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Abstract

In this work we consider weakly non-radiative solutions to both linear and non-linear wave equations.
We first characterize all weakly non-radiative free waves, without the radial assumption. Then in dimension
3 we show that the asymptotic behaviours of non-radiative solutions to a wide range of nonlinear wave
equations are similar to those of non-radiative free waves. This generalizes the already known results about
radial solutions to the non-radial case.
© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and
similar technologies.

1. Introduction
1.1. Background and main topics

Channel of energy The channel of energy method plays an important role in the study of
asymptotic behaviour of solutions to non-linear wave equations in the past decade. This method
mainly discusses the distribution of energy as time tends to infinity. More precisely, if u is a
solution to either linear or non-linear wave equation defined for all time, then the following
limits are considered for a given constant R.
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lim / |V, cu(x, t)[>dx.
t—+o0 ’

[x|>R+1|

Here for convenience we use the notation V; xu = (u;, Vu). This theory was first established
for solutions to homogeneous linear wave equation, i.e. free waves, then applied to the study of
non-linear wave equations. Please see, for instance, Cote-Kenig-Schlag [3], Duyckaerts-Kenig-
Merle [4,8] and Kenig et al. [15,16] for linear theory; and Duyckaerts-Kenig-Merle [6,10] for the
applications of the channel of energy on soliton resolution of the focusing, energy-critical wave
equations.

Non-radiative solutions A crucial part of the channel of energy theory is to discuss the property
of non-radiative solutions. Let u# be a solution to the wave equation with a finite energy. We call
it a non-radiative solution if and only if

lim |V cu(x, 1)) ?dx =0.

t—=+o00
[x|>1]

We may also consider a more general case. Let R > 0 be a constant. We call a solution u to be
R-weakly non-radiative if and only if

lim / |V cu(x, 1)) ?dx =0.

t—+o00
lx|>R+|1|

Let us first consider (weakly) non-radiative solutions to the homogeneous linear wave equation
in R?. It has been proved that any non-radiative free wave must be zero, see Duyckaerts-Kenig-
Merle [5,8]. All radial weakly non-radiative free waves have also been well understood. The
following result was first proved for odd dimensions d > 3 by Kenig et al. [16] then generalized
to the even dimensions d > 2 in Li-Shen-Wei [17].

Proposition 1.1 (Radial weakly non-radiative solutions). Let d > 2 be an integer and R > 0 be

a constant. If initial data (uo, u1) € H' x L? are radial, then the corresponding solution to the
homogeneous linear wave equation u is R-weakly non-radiative, i.e.

lim / |V cu(x, 1))?dx =0,

t—+o00
lx|>[t]+R

if and only if the restriction of (uo, u1) in the exterior region {x € R? : |x| > R} is contained in

d+1 d—1
Span {(r”‘ld,ox 0,24y 1 <k < {%J A<k < LT” .

Here the notation |q] represents the integer part of q. In particular, all radial R-weakly non-
radiative solution in dimension 2 are supported in {(x,t) : |x| <|t| + R}.
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Goals of this work The aim of this paper is two-fold. The first goal of this paper is to character-
ize all (possibly non-radial) initial data so that the corresponding solutions to free wave equation
are R-weakly non-radiative. For convenience we define

P(R)= | (uo,up) € H' x L*(R%): lim / Ve S1 (o, up)Pdx =0
—300

[x|>R+|t]

Here Sy (1o, u1) is the corresponding solution of the free wave equation with given initial data
(ug, u1). We will give a decomposition of every element (ug, 1) € P(R) in term of spherical
harmonic functions, whose details are given in Section 2.

The second goal is to show that in the 3-dimensional case any weakly non-radiative solution
to a wide range of non-linear wave equations share the same asymptotic behaviour as weakly
non-radiative free waves, as given in Section 3. This kind of result has been proved in all odd
dimensions d > 3 in the radial case of focusing wave equation by Duyckaerts-Kenig-Merle [8],
as a first step to prove the soliton resolution of solutions. In this work we give the first result of
this kind in the non-radial setting, as far as the authors know. Our argument depends on suitable
decay estimates of weakly non-radiative free waves in the exterior region {(x, t) : |x| > |f| + R},
as given in (12)-(15). The decay estimates of this kind can be verified via a direct calculation
for radial non-radiative solutions, whose initial data are given explicitly in Proposition 1.1. Al-
though we expect that a similar decay estimate holds for all non-radial non-radiative solutions
in all dimensions d > 2 as well, this has been proved only in dimension 3, and recently in odd
dimensions d > 5, as far as the author knows. For more details of the decay estimates, please
refer to our work [18,21]. For convenience we restrict our discussion of nonlinear non-radiative
solutions to dimension 3 in this work, although a similar argument works for all odd dimensions
d > 5 as well. Please note that the even dimensions are much more difficult, due to the presence
of a Hilbert transform in the symmetry of the radiation profiles. More details can be found in
Section 3.

Our ultimate goal is to characterize all non-radiative solutions to the nonlinear wave equation,
especially for the classic focusing wave equation

2 _4_
o u— Au=|uli-2u.

This characterization is highly related to the soliton resolution conjecture of this energy-critical
wave equation. We guess that all non-radiative solutions to this equation are solitary waves. But
it is clearly out of our reach at this time. The author would like to mention that a very recent
work by Cote-Laurent [2] shows that the set of small non-radiative solutions is a manifold whose
tangent space at zero is exactly the space of all non-radiative free waves.

Notation. In this work the notation A < B implies that there exists a constant ¢, such that the
inequality A < ¢B holds. A subscript to the notation < means that the implicit constant ¢ depends
on nothing but the given subscript.

2. The characteristics of P(R)

In this section we give an explicit expression of the element in the space P(R). We use spher-
ical harmonics and follow a similar argument to Duyckaerts-Kenig-Merle [9]. Let us first give a
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brief review on some basic properties of spherical harmonics. We recall that the eigenfunctions
of the Laplace-Beltrami operator on S¢~! are exactly the homogeneous harmonic polynomials
of the variables x1, x3, - - - , x4. Such a polynomial ® of degree v satisfies

—Aga-1®=v(v+d —-2)P.

We choose a Hilbert basis {®(6)}x>0 of the operator —Ags—1 on the sphere S-1. Here we
assume that the harmonic polynomial @y is of degree vy. In particular we assume vy = 0 and vy >
0 if k£ > 1. Next we give the statement of our first main result. We start by the odd dimensional
case and then deal with the even dimensional case. Please note that a similar result for odd
dimensions has been proved in Cote-Laurent [1] by the Radon transform. The novelty of our
result includes

e We give an L? decay estimate of 9,u¢ near infinity in addition;
e The argument works for even dimensions as well, with minor modifications.

Our main result of this section is

Proposition 2.1. Assume that d > 3 is an integer. Let |, [i to be two integers and p be a measure
on RY as given below

(;1, ;1), n odd;

- dz, dd,;
(M,M)Z{ (42,1723 < o
29 9

dp(z) = { zdz, neven.
Then (ug,u1) € P(R) if and only if there exist two sequences of polynomials { Px(z)}x>0 and
{Qk(2)}k=0 in the following form (A ,, Bk k, are constants)

i+1 —2k; . L —2ky .
P@= ) AT gi@= ) BT
L<ky <[ 229 I<ky<| 2% |
with
1/R

>

k=0

(wd =24+ 00 P@P + 2P + 104 ) dp(2) < +oo;

oY

such that (r, 0 are the spherical coordinates)

uo(r0) =Y r HP(1/N@r(0), r>R: ui(rd) =Y r "1/ @), r>R.
k=0 k=0

ey

Here the first identity holds for every fixed r > R in the sense of L>*(S~1) convergence. The
second one holds in the sense of L>({x : |x| > R}) convergence. In addition, we have

4
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(i) The derivative of ug can be given by

e¢]

Vauo(r,0) =Y r *HPe1/r) Vg @i (0) — [ Pe(1/r) + (1/r) PU(1/1)] @k (6)6} .
k=0

This identities holds in the sense of Lz({x :|x| > R}) convergence. Here Vo @ (0) can be
viewed as a vector in R in a natural way: We let gr(x) = ®r(x/|x|) be a function defined
in R9\ {0} and let Vo Dy (0) = (Vo) (0) € R? for any 6 € ST~! c R4,

(ii) The norms of (ug, u1) can be determined by the integrals of Pr(z) and Qi (z)’s:

~ 1/R

V01 -y = D2l =240 [ 1P ooy
k=1 0

1/R

~

10k (2)1*dp (2);

2 _
Heer W2 (i ) =

M2
O\

~
Il
o

R

—
~

19140117 > x5 )y = 2P} (2) + wPe(2)Pdp(2) < +00.

~
Il
o

M2
o\

(iii) The derivative d,uq satisfies the following decay estimates (R1 > 2R)

/ 19, 10(0)2dx < (R/Ry) / Vuto () 2dx;

[x|>Ry |x|>R

18,uf(x)*dx < (R/R1) / |Vuo(x)Pdx.

[x|>Ri |x|>R

Here u is the non-radial part of ug defined by ul =uo —r=" Po(1/r)®q and Yuy is the
non-radial derivative of uqy defined by

Wu() = Vu() ( Vuo) i
|x| |x]

Proof. The rest of this subsection is devoted to the proof of this proposition. The proof for odd
and even dimensions follows the same procedure, with minor modifications in details. We give
the proof for odd dimensions in details and brief explains the difference in even dimensions at the
end of this chapter. When n is odd, we have u = it = (d — 1)/2 and dp(z) = dz. For convenience
we will substitute 2 by w in this case. The proof consists of three major steps. Step one, we first
show that any element in P (R) can be written as in (1). Step two, we show any initial data given
by (1) is indeed contained in P (R). Finally in Step three we prove the identities and inequalities
in the proposition.
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Step one Let us assume that u = Sy (ug, u1) is an R-weakly non-radiative free wave and show
that the initial data (u, #1) have a decomposition as in (1). We start by defining

wi(r, t) =r—% / u(ro, t)d,(9)ds.
sd-1

LetO=9? — 87 — %Br. A straight-forward calculation shows

Owy = (Or %) / u(ro, 1)®;(0)do +r—% / Ou(r6,t)Pi(6)do
Sd-1 Sd—-1

—28,7%) | 8,u(ro, 1)®(6)do
Sd-1

d—1
=% / (33 S - —ar> u(r, 1)@ (0)d0 + vi(d — 2 + vi)r 2wy
r

Sd-1

— / r 2 Aga-1u(r, 1)dr (0)d6 4 vi(d — 2 + vi)r 2wy
Sd-1

=r 2 / u(rf, 1) Aga—1 1 (0)d0 + vi(d — 2 + vp)r 2wy
Sd-1
=0.

Thus if wy is viewed as a radial function defined on RI+2v% it satisfies the free wave equation

3wy — Agasay wi =0, x| > 0.

In addition, we may apply an integration by parts and deduce

i~
/ <|8rwk(r, O + 19, wi (r, z)|2)rd+2Vk—1dr
R+|t]
. 2 2
=f /8,u(r9,t)¢k(9)d9 + /8,u(r9,t)<l>k(9)d0 r?lar
R+]t] d-1 d-1
o 2
+ / vk (Vg +d —2) /u(r@,t)cbk(@)dG rd=3dr
R+t d—1



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547
2

+ v (R 41?2 / u((R + |1)6, 1) D (0)dO

d—1

0
gf /laru(re,t)|2d9+ f |0,u(r0, 1)|do + r =2 f lu(r6,1)|?do | r¢ar
R+|t] \sd-1 Sd-1 §d-1

F (R + )42 / (R + (1), 1)d6
Sd—l

lu(x, 1)|? 1 / 2
< v ik d ,D)2ds.
< / (| e ) [ r e, 1)

[x[>R+]z] |x|=R+]t|

This upper bound converges to zero as ¢ tends to infinity, by a combination of the non-radiative
assumption of u#, Hardy’s inequality outside a ball and the following estimate (see, for instance,
Lemma 7.1.1 in [19])

1 .
- / lu(x, 1)2dS < / [Vu(x)|*dx, Vue H [RY.
’
|x|=r |x|>r
Therefore wy is also a weakly non-radiative solution. According to the explicit expression of

radial non-radiative solutions given in Proposition 1.1, there exist constants Ay x, and By x,,
such that

w0 = Y Apgr TR = P (1 )
1<ky <HE%H

dwp(r,0) = Y Bgr TP = pmrmul o (1),
I<kp< 5k

Here Py (z) and Qk(z) are polynomials as given in Proposition 2.1. Therefore we have

f ug(r@) @i (0)do = r=" Pr(1/r); 2
Sd-1

f w1 (r0) @ (©)d6 = r~*' Qr(1/r). 3
Sd-1

Next we show the polynomials satisfy the inequalities given in Proposition 2.1. We have

/V@MQ(V@)V@@k(Q)dQZ— f 1(r0,0) Aga-1 by (6)do
Sd—1 Sd—1
=ve(d =2+ vi)r *P.(1/r).
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Since Vy ®; are orthogonal to each other with Lz(Sd ~1) norm /vi(d — 2 + vg), we have

o0
Y ovk(d =24+ v)r P10 < (Voo (ro) 17 ga-1,-
k=1

A combination of this with the inequality

”V@”O(re)/r||L2{x;‘x|>R} = ||Wu0||L2{x;|x|>R} S ||Vu||L2{x;|x‘>R}
then yields

1/R

oo
D ovkd =2+ ) f | Pe(2) > dz Sa 1V uoll7 2 y.pyy gy < +00- )
k=1 0

Similarly

o /R
> / |Ok@)I?dz = 1172 (g )y < +00
k=0
Next we differentiate (2) in » and obtain
/ B 10(r0) D (0)d8 = 1= (L Pe(1/r) — (1/r)PL(1/7)).
Sd-1
Following the same argument as above, we obtain

1/R

o0
2
Z / |/’LP/€(Z) +ZPé(Z)| dZ < ||arM0||iZ({x:|X|>R}) < +00.
k=0 0

Combining this inequality with (4), we have

~ VR
Z / (Vk(d — 24+ ) |1 P@)* + |ZP12(Z)|2) dz < +o00.
k=0 0

Since ®¢(0) is a Hilbert basis, we may finally write (1o, u1) in the following form by (2) and
(3). (These infinite sums are understood as convergence in L2(S?1y and L2({x : |x| > R}) re-
spectively.)

uo(r0) =y _r " Pe(1/r) 0 (0) wi (r0) =Y r 1 Qr(1/r) B (6).
k=0 k=0
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Step two Let us assume that Py (z) and Q(z) satisfy the conditions given in the proposition
and that the initial data (ug, u1) satisfy (1). In this step we need to show that (ug, u1) € P(R).
We start by giving the norm || (uo, u1)||Hle2({x:|x|>R}). In fact the series in (1) must converge
to an element in H! x L%2({x : |x| > R}), whose norm can be expressed in terms of Py (z) and
Ok (2)’s. First of all, we may use the orthogonality and the identity 2u = d — 1 to deduce

]

oo 2 o0 oo
D et /r@r®)| 4 dodr :/ (Zr_2“_2|Qk(1/r)|2> ri=tdr
R gi-1 k=N % k=N

r210k(1/r)dr

M

0
z

R

M

StY—z T3

|Ok(2)|dz.

~
Il
=

This implies that the second series
o
> r T Qr(1/r) Dk (0)
k=0

converges in the space L2({x : |x| > R}) and the sum u satisfies

~ VR

||u1||i2({x:\x|>R}) = Z / |Qk(Z)|2dZ < 400. (5)

k=0 )

Next we show that the sum of the first series is contained in H'({x : |x| > R}). We need the
following technical lemma, whose proof is put in the Appendix.

Lemma 2.2. Let L > 2] > 0 and P (z) be a polynomial of degree k. Then we have

L
K+1 2
max [P < ¥/|P(z>|2dz;
z€[0,L] L
0

1 L
2l + )
/IZP/(Z)IZdZS %/IP(Z)IZdZ.
0 0

As a result, we have

> TR/ r)i(6)

k=N

00 1/2
=r (Z |Pk<1/r)|2)
LZ(Sdfl)

k=N

9
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1/2
+ V)R
S=ab> u / |P(2)Pdz
k=N
converges to zero uniformly in r € [R, +00) as N — +o0. Thus the series
o0
D TP/ r) @k (0)
k=0
converges to its sum ug in the space C([R, 00); L2(S9-1)). Next we show
(0.¢]
Vauo(rd) =Y Vi (r# Pe(1/r)®i(0))
k=0
0.¢]
= TPV @i(0) — [ Pi(1/r) + (1/r) PU(L/ M@k (0)8) . (6)
k=0

Our assumptions on Px(z), as well as the orthogonality of {Vy®;}i>0 and {®r}i>0, guarantee
that the series in the right hand side converges in L2([R, c0) x S?~!; r4=1drd#), or equivalently
in L2({x : |x| > R}). Given any ¢ € Cg°({x : [x| > R}), we have

N N
(Zr—“ml/rm(e)) Vi (r, )dx = — / 0() Y Vi (rH Pu(1/r)®1(6)) dx

lx|>R =0 [x|>R k=0

By the convergence of series we make N — 400 and obtain

o
[ wwviptos == [ o035, (T p/nou6) dx
|x|>R |x|>R
This verifies (6) and gives the derivative of u¢ in the region {x : |[x| > R}. Please note that we

always have Vg @y - 6 = 0, thus (6) is actually an orthogonal decomposition. This immediately
gives the norms of u in the exterior region:

1/R
oo
”aI‘MOHLZ ({x: |x|>R}) Zf |MPk(Z)+ZPk(Z)| dZ<+OO (7)
k=0 0
1/R
V40172 (a1 1) = ka(d 2+Vk)/IPk(z)| dz < +o0. (8)

Next we show that Sz (1o, 1) is a weakly non-radiative solution. First of all, if 1 < k; < ‘”;ﬁl

we may find constants Cy,_1, - - -, C; such that

10
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flr 0= r—d—uk+2k1 + Ckl_lt2r—d—vk+2k1—2 4ot Cltz(k'_l)r_d_”k"‘z

satisfies the equation (E)t2 — 83 — dr;lé)r) f@r,t) = —W f(r, t). In fact these constants can
be determined inductively. Therefore v(r8, t) = f(r, 1) Dk (0) solves the equation

d—1_  Ag
(af—Ax)vz(af—aE——a,— s 1>v=0, x| =r >0, )
r r

with initial data (r —d—vit+2ky @4 (0),0). A straight-forward calculation shows that

t—=+o00
[x|>[t|+R

lim / |V, v (x, )] 2dx = 0.

Similarly if 1 <k < @ we may construct an R-weakly non-radiative solution v to (9) with
initial data (0, r —4~% +2k; @4 (0)). By linearity, we may construct a non-radiative solution vy to
(9) with initial data (v, v, v1,5) given by

N N
vo.N(r0) =Y r HPe(1/r) D (0); viNEO) =Y r P Qr(1/r) D (6).

k=0 k=0

By a standard centre cut-off technique and finite speed of propagation we obtain initial data
(uo,N,u1,N) € H! x L% and corresponding free wave uy = Sy (1o, v, u1,n5) such that

N N
uon(r8) =Y P/ ®k@),  uinGe) =Y r T QU1 ®r®), 1> R
k=0 k=0

and that

t—=+o00
[x|>R+|t]|

lim / |V, sy (x, 1)|*dx =0.

In addition, finite speed of energy propagation implies that u = Sy (ug, u1) satisfies

timswp [ (Vs —uooPar s [ (190~ Vo P+ s = )

t—+oo
|x|>R+|t] |x|>R

A combination of two limits given above immediately yields

lim sup / Ve (e, 0)Pdx < [ (|Vu0—w0,N|2+|u1—ul,N|2)dx, YN > 1.

t—+o00
[x]|>R+|t]| |x|>R

Finally we make N — 400 and conclude that (1o, #1) € P(R).

11
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Step three Now we show that the identities and inequalities given in Proposition 2.1 hold. Part
(i) and (ii) have been proved in step two, see (5), (6), (7) and (8). Now we consider part (iii). We
have

dpug(re) = > r P = Pu(1/r) = (1/r) PU(1/r) @k ().

k=1
Thus
00 I/R] 00 1/RI
f |0 Pdx = / IuP(2) + PPz Sa Y f (|Pk(z>|2+|zp,g(z)|2)dz.
Ix|>R; k=1 7{ k=1

We then apply Lemma 2.2 and obtain

1/R

> R
/ g Pdx Sa Y G+ vi)® / |Pe(2)Pdz Sa (R/R) / | Vo (x)[*dx.
1
0

Ix|> Ry k=1 Ix|>R

In order to find an upper bound of |d,upll;2, we also need to consider the radial part
r~*Py(1/r)®Po(0). In this case vyp = 0 and P is simply a constant. We may follow the same
argument above and obtain

1/Ry

/ |3r[r*“Po(1/r)<I>o(9)]}2dx= / | Po(z) + 2P(2)|*dz
Ix|>R, 0
1/R
<2 X P Pj(2)%d
) R, | Po(z) +zPy(2)|"dz
0

=g [l ot/ @0) ax

R
<X f 3y () 2d.
Ry
|x|>R

Here we recall that 11 Py(z) +2 Pj(z) is a polynomial of degree 1 — 1 or less and apply Lemma 2.2.
In summary, we may use orthogonality to conclude (R; > 2R)

[ awbar= [ auipact [t mam e

[x[>Ry |x[>Ry |x[>Ry

R
<— / Vg (x)|dx.
R

[x|>R

12
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This completes the proof of Proposition 2.1 in the odd dimensional case.

Even dimensions The proof in the even dimensions is almost the same as in the odd dimensions.
The main difference is that we rely on a slightly modified version of the technical lemma about
polynomials, which is given below and proved in the appendix.

Lemma 2.3. Let L > 2] > 0 and P (z) be a polynomial of degree k. Then we have

L
4(k + 1)
max z|P()|? < g/z|1°<z)|2dz;
z€[0,L] L
0
1 L

2l +2
/ZIZP/(Z)IZdZ < K(Kf”/

0 0

Z|P(2)|dz.

In this case the measure dp(z) = zdz. We would like to explain where the additional z comes
form, by considering an example. Let us calculate the norm [lu | 72((y:|x|> gy in term of Q(2).
By following the same argument as in the odd dimensional case, we have (see (5) for the odd
dimensional case)

[ee]

/ '”“x)'zdxzf(Zr‘z“‘zlgm/rnz) Fldr,

Ix|>R R k=0
Unlike the odd dimensional case, we have 2u = d in the even dimensional case. Therefore

1/R

mwPac=Y" [ri0amiar =Y [ 0P

|x|>R k=0% k=0
3. Non-linear non-radiative solutions

In this section we show that non-radiative solutions to a wide range of nonlinear wave equa-
tions in the three-dimensional case share the same asymptotic behaviour as non-radiative free
waves, without the radial assumption.
Assumptions. We consider the energy-critical non-linear wave equation in R>

Ou — Au=F(x,t,u), (x,1) e R® x R.

Here the nonlinear term F(x, ¢, u) satisfies

|F(x,t,u)| < Clul’;  |F(x,t,u1) — F(x,t,u2)| < C(lug [* + lua[Huy —ual.  (10)

This covers both the defocussing (F(x,t,u) = —|u|*u) and focusing (F'(x,t,u) = lul*u) wave
equations, which have been extensively studied in the past decades.

13
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3.1. Preliminary results

We first give a few preliminary results and introduce a few notations.
Radiation fields Radiation field describes the asymptotic behaviour of free waves as time tends
to infinity. In its earlier history radiation field was mainly a conception in mathematical physics.

See Friedlander [11,12], for instance. The following modern version is given in [7].

Theorem 3.1 (Radiation fields). Assume that d > 3 and let u be a solution to the free wave
equation Blzu — Au =0 with initial data (ug, u1) € H' x L2(R?). Then

2
hm f<|77u(x t)l + |u(|x|;)| )dx=0

and there exist two functions G+ € L>(R x S=1) so that

t—+00
0 sd-1

o
_ 2
lim / f ‘r%a,u(re,z)—ci(mpz,e)‘ dodr = 0;

o0
_ 2
lim / / ’r%a,u(re,t)ici(rm,e)‘ dodr = 0.

t—+o00
0 Sd-1

In addition, the maps (ug, u1) — V2G4 are bijective isometries from H' x Lz(Rd) to L*(R x
Sd—l)

We call G+ radiation profiles associated to the free wave u. Throughout this section we utilize
the notations T for the linear map from the initial data (ug, u1) to the corresponding radiation
profiles G+. It immediately follows from Theorem 3.1 that

2
lim / |V xu(x, 1)|*dx = 2// |G1(s,0)>dods, —oo <R < Ry < +00.

t—+o00
Ri+lt|<|x|<Ro+|t] Ry S2

In addition, G + satisfy the following symmetric property

(— 1) G (—s,—0), d is odd;

Gi(s,0)= .
(—1)2 (HG-)(—s,—0), diseven.

Here H is the Hilbert transform with respect to the first variable. This symmetry can be verified

in different methods. Please refer to Cote-Laurent [1], Duyckaerts-Kenig-Merle [5] and Li-Shen-

Wei [17], for examples. As a result, the following identity holds for all odd dimensions d > 3:

lim / |v,,xu(x,t)|2dx=2//|G_(s,9)|2d9ds. (11)

t— =400
|x|>R+]t] Ir|>R S2

14
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As a result, the L? decay rate of radiation profile G_(s, #) near the infinity indicates to what
extent the free wave u looks like a non-radiative solution. For convenience we define

Definition 3.2. Assume that d > 3 is odd. We call a linear free wave u with a finite energy, or
equivalently its initial data, of non-radiative degree y, if there exists R > 0, so that the radiation
profile G_ associated to u satisfies

1G-Nl2((siis|>ryxsa-ny Sr7, ¥r=R.

This is equivalent to saying (see (11))

lim f IV cu(x, 0)dx <rm?7, Vr > R;

t—=+o00
|x|>r+]t|

or equivalently

lim / Vi cu(x, ))*dx <rm?, Vr > R.
t—+40o0
[lx[=]tl|>r

Remark 3.3. The third equivalence given above means that the energy decays fast if we moves
away from the main light cone |x| = |#|. In addition, the non-radiative degree can be defined
equivalently by using the radiation profile G in the positive time direction, as long as the space

dimension is odd, since G4 (s, w) = (—l)d%lG,(—s, —w).

Decay of linear non-radiative solutions Another important ingredient of our estimate on
non-linear non-radiative solutions is the corresponding decay estimates of linear non-radiative
solutions. We claim that given any constant « € (0, 1/5), the following inequality holds

”u||L,5L10({x:\x|>r+|t|}) SK (R/r)KEl/z; (12)

el 5 L10 (e im 1) xR Sic (R/E)CEN, (13)

for any r > 0, #; > 0 and R-weakly non-radiative linear wave u with a finite energy E, i.e. a
finite-energy solution to the homogeneous linear wave equation afu — Au =0 such that

lim f |V xu(x, 1)) ?dx =0.
t—+oo

|x|>R+]t]

In fact, it was prove in Li-Shen-Wang [ 18] that any R-weakly non-radiative linear wave u satisfies
the following inequalities

||M||L,°°L6({x:\x|>r+|t|}) s(R/r)lBEl/z; (14)
luC )l Lows) S (R/IEDVPEV2. (15)

15
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An interpolation between these inequalities and a regular Strichartz estimate (see Ginibre-Velo

[14])

1/2
||“||L{’L2(RXR3) Spa E

with p =27 and ¢ = 0o~ yields the inequalities (12) and (13) for any « € (0, 1/5). For conve-
nience we introduce the notation

1/2 1/5

”u”Y(r) = ”u”L?(RZLIO({XI|X‘>I‘+\I|})) = / / |u(.x, t)|10dx d[
R x| >r+|t|

Lemma 3.4. Assume that d =3 and k € (0, 1/5). Let u be a linear free wave of non-radiative
degree y > k with initial data (ug, u1) whose radiation profile G satisfies

||G||L2({SI\S|>V}XSZ) S Cr_y, r 2 R > 1, ||G||L2(RXSZ) S C
Then we have

lully oy + Nl s o= ryxr3) S C(R/T)

If y > 1/3, then we also have

sup [lu(-, 1)l Low3) + sup NGO L6 st o r iy S CR/NY.
te

[t|>r
Ify > 1/2, then
[RER
|x|>r
The implicit constants in the inequalities depend on k, y only.

Proof. First of all, it is not necessary to specify whether the radiation profile G is G4 or G_ by
the symmetry between them. The idea of the proof is to apply a dyadic decomposition. We write

o0
G=> Gj, inL*RxS?;
j=0
with
[ GG, ), Is|<R; . [ G, 0), 277'R<|s| <2/R; )
Gols, w) = { 0, |s| > R; Gjls, @) = 0, otherwise; =

then let u; and (uq,j, u1, ;) be the corresponding free linear wave and initial data with the radia-
tion profile G ;. We have

16
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u= Zuj in L°L'°(R x R3) and C(R,; LO(R?));
j=0
and
x
(o, ur) =Y (uoj,ur;)in H' x L*(R?).
j=0

Our assumption on G implies that the compactly supported functions G ; satisfy
IGoll L2 xs2) = C Gl 2®xs S CQRIR)TY.

Now we may apply the decay estimates (12) and (13) on linear weakly non-radiative free waves
uj to obtain

luolly ¢y + ol L5 L10(qe:je>ryxR3) S C(R/1);

lujllye) + ||uj”L5L10({z:|[\>r} R3) < C(ZlR) y(le/V)K

Therefore we may take a sum

||u||Y(r) + ||u||L5L10({t:|t\>r}><R3) N C(R/r) + Zc(zj R) }/(2] R/r)l(
j=1

SCR/M +) CQIR* 7"
j=1

SC(R/) 4+ CRY(R/r)"

SC(R/T) .

Similarly if y > 1/3, then we may utilize the decay estimates (14), (15) and obtain

sup flae(-, r)||L6(Ra>+sup G- )l 2o x|x|>r+|,mNC<R/r)”3+§ CQRIRTVQR/N'
t\>r
j=1

oo

SCR/N'VP4Y Cc@IR)! Py
j=I

SCR/N'P.

Finally we consider the L? estimate of the radial derivative 9,uo when y > 1/2. Given j > 0, if
r > 2/F1 R, then we apply Proposition 2.1 and obtain

2/R 2/R
f|auo,(x>|dx< / Vuo,j (0)Pdx S ==I1G;lI7

[x|>r |x|>2/R

17
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On the other hand, if r < 2/*1 R, then we also have

2/R
/ 19,10, (x)|2dx S / Vuo,j (0)Pdx S =Gl 72

|x|>r R3
In summary, we may take a sum and finish the proof.

1/2 172

[ wwnewpac] <30 [ a0 e0Per
=0

x|>r x|>r

o
S QIR/N2G
j=0

SCR/NZ+>"C@IR)Y IR/
j=1

<CR/H'?. o
3.2. Statement and proof
Proposition 3.5. Let u be an R-weakly non-radiative solution to the non-linear wave equation

Ofu— Au=F(x,t,u), (x,1) eR3 x R;
(U, ug) =0 = (uo, u1) € H' x L2(R3).

Here the nonlinear term satisfies (10). Then we have

(a) Given any k € (0, 1/5), the initial data (ug, u1) are of non-radiative degree S«.
(b) The initial data ug satisfy the decay estimate

f 18,10 (x))?dx <7t V> 1.

|x|>r

(c) We also the decay estimate

sup / lu(x, 1)[0dx < r 2, Vr>> 1.

R
|x|>r+]t|
Proof. Let us first introduce a notation for convenience. We define
1/2

S(r) = ||G—||L2({s:|s|>r}><S2) = / / |G (s, w)|2dwds

s|>r S2

18
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Given any r > r; > R, we may break G_ into two parts

G-, 0), Is| =i )0, Is| <rp;
Gl(s’w)_{O, |s| > r1; GZ(S’w)_{G_(s,a)), Is| > 71.
Therefore we have
(o, u1) =TZ'G1 +TZ'Ga. (16)

We also define x,(x, t) to be the characteristic function of the exterior region Q(r) = {(x, 1) :
|x| > |t| + r} thus

lully iy = llxr (e, Dull s p1oR xR -
Next we give a reasonable upper bound of ||Sy (g, u1)|ly):
ISz (uo, u)llyry < (% e lye) + IS T Gally ¢y

S /N IGI2 + G2l
S (/) + S@r). a7

Here we utilize the fact that G is supported in [—rq, r1] X S? thus the linear free wave S LT:1 G
with radiation profile G is an r;-weakly non-radiative free wave. We then apply (12) on the G
part and the classic Strichartz estimate on the G, part. Now we consider a modified non-linear
wave equation

{va—szxr(x,t)F(xzt,v), (x,1) e R} x R;

(v, )10 = (o, u1) € H' x LA(RY), (18)

First of all, the following inequalities hold by our assumption on the nonlinear term F'.
e F Gt ) 2y S 00 ¢y
Il F G, t,01) = 2 F O 1 0Dl 2wy S (0ill o + T02ll3 ) or = v2lly .-

We also recall the classic Strichartz estimate (see [14]): if w solves the 3D linear wave equation
32w — Aw = F with initial data (wo, wy), then

||w||L5L10(R><]R3) + [l (w, wt)||c(R,;Hle2) < Nl (wo, Wl gy + ||F||L1L2(]R><]R3)-

We may combine all these inequalities, apply a standard fixed-point argument of contraction
map and conclude that as long as ||Sy (4o, u1)|ly() is sufficiently small, which holds under our
assumption r 3> r; > R by (17), the equation (18) always has a global-in-time solution v, so that

lvllyey <208 o, u)lly - (19)

More details about the fixed-point argument of this kind can be found, for instance, in Pecher
[20]. Furthermore, we may write v as a sum of two terms
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V=v] + V).

They are the linear propagation part and the contribution of non-linear term, respectively:

/ sin(t — )/ —A

vy =8Sg (ug, u1); vy = T(Xﬂ?(-, 7,v(-, 7)))dr. (20)
0
The triangle inequality in L? space gives
1/2 1/2 1/2
[ IVixvlPdx | > / Vesuildx | — f Vs v22dx
xX|>r+|t| x|>r+|t| x|>r+|t|

for any given time 7. A comparison of our modified non-linear wave equation (18) with the orig-
inal one shows that u(x, ) = v(x, t) in the exterior region Q(r) by finite speed of propagation.
Therefore our non-radiative assumption on u also applies on v in the exterior region S2(r). This
gives

lim f |V; cv|*dx =0.

t—=+o00
|x|>r+]t]

Therefore we have

liminf / |Vt,xv2(x,t)|2dxztlirin [ |V; cv1(x, 1)[%dx.
—+00

t—+o00
[x|>r+t| [x|>r+]t|

We then recall the property of radiation field and obtain

lim / |v,,xv1(x,t)|2dx=2[/|G_(s,w)|2dwds=2s2(r).

t—+o00
[x|>r+]t| |s|>r S§2

We may also find an upper bound of the integral about v, by Strichartz estimates

IV, xva(x, 1)) 2dx < f |V xva(x, )]2dx
[x|>r+(t] R3

<l Fx 6,031 2 ® w3y
S vl

Combining these inequalities we obtain S(r) < ||v||§(r). We then utilize the upper bound given

in (19) and obtain

S(r) SISL(uo, ulyy 7> R. Q1)

20



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547

A combination of this inequality with (17) immediately gives a recursion formula when r >
r1 > R.

S(r) S (r1 /1) + 8 (r).

We then apply Lemma A.3, whose statement and proof is postponed to the appendix, and con-
clude that given any B € (0, 4k), the following estimate holds if r > Ro(u, k, B) is sufficiently
large

S(r) < rP.

In other words, the initial data are of non-radiative degree 8. Next we fix B € (k, 4k), apply
Lemma 3.4 and obtain

ISL (o, u)llyey Sr*, r>R. (22)

We then plug this upper bound in (21) and conclude that
S(r)gr_s", r>R.

This finishes the proof of part (a). Part (b) immediately follows from Lemma 3.4 since we has
verified that the initial data are of non-radiative degree y for any y € (0, 1). Finally we prove
part (c). Again we apply Lemma 3.4 and obtain

1/6

sup f|sL<uo,u1)<x,r)|6dx Srt
teR
x|>r+|t|

Next we recall that if we let v solves (18) and define vy, v» accordingly as in (20), then

ulx,t) =v(x,t) =vi(x,t) +va(x,t)

holds in the exterior region {(x,?) : |x| > r + |¢|}. Our argument above has already given L°®
upper bound of v = Sy (u, u1). It suffices to consider the upper bound of v,. By the Strichartz
estimates, we have

5
sup 20,1 lo) S 30 102 Dl sy e F 0601 0) 2y S 1005
te te

Finally we fix « € (1/15, 1/5), recall (19), (22) and deduce ||v|y(y < r~*. Combining this with
the inequality above we have

sup |2 Ol sy Sr%, r>>R.
teR

We finally collect upper bounds of v; = Sy, (ug, 1) and v to conclude the proof of part (c). O
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We can also give asymptotic behaviour of non-linear non-radiative solutions in the exterior
regions.

Proposition 3.6. Let u be an R-weakly non-radiative solution as in Proposition 3.5. Then there
exists a radius Ry = R1(u) > R and a linear free wave ut, such that given any k € (0, 1/5), the
linear free wave u™ is of non-radiative degree Sk with

+ -5k .

I =N 51y ooy L1O(tx = R 4 ST fh>0;

-5 .

”Vf,xu("tl)_Vl,xl'ﬁ_(',tl)||L2({x:|x|>R1+t1})Stl i 1 >0;
—K

0 L5 11y -00y: L10 x> Ry 1) ST 1 >0.

Proof. Let us first choose a sufficiently large R; > R, such that

ISL (uo, u)llyr) < 1. (23)

We then consider the solution v to the following modified non-linear wave equation, as we did
in the proof of Proposition 3.5.

2. _ 3 .
{8tv Av—le(x,t)F(gc,t,v), (x,t) e R’ x R; (24)

(, v)|i=0 = (uo, u1) € H' x L2(R3).

A fixed-point argument gives a global solution v that scatters in the positive time direction.
Namely there exists a linear free wave u™, so that

- + —
im (Vv 0) = Vi Dl g = 0. (25)

Finite speed of propagation then gives u(x,t) = v(x, ) in the exterior region Qpg, = {(x,1) :

|x] > Ry + |t|}. The proof of Proposition 3.5, as well as finite speed of propagation, has already
given the upper bound

lollyey Sr*, r > Ry. (26)

Now we introduce a new notation for convenience

SUED = MV L3 1y, 400y 10w = Ry -y = IXRVILS L0 o0y xR3) 11> 0.
Next we choose #, > t; > R; and write the solution v in the form of
v(x,t) =urp(x, 1) +vi(x, 1) +vax, 1), t € (11, +00).
Here u; =S (ug, #1). In addition, vy, v, are defined by

32v) — Avy = xg, (x, ) F(x,1,v), (x,1) €R3 x (0,11);
d?v) — Av; =0, (x,1) € R3 x [11, +00); 27
(v1, 9, v1)li=0 = (0, 0);
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|x|=t Ix=t-s,
(x,t)

. |x"'-x| ,='f-t’
[x]=t+s;

" XeyoF

/2| t=0

Fig. 1. Dependence of vy on F(x,?,v).

and

{ 32vy — Avy = xg,(x, ) F(x,1,v), (x,1) € R x (11, +00);
(v2, 9;v2)|1=r, = (0, 0).

We observe that v{ becomes a free linear wave when ¢ > t;. We claim that this linear free wave

is of non-radiative degree 5«. It is sufficient to show that

lim / Ve cv1 (x, )P S sy 0, s1 > 41. (28)
t— 400

[lx|—]>s1

We consider another modified solution with additional cut-off in the inhomogeneous term:

3201 — A1 = x5y p(x, DF (x,1,0),  (x,1) € (0,11) x R;
3201 — Ay =0, (x,1) €[, +00) x R; (29)
(01, 3 01)|r=0 = (0, 0).

By strong Huygen’s principle, the value of v (or v;) at the point (x, t) (with ¢ > #1) only depends
on the values of inhomogeneous terms x F(x, ¢, v) on the cone

{(x’,r’)eR3 xR:|x’—x|=t—t',0<t’<t1}.
If |x| >t + 51 or |x| <t — s1, then all the points on the cone given above satisfies

X |> x| =[x =x'|>t+s1 —t 4+t =51+t >51/2+1, if x| >t +s1;

X |>|x =x'|=|x|>t—t —t4+s1=51—1 >51/2+1, if x| <t —s1.
In other words, all these points are contained in the region €2y, ,2 C g, as shown in Fig. 1.
This implies that the difference of cut-off functions x between the equations (27) and (29) will

not affect the value of the solution at (x, t), i.e. v1(x, ) = vi(x, 1), as long as |x| >t + s or
|x| <t — s1 holds. As a result, we have
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t—+00
[lx]=t]>s1 [lx|=t]>s1

lim / IV v1(x, 0)?dx = lim / |V; D1 (x, 1)|dx
t—+00

< lim /w,,xﬁl(x,r)ﬁdx.

T t—>+4oo
R3

We then apply the Strichartz estimates, use the upper bound (26) and obtain

. —1
lim / IV2x01 G DA < s 206 O F G 1,031 0.0 3y S 052 S 5101

t—+00
[lx]—t]>s1

This verifies the non-radiative degree of v;. In addition, we may apply the Strichartz estimates
and obtain (r > 1)

—1
/ V201 06, DIPdx < xr, G O F (1,017 20y S IR S R (30)
R3

Please note that the implicit constants in both (28) and (30) are independent of #;. We then apply
Lemma 3.4 and obtain

V1l 25 210(1, 400y xR3) S (F1/12)"

Similarly we recall the non-radiative degree of the initial data (u¢, u1) as given in Proposition 3.5
and obtain

ez llzs210(1 400y xR Sty
Next we apply the Strichartz estimates on v;
5
V21l 521014, +00) xR Sxr, G D F 8, 0 2y 00y <R3 S ST ED-
Collecting the upper bounds given above, we obtain a recursion formula of S; if r, > #; > R;.
Si1(12) S (11/0)* + 87 ().
As aresult, Lemma A.3 implies that there exists o = fo(u, R1, k) > Ry, such that
Si(t) <t 1>,
Next we show that the linear free wave u™ is of non-radiative degree 3«. In fact, given any

constant s > 5fy, we may recall (25) and obtain

t—+00
[|x|—t|>s [|x|—t|>s

lim / |V xub (x,0)]?dx = lim / |V; xv(x, )] dx.
t—+00
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We then choose 71 = s/5 and define vy, vy accordingly as above. Since v =uy + v + vo, it is
clear that

lim / |V, cut (x,0)]?dx < lim / |V xup (x,1)|*dx
t—+400

t—+00
[|x|—t]>s [|x|—t|>s
+ Y lim / IV, 20 (x, 1)]dx.
K t—+00
j=12 l1x|~t]>s

The right hand side comes with three terms. The upper bound of the term concerning v| has been
given in (28). The linear wave u, is of non-radiative degree 5«, by Proposition 3.5. Finally the
Strichartz estimates give

sup ||V xv2(, D)l 23y = Ilxr, O, D F(x, 1, )| 1121575, 400)) S S?(S/S)-
t>s/5

As a result, we have

t——+00
||x]|—t]>s

lim f IVeaut (e, 0)Pde $s71% 4 5103 /5). (31)

We then plug in the upper bound of S} and conclude that ™ is of non-radiative degree 3«. This
enable us to apply Lemma 3.4 and obtain a decay estimate of u™

+ —_
™ s p1oggeege=ryxr3) ST°
This helps us obtain a stronger decay estimate of S;(¢). In fact we have
S10) < 10l 15101, 400y xR =< 18711251011, +00) xR 10 = 4T 111511011, 400) xR3) -
The upper bound of the second term follows from Strichartz estimate
+ : +
v—u" |50 = lim |[v—u" | 52100 /1xR3
I ”L L10([t,+00) xIR3) e I ”L L1O([£,/'TxR3)
S lim (||Vt,xv('7 ") — Vt,x’/ﬁ_(', f/)||L2 + I xr, F||L1L2([z,ﬂjx]R3))
t'— 400
: 5
5 0+ t’EToo “XR] v ||L5L'0([t,t/]><R3)
SEHOE
Thus we have
SIO ST S () ST, > 1.

We recall that S1(¢) < S1(0) < 400, thus the inequality S;(¢) < 7 holds for all ¢ > 0 with a
possibly different explicit constant. We then plug this upper bound in (31) and conclude that u™*
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is of non-radiative degree 5«. The estimates of u then follow from the coincidence of u and v in
the exterior region g, and the upper bounds about v given above.

—K
1023 11y 00): L1015 Ry ey = 510D S0
+ + 5 —5k.
et = 13 1y pooy; L10ctat Ry 4oy = N0 = U7 L5 210G 400 <R3 S ST S 1775
-5
Vit (-, 1) = Vixu™ (., 2> Ri+np = 1Vexv(Go ) — Viau" (., 2wy St .

The last inequality follows a similar argument to the one given above by the Strichartz esti-
mates. O

Corollary 3.7. Let u be an R-weakly non-radiative solution as in Proposition 3.5. Then there
exists a radius Ry > R, so that

lu(x, 1)|%dx < 7] 72, |t > 1.
[x|>Ri+r]
Proof. It suffices to consider the positive time direction > 0. Let us fix x = (1/5)7. On

one hand, the non-radiative degree of u™ implies that [Ju™ (-, 1)|| L6(R3) < t~1/3 according to
Lemma 3.4. On the other hand, the argument in the proof of Proposition 3.6 gives

1/6 1/6
lu(x, ) —ut(x,n)[0dx | = / lu(x, 1) —uT(x,0)|%dx
x|>Ri+]t] Xx|>Ry+]|t|
1/2
< /|Vv(x,t)—Vu+(x,t)|2dx
3

< t*SK < t71/3'
Combining these two estimates, we finish the proof. O
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Appendix A

In this section we prove a few technical lemmata. The authors believe that these results are
probably previously known. For completeness we still give their proof.

Polynomial estimates We start by Lemma 2.2. By change of variables x = 2z/L — 1, we may
rewrite this technical lemma as below.
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Lemma A.1. Let 0 < § < 1 and P(x) be a polynomial of degree k. Then we have

1
2
max |P()P 2 J;l) f|P(x)|2dx;

-1

—145

/ l(x + D P'(x)] dx<K(K+l)8/|P(x)|2dx

Proof. Let us recall Legendre polynomials P, defined by

n

2
e & D"

Py(x) =

It is well known that {P,}n=0,1,2,... are orthogonal to each other in L2([ 1, +1]) with norm
| Py ||L2 = 2n+1 In addition, these polynomlals satisfy |P,(x)| < 1,V|x| <1 and the differential
equation

4 [(1 - xz)iPn(X)} +n(n+1)P,(x)=0.
dx dx

More details about the properties of Legendre polynomials can be found, for instance, in Folland
[13]. We consider the orthogonal decomposition of P (x):

1

K 2la,
PO = aPix) = /|P(x>|2dx Zz'“+'1
n=0 —1

This immediately gives
1

2
, [ “2n 41\ [ 2lanl? _(K+1)2/ >
PP = () = (25) (35 - 5 frcoras

n=0 n=0 —1

We also have

—1+6 —1+6

/|(x+1)P (x)%dx <8 f (1-— 2)|P(x)|2dx<6/(1—x2)|P(x)|2dx

We then integrate by parts, use the differential equation above and obtain

1

/ (1 —x)|P'(x)dx = — / P(x)- %[(1 —xH) P’ (x)]dx

-1

27



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547

1

=/ (ZanPn(x)) (Zn(n + l)anPn(x)) dx
1 \n=0 k=0

Z 2n(n + 1)|ay|?
o 2n +1

<K+ 1)/ |P(x)|%dx.

Combining these two inequalities, we finish the proof. O

We also need a similar lemma, where dx is substituted by (x 4+ 1)dx. This immediately gives
Lemma 2.3 by a change of variables x =2z/L — 1.

Lemma A.2. Let 0 < 8 < 1 and P(x) be a polynomial of degree k. Then we have

max | (x+ DIPOJ =20 + 1>2f(x+ DIP (0] *dx; (32)
—148
/ (x + D3P’ (x)*dx <K(K+2)8/(x+ )| P (x)|*dx. (33)

Proof. We define O, (x) to be the modified Legendre polynomial of degree n:

dnt! Q2n+1)!
1 n 1 n+1
2+ (1 + 1) doenH1 (O + D7 = D7 = 2 i+ D

n

On(x)=

If n > m are nonnegative integers, then we may apply integration by parts and obtain

(_1)n+1 » g
/(x + D Qn(x) O (x)dx = 2% + 1)! /(x +D"x—1D)" o o+ 1) 0, (x)]dx.
A basic calculation shows
n+1 (21’1 + 1)‘ = n:
dxn+1 Kx—l_“Qm@)]—{W’ m=n;
. 0, ifm<n.

Therefore {Q; (x)},>0 are orthogonal to each other in the Hilbert space L2([—1,1]; (x + Ddx)
and the norms of these polynomials are given by

1
||Qn||L2([ LIEG+Dd) — 200 4 1)
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In addition, these polynomials satisfy a similar differential equation to Legendre polynomials.
d 5 d
o x+Dd—x )a 0n(x) | +n(n+2)(x+1)Qs(x)=0. (34)
In order to prove this identity, we observe that % [(x +D@x2-1) % On (x)] is a polynomial of
degree n + 1 and contain a factor of x + 1. Thus we may write
d ) d -
5 |G DO =D 0a(0) | = _Z()a,-(x +1Q;(x).
]=

We multiply both sides by Q ;(x), integrate from x = —1 to x = 1 and apply integration by parts

2(]+1) /Q,(x) [(x+1><x —1)—Qn(X)}dx

—1 d DG&Z2—1 do. d
—an(X)a [(x+ )(x* — )an(x)} X
-1

n+2

=" " p1 d
/<x+1> (x—1) d,,+2[(x+1)(x —D—Q,(x)]

= 2n+l(n + 1);
A direct calculation shows
n+2 nn+2)-2n+1)!

—— [+ D —1)—Q'(x)]= 2n+lpy) ’ ’
dxnt2 dx =’ 0, if j <n.

Thus we have a; =0 if j <n and a, = n(n + 2). This gives (34). Now we are ready to prove
Lemma A.2. We first prove the second inequality (33). Let P(x) be a polynomial of degree «.
We may write

P(x) =Y a,0n(x).
n=0
We have

—1+6 —1448

/ (x+ D3P (x)Pdx <6 / (x+ DA =xH)|P (x)|2dx<8/(x+l)(l—x )P (x)]%dx.

We then integrate by parts, use the differential equation and orthogonality of {Q,}.

29



L. Li, R. Shen, C. Wang et al. Journal of Differential Equations 441 (2025) 113547

1

/(x + 1)1 =x))| P (0)Pdx = — / P(x)% [(x + D —xz)P’(x)] dx

-1

1 K K
= / (Zan Qn(x>> (Zn(n +2)an (x + 1>Qn<x)> dx
-1

n=0 n=0

Zn<n+2)|an|2
—~ 2n+1)

<k(k +2)/(x + DI P(x)|dx.
-1

Combining these two inequalities, we finish the proof of (33). We then prove the first inequality
(32). First of all, we have

1
max |P<x>|2 < (k + 1>2/ |P(x)2dy < (k + 1)? /(x + DIP(x)[*dy. 35)
-1

Here we apply Lemma 2.2. This deals with the case x € [0, 1]. Next we observe that if x €
(—1,0), then we may apply a translated-version of Lemma 2.2 and obtain

(k + 1)?
1 —

1 1
(e + 1)?
|P<x>|25yr£3xu|z><y>|zs ﬁflP(y)def : /(1+y)|P(y)I2dy.

This immediately gives

1
/(1 + WPy < (k + 1)2/(1 +MIPIdy, xe(=1,0).

X

K+ 1)2
1+ 0P < £

1—x
Finally we combine this with the upper bound (35) for x € [0, 1] to finish the proof of (32). O

Decay by recursion Finally we prove a lemma giving polynomial decay by a suitable recur-
rence formula.

Lemma A.3. Assume that | > 1 and a > 0 are constants. Let S : [R,4+00) — [0, +00) be a
function satisfying

o S(r)—>0asr - +oo;
o The recursion formula S(ry) < (r1/r)* + St (r1) holds when ry > r1 > R.

Then given any constant B € (0, (1 — 1/D)a), the decay estimate S(r) <r~# holds as long as
r > Ry is sufficiently large.
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Proof. Without loss of generality, we may assume the recursion formula

1 1
S(ra) = 5 (n/r)* + ES’(m

holds for 7, >> r1 > r. Otherwise we may slightly reduce the values of [ and «. We first find a
small constant y > 0 so that S(r) <r~7 for large r, then plug this estimate back in the recursion
formula and slightly enlarge the value of y, finally iterate our argument to finish the proof. We
start by recalling the assumption on the limit of S(r) at the infinity and choosing a large constant
M > R so that

Sr)<1/2, vr e [M, M"].

This implies that we may choose a sufficiently small constant y € (0, (1 — 1/])a) so that
Sry<r7¥,  Vre[M,M'.

Next we prove that S(r) < r~" holds for any r > M by induction. It suffices to shows that this

inequality holds for r € [M'*, M""']if it holds for r € [M""", M"]. In fact, if r € [M", M1,
then we have

Sy < 5G4 S8 @ < STV ST <7

Here we utilize induction hypothesis on S(r!/!). Next we plug in r| = r®/@*7D and r, = r in
the recursion formula, use the already known upper bound S(ry) <r, ¥ then obtain

1 1
S(r) < E(roz/(at-i-yl)/r)oc + E‘Svl(roz/(oc-ﬁ—yl)) < r—ozyl/(a—i—yl)’ > 1.
We may iterate this argument and conclude that
Sy <r ™, Vr=>re> 1.

Here yx € (0, (1 — 1/])) are defined by the induction formula

ayl

— k=0
o+ il

YW=v; Vi+1 =

In order to finish the proof, we only need to show yx — (1 — 1/« as k — +o0. In fact, we may
rewrite the induction formula in the form of

(I =1/Da = yry1 =

o [ =1/Da =]

Thus ¢ € (0, (1 — 1/D)«) increases as k grows. This implies

(I —=1/Da = yr41 < ayl'[(l—l/l)a—)/k] = (1—=1/Da —y — 0T,

o+

which gives the desired limit. O
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