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Abstract

The convergence rate in Wasserstein distance is estimated for empirical measures of
ergodic Markov processes, and the estimate can be sharp in some specific situations. The
main result is applied to subordinations of typical models excluded by existing results,
which include: stochastic Hamiltonian systems on R™ x R™, spherical velocity Langevin
processes on R™ x S*~! multi-dimensional Wright-Fisher type diffusion processes, and
stable type jump processes.
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1 Introduction

The purpose of this paper is to provide a general result on the Wasserstein convergence rate
of empirical measures, which applies to a broad class of ergodic Markov processes including
typical models beyond the range of existing results.

1.1 Problem in existing study

In recent years the Wasserstein convergence rate has been intensively investigated for the em-
pirical measures of continuous time stochastic systems, see [30, 31, 32, 33, 19] for symmetric
diffusion processes, [16, 17, 15, 18, 34, 36] for subordinate diffusion processes, [13, 18] for the
fractional Brownian motion on flat torus. See also [40] for the study of weighted empirical
measures of symmetric diffusions on compact manifolds.

In these references, the symmetric part of the generator has discrete spectrum with positive
spectral gap, see [34, (2.6)]. In particular, there exists a constant ¢ > 0 such that the following



Poincaré inequality holds:

(1.1) w(f?) = w(f)? < cé(f, 1), L f)=—ufLf).

However, this restriction excludes degenerate models where &(f, f) is reducible.

For instance, consider the following stochastic Hamiltonian system X; := (Xt(l), Xt@)) on
R? x R? = R%:
dxV = xPadt

(1'2) { t t )

dX? = v2aw, - {vv(xM) + xP}ae,

where W, is the Brownian motion on R?, and V' € C?*(R?) such that Zy := [p,e”V@dz < oo
and ||[V2V] < C(1 +|VV]) holds or some constant C' > 0. In this case, the solution of (1.2)
is a diffusion process having invariant probability measure p = uy x A5, where py(dz) =
Z‘jle_v(m)dx and .4 is the standard Gaussian measure on R?. The energy form associated
with (1.2) is

Ef.f) = n(| Vo f @D ) @), f e CERM).

Since the gradient is only taken for the second variable, when f is a non-constant function only
depending on zM, the Poincaré inequality (1.1) does not hold.

On the other hand, the Markov process X; = (Xt(l), t(2)) solving (1.2) may be exponential
ergodic (see [24]), so it is natural to ask for the convergence rate of the empirical measure with
respect to a reasonable Wasserstein distance.

1.2 New idea of the present work

To derive sharp estimates on Wasserstein distance of empirical measures, we need to regularize
the empirical measures such that analytic inequalities apply. In previous references, the em-
pirical measures are regularized by using the semigroup B generated by the symmetric part of
the Markov generator under study, for which we need to make assumptions on b,

For instance, let L:=A+VVona compete connected Riemannian manifold M for a
smooth function V' such that u(dz) := eV@dz is a probability measure, where dz stands
for the Riemannian volume measure, and let W, be the p-Wasserstein distance induced by the
Riemannian distance p, see (2.12) below. Then by [14, Theorem 2], for any probability measure
v(dz) := f(z)p(dx) on M, we have

-

(1.3) W, ) < p(p(IV(=L)71(f = D))"

See also [2] for a refined estimate for Wy. Since the empirical measure of the diffusion process
generated by Lis singular with respect to p, to apply the estimate (1.3), one regularizes the
empirical measure by the diffusion semigroup P, see [2] and [30]-[33].

However, the above technique does not apply to degenerate models like stochastic Hamilto-
nian systems arising from kinetic mechanics, where the symmetric part L of the generator does
not induce any distance.



To overcome this problem, we choose a different symmetric semigroup P,, which is not
generated by the symmetric part of the underlying Markov process, but has the same invariant
probability measure u. By choosing such a symmetric diffusion semigroup satisfying conditions
needed in the study, we are able to apply (1.3) for the generator L of P, to derive explicit
convergence rate of the empirical measure with respect to the Wasserstein distance, which is
induced by the intrinsic distance of L.

1.3 Organization of the paper

In Section 2, we introduce the framework of the present study, state the main result for expo-
nential ergodic Markov processes (Theorem 2.2), and an extension for non-exponential ergodic
Markov processes (Theorem 2.3 ). The convergence rate presented in Theorem 2.2 is sharp
for specific models shown by Examples 2.1-2.2 and Remark 6.1. Theorem 2.3 applies to any
Markov process whose semigroup converges to the invariant probability measure at certain rate
corresponding to the weak Poincaré inequality introduced in [21].

In Sections 3-6, we apply the main result to subordinations of several typical models:
stochastic Hamiltonian systems, spherical velocity Langevin processes, Wright-Fisher type dif-
fusion processes, and stable like processes. These models arise from different applied areas, and
are not covered by existing results on Wasserstein convergence rate of empirical measures.

2 Framework and main result

Let (M, p) be a length space, let &?(M) be the set of all probability measures on M. For any
p € [1,00), the LP-Wasserstein distance is defined as

(2.1) W,(v1,15) == inf (/MXMp(:v,y)pﬂ(da:,dy)) . v € P(M),

WE%(Vl ,l/g)

where €' (11, 1) is the set of all couplings for 4 and v,. We study the convergence rate in W,
for empirical measures of ergodic Markov processes on M.

2.1 Subordinate Markov process

Let X; be a standard time-homogenous Markov process on M having invariant probability
measure pu € Z(M). The associated Markov semigroup P; is defined as P, f(z) := E*[f(X})]
fort > 0, f € By(M), where %B,(M) is the class of bounded measurable functions on M, E*
is the expectation taken for the underlying Markov process starting at point z. In general, for
any v € Z(M), E” denotes the expectation for the Markov process with initial distribution v.

An important class of Markov jump processes are the subordinations (time changes) of
diffusion processes induced by Bernstein functions. A typical model is the a-stable process
generated by the fractional Laplacian, which is the time change of Brownian motion and has
been used as Lévy noise in SDEs. See the monograph [6] and references therein for the study
of subordinated Markov processes and applications.



To make time changes (i.e. the subordination) of the Markov process X;, we introduce the
class B of Bernstein functions B with B(0) = 0. Recall that a Bernstein function is a function

B € C(]0,00)) N C>°((0,00)) satisfying (—1)”*1%}9) >0, s>0.Forany «a € (0,1], let

B® = {B € B: liminf B(r)r * > O}.

T—00

Obviously, B = B.
For each B € B, there exists a unique stable increasing process SZ on [0, 00) with Laplace

transform
(2.2) E[e_TStB} = e BON ¢ >0,

see for instance [22]. Let SP be independent of X;. Consider the subordinate diffusion process
XtB =X sB,t > 0, and its empirical measures

1 t
pf = —/ dOxrds, t>0.
t )y

We investigate the convergence rate of W,(u?, ) — 0 as t — oo.

2.2 Reference symmetric diffusion process

Let X, be a reversible Markov process on M with the same invariant probability measure 4,
and with p as the intrinsic distance. Heuristically, X; has symmetric Dirichlet form (&, 2(&))
in L?(u) satisfying

équ=ANVﬂ%m fe (M) C (),

where Cj, (M) be the set of all bounded Lipschitz continuous functions on M, and

IV £ ()] = Tim sup LW =S @)l

, x & M.
Yy—x p<xvy)

~

More precisely, we assume that Cj, (M) is a dense subset of (&) and

é@m—A;mmw,MmadM»

where
I C@L(M) X C@L(M) — %b<M)
is a symmetric local square field (champ de carré), i.e. for any f,g,h € Cy (M) and ¢ € CL(R),

— x)| := limsu M
LU, A() = [V f(@)] := lim sup =75

L(fg,h) = fT(g,h) + gU(f,h), T(o(f),h) = & (/LS h).
Moreover, the generator (L, 2(L)) satisfies the chain rule
Lo(f) =S (NLI + " (DIVIE, fe2L)NCyr(M), 6 € C*(R).

, r e M,



2.3 Main result

Note that for B(r) = r, we have X = X; so that p? reduces to the empirical measure
e = % fg dx.ds. In this paper, we aim to estimate W, (2, i) for a general Bernstein function
B, which includes W, (1, i) as special case. To this end, we make the following assumption.

For any p > ¢ > 1, let || - || za(u)—Le(u be the operator norm from L9(u) to LP(u). Let (P,)i=o
be the semigroup of the reversible Markov process Xt, ie.

Pif(@) =E(f(X)|Xo=2), t20,f € Z(M),
where %,(M) is the set of all bounded measurable functions on M,

(A1) Letp € [2,0). P, has heat kernel p, with respect to p, and there exist constants B, \, d, k €
(0,00) such that

(23) HVHHLQ(H)*)LP(H) < kei)\ttiﬁ, t>0,

(2.4) / (Pp(x, -)p)%(:t),u(dx) <kt, te(0,1],z€ M,
M

(2.5) / bl p)p(de) < K(ILADE, £ 0,
M

(2.6) IP; — |2y < ke ™™, t>0.

Note that in (A;) the only condition we need for the Markov process is (2.6), while other
conditions (2.3)-(2.5) are made for the reference semigroup P, which is flexible in applications.
Indeed, for smaller distance p, the energy form & is bigger, so that P, has better properties. For
instance, let ;1 be a probability measure on a connected Riemannian manifold comparable with
the volume measure, when the Riemmanian distance p is small enough we have large enough
Dirichlet form &(f, f) := u(|Vf|?) such that gap(L) > 0, see [5] where the stronger log-Sobolev
inequality is considered.

Condition (2.4) refers to the %—Hélder continuity of the symmetric diffusion process Xj,

which is true for a broad class of diffusion processes. Indeed, for a diffusion process X, with
generator satisfying )
Lp(z, ) < c(1+ p(x,-)?)

for some constant ¢ > 0, which is the case when X, solves an SDE on R¢ with linear growth
coefficients and p(z,y) := |z — y|, we have

t
Pip(z,-)P(z) = E*[p(x, X3)P] < c/ e“ds < cet, tel0,1],
0
which implies (2.4) for some constant & > 0 and any probability measure . Condition (2.5)
is a standard upper bound estimate on the heat kernel for d-dimensional elliptic diffusions, see

for instance [9, Theorem 2.3.6]. Moreover, according to Proposition 2.1 below, when p = 2,
condition (2.3) with 8 = % follows from the existence of spectral gap, i.e.

gap(L) := inf {E(f.f): f € D(E).p(f)=0.u(f?) =1} > 0.
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In this case, (2.3) follows from (2.5), since the later implies that L has discrete spectrum and
hence has a spectral gap, see [27, Theorem 3.3.19]. When p > 2, we have

IVE 22— Loy = IV PPl 2y Lo n) < IV Pyl 20— 220 125 1l 220 2 )
so that (2.3) follows from gap(f)) > 0 together with a suitable upper bound of ||pt”L2(,u)—>Lp(N)’
which is available for elliptic diffusions on compact manifolds, see the proof of Example 2.2 for

details.

Before moving on, let us compare the above conditions with those in [34, (A;)]: there exist
constants ¢, A > 0,d > d > 1 and a map k : (1,00) — (0,00) such that

(2.7) 15, = il 1o < ct 27, ¢ >0,
(2.8) \ > cid, i€ 7y,
~ ~ 1
(2.9) VP < kp)(BIV )7, t€0,1],p€ (1,00), f € Cypr(M).

The first essential difference is that P, in [34, (A;)] is associated with the symmetric part
of the Dirichlet form for the underlying Markov process, while P, in the present framework is
essentially different, the only link between the present P, and the underlying Markov semigroup
P, is that they share the invariant probability measure p.

Since the generator L of P, is not the symmetric part of the generator L for the studied
Markov process, the eigenvalues of L has nothing to do with the behavior of the underlying
Markov process, so the condition (2.8) is dropped from the present assumption (A;).

As we will use P, to regularize the empirical measures, we adopt the conditions (2.3) and
(2.5) for the gradient and heat kernel estimates on P, where (2.3) is comparable with (2.7)
for small time. Again, because the eigenvalues of L has nothing to do with the underlying
Markov generator, the spectral representation of B, is no longer useful for the study, we need
the gradient estimate (2.3) rather than (2.9), where the later is easier to verify in applications.

Proposition 2.1. If gap(L) > 0, then for any X € (0,gap(L)) there exists a constant k > 0
such that A .
||V-F)tf||L2(;L) < k:t_ge_At||f||L2(/.L)7 > 07 f S LQ(M)

Proof. Denote Ay := gap(L), let (E,),>o be the spectral family of —L. We find a constant k > 0
such that

IVEF|22 = / s B,(f) < e ((sup se2 ) / dE(f)
A1

A1 52)\1

<kt e [ TABS) < e g, t> 0.1 € L)
A1



We also need the following defined quantity d’ € (0, co] induced by P;.

Definition 2.1. d’' is the smallest positive constant such that the heat kernel p; of P, with
respect to u satisfies

(2.10) /M ) Puda)a(dy) < KIAD%, t>0.

If p; does not exist, or p; exists but (2.10) does not hold for any d’ € (0, 00), we denote d’ = 0.

For constants 3,d in (A;), and d’ in Definition 2.1, we denote

d 4o\ +
Kﬂzdzd/7a = /8 + Q 1 + <1 N _a> ’ a e [07 1]'
8 d
Moreover, for any ¢ > 0, let

¢

1, if Kggaao <1,
tlog(2 +t)]%, if Kggwo=1, d#4a,
(2.11) £ = t*1[10g1(2 + 1))?, if Kggao=1, d=4a,
t Foada T, if Kygga>1, d#4da,
Tt log(2 4 1), if Kpgwa > 1, d = da

Theorem 2.2. Assume (A;) for some p € [2,00) and let B € B* for some a € [0,1]. Then
there exists a constant ¢ > 0 such that

(2.12) BA[W, (1, 1)) < &, > 0.

If the semigroup PP of XP has heat kernel pP with respect to u, then for any q € [1,2] and
re M,

20-1

tq

(2.13) E7[W, (s, )] < /0 E* [u(p(X2,)7) 7] ds+207 [pf (2, )| 2. (c€ia)d, £> 1.

L7 ()

Remark 2.1. (1) The reference semigroup P; from (A;) will be used to regularize the empirical
measure ff into pf. = pf P, for r € (0,1), which has density with respect to p so that the
estimate (1.3) applies to W (u’, 11), see the proof of Theorem 2.2 for details. In particular,
for the stochastic Hamiltonian system (1.2), conditions (2.3)-(2.5) hold for P, generated by
L:=A—VH on R where H(zW,2®) := V(2M) + 1[z®? for 2, 2® € R, see the proof
of Theorem 3.1 below with m =n =d,x = 1 and @ being the identity matrix.

(2) By the standard Markov property, for any v € & and g € [1, 2] with h, := g—; € szq(,u),
(2.12) implies

2
q

Qo

© ) = ([ nle B )

7



2
q q
2

< ([ mto)E ) Pt
Ul [ B )

2 2
= ||, ||* EX W, (12, 11)?] < c|lhy||® . t>0.
| HLﬁ(H) (W (ks 1)7] < ¢ HLQ%(H)&

(3) Tt is easy to see that & is decreasing in d’, so estimates in Theorem 2.2 remain true if d’
is replaced by oo, for which K44, = K := 3+ ¢ and & reduces to

t1 if K <1,
(2.14) G(K) =t log(2+ )2, if K =1,
e if K> 1.

Therefore, when g is good enough such that the associated symmetric diffusion semigroup B
satisfies conditions (2.3)-(2.5), then for any Markov process satisfying (2.6) and any B € B,
there exists a constant ¢ > 0 such that

B W, (18, 1)?] < c&(K), ¢ 0.

To illustrate Remark 2.1(2), we present below two examples, which provide a uniform
Wasserstein convergence rate for empirical measures of Markov processes with given invari-
ant measure 1, where the uniform rate is sharp in the second example.

Example 2.1. Let M =R", let V € C?(R") such that V(z) = ¢(x) + (1 + 0|z|*)", z € R",

where ¢ € CZ(R"), § > 0,7 € (3, 00] are constants. Let p(dz) = py(dz) = %. Then
Rn

for any Markov process on R" satisfying (2.6) and any B € B, there exists a constant ¢ > 0
such that

t=1 ifn=17>1,
(2.15) B [Wo(uP, 1)?]) < e t7Hlog(2+ 1), ifn=17=1,
=5 , otherwise.

Proof. Let L = A — VV. By Remark 2.1(2), it suffices to verify (2.3)-(2.5) for p = 2,5 = 3,

and d = 2. Since lim|mHOO[A/| |(z) = —o0 < 0, [26, Corollary 1.4] ensures gap(L) > 0, so
that by Proposition 2.1, (2.3) holds for p =2 and § = %

Next, by [28, Theorem 2.4.4] and V2V > —c,I,,, we find a constant ¢, > 0 such that

p(B(z, /)’

where B(z,r) :={y € R": |z —y| < r},r > 0. Then (2.5) with d = 2™ follows provided

(2.16) pr(x,x) < x eR" re(0,1],

pi(dz) 2
(2.17) /n (B <ecr -1, re(0,1]



holds for some constant ¢ > 0. Below we prove this estimate.
Since 1 is bounded, there exists a constant C' > 1 such that

(2.18) Cle~ 0 4 < p(da) < Ce= 0P gy
On the other hand, by
]

S <lel= 7 <lal, re01, lal 2 1,

we find a constant ¢z > 0 such that

" d Sy2\ 7
(146 - o |‘) (1+8la]?)" /0 (10 - 5)?) s
_ o 70 [ S T (g f
— (14002 2/0 (140021 = ) (lel - 2)as
< (14 0a)" = earlzY, re0,1], |2l > 1.

Hence, there exist constants ¢4, cs > 0 such that for |z| > 1 and r € (0, 1],

W(B(o,1) = ¢4 / - ) o0 gy

(1+9|x— | )7 (1+0\x| )T tegr|z)?T— 17 re [O, 1]’ ‘.’L” > 1.

(2.19)

> csr'e

Combining this with (2.18), we find constants c¢g, ¢; > 0 such that
/ p(dr) / pldr) / p(dz)
n 1(B(z,7)) B(0,1) w(B(x,r)) B(0,1)¢ w(B(z,r))
< C*rm 4 067”_”/ e~ gy — 2 + " / s Lo g
n 0

27n

oo
= C%r7" f opr T / s" e ds, v e (0,1].
0

This implies (2.17) for some constant ¢ > 0.
Finally, it is easy to see that V2V > —cI,, and |VV(z)|?> < ¢(1 + |z|*") hold for some
constant ¢ > 0. So, we find a constant c¢g > 0 such that
(2.20) Lz —P=2n+2(VV,z =) =20+ 2(VV(z),x — ) — 2(VV(z) = VV,z — )
' <o+ |VV(@)P+ |z — )+ 2]z — P < (1 + |2|* + |z — %), =R,

This implies
(2.21) Pz — X (x) = E"|lz — X,|> < cs(1+ [z te™, zeR™, t>0.
Noting that u(| - [*7) < oo, we verify condition (2.4) for p = 2 and some constant k > 0. O

In the next example, the upper bound (2.22) is sharp. Indeed, according to [36, Corollary

1.3(2)], for n > 3 and B € B®, we have inf,c s E[Wo (12, 1)?] > ct ™= =75 . With a — 0 this lower
bound reduces to the upper bound in (2.22).



Example 2.2. Let M be an n-dimensional compact connected Riemanian manifold possibly
with a boundary OM. Let V € C?(M) such that u(dz) = eV (@ dz is a probability measure on
M. Then for any Markov process on M satisfying (2.6) and any B € B, there exists a constant
¢ > 0 such that

t1, ifn=1,
(2.22) E* (Wl 1)?] < ¢S tHlog(2 + 1)), if n =2,
t*%, if n > 3.

In general, for any p > 2, there exists a constant ¢ > 0 such that

1, ifn=1,p€23),
(2.23) AW, (17, 1)) < ¢ { ¢ log(2 + D), ifn(p—1) =2,
R , otherwise.

Proof. Let X; be the diffusion process generated by L = A — VV with reflecting boundary if
it exists. Since M is a compact connected Riemannian manifold, (2.3)-(2.5) are well known
for p=2,8 = 1 and d = n, hence (2.22) holds according to Remark 2.1(2). Moreover, it is

classical that ||Pt||L2(u)_>Lp(u) < (1 /\t)_n“;;m holds for some constant ¢ > 0 and all ¢ > 0. Then
(2.3) holds for p > 2 and g = 3 + n(Z—;Q). By Remark 2.1(2), (2.23) holds. O

2.4 Proof of Theorem 2.2

We will apply the estimate (1.3) for p € [2,00). This inequality is proved in [14] by using the
Kantorovich dual formula and Hamilton-Jacobi equations, which are available when (M, p) is
a length space as we assumed, see [25]. In the following, we prove estimates (2.12) and (2.13)
by five steps.

(a) For any r > 0 and t > 0, consider the regularized empirical measure

) IR
(224) ,UET = ,Uigpr = ft,rﬂ> ft,r = ;/ pT(XsBa )dS
0

Note that 7 := fg dxp X (0xs P)ds € €(uP, pis,.), so that by the definition of W, and Jensen’s
inequality as p > 2, we obtain

% 1 t P
Wb < ([ pepratanan) = (3 [ o pxas)
MxM 0

3 2
< / (Bp(XE,)P)7(XB)ds, t>0, re(0,1].
0

~ | =

Combining this with (2.4) and that p is an invariant measure of X2, we obtain

A

(P,,p(x, )p)

SELN

(2.25) B* (W, (pes it )] < /M (x)p(dx) < kr, t>0,r € (0,1].

10



(b) Since P, has symmetric heat kernel p,, (2.24) implies P, f,, = ]5% Ji, 4. Combining
this with (1.3), (2.3), Jensen’s inequality, and that p is P.-invariant, we derive

2

Wp(:ufwu)2 < pQHV/O P% (ft,% — 1)ds
LP(u)

52,2 oo —)\(s+7")/2 2
< 4 k -~ <4 r+s — 1 2 .
<o [ g e s
By (2.24), we obtain

1fyzge = sy = / t, /
B 2

t
= [ dt / [Dres(X7, X2) — 1] dts.
0 t1

(2.26)

tl’ )= 1) (ﬁ (th, ) - 1)>dt2

Combining this with (2.26), we find a constant ¢; > 0 such that for any ¢ > 0,7 € (0, 1] and
measurable function h : (0,00) — (0, 00),

c 5(5—&-7“) % 2
o <[22 [ f st

2 (s+r) A(s-l—r
c1 e 2 2 S+7’ B B
<4 £ 4 ds [ dt s(XE XE) — 1]dty.
_t2</o h(s+7) S>/o (s+7)% S/ 1/p+ h ) - } ?

(c) We claim that there exist constants ¢/, \ > 0, such that for all » > 0 and ¢, > t; > 0,

(2.27)

d

(2.28) EF[p (X2, XE) 1] < (1 Ar)7S [7" A+ Tpasoar<ony {1 A (t2 — tl)}%]*ze—wﬂﬂ.

Indeed, since y is PP-invariant, u is also PP*-invariant, where PP* is the adjoint operator of
PBin L*(u1). By (2.2) and (2.6), we obtain that for all ¢ > 0,

* —\SB —
(2.29) 1P = pillezgy = 1PP — pillz2y = HEPstB — [ 2y < KE[e] = ke PO,

Denoting ' = B(\), noting that p,(x,-) — 1 = [}, pz(x,y) [Pz (y,-) — 1]u(dy), by the Markov
property of X7, (2.5) and (2.29), we derlve

B [5, (X2, XE) — 1] = /M P2, [in(z,) — 1] (@)p(dz)

s Mﬁg(:v,y)Pf o [P5(y, ) — 1] (@) p(de) p(dy)

(2.30) ,

< (/MXMﬁ;(ﬂf,y)Q (dz ) (/ 120, 5 (y. ) = 1lIZ2 “)M(dy)y

< ke X2t / pr(w, w)p(dz) < K21 A7) "2e V20,
M

11



Next, let o > 0 and d’ < oo. By the Markov property we obtain
B (5, (XX — 1) = [ B[ XE,) — 1)
(2.31) = / {hr(z,9) = 1}pi_y, (2, y)p(dr) p(dy)
MxM
— [ b {ph o)~ D n(dotay)
MxM
Noting that

(232) pg—tl(xay) —-1= P’B;% {p’BZ%(xv ) - 1}(y)7 lo >t 2 07

by the display after [36, (3.12)], (2.10) implies

/

(2.33) / pr (2, y)*u(dz)p(dy) < KE[(1 A SB) } <E(AAt) T2, t>0

for some constants k£’ > 0. Combining (2.29) with (2.32), (2.5) and (2.10), we find constants
Co,c3 > 0 such that

/M ) (Pl o) — 1uld)ue)

< ( /M for a2 )( [ Pz ot >—1}\L2Wu<dx>)

<es(LAT)S{1A (s — tl)}—me—@fm)A S )

1
2

ptz t1 x,

This together with (2.30) and (2.31) implies (2.28) for some constant ¢ > 0.
(d) When o > 0 and d’ < oo, we find constants ¢4, c5 > 0 such that

1 t t , rod
Z/ dtl / 6_)\ (t2=t1) [(7” + S) N1+ {1 VAN (tg - tl)}%} 4dt2
0 t1

t 00
S%/dh
3 0

where, since Cfl?‘(d— -1t = %(1 — %)+,

e_w([(r +5) A 1]% + 1A Q)jijd(‘) < csI(r+s),

S—

(2.34) I(r+s):=[1A(r+ s)]fg(lf%)+ (1 + Loy log [2+ (r + 3)71})

R.

When d' = oo or a =0, we have I(r+s) =[(1A(r+s)]"+ and
d
/dtl/ (t2—t1) [(r+s)A1] *dty < csI(r +s)

12



holds for some constant ¢; > 0. So, in any case,

{—
/ dtl/ (t2=t) T + 8) N1+ 1{a>0,d’<oo}{1 A (t2 - tl)}%] tdty < 051(7’ + 8).

d
Combining this with (2.27) and (2.28), and choosing h(r + s) = %, we find a constant
¢e > 0 such that

(235) EX (W, (1, )] < %(Amexsf“+?dﬁé

t [1A (r+3s))Ps
By (2.34) and the definition of K3 44 ., we find a constant ¢; > 0 such that

/0 [—As/ r+5 / o e s <1+1{d/ sy V10g2 + (1 + 5)~ Dds

1/\(7"+s)]/3+s 7’+5)]Kﬁdd’a

<em(r), re(0,1],
where )
1, if Kogao <1,
log(2 +r71), if Kgagawo=1,d #4a,
n(r) := 1 [log(2 + r1)]z, if Kgaa.o=1,d = 4a,
ri=Ksad.a it Kpgao>1,d #4a,
i Keado, flog(2 + 1Y), if Kggaa > 1,d = da.

\

This together with (2.35) and (2.25) implies
B W, (e )] <2 imf {BX Wy (s, 0)%] + B Wy, )]} < s inf {E70(r)* 41}
for some constant cg > 0 and all ¢ > 0. Therefore, (2.12) holds for some constant ¢ > 0.

(e) To prove (2.13),let t > 1 and il := L5 [ dxpds, so that puf = %fol dxrds+4nf .
Then

1t 1 t—1_
Wp(u?::u) S ;/0 [:U/(p(XsB7 )p)] rds + TWP(MtB—h:u)

By Jensen’s inequality and the Markov property, this implies

qg—1 1 1 q
) < 2 ([ o, ) as ) et o ]
(2.36) gt g1 .
< [ B o) s+ 2 B (W )
0

where v, := pP(z,-)u is the distribution of X for Xf = z. By Hélder’s inequality we obtain

EY (W (py 1, )] = /M Py (2, y)BY (W (1, 1)) pu(dy)

<1, (BT ) ) = WP ) I )

[S]5S)

L274 (u)

Combining this with (2.36), we deduce (2.13).
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2.5 An extension

For some infinite-dimensional models, see for instance [32], (2.5) fails for any d € (0, 00), but
there may be a decreasing function « : (0,00) — (0, 00) such that

/Mﬁt(f,l’)u(dx) <~(t), t>0.

Moreover, in case that P, is not L?-exponential ergodic, by the weak Poincaré inequality which
holds for a broad class of ergodic Markov processes, see [21], we have

B ([P = il ooy r2ge) = 0.

To cover these two situations for which Theorem 2.2 does not apply, we present the following
result for the empirical measure p; of the Markov process X; with semigroup F;.

Theorem 2.3. Assume (2.3), (2.4). If there exist a constant q € [1,00],¢" € [%5,00] and a
decreasing function 7 : (0,00) — (0 o0) such that

(2.37) o B =gl ety =9
(2.38) /M 125 (Y Wzago o5 (W, )l Lo oue(dy) < (), 7> 0.

Then there exists a constant ¢ > 0 such that for any t > 0,

([ VTETL) L

Proof. Let B(A\) = X so that X = X;,, PP = P, and u? = u;. Noting that p.(z,:) =
Jar Dz (@, 9)p= (v, -)u(dy), by (2.38) we obtain

E* W, (i, 1)) < ¢ inf

r€(0,1] t

{fé 1P = pl

B [py (X0, Xoy) — 1] = /M Pty — 1) (2, ) (@) pu(de)
_ / P (2,9) (Prasy — i) (4, ) (@) () u(ly)
MxM
< [ Bl Pt = 10 0} ()
s —N”Lq/(“)%q%(u)/MHﬁg(y,~)||Lq<u>\|ﬁg(y7')||qu(u)u(dy)

< W(T)HPtQ—tl - NHL‘?/(M)—)L%(M)’ r>0,ty > 1.

(w)

Combining this with (2.37), we find a constant ¢; > 0 such that
t t t
Aty [ B[P a(Xe, X0) — 1]dty < t P =pl . o ds, rs>0.
[t [ B, X0~ s S crr ) IRl e s s
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So, by (2.27) with

t
3 _ B t Ps_ ¢ d )
(r4+s)=(s+r) (’Y(T"‘S) /0 I MHLQ’(u)ﬁLq—l(u) 8)

=

we find constants ¢y, c3 > 0 such that

00 —A(r—&—s)
" 9 Ca e 2 7’+3
E [Wp(:utm?“) ] t (/ (T‘—i—S ||P MHLQ )—>La— 1 ds
V r+s
- t

TOLD0) [ 1Pl gyt 1 0r € 0,1

This together with (2.25) and the triangle inequality implies the desired estimate. O

To verify Theorem 2.3, we present below a simple example where P, only has algebraic
convergence in || - || peo(uy—r2(4), 50 Theorem (2.2) does not apply.

Example 2.3. Let M = [0,1], p(x,y) = |x — y| and pu(dz) = dz. For any [ € (2,00), let X,
be the diffusion process on M \ {0,1} generated by
d2

L:={z(1- x)}l@ + 1{z(1 - x)} Y1 -2z )ddx

Then Theorem 2.2 does not apply, but by Theorem 2.3 there exists a constant ¢ > 0 such that
for any ¢t > 0,

(11, if 1 € (2,5),p € [ 1“>,
t~Hlog(2 + 1))?, if 1 € (2,5],p=
(2.39) BA W, (e, 1)?] < ¢ [t log (24 )75, ifle (2,5),p> 3 l
t %[1og(2+t)] if1>5,p=2
tp(l D ifl>5p>2.

Proof. We first observe that (2.6) fails, so that Theorem 2.2 does not apply. Indeed, the
Dirichlet form of L satisfies

1
l
(2.40) §(t9) = [ {o(t -0} ) @)ds, f.g€ GO € 7(6).
0
Let pr be the intrinsic distance function to the point % € M. We find a constant ¢; > 0 such

that
‘/{ 1—3 2ds

Then for any € > 0, we have p(e**X) = oo, so that by [1], gap(L) = 0. On the other hand, since
L is symmetric in L*(u), by [21, Lemma 2.2}, (2.6) implies the same inequality for k = 1, so
that gap(L) > A > 0. Hence, (2.6) fails.

> ¢ (! 2 + (1 —z)'" %), r e M.
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To apply Theorem 2.3, let P, be the standard Neumann heat semigroup on M generated
by A. It is classical that (2.3) and (2.4) hold for

1 p—2
2.41 =4+
(241) b=5+=

Moreover, there exists a constant ¢y > 1 such that

||]5% L (u)—Ln () < Ca(1 —l—r_%), 1<m<n<oco,r>0,

so that for ¢ = oo and ¢ > 1,

N

195 (s Moo 195 9 My < 2l Pl sz (1 +73)
9 _a-1 1
<cG(l4+rzm)(14+r72), r>0.
Hence, there exists a constant c3 > 0 such that (2.38) holds for

2q—1

y(r) =cs(1+7r" 20 ).

Combining this with (2.41), we find a constant k& > 0 such that for any r € (0,1),

1, ifl< qg < T
(2.42) (/’V I ts), ) < k- { [log(1+r 1), ﬁ1<q—_L
T+S 1-(p—2)q
ro oz, ifg>1V E
Indeed, (2.41) implies
S (0421 > -1, ifl<g<t3,
A = PTEET ifl<g= 2,
4q 4q _ p
< —1, if q >1V pTQ’
so that we find constants ki, ks > 0 such that for any r € (0, 1),
1 if 1 <q<-L,
\/ (r+s) _2-1l_g 1 . Pl
—————ds <k (T+S) i Pds <ky-Qlog(l+7r7), ifl<g=_7,
T+S 1-(p—2)q . pl
[ if q> 1v =3

which implies (2.41).
To calculate || P,— p|

in [21]. Let

LY () L7 () for ¢ = oo, we apply the weak Poincaré inequality studied

M, =[s,1—s], s€(0,1/2).

Noting that p(dz) = dz and letting v(dx) = {z(1 —z)}dx, we find a constant ¢4 > 0 such that

sup u([r,1/2))v([s,r]) < 2' sup (1 - r) ("' =) < s, s €(0,1)2).

re[s,%] re[s,%} 2
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By the weighted Hardy inequality [20], see for instance [28, Proposition 1.4.1], we have
p(f ) < des' (1P, F € O(.1/2]), £(1/2) =0.

By symmetry, the same holds for 3,1 — s] replacing [s, 5]. So, according to [28, Lemma 1.4.3],
see also [4], we derive

p(f* 1) < deas™ (| f'P1an) + p(f1an)?, € CH([s, s — 1)),
Combining this with (2.40), for any f € Cy (M) with p(f) = 0, we have pu(f1a,) = —p(f1lae)
so that

w(f?) = p(f2Lare) + p(f21a) < p(f21age) + deas' ' E(f, f) + pu(fLae)?,
<deas' T Ef, ) 4 20 (M) < deas' ™ E(Sf, ) +85%|| fII%, s € (0,1/2).

For any r € (0,1), let s = (r/8)2. We find a constant ¢; > 0 such that

u(f?) < esr™ T ES )+l T (0.1),1(f) =0, f € CY(M).
By [21, Corollary 2.4(2)], this implies

2

1P — pll oo uysr2(u) = 12 — pll egysrry < cs(1+1)7 71, £>0
for some constant ¢5 > 0. Since P, is contractive in L™(u) for any n > 1, this together with the
interpolation theorem implies

4(g—1)

<cg(l4t) =D, ¢t>0.

12 = il eyt

Noting that ¢’ = oo, we find a constant k& > 0 such that

1 if 1 € (2,5),4> 54,

1/t .
(2.43)  T(t):= ;/ 12 =1l e s S R QT og(2+1), i L =5, = o0
‘ (1+t) 71, ifl>5g=o00

We now prove the desired estimates case by case.
(1) Let I € (2,5) and p € [2, 2=!). Taking ¢ € (54, Iﬁ) in (2.42) and (2.43), we obtain

inf {77 +r}<k inf {t 1+r}—kt1

re(0,1] re(0,1]

So, the desired estimate follows from Theorem 2.3.
(2) Let I € (2,5] and p = £3=L. Taking ¢ = %, = p— in (2.42) and (2.43) we find a constant
¢ > 0 such that

inf {n(rT(t)+r} <k inf {tlog(2+t)]log(l+r N>+ r} < ct™'[log(2+ )]’

re(0,1) re(0,1]

This implies the desired estimate according to Theorem 2.3.
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(3) Let [ € (2,5] and p > £3=L. We have ¢ := 5 > 17%2, so that (2.42) and (2.43) imply

p+l—1 _ 4p+1-5
inf, {n(T@) + 1} <k inf, {t 7 og(2+1)]r "% 47} <c[tlog(2+8)] ®
re(0, re(0,

for some constant ¢ > 0, which implies the desired estimate by Theorem 2.3.
(4) Let I > 5 and p = 2. By taking ¢ = oo in (2.42) and (2.43), we find a constant ¢ > 0
such that

inf {n(rT(t) + 7} <k inf {t T [log(1+r D> +r} <t T1[log(2+ ).
re(0, re(0,

By Theorem 2.3, the desired estimate holds.
(5) Let I > 5 and p > 2. By taking ¢ = oo we find a constant ¢ > 0 such that (2.42) and
(2.43) imply

4 p—2 _ 8
inf L(t)+rl <k inf {t =19 =2 47l <t »0-D
Ly VRO Fry <k R T ey S el

for some consatnt ¢ > 0. Hence the desired estimate holds according to Theorem 2.3.

3 Subordinate stochastic Hamiltonian systems

Consider the following degenerate SDE for X, = (Xt(l),Xt(Q)) on R™™ =R" x R™ (n,m > 1
may be different):

31) {dXt(l) = kQX?dt,

dx? = v2dw; — {Q* (V) (X)) + kX P},

where W; is the m-dimensional Brownian motion, Q € R"®™, k > 0 is a constant, and V €
C?(R") satisfies

V2V (x
(3.2) sg}gﬂ % 00, /R IVV (1) 2™V @) dz, < oco.
Let Vi)
L e V(71 dxl L K % 75|:E2|2
/Lv<dl'1> = M, J%{(dﬂlg) = <§> e 2 dl’z.

Then the SDE (3.1) is well-posed, and the solution has invariant probability measure
(3.3) p(dzy, dzs) = py(day) A (das).
Recall that for a metric space (M, p),

B(z,r):={yeM: plz,y)<r}, x€Mr>0.

We will verify (A;) and (2.10) for the present model by using the following assumption.

18



Ag) QQF is invertible, (3.2) holds, and there exist constants k > 0 and n’ > n such that
(

(3.4) V2V > kI, / _eldn) e e, 1],

re v (B(21,7)) ~

(3.5) pv(f*) < kv (IVFIP), f € G(R™), v (f) =0.

We have the following result.

Theorem 3.1. Assume (As), let B € B for some o € [0,1], and let p(x,y) = |x — y| for
x,y € R Let &(K) be in (2.14) for

2 4 2(3n/4+2m)’

14 nd2m if [|[V2V ]| = 0.

5.6 Ko {l g S IV < 0

Then there exists a constant ¢ > 0 such that
(3.7) B [Wa(p, 1)?] < c&(K), t>0.
If ||[V?V||oo < 00, then for any t > 2 and v € R™™™,

1
(B(z1, (1A SIB)%) X B(xg, (1A SlB)%)) ‘

@) [l 0] < et [ xopas

To prove this result, we first present a dimension-free Harnack inequality for the following
more general model:

(39) {dxf” = {AxY + QxP}at,

dx? = Z,(X,)dt + o, dW,,
where @ and W; are in (3.1), A € R™®" and

o:[0,00) = R™™  Z:]0,00) x R*""™™ — R™
are measurable such that the following conditions hold:

(A3) There exist a constant k > 0 and an integer ko > 0 such that

Z -7 ,
sup ||0t_1||C>o + sup %) ()l <k, Rank[A'Q:0<i<ky=n.
>0

024y |T =Y

Lemma 3.2. Assume (A3), and let P, be the Markov semigroup associated with (3.9). Then
for any p € (1,00), there exists a constant c(p) > 0 such that
oz — | clzr — o

(LA )Hhots T (1A £)Hhot]

[P f ()P < (Pl fIP(x)) exp
holds for all t > 0 and x = (x1,22),y = (y1,y2) € R" x R™.
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Proof. By Jensen’s inequality, we only need to prove for ¢ € (0, 1]. The proof is refined from
that of [29, Lemma 3.2]. Let X; solve (3.9) for X, = z, and for fixed ¢, € (0, 1], let Y; solve the
following SDE with Yy = y:

= {avV + Qv P }at,

_ d .
av,? = {Z,(x) + B + S it — Q004 h, ] Lt + 0ud Wi, 1 € [0,t0),
0

where

to
_ to—S (to—s .
by, = Qtol{etOA(ffl — Y1) +/ OTe(tO Q (22 — y2)ds},
0

Q: ;:/ s(t — 5)el™1QQ eV ds, 1> 0.

0
By [29, (3.2) and (3.3)], we have X;, =Y}, and

(3.10) sup | X; - Y| <clz—vy|, z,yeR"™
te|0,to]

holds for some constant ¢ > 0.
According to the proof of [38, Theorem 4.2], the rank condition in (A3) implies

Q' < extg®72, 1o € (0,1]
for some constant ¢; > 0. Then there exists a constant ¢, > 0 such that
(3.11) b | < C2t52k0_3(|$1 — y1| + tolwa — yz‘)-

Combining this with the first condition in (A3), we see that

Py =yt (Zt(Xt) — Zy(Y3) + ik L d {t(to —1)Q el bo})

to dt
satisfies
(3.12) ) m =l e =Py )
: SUp |Ptloo = C4 Ao+ Akot2 ) 10 )
0 0

te[0,to]

for some constant ¢, > 0. So, by Girsanov’s theorem, under the probability measure RdP, where

R :=exp [—/00<1/1t,th> —%/Oowtpdt],

the process (Y;)icjo,4] 18 @ weak solution to (3.9) with initial value y. Combining this together
with X;, =Y}, as observed above, we find a constant c; > 0 depending on p such that

P f ) = [E[RF(Yi)II” = [E[Rf(Xy,)|I” < (B[R7T))" B[ fP(Xy,)]

12

< e% Jo© llpe =dtp, | fIP(x).

By (3.12), this implies the desired Harnack inequality. O
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Proof of Theorem 3.1. Let p = 2, M := R"*™_ To apply Theorem 2.2, let X, be the diffusion
process generated by

(3.13) L:=A—(VH)-V,
where
(3.14) H(z) = V(z1) + g|x2|2, z = (z1,22) € R™™,

In the following, we verify (A;) and Definition 2.1 for

3n/ 4 2m, if |[V2V]|s < 00,

00, otherwise.

1
(3.15) 525, d=n'+2m, d’:{

(a) Verify (2.3). By (3.3), (3.5) and the Poincaré inequality for the Gaussian measure .4,
we find a constant C' > 0 such that

(3.16) u(f*) < CulIVIP) +p(f)?, f € CyR™™).

Consequently, gap([:) > C~1 > 0, so that Proposition 2.1 implies (2.3) for p =2 and 8 =
(b) Verify (2.4) and (2.6). By (3.4) and (3.14), there exists a constant ¢; > 0 such tha

1
5
t
(3.17) V2H > —ci1Lim.
Then as in (2.20), we find a constant ¢o > 0 such that

Lz = < o1+ |VV () + |z — ), zeR™™
This implies
(3.18) Bilo — P(z) = E%|lo — X> < ea(1+ VV (21) ) te, x € R™™ ¢ > 0.

Combining this with (3.2) and (3.3), we verify condition (2.4) for p = 2 and some constant
k > 0. Moreover, according to [12], (3.2) and (3.5) imply (2.6) for some constants k, A > 0.

(c) Verify (2.5). According to [28, Theorem 2.4.4], by (3.17) we find a constant ¢z > 0 such
that

(3.19) e, 1) < ——

p(B(z,v/r))’

Combining this with (3.3), (3.4) and B(z, /1) C B(x1,/7/2)x B(x2,/7/2), we find a constant
¢4 > 0 such that

d ' —rlz2q
(3.20) / _ptdy) < ¢ _af = r€(0,1].
Rn+m /.L(B(x, \/?)) Rm fB(CUQ,\/m) e~ klY2 dy2

By the same argument leading to (2.17), we find a constant ¢; > 0 such that

r € R"™™ r e (0,1].

—k|z2|?

e dzs

(3.21) <ecsr?™ re(0,1].

R™ fB(m,r) e—n|y2|2dy2 N
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Combining this with (3.20), we find a constant ¢ > 0 such that

d n/+42m
i(de) <er r e (0,1].

&2 fo T S
Since py(x, ) is decreasing in ¢ > 0, this together with (3.19) implies (2.5) for d = n' + 2m.

(d) To estimate d’, we assume ||V?V ||, < co. By Lemma 3.2 for p = 2, where ky = 0 holds
for the present model, we find a constant ¢g > 0 such that

|[Pf(2)]” < (Puf?(y))eth0 e ezl > 0 2,y € R

Choosing f := py(x,-) AL, we derive

2
( | l)zdu) e
Rn+m
< Pi(pe(x, ) AN1P(y), 1>1.

Integrating both sides with respect to u(dy) and noting that p is P-invariant, we obtain

1
2
/1Rn+m<pt(x7 ) A l) dp < fRn+m efCG(l/\t)_3|I1*y1\2766(1/\7&)_1|$2*y2|2lu(dy)

2cq

= (B, (1A 1)2) x Blay, (1AL)”

Letting [ — oo we arrive at

SIS

)

/Wpt(m") W Bl UMD x Blaa, LA 1)

This together with (3.4) and (3.21) yields

/RMm i pe(z, ) p(dz) p(dy)
e2C6/ M(dx)
>~ Rn+m M(B(l'l, (1 /\t)%) X B(ZL‘Q, (1 /\t)_%))

for some constant ¢ > 0. Therefore, (2.10) holds for d' = 3n’ + 2m.
(e) For K in (3.6), f,d,d" in (3.15) and « € [0, 1], we have

d > 3n/ +2m >5 > 404, Kﬁ,d,d’,a = K.

Then (3.7) follows from (2.12).
Next, by (3.16) we have p(ell) < oo for some constant ¢ > 0, see for instance [1]. Combining
this with (2.21), we find a constant ¢; > 0 such that

E*[u(p(X7,))] = E [u(|X7 = )] < er (1 + E7[XT]).

(3.23) . t>0,z€R™™,

Moreover, (3.23) implies

eQCe

u(Blar, (1A SP)2) x B, (1A SP)2) ]
Then (3.8) follows from (2.13) O

7’ (2, M z2qy < E
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Example 3.1. Consider (3.1) with invertible QQ*, and let V' be in Example 2.1. Then for
any a € [0,1] and B € B, there exists a constant ¢ > 0 such that for any ¢t > 1,

TR Bt if L <1

™Tn+2Tm—m Tn+(m—a T— 1 = < T

B 2 =

(3.24) B Wo(ug, )] < e e bl ’
t Trim@r-1) it 7> 1.

When o > 0 and 7 € (%, 1], there exists a constant € > 0 such that for any ¢ > 1 and x € R"™™

(27—1)(3tn+27m—m)

2 2\T _ _ T
(325) I:ExWZ(ILLtB’ )] < Ct (tn+27m—m)][83Tn+(m—a) (27— 1) H|332| (1+9‘I1‘ ) E‘IQ‘ E|£E1| .

Proof. (1) As explained in the proof of Example 2.1 that (A,) holds for n’ = 2™ and some
constant k£ > 0. So, K defined in (3.6) satisfies K > 1. It is easy to see that ||[V?V || = oo for
T>1 Whlle||V2V||OO < oo for 7 € (1,1]. Then estimate (3.24) follows from Theorem 3.1.

(2) Let @ > 0 and 7 < 1. We find a constant ¢; > 0 such that

(3.26) sup E*[| X, ] < er(1 + |z)?).
t€[0,1]

Next, similarly to (2.19), there exists a constant ¢, > 0 such that

/L(B(xl,r%) X B(xg,r%)) > cyﬂgngmecﬂ%|m2|+62r%|ml|7_“|”|2_(1+9|’“|2)7, re (0,1],z € R*™.

Combining this with (3.23), we find a constant ¢z > 0 such that

2cq
2 e
pe(, ) dp < T
(3.27) /Rn+m ) M(B(xl,(l/\t)%) X B(xa, (LAt)"2)
' - Cgexp[ri|x2|2 +(1+ 0\(T1|21;3:+52r3|x2| - @rﬂxllT]’ £ 0.0 € R
A
Consequently,
3
B = [ Wl < (w1 [ o)
Rntm Rn+m
exp[&]zal? + L(1 + 0212 — Lear? |z — Legrd|a |7
~ (3 Xp[2| 2| 2( |(]iL| )t)3n+m2 | 2| 2 2 | 1|], t>07«rERn+m
A
This together with (3.26) yields
(3.28) sup E7[|XP[?] < sup E[| X,|?] < ceslm2lPHa(tblal)T - o mrtm,
s€[0,1] t>0

Moreover, when « > 0, the second inequality in (2.33) implies

E[(1ASP)5"] < oo,

which together with (3.27) yields

. 1 < coRlma (140117 —elwa| el |

M(B(xl,(lASB) ) X B(xg,(l/\SB)_’) B

for some constant ¢ > 0. Combining this with (3.28), we deduce the (3.25) from that in Theorem
3.1.

[]
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4 Subordinate spherical velocity Langevin diffusions

In this section, we consider the following degenerate SDE on M := R" x S"~(n > 2):

(4.1) dx, =X
dxX? = L (L, - X7 @ XP) vV (x()dt + o (I, - X @ XP) o dW,

where V' € C%(R"), W, is an n-dimensional Brownian motion, ¢ > 0 is a constant, and od
is the Stratonovich differential. The solution of (4.1) is called the spherical velocity Langevin
diffusion process generated by

2
L= %A@) VO (V). v,

where A® and V® are the Laplacian and gradient on S"~! respectively, V(! is the gradient

on R", and
1
<I>(x) = m(v(l)‘/(l’l)) + Xg, T = (1'1,1'2) e M.
See [12] and references therein for the background of this model.
Let p be the Riemannian distance on M := R™ x S"~1 let V satisfy (A4,), and let

p(da) := py (dwr) A(dza),
where A is the normalized volume measure on S"~*. We have the following result.

Theorem 4.1. Let V satisfy (Az) and let B € B. Then there exists a constant ¢ > 0 such that
for anyt > 2,
2
B! [Waug, p)*] < ot =T,
1
u(B(z, (LA SP)2))

In particular, for V given in Example 2.1, these estimates hold for n' = 2n.

r€R* x S"1

)

1
B o] < e | [P+
0

Proof. According to [12, Theorem 1.1}, (As) implies (2.6) for some constants k, A > 0. Let A be
the Laplacian on M := R" x S"~!. To apply Theorem 2.2, we choose the reference symmetric
diffusion process generated by

L:=A—{VOV(z)}-vD,

which is symmetric in L?(pu). As shown in the proof of Example 3.1, (3.4) holds for n’ = 2n.
So, by Theorem 2.2 for d’ = oo, it suffices to verify (2.3), (2.4) and (2.5) forp =2, =1, d=
n' +n—1.

By (As) and the compactness of S"~!, the Bakry-Emery curvature of L is bounded below
by a constant, and there exists a constant A > 0 such that

W) < oep(IV SR + (P, S € CHOM).
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Then as explained in steps (a)-(b) in the proof of Theorem 3.1, (2.3) and (2.4) hold for p =
2,0 = % and some constants k > 0.

By [28, Theorem 2.4.4] and that the Bakry-Emery curvature of L is bounded from below,
we find a constant ¢; > 0 such that

C1

p(B(x, /1))’

pr(z, 1) < z e M,re(0,1].
Noting that
A(B(xy,7)) > cor™t, 7€ (0,1]

holds for some constant ¢, > 0, as explained in step (c¢) in the proof of Theorem 3.1, we derive
(2.5) ford=n"4+n—1.
]

5 Subordinate Wright-Fisher type diffusion processes

For 1-dimensional Wright-Fisher diffusions, the convergence rate has been derived for the em-
pirical measure with respect to the Wasserstein distance induced by the intrinsic distance.
However, for higher dimensional Wright-Fisher type diffusion processes, the intrinsic distance
is less explicit, so that it is hard to apply the framework introduced in [34]. Below, we consider
higher dimensional Wright-Fisher type diffusion processes using Wasserstein distance induced
by the Euclidean distance rather the intrinsic distance, so that the framework introduced in
the present paper works well.
Let 2 < N € N, consider

AN {x e 0,1V |z|; = le < 1}

Given ¢ = (¢;)1<i<nt1 € [1,00)V L the Dirichlet distribution p with parameter g is a proba-

bility measure on A defined as follows:

L e, B e gD T g
[L(dl‘) T 1A(N)( )h( )d ) h( ) Hf\:il F(qz) g i

g1 = Z%, ey =1— |z, z€ A™)
=1

(5.1)

The Dirichlet distribution arises naturally in Bayesian inference as conjugate priors for cate-
gorical distribution, and also arises in population genetics describing the distribution of allelic
frequencies, see for instance [8] and references within.

Let X; be either the Wright-Fisher diffusion with mutation generated by

N
Z €T z] — TiTj aa:zaa:] + Z |Q|1xz)8a:,7

=1
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or the diffusion process generated by

N

) {l‘i(l — |z[)?2, + (q:(1 = Jz|y) — qN+1xi)8xi}.

i=1
Then the associated Dirichlet form is determined by

,u( Zgjzl(xi&-j — xixj)(ﬁxif)(axjg)), the first case,
,u(ZN 2i(1 = |2]1) (84, f)(0x,9)),  the second case,

i,7=1

(5.2) &(f,g) = {
for any f,g € CH(A™). In both cases, the Poincaré inequality

(53) W) < 6P, e CHAN), u(f) =0

holds for some constant A > 0, see [23] and [11] for the value of the largest constant A (i.e. the
spectral gap).

Theorem 5.1. Let p € [2,00), B € B* for some o € [0,1], and p(z,y) = |z — y|,z,y € AW,
Let &(K) be in (2.14) for

d od
+_

N
1
Ki=gto—op di=lih—1 d=4) g+2qyn—2

=1

Then there exists a constant ¢ > 0 such that

sup ET[W, (1, 1)°] < & (K), t>0.

zeAN)
To apply Theorem 2.2, let P, be the Neumann semigroup on AM) generated by
L:=A+(Vlogh)-V,
where h is in (5.1). The associated Dirichlet form is determined by
Ef 1) =ul(VIP), feCa™).
To verify (2.3), we first present the following lemma on the super Poincaré inequality of &.

Lemma 5.2. For the above & and 1, there exists a constant ¢ > 0 such that

lgl; -1

(5.4) () <r8(f ) + el 5 )l f)% fe2(8)r>0.
Proof. (a) We follow the idea of [37]. For any s > 1 and r > 0, let

D, := {:L’ e AW p(z) =1 — |zt < 5},
Ms) = inf {&(f, f): feC (AM), flp, = 0,u(f*) =1},
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spi=1inf {s>1: X(s) > 8r 7'},
so that ¢(z) := (1 — |z|;) 7! satisfies

h(s) :==sup &(p,¢) = Ns*, s> 1.
Dy

According to [37, Theorem 2.1], if

(5.5) u(f?) S &S, ) + Brnllf)?, r>0,f e C(AM), f

holds for some f; : (0,00) — (0, 00), then there exists a constant ¢; > 0 such that

pe =10

(5.6) u(f?) <ré(f )+ Brulf)’, fe2(&)r>0
holds for
(5.7) B(r) :==c1+ (24 8Nrs?) Bss, <8—1—+N7"$Z>7 r > 0.

(b) Let & be in (5.2). By [37, Lemma 3.2], there exist constants cs, sp > 0 such that
inf {&(f,1): £ €CHAM), flp, = 0,u(f2) =1} > &5, 5> 50

Noting that &(f, f) > s&(f, f) holds for f € CH(AWM), f

p, = 0, this implies
A(8) > 8%, 5> 5.

Hence, we find a constant c3 > 0 such that

(5.8) sp > ce3(l+ 7’_%), r > 0.

(c) To estimate [4(r) in (5.5), we first consider the following product probability measure
fon [0,1]V:

N
a(dz) = Hﬂz‘(d%), pi(de;) == qa¥dz;, 1<i<N.
i=1

For any r € (0,3] and I := [a,b] C [0,1] with p;(I) =, we intend to prove

(5.9) (0D \{0,1}) = i ({a, B} \ {0, 1}) > g%,

where p?({s}) := q;s%! for s € [0,1] is the boundary measure induced by j;. We have

b = p((0,0]) = p(l) =,

so that b > r%. If b < 1, then
L . —1
pl (O \{0,1}) = pf ({b}) = b ™" > gr' % .
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When b = 1, we have
1—a® = pi([a, 1]) = (1) =,

)

which implies a > (1 — r)qfl and hence, for r € (0,
W(ODN(0,1) 2w ({a}) = ot = g1 — )0 2 g

In conclusion, (5.9) holds for any 7 € (0, 1] and interval I C [0,1] with 4;(I) = r, so that

20D\ {0,1)
mi(I)<r pi(I)

K(r) == > qr %, e (0,1/2].

This implies

1

kT (2r72) i=sup {r' € (0,1/2] : k() > 27”’%} > %/\ {qiir%}, r > 0.
According to [27, Theorem 3.4.16(1)], we find a constant ¢4, > 0 such that this implies
wilf?) < s FP) + et 47" f)?, £ eC(0,1]),r >0,1<i < N.
By [37, Proposition 2.2], we derive
(510) A7) < (V) + e (1 SRR e C(0.11Y).r > 0

Now, given f € C'(AW)) with f|p. = 0, take

qN+1

g(x) = f@)(1 - |a]) 5, 2z e AW

By (5.10), we find constants cg, ¢; > 0 such that

N
(%) = coiil?) < cril|Vgl) + cocs (1+ 77 252 %) u(|g])?
< (V) + erstri() + en (1 R v (), > 0

For any r > 0, by choosing

1
r = 207(7’/\3 )

in the above inequality, we find a constant cg > 0 such that (5.5) holds for
Bs(r) == 08(1 +(rA 8_2)_521‘1\;1%)8‘11\’“_1, s>1,r>0.

Combining this with (5.8), we find a constant ¢ > 0 such that 5(r) in (5.7) satisfies

lgl1 -1

Bry<ec(l4+r—"27), r>0,

and hence (5.4) follows from (5.6).
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Proof of Theorem 5.1. Note that p is bounded. Moreover, by (5.14) below, pP = Elpgs], and
the second inequality in (2.33), we see that p? is also bounded. Then the desired estimate
follows from (2.13) for ¢ = 2. Noting that ¢; > 1 implies

N N
d/:4ZQi+2qN+l_224zqi > 8> 4a,

i=1 i=1
by Theorem 2.2, it suffices to verify (A4;) and (2.10) for the given constants d,d" and

1 dlp—-2)
ﬁ.—2+ 4p

Y

for which we have Kg g0 = K.

(1) Let h be in (2.12). Since ¢; > 1, we have V?logh < 0, so that the Bakry-Emery
curvature of L is nonnegative. Since AW is convex, according to [28, Theorem 3.3.2(11)], we
have

A 1 - 1
5.11 VP fl < —(P|f|?)z, t>0.
(5.11) | tfl_ﬂ( if17)
Since the Dirichlet form & of P, is larger than &, (5.3) implies the same inequality for &, so
that
(5.12) 1P = pellzogo VI P = pll 2y < e, £ > 0.

Then (2.6) holds. Moreover, it is easy to see that (5.4) implies the Nash inequality

w(f2) < a(1+ &, )™, e 2@)uf]) =1

for some constants ¢; > 0, so that by [9, Corollary 2.4.7],

12l ooy < NP3y 2200 1P N 2>
= 12411 ooy S LA, 8> 0
holds for some constant ¢ > 0. Combining this with the interpolation theorem, we find a
constant ¢y > 0 such that
d(ag—q1)

(5.13) ||pt||Lq1(u)aL‘12(u) < Cz<1 + 1t 2142 )’ t>0,1<q <q <.

Taking ¢; = 1 and g3 = 0o we derived (2.5), while choosing ¢; = 2,q = p we deduce (2.3) with

B =3+ %52 from (5.11) and (5.12).

On the other hand, by [37, Proof of (3.1)], the super Poinaré inequality

u(f2) S rE(f, )+ es(1+ 12 Emaava) (|12 1> 0, f € 9(&)
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holds for some constant ¢3 > 0. Noting that 2 Zf\il ¢G+aqni1 — 1= %/, as explained above, we
find a constant ¢ > 0 such that

/

_d
(5.14) ||PtHL1(,u)%L°°(u) < C(l VAN t) 2 t>0,

so that (2.10) holds.
(2) It remains to verify (2.4). Since ¢; — 1 > 0, for any z,y € AW we have

i =

— T 1—1yh — Yi 1—1Jyh
N+1

< Z(C]z‘—l) < 00.

Z(yi _ ‘)(Qi —1 gva— 1) _ Z (g — ) (yi — ;) N (qv1 — D(|z]1 = |y|1)

So, for any 2 < n € N, we find constants ¢;(n), c2(n) > 0 such that

N
Lo = ") < exlm)lo ="l =" 3w — ) (B — = T )
i=1 !

<cn)|z—y|" % z,ye AW,
This implies t
e — X7 < cg(n)/ Bl — X7|"2ds, t> 0.
By induction in n > 2, we find constants {c(;)z) > 0},>2 such that
E*|x — X" < e(n)tz, t>0,2 € AW n>2

In particular, (2.4) holds for some constant k& > 0.

6 Subordinate stable like processes

In this section, we consider the subordinate stable like process in a connected closed smooth
domain M C R",n € N.
Let 0 <V € C*(M) such that
e V@ dz
H=pv = T V() A
Jy e V@de

is a probability measure on M. Let ¢’ € (0,2), and let X; be the Markov process on M
associated with the o/-stable like Dirichlet form

._ (f(z) = f(y)(g(z) — g(v))
(6.1) 0= o n(dn)a(dy),

f,9€2(8)={f € L*n): E(f f) < oo}.

Let u? be the empirical measure of X := Xgp, where B € B.

30



6.1 Bounded M

When M is bounded, we have the following result for the above defined uZ.

Theorem 6.1. Assume that M is bounded. Let p(x,y) = |z — y| for x,y € M, let B € B* for
some a € (0,1], and let & be in (2.11) for
n(p — 2) 2n

, di=n, d:=—

1
2 = = .
(6 ) b 2 + 4p o

Then for any p € [2,00), there ezists a constant ¢ > 0 such that
sup B (W, (1’ )] < e, 822
xe

Proof. Let L=A+VV be equipped with the Neumann boundary condition. It is well-known
that (2.3)-(2.5) hold for some constant A > 0 and constants 5 and d' in (6.2). According to [7,
Theorem 1.1], there exists a constant k£ > 0 such that
(6.3) sup py(z,y) < k(LAE) &, t>0.

z,yeM
Although only V' = 0 is considered in [7], this estimate also holds for V € C?(M). Indeed,
according to [9, Corollary 2.4.7], (6.3) is equivalent to the Nash inequality

p(f?) < c(L+E(f, /)=, fe2(é),uf]) =1

for some constant ¢ > 0. If this inequality holds for V = 0, then it also holds for bounded V,
which is the case when V' € C?(M) for compact M.

By (6.3), (2.10) holds for d’ = %"/, and the generator L of P, has discrete spectrum. Since
the Dirichlet form & is irreducible, the discreteness of the spectrum implies the existence of
a spectral gap, so that (2.6) holds for some constant A > 0. Since p is bounded, and by the

second inequality in (2.33), (6.3) implies
Pl < KE[(LASF)™5] =t ¢ < o0.

Combing this with ||p[|e 1= sup, e |7 — y| < 0o since M is bounded, and applying (2.13) for
q = 2, we obtain

2
B Wy (s 1)) < lloll% + 2¢0cki1,

which implies the desired estimate, since there exists a constant ¢ > 0 such that t71Vv¢&_; < &
holds for ¢t > 2. N

Remark 6.1. To show the optimality of Theorem 6.1, we simply consider p = 2, = 1,0/ = 2,
and denote uf = p;. Then Theorem 6.1 implies

t1 if n <3,
sup B [Wo (e, 1)°] < ¢t {log(2 +)}?, if n =4,
el = if n > 5,

which is sharp except for n = 4 where the exact order is t~'log(2 4 t) according to [39]. This
minor loss is caused by the fact that in general P, # P, so that in proof of Theorem 2.2 we can
not combining them together by using the semigroup property as in [39].
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6.2 M=R"

Assume that V satisfies the following conditions for some constants k > 0,d > n:

(6.4) VYV > —kl,, eV € CEHR™),
1

(6.5) liminf —(VV (z),z) > 0,

pi(dz) —d
6.6 /—Skr , re (0,1,
(00 . W(B(z,) o

. eV (@)

(6 ) a:IGI%R" W > 0,
(6.8) lim inf 7"t H|Ve V()] +r e V@] =0

r—00 |z|>r—1

We have the following result for u? defined for the subordinate process of the jump process
with Dirichlet form (2.40).

Theorem 6.2. Assume (6.4)-(6.8), and let B € B. Then the following assertions hold.

(1) There exists a constant ¢ > 0 such that

(6.9) B (Wl p)?) < et™a, t>1.

(2) Let B € B* for some o € (0, 1], and there exist constants k,d' > 1 such that

/

_d
(6.10) ||.Pt||L1(M)_>Loo(M) <k(1At)"z, te(0,1],
then there exists a constant ¢ > 0 such that

(6.11) sup B [Wa(py, )% < &, t> 2,
rER™

where & is in (2.11) for f =1, d in (6.6) and d’ in (6.10).
Proof. (1) Let L = A — VV. Then (6.5) implies

limsup L| - |(x) < 0,

|z|—o00

A

so that [26, Corollary 1.4] implies gap(L) > 0, so that by Proposition 2.1, (2.3) holds for p = 2
and 8 = 1. Moreover, (2.4) and (2.5) have been verified in steps (b) and (c) in the proof of
Theorem 3.1, respectively. Finally, by [35, Theorem 1.1(1)], (6.7) and (6.8) imply the Poincaré
inequality for &, so that (2.6) holds for £ = 1 and some constant A > 0. Therefore, the estimate
(6.9) follows from (2.12) with 8 =%, a =1 and d’ = 0.

(2) When (6.10) holds, by the second inequality in (2.33), we have

1p2]lse < KE[(1 A SP)~7] < .
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Moroever, (6.5) implies u(| - |') < oo for all [ € (1,00). Combining this with (6.10), for large
enough [ we find constants ¢, co > 0 such that

1 1
sup/ Ew\XSBy?dng/ | Pszl - 7] ds
0 0

reR”

1
1
< PYE [ 1Pty
0
1 y L
< cl/ E[(1ASF) 2 ]ds < 02/ s 2ads < o0.
0 0

Therefore, (6.11) follows from (2.13) with ¢ = 2.
[l

Example 6.1. Let 0 <V € C*(R") be in Example 2.1 for some 7 > 1. Let B € B® for some
a € (0,1], and let &(K) be in (2.14) for

1 mn(dn +0a’ — ad’)
Ks '_§+ 2021 — )(n+ o)’ 0>2

Then for any 6 > 2 there exists a constant ¢ > 0 such that

(6'12) sup Em[w2(ﬂf>u)2] < C&(Kg), t=>1

z€R™

Proof. Conditions (6.4), (6.5), (6.7), and (6.8) trivially hold. Next, as shown in the proof of

(2.17), (6.6) holds for d = 22:_"1. Moreover, by [35, Corollary 1.5, for any § > 2 there exists a

constant £ > 0 such that

_ 5(n+a’)

1Pl y—rooy S KAAL)T o7, te(0,1],

so that (6.10) holds for d' = %ﬂra/), which satisfies d' > 2a. Tt is easy to see that for g = 3
and d, d" given above we have K5 = K3 44 o, so that (6.12) follows from (6.11).
O
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