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ARTICLE INFO ABSTRACT

Communicated by Jan Kristensen We show that if R” is equipped with a certain non-doubling metric and an Orlicz-Sobolev

inequality holds for a special family of Young functions @, then weak solutions to quasilinear

1?\,/158156:5 infinitely degenerate elliptic equations of the form —divA (x,u) Vu = ¢, — divAcf)1 are locally
35D30 bounded. This is obtained by the implementation of a Moser iteration method, what constitutes
35H99 the first instance of such technique applied to infinite degenerate equations. The results
51F99 presented here partially extend previously known estimates for solutions of similar equations
46E35 in which the right hand side does not have a drift term. We also obtain bounds for small
Keywords negative powers of nonnegative solutions, which will be applied in a subsequent paper to

Elliptic equations

Degenerate equations
Regularity theory
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Non- doubling geometry
Infinitely degenerate ellipticity

prove continuity of solutions. We also provide examples of geometries in which our abstract

kL
theorem is applicable. We consider the family of functions f; , (x) = |x|(l"( M) s keN, ¢>
0, —o0 < x < oo, infinitely degenerate at the origin, and show that all weak solutions to

—divAGL W Ve = B — divag (1)), AGy2) ~ [ !

0 fkaO(X)z ] with rough data

A, by, by, are locally bounded when k=1 and 0 <o < 1.

1. Introduction and main results

We consider divergence form quasilinear degenerate elliptic equations of the form
Lu= -V A uX)Vu=dy—divyd,, xR 1)
in a bounded domail} Q c R". The matrix A (x, z) € 2 (A, A, 1) uniformly in z € R, where 2( (4, A, 1) denotes the class of nonnegative
symmetric matrices A (x) satisfying
0<AE AMESETAX)ES AL AMNE, (2)

for a.e. x € 2, £ € R", and some fixed 0 < 1 < A < o0; i.e. A(x,-) is assumed to be equivalent to a degenerate elliptic matrix A (x)
in the sense of quadratic forms. We further assume that the reference matrix A satisfies that \/Z is a bounded Lipschitz continuous
n X n real-valued nonnegative definite matrix in 2, and define the A-gradient and the A-divergence operators by

Vy=VA®V,  div, =div (,/_A (x).), 5
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To obtain local bounds for weak solutions u of the second order quasilinear equation (1) it suffices to consider the linear operator
Lju=—divAVu = —div;V ju = ¢y — div,yd;, x€Q 4

where the matrix A € 2 (4, A, A), i.e. it satisfies the equivalences (2).

We first work in an abstract setting which requires the existence of an underlying metric d satisfying some geometric compatibility
with the differential structure induced by A, including the validity of a certain Orlicz-Sobolev inequality (Definition 1.4) for
compactly supported Lipschitz functions on d-metric balls.

The Moser iteration developed here is the first instance of such technique being implemented for infinite degenerate equations,
and as such it has an interest on its own. This iteration scheme requires the composition of Orlicz norms, which has been so far
an insurmountable telzchnical obstacle. We overcome this problem by considering a specially designed family of Young functions
@, (1) ~texp ((In t)mT ast — oo, m > 1, which are well-behaved under successive compositions. These “exp-log” Young functions’
were introduce in the study of bump conditions in weighted norm inequalities by Cruz-Uribe and Fiorenza [1], and were later shown
by Cruz-Uribe et al. [2] to have properties more akin to Lebesgue norms® than to the Orlicz norms induced by the so-called log-
bump functions A(#) = #” log (e + 1)?. Note that the Young functions @,, are much larger than the log-bump functions A, y considered
in [9], so in the end our results hold in a more restrictive family of geometries. Nevertheless, we do extend in these geometries the
boundedness results in [9] to operators in which the right hand side also has a drift term.

Another reason to implement the Moser iteration is that it yields L?>-L® estimates for small negative powers u® of nonnegative
solutions u, which combined with similar estimates for small positive powers of nonnegative solutions can render a Harnack-type
inequality which, in turn, can be used to obtain continuity of solutions. We have been unable to obtain these same estimates with
the De Giorgi approach used in [9]. On the other hand, our present methods require convexity of the power functions ¢%, limiting
our results to exponents a < 0 or « > 1. In a subsequent work we will establish estimates for small positive powers of nonnegative
solutions via the De Giorgi method, and we will combine these results to prove continuity of solutions .

The abstract results are of interest in themselves because of their greater generality, but they prove their true relevance in actual
geometric settings where they can yield new boundedness theorems. We provide in this paper an application of our abstract theory
to a two-dimensional quasilinear operator comparable to a diagonal linear operator with degeneracy controlled by a function f that
only depends on one of the variables. The current implementation of the Moser method requires a rather restrictive assumption on
the type of the degeneracy that is allowed, and does not handle as large a range of degeneracies as is covered by the De Giorgi
iteration in [9], or by the trace method in [10]. However, it does guarantee boundedness of solutions to degenerate quasilinear
equations as in [9,10] while including the case of non-zero right hand side. In this application, the structural assumptions on A will
ensure that A is elliptic away from the hyperplane x, = 0, and that the Carnot-Carathéodory metric d, induced by A is topologically
equivalent to the Euclidean metric d, although these will not be equivalent metrics since the d 4-balls are not doubling when centered
on that hyperplane. We prove that the assumptions necessary for the abstract theory, including an Orlicz-Sobolev embedding, all
hold, thereby obtaining boundedness of weak solutions to —div.A (x,u) Vu = ¢, — div A$ | for these operators in the plane (Theorem
1.1). The right hand side pair <¢0, $1) is required to be admissible as given in Definition 1.5 below, which basically requires the

(q.')o, &, ) to belong to the dual of the homogeneous degenerate Sobolev space Wf: (; (see Section 1.2 for the definition of these spaces).
We now present the two-dimensional geometric application, the boundedness Theorem 1.1. For this result we will specifically
consider the geometry of balls induced by diagonal matrices

Ax) = [(1) ; ((l )2] ®)

where f = f; , = "k with
Fi,(r) = (ln;) (ln ;) . r>0,keN, and o > 0.

. _F, (ln“‘) 1)0 . s s . P N
That is, fi, (r) = e fke® = r/ vanishes to infinite order at » = 0, and f; , vanishes faster than f;/ . if either k < &’ or if
k =k' and ¢ > ¢'. These geometries are particular examples of the general geometries F considered in our abstract theory define]d
by the structural conditions 5.1 in Section 5 below. In [9] we consider F, = F;, =™ (k=0) withO <o < 1,50 f|,(r) > f,=¢
near r = 0. The boundedness results obtained here, albeit having a drift term on the right hand side and being able to treat small

negative powers of supersolutions, do not include the case k =0, 0 < 6 < 1, as in [9]; this is due to the current technical limitations
for implementing a Moser iteration in the infinite degenerate setting.

Theorem 1.1 (Geometric Local Boundedness). Let {(0,0)} ¢ 2 c R? and A(x,z) be a nonnegative semidefinite matrix in Q2 x R that
satisfies the degenerate elliptic condition (2) where A(x) is given by (5) with f = f; ;. Then every weak subsolution of (1):
Lu=—V"A(x,u(x) Vu= ¢y — div

is locally bounded above in 2 C R? provided that:

1 We want to thank the referee for pointing out the earliest introduction of these “exp-log” bump functions @,
norm inequalities and the analysis of some their properties.

2 In particular, the Orlicz norms determined by @, are one-sided comparable to the non-homogenous quasi-norms given in Definition 1.4 below. See also
Lemma 3.2.

together with their applications to weighted

m>
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1. the right hand side pair (¢0,$1> satisfies ¢, € L;‘ZZ (£2), where @* is the adjoint Young function to ®,,, for some m > 2, and
|| € L,

2. at least one of the following two conditions hold:

(@ k=1and0<o<1,
(b) k>2and o > 0.

1.1. Relation to other results in the literature

Apart from the two papers by the authors [9,10] , mentioned earlier, there have been very few related results obtained by other
authors, since this current paper first appeared on the arXiv in 2015. The two most recent and relevant ones are Cruz-Uribe and
Rodney [3] and Di Fazio et al. [5]. In [3] the authors obtain boundedness of weak solutions to a certain class of degenerate elliptic
Dirichlet problems using an adaptation of the De Giorgi technique developed in [9]. The results there are of abstract type where
one assumes a weighted Sobolev inequality, and these results are similar, but incomparable, to our abstract results. However, they
obtain a quantitative bound for a much larger class of inhomogeneous data. On the other hand, there are no geometric theorems
there, which would require verification of complicated hypotheses, such as a Sobolev inequality. In this paper, as in the original
version in the arXiv in 2015 [8], the use of the Moser iteration is crucial, this despite the comment made in ([3], page 5) to the effect
that “We were unable to adapt Moser iteration to work in the context of Orlicz norms, and it remains an open question whether
such an approach is possible in this setting”.

More recently in [5] the authors consider quasilinear degenerate equations of this nature, and they use Moser iteration to obtain
abstract results on Harnack inequalities and Holder continuity of solutions. Similar to Cruz-Uribe and Rodney [3], the authors use
an axiomatic approach, where the relevant (weighted) Sobolev and Poincaré inequalities, as well as the doubling property of the
weights on the metric balls, are assumed to hold a priori. Since there are no geometric theorems established in [5], their results are
also incomparable to those in our paper.

From the point of view of abstract results, the current paper also makes a new significant contribution. In both Cruz-Uribe
and Rodney [3] and Di Fazio et al. [5] the authors use (g, p) Sobolev inequalities with ¢ > p and do not perform Moser or De
Giorgi iterations using a weaker Orlicz-Sobolev inequality employed in this paper. Due to the inhomogeneous nature of the Orlicz
norm, adapting these techniques to this new setting was a highly technical nontrivial task which required new ideas. This allows to
establish regularity of solutions in the case when the metric balls are non-doubling with respect to Lebesgue measure, that is, the
metric space is not of homogenous type; see [7].

1.2. The abstract setting

We work in an open, bounded domain 2 c R” and as described above we consider nonnegative symmetric real valued matrices
A in Q such that /A (x) is uniformly bounded and uniformly Lipschitz in Q2. The degenerate Sobolev space WAI’2 (L) associated to
A has norm

lolly 12 = \//le|2+((vl))lr AVD) = \//Q <|v|2+|VAU|2>.

Since /A is Lipschitz then divy/A (x) € (L® (£2))", hence the space WAI’2 (9) is a Hilbert space (see [13], Theorem 2) contained in
L? (), with inner product given by the bilinear form

al(u,u)=/VAU~VAwdx+/dex, U,wer’z(_Q)
Q Q

where Vv = \/XVU. The associated homogeneous subspace WAI’S (£2) is defined as the closure in W;’z () of Lipschitz functions
with compact support, Lip, (£2). If a global (1-1)-Sobolev inequality holds in £, i.e.

/lgl dx < Cg /|VAg| dx for some C,, > 0 and all g € Lip, (), 6)
Q Q

2

it follows that the Hilbert space structure in WA1 o

(£) has the equivalent inner product
a(u,v) = / A(x) V- Vw dx =/ Va0 Vawdx,  vweW, T (Q).
Q Q ’

In this case we have that IIUIIW;.z(Q) ~ ||VAU||L2(Q) for all v e leg (£2). In ([9], Section 8.2) we show that inequality (6) holds for a
wide variety of infinitely degenerate geometries.

Note that V, : W;’z (@) —» (L*(©)" and div, : (L))" - (W/‘lﬁ (Q))* are bounded linear operators, where (WAlg (.Q))*
is the dual space of WAlﬁ

f e (L (@))" and for all 5 € (Lip, (£2))"

/f-ﬁdx:/udivAde,
Q Q

(). The derivatives in W;"z () are understood in the weak sense, i.e., f = V,u in Q if and only if
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note that the right hand side is integrable since div,o € L*® () and u € L? (£2). When u € WAI’2 (£2) and A € 2A (A, A, A) we define the
equivalent A -gradient and div; operators associated to by setting V ;v = VAVy and (div4i0,v) = — [ - V zv for all v € Lip, (2).
From (2) it is clear that |V ;0 (x)|  |V,v(x)| for a.e. x € Q. Each u € W/:’z (£2) then defines the bilinear form

d(u,w)://i(x)Vu-Vw:/V/;U-V/;wdx, U,LUEW/:’z(.Q).
Q Q

The assumptions (2) imply that ¢ ~ a as bilinear forms, which are bounded on W/:’z (), that is |a(v,w)| < |a(w,w)| S

~

||v||W1,z ||w||W1,2. In the presence of a (1-1)-Sobolev inequality (6) we moreover have that ¢ and a are coercive on WAlg (),
A A ’
ie. a(v,v)2a o) |v)? )
i.e. a(v,v) 2 a(,v) 2 ”U”W/i"z(g)
Definition 1.2 (Weak Solutions). Let 2 be a bounded domain in R”. Assume that ¢, q_5 € L?> (Q). We say that u € w2 (Q)is a
= 0 1 loc A
weak solution to L ju = —divAVu = ¢, — div,¢, provided

/A(x)Vu-Vw dx=/¢0w+q§l~v,,w dx @
Q Q

for all w € Lip, (). Eq. (7) may be written as a (v, w) = F (w) where F is the operator defined by the right hand side of (7), which
is a bounded linear operator on WAI’S (£2). With this notation we similarly define the notion of subsolution (supersolution) by saying
that u € W/i’z () is a (weak) subsolution (supersolution) to L ju = ¢ — divA$1, and write L u < ¢y — diVA$| (Lju>d¢y— divA<5]), if
and only if

a(u,w) < F(w) (@, w)>F(w)) forall nonnegative w € Lip, ().

Finally, we say that u € W/i’z () is a weak solution (subsolution, supersolution) to Lu = —div.A (x,u) Vu = ¢y —div, $1 provided u is
a weak solution (subsolution, supersolution) to L ju = ¢, — div A$1 for A (x) = A (x,u(x)).

Note that our structural condition (2) implies that the integral on the left above is absolutely convergent, and our assumption

that ¢, ‘q;l) S leoc () implies that the integrals on the right above are absolutely convergent. In Definition 1.5 below we weaken

the assumptions on the right hand side pair (¢0, 4_51 )

In this abstract setting we work with the differential structure defined through the matrix A, inducing the Sobolev spaces W ; 2(Q).
We further assume the existence of a metric d : R" x R" — [0, co0) satisfying certain geometric compatibility with this differential
structure, namely conditions (i), (ii), and (iii) in Theorem 1.6. We now describe each assumption in more detail.

Definition 1.3 (Standard Sequence of Accumulating Lipschitz Functions). Let 2 be a bounded domain in R” and let d : R"xXR" — [0, c0)
be a metric. Fix r > 0, v € (0, 1), and x € Q2. We define an (A, d)- standard sequence of Lipschitz cutoff functions {II/,- };'; L at (x,n),
along with sets B(x,r;) D suppy;, to be a sequence satisfying y; = 1 on B(x,7;), 1y =7, Iy Slim;_  r; =vr, r; —rpyy = ]iz a-vr
2
for a uniquely determined constant ¢, and ”V Ay/jH S (lj_v)r with V4 as in (3) (see e.g. [12]).
o -
A sufficient condition for the existence of these cutoffs would be the existence of a constant C; > 0 such that whenever
0 <r < R< oo and B(x,R) C &, then there exists a Lipschitz function y = y,, € Lip, (Bg) such that 0 < w < 1, y = 1 in
B, and ||V y|, < %. This is indeed the case d = d, is the Carnot-Carathéodory metric induced by a continuous matrix A, and
this metric is topologically equivalent to the Euclidean metric (see Lemma 5.3).

We will need to assume the following single scale (®, A, ¢)-Orlicz-Sobolev bump inequality:
Definition 1.4 (Orlicz-Sobolev Inequality). Let 2 be a bounded domain in R”, the (&, A)-Orlicz-Sobolev bump inequality for £ is

! </ @ (w) dx) SC |Vaw| >  w€ELip (), 8)
Q

where dx is Lebesgue measure in R"” and C depends on n, A, @, and £ but not on w.
Fix x € 2 and r > 0 such that B (x,r) C 2, the (&, A, ¢)-Orlicz-Sobolev bump inequality at (x, r) is:

d-D </ D (w) dﬂx,p) <@ ||VAw||L1(Mx ) 0<p<r, o
B(x,p) »

for all w € Lip, (B(x,p)), where du, ,(y) = ml B(x,p (V) dy, and the function ¢ (r), dubbed the superradius, is continuous,

nondecreasing, and it satisfies ¢ (0) =0, p(p) > pforall0 <p <r.
Finally, we say that the single scale® (@, A, ¢) -Orlicz-Sobolev bump inequality holds at (x,r) if (9) holds for p = r (and not
necessarily for 0 < p < r).

3 As opposed to the multi-scale Sobolev bump inequalities assumed for continuity, that require 0 < p < r,.
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The particular family of Orlicz bump functions @,, required above that is crucial for our theorem is the family

m

<(1nr)$+1)m 2
D, (H)=e , t>E,=¢ , m>1, (10)

which is then extended in (34) below to be linear on the interval [0, Em], continuous and submultiplicative on [0, o0); we discuss
this in more detail in Section 5.1.
Finally, we describe the notion of admissible right hand side pair.

Definition 1.5 (Admissible Right Hand Sides). Let 2 be a bounded domain in R” and let ¢, : 2 — R, ¢, : 2 — R" be locally
integrable. We call(qu, $1) a right hand side pair (although we may just refer them as just a “pair”). Fix x € 2 and p > 0, we say

that the right hand side pair <¢0, q;]) is A-admissible at (x, p) if

|(#.:) / o dy / Vav- by dy
B(x.,p) B(x,p)

where W, = {v € (W/:é) (B(x,p)) : fB(x’p) |Vav] dy=1 } Similarly, we say the pair (qbo, & ) is A-admissible for Q if (11) holds with

= sup
X(B(xp)  vEW

+ sup < 0. an

vEW)

Q replacing B (x, p).
For convenience we also introduce the concept of strongly A-admissible pair. We say that (¢0,$1) is strongly A-admissible at
(x,p) if

”(q&,d;l) = sup/ |vgpo| dy + sup/ )VAU~$1‘ dy < co.
X5(Bexp)  vEW, JBxp) vew, J Bxp)

It is clear that if <¢O, $ 1) is strongly A -admissible at (x, p) then it is A-admissible at (x, p).

In the above definition an A-admissible right hand side pair at (x,r) defines a bounded linear operator T ( 0d ) on the space
sP1

W;’S (B (x,r)) by setting

T((M;)(U):/ U¢0dy+/ V,o-¢,dy.
1 B(x.p) B(x.p)

Recall that a measurable function u in Q is locally bounded above at x if u can be modified on a set of measure zero so that the
modified function ¥ is bounded above in some neighborhood of x.

Theorem 1.6 (Abstract Local Boundedness). Let §2 be a bounded domain in R". Suppose that A(x, z) is a nonnegative semidefinite matrix
in 2 x R that satisfies the degenerate elliptic condition (2). Let d(x,y) be a symmetric metric in €2, and suppose that B(x,r) = {y € Q :
d(x,y) < r} with x € Q are the corresponding metric balls. Fix x € £. Then every weak subsolution (supersolution) of (1) is locally
bounded above (locally bounded below) at x provided there is r, > 0 such that:

i. the right hand side pair <¢0, $1> is A-admissible at (x,rg),

ii. the single scale (@, A, @) -Orlicz-Sobolev bump inequality (9) holds at (x, ’0) with @ = ®,, as in (10) for some m > 2,

iii. there exists an (A, d)-standard accumulating sequence of Lipschitz cutoff functions at (x,ry).
Similarly, under the above three conditions every weak supersolution of (1) is locally bounded below at x, and every weak solution
of (1) is locally bounded at x.
In particular, every weak solution (supersolution) of (1) is locally bounded at x.

Proof. This local boundedness result is an immediate consequence of Theorem 4.1 for g = 1, proven in Section 4.1. Indeed, setting
A(x) = A(x,u(x)) because of the equivalences (2) we have that A satisfies (2). By hypothesis, the (@, A, ¢)-Orlicz-Sobolev bump
inequality (9) holds at (x, ry) with @ = &,, for some m > 2 and an (4, d)-standard accumulating sequence of Lipschitz cutoff functions
at (x,rg).

Thus, if u is a weak subsolution of (1), then it is a weak subsolution of L ju = —divAVu = ¢ — div 4 $, , and all the hypotheses of
Theorem 4.1 are satisfied, therefore u is locally bounded above (u* € Ly (£2)). In fact, Theorem 4.1 provides precise estimates: for
vo<v<l1,withyy=1- 50:”, where 6, (r) is the doubling increment of B (x, r), defined by (12), we have that there exists a constant
C =C(p,m, A, A,r,v) such that

flu* + ¢*||L“(B(x,vr)) <C ut+ ¢*||L2(B(x4,r),dy,) <o

where . The last inequality follows form the fact that since u € W /;’2 (B (x,r)), then

. 1 “\2 2
||u+ +¢ ||L2(B(x,r),d;4,) = (m B (u+ +¢ ) dx) < 0.

Similarly, if u is a weak supersolution of (1) we conclude that

lu™ + & || LoBewry S C o™+ ¢*||L2(B(x,r),d;4,) <oc. [
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Remark 1.7. The hypotheses required for local boundedness of weak solutions to L ju = ¢ — div,¢, at a single fixed point x in Q
are quite weak; namely we only need the existence of cutoff functions for B (x,ry) for some ry > 0, that the inhomogeneous couple
(¢0, $1) is A-admissible at just one point (x,ry), and the single scale condition relating the geometry to the equation at the one
point (x,ry).

Remark 1.8. We could take the metric d to be the Carnot-Carathéodory metric associated with A, but the present formulation
allows for additional flexibility in the choice of balls used for Moser iteration.

The specific relation between the metric and the Orlicz-Sobolev embedding will be given in terms of the concept of doubling
increment of a ball and its connection with the superradius ¢. The bounds in Theorems 4.1 and 4.2 are the embedding norms of
L® (B,_Sx(,)) into L% (B,).

Definition 1.9. Let £2 be a bounded domain in R". Let §, (r) be defined implicitly by
1
|B(x,r—§x (r))| = 1BG.nl, (12)

We refer to 6, (r) as the doubling increment of the ball B (x, r).

2. Caccioppoli inequalities for weak subsolutions and supersolutions

In this section we establish various Caccioppoli inequalities for subsolutions and supersolutions of (4) (see Definition 1.2). In
order to prove a Caccioppoli inequality, we assume that the inhomogeneous pair <¢0,q31) in (7) is admissible for A in the whole
domain Q2 in sense of Definition 1.5.

What is usually called a Caccioppoli inequality is a reverse Sobolev inequality which is valid only for functions satisfying an
equation of the form L ju > ¢ — div ¢, or L ju < ¢ — div4,. The Moser iteration is based on these type of inequalities obtained
from the equation when the test function is an appropriate function of the solution. If u € WI:’Z (), and his a C%! or C!! function
on [0, o), then £ (u) formally satisfies the equation

Lj (h(u) = =divAV (h(w)) = —divAh' (u) Vu = h' (u) Lu— h" () |V Au|2 )

Indeed, if w € W/ié () and u is a positive subsolution or supersolution of (4) in £, we have
/ng-Vf;h(u) = /h’(u)V}gqu,;u
= /V,; (1 () w) ~V/;u—/wh”(u)VAu~VAu
< / wh' (u) o + / V4 (wh' W) - ¢,

_ / wh' @) |V zul®
provided that wh' (u) € WA]:é (£) and that it is nonnegative if u is a subsolution, and nonpositive if 4 is a supersolution. Note that
wh' (uy e W [ig () if in addition we have that 4’ is bounded.

We will establish two Caccioppoli inequalities. Lemma 2.1 holds for convex increasing functions s applied to u*; this estimate
is utilized to implement a Moser iteration scheme to obtain boundedness of solutions without restrictions on their sign. The other
result, Lemma 2.3, applies to convex functions of nonnegative subsolutions or supersolutions, and the function 4 will satisfy suitable
structural properties which will allow us to obtain (through a Moser iteration) inner ball inequalities for negative powers u? of the
solution,.

Lemma 2.1. Assume that u € W;‘z (B) is a weak subsolution to L ju = ¢ — div A$l in B = B(x,r), where (¢0, (131 is an admissible pair
and A € A (A, A, }) (i.e. it satisfies the equivalences (2) for some 0 < 4 < A < o). Let h(t) > 0 be a Lipschitz convex function which satisfies
0<h (n<C, @, for t > 0 and it is piecewise twice continuously differentiable except possibly at finitely many points, where C, > 1 is a
constant. Then the following reverse Sobolev inequality holds for any w € Lip, (B):

/uﬂ‘v,, [h (u++¢*)”2dx§CLAC,2’/h(u++¢*)2(|VAy/|2+w2), (13)
B B

as given in Definition 1.5. Moreover, if u € W/:’z (B) is a weak supersolution to L zu = ¢ —div 4,

where ¢* = ¢* (x.r) = H(¢, é)
X(B(x,r))
in B, then (13) holds with u* replaced by u~.
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Proof. From the hypothesis, if ¢ > 0 is a discontinuity point of 4/, then A’ has simple jump discontinuity there, and both the left
and right derivatives are defined with hﬂr (t) — A" (¢) > 0. Following the proof of Theorem 8.15 in [6], for N > ¢* > 0 larger than
the last point of discontinuity of 4/, we define H € C%! ([¢*, 0)) by

H()= h(1) = h($*) t € [¢*, N]
T\ A(N)=h(@)+H (N)t-N) t>N ’

and let w (1) = fd:* (H' (s))zds for 1 > ¢*, i.e.

Sy (W ()" ds t€[¢*. N
w(t) = N 5 5 .
/¢* (W () ds+ (R_(N))"(t=N) t>N

Then w is continuous and piecewise differentiable for all ¢ > 0, with o’ () having at most finitely many simple jump discontinuities.
Since h is convex we have that H’ (¢) is increasing, and therefore

t t
o (t) =/ (H' ()" ds < H’(t)/ H'(s)ds=H' () H (). 14
d)*

Note also that, since & is convex, H (t) < h(¢) for all + > 0. Now, since both 4 and #’ are locally bounded on [0, o), it follows the
function w (x) = o (u* (x) + ¢*) € WAI’2 (L) whenever u € W;’z (£2), moreover, suppw = supput and V qw = (H' (u* (x) + qb*))2 v ut.
If u is a subsolution to L ju = ¢, — div A$1 in B(0,r) and y € Lip, (B (0, r)), then we have that y?w € W;’g (22) and we have

/VA”'VA (v?w) < /W2w¢0+/VA (v*w) 1.
Write v(x) = H (u* (x) + ¢*), and v/ (x) = H' (u* (x) + ¢*) then the left hand side equals
/VAM~VA (v?w) = /WZVA”'VAW"‘Z/WWVA”'VAW
= /u/2 (U’)ZVAM+ . V/‘;1fr+2/y/wVAu+ SV ap
= /t//2 |V/;v|2+2/x//wV/;u+ Vv,
where we used that suppw = supput; we obtain
/W2|V/;U|2S—Z/v/wVAu+~VAl[/+/y/2MJ¢0+/VA (v?w) - ;.
From (14) we have
wx) =W x)+¢*) <H (uf (x)+¢*) H (um )+ ¢*) = (D) v(x),
so we can estimate the first term on the right hand side by

2/ww|VAu+||VAw| 2/y/UU’|V/;u+||V/§w| =2/wU|VAU||V,w/|

%/ 2|Viol +2/ V],

Substituting above and absorbing into the left, we obtain

/y/2|V/;v|2S4/|VAy/|2v2+2/y/2w¢0+2/VA (q/zw)'zj;,. (15)

Now, since <¢0,q_51) is admissible, we have that

|/w2w¢0 +|/VA (WZW)'$1' ¢*/|VA (v?w)|

2¢*/W|VAUI|LU+¢*/W2|VALU|. (16)
We assume now that ¢* > 0, if this is not the case, then we substitute ¢* by a small constant ¢ > 0 and let ¢ — 0 at the end of the
proof. By the inequality A’ (r) < Ch@ and the definition of H we have that

n * N W refet N h
N

IA

I\

I\

I\

t>N ¢*

h(ut ()+¢*)

Then by (17) we have that v/ (x) < C, =

by

, and writing (x) = h (u+ (x) + ¢*), the first term on the right of (16) is bounded

2¢*/y/|VAw|w < 2¢*/u/|VAu/|vU’§2Ch/w|VAy/|uﬁ

7
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< Ch/(w2ﬁ2+|VAy/|2U2).

Similarly, the second term on the right of (16) is bounded by

¢*/W2|VA”U| — ¢*/‘I/2 (U’)2|VAM+| =¢*/l//2U,|VAU|
C2
Ch/W2ﬁ|VAv| < %/W2|VAU|2+7h/W2ﬁ2'

where 4 > 0 is as in (2) and we also used (17). Plugging these estimates into (16) and substituting into (15) yields
21y .2 2 2 2:2 2 2
W V| <4 [ |Vap] v® +2C, W+ |V | o
2
A 2 2C, -
+5/1//2|VAU| +T Vatial
Using the structural assumptions (2) yields

/1/1,/2|VAU|2 < 4/1/|VA|//|2U2+2C,,/(w252+|VAy/|2v2)

2
ALy 2&/ 22
+2/1//|VAU|+/1 v,
absorbing in to the left we obtain
2 A 1 2\ ~
/WZIVAUI <16C7 <7+ﬁ>/(wz+|v,,w| )Uz’
where we used the inequality v (x) = H (u* (x) + ¢*) < h (u* (x) + ¢*) = #(x). This is
2 .
/Wz‘VA [H (u++¢*)” dXSCA,ACZ/<W2+|VAlI/|2> (h(u* )+ ¢%))°,

the lemma the follows in this case by letting N — co.
When « is a weak supersolution to L ju = ¢ —div,; in B, then —u is a weak subsolution to L (—u) = —¢y —div (—$1) with the
same admissible norm ¢*, and (—u)* = u~, so (13) holds in this case with u* replaced by u=. []

IN

Remark 2.2. Taking A (f) =¢ in Lemma 2.1 we have that
2 2
/ y/2|VAu+| deC/M/ (u* +¢*) (|VA1//|2+1//2) dx
B(0,”) B(O,)

when u is a subsolution to L ju = ¢y — div, $1, and the same estimate holds for «~ (Ju|) when u is a supersolution (solution).

The following variation of Caccioppoli requires stronger hypotheses on the function s, however # is allowed to be decreasing when
applied to supersolutions. In particular, 4 needs to be C!! since the second derivative of h explicitly appears within the integrals
in the calculations. When 4 is C!! the second derivative may be discontinuous (piece-wise discontinuous in our applications) but
discontinuities will only be jump discontinuities, which do not affect the integrals.

Lemma 2.3. Assume that u € WAI’2 (£2) is a nonnegative weak subsolution or supersolution to Lju = ¢, — div A$, in B(0,r), where
(¢0,$1> is an A-admissible pair with norm ¢* and A satisfies the equivalences (2) for some 0 < A < A < co. Let h(t) > 0 be a convex

monotonic C' and piecewise twice continuously differentiable function on (0, co) that satisfies the following conditions except possibly at
finitely many points when t € (0, c0):

LY@®=h@h" @0+ (t))2 satisfies c; (h' (t))2 YW <C (W (t))2 at every point of continuity of h"', where 0 < ¢; <1 < C; < o0
are constant;
1. The derivative h’ (1) satisfies the inequality 0 < |h’ (t)| <G @, where C, > 1 is a constant;
Furthermore, we assume that
L. if u is a weak subsolution then h' > 0, and if u is a weak supersolution then h' < 0.
Then the following reverse Sobolev inequality holds for any w € Lip (B(0, r)):

2

2 cc
/ WZ‘VA [h(”"'d’*)” dx < C; 4 122 / h(“+¢*)2(|VAW|2+W2)- (18)
B(x,r) CI B(x,r)

Proof. We will prove the lemma with an extra assumption that 4/(¢) is bounded and & (u + ¢*) € L? (B (0,r)). These assumptions
can be dropped by the following limiting argument. Using standard truncations as in [12]. If A is increasing we define for N > 1,

hy () = h(t) if 0<t<N
N (0= h(N)+ R (N)(t—N) if t>N
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while if 4 is decreasing we let

hN(t)E{h(%)-'—h’(%)(t_%) if 0<t

<L
_lN
h(t) if 1z

We note that either function h still satisfy conditions (I)-(III) in the lemma with the same constants C,; and C,, if we can
obtain a reverse Sobolev inequality similar to (18) for Ay, then the dominated converge theorem applies to establish (18) in
general. Moreover, note that since sy is linear for large + when h is increasing and for small + when % is decreasing, then
h(u+¢*) € L2 (B(0,r)) <> u€ L*(B(0,r)). Hence, if ¢* > 0 from (II) it follows that also (h’ (u + ¢*))2 and Y (u+ ¢*) € L' (B(0,r)).
If ¢* = 0 we replace it by a small positive € > 0 and then let ¢ — 0 at the end. Thus, in what follows we will assume that 4’ (r) and
h" (1) are bounded on the range of u + ¢*, and that all integrals below are finite.

Assume that h is C!, convex, and piecewise twice differentiable in (0,c0) with bounded first and second derivatives. By
these assumptions it follows that h is twice differentiable everywhere except a finitely many points where A” has finite jump
discontinuities.

Let w € Lip.(B(0,r), v(x) = h(u(x)+¢*) and write v/ (x) = A’ W (x)+¢*), v (x) = I’ w(x)+ ¢*). Then we have that
w(x) = w2 (x)v(x) v (x) is in the space WAIS (B(0,r)). Now, by assumption (III) we have that w > 0 when u is a subsolution, and
w < 0 when u is a supersolution, then we have

/V;u~V;w§/w¢0+/VAw~q_5l (19)

Since V ju0 = v'V zu, and (v’)2 + o =Y (u+ ¢*), the left side of (19) equals
/VA”’ Viw = /VAMJ/VA (y/zv) +/IIIZUUNVAM~ Vu

= /VAU-VA (1//20)+/u/21}v”|V/;u|2
= 2/WUV/;U-VAI//+/y/zY(u+¢*)|V/;u|2.

Combining this and (19), we obtain

/sz(u+¢*)|V,;u|25—2/wUV;U~V/;q/+/w¢0+/VAw~q_51. (20)

By property (I) and the equivalences (2) we obtain:

cl/l/y/2|VAv|2§2A/wv|VAv||VAw|+/w¢0+/VAw-d;1

By Schwartz inequality we can estimate the first term on the right hand side by

2
2A/q/v|VAv||VAq/|§ﬂ/u/2|VAU|2+4A/UZ|VAu/|2.
2 c A

Substituting above and absorbing into the left, we obtain

at 442 -
IT/V/ZWAUPSH/UZ|VAW|2+/W¢0+/VAW‘¢1- 21
1

Since (¢0,$1> is admissible, we have that
& / ’VA (WZUU/)

[ vorafe| o)
20 [ Va0l

+¢* / u+d) |VAu|

I\

IA

By property (II) we have that |v/| = |1/ (u+¢*)| < C, (H; ) _ =C——
(D-(I) to the second, we obtain

‘/Wbo +|/VAW'(]§1|

2C,9" /W|VAW| +C1¢/ |VA”|

26, [ v +clcz¢*/w Vol

Cz/(l[/2+|VAW|2)U2+C1C2/W2U|VAU|

- ¢* ; applying this to the first term on the right, and properties

IA

IN

IA
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2c2¢? A
< Cz/(w2+|VAw|2)U2+Cl—/12/wzvz+17/ 2|V 40 (22)
1

Replacing this on the right of (21) and operating yields

202
2 2 16A2/ 5 2 G 2 2\ 2 SCICZ 22
wo Vol £ — [ v7|Vyy|"+4— (u/+Vy/)U+— %)
/ [Vatl 2R [Vavl c14 IVav] 2R

C2C? / 42
1“2 (A 1 1 ) 2\ 2
<16 R ( +|v ) :
512 </12 2 A)/ W+ | Vaw|T) v

3. Preliminaries on Young functions

In this section introduce some basic concepts from Orlicz spaces and define the particular families of Young function that we
will use in our applications. We also compute successive compositions of these functions and their inverses and obtain estimates for
their derivatives.

3.1. The Orlicz norm and the Orlicz quasidistance

Suppose that p is a o-finite measure on a set X, and @ : [0,00) — [0,00) is a Young function, which for our purposes is an
increasing, convex, piecewise differentiable (meaning there are at most finitely many points where the derivative of @ may fail
to exist, but right and left hand derivatives exist everywhere) function such that @ (0) = 0. The homogeneous Luxemburg norm
associated to a Young function @ is given by

||f||La>(X,d”)=inf{t>0:/qh(@)dﬂﬁl}e[o,m], (23)
X

where it is understood that inf (ﬂ) = oo. The completion of the space of y-measurable functions in X with respect to this norm
(see [11], page 20 for more details) is the Orlicz space L? (X, du) which is a Banach space by definition. The conjugate Young
function @ is defined through the relation (&*) = (@' )71 and it can be used to give an equivalent norm

IIfIILf(,,)Esup{/Ifgldﬂl/d’*(lgl)dﬂsl}.
X X

The conjugate function @* is equivalently defined as
D* (s5) = quop (st—d (1), for all s > 0. (24)
>
If @ and &* are conjugate Young functions, then we have the Orlicz-Holder inequality
/X 1fgldu <2 1/l o gl o (25)
forall f € L? (X,dy) and g € L? (X,dp) (see [11], (4)-page 58).

Given a Young function @ and a measure y we will define a non-homogeneous norm as follows. We let Lf (1) be the set of
measurable functions f : X — R such that the integral

/ ®(fD) du.
X

is finite, where as usual, functions that agree almost everywhere are identified. The set L‘f (1) may not in general be closed under
scalar multiplication, but if @ is K -submultiplicative for some constant K > 0, i.e.

&(st) <KD (s)D() forall 5,1 >0

then clearly fx D(|Cf]) du < K& (C) fx @ (|f]) du and L‘f (u) is a vector space because if f,g € Lff (u) then
/<D(|f+g|) dp =/ ' O u{lf +gl>1} dr
X 0

< /0°°<1>’<z>u{|f|> ] dz+/0°°a>’<z)u{|g|> N

- /<1>(2|f|> dﬂ+/4’(2|g|) du
X X

< K¢(2){/X¢(|f|) dM+/X<1’(|gI) dﬂ} <.

We claim that if @ is an K-submultiplicative Young function then the function
1/ lpog, = @' (/ ) dﬂ) 26)
X

10
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is a nonhomogeneous quasi-norm in Ljf’ (u), that is, I-lpe, : Lf (1) — [0, o) satisfies
I fllpegy =0 = =0
IIf +gllpe) < Co (||f||1)ﬂ>(,,) + ”g”D‘D(y))‘

Indeed, it is clear that || fllpe(,y 2 0 and || fllpe,) =0 < f =0, and that || f - gllpe(,, = l§ — fllpe(,) From the above computation
we also have that

P (||f +gI|D‘D(y))

/ D(|f+gl) du
X

K¢(2){/<D(|fl) du+/4>(|gl) dﬂ}
X X

= Ko ) {@ (IIflpegy) + @ (llglpey) )
2KD (2) @ (£ llpo + llglpog,)
@ (2KD ) {1/ lpoq, + llgllpeg, })

where we used that @ is increasing and that C® (1) < @ (Ct) since @ is increasing convex with @ (0) = 0. Thus, we have

IA Nl IA

IA

I/ + gllpegy < Co (ILF ipogy + lglipog,) forall f.g€ LY ().

The same proof provides an inequality for any general finite sum of functions Zf; s

N
2

J=1

N

<Con <ZH}3HD¢(M)> whenever f; € L? (), j=1,...,N, (27)
D?(u) =1

where Cy, y = NK @ (N).

The function ||-||lpe(,, in general would not be a quasinorm because it may fail to be absolutely homogeneous, i.e., in
general||C flpe(,, = |C| || fllpe(,, may not hold. It is clear though that dy, (f,g) = ||/ — gllpe(, is a quasi-distance in L‘f (n), i.e. the
function dg (-, ) : L‘f (u) X L‘f (1) = [0, ) is symmetric, dg (f,g) =0 < f = g, and satisfies a triangle inequality with a constant
C4 that may be bigger than 1. We note that the same conclusion may be reached if @ is K -supermultiplicative, i.e.

K& (st) > D (s)@()  forall s,¢> 0.
Indeed, we have that for any C > 0 and f € L‘: (W)
1

1 K
[oacry au=—~ [ o(L)oqcr a5~ [ o0r) au<w.
¥ @ () o(e) ™
and it similarly follows as above that f + g € L? (u) for all f,g € L? (u). We have shown the following:

Proposition 3.1. If @ is a K-submultiplicative or K -supermultiplicative Young function in [0, o) for some K > 0 then the space

L2 (u) = {f : /Xqﬁ(lfl) dﬂ<°°}

is a vector space and the function |||l pe, L‘f (1) = [0, ) defined in (26) is a nonhomogeneous quasi-norm in L‘f ().

In this paper we consider Young functions which satisfy the hypotheses of the above proposition, so our Moser iteration may be
considered as an iteration scheme in quasi-metric spaces. The homogeneity of the norm || f||;(, is not that important, but rather
it is the iteration of Orlicz expressions that is critical. The following lemma shows the relations between the Orlicz norm and the
quasi-norm when the Young function is sub- or supermultiplicative.

Lemma 3.2. If a Young function @ is K-submultiplicative for some constant K > 1, then

o' (/ @ (v)dp, )sKllvll :
BGrp) ’ L2 )

On the other hand, if @ is a K-supermultiplicative Young function for some K > 1, then

loll o, ) < K&'=D (/ oW dn )
L () Bee) x.p

Proof. Recall that we have by definition

. o]
ol ;e :1nf{t>0:/ (D<— du, , <1 3.
L (”x,p) B(x.p) t x.p

Let k = |[vllpe,, = ! (/B(W) @D (o)) d,uw), by the submultiplicativity of @ we have

o) =0 () <ko()ow=ko () [ o an,
K K K Bxp)

11
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v
< @(KU)/ O (o) dpe
K B(x.p)

where we used that C® (r) < @ (Cr) for all C > 1. Integrating gives

]
[ otnan, < [ ok du, [ oo du,
B(x.p) B(x.p) K B(x,p)

so that [, @ <K%> du,, > 1, which yields

1
1ol o, > & = %@~ </B(m¢>(|u|> dux,,,>.

Now assume that @ is a K-supermultiplicative Young function, i.e. K@ (st) > @ (s) @ (¢) for all 5,7 > 0. We have
K/ ® (o)) dpy, K/ o ( llolo, )L dpuy,
B(xp) ’ Bxp) o ollzo, ) ’

o]
(] P\l ) |
<||U||L‘D(Mx.p)> /B(xﬁ) ( ”U”Llp(”x.p) > e

By Fatou’s lemma we see that for any § > 0

OS/ o] i dﬂx,p_/ lim sup @ L duy,
B(x,p) ||U||L<D(,4W) -6 B(x,p) e—0* lloll o (i)
/ fiminf (@ —12 ) _o dpy,
B(x,p) e—0t ||U”La)(/4x,p) -6 ||U||Lq>
. [v]
llmmf/ | —m8mMmM— | - du
=0/ B(x.p) < <||U||La>(,,x,p) -6 ||U||Lw ,,”) P

v v
= / D __ dﬂxp—hmsup D e duy .
B(x.p) ||U||Ld>(,,w) -6 e-0t  JB(x.p) ||U||Ld> (Hxp)

\%

IA

Hence
K/ D (|v]) du, , > (D(IIUII o ) lim sup @ du
B(x.,p) o L2 (1) B(x,p) e—0% ” oll L2 (py ) P
> tp(llullLo )llmsup D duy,
-0t B(x,p) ||U||L'~1’ p ’
> @ (|lell o) ) -

where we applied the definition of ||v|| L2 ()" Then, since @~ ! (¢s) < ¢! (s) for all 0 < ¢ < 1, we have that

lo]l o
B (] L (g ,)
? </B<x,p>(p(|vl) dﬂx”’> = (Kd) (”””L’D(ux‘ﬂ))) S S

3.2. Orlicz norms and admissibility
The next proposition gives sufficient conditions for strong admissibility.

Proposition 3.3. Given a right hand side pair (¢0, 4_51) defined in a bounded domain £2. Suppose that (7)1 € L™ () and that there exists
a submultiplicative bump function @ and a constant C, such that the global (®, A)-Orlicz-Sobolev bump inequality (8) holds, and such that

¢y € L?" () where ®* is the conjugate Young function to &. Then (qﬁo, $1> is strongly admissible in Q2 as given in Definition 1.5 with
norm

o5

<2Cq [oll o @ + |1 gy <

X4Q) Lo(Q)

Proof. First, note that for any v € Lip, (£2)
[ 700 2 ] 1l

o) Hq;] X0 < Hq.';l ”Lm(g). Next, by the Orlicz-Holder inequality (25), the global Orlicz-Sobolev inequality (8), and Lemma 3.2, for
any v € Lip, (22)

[ lotal dx < 2l ol

12



L. Korobenko et al. Nonlinear Analysis 261 (2025) 113888

<2Cq ||¢0||L<P*(.Q) ”VAU”LI(.Q)
this is ||¢0||X*(B(y,RU)) <2Cq [|¢oll oo O
3.3. Submultiplicative extensions
In our application to Moser iteration the convex bump function @ () is assumed to satisfy in addition:
» The function (’) is positive, nondecreasing and tends to oo as t — oo;
« ®is submultlphcative on an interval (E, o) for some E > 1:

& (ab) <D (a)D(b), a,b> E. (28)

Note that if we consider more generally the quasi-submultiplicative condition or K-submultiplicativity,
@ (ab) < K@ (@)D (), ab>E, (29)

for some constant K, then @ (r) satisfies (29) if and only if @k (1) = K& (r) satisfies (28). Thus we can always rescale a
quasi-submultiplicative function to be submultiplicative.
Now let us consider the linear extension of @ defined on [E, o) to the entire positive real axis (0, o) defined by

@ (E
& (1) = 1(5)

1, 0<t<E.
We claim that this extension of @ is submultiplicative on (0, o), i.e.
D(ab) <D (@)D (D), ab>0.

In fact, the identity &(r)/t = ®@(max{t, E})/ max{t, E} and the monotonicity of @(¢)/t imply
d(ab) < ®(max{a, E} max{b, E}) < ®(max{a, E}) ) d(max{b, E}) _ @w

ab — max{a, E}max{b,E} ~ max{a, E} max{b, E} a b

Conclusion 3.4. If @ : [E, ) —» R* is a submultiplicative piecewise differentiable convex function so that &(¢)/t is nondecreasing, then
we can extend @ to a submultiplicative piecewise differentiable convex function on [0, co) that vanishes at 0 if and only if

QD(E) (30)

O (B)2 —

3.4. An explicit family of Orlicz bumps

. (Int)ym +1> . . .
We now consider the near power bump case @ (1) = @,, (1) = e< for m > 1. In the special case that m > 1 is an integer
we can expand the mth power in

nd (e) = (si + 1)m = i <’1':> s,

k=0

a a

and using the inequality 1 < (ﬁ) + (#) for s, >0and 0 < a < 1, we see that ©,, (s) = In®,, (¢*) is subadditive on (0, ), hence
1 m

@,, is submultiplicative on (1, ). In fact, it is not hard to see that for m > 1, 0,, (s) = (sﬁ + 1) is subadditive on (0, o), and so @,,

is submultiplicative on (1, o).
We will show that @ is increasing and convex in [E, o). For any ¢ > 1 we have

m—1
@(r)m((lnt)ﬁ + 1) %(lm)

m—1
_ m<1+ L ) =200, 1
! (nfym !

' (1

m—1
with Q) =0, () = (1 + (lnt)_i) > 1; and so for any E > 1 we have

& (E)> d’;f) (32)

Next, we compute

D (t)

" (1) = (RO -2 +12' )
)

(R -Q@m+12' 0).

13
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Fig. 1. The Young function @, (1.

0

1\ m=2 1 m=2 1
Since ' (1) = -"-11 (1 + (1m)‘a) (nty"n~! = =L LQu=T (Int)™' ", for 1 > 1 we have

(@@ - 20 - "=20% tnnn )
@, (1) -
= —oem|em-1- — 1
! QT (Inn'*
®, ()
=2 Pawro.
12
where
m=1
ro=r,n=20-1-

m

(33)
o L
QT (Inp)!*m

m—1
since (1) — 1 = (1 " (1nz)‘i) — 13> (m—1)(In5) ", it follows that

ros =1
(Int)m

- —™m > Cnr

: >0
Q=1 Int

1
(Int)m

for all + > e and m > 1. This shows that @ is convex on [e, o), and so by (32) and Conclusion 3.4 we can extend @ to a

positive increasing submultiplicative convex function on [0, c0). However, due to technical calculations below, it is convenient to
take E = E,, =¢*", F = F,, =", and so we will work from now on with the definition

(woka)" i
D) =D, () =1¢ if t>E=e

m
%z if 0<t<E=e"

34
where m > 1 will be explicitly mentioned or understood from the context (see Fig. 1).

t>FE
@m(I)E

The function @,, is clearly continuous and piecewise C®. In some of our applications we will require that the Young function
- BE?
0 (D if =

should be C! and piece-wise smooth, so the second derivative only has at most jump discontinuities. For this reason we define a
variation @,, of the Young function ®,, which has the same growth as t - oo, and has the required smoothness. We define
@, if

1

<t
p F
Eft if OSI

<E
BE?
F

IA

(35)
14
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where B > 1 and ¢,, (?) is an increasing convex function satisfying

op@=E, o,(E)=F . BE? 36)
m—1 where a = ——.
o, @=3% oﬁ,,(E)=5,;(%) F
For example, we can take
om(t)=E+%%(t—a)+a(t—a)p, (37)

where « and g are determined by (36):

m—1 _
=55 (-G -5) w0 =TS

Indeed, since g > 1 we have that both « (f — @)’ and its derivative vanish at 7 = 4, and so

1F
on(@=E and o, = 3E
Moreover,
1F B-1 F
E)=E+——(E-a)+ ————— (E—a)
on (E) BEE Y g g O
1F B-1
=E+—=—(E- Z=°F
+BE( a) + 3
2
—FrE-LEf i pip LEBE _p
BE BE F
and
1F 4+ _1F _B-1 F
' (E) = —— E-of 1= 4p2—~
on(E) = g TabE=a) BETP B E-a
1F a 3\ F
D ()7
BE E 2 B) E-a
_L1F (2)’"‘1_1 E_E(E)’""l
" BE 2 B)E E\2 '

This proves that ¢,, defined by (37) satisfies (36). Note that since

p=pom = o (1-4) ((%)""Lé)

- (- 72=) ()7 -5).

then g is increasing in m, and therefore for each fixed m; > 1 we have g > g (m) for all m > m,. Given a fixed m; > 1 we will choose
B so that  (my) =2, i.e. B is a root of the quadratic equation

mo—1
<1_ e3'”£2""0> <(%) 0 B_1> =2@B-D o

This choice of B guarantees that 0 < ¢/" (f) < M < o for ¢ in [a, E] for all m > m, and hence the function @, is in C1! (R). To see
that B > 1 can be chosen we write Eq. (38) in the equivalent form

V+DB-12—(pu—pu—-v-2)(B=1)—puv=0

mo—1 g _om .
where v = (%) —1and u=¢e"""2" — 1. The choice of root

(vu—u—v—2)+\/(vu—ﬂ—v—2)2+4uv(v+1)
1+
2(v+1)

show that B is clearly bigger than 1. In our applications it will suffice to take m, = 2, for which we have

1 1 e -2
B==|1/5¢5+ 0+ 1 ~ 1.949450754..
3< e +4e + ) >

Moreover, we have ¢! () = af (f — 1) (t - a?>0fora<t<E,so o, is clearly convex (see Fig. 2).

B=

In our application we will also require y; () = 1/ 0, (tZ) to be convex. Since
2
1 F 2 p-1
1ol (1?) 5 tap(?-a)

V%(’)=< on (t )> :\/gm(t2>=I\/E+%§(12—a)+a(12—a)ﬂ

15
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10000 T
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0--I.II-I=I-I-}I.II
0 10 20 30 40 50 60 70 80 90 ltOO
Fig. 2. The Young function &,(r) with =2, a~ 0.7 and E ~ 55.
for a < t* < E. With the change of variables s = > — a and since %'—; = %, this is
7, (\/s+a)= ?—a(£+aﬁsﬂ’l), 0<s<E-a
2 E+=s+asf 2 4@
2
which is increasing in s when p > 2. Indeed, the derivative of <y’l (\/s + a)) is
3
d s+a E p—1 2
— g ——— | — tafs
ds{E+§s+asﬁ(a ¢ )}
E ) — E p-1 E p-1 - -2
<E+as+as) (s+a)<a+aﬂs ) (s+a)(a+aﬁs >2aﬂ(ﬂ s
= +
2 E
(E+£s+asﬂ) E+7s+ash
E _ _
_ —al G- -aaps (s+a) (£+apsh")2ap(p— 1)
- 2 E
(E+£s+as/’) E+;s+asﬂ
—as? (B — 1) — aafs’' + (s + a) (f + aﬂsﬂ—l) (E +Es4 asﬂ) 2ap (f - 1) /-2
= 2
(E + %s + asﬁ)
5 1 E)? E2 -1
—asP (B - 1) — aaps’ +2(;) ap(p-1)s" +2Zap(p—1)s
>
= 2
(E +E5+ as/’)
a
2
{z(f) ﬂ—l}asﬁ(ﬁ— 1)+{f—f(2ﬁ—2)—1}aaﬁsﬂ—1
= 5 > 0.
(E + Es + asl’>
Therefore y/, (1) is increasing in 7, and so y1 (1) = /0, (t2) is convex. We also note that the upper bound
2 2
1 Or]®
I _ < fora<i’* <E, (39)

m

2
<y’l (t)>
2

readily follows from the definitions.

16
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Notice that @, (t) = @,, (¢) for ¢ > E, while —45 () <D, () < D, (1) for all + > 0. It follows that if an Orlicz Sobolev inequality

holds for @,, with superradius ¢, then we have that the Orlicz Sobolev inequality holds for &,, with superradius C,,¢ for some
constant C,,. Indeed, if v € LipC (B (x,r)) for a ball B (x,r), then

D </ @ ) o= <c,,,/ @ )
B(x.r) ST |B(X rl B(x,r) SR y-yme] IB(x |

oD (/ o(C dx >
B(x.r) (1) B e |B(x,r)|

dx
C,p(x,r) V0| ———.
" B(x,,)l AT TN

IA

IN

(40)

Moreover, @,, is defined to be linear on [0, a] with @ (a) = E to facilitate computing successive compositions @5,:') (1); indeed, for ¢
small these compositions are just linear, for 1 > E these are @f:) 1) = d)f,’,') (1), and when a <t < E then & (¢) > E, so the modified
formula in the middle appears at most once in any composition. See Corollary 3.7 for details.

3.5. Iterates of increasing functions

In this subsection we consider the specific families of test functions 4 that arise in our proofs. To implement the Moser iteration

scheme we are interested in estimates for the iterates h; (t) = hoho --- oh (j times), in particular, to apply the previous Caccioppoli
(r) th! (1)

” 2
inequalities, we want to estimate the quotlents (t) and h,’—(t), as well as the function Y; () = (%hf (t)) =h; (1) h;’ ®+ (h; (t)) .
j j

One family of test functions we consider is
h;(t)=TY (t)=I,ol,0... T, (times), (41)

where the function I}, (1) = /®,,(2) for m> 1. When t > \/E,, = ¢*""', we have the explicit formula

1 L )m
2 @mym+1
I, =+/0, () :e2< >t

Proposition 3.5. Let m > 1, the function h (1) = h; (1) = \/tbf,{) (12) defined in (41) for each j > 1 satisfies

) 12 th' (1)
W <Y (@) <20 (1) and 1< O

<C,"
"
where Y (1) = (30 ®) " = () " (1) + (' ()", Moreover, we have that " (1) > 0 for all 1 > 0.

Proof. From the definition (34) of ®,,, we have

n 0<t<e
mw=4 700 0= :
() e <t

. 1
1 (21nt)m+l> o ) _ _
e2< . Then, defining the intervals I, = (0, 7=U=D2" 1),

where 7,(1) = = with 7 = exp(%(3m —2'")), and 7, (1)
I, = [T‘U‘k)ezmq,T‘U‘k‘l)ez"ﬂ) fork=1,....j—1,and I, = [eszl,oo), we have the expression

1 @) tely
h(t) = h; () = yj")( G- ">(r)) tel k=1,.,j-1. (42)
7. tel;.

Since y(J) (f) = 7/t it is clear that for all j > 1 and for 7 € I

0 )
Y(z)—y(“(z)(y”)(z))"+((yf{“(t))')2 (( “><t>)> and M=l 43)

v ()
Now, for # > 1, and t > 2"
N
’ L (21nt)%+/ (f)()
(no) = A ) - Y0, (44)
m—1
with .Q:;(r): <1+ ‘ l) , and
Q2lnt)ym
@y 1O ’
( ()) - t_ ((.Q* 0) =220 +1 (25 1) ) (45)

17
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So from (43) and (44) (since yéjik) ) > """ whenever 1 € I, k=1,...,j),fort e 1; we obtain

OPNY .
SM:Q}‘U)§<I+Z> 1, (46)
r @ 2
and
9 (1) (y(,) (,))” N ((yo') (,))’>2
Y; () _h 1 1
@) ) oY)
<(y1 <z>)> ((y1 (r>)>
2 !’
(Q;.‘ (t)) e (t)+t<!2;f (t)) N o
= . .
(2 o)
. ! el S\ .
Since (.Q;‘ (t)) = _2L(1m)l+l <1 + (211)l ) , using the estimate
m(Int)m t nt)m

A+0" =120 +x) %+ m-Dx>A+x)" ' (m=Dx
J
T
QlInf)m

when m > 1, x > 0, we have that with x =

!
Qi -1 I<Q; (I)) Qi) -1 %j
“B)—1+1—— = Q") —1—
(0 0 (0 B " _
J 2 (Int)m 1+ —L
QInfym
m=1;
> 1 m=1)j _ w !
- . 21 L 1 L]
<1++1> @Innm - 2w (Int)m
@nnym
(m—1)j |
T 1
= @hmom fy m >0, since 7 > 2"
j Int
1+ T
QInt)ym
. "
It follows that <ny ) (t)) >0, and thus
Doy (420 (@ P o a @)
7 y, @ T ® HORANIN0)
< = <1 (48)

<(y{” <t>)'>2 (2 0)
since (!2;‘)/ < 0. Substituting in (47) yields

10

((yf”(r))')z -

Then from the expression (42) for h ; and (43)-(46)—(49) it follows that A no satisfies the estimates claimed in the proposition both
fort € I, and € I;. Now, note that whent € I}, k=1,...,j — 1, we have y“ik) (1) € I;, and also

0
h} ) = (yfk))/ (yé,-_k) (r)) . <},(()j—k>)/(t)
h;’ ) = (}’fk))” (}’(()j_k) (t)) . <<yé/—k))’ (t)>2 + <3’Ek))/ (yéj_k) (l‘)) . (y(()j—k))// )
- () ) o)

(49

. "
since (y(()’ _k)) = 0. Then, in these intervals, by (43) we have
®\ (G0 o\ (R
thi, (1) _ t (71 ) (70 (t)) (70 ) Q)
h; (1) J/gk) (yéj—k) (,)>

18
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y(()j—k> (t)(y;k)) ( G-k (I)) ( G- k)) )

Yfk) ( G=k) (z)) </ (1)

=k (t)( <k>) < (—k) (t))

(o)

th' (1) S\ m—1 s . e
o1 < hf(:) < (1 + é) < ij'”‘1 by (46) for t € I, k = 0,..., j; this finishes the proof of the second set of inequalities in the
J

lemma. Also, for 1 € I, k=1,....j - 1

mow o N (™) (1) (78"“0))((yé"’”)’(r))Q
Tl () ) )

) 6 )
() @)

by (48). Hence we also have 1 <

Y,
()

Remark 3.6. Note that the identity, A (f) =1, trivially satisfies the conclusions in the previous proposition.

> <2 for t € I, what finishes the proof of the first pair of inequalities. []

The following is a corollary of the proof of Proposition 3.5, which extends its conclusions for the Lipschitz Young function &,
to the C!! Young functions @,

Corollary 3.7. Let m > 1, then for any integer j > 1 the function h (1) = h; (1) = @Y (12) with @, (1) defined in (35) satisfies

th' (t) el
o S
where Y (1) = (%7!2 (l))” =hR' @)+ (K (t))2. Moreover, we have that h"” (t) > 0 for all t > 0.

el <Yy@m<cC, @©> and 1<

Proof. The proof is the same as for Proposition 3.5, with the appropriate modification of the explicit formula for the compositions.

1
Indeed, for ¢t € [0(%)] [0,a] we have that &, (1) = (tz)_f't, with 7 = %%.Using the definition (35) of &,,, we write
) 1
/TF 2E2\ 2
Eit if OSIS1<T)
h - 0 2) = 2\ 73
hi@) =@ () =4 o (2)  if <2£>25t§E%
@, () if 1> E3
1
@ if 05:5(%)2
1
: 2E2\2 1
y%(t) if (T) <t<E2
1
71 (®) if t>E2

~ 1 1
Then, defining the intervals I, = (0,#7U="a), I, = [fU Mg, 0U*Va) fork=1,....j -1, I; = [& Ei) and I, = [Ei,oo), we
have that

0) if tel,
k=1 -k . = .
h=in or e/ ™ @ if reh, k=1,
Wo=hm=\oY(2) if rtel,
The proof when t € I, or t € I;,, is the same as before (note that now y, replaces y 1 in the previous proof), while if r € I,
k=1,...,j,

o) = (1) (0 () - (o) () (5)

19
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o = () (o (5om)) () 657)- (42
() (o) () ) (G))

where we used that y”” = 0. Since by the chain rule we have that for any smooth functions a (1), b (#), ¢ (t)

alble®)-@bE®)’ _ ab@)-a" (), abE) be-H @
(@®e)) @B @)?  dGE O (y(y)?
ab©) b c-c"

a' (b(c)) - b(c) U/ (c) - ¢ (c)?

we have

omay A (o) () (o (0))
(B o) (6 (o))
o Ael) ) () ()
(7;16_”), <}’% ® (?’éj_k)>> 7% ® (yé"’”) <<y% (z)), (yé/—k))>2

Then, since from (46) we have yl(k_l) (s)/ [s (y](k_l) (s))] <1, and from Proposition 3.5 we have

(k=1) k-1\"
O © _yo

(o)) T

it follows that

"
k) )
ho@ (R 0)” Y17 (7’1) "o
Oshj(t)(hj(t)) oy 2( ) 3 ( )<c

((71»0))/)2 ")
’ (o) ()
Yo _ hoko)”

"
where we used inequality (39) and the fact that (y 1 > > 0 (see the discussion just before (39)). Then 1 < or = W +1<
2 (Rj®)

c,. O
We now consider hy, (1) = /@0 () =T, W) (¢#). We will show that this & satisfies the hypotheses of Lemma 2.1 for § < 0 and
p>1.

Proposition 3.8. The function h; 5 (t) = hy = h; (%), B <0 or f > 1, where h(t) = h; (1) = oY (1) is defined in (41) for each j > 1,
satisfies h;; () > 0 and

Y. _ VAN
8@ O | R | < L3 ‘

< <C, 181",
' 2 18l h;j g (1)
(hj,ﬁ (l‘)) J.B

" 2
where Y (1) = (%hz (t)) = hy (1) h’ﬁ’ ®+ (h;} (t)) . Moreover, when f > | we that have h; ; is increasing.

, 2
Moreover, if h; 4 (1) = hy = h; (%) with h; (1) = N (2) as in Corollary 3.7, then for Y, () = (%71% (t))” =hy (1) 712; ) + (71;; (t))

Y (¢ — t|B @)
s—””()z < m+—|ﬁ|ﬂ|” and |/3|s—|h”ﬁ(t)| <C, 181",
(h;;ﬂ (t>) J’ﬂ
Proof. Since for all g #0
Wy@y= g7 W () and R0y = BB - DR () + BPR (). (50)

From the first equality it is clear that h, is increasing when § > 0, and therefore so it is #; ;. The lower bound 4 () > 0 follows
from the second identity and the facts that 4 is an increasing convex function, and g(f—1) > 0 when f < 0 or § > 1. Now, by

20
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Proposition 3.5 we have

B B (,ﬁ) ~ t h;, (t)‘ ‘e - )
|ﬂ|_|ﬂ|m— @ S S O A
Similarly,
Y0 (%hﬂ(t)z) O @)+ 10
R AU R
(m,0) / (m )

h(?P) (BB —D)tP=20 (1F) + p22P-20" (1F)) |
= +

(Brr=1w (18))?
p-1 h() AW ()
bobw () (w (7))
p-1 h(")  Y(F)
T8 on (v) * (W ())* ©2

s
By Proposition 3.5 we have that # < tﬁh’( ;) I,and 1 < (hf((tﬂ)))z <2,s0if p<0or p>1 we have
m t
Y, (1) _
2Ly P P,
B C,im (h’ (I)> B
B

where we used that % > 0. The proof for h ;5 1s identical, using instead the estimates from Corollary 3.7. [J

3.6. The L*® norm

The following proposition establishes sufficient conditions for the iterated integrals to converge to the supremum norm.
Proposition 3.9. Suppose that © is a nonnegative strictly increasing function such that © (0) = 0 and with the following property:

liminf ————=— =0  fordl M > M, > 0. (53)

Let D € D, be nonempty open bounded sets in R", and let {D ! };il be a sequence of nested open bounded sets satisfying
D/ >D;33D;3D;;>3D

and such that D = ﬂ;’i] Dj, Let @ be a Borel measure in D, with @ (D 1) < oo, such that m < @ where m denotes Lebesgue’s measure.
Then, if f is w-measurable in D,we have

lim inf O/ < / oYV (|f (0] da)> and
jo o D

J

lim sup @ (/ oV (If (0] dw) i
j—oo D

J

IA

11l Loy

v

lengo ”f”Loo(Dj)

Proof. Since © (0) = 0 and O is strictly increasing, it is invertible, and @), ©(-/) are nonnegative and strictly increasing for all
j = 1. From the hypothesis (53) on © we have that for all § € (0, 1), the inequality

s (M) > v (Ml ) (54)

holds for each sufficiently large j > N (M, M,,5). Note that if 5 > 1 the inequality trivially holds since @ is increasing. We have
that (54) implies the range of O is [0, o), i.e. © ([0, o)) = [0, o), so O~ is also defined on [0, ). Indeed, for any A >> 1 there exists
N € N such that
)
© (2) A if j>N,

o0 (1) 2o

note that @ (1) > 0 since O is strictly increasing and © (0) = 0. It then follows that 2((,!))(5)) > — @( 5 for all 0 < 7 < 1, in particular for
0 < 1; <1 given by @Y (1;) = ©(1). Thus, we see that for all A > 1 there exists N such that j > N = 0Y)(2) > 4, since 4 is

arbitrary it follows that @Y (2) - o as j — 0, $0 0 ([0, )) = [0, o).
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Since m «w, we have that w (D;) > 0 and in general w(U) > 0 for all nonempty open sets U. The sequence || f|| L=(D)) is

decreasing and bounded below by || f || ~(p), it follows that F = lim;_ || f]| (D)) exists, and F 2 || f|l e p)- Now, for each fixed
k>1and j > k we have

P </ 0V (If dw> <o </ & (Ifll=(o,)) dw) b
D; K
oD (w (D) @Y (IIfIILw(ok)))'

Fore > Oand j > N, = max{k,N(||f||Lm(Dk)+5,||f||Lw(Dk),w(l')k))}, we have that co(Dk)@U)<||f||Lm(Dk)) < oV
(Il (p,) +e)s 50

A

IA

o </ 0V (If D) dm) <0 (69 (Ifll(p,) +¢) ) = Il (0, +¢

Db,

for all j > N,. Then

lim sup ) /
Jj—oo D

Since k, & > 0 are arbitrary, this proves that limsup,_,, 6 (/D 0D (If ) da)) < F=limy o 11l (py)-
J
On the other hand, for 0 < 2& < ||f|| (p) (assume f is not trivially zero in D), define 4, = {x €D |f X 2Nfllpep) — s}.
Then we have that 0 < w (4,) < o (here we used that » (D;) < o) and

69 (If () dw) <1 s (,) + -

J

/ 0V (1f W) do > (4,) 0V (IIf ll =) )

Db;

Hence, from (54), for j > N (|| fl| zoo(py — & 1/ Il Lo (p) — 2. @ (4, )) it follows that

6 ( / oY (If dw)
D;

J

\%

0 (@(4,) 09 (IIf Il =y — €))

v

o (@(j) (||f||L°°(D) - 25)) = 1/ lleo(py = 2¢.
Letting j — oo we obtain

lim inf @) </
J—0 D

J

O (If ® dﬂ;) 2 1 flleopy — 26,

and since € > 0 is arbitrary we conclude that

1/ 1l ooy < liminf @) (/ 0Y (1f du,).
Jj—oo D;

J

This finishes the proof. []

Remark 3.10. Note that in the previous result we cannot in general guarantee that

If ey = Jim O ( /D 0V (If dco)

J

unless we have || f|| eo(p) = lim;_, o, [| £l 1=(D,)* This will be the case if, for example, f is continuous.

dw

Remark 3.11. Proposition 3.9 also holds with dw replaced by du; = )
o\5j

in each D, the proof is the same.

Remark 3.12. The Young functions @ = @,, defined on (34) satisfies the hypotheses of Proposition 3.9. Indeed, it is clear that @,
is nonnegative, strictly increasing, and vanishes at the origin. Given any M > M, > 0, there exists N, such that @(Mo) (M) 2 E,
so for all N > 1 we have

(DN+NU (M)
——— =exp((a+ N)"—=(b+ N)"),
oNNo (M) p( )
1 1
where a = (In@M (M))» > (In@™o (M))" = b. Since for m > 1, we have
lim [(a+ N)"—(b+N)"] > lim (a—b)- m(b+ N)""' = oo,
N-oco N-oo

we see that the growth condition (53) holds for @. Note that in terms of the associated Orlicz quasidistance (26) we have that

1/l oopy < lim;_o ”f”D“’(”(D,y)'
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In [4], Cruz-Uribe and Rodney established a general result for Orlicz norms with Young functions B,, (t) = (log (eq + t))q,
1 < p<o,q>0,e=e~ 1. They showed that if f is measurable in a general measure space (X, M, ) then lim_, ||f||qu =1/ o>
where || f|| By, is the Orlicz norm of f in X. Even though the results seem of a similar type, Proposition 3.9 neither contains nor it

is contained in the theorem in [4], since the integrals @/ ( o 85D dw) are not in general the Orlicz norms associated with
. J
the Young functions ©V), but rather the quadi-distances ||-|| peot) defined in Section 3.1.

4. The Moser method - Abstract local boundedness

In this section we prove the abstract boundedness result under the presence of an Orlicz-Sobolev inequality (9) and a standard
sequence of Lipschitz cutoff functions (Definition 1.3) for the Young functions @,, given in (10).

4.1. Boundedness of subsolutions and supersolutions

Recall that /A (x) is a bounded Lipschitz continuous n x n real-valued nonnegative definite matrix in R”, and 2( (A, A, 1) denotes
the set of symmetric n X n matrices which are equivalent to A within constants 0 < A < A < oo as given in (2),i.e. A A< A< A Ain
the sense of quadratic forms. In what follows B = B (x,r), 0 < r denotes a d-metric ball where d is a fixed metric in R”".

Theorem 4.1. Let @(t) = @,,(1) be as in (34) with m > 2; suppose that there exists a superradius ¢ so that the (tpm, A, (p)-Sobolev bump
inequality (9) holds in B = B(x,r) for some 0 < r < 1, and that an (A, d)-standard sequence of Lipschitz cutoff functions, as given in
Definition 1.3, exists.

Letvy=1- 'er(r), where &, (r) is the doubling increment of B (x,r), defined by (12). Then for all v € [vo, 1) and B € [1, oo) there exists

a constant C (@, m, A, A, r, v, ) such that if A € (A, A, ), and u is a weak subsolution to the equation L ju = —divzV ju = ¢ — diquEI
in B (x,r), with A-admissible right hand side <¢0,$]> (see Definition 1.5), then

”(u+ + ¢*)ﬂ”L°°(B(x,vr)) sClemiArv.p ”(u+ + d)*)ﬁHLZ(B(x,r),du,) pz1 (56)

where ¢* = ”(d) 4;1) and .dy, = de . In fact, we can choose
X(B(x.r) | B(x,r)]
_ ym o \"
C((P,m,)»,/\,r, Vsﬁ) = exp <Cm,A,A ((ﬁ 1) + <ln (1 _ V)I‘) >> .

Furthermore, if u is a weak supersolution to the equation Lzu = ¢, — div A$1 in B(x,r), then (56) holds with u* replaced by u~. In
particular, if u is a solution to Lju = ¢, — divy ((;_51) in B(x,r), then u is locally bounded in B (x,r) and (56) holds for |u| and all
Ve [VO, 1).

Proof. Let us start by considering the standard sequence of Lipschitz cutoff functions {y/j}00 | depending on r as given in Definition

j:
i . Cj?
1.3, along with the balls B; = B(x,r;) D suppy;, sothatr =ry > r; > <« >r; > rjy > = ro =lim;_, r; = vr, and HV"WIHW < a _jv)r

with V, asin (3) and 1 - 22 =y, <v < 1.

Note that a priori we do not know whether |u| + ¢* € L? (B) when g > 1, however, the proof will proceed with the assumption
that |u| + ¢* € L?# (B) for all #, and then, a posteriori, the case § = 1 implies that u* + ¢* € L/ (B (x,vr)) forall 0 < v < 1, ¢* > 0,
p > 1. Let u be a subsolution or supersolution of L ju = ¢, — div,¢; in B (x,r). Then we have that if

am—1
e 7
= —°¢ (57)
e + &* Nl 204y,

then i = du is a subsolution or supersolution (respectively) of L zii = ¢, — div, (q?l) in B(x,r) with ¢, = g, ¢, = ap,. Moreover,
2m—l

—_ d)* T 2m—|
b = |( do, P =—9¢ 7  <e¢ 7 ,and
¢ |'<¢0 ¢1)”x<3) =+ W 25 gy~ ’
1 + * am-1 am-1
- - ut + ¢ 2 2
it + ¢ ﬂ”” = ||+ &*||, 2 = e F =e P . (58)
”( ) L2(dpy) ” ”L dp,) [Jux + ¢*”L2ﬂ<d”r) 126(dn)

For simplicity, in what follows we write v = &% + ¢*, explicitly,

(59)

it + ¢ ifL/;IJs(ﬁO—divA<$l)
v= Z
)

i+ ¢ ifLAﬁzqgo_diVA( )

By Proposition 3.8 we have that 2 (f) = h; ; (1) = @YD (12#), j = 1, (where @© (1) = 1, see Remark 3.6) satisfies the hypotheses
of Lemma 2.1 with constant Ch,, = Cn Bl j™1, namely, h; 5= |h; p (t)‘ <C,|pjm! w We apply Lemma 2.1 to h (1) = h; 5 (1),
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with y =y, du; = |‘;—x|, to obtain
j

2
/B W2 |Va ()| duy <2, (B2 /B (h)* (IV 40> +w?) dp;. (60)
J J

. . . h
where we used the estimates in Proposition 3.8, namely, )h; s (t)| <C,|pljm! %U) It follows that

2

L2(uj)

2

IV alw; con| 0

2
S5l AZC IR \AVZILIC! P

IA

C2 AP / 1P (194w, + w7 ) duy
, ;

2

L2 ()

Coya B+ 17200

» (B+1)?
mAA ()22

2V o]

IA

V| L @2
¥ @I

PRI, (61)

(Bj1s)’
where we used the inequalities ”Wj”oo <1< ”VAl[/j“Lw < Cj?/((1 —v)r), and the fact rp<r<l.

|B(x,rj)|

Taking w = y>h(v)* in the Orlicz-Sobolev inequality (9), and since ooy <2 by the choice of the sequence of radii, yields
XFjg1

¢<—1>< / ®(h(u)2)dﬂj+1)s¢(_l) < / Zw(wfh(v)z)dﬂ,>
By B;

J+ J

oD < / q;(zwfh(u)Z)du,) <Co(r))
Bl

IN

Va((wh)?)

L' (Bj.u;)

<2Co(r)) | Va (‘l’jh(U))”H(BM/) H‘/’jh(v)“Lz(B/w)
PArj
S CuaaB+1D) %j'"“ ||h<v)||iz(3j,yj)

where we applied (61). Recalling the definition of A(v) = /®U~D (12/) with @ = &, this is

/ @9 () du,,
B

j+1

/ D(h(v)*) dpjyy
B:

Jj+1

) i
‘D<Cm,a,A(ﬂ+1)(1w_rv),f +1/B U 1)(02ﬁ)d/4j>.

j

IN

Thus, setting

@(r)

T-wur > 1, (62)

K = Kandara(@, 1) = Cm,A,A B+1)

we have that

/ oY () dy;,, §<D<Kj'”+1/ @U=D () dyj). (63)
B(x,rjy1) B(x.r;)

Now define a sequence by
by = i W du, by =@ (Kj™Mb;). 64
1

The inequality (63) and a basic induction shows that

/B oU™D (V) dy; <b;. (65)
j
Now we apply Lemma 4.3 with b, = fB(”]) |v|?? dpp, bjyy =@ (Kijj), and y = m + 1, then there exists a positive number

C* = C* (by,K,m) such that the inequality @V (C*) > b;,; holds for each positive number j. Moreover, since from (58) we have

a1\ 28
that b, = ||U||2L€ﬂ(du )= <eT> = ¢?" we can take
» \"
exp ((C, InK)") < exp <Cm,z/\ <(ﬂ— D"+ <ln (l(P ) ) >) =C".
’ —V)r
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It follows that

o) ( [ en dum) <00 () < C°,
B(xrj11)

On the other hand, by Proposition 3.9 (and Remark 3.12) we have that

”UMHLW(BOO) <liminf @~0*) </B U+ (1?) dﬂj+1>,

j+1

hence

26 T ZﬂH _ gt o E1%8
”U HLN(B(X,W)) - ”(u +¢) L°°(B(x,vr))_||u +¢||L°°(B(x,vr)>

2,
u+ ¢* g

et + d* Ml 1264y,

oo

om

L*®(B(x,vr))

L>®(B(x,vr))
2

om

+ )0
”(u +¢%) ”LZ(B(x,r),dM,)

o0 (Cnsa (0-07+ (m5257)"))

(C(p.m, A, A, r,v, B)).

IA

Recalling now that we wrote u for i defined in (57), and by the choice of v in (59), this yields

B p
” (u+ + d’*) ”L“’(B(x,vr)) S Clg.m A Arv. f) ”u+ + d)*”Lzﬂ(B(x,r),dm)

for all > 1 when L u < ¢y — div, ((751 ), while we obtain

_ p - B
”(u + ¢*) ”L“’(B(x,vr)) S Clg.m A Arv. f) ”u + ¢*||L2ﬂ(B(x,r),du,)

for all # > 1 when Lzu > ¢y —divy ($1> O

In the previous theorem we obtain abstract local boundedness of weak solutions of Lu = ¢, — div4¢,, when the right hand side
only had the first term this was obtained in [9]. In order to obtain continuity, we need L® bounds for powers of solutions u” for g
in a neighborhood of # = 0. When g < 0 this can be done with a slight modification of the previous argument via the application of
a different Caccioppoli estimate (Lemma 2.3). Note that we only consider nonnegative weak supersolutions, as this suffices for our
applications.

Theorem 4.2. Under the hypotheses of Theorem 4.1, for all v € [vo, 1) and p < 0 there exists a constant C (¢, m, A, A, r,v) such that if u
is a nonnegative weak supersolution to the equation L ju = ¢, — div A(j;l in B(0,r), then

”(u+¢*)ﬂ“ < C(@.m, A A v, B) ”(u+¢*)ﬂ“ p<0 (66)

LRBOV) ~ L2(du,)

In fact, we can choose

_ m o \"
C((p,m,A,A,r,v)—exp(Cm’,l,A <(|ﬁ|+1) +<ln(l—v)r> >>

Proof. We proceed as in the proof of Theorem 4.1, to consider a standard sequence of Lipschitz cutoff functions {ll/j }jil depending
on r as given in Definition 1.3, along with the balls B; = B(0,r;) D suppy;, so that r = ry > - > r; \\ ro, = lim;,r; = vr, and
Cj
”VA”’J'“OO SU-wr
Let u be a nonnegative supersolution of L ju = —div;V ju = ¢, —div 4, in B (0, r), then we have that (u + ¢*)° is locally bounded
for all p <0, ¢* > 0. If ¢* = 0 we replace it by a small positive ¢ and let £ — 0 at the end of the argument. As in the previous proof,
we have that if

with 1 - 20 =y <v <1,

om—1
- [
=T
|+ ¢ ”Lzﬂ(du,)

then i = au is a supersolution of Lii = ¢, — div, ($1> in B(0,r) with

om—1

o T om=1
¢ <e /

= 5

By = ady, 51 =y, ¢ = H(iogl)‘

X(B) T e+ d’*“LZﬁ(d,,r)
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and

1
PRI L
”(” +¢") “zz(dm = [la+ 6| 254,y =

L2 9 (dpr) .
By Proposition 3.8 we have that i (1) = h; 5 (1) = @YD (128), j = 1, (where @ (1) = 1, see Remark 3.6) satisfies the hypotheses
of Lemma 2.3 . Explicitly, for Y () =Y, 5 () = hOR' (1) + I (H)* > 0, we have

Y, 5@ -1 hjp@®)
R 7 B
!
(7, )
and A’ (t) < 0. Notice that here we are using the modified Young function ®,, (35) so we may apply Lemma 2.3 with ¢, = 1,
¢ =c, N+ 2l ¢, =, 181", and
c2c? 1—11\2 5
% = (Cm + T) (Cm,/l,/\ |ﬂ|jm71) <Cuin |g|? j2m=b),

1
to obtain for v =i+ @*, h=h;,

2 X _ 2
/ W} Vah @) du; < Cpy 1617 /2 l)/ hwy <‘VA"’/" +"’/2> du;.
B B;

J J

This is a similar estimate to (60) in the previous proof of Theorem 4.1. Recall that since then (dim, go)—SoboleV bump inequality (9)
holds in B, then for some C,, > 1 we have that from (40) then (&,,, C,,¢)-Sobolev bump inequality holds in B. The proof proceeds
now identically as before, to obtain (66) with the given constants. []

4.2. Proof of recurrence inequalities
Now we provide the proof of the recurrence estimate used in Section 4.1 to prove boundedness of solutions.

Lemma 4.3. Let m>2, K > 1 and y > 0. Consider the sequence defined by
by = e®", by = PKn'b,).

Then there exists a positive number C* = C* (m,b;, K, y), such that the inequality &""~D(C*) > b, holds for each positive integer n. In fact,
we can choose

1 m
c* =exp<(1nb1)5 +Cm(y+an)>

where C,, only depends on m. Now we prove the growth estimate which allowed the Moser iteration to yield the boundedness theorem.

Proof. Letm>2, K> 1,y >0, and
by =/ lul*du,, > ", b,y = BKn'b,).
B(O,rl)

We want to estimate &/ (b,,,). Let us define another sequence by

B=C" B =@@B,), n20
Thus we are trying to find a number C* such that g, = ®*=D (#,) > b, holds for all n > 0. Next we define the two related sequences:
a,=(Ing)"", and g, =(nb,)"".
The sequence {a,} satisfies a; = (InC*)'/™ and

ey = (0 f) /" = (0@ (8,))/" = p)/" + 1=, + 1

for all n > 1. As for the other sequence, it is clear that §; = (Inb,) m 2, but the recurrence relation for b, is a bit more complicated,
we have:

Burr = (b)) /™ = (in@ (Kn'b,))"" = (in (Kn'b,)) /" +1
= (B +In(Kn)" "+ 1.
This is clear that g,,; > p, + 1 thus we have a rough lower bound
Bt = n+by. (67)
Since the function g(x) = x!/™ is concave, we have

In(Kn?) V" In (Kn")
+1<8,+
A } AT
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Thus

n n

1 ¢ In(Kj") 1§ In(Kj7)
ﬂn+1$b]+n+—z — = an—ﬂ,IZal—bl——z —0
m& g m& g

Because m > 2, by (67) we have

(68)

n S}

In (K,j") In (K,") Co
< <
Z{ g Z{ By +j—mt = pr2

y+IK)<C,(+IhK)< o,

1
where we used that §; = (Inb;) " > 2. Therefore, choosing a; = p; + C,, (v + In K), (68) guarantees a, > f, for all n > 1, and so
o=V (C*) ="V (a)) > b,
where C* = C*(b, K, y) is

C*

exp (a;") = exp (ﬁl +C,(y+In K))m

exp ((lnbl)i +C,, (y+1nK)> . O

Remark 4.4. Lemma 4.3 fails for m < 2 even with y = 0 and K > e. Indeed, then from the calculations above we have

1/m
In(Kn?)
Bt =ﬁn<]+ — ) +1
by
In (Kn"
> p,+ n ( n)+12ﬂ”+ InK 41
ml};nfl mﬁ:lnfl
which when iterated gives
n n
In K InK 1
Busi Zﬂ]+n+zmﬁ',"—1 Zﬂ1+n+TZF'
j=1 J j=1"

So if there is a positive constant A such that §,,; <n+ A for n large, then we would have
InK
Puy1 2 P +n+ nTclnn

for some positive constant ¢, which is a contradiction to our assumption. Thus g,,; < ay + n for all n > 1 is impossible. That is, we
have

1
InK

oM (bn) — e[(lnbn)ﬁ—n] — e[ﬂ,,—n]’” > e[ﬂ|+Tclnn]m ™

as n - oo, so Lemma 4.3 does not hold.
5. The geometric setting

In order to obtain geometric applications, we will take the metric d in Theorem 1.6 to be the Carnot-Carathéodory metric
associated with the vector field V, for appropriate matrices A, and we will show that the hypotheses of our abstract theorems
hold in this geometry. For this we need to introduce a family of infinitely degenerate geometries that are simple enough so that
we can compute the balls explicitly, prove the required Orlicz-Sobolev bump inequality, and define an appropriate accumulating
sequence of Lipschitz cutoff functions. We will work solely in the plane and consider linear operators of the form

Lu(x,y) = V'A(x,») Vu(x,y), (x,y) €L,

where 2 ¢ R? is a planar domain, and where the 2 x 2 matrix is

1 0
A(x,y) = [o 7 (X)z] ,

where f (x) = e7¥™ is even and there is R > 0 such that F satisfies the following five structure conditions for some constants C > 1
and € > 0:

Definition 5.1 (Structural Conditions).

1. lim,_ o+ F (x) = +o0;
2. F'(x) <0and F” (x) > 0 for all x € (0, R);
3. L|F' (| <|F ()| < C|F' ()] for 3r < x <2r < R;
1. o . - 1 1 .
4. W 1sllncreasmg in the interval (0, R) and satisfies e S for x € (0, R);
X I~
5. T(x) s for x E(O,R).
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Remark 5.2. We make no smoothness assumption on f other than the existence of the second derivative f”” on the open interval
(0, R). Note also that at one extreme, f can be of finite type, namely f (x) = x* for any a > 0, and at the other extreme, f can be

of strongly degenerate type, namely f (x) = e” ** for any a > 0. Assumption (1) rules out the elliptic case f (0) > 0.

Under the general structural conditions 5.1 we will find further sufficient conditions on F so that the (@, A, ¢)-Orlicz-Sobolev
bump inequality (9) holds for a particular @ in this geometry, where the superradius ¢ will depend on F (see Proposition 5.6).
In ([9], Section 8.2) we showed that these geometries support both the (1, 1)-Poincaré and the (1, 1)-Sobolev inequalities.

In particular, we consider specific functions F satisfying the structural conditions 5.1, namely, the geometries F; , defined by

Fk,a(r)=(ln%)<l “0%)0, keN, o>0.

—(m ) (0 1)7 o . .
Note that £}, = e ke = ¢ (n r )( " ') vanishes to infinite order at r = 0, and that f, , vanishes to a faster order than fy, ;s if

either k <k’ or if k=4k" and ¢ > ¢’.

To see that in the geometries F, , there exists a standard sequence of Lipschitz cutoff functions in B = B(x,r), as given in
Definition 1.3, we will prove the following general lemma for the Carnot-Carathéodory metric induced by a continuous nonnegative
semidefinite quadratic form.

Lemma 5.3. Let &' A(x)E be a continuous nonnegative semidefinite quadratic form. Suppose that the subunit metric d associated to A(x)
is topologically equivalent to the Euclidean metric dy in the sense that for all B (x,r) C £ there exist Euclidean balls By (x,r (x,r)) and
Bp (x, Rg (x,r)) such that

Bg (x,rg (x,r)) € B(x,r) C Bg (x, Rp (x,7)) . (69)
Then for each ball B (x,R) C 2 and 0 < r < R there exists a cutoff function ¢, p € Lip(£2) satisfying

supp () CB(x.R),
{x:¢gx)=1} 2B(xn), (70)
q

IVadrrll Logpoery < R - r

Proof. For any £ > 0 let A®(x, &) = &' A(x)& +€2|&|%. It has been shown in ([12], Lemma 65) that under the hypothesis of Lemma 5.3
the subunit metric d®(x, y) associated to A¢ satisfies

[Vad (x.p)| <V xyeQ

uniformly in ¢ > 0. Moreover, d*(-,y) / d(-,y), the convergence is monotone and d is continuous (in the Euclidean distance),
therefore, d*(-,y) — d(-, y) uniformly on compact subsets of Q.
Define g(¢) to vanish for t > R — %, to equal 1 for 7 < r and to be linear on the interval [r, R — RT_r]. Let ¢, g(x) = 2(d€ (x, ),

with * to be chosen later. Since d¢" (x,y) < d (x,y) we have
¢.r(x)=1 when d(x,y) <r.

And since ¢, g(x) = 0 when d€ (x,y) > R— %, by choosing £* small enough, we obtain that ¢, g(x) = 0 when d(x,y) > R. This
shows that supp (¢, z) € B(x,R) and {x : ¢,z (x) =1} 2 B(x,r). Next,

4 1 C,
<= = . 71
_3R—rﬁ R-r 71)

IV ahr k)] < [l¢' | [V 4

This completes the proof. []

Remark 5.4. Note that the condition that A(x) is continuous cannot be easily omitted. In [14] the author constructs an example
of a locally unbounded (therefore discontinuous) solution to a degenerate linear elliptic equation (see Theorem 1.3 and Conjecture
7). However, the matrix Q in that case is discontinuous and this requirement seems to be essential for the construction.

5.1. Geometric Orlicz-Sobolev inequality
In this section we use subrepresentation inequalities proved in [9] to prove the relevant Sobolev and Poincaré inequalities. More

precisely, we will use ([9], Lemma 58), which says that for every Lipschitz function w there holds

d(x,)

——dy, 72
1B G.d (" 72

wx) - K, w( < C/r( )|VAw(y)|

where

t?(x, y) =min<d (x,y), S S . (73)

)F’ (xl +d(x,y))|

28



L. Korobenko et al. Nonlinear Analysis 261 (2025) 113888

Here I' (x,r) is a cusp-like region defined as

)

I (x,r)= Uco [E (x,rk) UE (x,rk+l)] R
k=1

where the sets E (x,r;) are curvilinear trapezoidal sets on which the function f does not change much, and which satisfy
|E (x,rk)| ~ |E (x,rk) ﬂ B (x,rk)‘ ~ ‘B (x,rk)‘ for all k > 1. (74)

Finally, we use the following notation for averages

=B m)| IE(x ) //E(xrl)

In our setting of infinitely degenerate metrics in the plane, the metrics we consider are elliptic away from the x, axis, and
are invariant under vertical translations. As a consequence, we need only consider Sobolev inequalities for the metric balls B (0, r)
centered at the origin. So from now on we consider X = R? and the metric balls B(0,r) associated to one of the geometries F
considered in ([9], Part 2).

First we recall that the optimal form of the degenerate Orlicz-Sobolev norm inequality for balls is

||w||L6(”r ) <Cry ||VAW||LQ(,%) ’

where dy, (x) = _| the balls B (0, ry) are control balls for a metric A, and the Young function © is a ‘bump up’ of the Young

|B
function 2. We will instead obtain the nonhomogeneous form of this inequality where L2 (;4,0) =1L (;4,0) is the usual Lebesgue
space, and the factor r, on the right hand side is replaced by a suitable superradius ¢ (ry), namely

) / ] d <C \v , Lip, (X), -
<B(0,r0) (w) l4r0> @ (o) | Aw”Ll(urU) w € Lip, (X) 75)

which we refer to as the (@, A, p)-Sobolev Orlicz bump inequality. In fact, consider the positive operator TB(OJO) D L ( ;4,0> - L? ( Hry )
defined by

Tp(0,,)8(X) = / Ko, . ») 8(0)dy
B(0.rg) BOr) B(0.r9)
with kernel K B(0ro) defined as
d(x,y)

[B(x,d (x, y) Ir

We will obtain the following stronger inequality,

et </B(o,ro)¢<TB(o'r0)g) du,(,> <Co(ro) IIgIIL,(#rO) ; 77)

which we refer to as the strong (@, A, ¢) -Sobolev Orlicz bump inequality, and which is stronger by the subrepresentation inequality
w 5 Tpo,,)Vaw on B (0,r0). But this inequality cannot in general be reversed. When we wish to emphasize that we are working
with (75), we will often call it the standard (®, A, ¢)-Sobolev Orlicz bump inequality.

Recall the operator T5(0.) - L! ( ”ro) - L? ( yro) defined by

K0, 3) = (xrg) @)+ (76)

Tp(0.r)8(X) = /B 00 Kp(0.ry) 1) 8Wdy

with kernel K defined as in (76). We begin by proving that the bound (77) holds if the following endpoint inequality holds:

o! <sup/ @ (K(x,y)|B|a) d,u(x)) < Cag(r) . (78)
yeBJB
for all « > 0. Indeed, if (78) holds, then with ¢ = |V,w| and a = |Igll;1 = ||V4w| 1, we have using first the subrepresentation

inequality, and then Jensen’s inequality applied to the convex function @,

d
/ Bw)du(x) < / d>< / K(x,y) |BI ||g||L1(”)W>dﬂ(x)
Li(u)

d
// (KGe, ) Bl gl i) %dum
Ll(w)

d
/{sup/dﬁ K(x,y) |B| ”g”Ll(M))dﬂ(X)} g du)
-~ ”g”Ll(”)

d
@ (Co () IIgIIle)/B%Lﬁ()y) @ (Co () lglpig)-
u

IA

IN
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and so
o' ( / CD(W)dM(X)> SCo() IV 4wllp1-
B

The converse follows from Fatou’s lemma, but we will not need this. Note that (78) is obtained from (77) by replacing g (y) dy with
the point mass |B|aé, (») so that Tg(x) — K(x,y) |B| a.

Remark 5.5. The inhomogeneous condition (78) is in general stronger than its homogeneous counterpart

yezl(lgru) ”KB(O,rO) (%)) ‘B (O, rO)H|L4’<u,0) <Cop (ro) ,

but is equivalent to it when @ is submultiplicative. We will not however use this observation.

Now we turn to the explicit near power bumps @ in (34), which satisfy

((mx)%ﬂ) o
PH)=d, (N =e¢ . 1>,

1 m m .
for m € (1, ). Let w(1) = (1 + (lnt)’ﬁ) —1fort> E =¢*" and write @ (1) = 11O,

Proposition 5.6. Let 0 < r, < 1 and C,, > 0. Suppose that the geometry F satisfies the monotonicity property:

712
Fi(r)
Cn ()

-1
1]
o= is an increasing function of r € (0,r;). (79)

GG
Then the (®, )-Sobolev inequality (77) holds with geometry F, with ¢ as in (79) and with @ as in (34), m > 1.

For fixed @ = @,, with m > 1, we now consider the geometry of balls defined by

Fip @)= (1) (1w 1)

fk o (") = e_Fk,g(r) — e—(ln %)(]n(k) %)"

5

where k € N and ¢ > 0.

Corollary 5.7. The strong (®, )-Sobolev inequality (77) with @ = @,, as in (34), m > 1, and geometry F = F , holds if
(either) k > 2 and ¢ > 0 and ¢(r,) is given by

(m=1)
1)
(m( ) 5)

L

plro) =1, 0 . for0<rg < B,

1-C

m

for positive constants C,, and f,, , depending only on m and c;
(or) k=1andc < ﬁ and ¢(ry) is given by

v
1 1-o(m-1)
(‘“ %)

@(rg) =r, . for0<ry <P,

1-C

m

for positive constants C,, and f,, , depending only on m and o.
Conversely, the standard (®, p)-Soboley inequality (75) with @ as in (34), m > 1, failsif k=1 and ¢ > ﬁ

Proof of Proposition 5.6. It suffices to prove the endpoint inequality (78), namely
o <SUP/ D (K(x, y)|Bla) dﬂ(x)> <Cap(r(B) , a>0,
yeBJB
for the balls and kernel associated with our geometry F, the Orlicz bump @, and the function ¢ (r) satisfying (79). Fix parameters
m > 1 and ¢,, > 1. Following the proof of ([9], Proposition 80) we consider the specific function w (r (B)) given by

1

o (r(B)) = —tm B

Using the submultiplicativity of @ we have

K(x, y)|B|
fyo (it oo o) awco

/Bd’(K(x,y)lBla)dM(X)

K(x,y)|B|
D (aw (V(B')))/Bqj <m> du(x)

30
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and we will now prove

K(x,y)|B| '
/BG'J <m> du(x) < C,@ (r (B) |[F' (r(B))], (80)

for all small balls B of radius r (B) centered at the origin. Altogether this will give us

, a
/B<z>(l<(x,y)|B|a>du<x> < Cop (r(B)|F' ( (B))| @ <—tm e > .

is monotone increasing. But from (79) we have

= @ (xy) for x > 1 since @

Now we note that x® (y) = xy@ <

D(xy)
< xy=-
o
FTy

n—1
[ H]
e |F ()] =e > 1 and so

, 1
/BCD(K(X,J’NBW)dM(x) <o (Cm(p(r(B)) |F' (r(B))| am)

Cm
D| —ap(r(B) ),
tm
which is (78) with C = f—'” Thus it remains to prove (80).
So we now take B = B (0,ry) with ry < 1 so that o (r(B)) = w (rg). First, from [9] we have the estimates

f(ry)
|B(O,r0)|z—, 3
[F(ro)l
and in I'(x,r)
1 <r=y—x < —
K(x.y) ~ ~ drren’ TS e
Yy =X w 0 <r=y1_xlz;.
1= S+ [F'(xp)I

Next, write @(¢) as
o) =t'"*O, fort>0,

where for t > E,

1 m L\"™
(lnr)ﬁ+1> (1+(lnx)_ﬁ>
v = d)(t):e( =1

— () = (1 +(1m)‘i)m "

(Inpyl/m’

and fort < E,

O = ) = d’(E)t
E
= (1+wy(@)Int=1n 2(E) +1Int
In 2B
= y(n)= —=
Int

Now temporarily fix y = (y,,5,) € B, (0,ry) = {x € B(0,ry) : x; > 0}. We then have for 0 < a < b < r,, that

I, = /
{xEB+ (O,ro) aly;—x| gb}nl"*(y,rn)

yi—a nthy _y 1 ‘B (O’r())) dx
=/7 / @ h, _ B(O’rO)‘ o (ro) e
y1—b y yi—x] 0 |B (O,ro)‘

2=hy —x,

/Yl—“ 1 |B (O’r0)| dxy
y

= 2h, _, @
o Ty @ (r) |B(0,r0)‘
u/( 1 B(O.r0)>
[ o[ O} 1 B[\ gy
- w=b T Py  (ro) hy @ (ro) )B(O,r0)|
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which simplifies to

Za,b (y)

dx,

W( 1 |B(0rg) >
) /y1 -a 1 |B (o, ro)‘ hyj—x;  @(rg)
y

R a)(ro)

dr.

w(i B(0.rg) >
5 /b | ‘B (0, ro)) e o(rg)
. | n

IO,y] (x)

W<L|B(U.r0)|)
2 /yl 1 ‘B (O,ro)‘ hr—olro)
o (ro) Jo | A o (rg)

To prove (80) it thus suffices to show

lO,yl -

[zen)]
n (|8 (0.r0)] "’( ralrg) )
@ (1r0) '/0 ho (rO)

where C, is a sufficiently large positive constant.

To prove this we divide the interval (0,y,) of integration in r into three regions:

1BOr)I

molr) =

(1): the small region S where

(2): the big region R, that is disjoint from S and where r = y; — x; <

(3): the big region R, that is disjoint from S and where r = y; — x; >

dr<C, @ (ro) |F' (ro)] .
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(81)

In the small region S we use that @ is linear on [0, E] to obtain that the integral in the right hand side of (81), when restricted

to those r € (0,y,) for which W < E, is equal to

(r0)

]n%
B(0.r)
g ACIE=al
,
a)(ro) 0 h,a)(ro)
NERYLNE NN
(rg) Jo o(rg) E
&(E)
< —5 "o F' (ro)‘ ,
since  (ry) = tm|F,1(r0)|. We now turn to the first big region R, where we have h, _, =~ rf(x|)

evaluated is

W( 1B©.rp)| )
1 /yl |BO,r)] ) \"relo) |BO,ro)l
) Jo

dr, where
w (ro h.w (ro)

Now we note that since x; < y;, we have

/()| T )

to evaluate

1BO.rp)|
1
; /W |B(O, o)l W<h’w(r°) ) dr
a)(ro) 0 h.w ("0)
From the inequalities for y, it also follows that f(x,) = f(y), so h

| B(O, )l , |B(0,rg)l c 1 f(ro)
ho(rg) = rfopo(rg) rfy) | F’ (ro)"

Y1—X1

32

h.o ("0) - rf(y; —rnw (ro)

, and thus in this region we have x; < y; < x;+

~rf(y;). Write

= rf(y; — r). The integral to be

1

[F7(31)

, and it is sufficient
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and we will now evaluate the following integral

1 4
1 /Wﬂmn<é)wﬁ)dh where A=cC tnf (ro) .
a)(ro) 0 r f()ﬁ)‘F/ ("0))

Making a change of variables

A
R:é:ﬂ’
r r

we obtain

1 (é) o
1 /|F’<y,>| (é)"’ ) g 1 A/ RY(R-24R
w(rg) Jo r w(ry) Al ()]

Integrating by parts gives

o0 0o !
/ Rq/(R)—ZdR:/ RV(R)+1 (_L) dR
A|F (n)] A|F (3)] 2R?
RV(R+! 0o *© 11
= RV 4R
2R2 |A|F’(x1)| +A|F/(x])| ( ) 2R?

!

ALF )P AFeD -

S( l 2{2 1!:)/ +/ %RW(R)_Z 1405 11 4R
[F' ()l Al ()] (In Ry

1+c-m=t

AIF G
(AlF'(V1)|)W( ) By /°° RV(B-24 R
2 A’F’(y])|

B 2A1F (yp

where we used
1

m+l *

'R <Co
(InR) m

Taking E large enough depending on m we can assure

1+CL11
(nE)m
2

which gives

<3
4

- , (AIF' Gl
/ RV B2 g < (AIF )y Ao
A[F ()| = AlF'(y)|

and therefore

< ;A/w RYP-24R
[F )] o (ro) A|F ()]

1 ’ w(AGDIF GDI)
S——— (4 [F'(ypl .
w(ro) [F'(yI ( (yl) s )

We now look for the maximum of the function on the right hand side

2

FOy = m (A (y) |F/(yl)l)W(A(yl)lF’(yl)l)
, e Gl )
= tm‘F (fo)l o (y|)| c(rg) o0
where
0= 1 (1) A (n) = T

Using the definition of w(r) and B (y,) =1In [c(ro)Jl;Ll

o )) ], we can rewrite F(y;) as
1

FO) =ty |[F' (ro)] ‘F,(l—m‘exp ((1 +B(y1)i>m—3(y1)>~

33
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(82)
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Let yj € (0, ro] be the point at which 7 takes its maximum. Differentiating 7(y,) with respect to y, and then setting the derivative
equal to zero, we obtain that y’l* satisfies the equation,

F'(y%) oy F'(y)
T (o) ) (10 ),
|F/ () |F/(%)]

Simplifying gives the following implicit expression for y| that maximizes 7(y;)

F'(y") T
=1+ —"— -1
LD+ F ()

F"'()
[F GO+ ()

—-m
| (57)

/()

To estimate F(y}) in an effective way, we set b (y})

B (y’l‘) =In| c(ry)

and begin with

l m
(1 B( )i>m B(y)=|1+|In]e )’F/(yf) ’ In| e( ))F, O
+ )" - )=+ |nfelro)—F—F— —In}c(rg "
/() f ()
F (%) = w
<1+ |F’<y7>|2+F”<y’;>> ! (T+b(y))mT =1

1

1 m 1 m
(1+ 1o )m_l <(l+b(y’1“))'"-‘—l>

IF GO +F ()

P\ IF'GoP + F' o5\ IFonE\"
<c, | — =c,| ——- =C, |1+ =" ,
50" FG7) FG7)

')
IF O +F ()

where in the last inequality we used (1) the fact that b (y’l‘) = < 1 provided < which we may assume since

otherwise we are done, and (2) the inequality

(1+ byt — 1 1 —_—
S < am@m- D= DT 0<b< L,
(a+pm 1)

which follows easily from upper and lower estimates on the binomial series. Combining this with (82) we thus obtain the following
upper bound

1 oo
Co| 14—

m—1
PO <1y [F () i) =t |F ()] @ (57).

with ¢ as in (79). Using the monotonicity of ¢r we therefore obtain

Iy |<x)sr<y1>srm\F’(ro)\ @ (ro) = tn|E' (ro)| @ (ro) .
Fl (1)

which is the estimate required in (81).
For the second big region R, we have
1P 0l TPy

hy ey fOatn — fO)

and the integral to be estimated becomes

bl
I = —— (rog) ———— d
2= o r) Jaema | T (1) H
et F’(M))
‘F! (h)‘ “’( 00
)
f(Y1)
F (y1)
s o5
f(Y1) '

Y1

o (ro)

IA

c(ry

= 1,1 F (ro)ly; | e(rg)

34
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where

1, f(r)

o) = TRl

We now look for the maximum of the function
F(y)
|F ()] {7
() |
and look for the maximum of G(y;) on (0, "0] . We claim that a bound for ¢ can be obtained in a similar way and yields

C1) < Cy |[F' (o) | @ ().

g(yl)ztm(F’ (ro)‘yl e(rp)

where ¢ (ry) satisfies (79) with a constant C,, slightly bigger than in the case of 7. Indeed, rewriting (y;) in a form similar to (82)
we have

)_)F, (y‘)| gl
f(J’1)

F' (r0)| exp<<1 + B(yl)%>m - B(yl)>

Again, we differentiate and equate the derivative to zero to obtain the following implicit expression for y} maximizing G(y,):

I
f(Y1)

Q(y1)=tm‘F’ (ro)‘yl exp||1+]In|c(rg —In|e(ry

=1

m

£ (5) b (s EIOD
T PG

A calculation similar to the one for the function F gives

1=||14+]In]c(ry)

|-

Vil )\F'(ya*) nlec )\F’(yT)
+|Infec(rg) ——— —Injc(r
T0h C o)
) I
T T -1
VIF' OGP+ F )
= m

r) )

-1
VIF GO +y F ()

m

yIEGE+yEron | IFoOP\"
P00 ()

where we used |F'(r)/F"(r)| = r. From this and the monotonicity condition we obtain
Iz, S £C, F' (ro)‘ 4 (’"o) ,

which concludes the estimate for the region R,. [

Now we turn to the proof of Corollary 5.7.

Proof of Corollary 5.7. We must first check that the monotonicity property (79) holds for the indicated geometries F ,, where

1) = frg (N =exp {— (ln %) <ln(k) %)6} ;

F(r) = F, ()= (ln %) (1n<k) %)6

140
Consider first the case k = 1. Then F (r) = F), (r) = (ln %) satisfies

1\° 1\° 1!
(lnr> and F” (1) = — (1 4+ 0) _(lnr) _6(111,)

Fl(n==(+0)-— = >
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which shows that

m—1

125
(1+0’)2(ln;2)
= —In-—-o0olnln = +C, +1
9() = —expy=In- —olln—+C, 1y ()
(l+a){ r; + :2 }
m—1
c
1 1 (l“%) 1
= —In--clnln=-+C,, (1 it [P LA ,
1_'_Gexp nr annr+ w(1+0) 1 1 +1+a
+O'E

is increasing in r provided both ¢ (m—1) <1 and 0 < r < a,, ,, where a,, , is a positive constant depending only on m and ¢. Hence
we have the upper bound

1

P N

o(m=1) m T—o(m-1)
DA S
:

where f,, , > 0 is chosen even smaller than «,, , if necessary.
Thus in the case @ = @,, with m > 2 and F = F, with 0 < ¢ < ﬁ, we see that the norm ¢ (ry) of the Sobolev embedding
satisfies

q;(r)gexp{—ln1+cm(1n 0<r<p
p ,

1

1 I-o(m—1)
(ln 7)
<r 0

=7 )

1-C,,
@ (ro) for 0 < ry < Bo»

and hence that
Cm
@ (r()) )l—u(m—l)

1
< <l> (1"5
ro ro

Now consider the case k > 2. Our first task is to show that F, , satisfies the structure conditions in Definition 5.1. Only condition
[
(5) is not obvious, so we now turn to that. We have F (r) = F,, (r) = (ln %) (ln(") %) satisfies

for 0 <ry < f,-

(ln(k) 1 )G o (ln“‘) 1 )G_l
F ()= - o ( n 1) :
r r (]n(k’l) l) (ln(k’z) 1) (ln l) r
r r r
(1n(k) 1 )” - (ln(k) 1 )“_1
_ _ r _ r
r (ln(k_l) l) <ln(k_2) i) (ln(z) l) r
r r r
(1)
= — " 1 + o
: (0 1) (0 1) (2 1) (1 1)
r r r r
__Fo ), o
At | (1) (0 ) ()
r r r r
_ FnhaAaW
=TT 1
rin -
p
and
F'(nA () F@AL () al 1
F'(r) = - e - L FO A ) | —
rln = rln = dr|,n!
r r r
__Foan FOLO FOAO 1
rint rinl 2l mi)
r r r
where
ALy = = d

dr (ln(k) 1) <1n(k—l) 1)
r r

(ln(z) %)
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01
_ i (ln ) 1
j=2 (ln(") 1 ) (ln(2 l) <an‘” l) (ln l) r
r r r
(ln(k) l) (ln(z) l) (an nl ) (ln %)
1 ln(z) k ln(J) 1

= —0 =+

(m“)l). Q @>1 ;; an “1)..On§)

k In®) %

1 1
= —0 In® = + E
(ln(k) l) <ln(2) l) (ln l) r ris (ln(j_l) 1) (ln(z) l)
r r r r r

|
M-

Now
k 1 (RS
1n<2> Z - ~n® L
Aoy
-
and so
_° fi k=2
A, (]n I;)r or
—A (= (ln(k) 1)_“(1;3) l)([nl)r for k>3
We also have A, (r) » 1, which then gives
—F () ~ F(’l),
rin -
-
and
F' (1)~ F(r) + oF (r) + Fir  F@

r2 (ln 1 )2 (ln(k) l) (lnm l) (ln 1)2 r2 r2In % r?In %
r r r r
From these two estimates we immediately obtain structure condition (5) of Definition 5.1.
We also have
PP PR POy L)
F// ~ 2 F 1 >
O " (miy TP

r

n—1
’F’(r)‘z
. Ol et
and then from the definition of ¢ (r) = ok in (79), we obtain
, 2 m—1
Fl(r) o(m—1)
k) 1
( ) 1 Cn () +1 eC,,,(ln( ) ;)
Q) = ——e N f——————
[F'(r)] In® 1)’
;
(10 L))
(m—1) 1-c, ~—"/
¢, (n® 17 m T
re ’”( ’) rr " , 0<r<B,,-

This completes the proof of the monotonicity property (79) and the estimates for ¢ (r) for each of the two cases in Corollary 5.7.
Finally, we must show that the standard (@, ) -Sobolev inequality (75) with @ as in (34), m > 1, failsif k =1 and ¢ > ﬁ, and

 fm =)

for this it is convenient to use the identity |V 0| = |=
1 if 0<r<?

and with n(r) = . , we define the radial function

n() Z(I—L) if D<r<rg

o

o+l
w(x,y) = w(r):e(m%) = ;((’r)) 0<r<ry

From |V 4| = 1, we obtain the equality |V w (x,»)| = |V4r| |0’ (r)] = |0’ (r)|, and combining this with |V 4 ()| < %1[@ ’o] and the
9,

estimate (7.8) from [9], we have

// |VAw<x,y>|dxdys/ o] LD g 2 [0 L,
B(0,r) | F” (r)] ro S [FT ()
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o f(r) f () 0
~ d
/0 F@)? 1 r+ro

Crdr = ry .

m

I+ -
On the other hand, @, (1) >¢ ®™o" and |F'(r)|=(c+ 1) (ln %) %, so we obtain

// D, (w(x,y))dxdy
B(0.rg)
n
z/zqa ( ! ) f<’>dr>/2(
0 (r) |F' (r)] (r)
o T (a+1) 177
z/zf(r) Tk S S / (i) )Lrgzoo
0 (ln%) } 0 (ln})

if(c+1) (1 - —) >1,ie 0> — . This finishes the proof of Corollary 5.7. []

1+
>+m¢ f0
|F’ ()

5.2. Proof of the geometric theorem

In this section we prove the geometric Theorem 1.1 as consequence of the abstract Theorem 1.6 and of the geometric
Orlicz-Sobolev inequality established in Section 5.1.

Proof of Theorem 1.1. Theorem 1.1 is a consequence of the abstract Theorem 1.6 and the geometric results described in Section 5.1,
once we show that under the hypotheses of Theorem 1.1 conditions (i), (ii), and (iii) of Theorem 1.6 are satisfied. It suffices to
consider the case that u is a weak subsolution of (1) in £, with right hand side pair as in condition (1) of Theorem 1.1.

Since ¢, € L®" (B(0,r)), and 51 € L® (B(0,r)), then the pair (¢0,$1> is strongly A-admissible at (0,r) by Proposition 3.3, so
condition (i) from Theorem 1.6 holds.

Since the matrix A (x) in (5) is elliptic away from the line x; = 0 and it is independent of the second variable x,, it suffices to
prove the theorem for a ball B (0,r,) € £. By Corollary 5.7 in Section 5.1, when k = 1 and 0 < ¢ < — or k > 2 and ¢ > 0, we
have that there exists 0 < r, = r( (m, o) such that the single scale (&, A, ¢)-Orlicz-Sobolev bump 1nequahty (9) holds with @ = @,, at
(0, r) for some m > 2 and superradius ¢ (r) given by

o(m—1)
w:exp(cm(lnu‘)l) ) for 0 <r<ry < 1. (83)
r r

Hence condition (ii) from Theorem 1.6 is satisfied because of condition (2) of Theorem 1.1.

Finally, given B (x,ry) € £, the existence of an (A, d)-standard accumulating sequence of Lipschitz cutoff functions at (x,ry)
follows directly from Lemma 5.3 above, so condition (iii) from Theorem 1.6 holds. Therefore, applying Theorem 1.6, u is locally
bounded above in 2. [
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