝑥, 𝑦)|𝐵|𝛼) 𝑑𝜇(𝑥)
)

≤ 𝐶𝛼𝜑 (𝑟) . (78)

for all 𝛼 > 0. Indeed, if (78) holds, then with 𝑔 = |

|

∇𝐴𝑤|| and 𝛼 = ‖𝑔‖𝐿1 = ‖

‖

∇𝐴𝑤‖‖𝐿1 , we have using first the subrepresentation 
inequality, and then Jensen’s inequality applied to the convex function 𝛷,

∫𝐵
𝛷(𝑤)𝑑𝜇(𝑥) ≲ ∫𝐵

𝛷

(

∫𝐵
𝐾(𝑥, 𝑦) |𝐵| ‖𝑔‖𝐿1(𝜇)

𝑔 (𝑦) 𝑑𝜇 (𝑦)
‖𝑔‖𝐿1(𝜇)

)

𝑑𝜇(𝑥)

≤ ∫𝐵 ∫𝐵
𝛷
(

𝐾(𝑥, 𝑦) |𝐵| ‖𝑔‖𝐿1(𝜇)
) 𝑔 (𝑦) 𝑑𝜇 (𝑦)

‖𝑔‖𝐿1(𝜇)
𝑑𝜇(𝑥)

≤ ∫𝐵

{

sup
𝑦∈𝐵 ∫𝐵

𝛷
(

𝐾(𝑥, 𝑦) |𝐵| ‖𝑔‖𝐿1(𝜇)
)

𝑑𝜇(𝑥)
}

𝑔 (𝑦) 𝑑𝜇 (𝑦)
‖𝑔‖𝐿1(𝜇)

≤ 𝛷
(

𝐶𝜑 (𝑟) ‖𝑔‖𝐿1(𝜇)
) 𝑔 (𝑦) 𝑑𝜇 (𝑦)

= 𝛷
(

𝐶𝜑 (𝑟) ‖𝑔‖𝐿1(𝜇)
)

,
∫𝐵 ‖𝑔‖𝐿1(𝜇)
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and so

𝛷−1
(

∫𝐵
𝛷(𝑤)𝑑𝜇(𝑥)

)

≲ 𝐶𝜑 (𝑟) ‖∇𝐴𝑤‖𝐿1(𝜇).

The converse follows from Fatou’s lemma, but we will not need this. Note that (78) is obtained from (77) by replacing 𝑔 (𝑦) 𝑑𝑦 with 
the point mass |𝐵|𝛼𝛿𝑥 (𝑦) so that 𝑇 𝑔 (𝑥) → 𝐾(𝑥, 𝑦) |𝐵| 𝛼.

Remark 5.5.  The inhomogeneous condition (78) is in general stronger than its homogeneous counterpart
sup

𝑦∈𝐵
(

0,𝑟0
)

‖

‖

‖

𝐾𝐵(0,𝑟0
) (⋅, 𝑦) ||

|

𝐵
(

0, 𝑟0
)

|

|

|

‖

‖

‖𝐿𝛷
(

𝜇𝑟0

) ≤ 𝐶𝜑
(

𝑟0
)

,

but is equivalent to it when 𝛷 is submultiplicative. We will not however use this observation.
Now we turn to the explicit near power bumps 𝛷 in (34), which satisfy

𝛷 (𝑡) = 𝛷𝑚 (𝑡) = 𝑒

(

(ln 𝑡)
1
𝑚 +1

)𝑚

, 𝑡 > 𝑒2
𝑚
,

for 𝑚 ∈ (1,∞). Let 𝜓(𝑡) =
(

1 + (ln 𝑡)−
1
𝑚
)𝑚

− 1 for 𝑡 > 𝐸 = 𝑒2𝑚  and write 𝛷 (𝑡) = 𝑡1+𝜓(𝑡).

Proposition 5.6.  Let 0 < 𝑟0 < 1 and 𝐶𝑚 > 0. Suppose that the geometry 𝐹  satisfies the monotonicity property: 

𝜑 (𝑟) ≡ 1
|𝐹 ′(𝑟)|

𝑒
𝐶𝑚

⎛

⎜

⎜

⎝

|

|

|

𝐹 ′(𝑟)||
|

2

𝐹 ′′(𝑟) +1
⎞

⎟

⎟

⎠

𝑚−1

 is an increasing function of 𝑟 ∈ (

0, 𝑟0
)

. (79)

Then the (𝛷,𝜑)-Sobolev inequality (77) holds with geometry 𝐹 , with 𝜑 as in (79) and with 𝛷 as in (34), 𝑚 > 1.

For fixed 𝛷 = 𝛷𝑚 with 𝑚 > 1, we now consider the geometry of balls defined by

𝐹𝑘,𝜎 (𝑟) =
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎
;

𝑓𝑘,𝜎 (𝑟) = 𝑒−𝐹𝑘,𝜎 (𝑟) = 𝑒−
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎

,

where 𝑘 ∈ N and 𝜎 > 0.

Corollary 5.7.  The strong (𝛷,𝜑)-Sobolev inequality (77) with 𝛷 = 𝛷𝑚 as in (34), 𝑚 > 1, and geometry 𝐹 = 𝐹𝑘,𝜎 holds if
(either) 𝑘 ≥ 2 and 𝜎 > 0 and 𝜑(𝑟0) is given by

𝜑(𝑟0) = 𝑟
1−𝐶𝑚

(

ln(𝑘) 1
𝑟0

)𝜎(𝑚−1)

ln 1
𝑟0

0 , for 0 < 𝑟0 ≤ 𝛽𝑚,𝜎 ,

for positive constants 𝐶𝑚 and 𝛽𝑚,𝜎 depending only on 𝑚 and 𝜎;
(or) 𝑘 = 1 and 𝜎 < 1

𝑚−1  and 𝜑(𝑟0) is given by

𝜑(𝑟0) = 𝑟

1−𝐶𝑚
1

(

ln 1
𝑟0

)1−𝜎(𝑚−1)

0 , for 0 < 𝑟0 ≤ 𝛽𝑚,𝜎 ,

for positive constants 𝐶𝑚 and 𝛽𝑚,𝜎 depending only on 𝑚 and 𝜎.
Conversely, the standard (𝛷,𝜑)-Sobolev inequality (75) with 𝛷 as in (34), 𝑚 > 1, fails if 𝑘 = 1 and 𝜎 > 1

𝑚−1 .

Proof of Proposition  5.6.  It suffices to prove the endpoint inequality (78), namely

𝛷−1
(

sup
𝑦∈𝐵 ∫𝐵

𝛷 (𝐾(𝑥, 𝑦)|𝐵|𝛼) 𝑑𝜇(𝑥)
)

≤ 𝐶𝛼𝜑 (𝑟 (𝐵)) , 𝛼 > 0,

for the balls and kernel associated with our geometry 𝐹 , the Orlicz bump 𝛷, and the function 𝜑 (𝑟) satisfying (79). Fix parameters 
𝑚 > 1 and 𝑡𝑚 > 1. Following the proof of ([9], Proposition 80) we consider the specific function 𝜔 (𝑟 (𝐵)) given by

𝜔 (𝑟 (𝐵)) = 1
𝑡𝑚 |𝐹 ′ (𝑟 (𝐵))|

.

Using the submultiplicativity of 𝛷 we have

∫𝐵
𝛷 (𝐾(𝑥, 𝑦)|𝐵|𝛼) 𝑑𝜇(𝑥) = ∫𝐵

𝛷
(

𝐾(𝑥, 𝑦)|𝐵|
𝜔 (𝑟 (𝐵))

𝛼𝜔 (𝑟 (𝐵))
)

𝑑𝜇(𝑥)

≤ 𝛷 (𝛼𝜔 (𝑟 (𝐵))) 𝛷
(

𝐾(𝑥, 𝑦)|𝐵|
)

𝑑𝜇(𝑥)
∫𝐵 𝜔 (𝑟 (𝐵))
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and we will now prove 

∫𝐵
𝛷
(

𝐾(𝑥, 𝑦)|𝐵|
𝜔 (𝑟 (𝐵))

)

𝑑𝜇(𝑥) ≤ 𝐶𝑚𝜑 (𝑟 (𝐵)) |
|

𝐹 ′ (𝑟 (𝐵))|
|

, (80)

for all small balls 𝐵 of radius 𝑟 (𝐵) centered at the origin. Altogether this will give us

∫𝐵
𝛷 (𝐾(𝑥, 𝑦)|𝐵|𝛼) 𝑑𝜇(𝑥) ≤ 𝐶𝑚𝜑 (𝑟 (𝐵)) |

|

𝐹 ′ (𝑟 (𝐵))|
|

𝛷
(

𝛼
𝑡𝑚 |𝐹 ′ (𝑟 (𝐵))|

)

.

Now we note that 𝑥𝛷 (𝑦) = 𝑥𝑦𝛷(𝑦)𝑦 ≤ 𝑥𝑦𝛷(𝑥𝑦)𝑥𝑦 = 𝛷 (𝑥𝑦) for 𝑥 ≥ 1 since 𝛷(𝑡)𝑡  is monotone increasing. But from (79) we have 

𝜑 (𝑟) |
|

𝐹 ′ (𝑟)|
|

= 𝑒
𝐶𝑚

⎛

⎜

⎜

⎝

|

|

|

𝐹 ′(𝑟)||
|

2

𝐹 ′′(𝑟) +1
⎞

⎟

⎟

⎠

𝑚−1

≫ 1 and so

∫𝐵
𝛷 (𝐾(𝑥, 𝑦)|𝐵|𝛼) 𝑑𝜇(𝑥) ≤ 𝛷

(

𝐶𝑚𝜑 (𝑟 (𝐵)) |
|

𝐹 ′ (𝑟 (𝐵))|
|

𝛼 1
𝑡𝑚 |𝐹 ′ (𝑟 (𝐵))|

)

= 𝛷
(

𝐶𝑚
𝑡𝑚
𝛼𝜑 (𝑟 (𝐵))

)

,

which is (78) with 𝐶 = 𝐶𝑚
𝑡𝑚
. Thus it remains to prove (80).

So we now take 𝐵 = 𝐵
(

0, 𝑟0
) with 𝑟0 ≪ 1 so that 𝜔 (𝑟 (𝐵)) = 𝜔

(

𝑟0
)

. First, from [9] we have the estimates

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

≈
𝑓 (𝑟0)

|𝐹 ′(𝑟0)|
2
,

and in 𝛤 (𝑥, 𝑟)

𝐾(𝑥, 𝑦) ≈ 1
ℎ𝑦1−𝑥1

≈

⎧

⎪

⎨

⎪

⎩

1
𝑟𝑓 (𝑥1)

, 0 < 𝑟 = 𝑦1 − 𝑥1 <
1

|𝐹 ′(𝑥1)|
|𝐹 ′(𝑥1+𝑟)|
𝑓 (𝑥1+𝑟)

, 0 < 𝑟 = 𝑦1 − 𝑥1 ≥
1

|𝐹 ′(𝑥1)|
.

Next, write 𝛷(𝑡) as

𝛷(𝑡) = 𝑡1+𝜓(𝑡), for 𝑡 > 0,

where for 𝑡 ≥ 𝐸,

𝑡1+𝜓(𝑡) = 𝛷(𝑡) = 𝑒

(

(ln 𝑡)
1
𝑚 +1

)𝑚

= 𝑡

(

1+(ln 𝑡)−
1
𝑚
)𝑚

⟹ 𝜓(𝑡) =
(

1 + (ln 𝑡)−
1
𝑚
)𝑚

− 1 ≈ 𝑚
(ln 𝑡)1∕𝑚

,

and for 𝑡 < 𝐸,

𝑡1+𝜓(𝑡) = 𝛷(𝑡) =
𝛷(𝐸)
𝐸

𝑡

⟹ (1 + 𝜓(𝑡)) ln 𝑡 = ln
𝛷(𝐸)
𝐸

+ ln 𝑡

⟹ 𝜓(𝑡) =
ln 𝛷(𝐸)

𝐸
ln 𝑡

.

Now temporarily fix 𝑦 = (

𝑦1, 𝑦2
)

∈ 𝐵+
(

0, 𝑟0
)

≡
{

𝑥 ∈ 𝐵
(

0, 𝑟0
)

∶ 𝑥1 > 0
}

. We then have for 0 < 𝑎 < 𝑏 < 𝑟0 that

𝑎,𝑏 (𝑦) ≡ ∫{𝑥∈𝐵+
(

0,𝑟0
)

∶𝑎≤𝑦1−𝑥1≤𝑏
}

∩𝛤 ∗(𝑦,𝑟0)
𝛷
⎛

⎜

⎜

⎝

𝐾𝐵(0,𝑟0
) (𝑥, 𝑦)

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝑑𝑥
|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

= ∫

𝑦1−𝑎

𝑦1−𝑏

⎧

⎪

⎨

⎪

⎩

∫

𝑦2+ℎ𝑦1−𝑥1

𝑦2−ℎ𝑦1−𝑥1

𝛷
⎛

⎜

⎜

⎝

1
ℎ𝑦1−𝑥1

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝑑𝑥2

⎫

⎪

⎬

⎪

⎭

𝑑𝑥1
|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

= ∫

𝑦1−𝑎

𝑦1−𝑏
2ℎ𝑦1−𝑥1𝛷

⎛

⎜

⎜

⎝

1
ℎ𝑦1−𝑥1

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝑑𝑥1
|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

= ∫

𝑦1−𝑎

𝑦 −𝑏
2ℎ𝑦1−𝑥1

⎛

⎜

⎜

1
ℎ𝑦 −𝑥

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟
)

⎞

⎟

⎟

⎛

⎜

⎜

1
ℎ𝑦 −𝑥

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟
)

⎞

⎟

⎟

𝜓

(

1
ℎ𝑦1−𝑥1

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

𝜔
(

𝑟0
)

)

𝑑𝑥1
|

( )

|

1
⎝

1 1 0
⎠ ⎝

1 1 0
⎠

|

|

𝐵 0, 𝑟0 |

|
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which simplifies to

𝑎,𝑏 (𝑦) = 2
𝜔
(

𝑟0
) ∫

𝑦1−𝑎

𝑦1−𝑏

⎛

⎜

⎜

⎝

1
ℎ𝑦1−𝑥1

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝜓

(

1
ℎ𝑦1−𝑥1

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

𝜔
(

𝑟0
)

)

𝑑𝑥1

= 2
𝜔
(

𝑟0
) ∫

𝑏

𝑎

⎛

⎜

⎜

⎝

1
ℎ𝑟

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝜓

(

1
ℎ𝑟

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

𝜔
(

𝑟0
)

)

𝑑𝑟.

Thus we have

∫𝐵+
(

0,𝑟0
)

𝛷
⎛

⎜

⎜

⎝

𝐾𝐵(0,𝑟0
) (𝑥, 𝑦)

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝑑𝑥
|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

= 0,𝑦1 (𝑥)

= 2
𝜔
(

𝑟0
) ∫

𝑦1

0

⎛

⎜

⎜

⎝

1
ℎ𝑟

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝜓

(

1
ℎ𝑟

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

𝜔
(

𝑟0
)

)

𝑑𝑟 .

To prove (80) it thus suffices to show 

0,𝑦1 = 1
𝜔
(

𝑟0
) ∫

𝑦1

0

⎛

⎜

⎜

⎝

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

ℎ𝑟𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

𝜓

(

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

ℎ𝑟𝜔
(

𝑟0
)

)

𝑑𝑟 ≤ 𝐶𝑚 𝜑
(

𝑟0
)

|

|

|

𝐹 ′ (𝑟0
)

|

|

|

, (81)

where 𝐶0 is a sufficiently large positive constant.
To prove this we divide the interval (0, 𝑦1

) of integration in 𝑟 into three regions:
(1): the small region  where |𝐵(0,𝑟0)|

ℎ𝑟𝜔
(

𝑟0
) ≤ 𝐸,

(2): the big region 1 that is disjoint from  and where 𝑟 = 𝑦1 − 𝑥1 <
1

|

|

|

𝐹 ′(𝑥1
)

|

|

|

 and

(3): the big region 2 that is disjoint from  and where 𝑟 = 𝑦1 − 𝑥1 ≥
1

|

|

|

𝐹 ′(𝑥1
)

|

|

|

.

In the small region  we use that 𝛷 is linear on [0, 𝐸] to obtain that the integral in the right hand side of (81), when restricted 
to those 𝑟 ∈ (

0, 𝑦1
) for which |𝐵(0,𝑟0)|

ℎ𝑟𝜔
(

𝑟0
) ≤ 𝐸, is equal to

1
𝜔
(

𝑟0
) ∫

𝑦1

0

⎛

⎜

⎜

⎝

|

|

|

𝐵
(

0, 𝑟0
)

|

|

|

ℎ𝑟𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠

ln 𝛷(𝐸)𝐸

ln
⎛

⎜

⎜

⎝

|

|

|

𝐵
(

0,𝑟0
)

|

|

|

ℎ𝑟𝜔
(

𝑟0
)

⎞

⎟

⎟

⎠ 𝑑𝑟

= 1
𝜔
(

𝑟0
) ∫

𝑦1

0
𝑒ln

𝛷(𝐸)
𝐸 𝑑𝑟 = 1

𝜔
(

𝑟0
)

𝛷(𝐸)
𝐸

𝑦1

≤ 𝛷(𝐸)
𝐸

𝑡𝑚 𝑟0
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

,

since 𝜔 (

𝑟0
)

= 1
𝑡𝑚
|

|

|

𝐹 ′(𝑟0
)

|

|

|

. We now turn to the first big region 1 where we have ℎ𝑦1−𝑥1 ≈ 𝑟𝑓 (𝑥1) = 𝑟𝑓 (𝑦1 − 𝑟). The integral to be 
evaluated is

1
𝜔
(

𝑟0
) ∫

𝑦1

0

(

|𝐵(0, 𝑟0)|
ℎ𝑟𝜔

(

𝑟0
)

)𝜓
(

|𝐵(0,𝑟0)|
ℎ𝑟𝜔

(

𝑟0
)

)

𝑑𝑟, where
|𝐵(0, 𝑟0)|
ℎ𝑟𝜔

(

𝑟0
) ≈

|𝐵(0, 𝑟0)|
𝑟𝑓 (𝑦1 − 𝑟)𝜔

(

𝑟0
)

Now we note that since 𝑥1 < 𝑦1, we have 1
|

|

|

𝐹 ′(𝑥1
)

|

|

|

≤ 1
|

|

|

𝐹 ′(𝑦1
)

|

|

|

, and thus in this region we have 𝑥1 < 𝑦1 ≤ 𝑥1+
1

|

|

|

𝐹 ′(𝑦1
)

|

|

|

, and it is sufficient 
to evaluate

1
𝜔
(

𝑟0
) ∫

1
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

0

(

|𝐵(0, 𝑟0)|
ℎ𝑟𝜔

(

𝑟0
)

)𝜓
(

|𝐵(0,𝑟0)|
ℎ𝑟𝜔

(

𝑟0
)

)

𝑑𝑟.

From the inequalities for 𝑦1 it also follows that 𝑓 (𝑥1) ≈ 𝑓 (𝑦1), so ℎ𝑦1−𝑥1 ≈ 𝑟𝑓 (𝑦1). Write
|𝐵(0, 𝑟0)|
ℎ 𝜔

(

𝑟
) ≤ 𝐶 ′ |𝐵(0, 𝑟0)|

𝑟𝑓 (𝑦 )𝜔
(

𝑟
) ≤ 𝐶

𝑡𝑚𝑓 (𝑟0)
| ′

( )

|

,

𝑟 0 1 0 𝑟𝑓 (𝑦1) |

|

𝐹 𝑟0 |

|
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and we will now evaluate the following integral

1
𝜔
(

𝑟0
) ∫

1
|𝐹 ′(𝑦1)|

0

(𝐴
𝑟

)𝜓
(

𝐴
𝑟

)

𝑑𝑟,  where 𝐴 = 𝐶
𝑡𝑚𝑓 (𝑟0)

𝑓 (𝑦1)
|

|

|

𝐹 ′
(

𝑟0
)

|

|

|

.

Making a change of variables

𝑅 = 𝐴
𝑟
=
𝐴
(

𝑦1
)

𝑟
,

we obtain

1
𝜔
(

𝑟0
) ∫

1
|𝐹 ′(𝑦1)|

0

(𝐴
𝑟

)𝜓
(

𝐴
𝑟

)

𝑑𝑟 = 1
𝜔
(

𝑟0
)𝐴∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

𝑅𝜓(𝑅)−2𝑑𝑅.

Integrating by parts gives

∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

𝑅𝜓(𝑅)−2𝑑𝑅 = ∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

𝑅𝜓(𝑅)+1
(

− 1
2𝑅2

)′
𝑑𝑅

= −𝑅
𝜓(𝑅)+1

2𝑅2
|

|

|

∞

𝐴||
|

𝐹 ′(𝑥1
)

|

|

|

+ ∫

∞

𝐴||
|

𝐹 ′(𝑥1
)

|

|

|

(

𝑅𝜓(𝑅)+1
)′ 1

2𝑅2
𝑑𝑅

≤
(

𝐴|𝐹 ′(𝑦1)|
)𝜓

(

𝐴|𝐹 ′(𝑦1)|
)

2𝐴|𝐹 ′(𝑦1)|
+ ∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

1
2
𝑅𝜓(𝑅)−2

(

1 + 𝐶 𝑚 − 1

(ln𝑅)
1
𝑚

)

𝑑𝑅

≤
(

𝐴|𝐹 ′(𝑦1)|
)𝜓

(

𝐴|𝐹 ′(𝑦1)|
)

2𝐴|𝐹 ′(𝑦1)|
+

1 + 𝐶 𝑚−1

(ln𝐸)
1
𝑚

2 ∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

𝑅𝜓(𝑅)−2𝑑𝑅,

where we used
|

|

𝜓 ′(𝑅)|
|

≤ 𝐶 1
𝑅

1

(ln𝑅)
𝑚+1
𝑚

.

Taking 𝐸 large enough depending on 𝑚 we can assure
1 + 𝐶 𝑚−1

(ln𝐸)
1
𝑚

2
≤ 3

4
,

which gives

∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

𝑅𝜓(𝑅)−2𝑑𝑅 ≲

(

𝐴|𝐹 ′(𝑦1)|
)𝜓

(

𝐴|𝐹 ′(𝑦1)|
)

𝐴|𝐹 ′(𝑦1)|
,

and therefore

0, 1
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

(𝑥) ≲ 1
𝜔
(

𝑟0
)𝐴∫

∞

𝐴||
|

𝐹 ′(𝑦1
)

|

|

|

𝑅𝜓(𝑅)−2𝑑𝑅

≲ 1
𝜔
(

𝑟0
)

|𝐹 ′(𝑦1)|

(

𝐴
(

𝑦1
)

|𝐹 ′(𝑦1)|
)𝜓

(

𝐴(𝑦1)|𝐹 ′(𝑦1)|
)

.

We now look for the maximum of the function on the right hand side

 (𝑦1) ≡ 1
𝜔
(

𝑟0
)

|𝐹 ′(𝑦1)|

(

𝐴
(

𝑦1
)

|𝐹 ′(𝑦1)|
)𝜓

(

𝐴(𝑦1)|𝐹 ′(𝑦1)|
)

= 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

1
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

⎛

⎜

⎜

⎝

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎞

⎟

⎟

⎠

𝜓

(

𝑐(𝑟0)
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

𝑓
(

𝑦1
)

)

where

𝑐(𝑟0) = 𝑓
(

𝑦1
)

𝐴
(

𝑦1
)

=
𝐶𝑡𝑚 𝑓 (𝑟0)
|𝐹 ′(𝑟0)|

.

Using the definition of 𝜓(𝑡) and 𝐵 (

𝑦1
)

≡ ln
[

𝑐(𝑟0)
|

|

|

𝐹 ′(𝑦1
)

|

|

|

𝑓
(

𝑦1
)

]

, we can rewrite  (𝑦1) as 

 (𝑦1) = 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

1
| ′

( )

|

exp
((

1 + 𝐵
(

𝑦1
)

1
𝑚

)𝑚
− 𝐵

(

𝑦1
)

)

. (82)

|

|

𝐹 𝑦1 |

|
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Let 𝑦∗1 ∈
(

0, 𝑟0
] be the point at which  takes its maximum. Differentiating  (𝑦1) with respect to 𝑦1 and then setting the derivative 

equal to zero, we obtain that 𝑦∗1 satisfies the equation,

𝐹 ′′(𝑦∗1)

|𝐹 ′(𝑦∗1)|
2
=

(

(

1 + 𝐵
(

𝑦∗1
)− 1

𝑚

)𝑚−1
− 1

)(

1 +
𝐹 ′′(𝑦∗1)

|𝐹 ′(𝑦∗1)|
2

)

.

Simplifying gives the following implicit expression for 𝑦∗1 that maximizes  (𝑦1)

𝐵
(

𝑦∗1
)

= ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦∗1
)

|

|

|

𝑓
(

𝑦∗1
)

⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

(

1 +
𝐹 ′′(𝑦∗1)

|𝐹 ′(𝑦∗1)|
2 + 𝐹 ′′(𝑦∗1)

)
1

𝑚−1

− 1
⎞

⎟

⎟

⎠

−𝑚

.

To estimate  (𝑦∗1) in an effective way, we set 𝑏
(

𝑦∗1
)

≡
𝐹 ′′(𝑦∗1 )

|𝐹 ′(𝑦∗1 )|
2+𝐹 ′′(𝑦∗1 )

 and begin with

(

1 + 𝐵
(

𝑦1
)

1
𝑚

)𝑚
− 𝐵

(

𝑦1
)

=

⎛

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎜

⎝

ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦∗1
)

|

|

|

𝑓
(

𝑦∗1
)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

1
𝑚 ⎞
⎟

⎟

⎟

⎠

𝑚

− ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦∗1
)

|

|

|

𝑓
(

𝑦∗1
)

⎤

⎥

⎥

⎦

=

(

1 +
𝐹 ′′(𝑦∗1 )

|𝐹 ′(𝑦∗1 )|
2+𝐹 ′′(𝑦∗1 )

)
𝑚
𝑚−1

− 1

⎛

⎜

⎜

⎝

(

1 +
𝐹 ′′(𝑦∗1 )

|𝐹 ′(𝑦∗1 )|
2+𝐹 ′′(𝑦∗1 )

)
1

𝑚−1
− 1

⎞

⎟

⎟

⎠

𝑚 =

(

1 + 𝑏
(

𝑦∗1
))

𝑚
𝑚−1 − 1

(

(

1 + 𝑏
(

𝑦∗1
))

1
𝑚−1 − 1

)𝑚

≤ 𝐶𝑚

(

1
𝑏
(

𝑦∗1
)

)𝑚−1

= 𝐶𝑚

(

|𝐹 ′(𝑦∗1)|
2 + 𝐹 ′′(𝑦∗1)

𝐹 ′′(𝑦∗1)

)𝑚−1

= 𝐶𝑚

(

1 +
|𝐹 ′(𝑦∗1)|

2

𝐹 ′′(𝑦∗1)

)𝑚−1

,

where in the last inequality we used (1) the fact that 𝑏 (𝑦∗1
)

=
𝐹 ′′(𝑦∗1 )

|𝐹 ′(𝑦∗1 )|
2+𝐹 ′′(𝑦∗1 )

< 1 provided 𝑦∗1 ≤ 𝑟, which we may assume since 
otherwise we are done, and (2) the inequality

(1 + 𝑏)
𝑚
𝑚−1 − 1

(

(1 + 𝑏)
1

𝑚−1 − 1
)𝑚 ≤ 1

2
𝑚 (2𝑚 − 1) (𝑚 − 1)2𝑚 𝑏1−𝑚, 0 ≤ 𝑏 < 1,

which follows easily from upper and lower estimates on the binomial series. Combining this with (82) we thus obtain the following 
upper bound

 (𝑦1) ≤ 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

1
|

|

|

𝐹 ′
(

𝑦∗1
)

|

|

|

𝑒
𝐶𝑚

(

1+
|𝐹 ′(𝑦∗1)|

2

𝐹 ′′(𝑦∗1)

)𝑚−1

= 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝜑
(

𝑦∗1
)

,

with 𝜑 as in (79). Using the monotonicity of 𝜑ϝ we therefore obtain

0, 1
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

(𝑥) ≲  (𝑦1) ≤ 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝜑
(

𝑟0
)

= 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝜑
(

𝑟0
)

,

which is the estimate required in (81).
For the second big region 2 we have

1
ℎ𝑦1−𝑥1

≈
|𝐹 ′(𝑥1 + 𝑟)|
𝑓 (𝑥1 + 𝑟)

=
|𝐹 ′(𝑦1)|
𝑓 (𝑦1)

,

and the integral to be estimated becomes

𝐼2
≡ 1
𝜔
(

𝑟0
) ∫𝑥1∈2

⎛

⎜

⎜

⎝

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎞

⎟

⎟

⎠

𝜓

(

𝑐(𝑟0)
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

𝑓
(

𝑦1
)

)

𝑑𝑥1

≤
𝑦1

𝜔
(

𝑟0
)

⎛

⎜

⎜

⎝

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎞

⎟

⎟

⎠

𝜓

(

𝑐(𝑟0)
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

𝑓
(

𝑦1
)

)

= 𝑡𝑚|𝐹
′(𝑟0)|𝑦1

⎛

⎜

⎜

⎝

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎞

⎟

⎟

⎠

𝜓

(

𝑐(𝑟0)
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

𝑓
(

𝑦1
)

)

,
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where

𝑐(𝑟0) =
𝑡𝑚 𝑓 (𝑟0)
|𝐹 ′(𝑟0)|

.

We now look for the maximum of the function

(𝑦1) ≡ 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝑦1
⎛

⎜

⎜

⎝

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎞

⎟

⎟

⎠

𝜓

(

𝑐(𝑟0)
|

|

|

𝐹 ′
(

𝑦1
)

|

|

|

𝑓
(

𝑦1
)

)

,

and look for the maximum of (𝑦1) on 
(

0, 𝑟0
]

. We claim that a bound for  can be obtained in a similar way and yields

(𝑦1) ≤ 𝐶𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝜑
(

𝑟0
)

,

where 𝜑 (

𝑟0
) satisfies (79) with a constant 𝐶𝑚 slightly bigger than in the case of  . Indeed, rewriting (𝑦1) in a form similar to (82) 

we have

(𝑦1) = 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝑦1 exp

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎜

⎝

ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

1
𝑚 ⎞
⎟

⎟

⎟

⎠

𝑚

− ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦1
)

|

|

|

𝑓
(

𝑦1
)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

= 𝑡𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝑦1 exp
((

1 + 𝐵
(

𝑦1
)

1
𝑚

)𝑚
− 𝐵

(

𝑦1
)

)

Again, we differentiate and equate the derivative to zero to obtain the following implicit expression for 𝑦∗1 maximizing (𝑦1):

1 =

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎜

⎝

ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦∗1
)

|

|

|

𝑓
(

𝑦∗1
)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

− 1
𝑚 ⎞
⎟

⎟

⎟

⎠

𝑚−1

− 1

⎞

⎟

⎟

⎟

⎟

⎠

𝑦1

(

|𝐹 ′(𝑦∗1)| +
𝐹 ′′(𝑦∗1)
|𝐹 ′(𝑦∗1)|

)

.

A calculation similar to the one for the function  gives
⎛

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎜

⎝

ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦∗1
)

|

|

|

𝑓
(

𝑦∗1
)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

1
𝑚 ⎞
⎟

⎟

⎟

⎠

𝑚

− ln
⎡

⎢

⎢

⎣

𝑐(𝑟0)
|

|

|

𝐹 ′ (𝑦∗1
)

|

|

|

𝑓
(

𝑦∗1
)

⎤

⎥

⎥

⎦

=

⎛

⎜

⎜

⎝

1 +
|

|

|

|

𝐹 ′
(

𝑦∗1
)

|

|

|

|

𝑦∗1 |𝐹
′(𝑦∗1 )|

2+𝑦∗1𝐹
′′(𝑦∗1 )

⎞

⎟

⎟

⎠

𝑚
𝑚−1

− 1

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 +
|

|

|

|

𝐹 ′
(

𝑦∗1
)

|

|

|

|

𝑦∗1 |𝐹
′(𝑦∗1 )|

2+𝑦∗1𝐹
′′(𝑦∗1 )

⎞

⎟

⎟

⎠

1
𝑚−1

− 1

⎞

⎟

⎟

⎟

⎠

𝑚

≤ 𝐶𝑚
⎛

⎜

⎜

⎝

𝑦∗1|𝐹
′(𝑦∗1)|

2 + 𝑦∗1𝐹
′′(𝑦∗1)

|

|

|

𝐹 ′
(

𝑦∗1
)

|

|

|

⎞

⎟

⎟

⎠

𝑚−1

≤ 𝐶̃𝑚

(

1 +
|𝐹 ′(𝑦∗1)|

2

𝐹 ′′(𝑦∗1)

)𝑚−1

,

where we used |𝐹 ′(𝑟)∕𝐹 ′′(𝑟)| ≈ 𝑟. From this and the monotonicity condition we obtain
𝐼2

≲ (𝑦1) ≤ 𝐶𝑚
|

|

|

𝐹 ′ (𝑟0
)

|

|

|

𝜑
(

𝑟0
)

,

which concludes the estimate for the region 2. □

Now we turn to the proof of Corollary  5.7.

Proof of Corollary  5.7.  We must first check that the monotonicity property (79) holds for the indicated geometries 𝐹𝑘,𝜎 , where

𝑓 (𝑟) = 𝑓𝑘,𝜎 (𝑟) ≡ exp
{

−
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎}

;

𝐹 (𝑟) = 𝐹𝑘,𝜎 (𝑟) ≡
(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎
.

Consider first the case 𝑘 = 1. Then 𝐹 (𝑟) = 𝐹1,𝜎 (𝑟) =
(

ln 1
𝑟

)1+𝜎
 satisfies

𝐹 ′ (𝑟) = − (1 + 𝜎)

(

ln 1
𝑟

)𝜎

𝑟
 and 𝐹 ′′ (𝑟) = − (1 + 𝜎)

⎧

⎪

⎨

⎪

−

(

ln 1
𝑟

)𝜎

𝑟2
− 𝜎

(

ln 1
𝑟

)𝜎−1

𝑟2

⎫

⎪

⎬

⎪

,

⎩ ⎭
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which shows that

𝜑 (𝑟) = 1
1 + 𝜎

exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− ln 1
𝑟
− 𝜎 ln ln 1

𝑟
+ 𝐶𝑚

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(1 + 𝜎)2
(

ln 1
𝑟

)2𝜎

𝑟2

(1 + 𝜎)

{ (

ln 1
𝑟

)𝜎

𝑟2
+ 𝜎

(

ln 1
𝑟

)𝜎−1

𝑟2

}

+ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑚−1
⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 1
1 + 𝜎

exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− ln 1
𝑟
− 𝜎 ln ln 1

𝑟
+ 𝐶𝑚 (1 + 𝜎)𝑚−1

⎛

⎜

⎜

⎜

⎜

⎝

(

ln 1
𝑟

)𝜎

{

1 + 𝜎 1
ln 1

𝑟

} + 1
1 + 𝜎

⎞

⎟

⎟

⎟

⎟

⎠

𝑚−1
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

is increasing in 𝑟 provided both 𝜎 (𝑚 − 1) < 1 and 0 ≤ 𝑟 ≤ 𝛼𝑚,𝜎 , where 𝛼𝑚,𝜎 is a positive constant depending only on 𝑚 and 𝜎. Hence 
we have the upper bound

𝜑 (𝑟) ≤ exp
{

− ln 1
𝑟
+ 𝐶𝑚

(

ln 1
𝑟

)𝜎(𝑚−1)}

= 𝑟
1−𝐶𝑚

1
(

ln 1
𝑟
)1−𝜎(𝑚−1)

, 0 ≤ 𝑟 ≤ 𝛽𝑚,𝜎 ,

where 𝛽𝑚,𝜎 > 0 is chosen even smaller than 𝛼𝑚,𝜎 if necessary.
Thus in the case 𝛷 = 𝛷𝑚 with 𝑚 > 2 and 𝐹 = 𝐹𝜎 with 0 < 𝜎 < 1

𝑚−1 , we see that the norm 𝜑 (

𝑟0
) of the Sobolev embedding 

satisfies

𝜑
(

𝑟0
)

≤ 𝑟

1−𝐶𝑚
1

(

ln 1
𝑟0

)1−𝜎(𝑚−1)

0 , for 0 < 𝑟0 ≤ 𝛽𝑚,𝜎 ,

and hence that

𝜑
(

𝑟0
)

𝑟0
≤
(

1
𝑟0

)

𝐶𝑚
(

ln 1
𝑟0

)1−𝜎(𝑚−1)

for 0 < 𝑟0 ≤ 𝛽𝑚,𝜎 .

Now consider the case 𝑘 ≥ 2. Our first task is to show that 𝐹𝑘,𝜎 satisfies the structure conditions in Definition  5.1. Only condition 
(5) is not obvious, so we now turn to that. We have 𝐹 (𝑟) = 𝐹𝑘,𝜎 (𝑟) =

(

ln 1
𝑟

)(

ln(𝑘) 1
𝑟

)𝜎
 satisfies

𝐹 ′ (𝑟) = −

(

ln(𝑘) 1
𝑟

)𝜎

𝑟
−
(

ln 1
𝑟

) 𝜎
(

ln(𝑘) 1
𝑟

)𝜎−1

(

ln(𝑘−1) 1
𝑟

)(

ln(𝑘−2) 1
𝑟

)

...
(

ln 1
𝑟

)

𝑟

= −

(

ln(𝑘) 1
𝑟

)𝜎

𝑟
−

𝜎
(

ln(𝑘) 1
𝑟

)𝜎−1

(

ln(𝑘−1) 1
𝑟

)(

ln(𝑘−2) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

𝑟

= −

(

ln(𝑘) 1
𝑟

)𝜎

𝑟

⎧

⎪

⎨

⎪

⎩

1 + 𝜎
(

ln(𝑘) 1
𝑟

)(

ln(𝑘−1) 1
𝑟

)(

ln(𝑘−2) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

⎫

⎪

⎬

⎪

⎭

= −
𝐹 (𝑟)
𝑟 ln 1

𝑟

⎧

⎪

⎨

⎪

⎩

1 + 𝜎
(

ln(𝑘) 1
𝑟

)(

ln(𝑘−1) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

⎫

⎪

⎬

⎪

⎭

≡ −
𝐹 (𝑟)𝛬𝑘 (𝑟)

𝑟 ln 1
𝑟

,

and

𝐹 ′′ (𝑟) = −
𝐹 ′ (𝑟)𝛬𝑘 (𝑟)

𝑟 ln 1
𝑟

−
𝐹 (𝑟)𝛬′

𝑘 (𝑟)

𝑟 ln 1
𝑟

− 𝐹 (𝑟)𝛬𝑘 (𝑟)
𝑑
𝑑𝑟

⎛

⎜

⎜

⎝

1
𝑟 ln 1

𝑟

⎞

⎟

⎟

⎠

= −
𝐹 ′ (𝑟)𝛬𝑘 (𝑟)

𝑟 ln 1
𝑟

−
𝐹 (𝑟)𝛬′

𝑘 (𝑟)

𝑟 ln 1
𝑟

+
𝐹 (𝑟)𝛬𝑘 (𝑟)

𝑟2 ln 1
𝑟

⎛

⎜

⎜

⎝

1 − 1
ln 1

𝑟

⎞

⎟

⎟

⎠

,

where

𝛬′
𝑘 (𝑟) = 𝑑

𝑑𝑟

⎛

⎜

⎜

⎜

𝜎
(

ln(𝑘) 1
)(

ln(𝑘−1) 1
)

...
(

ln(2) 1
)

⎞

⎟

⎟

⎟

⎝

𝑟 𝑟 𝑟
⎠
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= −𝜎
𝑘
∑

𝑗=2

(

ln(𝑗) 1
𝑟

)

(

ln(𝑘) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

1
(

ln(𝑗−1) 1
𝑟

)

...
(

ln 1
𝑟

)

𝑟

= −𝜎 1
(

ln(𝑘) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

𝑟

𝑘
∑

𝑗=2

ln(𝑗) 1
𝑟

(

ln(𝑗−1) 1
𝑟

)

...
(

ln 1
𝑟

)

= −𝜎 1
(

ln(𝑘) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

𝑟

⎛

⎜

⎜

⎜

⎝

ln(2) 1
𝑟

ln 1
𝑟

+
𝑘
∑

𝑗=3

ln(𝑗) 1
𝑟

(

ln(𝑗−1) 1
𝑟

)

...
(

ln 1
𝑟

)

⎞

⎟

⎟

⎟

⎠

= −𝜎 1
(

ln(𝑘) 1
𝑟

)

...
(

ln(2) 1
𝑟

)(

ln 1
𝑟

)

𝑟

⎛

⎜

⎜

⎜

⎝

ln(2) 1
𝑟
+

𝑘
∑

𝑗=3

ln(𝑗) 1
𝑟

(

ln(𝑗−1) 1
𝑟

)

...
(

ln(2) 1
𝑟

)

⎞

⎟

⎟

⎟

⎠

.

Now

ln(2) 1
𝑟
+

𝑘
∑

𝑗=3

ln(𝑗) 1
𝑟

(

ln(𝑗−1) 1
𝑟

)

...
(

ln(2) 1
𝑟

) ≈ ln(2) 1
𝑟
,

and so

−𝛬′
𝑘 (𝑟) ≈

⎧

⎪

⎨

⎪

⎩

𝜎
(

ln 1
𝑟

)

𝑟
 for 𝑘 = 2

𝜎
(

ln(𝑘) 1
𝑟

)

...
(

ln(3) 1
𝑟

)(

ln 1
𝑟

)

𝑟
 for 𝑘 ≥ 3

.

We also have 𝛬𝑘 (𝑟) ≈ 1, which then gives

−𝐹 ′ (𝑟) ≈
𝐹 (𝑟)
𝑟 ln 1

𝑟

,

and

𝐹 ′′ (𝑟) ≈
𝐹 (𝑟)

𝑟2
(

ln 1
𝑟

)2
+

𝜎𝐹 (𝑟)
(

ln(𝑘) 1
𝑟

)

...
(

ln(3) 1
𝑟

)(

ln 1
𝑟

)2
𝑟2

+
𝐹 (𝑟)
𝑟2 ln 1

𝑟

≈
𝐹 (𝑟)
𝑟2 ln 1

𝑟

.

From these two estimates we immediately obtain structure condition (5) of Definition  5.1.
We also have

|

|

𝐹 ′ (𝑟)|
|

2

𝐹 ′′(𝑟)
≈

𝐹 (𝑟)2
(

𝑟 ln 1
𝑟

)2

𝑟2 ln 1
𝑟

𝐹 (𝑟)
=
𝐹 (𝑟)
ln 1

𝑟

=
(

ln(𝑘) 1
𝑟

)𝜎
, 0 ≤ 𝑟 ≤ 𝛽𝑚,𝜎 ,

and then from the definition of 𝜑 (𝑟) ≡ 1
|𝐹 ′(𝑟)| 𝑒

𝐶𝑚
⎛

⎜

⎜

⎝

|

|

|

𝐹 ′(𝑟)||
|

2

𝐹 ′′(𝑟) +1
⎞

⎟

⎟

⎠

𝑚−1

 in (79), we obtain

𝜑 (𝑟) = 1
|𝐹 ′(𝑟)|

𝑒
𝐶𝑚

⎛

⎜

⎜

⎝

|

|

|

𝐹 ′(𝑟)||
|

2

𝐹 ′′(𝑟) +1
⎞

⎟

⎟

⎠

𝑚−1

≈ 𝑟 𝑒
𝐶𝑚

(

ln(𝑘) 1
𝑟

)𝜎(𝑚−1)

(

ln(𝑘) 1
𝑟

)𝜎

≲ 𝑟𝑒𝐶𝑚
(

ln(𝑘) 1
𝑟

)𝜎(𝑚−1)

≈ 𝑟
1−𝐶𝑚

(

ln(𝑘) 1
𝑟
)𝜎(𝑚−1)

ln 1
𝑟 , 0 ≤ 𝑟 ≤ 𝛽𝑚,𝜎 .

This completes the proof of the monotonicity property (79) and the estimates for 𝜑 (𝑟) for each of the two cases in Corollary  5.7.
Finally, we must show that the standard (𝛷,𝜑) -Sobolev inequality (75) with 𝛷 as in (34), 𝑚 > 1, fails if 𝑘 = 1 and 𝜎 > 1

𝑚−1 , and 
for this it is convenient to use the identity |

|

∇𝐴𝑣|| =
|

|

|

𝜕𝑣
𝜕𝑟
|

|

|

 for radial functions 𝑣, see ([9], Appendix C.). Take 𝑓 (𝑟) = 𝑓1,𝜎 (𝑟) = 𝑟
(

ln 1
𝑟

)𝜎

and with 𝜂 (𝑟) ≡
{

1  if 0 ≤ 𝑟 ≤ 𝑟0
2

2
(

1 − 𝑟
𝑟0

)

 if 𝑟0
2 ≤ 𝑟 ≤ 𝑟0

, we define the radial function

𝑤 (𝑥, 𝑦) = 𝑤 (𝑟) = 𝑒
(

ln 1
𝑟

)𝜎+1

=
𝜂 (𝑟)
𝑓 (𝑟)

, 0 < 𝑟 < 𝑟0.

From |
|

∇𝐴𝑟|| = 1, we obtain the equality |
|

∇𝐴𝑤 (𝑥, 𝑦)|
|

= |

|

∇𝐴𝑟|| ||𝑤′ (𝑟)|
|

= |

|

𝑤′ (𝑟)|
|

, and combining this with |
|

∇𝐴𝜂 (𝑟)|| ≤
2
𝑟0
𝟏[ 𝑟0

2 ,𝑟0
] and the 

estimate (7.8) from [9], we have

∫ ∫ ( )

|

|

∇𝐴𝑤 (𝑥, 𝑦)|
|

𝑑𝑥𝑑𝑦 ≲ ∫

𝑟0
|

|

𝑤′ (𝑟)|
|

𝑓 (𝑟)
′ 𝑑𝑟 + 2

∫

𝑟0

𝑟0

1
′ 𝑑𝑟
𝐵 0,𝑟0 0 |𝐹 (𝑟)| 𝑟0 2
|𝐹 (𝑟)|
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≈ ∫

𝑟0

0

𝑓 ′ (𝑟)
𝑓 (𝑟)2

𝑓 (𝑟)2

𝑓 ′ (𝑟)
𝑑𝑟 + 2

𝑟0 ∫

𝑟0

𝑟0
2

𝐶𝑟𝑑𝑟 ≈ 𝑟0 .

On the other hand, 𝛷𝑚 (𝑡) ≥ 𝑡
1+ 𝑚

(ln 𝑡)
1
𝑚  and |

|

𝐹 ′ (𝑟)|
|

= (𝜎 + 1)
(

ln 1
𝑟

)𝜎 1
𝑟 , so we obtain

∫ ∫𝐵(0,𝑟0
)

𝛷𝑚 (𝑤 (𝑥, 𝑦)) 𝑑𝑥𝑑𝑦

≳ ∫

𝑟0
2

0
𝛷𝑚

(

1
𝑓 (𝑟)

)

𝑓 (𝑟)
|𝐹 ′ (𝑟)|

𝑑𝑟 ≥ ∫

𝑟0
2

0

(

1
𝑓 (𝑟)

)1+ 𝑚

𝐹 (𝑟)
1
𝑚 𝑓 (𝑟)

|𝐹 ′ (𝑟)|
𝑑𝑟

≈ ∫

𝑟0
2

0
𝑓 (𝑟)

− 𝑚
(

ln 1
𝑟
)

𝜎
𝑚 1

(

ln 1
𝑟

)𝜎 1
𝑟

𝑑𝑟 = ∫

𝑟0
2

0
𝑒𝑚

(

ln 1
𝑟

)(𝜎+1)
(

1− 1
𝑚
)

𝑟𝑑𝑟
(

ln 1
𝑟

)𝜎 = ∞

if (𝜎 + 1)
(

1 − 1
𝑚

)

> 1, i.e. 𝜎 > 1
𝑚−1 . This finishes the proof of Corollary  5.7. □

5.2. Proof of the geometric theorem

In this section we prove the geometric Theorem  1.1 as consequence of the abstract Theorem  1.6 and of the geometric 
Orlicz-Sobolev inequality established in Section 5.1.

Proof of Theorem  1.1. Theorem  1.1 is a consequence of the abstract Theorem  1.6 and the geometric results described in Section 5.1, 
once we show that under the hypotheses of Theorem  1.1 conditions (i), (ii), and (iii) of Theorem  1.6 are satisfied. It suffices to 
consider the case that 𝑢 is a weak subsolution of (1) in 𝛺, with right hand side pair as in condition (1) of Theorem  1.1.

Since 𝜙0 ∈ 𝐿𝛷∗ (𝐵 (0, 𝑟)), and 𝜙1 ∈ 𝐿∞ (𝐵 (0, 𝑟)), then the pair 
(

𝜙0, 𝜙1

)

 is strongly 𝐴-admissible at (0, 𝑟) by Proposition  3.3, so 
condition (i) from Theorem  1.6 holds.

Since the matrix 𝐴 (𝑥) in (5) is elliptic away from the line 𝑥1 = 0 and it is independent of the second variable 𝑥2, it suffices to 
prove the theorem for a ball 𝐵 (

0, 𝑟0
)

⋐ 𝛺. By Corollary  5.7 in Section 5.1, when 𝑘 = 1 and 0 < 𝜎 < 1
𝑚−1  or 𝑘 ≥ 2 and 𝜎 > 0, we 

have that there exists 0 < 𝑟0 = 𝑟0 (𝑚, 𝜎) such that the single scale (𝛷,𝐴, 𝜑)-Orlicz-Sobolev bump inequality (9) holds with 𝛷 = 𝛷𝑚 at 
(0, 𝑟) for some 𝑚 > 2 and superradius 𝜑 (𝑟) given by 

𝜑 (𝑟)
𝑟

= exp
(

𝐶𝑚
(

ln(𝑘) 1
𝑟

)𝜎(𝑚−1))

, for 0 < 𝑟 ≤ 𝑟0 ≤ 1. (83)

Hence condition (ii) from Theorem  1.6 is satisfied because of condition (2) of Theorem  1.1.
Finally, given 𝐵 (

𝑥, 𝑟0
)

⋐ 𝛺, the existence of an (𝐴, 𝑑)-standard accumulating sequence of Lipschitz cutoff functions at (𝑥, 𝑟0
)

follows directly from Lemma  5.3 above, so condition (iii) from Theorem  1.6 holds. Therefore, applying Theorem  1.6, 𝑢 is locally 
bounded above in 𝛺. □
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