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Abstract

In this work we consider weakly non-radiative solutions to both linear and non-linear wave equations. 
We first characterize all weakly non-radiative free waves, without the radial assumption. Then in dimension 
3 we show that the asymptotic behaviours of non-radiative solutions to a wide range of nonlinear wave 
equations are similar to those of non-radiative free waves. This generalizes the already known results about 
radial solutions to the non-radial case.
© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies. 

1. Introduction

1.1. Background and main topics

Channel of energy The channel of energy method plays an important role in the study of 
asymptotic behaviour of solutions to non-linear wave equations in the past decade. This method 
mainly discusses the distribution of energy as time tends to infinity. More precisely, if u is a 
solution to either linear or non-linear wave equation defined for all time, then the following 
limits are considered for a given constant R.
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lim 
t→±∞

∫
|x|>R+|t |

|∇t,xu(x, t)|2dx.

Here for convenience we use the notation ∇t,xu = (ut ,∇u). This theory was first established 
for solutions to homogeneous linear wave equation, i.e. free waves, then applied to the study of 
non-linear wave equations. Please see, for instance, Côte-Kenig-Schlag [3], Duyckaerts-Kenig
Merle [4,8] and Kenig et al. [15,16] for linear theory; and Duyckaerts-Kenig-Merle [6,10] for the 
applications of the channel of energy on soliton resolution of the focusing, energy-critical wave 
equations.

Non-radiative solutions A crucial part of the channel of energy theory is to discuss the property 
of non-radiative solutions. Let u be a solution to the wave equation with a finite energy. We call 
it a non-radiative solution if and only if

lim 
t→±∞

∫
|x|>|t |

|∇t,xu(x, t)|2dx = 0.

We may also consider a more general case. Let R ≥ 0 be a constant. We call a solution u to be 
R-weakly non-radiative if and only if

lim 
t→±∞

∫
|x|>R+|t |

|∇t,xu(x, t)|2dx = 0.

Let us first consider (weakly) non-radiative solutions to the homogeneous linear wave equation 
in Rd . It has been proved that any non-radiative free wave must be zero, see Duyckaerts-Kenig
Merle [5,8]. All radial weakly non-radiative free waves have also been well understood. The 
following result was first proved for odd dimensions d ≥ 3 by Kenig et al. [16] then generalized 
to the even dimensions d ≥ 2 in Li-Shen-Wei [17].

Proposition 1.1 (Radial weakly non-radiative solutions). Let d ≥ 2 be an integer and R > 0 be 
a constant. If initial data (u0, u1) ∈ Ḣ 1 × L2 are radial, then the corresponding solution to the 
homogeneous linear wave equation u is R-weakly non-radiative, i.e.

lim 
t→±∞

∫
|x|>|t |+R

|∇t,xu(x, t)|2dx = 0,

if and only if the restriction of (u0, u1) in the exterior region {x ∈ Rd : |x| > R} is contained in

Span

{
(r2k1−d ,0), (0, r2k2−d) : 1 ≤ k1 ≤

⌊
d + 1

4 

⌋
,1 ≤ k2 ≤

⌊
d − 1

4 

⌋}
.

Here the notation 	q
 represents the integer part of q . In particular, all radial R-weakly non
radiative solution in dimension 2 are supported in {(x, t) : |x| ≤ |t | + R}.
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Goals of this work The aim of this paper is two-fold. The first goal of this paper is to character
ize all (possibly non-radial) initial data so that the corresponding solutions to free wave equation 
are R-weakly non-radiative. For convenience we define

P(R)
. =

⎧⎪⎨
⎪⎩(u0, u1) ∈ Ḣ 1 × L2(Rd) : lim 

t→±∞

∫
|x|>R+|t |

|∇t,xSL(u0, u1)|2dx = 0

⎫⎪⎬
⎪⎭ .

Here SL(u0, u1) is the corresponding solution of the free wave equation with given initial data 
(u0, u1). We will give a decomposition of every element (u0, u1) ∈ P(R) in term of spherical 
harmonic functions, whose details are given in Section 2.

The second goal is to show that in the 3-dimensional case any weakly non-radiative solution 
to a wide range of non-linear wave equations share the same asymptotic behaviour as weakly 
non-radiative free waves, as given in Section 3. This kind of result has been proved in all odd 
dimensions d ≥ 3 in the radial case of focusing wave equation by Duyckaerts-Kenig-Merle [8], 
as a first step to prove the soliton resolution of solutions. In this work we give the first result of 
this kind in the non-radial setting, as far as the authors know. Our argument depends on suitable 
decay estimates of weakly non-radiative free waves in the exterior region {(x, t) : |x| > |t | + R}, 
as given in (12)-(15). The decay estimates of this kind can be verified via a direct calculation 
for radial non-radiative solutions, whose initial data are given explicitly in Proposition 1.1. Al
though we expect that a similar decay estimate holds for all non-radial non-radiative solutions 
in all dimensions d ≥ 2 as well, this has been proved only in dimension 3, and recently in odd 
dimensions d ≥ 5, as far as the author knows. For more details of the decay estimates, please 
refer to our work [18,21]. For convenience we restrict our discussion of nonlinear non-radiative 
solutions to dimension 3 in this work, although a similar argument works for all odd dimensions 
d ≥ 5 as well. Please note that the even dimensions are much more difficult, due to the presence 
of a Hilbert transform in the symmetry of the radiation profiles. More details can be found in 
Section 3.

Our ultimate goal is to characterize all non-radiative solutions to the nonlinear wave equation, 
especially for the classic focusing wave equation

∂2
t u − Δu = |u| 4 

d−2 u.

This characterization is highly related to the soliton resolution conjecture of this energy-critical 
wave equation. We guess that all non-radiative solutions to this equation are solitary waves. But 
it is clearly out of our reach at this time. The author would like to mention that a very recent 
work by Côte-Laurent [2] shows that the set of small non-radiative solutions is a manifold whose 
tangent space at zero is exactly the space of all non-radiative free waves.

Notation. In this work the notation A ≲ B implies that there exists a constant c, such that the 
inequality A ≤ cB holds. A subscript to the notation ≲ means that the implicit constant c depends 
on nothing but the given subscript.

2. The characteristics of P(R)

In this section we give an explicit expression of the element in the space P(R). We use spher
ical harmonics and follow a similar argument to Duyckaerts-Kenig-Merle [9]. Let us first give a 
3 
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brief review on some basic properties of spherical harmonics. We recall that the eigenfunctions 
of the Laplace-Beltrami operator on Sd−1 are exactly the homogeneous harmonic polynomials 
of the variables x1, x2, · · · , xd . Such a polynomial Φ of degree ν satisfies

−ΔSd−1Φ = ν(ν + d − 2)Φ.

We choose a Hilbert basis {Φk(θ)}k≥0 of the operator −ΔSd−1 on the sphere Sd−1. Here we 
assume that the harmonic polynomial Φk is of degree νk . In particular we assume ν0 = 0 and νk >

0 if k ≥ 1. Next we give the statement of our first main result. We start by the odd dimensional 
case and then deal with the even dimensional case. Please note that a similar result for odd 
dimensions has been proved in Côte-Laurent [1] by the Radon transform. The novelty of our 
result includes

• We give an L2 decay estimate of ∂ru0 near infinity in addition;
• The argument works for even dimensions as well, with minor modifications.

Our main result of this section is

Proposition 2.1. Assume that d ≥ 3 is an integer. Let μ, μ̃ to be two integers and ρ be a measure 
on R+ as given below

(μ, μ̃) =
{ (

d−1
2 , d−1

2 
)
, n odd;(

d
2 ,

d−2
2 
)
, n even.

dρ(z) =
{

dz, n odd;
zdz, n even.

Then (u0, u1) ∈ P(R) if and only if there exist two sequences of polynomials {Pk(z)}k≥0 and 
{Qk(z)}k≥0 in the following form (Ak,k1,Bk,k2 are constants)

Pk(z) =
∑

1≤k1≤	 μ̃+νk+1
2 


Ak,k1z
μ̃+1+νk−2k1; Qk(z) =

∑
1≤k2≤	 μ̃+νk

2 

Bk,k2z

μ̃+νk−2k2;

with

∞ ∑
k=0 

1/R∫
0 

(
νk(d − 2 + νk) |Pk(z)|2 + |zP ′

k(z)|2 + |Qk(z)|2
)

dρ(z) < +∞;

such that (r, θ are the spherical coordinates)

u0(rθ) =
∞ ∑

k=0 
r−μPk(1/r)Φk(θ), r > R; u1(rθ) =

∞ ∑
k=0 

r−μ−1Qk(1/r)Φk(θ), r > R.

(1)

Here the first identity holds for every fixed r > R in the sense of L2(Sd−1) convergence. The 
second one holds in the sense of L2({x : |x| > R}) convergence. In addition, we have
4 
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(i) The derivative of u0 can be given by

∇xu0(r, θ) =
∞ ∑

k=0 
r−μ−1 {Pk(1/r)∇θΦk(θ) − [μPk(1/r) + (1/r)P ′

k(1/r)]Φk(θ)θ
}
.

This identities holds in the sense of L2({x : |x| > R}) convergence. Here ∇θΦk(θ) can be 
viewed as a vector in Rd in a natural way: We let ϕk(x) = Φk(x/|x|) be a function defined 
in Rd \ {0} and let ∇θΦk(θ) = (∇xϕk)(θ) ∈ Rd for any θ ∈ Sd−1 ⊂ Rd .

(ii) The norms of (u0, u1) can be determined by the integrals of Pk(z) and Qk(z)’s:

‖ /∇u0‖2
L2({x:|x|>R}) =

∞ ∑
k=1 

νk(d − 2 + νk)

1/R∫
0 

|Pk(z)|2 dρ(z);

‖u1‖2
L2({x:|x|>R}) =

∞ ∑
k=0 

1/R∫
0 

|Qk(z)|2 dρ(z);

‖∂ru0‖2
L2({x:|x|>R}) =

∞ ∑
k=0 

1/R∫
0 

|zP ′
k(z) + μPk(z)|2dρ(z) < +∞.

(iii) The derivative ∂ru0 satisfies the following decay estimates (R1 ≥ 2R)

∫
|x|>R1

|∂ru0(x)|2dx ≲ (R/R1)

∫
|x|>R

|∇u0(x)|2dx;

∫
|x|>R1

|∂ru
∗
0(x)|2dx ≲ (R/R1)

∫
|x|>R

| /∇u0(x)|2dx.

Here u∗
0 is the non-radial part of u0 defined by u∗

0 = u0 − r−μP0(1/r)Φ0 and /∇u0 is the 
non-radial derivative of u0 defined by

/∇u0 = ∇u0 −
(

x

|x| · ∇u0

)
x

|x| .

Proof. The rest of this subsection is devoted to the proof of this proposition. The proof for odd 
and even dimensions follows the same procedure, with minor modifications in details. We give 
the proof for odd dimensions in details and brief explains the difference in even dimensions at the 
end of this chapter. When n is odd, we have μ = μ̃ = (d −1)/2 and dρ(z) = dz. For convenience 
we will substitute μ̃ by μ in this case. The proof consists of three major steps. Step one, we first 
show that any element in P(R) can be written as in (1). Step two, we show any initial data given 
by (1) is indeed contained in P(R). Finally in Step three we prove the identities and inequalities 
in the proposition.
5 
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Step one Let us assume that u = SL(u0, u1) is an R-weakly non-radiative free wave and show 
that the initial data (u0, u1) have a decomposition as in (1). We start by defining

wk(r, t) = r−νk

∫
Sd−1

u(rθ, t)Φk(θ)dθ.

Let �= ∂2
t − ∂2

r − d+2νk−1
r

∂r . A straight-forward calculation shows

�wk = (�r−νk )

∫
Sd−1

u(rθ, t)Φk(θ)dθ + r−νk

∫
Sd−1

�u(rθ, t)Φk(θ)dθ

− 2∂r(r
−νk )

∫
Sd−1

∂ru(rθ, t)Φk(θ)dθ

= r−νk

∫
Sd−1

(
∂2
t − ∂2

r − d − 1

r
∂r

)
u(rθ, t)Φk(θ)dθ + νk(d − 2 + νk)r

−2wk

= r−νk

∫
Sd−1

r−2ΔSd−1u(rθ, t)Φk(θ)dθ + νk(d − 2 + νk)r
−2wk

= r−νk−2
∫

Sd−1

u(rθ, t)ΔSd−1Φk(θ)dθ + νk(d − 2 + νk)r
−2wk

= 0.

Thus if wk is viewed as a radial function defined on Rd+2νk , it satisfies the free wave equation

∂2
t wk − ΔRd+2νk wk = 0, |x| > 0.

In addition, we may apply an integration by parts and deduce

∞ ∫
R+|t |

(
|∂rwk(r, t)|2 + |∂twk(r, t)|2

)
rd+2νk−1dr

=
∞ ∫

R+|t |

⎛
⎜⎝
∣∣∣∣∣∣∣
∫

Sd−1

∂ru(rθ, t)Φk(θ)dθ

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∫

Sd−1

∂tu(rθ, t)Φk(θ)dθ

∣∣∣∣∣∣∣
2⎞
⎟⎠ rd−1dr

+
∞ ∫

νk(νk + d − 2)

∣∣∣∣∣∣∣
∫
d−1

u(rθ, t)Φk(θ)dθ

∣∣∣∣∣∣∣
2

rd−3dr
R+|t | S

6 
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+ νk(R + |t |)d−2

∣∣∣∣∣∣∣
∫

Sd−1

u((R + |t |)θ, t)Φk(θ)dθ

∣∣∣∣∣∣∣
2

≲
∞ ∫

R+|t |

⎛
⎜⎝ ∫
Sd−1

|∂ru(rθ, t)|2dθ +
∫

Sd−1

|∂tu(rθ, t)|2dθ + r−2
∫

Sd−1

|u(rθ, t)|2dθ

⎞
⎟⎠ rd−1dr

+ νk(R + |t |)d−2
∫

Sd−1

|u((R + |t |)θ, t)|2dθ

≲
∫

|x|>R+|t |

(
|∇x,tu(x, t)|2 + |u(x, t)|2

|x|2
)

dx + 1 
R + |t |

∫
|x|=R+|t |

|u(x, t)|2dS.

This upper bound converges to zero as t tends to infinity, by a combination of the non-radiative 
assumption of u, Hardy’s inequality outside a ball and the following estimate (see, for instance, 
Lemma 7.1.1 in [19])

1

r

∫
|x|=r

|u(x, t)|2dS ≲
∫

|x|>r

|∇u(x)|2dx, ∀ u ∈ Ḣ 1(Rd).

Therefore wk is also a weakly non-radiative solution. According to the explicit expression of 
radial non-radiative solutions given in Proposition 1.1, there exist constants Ak,k1 and Bk,k2 , 
such that

wk(r,0) =
∑

1≤k1≤ μ+νk+1
2 

Ak,k1r
−d−2νk+2k1 = r−μ−νkPk(1/r);

∂twk(r,0) =
∑

1≤k2≤ μ+νk
2 

Bk,k2r
−d−2νk+2k2 = r−μ−νk−1Qk(1/r).

Here Pk(z) and Qk(z) are polynomials as given in Proposition 2.1. Therefore we have∫
Sd−1

u0(rθ)Φk(θ)dθ = r−μPk(1/r); (2)

∫
Sd−1

u1(rθ)Φk(θ)dθ = r−μ−1Qk(1/r). (3)

Next we show the polynomials satisfy the inequalities given in Proposition 2.1. We have∫
Sd−1

∇θu0(rθ)∇θΦk(θ)dθ = −
∫

Sd−1

u(rθ,0)ΔSd−1Φk(θ)dθ

= νk(d − 2 + νk)r
−μPk(1/r).
7 
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Since ∇θΦk are orthogonal to each other with L2(Sd−1) norm 
√

νk(d − 2 + νk), we have

∞ ∑
k=1 

νk(d − 2 + νk)r
−2μ |Pk(1/r)|2 ≤ ‖∇θu0(rθ)‖2

L2(Sd−1)
.

A combination of this with the inequality

‖∇θu0(rθ)/r‖L2{x:|x|>R} = ‖ /∇u0‖L2{x:|x|>R} ≤ ‖∇u‖L2{x:|x|>R}

then yields

∞ ∑
k=1 

νk(d − 2 + νk)

1/R∫
0 

|Pk(z)|2 dz ≲d ‖ /∇u0‖2
L2({x:|x|>R}) < +∞. (4)

Similarly

∞ ∑
k=0 

1/R∫
0 

|Qk(z)|2 dz = ‖u1‖2
L2({x:|x|>R}) < +∞.

Next we differentiate (2) in r and obtain

∫
Sd−1

∂ru0(rθ)Φk(θ)dθ = r−μ−1(−μPk(1/r) − (1/r)P ′
k(1/r)).

Following the same argument as above, we obtain

∞ ∑
k=0 

1/R∫
0 

∣∣μPk(z) + zP ′
k(z)

∣∣2 dz ≤ ‖∂ru0‖2
L2({x:|x|>R}) < +∞.

Combining this inequality with (4), we have

∞ ∑
k=0 

1/R∫
0 

(
νk(d − 2 + νk) |Pk(z)|2 + |zP ′

k(z)|2
)

dz < +∞.

Since Φk(θ) is a Hilbert basis, we may finally write (u0, u1) in the following form by (2) and 
(3). (These infinite sums are understood as convergence in L2(Sd−1) and L2({x : |x| > R}) re
spectively.)

u0(rθ) =
∞ ∑

k=0 
r−μPk(1/r)Φk(θ) u1(rθ) =

∞ ∑
k=0 

r−μ−1Qk(1/r)Φk(θ).
8 
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Step two Let us assume that Pk(z) and Qk(z) satisfy the conditions given in the proposition 
and that the initial data (u0, u1) satisfy (1). In this step we need to show that (u0, u1) ∈ P(R). 
We start by giving the norm ‖(u0, u1)‖Ḣ 1×L2({x:|x|>R}). In fact the series in (1) must converge 
to an element in Ḣ 1 × L2({x : |x| > R}), whose norm can be expressed in terms of Pk(z) and 
Qk(z)’s. First of all, we may use the orthogonality and the identity 2μ = d − 1 to deduce

∞ ∫
R

∫
Sd−1

∣∣∣∣∣
∞ ∑

k=N

r−μ−1Qk(1/r)Φk(θ)

∣∣∣∣∣
2

rd−1dθdr =
∞ ∫

R

( ∞ ∑
k=N

r−2μ−2|Qk(1/r)|2
)

rd−1dr

=
∞ ∑

k=N

∞ ∫
R

r−2|Qk(1/r)|2dr

=
∞ ∑

k=N

1/R∫
0 

|Qk(z)|dz.

This implies that the second series

∞ ∑
k=0 

r−μ−1Qk(1/r)Φk(θ)

converges in the space L2({x : |x| > R}) and the sum u1 satisfies

‖u1‖2
L2({x:|x|>R}) =

∞ ∑
k=0 

1/R∫
0 

|Qk(z)|2 dz < +∞. (5)

Next we show that the sum of the first series is contained in Ḣ 1({x : |x| > R}). We need the 
following technical lemma, whose proof is put in the Appendix.

Lemma 2.2. Let L ≥ 2l > 0 and P(z) be a polynomial of degree κ . Then we have

max 
z∈[0,L] |P(z)|2 ≤ (κ + 1)2

L 

L ∫
0 

|P(z)|2dz;

l∫
0 

|zP ′(z)|2dz ≤ 2κ(κ + 1)l

L 

L ∫
0 

|P(z)|2dz.

As a result, we have

∥∥∥∥∥
∞ ∑

r−μPk(1/r)Φk(θ)

∥∥∥∥∥
2 d−1

= r−μ

( ∞ ∑
|Pk(1/r)|2

)1/2
k=N L (S ) k=N

9 
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≲ r−μ

⎛
⎜⎝ ∞ ∑

k=N

(μ + νk)
2R

2 

1/R∫
0 

|Pk(z)|2dz

⎞
⎟⎠

1/2

converges to zero uniformly in r ∈ [R,+∞) as N → +∞. Thus the series

∞ ∑
k=0 

r−μPk(1/r)Φk(θ)

converges to its sum u0 in the space C([R,∞);L2(Sd−1)). Next we show

∇xu0(rθ) =
∞ ∑

k=0 
∇x

(
r−μPk(1/r)Φk(θ)

)

=
∞ ∑

k=0 
r−μ−1 {Pk(1/r)∇θΦk(θ) − [μPk(1/r) + (1/r)P ′

k(1/r)]Φk(θ)θ
}
. (6)

Our assumptions on Pk(z), as well as the orthogonality of {∇θΦk}k≥0 and {Φk}k≥0, guarantee 
that the series in the right hand side converges in L2([R,∞)×Sd−1; rd−1drdθ), or equivalently 
in L2({x : |x| > R}). Given any ϕ ∈ C∞

0 ({x : |x| > R}), we have

∫
|x|>R

(
N∑

k=0 
r−μPk(1/r)Φk(θ)

)
∇xϕ(r, θ)dx = −

∫
|x|>R

ϕ(x)

N∑
k=0 

∇x

(
r−μPk(1/r)Φk(θ)

)
dx.

By the convergence of series we make N → +∞ and obtain

∫
|x|>R

u0(x)∇xϕ(x)dx = −
∫

|x|>R

ϕ(x)

∞ ∑
k=0 

∇x

(
r−μPk(1/r)Φk(θ)

)
dx.

This verifies (6) and gives the derivative of u0 in the region {x : |x| > R}. Please note that we 
always have ∇θΦk · θ = 0, thus (6) is actually an orthogonal decomposition. This immediately 
gives the norms of u0 in the exterior region:

‖∂ru0‖2
L2({x:|x|>R}) =

∞ ∑
k=0 

1/R∫
0 

∣∣μPk(z) + zP ′
k(z)

∣∣2 dz < +∞; (7)

‖ /∇u0‖2
L2({x:|x|>R}) =

∞ ∑
k=1 

νk(d − 2 + νk)

1/R∫
0 

|Pk(z)|2 dz < +∞. (8)

Next we show that SL(u0, u1) is a weakly non-radiative solution. First of all, if 1 ≤ k1 ≤ μ+νk+1
2 

we may find constants Ck −1, · · · ,C1 such that
1

10 
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f (r, t)
. = r−d−νk+2k1 + Ck1−1t

2r−d−νk+2k1−2 + · · · + C1t
2(k1−1)r−d−νk+2

satisfies the equation (∂2
t − ∂2

r − d−1
r

∂r )f (r, t) = − νk(d+νk−2)

r2 f (r, t). In fact these constants can 
be determined inductively. Therefore v(rθ, t) = f (r, t)Φk(θ) solves the equation

(∂2
t − Δx)v =

(
∂2
t − ∂2

r − d − 1

r
∂r − ΔSd−1

r2

)
v = 0, |x| = r > 0, (9)

with initial data (r−d−νk+2k1Φk(θ),0). A straight-forward calculation shows that

lim 
t→±∞

∫
|x|>|t |+R

|∇x,t v(x, t)|2dx = 0.

Similarly if 1 ≤ k2 ≤ μ+νk

2 , we may construct an R-weakly non-radiative solution v to (9) with 
initial data (0, r−d−νk+2k2Φk(θ)). By linearity, we may construct a non-radiative solution vN to 
(9) with initial data (v0,N , v1,N ) given by

v0,N (rθ) =
N∑

k=0 
r−μPk(1/r)Φk(θ); v1,N (rθ) =

N∑
k=0 

r−μ−1Qk(1/r)Φk(θ).

By a standard centre cut-off technique and finite speed of propagation we obtain initial data 
(u0,N , u1,N ) ∈ Ḣ 1 × L2 and corresponding free wave uN = SL(u0,N , u1,N ) such that

u0,N (rθ) =
N∑

k=0 
r−μPk(1/r)Φk(θ), u1,N (rθ) =

N∑
k=0 

r−μ−1Qk(1/r)Φk(θ), r > R;

and that

lim 
t→±∞

∫
|x|>R+|t |

|∇x,tuN(x, t)|2dx = 0.

In addition, finite speed of energy propagation implies that u = SL(u0, u1) satisfies

lim sup
t→±∞ 

∫
|x|>R+|t |

|∇x,t (u(x, t) − uN(x, t))|2dx ≤
∫

|x|>R

(
|∇u0 − ∇u0,N |2 + |u1 − u1,N |2

)
dx.

A combination of two limits given above immediately yields

lim sup
t→±∞ 

∫
|x|>R+|t |

|∇x,tu(x, t)|2dx ≲1

∫
|x|>R

(
|∇u0 − ∇u0,N |2 + |u1 − u1,N |2

)
dx, ∀N ≥ 1.

Finally we make N → +∞ and conclude that (u0, u1) ∈ P(R).
11 



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547 
Step three Now we show that the identities and inequalities given in Proposition 2.1 hold. Part 
(i) and (ii) have been proved in step two, see (5), (6), (7) and (8). Now we consider part (iii). We 
have

∂ru
∗
0(rθ) =

∞ ∑
k=1 

r−μ−1(−μPk(1/r) − (1/r)P ′
k(1/r))Φk(θ).

Thus

∫
|x|>R1

|∂ru
∗
0|2dx =

∞ ∑
k=1 

1/R1∫
0 

|μPk(z) + zP ′
k(z)|2dz ≲d

∞ ∑
k=1 

1/R1∫
0 

(
|Pk(z)|2 + |zP ′

k(z)|2
)

dz.

We then apply Lemma 2.2 and obtain

∫
|x|>R1

|∂ru
∗
0|2dx ≲d

∞ ∑
k=1 

(μ + νk)
2 R

R1

1/R∫
0 

|Pk(z)|2dz ≲d (R/R1)

∫
|x|>R

| /∇u0(x)|2dx.

In order to find an upper bound of ‖∂ru0‖L2 , we also need to consider the radial part 
r−μP0(1/r)Φ0(θ). In this case ν0 = 0 and Φ0 is simply a constant. We may follow the same 
argument above and obtain

∫
|x|>R1

∣∣∂r [r−μP0(1/r)Φ0(θ)]∣∣2 dx =
1/R1∫
0 

|μP0(z) + zP ′
0(z)|2dz

≤ μ2 R

R1

1/R∫
0 

|μP0(z) + zP ′
0(z)|2dz

= μ2 R

R1

∫
|x|>R

∣∣∂r [r−μP0(1/r)Φ0(θ)]∣∣2 dx

≲d

R

R1

∫
|x|>R

|∂ru0(x)|2dx.

Here we recall that μP0(z)+zP ′
0(z) is a polynomial of degree μ−1 or less and apply Lemma 2.2. 

In summary, we may use orthogonality to conclude (R1 ≥ 2R)

∫
|x|>R1

|∂ru0|2dx =
∫

|x|>R1

|∂ru
∗
0|2dx +

∫
|x|>R1

∣∣∂r [r−μP0(1/r)Φ0(θ)]∣∣2 dx

≲ R

R1

∫
|x|>R

|∇u0(x)|2dx.
12 
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This completes the proof of Proposition 2.1 in the odd dimensional case.

Even dimensions The proof in the even dimensions is almost the same as in the odd dimensions. 
The main difference is that we rely on a slightly modified version of the technical lemma about 
polynomials, which is given below and proved in the appendix.

Lemma 2.3. Let L ≥ 2l > 0 and P(z) be a polynomial of degree κ . Then we have

max 
z∈[0,L] z|P(z)|2 ≤ 4(κ + 1)2

L 

L ∫
0 

z|P(z)|2dz;

l∫
0 

z|zP ′(z)|2dz ≤ 2κ(κ + 2)l

L 

L ∫
0 

z|P(z)|2dz.

In this case the measure dρ(z) = zdz. We would like to explain where the additional z comes 
form, by considering an example. Let us calculate the norm ‖u1‖L2({x:|x|>R}) in term of Qk(z). 
By following the same argument as in the odd dimensional case, we have (see (5) for the odd 
dimensional case)

∫
|x|>R

|u1(x)|2dx =
∞ ∫

R

( ∞ ∑
k=0 

r−2μ−2|Qk(1/r)|2
)

rd−1dr.

Unlike the odd dimensional case, we have 2μ = d in the even dimensional case. Therefore

∫
|x|>R

|u1(x)|2dx =
∞ ∑

k=0 

∞ ∫
R

r−3|Qk(1/r)|2dr =
∞ ∑

k=0 

1/R∫
0 

z|Qk(z)|2dz.

3. Non-linear non-radiative solutions

In this section we show that non-radiative solutions to a wide range of nonlinear wave equa
tions in the three-dimensional case share the same asymptotic behaviour as non-radiative free 
waves, without the radial assumption.

Assumptions. We consider the energy-critical non-linear wave equation in R3

∂2
t u − Δu = F(x, t, u), (x, t) ∈ R3 ×R.

Here the nonlinear term F(x, t, u) satisfies

|F(x, t, u)| ≤ C|u|5; |F(x, t, u1) − F(x, t, u2)| ≤ C(|u1|4 + |u2|4)|u1 − u2|. (10)

This covers both the defocussing (F(x, t, u) = −|u|4u) and focusing (F(x, t, u) = |u|4u) wave 
equations, which have been extensively studied in the past decades.
13 
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3.1. Preliminary results

We first give a few preliminary results and introduce a few notations.

Radiation fields Radiation field describes the asymptotic behaviour of free waves as time tends 
to infinity. In its earlier history radiation field was mainly a conception in mathematical physics. 
See Friedlander [11,12], for instance. The following modern version is given in [7].

Theorem 3.1 (Radiation fields). Assume that d ≥ 3 and let u be a solution to the free wave 
equation ∂2

t u − Δu = 0 with initial data (u0, u1) ∈ Ḣ 1 × L2(Rd). Then

lim 
t→±∞

∫
Rd

(
| /∇u(x, t)|2 + |u(x, t)|2

|x|2
)

dx = 0

and there exist two functions G± ∈ L2(R× Sd−1) so that

lim 
t→±∞

∞ ∫
0 

∫
Sd−1

∣∣∣r d−1
2 ∂tu(rθ, t) − G±(r ∓ t, θ)

∣∣∣2 dθdr = 0;

lim 
t→±∞

∞ ∫
0 

∫
Sd−1

∣∣∣r d−1
2 ∂ru(rθ, t) ± G±(r ∓ t, θ)

∣∣∣2 dθdr = 0.

In addition, the maps (u0, u1) → √
2G± are bijective isometries from Ḣ 1 × L2(Rd) to L2(R×

Sd−1).

We call G± radiation profiles associated to the free wave u. Throughout this section we utilize 
the notations T± for the linear map from the initial data (u0, u1) to the corresponding radiation 
profiles G±. It immediately follows from Theorem 3.1 that

lim 
t→±∞

∫
R1+|t |<|x|<R2+|t |

|∇t,xu(x, t)|2dx = 2

R2∫
R1

∫
S2

|G±(s, θ)|2dθds, −∞ ≤ R1 < R2 ≤ +∞.

In addition, G± satisfy the following symmetric property

G+(s, θ) =
{

(−1)
d−1

2 G−(−s,−θ), d is odd;

(−1)
d
2 (HG−)(−s,−θ), d is even.

Here H is the Hilbert transform with respect to the first variable. This symmetry can be verified 
in different methods. Please refer to Côte-Laurent [1], Duyckaerts-Kenig-Merle [5] and Li-Shen
Wei [17], for examples. As a result, the following identity holds for all odd dimensions d ≥ 3:

∑
± 

lim 
t→±∞

∫
|∇t,xu(x, t)|2dx = 2

∫ ∫
2

|G−(s, θ)|2dθds. (11)
|x|>R+|t | |r|>R S

14 
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As a result, the L2 decay rate of radiation profile G−(s, θ) near the infinity indicates to what 
extent the free wave u looks like a non-radiative solution. For convenience we define

Definition 3.2. Assume that d ≥ 3 is odd. We call a linear free wave u with a finite energy, or 
equivalently its initial data, of non-radiative degree γ , if there exists R > 0, so that the radiation 
profile G− associated to u satisfies

‖G−‖L2({s:|s|>r}×Sd−1) ≲ r−γ , ∀r ≥ R.

This is equivalent to saying (see (11))

lim 
t→±∞

∫
|x|>r+|t |

|∇t,xu(x, t)|2dx ≲ r−2γ , ∀r ≥ R;

or equivalently

lim 
t→+∞

∫
||x|−|t ||>r

|∇t,xu(x, t)|2dx ≲ r−2γ , ∀r ≥ R.

Remark 3.3. The third equivalence given above means that the energy decays fast if we moves 
away from the main light cone |x| = |t |. In addition, the non-radiative degree can be defined 
equivalently by using the radiation profile G+ in the positive time direction, as long as the space 
dimension is odd, since G+(s,ω) = (−1)

d−1
2 G−(−s,−ω).

Decay of linear non-radiative solutions Another important ingredient of our estimate on 
non-linear non-radiative solutions is the corresponding decay estimates of linear non-radiative 
solutions. We claim that given any constant κ ∈ (0,1/5), the following inequality holds

‖u‖L5
t L

10({x:|x|>r+|t |}) ≲κ (R/r)κE1/2; (12)

‖u‖L5L10({t :|t |>t1}×R3) ≲κ (R/t1)
κE1/2; (13)

for any r > 0, t1 > 0 and R-weakly non-radiative linear wave u with a finite energy E, i.e. a 
finite-energy solution to the homogeneous linear wave equation ∂2

t u − Δu = 0 such that

lim 
t→±∞

∫
|x|>R+|t |

|∇t,xu(x, t)|2dx = 0.

In fact, it was prove in Li-Shen-Wang [18] that any R-weakly non-radiative linear wave u satisfies 
the following inequalities

‖u‖L∞
t L6({x:|x|>r+|t |}) ≲ (R/r)1/3E1/2; (14)

‖u(·, t)‖L6(R3) ≲ (R/|t |)1/3E1/2. (15)
15 
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An interpolation between these inequalities and a regular Strichartz estimate (see Ginibre-Velo 
[14])

‖u‖L
p
t L

q
x (R×R3) ≲p,q E1/2

with p = 2+ and q = ∞− yields the inequalities (12) and (13) for any κ ∈ (0,1/5). For conve
nience we introduce the notation

‖u‖Y(r) = ‖u‖L5
t (R;L10({x:|x|>r+|t |})) =

⎛
⎜⎝∫
R 

⎛
⎜⎝ ∫

|x|>r+|t |
|u(x, t)|10dx

⎞
⎟⎠

1/2

dt

⎞
⎟⎠

1/5

.

Lemma 3.4. Assume that d = 3 and κ ∈ (0,1/5). Let u be a linear free wave of non-radiative 
degree γ > κ with initial data (u0, u1) whose radiation profile G satisfies

‖G‖L2({s:|s|>r}×S2) ≤ Cr−γ , r ≥ R > 1; ‖G‖L2(R×S2) ≤ C.

Then we have

‖u‖Y(r) + ‖u‖L5L10({t :|t |>r}×R3) ≲ C(R/r)κ .

If γ > 1/3, then we also have

sup 
|t |>r

‖u(·, t)‖L6(R3) + sup 
t∈R

‖u(·, t)‖L6({x:|x|>r+|t |}) ≲ C(R/r)1/3.

If γ > 1/2, then

∫
|x|>r

|u0(x)|2dx ≲ C2R/r.

The implicit constants in the inequalities depend on κ, γ only.

Proof. First of all, it is not necessary to specify whether the radiation profile G is G+ or G− by 
the symmetry between them. The idea of the proof is to apply a dyadic decomposition. We write

G =
∞ ∑

j=0 
Gj, in L2(R× S2);

with

G0(s,ω) =
{

G(s,ω), |s| ≤ R;
0, |s| > R; Gj(s,ω) =

{
G(s,ω), 2j−1R < |s| ≤ 2jR;
0, otherwise; j ≥ 1;

then let uj and (u0,j , u1,j ) be the corresponding free linear wave and initial data with the radia
tion profile Gj . We have
16 
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u =
∞ ∑

j=0 
uj in L5L10(R×R3) and C(Rt ;L6(R3));

and

(u0, u1) =
∞ ∑

j=0 
(u0,j , u1,j ) in Ḣ 1 × L2(R3).

Our assumption on G implies that the compactly supported functions Gj satisfy

‖G0‖L2(R×S2) ≤ C; ‖Gj‖L2(R×S2) ≲ C(2jR)−γ .

Now we may apply the decay estimates (12) and (13) on linear weakly non-radiative free waves 
uj to obtain

‖u0‖Y(r) + ‖u0‖L5L10({t :|t |>r}×R3) ≲ C(R/r)κ ;
‖uj‖Y(r) + ‖uj‖L5L10({t :|t |>r}×R3) ≲ C(2jR)−γ (2jR/r)κ .

Therefore we may take a sum

‖u‖Y(r) + ‖u‖L5L10({t :|t |>r}×R3) ≲ C(R/r)κ +
∞ ∑

j=1 
C(2jR)−γ (2jR/r)κ

≲ C(R/r)κ +
∞ ∑

j=1 
C(2jR)κ−γ r−κ

≲ C(R/r)κ + CR−γ (R/r)κ

≲ C(R/r)κ .

Similarly if γ > 1/3, then we may utilize the decay estimates (14), (15) and obtain

sup 
|t |>r

‖u(·, t)‖L6(R3) + sup 
t∈R

‖u(·, t)‖L6({x:|x|>r+|t |}) ≲ C(R/r)1/3 +
∞ ∑

j=1 
C(2jR)−γ (2jR/r)1/3

≲ C(R/r)1/3 +
∞ ∑

j=1 
C(2jR)1/3−γ r−1/3

≲ C(R/r)1/3.

Finally we consider the L2 estimate of the radial derivative ∂ru0 when γ > 1/2. Given j ≥ 0, if 
r ≥ 2j+1R, then we apply Proposition 2.1 and obtain

∫
|x|>r

|∂ru0,j (x)|2dx ≲ 2jR

r

∫
j

|∇u0,j (x)|2dx ≲ 2jR

r
‖Gj‖2

L2 .
|x|>2 R

17 
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On the other hand, if r < 2j+1R, then we also have

∫
|x|>r

|∂ru0,j (x)|2dx ≲
∫
R3

|∇u0,j (x)|2dx ≲ 2jR

r
‖Gj‖2

L2 .

In summary, we may take a sum and finish the proof.

⎛
⎜⎝ ∫

|x|>r

|∂ru0(x)|2dx

⎞
⎟⎠

1/2

≤
∞ ∑

j=0 

⎛
⎜⎝ ∫

|x|>r

|∂ru0,j (x)|2dx

⎞
⎟⎠

1/2

≲
∞ ∑

j=0 
(2jR/r)1/2‖Gj‖L2

≲ C(R/r)1/2 +
∞ ∑

j=1 
C(2jR)−γ (2jR/r)1/2

≲ C(R/r)1/2. �
3.2. Statement and proof

Proposition 3.5. Let u be an R-weakly non-radiative solution to the non-linear wave equation

{
∂2
t u − Δu = F(x, t, u), (x, t) ∈ R3 ×R;

(u,ut )|t=0 = (u0, u1) ∈ Ḣ 1 × L2(R3).

Here the nonlinear term satisfies (10). Then we have

(a) Given any κ ∈ (0,1/5), the initial data (u0, u1) are of non-radiative degree 5κ .
(b) The initial data u0 satisfy the decay estimate

∫
|x|>r

|∂ru0(x)|2dx ≲ r−1, ∀r � 1.

(c) We also the decay estimate

sup 
t∈R

∫
|x|>r+|t |

|u(x, t)|6dx ≲ r−2, ∀r � 1.

Proof. Let us first introduce a notation for convenience. We define

S(r) = ‖G−‖L2({s:|s|>r}×S2) =
⎛
⎜⎝ ∫ ∫

2

|G−(s,ω)|2dωds

⎞
⎟⎠

1/2

.

|s|>r S

18 
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Given any r � r1 � R, we may break G− into two parts

G1(s,ω) =
{

G−(s,ω), |s| ≤ r1;
0, |s| > r1; G2(s,ω) =

{
0, |s| ≤ r1;
G−(s,ω), |s| > r1.

Therefore we have

(u0, u1) = T−1− G1 + T−1− G2. (16)

We also define χr(x, t) to be the characteristic function of the exterior region Ω(r) = {(x, t) :
|x| > |t | + r} thus

‖u‖Y(r) = ‖χr(x, t)u‖L5L10(R×R3).

Next we give a reasonable upper bound of ‖SL(u0, u1)‖Y(r):

‖SL(u0, u1)‖Y(r) ≤ ‖SLT−1− G1‖Y(r) + ‖SLT−1− G2‖Y(r)

≲ (r1/r)κ‖G1‖L2 + ‖G2‖L2

≲ (r1/r)κ + S(r1). (17)

Here we utilize the fact that G1 is supported in [−r1, r1]×S2 thus the linear free wave SLT−1− G1
with radiation profile G1 is an r1-weakly non-radiative free wave. We then apply (12) on the G1
part and the classic Strichartz estimate on the G2 part. Now we consider a modified non-linear 
wave equation

{
∂2
t v − Δv = χr(x, t)F (x, t, v), (x, t) ∈R3 ×R;

(v, vt )|t=0 = (u0, u1) ∈ Ḣ 1 × L2(R3).
(18)

First of all, the following inequalities hold by our assumption on the nonlinear term F .

‖χrF (x, t, v)‖L1L2(R×R3) ≲ ‖v‖5
Y(r);

‖χrF (x, t, v1) − χrF (x, t, v2)‖L1L2(R×R3) ≲ (‖v1‖4
Y(r) + ‖v2‖4

Y(r))‖v1 − v2‖Y(r).

We also recall the classic Strichartz estimate (see [14]): if w solves the 3D linear wave equation 
∂2
t w − Δw = F with initial data (w0,w1), then

‖w‖L5L10(R×R3) + ‖(w,wt )‖C(Rt ;Ḣ 1×L2) ≲ ‖(w0,w1)‖Ḣ 1×L2 + ‖F‖L1L2(R×R3).

We may combine all these inequalities, apply a standard fixed-point argument of contraction 
map and conclude that as long as ‖SL(u0, u1)‖Y(r) is sufficiently small, which holds under our 
assumption r � r1 � R by (17), the equation (18) always has a global-in-time solution v, so that

‖v‖Y(r) ≤ 2‖SL(u0, u1)‖Y(r). (19)

More details about the fixed-point argument of this kind can be found, for instance, in Pecher 
[20]. Furthermore, we may write v as a sum of two terms
19 
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v = v1 + v2.

They are the linear propagation part and the contribution of non-linear term, respectively:

v1 = SL(u0, u1); v2 =
t∫

0 

sin(t − τ)
√−Δ√−Δ

(χrF (·, τ, v(·, τ )))dτ. (20)

The triangle inequality in L2 space gives

⎛
⎜⎝ ∫

|x|>r+|t |
|∇t,xv|2dx

⎞
⎟⎠

1/2

≥
⎛
⎜⎝ ∫

|x|>r+|t |
|∇t,xv1|2dx

⎞
⎟⎠

1/2

−
⎛
⎜⎝ ∫

|x|>r+|t |
|∇t,xv2|2dx

⎞
⎟⎠

1/2

for any given time t . A comparison of our modified non-linear wave equation (18) with the orig
inal one shows that u(x, t) ≡ v(x, t) in the exterior region Ω(r) by finite speed of propagation. 
Therefore our non-radiative assumption on u also applies on v in the exterior region Ω(r). This 
gives

lim 
t→±∞

∫
|x|>r+|t |

|∇t,xv|2dx = 0.

Therefore we have

lim inf
t→±∞ 

∫
|x|>r+|t |

|∇t,xv2(x, t)|2dx ≥ lim 
t→±∞

∫
|x|>r+|t |

|∇t,xv1(x, t)|2dx.

We then recall the property of radiation field and obtain

∑
± 

lim 
t→±∞

∫
|x|>r+|t |

|∇t,xv1(x, t)|2dx = 2
∫

|s|>r

∫
S2

|G−(s,ω)|2dωds = 2S2(r).

We may also find an upper bound of the integral about v2 by Strichartz estimates

∫
|x|>r+|t |

|∇t,xv2(x, t)|2dx ≤
∫
R3

|∇t,xv2(x, t)|2dx

≤ ‖χrF (x, t, v)‖2
L1L2(R×R3)

≲ ‖v‖10
Y(r).

Combining these inequalities we obtain S(r) ≲ ‖v‖5
Y(r)

. We then utilize the upper bound given 
in (19) and obtain

S(r) ≲ ‖SL(u0, u1)‖5 , r � R. (21)
Y(r)
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A combination of this inequality with (17) immediately gives a recursion formula when r �
r1 � R.

S(r) ≲ (r1/r)5κ + S5(r1).

We then apply Lemma A.3, whose statement and proof is postponed to the appendix, and con
clude that given any β ∈ (0,4κ), the following estimate holds if r ≥ R0(u, κ,β) is sufficiently 
large

S(r) ≤ r−β.

In other words, the initial data are of non-radiative degree β . Next we fix β ∈ (κ,4κ), apply 
Lemma 3.4 and obtain

‖SL(u0, u1)‖Y(r) ≲ r−κ , r � R. (22)

We then plug this upper bound in (21) and conclude that

S(r) ≲ r−5κ , r � R.

This finishes the proof of part (a). Part (b) immediately follows from Lemma 3.4 since we has 
verified that the initial data are of non-radiative degree γ for any γ ∈ (0,1). Finally we prove 
part (c). Again we apply Lemma 3.4 and obtain

sup 
t∈R

⎛
⎜⎝ ∫

|x|>r+|t |
|SL(u0, u1)(x, t)|6dx

⎞
⎟⎠

1/6

≲ r−1/3.

Next we recall that if we let v solves (18) and define v1, v2 accordingly as in (20), then

u(x, t) = v(x, t) = v1(x, t) + v2(x, t)

holds in the exterior region {(x, t) : |x| > r + |t |}. Our argument above has already given L6

upper bound of v1 = SL(u0, u1). It suffices to consider the upper bound of v2. By the Strichartz 
estimates, we have

sup 
t∈R

‖v2(·, t)‖L6(R3) ≲ sup 
t∈R

‖v2(·, t)‖Ḣ 1(R3) ≲ ‖χrF (x, t, v)‖L1L2(R×R3) ≲ ‖v‖5
Y(r)

Finally we fix κ ∈ (1/15,1/5), recall (19), (22) and deduce ‖v‖Y(r) ≲ r−κ . Combining this with 
the inequality above we have

sup 
t∈R

‖v2(·, t)‖L6(R3) ≲ r−5κ , r � R.

We finally collect upper bounds of v1 = SL(u0, u1) and v2 to conclude the proof of part (c). �
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We can also give asymptotic behaviour of non-linear non-radiative solutions in the exterior 
regions.

Proposition 3.6. Let u be an R-weakly non-radiative solution as in Proposition 3.5. Then there 
exists a radius R1 = R1(u) > R and a linear free wave u+, such that given any κ ∈ (0,1/5), the 
linear free wave u+ is of non-radiative degree 5κ with

‖u − u+‖L5
t ([t1,+∞);L10({x:|x|>R1+t})) ≲ t−5κ

1 , t1 > 0;
‖∇t,xu(·, t1) − ∇t,xu

+(·, t1)‖L2({x:|x|>R1+t1}) ≲ t−5κ
1 , t1 > 0;

‖u‖L5
t ([t1,+∞);L10({x:|x|>R1+t})) ≲ t−κ

1 , t1 > 0.

Proof. Let us first choose a sufficiently large R1 > R, such that

‖SL(u0, u1)‖Y(R1) � 1. (23)

We then consider the solution v to the following modified non-linear wave equation, as we did 
in the proof of Proposition 3.5.

{
∂2
t v − Δv = χR1(x, t)F (x, t, v), (x, t) ∈R3 ×R;

(v, vt )|t=0 = (u0, u1) ∈ Ḣ 1 × L2(R3).
(24)

A fixed-point argument gives a global solution v that scatters in the positive time direction. 
Namely there exists a linear free wave u+, so that

lim 
t→+∞‖∇t,xv(·, t) − ∇t,xu

+(·, t)‖L2(R3) = 0. (25)

Finite speed of propagation then gives u(x, t) ≡ v(x, t) in the exterior region ΩR1 = {(x, t) :
|x| > R1 + |t |}. The proof of Proposition 3.5, as well as finite speed of propagation, has already 
given the upper bound

‖v‖Y(r) ≲ r−κ , r ≥ R1. (26)

Now we introduce a new notation for convenience

S1(t1) = ‖v‖L5
t ([t1,+∞);L10

x ({x:|x|>R1+|t |})) = ‖χR1v‖L5L10([t1,+∞)×R3), t1 > 0.

Next we choose t2 > t1 > R1 and write the solution v in the form of

v(x, t) = uL(x, t) + v1(x, t) + v2(x, t), t ∈ (t1,+∞).

Here uL = SL(u0, u1). In addition, v1, v2 are defined by

⎧⎨
⎩

∂2
t v1 − Δv1 = χR1(x, t)F (x, t, v), (x, t) ∈ R3 × (0, t1);

∂2
t v1 − Δv1 = 0, (x, t) ∈ R3 × [t1,+∞);

(v , ∂ v )| = (0,0);
(27)
1 t 1 t=0
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Fig. 1. Dependence of v1 on F(x, t, v). 

and {
∂2
t v2 − Δv2 = χR1(x, t)F (x, t, v), (x, t) ∈ R3 × (t1,+∞);

(v2, ∂t v2)|t=t1 = (0,0).

We observe that v1 becomes a free linear wave when t > t1. We claim that this linear free wave 
is of non-radiative degree 5κ . It is sufficient to show that

lim 
t→+∞

∫
||x|−t |>s1

|∇t,xv1(x, t)|2dx ≲ s−10κ
1 , s1 > 4t1. (28)

We consider another modified solution with additional cut-off in the inhomogeneous term:

⎧⎨
⎩

∂2
t ṽ1 − Δṽ1 = χs1/2(x, t)F (x, t, v), (x, t) ∈ (0, t1) ×R;

∂2
t ṽ1 − Δṽ1 = 0, (x, t) ∈ [t1,+∞) ×R;

(ṽ1, ∂t ṽ1)|t=0 = (0,0).

(29)

By strong Huygen’s principle, the value of v1 (or ṽ1) at the point (x, t) (with t > t1) only depends 
on the values of inhomogeneous terms χF(x, t, v) on the cone{

(x′, t ′) ∈ R3 ×R : |x′ − x| = t − t ′,0 < t ′ < t1

}
.

If |x| > t + s1 or |x| < t − s1, then all the points on the cone given above satisfies

|x′| ≥ |x| − |x − x′| > t + s1 − t + t ′ = s1 + t ′ > s1/2 + t ′, if |x| > t + s1;
|x′| ≥ |x − x′| − |x| > t − t ′ − t + s1 = s1 − t ′ > s1/2 + t ′, if |x| < t − s1.

In other words, all these points are contained in the region Ωs1/2 ⊂ ΩR1 , as shown in Fig. 1. 
This implies that the difference of cut-off functions χ between the equations (27) and (29) will 
not affect the value of the solution at (x, t), i.e. ṽ1(x, t) = v1(x, t), as long as |x| > t + s1 or 
|x| < t − s1 holds. As a result, we have 
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lim 
t→+∞

∫
||x|−t |>s1

|∇t,xv1(x, t)|2dx = lim 
t→+∞

∫
||x|−t |>s1

|∇t,x ṽ1(x, t)|2dx

≤ lim 
t→+∞

∫
R3

|∇t,x ṽ1(x, t)|2dx.

We then apply the Strichartz estimates, use the upper bound (26) and obtain

lim 
t→+∞

∫
||x|−t |>s1

|∇t,xv1(x, t)|2dx ≤ ‖χs1/2(x, t)F (x, t, v)‖2
L1L2((0,t1)×R3)

≲ ‖v‖10
Y(s1/2) ≲ s−10κ

1 .

This verifies the non-radiative degree of v1. In addition, we may apply the Strichartz estimates 
and obtain (t > t1)

∫
R3

|∇t,xv1(x, t)|2dx ≤ ‖χR1(x, t)F (x, t, v)‖2
L1L2((0,t1)×R3)

≲ ‖v‖10
Y(R1)

≲R−10κ
1 . (30)

Please note that the implicit constants in both (28) and (30) are independent of t1. We then apply 
Lemma 3.4 and obtain

‖v1‖L5L10([t2,+∞)×R3) ≲ (t1/t2)
κ .

Similarly we recall the non-radiative degree of the initial data (u0, u1) as given in Proposition 3.5
and obtain

‖uL‖L5L10([t2,+∞)×R3) ≲ t−κ
2 .

Next we apply the Strichartz estimates on v2

‖v2‖L5L10([t1,+∞)×R3) ≲ ‖χR1(x, t)F (x, t, v)‖L1L2([t1,+∞)×R3) ≲ S5
1(t1).

Collecting the upper bounds given above, we obtain a recursion formula of S1 if t2 > t1 > R1.

S1(t2)≲ (t1/t2)
κ + S5

1(t1).

As a result, Lemma A.3 implies that there exists t0 = t0(u,R1, κ) > R1, such that

S1(t) ≤ t−3κ/5, t > t0.

Next we show that the linear free wave u+ is of non-radiative degree 3κ . In fact, given any 
constant s > 5t0, we may recall (25) and obtain

lim 
t→+∞

∫
||x|−t |>s

|∇t,xu
+(x, t)|2dx = lim 

t→+∞

∫
||x|−t |>s

|∇t,xv(x, t)|2dx.
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We then choose t1 = s/5 and define v1, v2 accordingly as above. Since v = uL + v1 + v2, it is 
clear that

lim 
t→+∞

∫
||x|−t |>s

|∇t,xu
+(x, t)|2dx ≲ lim 

t→+∞

∫
||x|−t |>s

|∇t,xuL(x, t)|2dx

+
∑

j=1,2

lim 
t→+∞

∫
||x|−t |>s

|∇t,xvj (x, t)|2dx.

The right hand side comes with three terms. The upper bound of the term concerning v1 has been 
given in (28). The linear wave uL is of non-radiative degree 5κ , by Proposition 3.5. Finally the 
Strichartz estimates give

sup 
t>s/5

‖∇t,xv2(·, t)‖L2(R3) ≤ ‖χR1(x, t)F (x, t, v)‖L1L2([s/5,+∞)) ≲ S5
1(s/5).

As a result, we have

lim 
t→+∞

∫
||x|−t |>s

|∇t,xu
+(x, t)|2dx ≲ s−10κ + S10

1 (s/5). (31)

We then plug in the upper bound of S1 and conclude that u+ is of non-radiative degree 3κ . This 
enable us to apply Lemma 3.4 and obtain a decay estimate of u+

‖u+‖L5L10({t :|t |>r}×R3) ≲ r−κ .

This helps us obtain a stronger decay estimate of S1(t). In fact we have

S1(t) ≤ ‖v‖L5L10([t,+∞)×R3) ≤ ‖u+‖L5L10([t,+∞)×R3) + ‖v − u+‖L5L10([t,+∞)×R3).

The upper bound of the second term follows from Strichartz estimate

‖v − u+‖L5L10([t,+∞)×R3) = lim 
t ′→+∞

‖v − u+‖L5L10([t,t ′]×R3)

≲ lim 
t ′→+∞

(‖∇t,xv(·, t ′) − ∇t,xu
+(·, t ′)‖L2 + ‖χR1F‖L1L2([t,t ′]×R3)

)
≲ 0 + lim 

t ′→+∞
‖χR1v‖5

L5L10([t,t ′]×R3)

≲ S5
1(t).

Thus we have

S1(t) ≲ t−κ + S5
1(t) ≲ t−κ , t > t0.

We recall that S1(t) ≤ S1(0) < +∞, thus the inequality S1(t) ≲ t−κ holds for all t > 0 with a 
possibly different explicit constant. We then plug this upper bound in (31) and conclude that u+
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is of non-radiative degree 5κ . The estimates of u then follow from the coincidence of u and v in 
the exterior region ΩR1 and the upper bounds about v given above.

‖u‖L5
t ([t1,+∞);L10({x:|x|>R1+t})) ≤ S1(t1) ≲ t−κ

1 ;
‖u − u+‖L5

t ([t1,+∞);L10({x:|x|>R1+t})) ≤ ‖v − u+‖L5L10([t1,+∞)×R3) ≲ S5
1(t1) ≲ t−5κ

1 ;
‖∇t,xu(·, t1) − ∇t,xu

+(·, t1)‖L2({x:|x|>R1+t1}) ≤ ‖∇t,xv(·, t1) − ∇t,xu
+(·, t1)‖L2(R3) ≲ t−5κ

1 .

The last inequality follows a similar argument to the one given above by the Strichartz esti
mates. �
Corollary 3.7. Let u be an R-weakly non-radiative solution as in Proposition 3.5. Then there 
exists a radius R1 > R, so that∫

|x|>R1+|t |
|u(x, t)|6dx ≲ |t |−2, |t | � 1.

Proof. It suffices to consider the positive time direction t > 0. Let us fix κ = (1/5)−. On 
one hand, the non-radiative degree of u+ implies that ‖u+(·, t)‖L6(R3) ≲ t−1/3, according to 
Lemma 3.4. On the other hand, the argument in the proof of Proposition 3.6 gives

⎛
⎜⎝ ∫

|x|>R1+|t |
|u(x, t) − u+(x, t)|6dx

⎞
⎟⎠

1/6

=
⎛
⎜⎝ ∫

|x|>R1+|t |
|v(x, t) − u+(x, t)|6dx

⎞
⎟⎠

1/6

≲

⎛
⎜⎝∫
R3

|∇v(x, t) − ∇u+(x, t)|2dx

⎞
⎟⎠

1/2

≲ t−5κ ≲ t−1/3.

Combining these two estimates, we finish the proof. �
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Appendix A

In this section we prove a few technical lemmata. The authors believe that these results are 
probably previously known. For completeness we still give their proof.

Polynomial estimates We start by Lemma 2.2. By change of variables x = 2z/L − 1, we may 
rewrite this technical lemma as below.
26 



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547 
Lemma A.1. Let 0 < δ ≤ 1 and P(x) be a polynomial of degree κ . Then we have

max 
x∈[−1,1] |P(x)|2 ≤ (κ + 1)2

2 

1 ∫
−1 

|P(x)|2dx;

−1+δ∫
−1 

|(x + 1)P ′(x)|2dx ≤ κ(κ + 1)δ

1 ∫
−1 

|P(x)|2dx.

Proof. Let us recall Legendre polynomials Pn defined by

Pn(x) = 1 
2nn!

dn

dxn
(x2 − 1)n.

It is well known that {Pn}n=0,1,2,··· are orthogonal to each other in L2([−1,+1]) with norm 
‖Pn‖2

L2 = 2 
2n+1 . In addition, these polynomials satisfy |Pn(x)| ≤ 1,∀|x| ≤ 1 and the differential 

equation

d 
dx

[
(1 − x2)

d 
dx

Pn(x)

]
+ n(n + 1)Pn(x) = 0.

More details about the properties of Legendre polynomials can be found, for instance, in Folland 
[13]. We consider the orthogonal decomposition of P(x):

P(x) =
κ∑

n=0 
anPn(x) ⇒ 

1 ∫
−1 

|P(x)|2dx =
κ∑

n=0 

2|an|2
2n + 1

.

This immediately gives

max 
x∈[−1,1] |P(x)|2 ≤

(
κ∑

n=0 
|an|

)2

≤
(

κ∑
n=0 

2n + 1

2 

)(
κ∑

n=0 

2|an|2
2n + 1

)
= (κ + 1)2

2 

1 ∫
−1 

|P(x)|2dx.

We also have

−1+δ∫
−1 

|(x + 1)P ′(x)|2dx ≤ δ

−1+δ∫
−1 

(1 − x2)|P ′(x)|2dx ≤ δ

1 ∫
−1 

(1 − x2)|P ′(x)|2dx.

We then integrate by parts, use the differential equation above and obtain

1 ∫
(1 − x2)|P ′(x)|2dx = −

1 ∫
P(x) · d 

dx
[(1 − x2)P ′(x)]dx
−1 −1 
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=
1 ∫

−1 

(
κ∑

n=0 
anPn(x)

)(
κ∑

k=0 
n(n + 1)anPn(x)

)
dx

=
κ∑

n=0 

2n(n + 1)|an|2
2n + 1 

≤ κ(κ + 1)

1 ∫
−1 

|P(x)|2dx.

Combining these two inequalities, we finish the proof. �
We also need a similar lemma, where dx is substituted by (x + 1)dx. This immediately gives 

Lemma 2.3 by a change of variables x = 2z/L − 1.

Lemma A.2. Let 0 < δ ≤ 1 and P(x) be a polynomial of degree κ . Then we have

max 
x∈[−1,1](x + 1)|P(x)|2 ≤ 2(κ + 1)2

1 ∫
−1 

(x + 1)|P(x)|2dx; (32)

−1+δ∫
−1 

(x + 1)3|P ′(x)|2dx ≤ κ(κ + 2)δ

1 ∫
−1 

(x + 1)|P(x)|2dx. (33)

Proof. We define Qn(x) to be the modified Legendre polynomial of degree n:

Qn(x) = 1 
2n+1(n + 1)!

dn+1

dxn+1 [(x + 1)n(x − 1)n+1] = (2n + 1)! 
2n+1n!(n + 1)!x

n + · · · .

If n ≥ m are nonnegative integers, then we may apply integration by parts and obtain

1 ∫
−1 

(x + 1)Qn(x)Qm(x)dx = (−1)n+1

2n+1(n + 1)!
1 ∫

−1 

(x + 1)n(x − 1)n+1 dn+1

dxn+1 [(x + 1)Qm(x)] dx.

A basic calculation shows

dn+1

dxn+1 [(x + 1)Qm(x)] =
{

(2n + 1)!
2n+1n! , if m = n;

0, if m < n.

Therefore {Qn(x)}n≥0 are orthogonal to each other in the Hilbert space L2([−1,1]; (x + 1)dx)

and the norms of these polynomials are given by

‖Qn‖2
L2([−1,1];(x+1)dx)

= 1 
.

2(n + 1)
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In addition, these polynomials satisfy a similar differential equation to Legendre polynomials.

d 
dx

[
(x + 1)(1 − x2)

d 
dx

Qn(x)

]
+ n(n + 2)(x + 1)Qn(x) = 0. (34)

In order to prove this identity, we observe that d 
dx

[
(x + 1)(x2 − 1) d 

dx
Qn(x)

]
is a polynomial of 

degree n + 1 and contain a factor of x + 1. Thus we may write

d 
dx

[
(x + 1)(x2 − 1)

d 
dx

Qn(x)

]
=

n ∑
j=0 

aj (x + 1)Qj (x).

We multiply both sides by Qj(x), integrate from x = −1 to x = 1 and apply integration by parts

aj

2(j + 1)
=

1 ∫
−1 

Qj(x)
d 

dx

[
(x + 1)(x2 − 1)

d 
dx

Qn(x)

]
dx

=
1 ∫

−1 

Qn(x)
d 

dx

[
(x + 1)(x2 − 1)

d 
dx

Qj (x)

]
dx

= (−1)n+1

2n+1(n + 1)!
1 ∫

−1 

(x + 1)n(x − 1)n+1 dn+2

dxn+2

[
(x + 1)(x2 − 1)

d 
dx

Qj (x)

]
dx.

A direct calculation shows

dn+2

dxn+2

[
(x + 1)(x2 − 1)

d 
dx

Qj (x)

]
=
{

n(n + 2) · (2n + 1)!
2n+1n! , if j = n;

0, if j < n.

Thus we have aj = 0 if j < n and an = n(n + 2). This gives (34). Now we are ready to prove 
Lemma A.2. We first prove the second inequality (33). Let P(x) be a polynomial of degree κ . 
We may write

P(x) =
κ∑

n=0 
anQn(x).

We have

−1+δ∫
−1 

(x + 1)3|P ′(x)|2dx ≤ δ

−1+δ∫
−1 

(x + 1)(1 − x2)|P ′(x)|2dx ≤ δ

1 ∫
−1 

(x + 1)(1 − x2)|P ′(x)|2dx.

We then integrate by parts, use the differential equation and orthogonality of {Qn}.
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1 ∫
−1 

(x + 1)(1 − x2)|P ′(x)|2dx = −
1 ∫

−1 

P(x)
d 

dx

[
(x + 1)(1 − x2)P ′(x)

]
dx

=
1 ∫

−1 

(
κ∑

n=0 
anQn(x)

)(
κ∑

n=0 
n(n + 2)an(x + 1)Qn(x)

)
dx

=
κ∑

n=0 

n(n + 2)|an|2
2(n + 1) 

≤ κ(κ + 2)

1 ∫
−1 

(x + 1)|P(x)|2dx.

Combining these two inequalities, we finish the proof of (33). We then prove the first inequality 
(32). First of all, we have

max 
x∈[0,1] |P(x)|2 ≤ (κ + 1)2

1 ∫
0 

|P(x)|2dy ≤ (κ + 1)2

1 ∫
−1 

(x + 1)|P(x)|2dy. (35)

Here we apply Lemma 2.2. This deals with the case x ∈ [0,1]. Next we observe that if x ∈
(−1,0), then we may apply a translated-version of Lemma 2.2 and obtain

|P(x)|2 ≤ max 
y∈[x,1] |P(y)|2 ≤ (κ + 1)2

1 − x 

1 ∫
x

|P(y)|2dy ≤ (κ + 1)2

1 − x2

1 ∫
x

(1 + y)|P(y)|2dy.

This immediately gives

(1 + x)|P(x)|2 ≤ (κ + 1)2

1 − x 

1 ∫
x

(1 + y)|P(y)|2dy ≤ (κ + 1)2

1 ∫
−1 

(1 + y)|P(y)|2dy, x ∈ (−1,0).

Finally we combine this with the upper bound (35) for x ∈ [0,1] to finish the proof of (32). �
Decay by recursion Finally we prove a lemma giving polynomial decay by a suitable recur
rence formula.

Lemma A.3. Assume that l > 1 and α > 0 are constants. Let S : [R,+∞) → [0,+∞) be a 
function satisfying

• S(r) → 0 as r → +∞;
• The recursion formula S(r2)≲ (r1/r2)

α + Sl(r1) holds when r2 � r1 � R.

Then given any constant β ∈ (0, (1 − 1/l)α), the decay estimate S(r) ≤ r−β holds as long as 
r > R0 is sufficiently large.
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Proof. Without loss of generality, we may assume the recursion formula

S(r2) ≤ 1

2
(r1/r2)

α + 1

2
Sl(r1)

holds for r2 � r1 � r . Otherwise we may slightly reduce the values of l and α. We first find a 
small constant γ > 0 so that S(r) ≤ r−γ for large r , then plug this estimate back in the recursion 
formula and slightly enlarge the value of γ , finally iterate our argument to finish the proof. We 
start by recalling the assumption on the limit of S(r) at the infinity and choosing a large constant 
M > R so that

S(r) < 1/2, ∀r ∈ [M,Ml].
This implies that we may choose a sufficiently small constant γ ∈ (0, (1 − 1/l)α) so that

S(r) < r−γ , ∀r ∈ [M,Ml].
Next we prove that S(r) ≤ r−γ holds for any r ≥ M by induction. It suffices to shows that this 
inequality holds for r ∈ [Mlk ,Mlk+1 ] if it holds for r ∈ [Mlk−1

,Mlk ]. In fact, if r ∈ [Mlk ,Mlk+1 ], 
then we have

S(r) ≤ 1

2
(r1/l/r)α + 1

2
Sl(r1/l) ≤ 1

2
r−(1−1/l)α + 1

2
r−γ ≤ r−γ .

Here we utilize induction hypothesis on S(r1/l). Next we plug in r1 = rα/(α+γ l) and r2 = r in 
the recursion formula, use the already known upper bound S(r1) ≤ r

−γ

1 , then obtain

S(r) ≤ 1

2
(rα/(α+γ l)/r)α + 1

2
Sl(rα/(α+γ l)) ≤ r−αγ l/(α+γ l), r � 1.

We may iterate this argument and conclude that

S(r) ≤ r−γk , ∀r ≥ rk � 1.

Here γk ∈ (0, (1 − 1/l)α) are defined by the induction formula

γ0 = γ ; γk+1 = αγkl 
α + γkl

, k ≥ 0.

In order to finish the proof, we only need to show γk → (1 − 1/l)α as k → +∞. In fact, we may 
rewrite the induction formula in the form of

(1 − 1/l)α − γk+1 = α

α + γkl
· [(1 − 1/l)α − γk

]
.

Thus γk ∈ (0, (1 − 1/l)α) increases as k grows. This implies

(1 − 1/l)α − γk+1 ≤ α

α + γ l
· [(1 − 1/l)α − γk

] ⇒ (1 − 1/l)α − γk → 0+,

which gives the desired limit. �

31 



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547 
Data availability
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