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Abstract

The convergence rate in Wasserstein distance is estimated for empirical measures of
ergodic Markov processes, and the estimate can be sharp in some specific situations. The
main result is applied to subordinations of typical models excluded by existing results,
which include: stochastic Hamiltonian systems on Rn × Rm, spherical velocity Langevin
processes on Rn × Sn−1, multi-dimensional Wright-Fisher type diffusion processes, and
stable type jump processes.
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1 Introduction

The purpose of this paper is to provide a general result on the Wasserstein convergence rate
of empirical measures, which applies to a broad class of ergodic Markov processes including
typical models beyond the range of existing results.

1.1 Problem in existing study

In recent years the Wasserstein convergence rate has been intensively investigated for the em-
pirical measures of continuous time stochastic systems, see [30, 31, 32, 33, 19] for symmetric
diffusion processes, [16, 17, 15, 18, 34, 36] for subordinate diffusion processes, [13, 18] for the
fractional Brownian motion on flat torus. See also [40] for the study of weighted empirical
measures of symmetric diffusions on compact manifolds.

In these references, the symmetric part of the generator has discrete spectrum with positive
spectral gap, see [34, (2.6)]. In particular, there exists a constant c > 0 such that the following
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Poincaré inequality holds:

(1.1) µ(f 2)− µ(f)2 ≤ c Ê (f, f), Ê (f, f) := −µ(fLf).

However, this restriction excludes degenerate models where E (f, f) is reducible.

For instance, consider the following stochastic Hamiltonian system Xt := (X
(1)
t , X

(2)
t ) on

Rd × Rd = R2d:

(1.2)

{
dX

(1)
t = X

(2)
t dt,

dX
(2)
t =

√
2 dWt −

{
∇V (X

(1)
t ) +X

(2)
t

}
dt,

where Wt is the Brownian motion on Rd, and V ∈ C2(Rd) such that ZV :=
∫
Rd e−V (x)dx < ∞

and ‖∇2V ‖ ≤ C(1 + |∇V |) holds or some constant C > 0. In this case, the solution of (1.2)
is a diffusion process having invariant probability measure µ = µV × N1, where µV (dx) =
Z−1
V e−V (x)dx and N1 is the standard Gaussian measure on Rd. The energy form associated

with (1.2) is

Ê (f, f) = µ
(∣∣∇x(2)f(x(1), ·)

∣∣2(x(2))
)
, f ∈ C2

0(R2d).

Since the gradient is only taken for the second variable, when f is a non-constant function only
depending on x(1), the Poincaré inequality (1.1) does not hold.

On the other hand, the Markov process Xt = (X
(1)
t , X

(2)
t ) solving (1.2) may be exponential

ergodic (see [24]), so it is natural to ask for the convergence rate of the empirical measure with
respect to a reasonable Wasserstein distance.

1.2 New idea of the present work

To derive sharp estimates on Wasserstein distance of empirical measures, we need to regularize
the empirical measures such that analytic inequalities apply. In previous references, the em-
pirical measures are regularized by using the semigroup P̂t generated by the symmetric part of
the Markov generator under study, for which we need to make assumptions on P̂t.

For instance, let L̂ := ∆ + ∇V on a compete connected Riemannian manifold M for a
smooth function V such that µ(dx) := eV (x)dx is a probability measure, where dx stands
for the Riemannian volume measure, and let Wp be the p-Wasserstein distance induced by the
Riemannian distance ρ, see (2.12) below. Then by [14, Theorem 2], for any probability measure
ν(dx) := f(x)µ(dx) on M , we have

(1.3) Wp(ν, µ) ≤ p
(
µ
(
|∇(−L̂)−1(f − 1)|p

)) 1
p
.

See also [2] for a refined estimate for W2. Since the empirical measure of the diffusion process
generated by L̂ is singular with respect to µ, to apply the estimate (1.3), one regularizes the
empirical measure by the diffusion semigroup P̂t, see [2] and [30]-[33].

However, the above technique does not apply to degenerate models like stochastic Hamilto-
nian systems arising from kinetic mechanics, where the symmetric part L̂ of the generator does
not induce any distance.
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To overcome this problem, we choose a different symmetric semigroup P̂t, which is not
generated by the symmetric part of the underlying Markov process, but has the same invariant
probability measure µ. By choosing such a symmetric diffusion semigroup satisfying conditions
needed in the study, we are able to apply (1.3) for the generator L̂ of P̂t to derive explicit
convergence rate of the empirical measure with respect to the Wasserstein distance, which is
induced by the intrinsic distance of L̂.

1.3 Organization of the paper

In Section 2, we introduce the framework of the present study, state the main result for expo-
nential ergodic Markov processes (Theorem 2.2), and an extension for non-exponential ergodic
Markov processes (Theorem 2.3 ). The convergence rate presented in Theorem 2.2 is sharp
for specific models shown by Examples 2.1-2.2 and Remark 6.1. Theorem 2.3 applies to any
Markov process whose semigroup converges to the invariant probability measure at certain rate
corresponding to the weak Poincaré inequality introduced in [21].

In Sections 3-6, we apply the main result to subordinations of several typical models:
stochastic Hamiltonian systems, spherical velocity Langevin processes, Wright-Fisher type dif-
fusion processes, and stable like processes. These models arise from different applied areas, and
are not covered by existing results on Wasserstein convergence rate of empirical measures.

2 Framework and main result

Let (M,ρ) be a length space, let P(M) be the set of all probability measures on M . For any
p ∈ [1,∞), the Lp-Wasserstein distance is defined as

(2.1) Wp(ν1, ν2) := inf
π∈C (ν1,ν2)

(∫
M×M

ρ(x, y)pπ(dx, dy)

) 1
p

, ν1, ν2 ∈P(M),

where C (ν1, ν2) is the set of all couplings for ν1 and ν2. We study the convergence rate in Wp

for empirical measures of ergodic Markov processes on M .

2.1 Subordinate Markov process

Let Xt be a standard time-homogenous Markov process on M having invariant probability
measure µ ∈ P(M). The associated Markov semigroup Pt is defined as Ptf(x) := Ex[f(Xt)]
for t ≥ 0, f ∈ Bb(M), where Bb(M) is the class of bounded measurable functions on M , Ex
is the expectation taken for the underlying Markov process starting at point x. In general, for
any ν ∈P(M), Eν denotes the expectation for the Markov process with initial distribution ν.

An important class of Markov jump processes are the subordinations (time changes) of
diffusion processes induced by Bernstein functions. A typical model is the α-stable process
generated by the fractional Laplacian, which is the time change of Brownian motion and has
been used as Lévy noise in SDEs. See the monograph [6] and references therein for the study
of subordinated Markov processes and applications.
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To make time changes (i.e. the subordination) of the Markov process Xt, we introduce the
class B of Bernstein functions B with B(0) = 0. Recall that a Bernstein function is a function

B ∈ C([0,∞)) ∩ C∞((0,∞)) satisfying (−1)n−1 dnB(s)
dsn

≥ 0, s > 0. For any α ∈ (0, 1], let

Bα :=
{
B ∈ B : lim inf

r→∞
B(r)r−α > 0

}
.

Obviously, B0 = B.
For each B ∈ B, there exists a unique stable increasing process SBt on [0,∞) with Laplace

transform

(2.2) E
[
e−rS

B
t
]

= e−B(r)t, t, r ≥ 0,

see for instance [22]. Let SBt be independent of Xt. Consider the subordinate diffusion process
XB
t := XSBt

, t ≥ 0, and its empirical measures

µBt :=
1

t

∫ t

0

δXB
s

ds, t > 0.

We investigate the convergence rate of Wp(µ
B
t , µ)→ 0 as t→∞.

2.2 Reference symmetric diffusion process

Let X̂t be a reversible Markov process on M with the same invariant probability measure µ,
and with ρ as the intrinsic distance. Heuristically, X̂t has symmetric Dirichlet form (Ê ,D(Ê ))
in L2(µ) satisfying

Ê (f, f) =

∫
M

|∇f |2dµ, f ∈ Cb,L(M) ⊂ D(Ê ),

where Cb,L(M) be the set of all bounded Lipschitz continuous functions on M , and

|∇f(x)| := lim sup
y→x

|f(y)− f(x)|
ρ(x, y)

, x ∈M.

More precisely, we assume that Cb,L(M) is a dense subset of D(Ê ) and

Ê (f, g) =

∫
M

Γ(f, g)dµ, f, g ∈ Cb,L(M),

where
Γ : Cb,L(M)× Cb,L(M)→ Bb(M)

is a symmetric local square field (champ de carré), i.e. for any f, g, h ∈ Cb,L(M) and φ ∈ C1
b (R),√

Γ(f, f)(x) = |∇f(x)| := lim sup
y→x

|f(y)− f(x)|
ρ(x, y)

, x ∈M,

Γ(fg, h) = fΓ(g, h) + gΓ(f, h), Γ(φ(f), h) = φ′(f)Γ(f, h).

Moreover, the generator (L̂,D(L̂)) satisfies the chain rule

L̂φ(f) = φ′(f)L̂f + φ′′(f)|∇f |2, f ∈ D(L̂) ∩ Cb,L(M), φ ∈ C2(R).
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2.3 Main result

Note that for B(r) = r, we have XB
t = Xt so that µBt reduces to the empirical measure

µt := 1
t

∫ t
0
δXsds. In this paper, we aim to estimate Wp(µ

B
t , µ) for a general Bernstein function

B, which includes Wp(µt, µ) as special case. To this end, we make the following assumption.

For any p ≥ q ≥ 1, let ‖ · ‖Lq(µ)→Lp(µ) be the operator norm from Lq(µ) to Lp(µ). Let (P̂t)t≥0

be the semigroup of the reversible Markov process X̂t, i.e.

P̂tf(x) := E
(
f(X̂t)

∣∣X̂0 = x
)
, t ≥ 0, f ∈ Bb(M),

where Bb(M) is the set of all bounded measurable functions on M ,

(A1) Let p ∈ [2,∞). P̂t has heat kernel p̂t with respect to µ, and there exist constants β, λ, d, k ∈
(0,∞) such that

‖∇P̂t‖L2(µ)→Lp(µ) ≤ ke−λtt−β, t > 0,(2.3) ∫
M

(
P̂tρ(x, ·)p

) 2
p (x)µ(dx) ≤ kt, t ∈ (0, 1], x ∈M,(2.4) ∫

M

p̂t(x, x)µ(dx) ≤ k(1 ∧ t)−
d
2 , t > 0,(2.5)

‖Pt − µ‖L2(µ) ≤ ke−λt, t ≥ 0.(2.6)

Note that in (A1) the only condition we need for the Markov process is (2.6), while other
conditions (2.3)-(2.5) are made for the reference semigroup P̂t which is flexible in applications.

Indeed, for smaller distance ρ, the energy form Ê is bigger, so that P̂t has better properties. For
instance, let µ be a probability measure on a connected Riemannian manifold comparable with
the volume measure, when the Riemmanian distance ρ is small enough we have large enough
Dirichlet form Ê (f, f) := µ(|∇f |2) such that gap(L̂) > 0, see [5] where the stronger log-Sobolev
inequality is considered.

Condition (2.4) refers to the 1
2
-Hölder continuity of the symmetric diffusion process X̂t,

which is true for a broad class of diffusion processes. Indeed, for a diffusion process X̂t with
generator satisfying

L̂ρ(x, ·)p ≤ c
(
1 + ρ(x, ·)p

)
for some constant c > 0, which is the case when X̂t solves an SDE on Rd with linear growth
coefficients and ρ(x, y) := |x− y|, we have

P̂tρ(x, ·)p(x) = Ex[ρ(x, X̂t)
p] ≤ c

∫ t

0

ecsds ≤ cect, t ∈ [0, 1],

which implies (2.4) for some constant k > 0 and any probability measure µ. Condition (2.5)
is a standard upper bound estimate on the heat kernel for d-dimensional elliptic diffusions, see
for instance [9, Theorem 2.3.6]. Moreover, according to Proposition 2.1 below, when p = 2,
condition (2.3) with β = 1

2
follows from the existence of spectral gap, i.e.

gap(L̂) := inf
{
Ê (f, f) : f ∈ D(Ê ), µ(f) = 0, µ(f 2) = 1

}
> 0.
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In this case, (2.3) follows from (2.5), since the later implies that L̂ has discrete spectrum and
hence has a spectral gap, see [27, Theorem 3.3.19]. When p > 2, we have

‖∇P̂t‖L2(µ)→Lp(µ) = ‖∇P̂ t
2
P̂ t

2
‖L2(µ)→Lp(µ) ≤ ‖∇P̂ t

2
‖L2(µ)→L2(µ)‖P̂ t

2
‖L2(µ)→Lp(µ),

so that (2.3) follows from gap(L̂) > 0 together with a suitable upper bound of ‖P̂t‖L2(µ)→Lp(µ),
which is available for elliptic diffusions on compact manifolds, see the proof of Example 2.2 for
details.

Before moving on, let us compare the above conditions with those in [34, (A1)]: there exist
constants c, λ > 0, d ≥ d′ ≥ 1 and a map k : (1,∞)→ (0,∞) such that

(2.7) ‖P̂t − µ‖1→∞ ≤ ct−
d
2 e−λt, t > 0,

(2.8) λi ≥ ci
2
d′ , i ∈ Z+,

(2.9) |∇P̂tf | ≤ k(p)(P̂t|∇f |p)
1
p , t ∈ [0, 1], p ∈ (1,∞), f ∈ Cb,L(M).

The first essential difference is that P̂t in [34, (A1)] is associated with the symmetric part
of the Dirichlet form for the underlying Markov process, while P̂t in the present framework is
essentially different, the only link between the present P̂t and the underlying Markov semigroup
Pt is that they share the invariant probability measure µ.

Since the generator L̂ of P̂t is not the symmetric part of the generator L for the studied
Markov process, the eigenvalues of L̂ has nothing to do with the behavior of the underlying
Markov process, so the condition (2.8) is dropped from the present assumption (A1).

As we will use P̂t to regularize the empirical measures, we adopt the conditions (2.3) and
(2.5) for the gradient and heat kernel estimates on P̂t, where (2.3) is comparable with (2.7)
for small time. Again, because the eigenvalues of L̂ has nothing to do with the underlying
Markov generator, the spectral representation of P̂t is no longer useful for the study, we need
the gradient estimate (2.3) rather than (2.9), where the later is easier to verify in applications.

Proposition 2.1. If gap(L̂) > 0, then for any λ ∈ (0, gap(L̂)) there exists a constant k > 0
such that

‖∇P̂tf‖L2(µ) ≤ kt−
1
2 e−λt‖f‖L2(µ), t > 0, f ∈ L2(µ).

Proof. Denote λ1 := gap(L̂), let (Es)s≥0 be the spectral family of −L̂. We find a constant k > 0
such that

‖∇P̂tf‖2
L2(µ) =

∫ ∞
λ1

se−2stdEs(f) ≤ e−2λt
(

sup
s≥λ1

se−2(s−λ)t
)∫ ∞

λ1

dEs(f)

≤ kt−1e−2λt

∫ ∞
λ1

dEs(f) ≤ kt−1e−2λt‖f‖2
L2(µ), t > 0, f ∈ L2(µ).
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We also need the following defined quantity d′ ∈ (0,∞] induced by Pt.

Definition 2.1. d′ is the smallest positive constant such that the heat kernel pt of Pt with
respect to µ satisfies

(2.10)

∫
M×M

pt(x, y)2µ(dx)µ(dy) ≤ k(1 ∧ t)−
d′
2 , t > 0.

If pt does not exist, or pt exists but (2.10) does not hold for any d′ ∈ (0,∞), we denote d′ =∞.

For constants β, d in (A1), and d′ in Definition 2.1, we denote

Kβ,d,d′,α := β +
d

8

[
1 +

(
1− 4α

d′

)+
]
, α ∈ [0, 1].

Moreover, for any t > 0, let

(2.11) ξt :=



t−1, if Kβ,d,d′,α < 1,

t−1[log(2 + t)]2, if Kβ,d,d′,α = 1, d′ 6= 4α,

t−1[log(2 + t)]3, if Kβ,d,d′,α = 1, d′ = 4α,

t
− 1

2Kβ,d,d′,α−1 , if Kβ,d,d′,α > 1, d′ 6= 4α,

t
− 1

2Kβ,d,d′,α−1 log(2 + t), if Kβ,d,d′,α > 1, d′ = 4α.

Theorem 2.2. Assume (A1) for some p ∈ [2,∞) and let B ∈ Bα for some α ∈ [0, 1]. Then
there exists a constant c > 0 such that

(2.12) Eµ[Wp(µ
B
t , µ)2] ≤ cξt, t > 0.

If the semigroup PB
t of XB

t has heat kernel pBt with respect to µ, then for any q ∈ [1, 2] and
x ∈M,

(2.13) Ex[Wp(µ
B
t , µ)q] ≤ 2q−1

tq

∫ 1

0

Ex
[
µ(ρ(XB

s , ·)p)
q
p
]
ds+2q−1‖pB1 (x, ·)‖

L
2

2−q (µ)
(cξt−1)

q
2 , t > 1.

Remark 2.1. (1) The reference semigroup P̂t from (A1) will be used to regularize the empirical
measure µBt into µBt,r := µBt P̂r for r ∈ (0, 1), which has density with respect to µ so that the
estimate (1.3) applies to Wp(µ

B
t,r, µ), see the proof of Theorem 2.2 for details. In particular,

for the stochastic Hamiltonian system (1.2), conditions (2.3)-(2.5) hold for P̂t generated by
L̂ := ∆−∇H on R2d, where H(x(1), x(2)) := V (x(1)) + 1

2
|x(2)|2 for x(1), x(2) ∈ Rd, see the proof

of Theorem 3.1 below with m = n = d, κ = 1 and Q being the identity matrix.

(2) By the standard Markov property, for any ν ∈P and q ∈ [1, 2] with hν := dν
dµ
∈ L

2
2−q (µ),

(2.12) implies

(
Eν [Wp(µ

B
t , µ)q]

) 2
q =

(∫
M

hν(x)Ex[Wp(µ
B
t , µ)q]µ(dx)

) 2
q
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≤
(∫

M

hν(x)
(
Ex[Wp(µ

B
t , µ)2]

) q
2µ(dx)

) 2
q

≤ ‖hν‖
2
q

L
2

2−q (µ)

∫
M

Ex[Wp(µ
B
t , µ)2]µ(dx)

= ‖hν‖
2
q

L
2

2−q (µ)
Eµ[Wp(µ

B
t , µ)2] ≤ c‖hν‖

2
q

L
2

2−q (µ)
ξt, t > 0.

(3) It is easy to see that ξt is decreasing in d′, so estimates in Theorem 2.2 remain true if d′

is replaced by ∞, for which Kβ,d,d′,α = K := β + d
4

and ξt reduces to

(2.14) ξt(K) :=


t−1, if K < 1,

t−1[log(2 + t)]2, if K = 1,

t−
1

2K−1 , if K > 1.

Therefore, when µ is good enough such that the associated symmetric diffusion semigroup P̂t
satisfies conditions (2.3)-(2.5), then for any Markov process satisfying (2.6) and any B ∈ B,
there exists a constant c > 0 such that

Eµ[Wp(µ
B
t , µ)2] ≤ cξt(K), t > 0.

To illustrate Remark 2.1(2), we present below two examples, which provide a uniform
Wasserstein convergence rate for empirical measures of Markov processes with given invari-
ant measure µ, where the uniform rate is sharp in the second example.

Example 2.1. Let M = Rn, let V ∈ C2(Rn) such that V (x) = ψ(x) + (1 + θ|x|2)τ , x ∈ Rn,

where ψ ∈ C2
b (Rn), θ > 0, τ ∈ (1

2
,∞] are constants. Let µ(dx) = µV (dx) := e−V (x)dx∫

Rn e−V (x)dx
. Then

for any Markov process on Rn satisfying (2.6) and any B ∈ B, there exists a constant c > 0
such that

(2.15) Eµ[W2(µBt , µ)2] ≤ c


t−1, if n = 1, τ > 1,

t−1[log(2 + t)]2, if n = 1, τ = 1,

t−
2τ−1
τn , otherwise.

Proof. Let L̂ = ∆ − ∇V. By Remark 2.1(2), it suffices to verify (2.3)-(2.5) for p = 2, β = 1
2
,

and d = 2τn
2τ−1

. Since lim|x|→∞ L̂| · |(x) = −∞ < 0, [26, Corollary 1.4] ensures gap(L̂) > 0, so

that by Proposition 2.1, (2.3) holds for p = 2 and β = 1
2
.

Next, by [28, Theorem 2.4.4] and ∇2V ≥ −c1In, we find a constant c2 > 0 such that

(2.16) p̂r(x, x) ≤ c2

µ(B(x,
√
r))

, x ∈ Rn, r ∈ (0, 1],

where B(x, r) := {y ∈ Rn : |x− y| < r}, r > 0. Then (2.5) with d = 2τn
2τ−1

follows provided

(2.17)

∫
Rn

µ(dx)

µ(B(x, r))
≤ cr−

2τn
2τ−1 , r ∈ (0, 1]
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holds for some constant c > 0. Below we prove this estimate.
Since ψ is bounded, there exists a constant C > 1 such that

(2.18) C−1e−(1+θ|x|2)τdx ≤ µ(dx) ≤ Ce−(1+θ|x|2)τdx.

On the other hand, by
|x|
2
≤ |x| − r

4
≤ |x|, r ∈ [0, 1], |x| ≥ 1,

we find a constant c3 > 0 such that(
1 + θ

∣∣∣x− rx

4|x|

∣∣∣2)τ = (1 + θ|x|2)τ +

∫ r

0

d

ds

(
1 + θ

(
|x| − s

4

)2
)τ

ds

= (1 + θ|x|2)τ − τθ

2

∫ r

0

(
1 + θ

(
|x| − s

4

)2
)τ−1(

|x| − s

4

)
ds

≤ (1 + θ|x|2)τ − c3r|x|2τ−1, r ∈ [0, 1], |x| ≥ 1.

Hence, there exist constants c4, c5 > 0 such that for |x| ≥ 1 and r ∈ (0, 1],

µ(B(x, r)) ≥ c4

∫
B
(
x− rx

2|x| ,
r
4

) e−(1+θ|y|2)τdy

≥ c5r
ne−(1+θ|x− rx

4|x| |
2)τ ≥ c5r

ne−(1+θ|x|2)τ+c3r|x|2τ−1

, r ∈ [0, 1], |x| ≥ 1.

(2.19)

Combining this with (2.18), we find constants c6, c7 > 0 such that∫
Rn

µ(dx)

µ(B(x, r))
=

∫
B(0,1)

µ(dx)

µ(B(x, r))
+

∫
B(0,1)c

µ(dx)

µ(B(x, r))

≤ C2r−n + c6r
−n
∫
Rn

e−c3r|x|
2τ−1

dx = C2r−n + c7r
−n
∫ ∞

0

sn−1e−c3rs
2τ−1

ds

= C2r−n + c7r
− 2τn

2τ−1

∫ ∞
0

sn−1e−c3s
2τ−1

ds, r ∈ (0, 1].

This implies (2.17) for some constant c > 0.
Finally, it is easy to see that ∇2V ≥ −cIn and |∇V (x)|2 ≤ c(1 + |x|4τ ) hold for some

constant c > 0. So, we find a constant c8 > 0 such that

L̂|x− ·|2 = 2n+ 2〈∇V, x− ·〉 = 2n+ 2〈∇V (x), x− ·〉 − 2〈∇V (x)−∇V, x− ·〉
≤ 2n+ |∇V (x)|2 + |x− ·|2 + 2c1|x− ·|2 ≤ c8(1 + |x|4τ + |x− ·|2), x ∈ Rn.

(2.20)

This implies

(2.21) P̂t|x− ·|2(x) = Ex|x− X̂t|2 ≤ c8

(
1 + |x|4τ |

)
tec8t, x ∈ Rn, t > 0.

Noting that µ(| · |4τ ) <∞, we verify condition (2.4) for p = 2 and some constant k > 0.

In the next example, the upper bound (2.22) is sharp. Indeed, according to [36, Corollary

1.3(2)], for n ≥ 3 and B ∈ Bα, we have infx∈M E[W2(µBt , µ)2] ≥ ct−
2

n−2α . With α→ 0 this lower
bound reduces to the upper bound in (2.22).
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Example 2.2. Let M be an n-dimensional compact connected Riemanian manifold possibly
with a boundary ∂M . Let V ∈ C2(M) such that µ(dx) = e−V (x)dx is a probability measure on
M . Then for any Markov process on M satisfying (2.6) and any B ∈ B, there exists a constant
c > 0 such that

(2.22) Eµ[W2(µBt , µ)2] ≤ c


t−1, if n = 1,

t−1[log(2 + t)]2, if n = 2,

t−
2
n , if n ≥ 3.

In general, for any p ≥ 2, there exists a constant c > 0 such that

(2.23) Eµ[Wp(µ
B
t , µ)2] ≤ c


t−1, if n = 1, p ∈ [2, 3),

t−1[log(2 + t)]2, if n(p− 1) = 2,

t−
2

n(p−1) , otherwise.

Proof. Let X̂t be the diffusion process generated by L̂ = ∆ −∇V with reflecting boundary if
it exists. Since M is a compact connected Riemannian manifold, (2.3)-(2.5) are well known
for p = 2, β = 1

2
and d = n, hence (2.22) holds according to Remark 2.1(2). Moreover, it is

classical that ‖P̂t‖L2(µ)→Lp(µ) ≤ c(1∧ t)−
n(p−2)

4p holds for some constant c > 0 and all t > 0. Then

(2.3) holds for p ≥ 2 and β = 1
2

+ n(p−2)
4p

. By Remark 2.1(2), (2.23) holds.

2.4 Proof of Theorem 2.2

We will apply the estimate (1.3) for p ∈ [2,∞). This inequality is proved in [14] by using the
Kantorovich dual formula and Hamilton-Jacobi equations, which are available when (M,ρ) is
a length space as we assumed, see [25]. In the following, we prove estimates (2.12) and (2.13)
by five steps.

(a) For any r > 0 and t > 0, consider the regularized empirical measure

(2.24) µBt,r := µBt P̂r = ft,rµ, ft,r :=
1

t

∫ t

0

p̂r(X
B
s , ·)ds.

Note that π := 1
t

∫ t
0
δXB

s
×(δXB

s
P̂r)ds ∈ C (µBt , µ

B
t,r), so that by the definition of Wp and Jensen’s

inequality as p ≥ 2, we obtain

Wp(µ
B
t,r, µ

B
t )2 ≤

(∫
M×M

ρ(x, y)pπ(dx, dy)

) 2
p

=

(
1

t

∫ t

0

P̂rρ(XB
s , ·)p(XB

s )ds

) 2
p

≤ 1

t

∫ t

0

(
P̂rρ(XB

s , ·)p
) 2
p (XB

s )ds, t > 0, r ∈ (0, 1].

Combining this with (2.4) and that µ is an invariant measure of XB
s , we obtain

(2.25) Eµ
[
Wp(µ

B
t,r, µ

B
t )2
]
≤
∫
M

(
P̂rρ(x, ·)p

) 2
p (x)µ(dx) ≤ kr, t > 0, r ∈ (0, 1].
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(b) Since P̂s has symmetric heat kernel p̂s, (2.24) implies P̂sft,r = P̂ s+r
2
ft, s+r

2
. Combining

this with (1.3), (2.3), Jensen’s inequality, and that µ is P̂s-invariant, we derive

Wp(µ
B
t,r, µ)2 ≤ p2

∥∥∥∥∇∫ ∞
0

P̂ r+s
2

(ft, r+s
2
− 1)ds

∥∥∥∥2

Lp(µ)

≤ 4βp2k2

(∫ ∞
0

e−λ(s+r)/2

(s+ r)β
∥∥ft, r+s

2
− 1‖L2(µ)ds

)2

.

(2.26)

By (2.24), we obtain

‖ft, r+s
2
− 1‖2

L2(µ) =
2

t2

∫ t

0

dt1

∫ t

t1

µ
((
p̂ r+s

2
(XB

t1
, ·)− 1

)(
p̂ r+s

2
(XB

t2
, ·)− 1

))
dt2

=
2

t2

∫ t

0

dt1

∫ t

t1

[
p̂r+s(X

B
t1
, XB

t2
)− 1

]
dt2.

Combining this with (2.26), we find a constant c1 > 0 such that for any t > 0, r ∈ (0, 1] and
measurable function h : (0,∞)→ (0,∞),

Wp(µ
B
t,r, µ)2 ≤ c1

t2

{∫ ∞
0

e−
λ
2

(s+r)

(s+ r)β

(∫ t

0

dt1

∫ t

t1

[
p̂r+s(X

B
t1
, XB

t2
)− 1

]
dt2

) 1
2

ds

}2

≤ c1

t2

(∫ ∞
0

e−
λ
2

(s+r)

h(s+ r)
ds

)∫ ∞
0

e−
λ
2

(s+r)h(s+ r)

(s+ r)2β
ds

∫ t

0

dt1

∫ t

t1

[p̂r+s(X
B
t1
, XB

t2
)− 1

]
dt2.

(2.27)

(c) We claim that there exist constants c′, λ′ > 0, such that for all r > 0 and t2 > t1 ≥ 0,

(2.28) Eµ
[
p̂r(X

B
t1
, XB

t2
)− 1

]
≤ c′(1 ∧ r)−

d
4

[
r ∧ 1 + 1{α>0,d′<∞}{1 ∧ (t2 − t1)}

d′
αd

]− d
4
e−λ

′(t2−t1).

Indeed, since µ is PB
t -invariant, µ is also PB∗

t -invariant, where PB∗
t is the adjoint operator of

PB
t in L2(µ). By (2.2) and (2.6), we obtain that for all t > 0,

(2.29) ‖PB∗
t − µ‖L2(µ) = ‖PB

t − µ‖L2(µ) =
∥∥EPSBt − µ∥∥L2(µ)

≤ kE
[
e−λS

B
t
]

= ke−B(λ)t.

Denoting λ′ = B(λ), noting that p̂r(x, ·) − 1 =
∫
M
p̂ r

2
(x, y)

[
p̂ r

2
(y, ·) − 1

]
µ(dy), by the Markov

property of XB
t , (2.5) and (2.29), we derive

Eµ
[
p̂r(X

B
t1
, XB

t2
)− 1

]
=

∫
M

PB
t2−t1

[
p̂r(x, ·)− 1

]
(x)µ(dx)

=

∫
M×M

p̂ r
2
(x, y)PB

t2−t1

[
p̂ r

2
(y, ·)− 1

]
(x)µ(dx)µ(dy)

≤
(∫

M×M
p̂ r

2
(x, y)2µ(dx)µ(dy)

) 1
2
(∫

M

∥∥PB
t2−t1 [p̂ r2 (y, ·)− 1]‖2

L2(µ)µ(dy)

) 1
2

≤ ke−λ
′(t2−t1)

∫
M

p̂r(x, x)µ(dx) ≤ k2(1 ∧ r)−
d
2 e−λ

′(t2−t1).

(2.30)
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Next, let α > 0 and d′ <∞. By the Markov property we obtain

Eµ
[
p̂r(X

B
t1
, XB

t2
)− 1

]
=

∫
M

Ex
[
p̂r(x,X

B
t2−t1)− 1

]
µ(dx)

=

∫
M×M

{
p̂r(x, y)− 1

}
pBt2−t1(x, y)µ(dx)µ(dy)

=

∫
M×M

p̂r(x, y)
{
pBt2−t1(x, y)− 1

}
µ(dx)µ(dy).

(2.31)

Noting that

(2.32) pBt2−t1(x, y)− 1 = PB∗
t2−t1

2

{
pBt2−t1

2

(x, ·)− 1
}

(y), t2 > t1 ≥ 0,

by the display after [36, (3.12)], (2.10) implies

(2.33)

∫
M×M

pBt (x, y)2µ(dx)µ(dy) ≤ kE
[
(1 ∧ SBt )−

d′
2

]
≤ k′(1 ∧ t)−

d′
2α , t > 0

for some constants k′ > 0. Combining (2.29) with (2.32), (2.5) and (2.10), we find constants
c2, c3 > 0 such that∫

M×M
p̂r(x, y)

{
pBt2−t1(x, y)− 1

}
µ(dx)µ(dy)

≤
(∫

M

p̂2r(x, x)µ(dx)

) 1
2
(∫

M

∥∥∥PB∗
t2−t1

2

{
pBt2−t1

2

(x, ·)− 1
}∥∥∥2

L2(µ)
µ(dx)

) 1
2

≤ c2(1 ∧ r)−
d
4 e−(t2−t1)B(λ)/2

(∫
M

∥∥∥pBt2−t1
2

(x, ·)− 1
∥∥∥2

L2(µ)
µ(dx)

) 1
2

≤ c3(1 ∧ r)−
d
4{1 ∧ (t2 − t1)}−

d′
4α e−(t2−t1)λ′ , t2 > t1 ≥ 0.

This together with (2.30) and (2.31) implies (2.28) for some constant c′ > 0.
(d) When α > 0 and d′ <∞, we find constants c4, c5 > 0 such that

1

t

∫ t

0

dt1

∫ t

t1

e−λ
′(t2−t1)

[
(r + s) ∧ 1 + {1 ∧ (t2 − t1)}

d′
αd

]− d
4 dt2

≤ c4

t

∫ t

0

dt1

∫ ∞
0

e−λ
′θ
(
[(r + s) ∧ 1]

αd
d′ + 1 ∧ θ

)− d′
4αdθ ≤ c5I(r + s),

where, since dα
d′

( d
′

4α
− 1)+ = d

4
(1− 4α

d′
)+,

(2.34) I(r + s) := [(1 ∧ (r + s)]−
d
4

(1− 4α
d′ )+
(

1 + 1{d′=4α} log
[
2 + (r + s)−1

])
.

When d′ =∞ or α = 0, we have I(r + s) = [(1 ∧ (r + s)]−
d
4 and

1

t

∫ t

0

dt1

∫ t

t1

e−λ
′(t2−t1)

[
(r + s) ∧ 1

]− d
4 dt2 ≤ c5I(r + s)
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holds for some constant c5 > 0. So, in any case,

1

t

∫ t

0

dt1

∫ t

t1

e−λ
′(t2−t1)

[
(r + s) ∧ 1 + 1{α>0,d′<∞}{1 ∧ (t2 − t1)}

d′
αd

]− d
4 dt2 ≤ c5I(r + s).

Combining this with (2.27) and (2.28), and choosing h(r + s) = (r+s)β+
d
8√

I(s+r)
, we find a constant

c6 > 0 such that

(2.35) Eµ[Wp(µ
B
t,r, µ)2] ≤ c6

t

(∫ ∞
0

e−λ
′s
√
I(r + s)

[1 ∧ (r + s)]β+ d
8

ds

)2

.

By (2.34) and the definition of Kβ,d,d′,α, we find a constant c7 > 0 such that∫ ∞
0

e−λ
′s
√
I(r + s)

[1 ∧ (r + s)]β+ d
8

ds ≤
∫ ∞

0

e−λ
′s

[1 ∧ (r + s)]Kβ,d,d′,α

(
1 + 1{d′=4α}

√
log[2 + (r + s)−1]

)
ds

≤ c7η(r), r ∈ (0, 1],

where

η(r) :=



1, if Kβ,d,d′,α < 1,

log(2 + r−1), if Kβ,d,d′,α = 1, d′ 6= 4α,

[log(2 + r−1)]
3
2 , if Kβ,d,d′,α = 1, d′ = 4α,

r1−Kβ,d,d′,α , if Kβ,d,d′,α > 1, d′ 6= 4α,

r1−Kβ,d,d′,α
√

log(2 + r−1), if Kβ,d,d′,α > 1, d′ = 4α.

This together with (2.35) and (2.25) implies

Eµ[Wp(µt, µ)2] ≤ 2 inf
r∈(0,1]

{
Eµ[Wp(µ

B
t,r, µ)2] + Eµ[Wp(µ

B
t,r, µ

B
t )2]

}
≤ c8 inf

r∈(0,1]

{
t−1η(r)2 + r

}
for some constant c8 > 0 and all t > 0. Therefore, (2.12) holds for some constant c > 0.

(e) To prove (2.13), let t > 1 and µ̄Bt−1 := 1
t−1

∫ t
1
δXB

s
ds, so that µBt = 1

t

∫ 1

0
δXB

s
ds+ t−1

t
µ̄Bt−1.

Then

Wp(µ
B
t , µ) ≤ 1

t

∫ 1

0

[
µ
(
ρ(XB

s , ·)p
)] 1

pds+
t− 1

t
Wp(µ̄

B
t−1, µ).

By Jensen’s inequality and the Markov property, this implies

Ex
[
Wp(µ

B
t , µ)q

]
≤ 2q−1

tq
Ex
(∫ 1

0

µ
(
ρ(XB

s , ·)p
) 1
pds

)q
+ 2q−1Ex

[
Wp(µ̄

B
t−1, µ)q

]
≤ 2q−1

tq

∫ 1

0

Ex
[
µ
(
ρ(XB

s , ·)p
) q
p

]
ds+ 2q−1Eνx

[
Wp(µ

B
t−1, µ)q

]
,

(2.36)

where νx := pB1 (x, ·)µ is the distribution of XB
1 for XB

0 = x. By Hölder’s inequality we obtain

Eνx
[
Wp(µ

B
t−1, µ)q

]
=

∫
M

pB1 (x, y)Ey
[
Wp(µ

B
t−1, µ)q

]
µ(dy)

≤ ‖pB1 (x, ·)‖
L

2
2−q (µ)

(∫
M

Ey
[
Wp(µ

B
t−1, µ)2

]
µ(dy)

) q
2

= ‖pB1 (x, ·)‖
L

2
2−q (µ)

(
Eµ[Wp(µ

B
t−1, µ)2]

) q
2 .

Combining this with (2.36), we deduce (2.13).
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2.5 An extension

For some infinite-dimensional models, see for instance [32], (2.5) fails for any d ∈ (0,∞), but
there may be a decreasing function γ : (0,∞)→ (0,∞) such that∫

M

p̂t(x, x)µ(dx) ≤ γ(t), t > 0.

Moreover, in case that Pt is not L2-exponential ergodic, by the weak Poincaré inequality which
holds for a broad class of ergodic Markov processes, see [21], we have

lim
t→∞
‖Pt − µ‖L∞(µ)→L2(µ) = 0.

To cover these two situations for which Theorem 2.2 does not apply, we present the following
result for the empirical measure µt of the Markov process Xt with semigroup Pt.

Theorem 2.3. Assume (2.3), (2.4). If there exist a constant q ∈ [1,∞], q′ ∈ [ q
q−1

,∞] and a

decreasing function γ : (0,∞)→ (0,∞) such that

(2.37) lim
t→∞
‖Pt − µ‖

Lq′ (µ)→L
q
q−1 (µ)

= 0,

(2.38)

∫
M

‖p̂ r
2
(y, ·)‖Lq(µ)‖p̂ r

2
(y, ·)‖Lq′ (µ)µ(dy) ≤ γ(r), r > 0.

Then there exists a constant c > 0 such that for any t > 0,

Eµ[Wp(µt, µ)2] ≤ c inf
r∈(0,1]

{∫ t
0
‖Ps − µ‖

Lq′ (µ)→L
q
q−1 (µ)

ds

t

(∫ 1

0

√
γ(r + s)

(r + s)β
ds

)2

+ r

}
.

Proof. Let B(λ) = λ so that XB
t = Xt, P

B
t = Pt and µBt = µt. Noting that p̂r(x, ·) =∫

M
p̂ r

2
(x, y)p̂ r

2
(y, ·)µ(dy), by (2.38) we obtain

Eµ[p̂r(Xt1 , Xt2)− 1] =

∫
M

(Pt2−t1 − µ)p̂r(x, ·)(x)µ(dx)

=

∫
M×M

p̂ r
2
(x, y)(Pt2−t1 − µ)p̂ r

2
(y, ·)(x)µ(dx)µ(dy)

≤
∫
M

‖p̂ r
2
(·, y)‖Lq(µ)‖(Pt2−t1 − µ)p̂ r

2
(y, ·)‖

L
q
q−1 (µ)

µ(dy)

≤ ‖Pt2−t1 − µ‖Lq′ (µ)→L
q
q−1 (µ)

∫
M

‖p̂ r
2
(y, ·)‖Lq(µ)‖p̂ r

2
(y, ·)‖Lq′ (µ)µ(dy)

≤ γ(r)‖Pt2−t1 − µ‖Lq′ (µ)→L
q
q−1 (µ)

, r > 0, t2 > t1.

Combining this with (2.37), we find a constant c1 > 0 such that∫ t

0

dt1

∫ t

t1

Eµ[p̂r+s(Xt1 , Xt2)− 1]dt2 ≤ c1γ(r + s)t

∫ t

0

‖Ps − µ‖
Lq′ (µ)→L

q
q−1 (µ)

ds, r, s > 0.
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So, by (2.27) with

h(r + s) = (s+ r)β
(
γ(r + s)t

∫ t

0

‖Ps − µ‖
Lq′ (µ)→L

q
q−1 (µ)

ds

)− 1
2

,

we find constants c2, c3 > 0 such that

Eµ[Wp(µt,r, µ)2] ≤ c2

t

(∫ ∞
0

e−
λ
2

(r+s)
√
γ(r + s)

(r + s)β
ds

)2 ∫ t

0

‖Ps − µ‖
Lq′ (µ)→L

q
q−1 (µ)

ds

≤ c3

t

(∫ 1

0

√
γ(r + s)

(r + s)β
ds

)2 ∫ t

0

‖Ps − µ‖
Lq′ (µ)→L

q
q−1 (µ)

ds, t > 0, r ∈ (0, 1].

This together with (2.25) and the triangle inequality implies the desired estimate.

To verify Theorem 2.3, we present below a simple example where Pt only has algebraic
convergence in ‖ · ‖L∞(µ)→L2(µ), so Theorem (2.2) does not apply.

Example 2.3. Let M = [0, 1], ρ(x, y) = |x − y| and µ(dx) = dx. For any l ∈ (2,∞), let Xt

be the diffusion process on M \ {0, 1} generated by

L :=
{
x(1− x)

}l d2

dx2
+ l
{
x(1− x)

}l−1
(1− 2x)

d

dx
.

Then Theorem 2.2 does not apply, but by Theorem 2.3 there exists a constant c > 0 such that
for any t > 0,

(2.39) Eµ[Wp(µt, µ)2] ≤ c



t−1, if l ∈ (2, 5), p ∈ [2, 13−l
4

),

t−1[log(2 + t)]3, if l ∈ (2, 5], p = 13−l
4
,[

t−1 log(2 + t)]
8

4p+l−5 , if l ∈ (2, 5], p > 13−l
4
,

t−
4
l−1 [log(2 + t)]2, if l > 5, p = 2

t−
8

p(l−1) , if l > 5, p > 2.

Proof. We first observe that (2.6) fails, so that Theorem 2.2 does not apply. Indeed, the
Dirichlet form of L satisfies

(2.40) E (f, g) =

∫ 1

0

{
x(1− x)

}l
(f ′g′)(x)dx, f, g ∈ C1

b (M) ⊂ D(E ).

Let ρL be the intrinsic distance function to the point 1
2
∈ M. We find a constant c1 > 0 such

that

ρL(x) =

∣∣∣∣ ∫ x

1
2

{
s(1− s)

}− l
2 ds

∣∣∣∣ ≥ c1

(
x1− l

2 + (1− x)1− l
2

)
, x ∈M.

Then for any ε > 0, we have µ(eερL) =∞, so that by [1], gap(L) = 0. On the other hand, since
L is symmetric in L2(µ), by [21, Lemma 2.2], (2.6) implies the same inequality for k = 1, so
that gap(L) ≥ λ > 0. Hence, (2.6) fails.
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To apply Theorem 2.3, let P̂t be the standard Neumann heat semigroup on M generated
by ∆. It is classical that (2.3) and (2.4) hold for

(2.41) β =
1

2
+
p− 2

4
.

Moreover, there exists a constant c2 > 1 such that

‖P̂ r
2
‖Lm(µ)→Ln(µ) ≤ c2(1 + r−

n−m
2nm ), 1 ≤ m ≤ n ≤ ∞, r > 0,

so that for q′ =∞ and q > 1,

‖p̂ r
2
(y, ·)‖Lq(µ)‖p̂ r

2
(y, ·)‖Lq′ (µ) ≤ c2‖P̂ r

2
‖L1(µ)→Lq(µ)(1 + r−

1
2 )

≤ c2
2(1 + r−

q−1
2q )(1 + r−

1
2 ), r > 0.

Hence, there exists a constant c3 > 0 such that (2.38) holds for

γ(r) = c3(1 + r−
2q−1
2q ).

Combining this with (2.41), we find a constant k > 0 such that for any r ∈ (0, 1),

(2.42) η(r) :=

(∫ 1

0

√
γ(r + s)

(r + s)β
ds

)2

≤ k ·


1, if 1 < q < 1

p−2
,

[log(1 + r−1)]2, if 1 < q = 1
p−2

,

r
1−(p−2)q

2q , if q > 1 ∨ 1
p−2

.

Indeed, (2.41) implies

−2q − 1

4q
− β = −(p+ 2)q − 1

4q


> −1, if 1 < q < 1

p−2
,

= −1, if 1 < q = 1
p−2

,

< −1, if q > 1 ∨ 1
p−2

,

so that we find constants k1, k2 > 0 such that for any r ∈ (0, 1),

∫ 1

0

√
γ(r + s)

(r + s)β
ds ≤ k1

∫ 1

0

(r + s)−
2q−1
4q
−βds ≤ k2 ·


1, if 1 < q < 1

p−2
,

log(1 + r−1), if 1 < q = 1
p−2

,

r
1−(p−2)q

4q , if q > 1 ∨ 1
p−2

,

which implies (2.41).
To calculate ‖Pt−µ‖

Lq′ (µ)→L
q
q−1 (µ)

for q′ =∞, we apply the weak Poincaré inequality studied

in [21]. Let
Ms = [s, 1− s], s ∈ (0, 1/2).

Noting that µ(dx) = dx and letting ν(dx) = {x(1−x)}ldx, we find a constant c4 > 0 such that

sup
r∈[s, 1

2
]

µ([r, 1/2])ν([s, r]) ≤ 2l sup
r∈[s, 1

2
]

(1

2
− r
)(
s1−l − r1−l) ≤ c4s

1−l, s ∈ (0, 1/2).
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By the weighted Hardy inequality [20], see for instance [28, Proposition 1.4.1], we have

µ(f 21[s, 1
2

]) ≤ 4c4s
1−lν(|f ′|2), f ∈ C1([s, 1/2]), f(1/2) = 0.

By symmetry, the same holds for [1
2
, 1− s] replacing [s, 1

2
]. So, according to [28, Lemma 1.4.3],

see also [4], we derive

µ(f 21Ms) ≤ 4c4s
1−lν(|f ′|21Ms) + µ(f1Ms)

2, f ∈ C1([s, s− 1]).

Combining this with (2.40), for any f ∈ C1
b (M) with µ(f) = 0, we have µ(f1Ms) = −µ(f1Mc

s
)

so that

µ(f 2) = µ(f 21Mc
s
) + µ(f 21Ms) ≤ µ(f 21Mc

s
) + 4c4s

1−lE (f, f) + µ(f1Mc
s
)2,

≤ 4c4s
1−lE (f, f) + 2‖f‖2

∞µ(M c
s )

2 ≤ 4c4s
1−lE (f, f) + 8s2‖f‖2

∞, s ∈ (0, 1/2).

For any r ∈ (0, 1), let s = (r/8)
1
2 . We find a constant c5 > 0 such that

µ(f 2) ≤ c5r
− l−1

2 E (f, f) + r‖f‖2
∞, r ∈ (0, 1), µ(f) = 0, f ∈ C1

b (M).

By [21, Corollary 2.4(2)], this implies

‖Pt − µ‖L∞(µ)→L2(µ) = ‖Pt − µ‖L2(µ)→L1(µ) ≤ c5(1 + t)−
2
l−1 , t > 0

for some constant c5 > 0. Since Pt is contractive in Ln(µ) for any n ≥ 1, this together with the
interpolation theorem implies

‖Pt − µ‖
L∞(µ)→L

q
q−1 (µ)

≤ c6(1 + t)−
4(q−1)
q(l−1) , t > 0.

Noting that q′ =∞, we find a constant k > 0 such that

(2.43) Γ(t) :=
1

t

∫ t

0

‖Ps − µ‖
Lq′ (µ)→L

q
q−1 (µ)

ds ≤ k


t−1, if l ∈ (2, 5), q > 4

5−l ,

t−1 log(2 + t), if l = 5, q =∞,
(1 + t)−

4
l−1 , if l > 5, q =∞.

We now prove the desired estimates case by case.
(1) Let l ∈ (2, 5) and p ∈ [2, 13−l

4
). Taking q ∈ ( 4

5−l ,
1
p−2

) in (2.42) and (2.43), we obtain

inf
r∈(0,1]

{
η(r)Γ(t) + r

}
≤ k inf

r∈(0,1]

{
t−1 + r

}
= kt−1.

So, the desired estimate follows from Theorem 2.3.
(2) Let l ∈ (2, 5] and p = 13−l

4
. Taking q = 4

5−l = 1
p−2

in (2.42) and (2.43) we find a constant
c > 0 such that

inf
r∈(0,1]

{
η(r)Γ(t) + r

}
≤ k inf

r∈(0,1]

{
t−1[log(2 + t)][log(1 + r−1)]2 + r

}
≤ ct−1[log(2 + t)]3.

This implies the desired estimate according to Theorem 2.3.
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(3) Let l ∈ (2, 5] and p > 13−l
4
. We have q := 4

5−1
> 1

p−2
, so that (2.42) and (2.43) imply

inf
r∈(0,1]

{
η(r)Γ(t) + r

}
≤ k inf

r∈(0,1]

{
t−1[log(2 + t)]r−

4p+l−13
8 + r

}
≤ c
[
t−1 log(2 + t)

]− 4p+l−5
8

for some constant c > 0, which implies the desired estimate by Theorem 2.3.
(4) Let l > 5 and p = 2. By taking q = ∞ in (2.42) and (2.43), we find a constant c > 0

such that

inf
r∈(0,1]

{
η(r)Γ(t) + r

}
≤ k inf

r∈(0,1]

{
t−

4
l−1 [log(1 + r−1)]2 + r

}
≤ ct−

4
l−1 [log(2 + t)]2.

By Theorem 2.3, the desired estimate holds.
(5) Let l > 5 and p > 2. By taking q = ∞ we find a constant c > 0 such that (2.42) and

(2.43) imply

inf
r∈(0,1]

{
η(r)Γ(t) + r

}
≤ k inf

r∈(0,1]

{
t−

4
l−1 r−

p−2
2 + r

}
≤ ct−

8
p(l−1)

for some consatnt c > 0. Hence the desired estimate holds according to Theorem 2.3.

3 Subordinate stochastic Hamiltonian systems

Consider the following degenerate SDE for Xt = (X
(1)
t , X

(2)
t ) on Rn+m = Rn × Rm (n,m ≥ 1

may be different):

(3.1)

{
dX

(1)
t = κQX

(2)
t dt,

dX
(2)
t =

√
2 dWt −

{
Q∗(∇V )(X

(1)
t ) + κX

(2)
t

}
dt,

where Wt is the m-dimensional Brownian motion, Q ∈ Rn⊗m, κ > 0 is a constant, and V ∈
C2(Rn) satisfies

(3.2) sup
x1∈Rn

‖∇2V (x1)‖
1 + |∇V (x1)|

<∞,
∫
Rn
|∇V (x1)|2e−V (x1)dx1 <∞.

Let

µV (dx1) :=
e−V (x1)dx1∫
Rn e−V (x1)dx1

, Nκ(dx2) :=
( κ

2π

)m
2

e−
κ
2
|x2|2dx2.

Then the SDE (3.1) is well-posed, and the solution has invariant probability measure

(3.3) µ(dx1, dx2) := µV (dx1)Nκ(dx2).

Recall that for a metric space (M,ρ),

B(x, r) :=
{
y ∈M : ρ(x, y) < r

}
, x ∈M, r > 0.

We will verify (A1) and (2.10) for the present model by using the following assumption.
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(A2) QQ∗ is invertible, (3.2) holds, and there exist constants k > 0 and n′ ≥ n such that

(3.4) ∇2V ≥ −kIn,
∫
Rn

µV (dx1)

µV (B(x1, r))
≤ kr−n

′
, r ∈ (0, 1],

(3.5) µV (f 2) ≤ kµV (|∇f |2), f ∈ C1
b (Rn), µV (f) = 0.

We have the following result.

Theorem 3.1. Assume (A2), let B ∈ Bα for some α ∈ [0, 1], and let ρ(x, y) = |x − y| for
x, y ∈ Rn+m. Let ξt(K) be in (2.14) for

(3.6) K :=

{
1
2

+ n′+2m
4
− α(n′+2m)

2(3n′+2m)
, if ‖∇2V ‖∞ <∞

1
2

+ n′+2m
4

, if ‖∇2V ‖∞ =∞.

Then there exists a constant c > 0 such that

(3.7) Eµ
[
W2(µBt , µ)2

]
≤ cξt(K), t > 0.

If ‖∇2V ‖∞ <∞, then for any t ≥ 2 and x ∈ Rn+m,

(3.8)
[
ExW2(µBt , µ)

]2 ≤ cξt(K)Ex
[ ∫ 1

0

|XB
s |2ds+

1

µ
(
B(x1, (1 ∧ SB1 )

3
2 )×B(x2, (1 ∧ SB1 )

1
2 )
)].

To prove this result, we first present a dimension-free Harnack inequality for the following
more general model:

(3.9)

{
dX

(1)
t =

{
AX

(1)
t +QX

(2)
t

}
dt,

dX
(2)
t = Zt(Xt)dt+ σtdWt,

where Q and Wt are in (3.1), A ∈ Rn⊗n, and

σ : [0,∞)→ Rm⊗m, Z : [0,∞)× Rn+m → Rm

are measurable such that the following conditions hold:

(A3) There exist a constant k > 0 and an integer k0 ≥ 0 such that

sup
t≥0
‖σ−1

t ‖∞ + sup
t≥0,x 6=y

|Zt(x)− Zt(y)|
|x− y|

≤ k, Rank[AiQ : 0 ≤ i ≤ k0] = n.

Lemma 3.2. Assume (A3), and let Pt be the Markov semigroup associated with (3.9). Then
for any p ∈ (1,∞), there exists a constant c(p) > 0 such that

|Ptf(y)|p ≤
(
Pt|f |p(x)

)
exp

[
c|x1 − y1|2

(1 ∧ t)4k0+3
+
c|x2 − y2|2

(1 ∧ t)4k0+1

]
holds for all t > 0 and x = (x1, x2), y = (y1, y2) ∈ Rn × Rm.
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Proof. By Jensen’s inequality, we only need to prove for t ∈ (0, 1]. The proof is refined from
that of [29, Lemma 3.2]. Let Xt solve (3.9) for X0 = x, and for fixed t0 ∈ (0, 1], let Yt solve the
following SDE with Y0 = y:dY

(1)
t =

{
AY

(1)
t +QY

(2)
t

}
dt,

dY
(2)
t =

{
Zt(Xt) +

x2 − y2

t0
+

d

dt

[
t(t0 − t)Q∗e(t0−t)A∗bt0

]}
dt+ σtdWt, t ∈ [0, t0],

where

bt0 := Q−1
t0

{
et0A(x1 − y1) +

∫ t0

0

t0 − s
t0

e(t0−s)AQ∗(x2 − y2)ds

}
,

Qt :=

∫ t

0

s(t− s)e(t−s)AQQ∗e(t−s)A∗ds, t > 0.

By [29, (3.2) and (3.3)], we have Xt0 = Yt0 and

(3.10) sup
t∈[0,t0]

|Xt − Yt| ≤ c|x− y|, x, y ∈ Rn+m

holds for some constant c > 0.
According to the proof of [38, Theorem 4.2], the rank condition in (A3) implies

‖Q−1
t0
‖ ≤ c1t

−2k0−3
0 , t0 ∈ (0, 1]

for some constant c1 > 0. Then there exists a constant c2 > 0 such that

(3.11) |bt0| ≤ c2t
−2k0−3
0

(
|x1 − y1|+ t0|x2 − y2|

)
.

Combining this with the first condition in (A3), we see that

ψt := σ−1
t

(
Zt(Xt)− Zt(Yt) +

x2 − y2

t0
+

d

dt

{
t(t0 − t)Q∗e(t0−t)A∗bt0

})
satisfies

(3.12) sup
t∈[0,t0]

|ψt|2∞ ≤ c4

( |x1 − y1|2

t4k0+4
0

+
|x2 − y2|2

t4k0+2
0

)
, t0 ∈ (0, 1]

for some constant c4 > 0. So, by Girsanov’s theorem, under the probability measure RdP, where

R := exp

[
−
∫ t0

0

〈ψt, dWt〉 −
1

2

∫ t0

0

|ψt|2dt

]
,

the process (Yt)t∈[0,t0] is a weak solution to (3.9) with initial value y. Combining this together
with Xt0 = Yt0 as observed above, we find a constant c5 > 0 depending on p such that

|Pt0f(y)|p = |E[Rf(Yt0)]|p = |E[Rf(Xt0)]|p ≤
(
E[R

p
p−1 ]
)p−1E[|f |p(Xt0)]

≤ ec5
∫ t0
0 ‖ψt‖2∞dtPt0|f |p(x).

By (3.12), this implies the desired Harnack inequality.
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Proof of Theorem 3.1. Let p = 2,M := Rn+m. To apply Theorem 2.2, let X̂t be the diffusion
process generated by

(3.13) L̂ := ∆− (∇H) · ∇,

where

(3.14) H(x) := V (x1) +
κ

2
|x2|2, x = (x1, x2) ∈ Rn+m.

In the following, we verify (A1) and Definition 2.1 for

(3.15) β =
1

2
, d = n′ + 2m, d′ =

{
3n′ + 2m, if ‖∇2V ‖∞ <∞,
∞, otherwise.

(a) Verify (2.3). By (3.3), (3.5) and the Poincaré inequality for the Gaussian measure Nκ,
we find a constant C > 0 such that

(3.16) µ(f 2) ≤ Cµ(|∇f |2) + µ(f)2, f ∈ C1
b (Rn+m).

Consequently, gap(L̂) ≥ C−1 > 0, so that Proposition 2.1 implies (2.3) for p = 2 and β = 1
2
.

(b) Verify (2.4) and (2.6). By (3.4) and (3.14), there exists a constant c1 > 0 such that

(3.17) ∇2H ≥ −c1In+m.

Then as in (2.20), we find a constant c2 > 0 such that

L̂|x− ·|2 ≤ c2(1 + |∇V (x1)|2 + |x− ·|2), x ∈ Rn+m.

This implies

(3.18) P̂t|x− ·|2(x) = Ex|x− X̂t|2 ≤ c2

(
1 +∇V (x1)|2

)
tec2t, x ∈ Rn+m, t > 0.

Combining this with (3.2) and (3.3), we verify condition (2.4) for p = 2 and some constant
k > 0. Moreover, according to [12], (3.2) and (3.5) imply (2.6) for some constants k, λ > 0.

(c) Verify (2.5). According to [28, Theorem 2.4.4], by (3.17) we find a constant c3 > 0 such
that

(3.19) p̂r(x, x) ≤ c3

µ(B(x,
√
r))

, x ∈ Rn+m, r ∈ (0, 1].

Combining this with (3.3), (3.4) and B(x,
√
r) ⊂ B(x1,

√
r/2)×B(x2,

√
r/2), we find a constant

c4 > 0 such that

(3.20)

∫
Rn+m

µ(dx)

µ(B(x,
√
r))
≤ c4r

−n
′
2

∫
Rm

e−κ|x2|
2
dx2∫

B(x2,
√
r/2)

e−κ|y2|2dy2

, r ∈ (0, 1].

By the same argument leading to (2.17), we find a constant c5 > 0 such that

(3.21)

∫
Rm

e−κ|x2|
2
dx2∫

B(x2,r)
e−κ|y2|2dy2

≤ c5r
−2m, r ∈ (0, 1].
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Combining this with (3.20), we find a constant c > 0 such that

(3.22)

∫
Rn+m

µ(dx)

µ(B(x,
√
r))
≤ cr−

n′+2m
2 , r ∈ (0, 1].

Since p̂t(x, x) is decreasing in t > 0, this together with (3.19) implies (2.5) for d = n′ + 2m.
(d) To estimate d′, we assume ‖∇2V ‖∞ <∞. By Lemma 3.2 for p = 2, where k0 = 0 holds

for the present model, we find a constant c6 > 0 such that

|Ptf(x)|2 ≤ (Ptf
2(y))ec6(1∧t)−3|x1−y1|2+c6(1∧t)−1|x2−y2|2 , t > 0, x, y ∈ Rn+m.

Choosing f := pt(x, ·) ∧ l, we derive(∫
Rn+m

(pt(x, ·) ∧ l)2dµ

)2

e−c6(1∧t)−3|x1−y1|2−c6(1∧t)−1|x2−y2|2

≤ Pt(pt(x, ·) ∧ l)2(y), l ≥ 1.

Integrating both sides with respect to µ(dy) and noting that µ is Pt-invariant, we obtain∫
Rn+m

(pt(x, ·) ∧ l)2dµ ≤ 1∫
Rn+m e−c6(1∧t)−3|x1−y1|2−c6(1∧t)−1|x2−y2|2µ(dy)

≤ e2c6

µ
(
B(x1, (1 ∧ t)

3
2 )×B(x2, (1 ∧ t)−

1
2 )
) .

Letting l→∞ we arrive at

(3.23)

∫
Rn+m

pt(x, ·)2dµ ≤ e2c6

µ
(
B(x1, (1 ∧ t)

3
2 )×B(x2, (1 ∧ t)−

1
2 )
) , t > 0, x ∈ Rn+m.

This together with (3.4) and (3.21) yields∫
Rn+m×Rn+m

pt(x, y)2µ(dx)µ(dy)

≤ e2c6

∫
Rn+m

µ(dx)

µ
(
B(x1, (1 ∧ t)

3
2 )×B(x2, (1 ∧ t)−

1
2 )
) ≤ c(1 ∧ t)−

3n′+2m
2

for some constant c > 0. Therefore, (2.10) holds for d′ = 3n′ + 2m.
(e) For K in (3.6), β, d, d′ in (3.15) and α ∈ [0, 1], we have

d′ ≥ 3n′ + 2m ≥ 5 > 4α, Kβ,d,d′,α = K.

Then (3.7) follows from (2.12).
Next, by (3.16) we have µ(ec|·|) <∞ for some constant c > 0, see for instance [1]. Combining

this with (2.21), we find a constant c7 > 0 such that

Ex[µ(ρ(XB
s , ·)2)] = Ex[µ(|XB

s − ·|2)] ≤ c7(1 + Ex|XB
s |2).

Moreover, (3.23) implies

‖pB1 (x, ·)‖2
L2(µ) ≤ E

[
e2c6

µ
(
B(x1, (1 ∧ SB1 )

3
2 )×B(x2, (1 ∧ SB1 )−

1
2

)].
Then (3.8) follows from (2.13)
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Example 3.1. Consider (3.1) with invertible QQ∗, and let V be in Example 2.1. Then for
any α ∈ [0, 1] and B ∈ Bα, there exists a constant c > 0 such that for any t ≥ 1,

(3.24) Eµ[W2(µBt , µ)2] ≤ c

{
t−

(2τ−1)(3τn+2τm−m)
(τn+2τm−m)][3τn+(m−α)(2τ−1)] , if 1

2
< τ ≤ 1,

t−
2τ−1

τn+m(2τ−1) , if τ > 1.

When α > 0 and τ ∈ (1
2
, 1], there exists a constant ε > 0 such that for any t ≥ 1 and x ∈ Rn+m,

(3.25)
[
ExW2(µBt , µ)

]2 ≤ ct−
(2τ−1)(3τn+2τm−m)

(τn+2τm−m)][3τn+(m−α)(2τ−1)] eκ|x2|
2+(1+θ|x1|2)τ−ε|x2|−ε|x1|τ .

Proof. (1) As explained in the proof of Example 2.1 that (A2) holds for n′ = 2τn
2τ−1

and some
constant k > 0. So, K defined in (3.6) satisfies K > 1. It is easy to see that ‖∇2V ‖∞ =∞ for
τ > 1 while‖∇2V ‖∞ <∞ for τ ∈ (1

2
, 1]. Then estimate (3.24) follows from Theorem 3.1.

(2) Let α > 0 and τ ≤ 1. We find a constant c1 > 0 such that

(3.26) sup
t∈[0,1]

Ex[|Xt|2] ≤ c1(1 + |x|2).

Next, similarly to (2.19), there exists a constant c2 > 0 such that

µ
(
B(x1, r

3
2 )×B(x2, r

1
2 )
)
≥ c2r

3n+m
2 ec2r

3
2 |x2|+c2r

τ
2 |x1|τ−κ|x2|2−(1+θ|x1|2)τ , r ∈ (0, 1], x ∈ Rn+m.

Combining this with (3.23), we find a constant c3 > 0 such that∫
Rn+m

pt(x, ·)2dµ ≤ e2c6

µ
(
B(x1, (1 ∧ t)

3
2 )×B(x2, (1 ∧ t)−

1
2

)
≤ c2

3

exp[κ|x2|2 + (1 + θ|x1|2)τ − c2r
3
2 |x2| − c2r

τ
2 |x1|τ ]

(1 ∧ t) 3n+m
2

, t > 0, x ∈ Rn+m.

(3.27)

Consequently,

Ex[|Xt|2] =

∫
Rn+m

|y|2pt(x, y)µ(dy) ≤
(
µ(| · |4)

∫
Rn+m

pt(x, y)2µ(dy)

) 1
2

≤ c3

exp[κ
2
|x2|2 + 1

2
(1 + θ|x1|2)τ − 1

2
c2r

3
2 |x2| − 1

2
c2r

τ
2 |x1|τ ]

(1 ∧ t) 3n+m
4

, t > 0, x ∈ Rn+m.

This together with (3.26) yields

(3.28) sup
s∈[0,1]

Ex[|XB
s |2] ≤ sup

t≥0
Ex[|Xt|2] ≤ ce

κ
2
|x2|2+ 1

2
(1+θ|x1|2)τ , x ∈ Rn+m.

Moreover, when α > 0, the second inequality in (2.33) implies

E
[
(1 ∧ SB1 )−

3n+m
2

]
<∞,

which together with (3.27) yields

Ex
[

1

µ
(
B(x1, (1 ∧ SB1 )

3
2 )×B(x2, (1 ∧ SB1 )−

1
2

)] ≤ ceκ|x2|
2+(1+θ|x1|2)τ−ε|x2|−ε|x1|α

for some constant ε > 0. Combining this with (3.28), we deduce the (3.25) from that in Theorem
3.1.
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4 Subordinate spherical velocity Langevin diffusions

In this section, we consider the following degenerate SDE on M := Rn × Sn−1(n ≥ 2):

(4.1)

{
dX

(1)
t = X

(2)
t dt,

dX
(2)
t = − 1

n−1

(
In −X(2)

t ⊗X
(2)
t

)
∇V (X

(1)
t )dt+ σ

(
In −X(2)

t ⊗X
(2)
t

)
◦ dWt,

where V ∈ C2(Rn), Wt is an n-dimensional Brownian motion, σ > 0 is a constant, and ◦d
is the Stratonovich differential. The solution of (4.1) is called the spherical velocity Langevin
diffusion process generated by

L :=
σ2

2
∆(2) + x2 · ∇(1) − (∇(2)Φ) · ∇(2),

where ∆(2) and ∇(2) are the Laplacian and gradient on Sn−1 respectively, ∇(1) is the gradient
on Rn, and

Φ(x) :=
1

n− 1

(
∇(1)V (x1)

)
· x2, x = (x1, x2) ∈M.

See [12] and references therein for the background of this model.
Let ρ be the Riemannian distance on M := Rn × Sn−1, let V satisfy (A2), and let

µ(dx) := µV (dx1)Λ(dx2),

where Λ is the normalized volume measure on Sn−1. We have the following result.

Theorem 4.1. Let V satisfy (A2) and let B ∈ B. Then there exists a constant c > 0 such that
for any t ≥ 2,

Eµ
[
W2(µBt , µ)2

]
≤ ct−

2
n′+n−1 ,[

ExW2(µBt , µ)
]2 ≤ ct−

2
n′+n−1Ex

[ ∫ 1

0

|XB
s |2ds+

1

µ(B(x, (1 ∧ SB1 )
3
2 ))

]
, x ∈ Rn × Sn−1.

In particular, for V given in Example 2.1, these estimates hold for n′ = 2n.

Proof. According to [12, Theorem 1.1], (A2) implies (2.6) for some constants k, λ > 0. Let ∆ be
the Laplacian on M := Rn × Sn−1. To apply Theorem 2.2, we choose the reference symmetric
diffusion process generated by

L̂ := ∆− {∇(1)V (x1)} · ∇(1),

which is symmetric in L2(µ). As shown in the proof of Example 3.1, (3.4) holds for n′ = 2n.
So, by Theorem 2.2 for d′ =∞, it suffices to verify (2.3), (2.4) and (2.5) for p = 2, β = 1

2
, d =

n′ + n− 1.
By (A2) and the compactness of Sn−1, the Bakry-Emery curvature of L̂ is bounded below

by a constant, and there exists a constant λ > 0 such that

µ(f 2) ≤ 1

2λ
µ(|∇f |2) + µ(f)2, f ∈ C1

b (M).
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Then as explained in steps (a)-(b) in the proof of Theorem 3.1, (2.3) and (2.4) hold for p =
2, β = 1

2
and some constants k > 0.

By [28, Theorem 2.4.4] and that the Bakry-Emery curvature of L̂ is bounded from below,
we find a constant c1 > 0 such that

p̂r(x, x) ≤ c1

µ(B(x,
√
r))

, x ∈M, r ∈ (0, 1].

Noting that
Λ(B(x2, r)) ≥ c2r

n−1, r ∈ (0, 1]

holds for some constant c2 > 0, as explained in step (c) in the proof of Theorem 3.1, we derive
(2.5) for d = n′ + n− 1.

5 Subordinate Wright-Fisher type diffusion processes

For 1-dimensional Wright-Fisher diffusions, the convergence rate has been derived for the em-
pirical measure with respect to the Wasserstein distance induced by the intrinsic distance.
However, for higher dimensional Wright-Fisher type diffusion processes, the intrinsic distance
is less explicit, so that it is hard to apply the framework introduced in [34]. Below, we consider
higher dimensional Wright-Fisher type diffusion processes using Wasserstein distance induced
by the Euclidean distance rather the intrinsic distance, so that the framework introduced in
the present paper works well.

Let 2 ≤ N ∈ N, consider

∆(N) :=
{
x ∈ [0, 1]N : |x|1 :=

N∑
i=1

x1 ≤ 1
}
.

Given q = (qi)1≤i≤N+1 ∈ [1,∞)N+1, the Dirichlet distribution µ with parameter q is a proba-
bility measure on ∆(n) defined as follows:

µ(dx) := 1∆(N)(x)h(x)dx, h(x) :=
Γ(|q|1)∏N+1
i=1 Γ(qi)

N+1∏
i=1

xqi−1
i ,

|q|1 :=
N+1∑
i=1

qi, xN+1 := 1− |x|1, x ∈ ∆(N).

(5.1)

The Dirichlet distribution arises naturally in Bayesian inference as conjugate priors for cate-
gorical distribution, and also arises in population genetics describing the distribution of allelic
frequencies, see for instance [8] and references within.

Let Xt be either the Wright-Fisher diffusion with mutation generated by

N∑
i,j=1

(
xiδij − xixj

)
∂xi∂xj +

N∑
i=1

(qi − |q|1xi)∂xi ,
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or the diffusion process generated by

N∑
i=1

{
xi(1− |x|1)∂2

xi
+
(
qi(1− |x|1)− qN+1xi

)
∂xi

}
.

Then the associated Dirichlet form is determined by

(5.2) E (f, g) :=

{
µ
(∑N

i,j=1(xiδij − xixj)(∂xif)(∂xjg)
)
, the first case,

µ
(∑N

i,j=1 xi(1− |x|1)(∂xif)(∂xjg)
)
, the second case,

for any f, g ∈ C1
b (∆(N)). In both cases, the Poincaré inequality

(5.3) µ(f 2) ≤ 1

λ
E (f, f), f ∈ C1

b (∆(N)), µ(f) = 0

holds for some constant λ > 0, see [23] and [11] for the value of the largest constant λ (i.e. the
spectral gap).

Theorem 5.1. Let p ∈ [2,∞), B ∈ Bα for some α ∈ [0, 1], and ρ(x, y) = |x− y|, x, y ∈ ∆(N).
Let ξt(K) be in (2.14) for

K :=
1

2
+
d

4
− αd

2d′
, d := |q|1 − 1, d′ := 4

N∑
i=1

qi + 2qN+1 − 2.

Then there exists a constant c > 0 such that

sup
x∈∆(N)

Ex[Wp(µ
B
t , µ)2] ≤ cξt(K), t > 0.

To apply Theorem 2.2, let P̂t be the Neumann semigroup on ∆(N) generated by

L̂ := ∆ + (∇ log h) · ∇,

where h is in (5.1). The associated Dirichlet form is determined by

Ê (f, f) = µ(|∇f |2), f ∈ C1
b (∆(N)).

To verify (2.3), we first present the following lemma on the super Poincaré inequality of Ê .

Lemma 5.2. For the above Ê and µ, there exists a constant c > 0 such that

(5.4) µ(f 2) ≤ rÊ (f, f) + c
(
1 + r−

|q|1−1
2

)
µ(|f |)2, f ∈ D(Ê ), r > 0.

Proof. (a) We follow the idea of [37]. For any s > 1 and r > 0, let

Ds :=
{
x ∈ ∆(N) : φ(x) := (1− |x|1)−1 ≤ s

}
,

λ(s) := inf
{
Ê (f, f) : f ∈ C1(∆(N)), f |Ds = 0, µ(f 2) = 1

}
,
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sr := inf
{
s > 1 : λ(s) ≥ 8r−1

}
,

so that φ(x) := (1− |x|1)−1 satisfies

h(s) := sup
Ds

Ê (φ, φ) = Ns4, s > 1.

According to [37, Theorem 2.1], if

(5.5) µ(f 2) ≤ rÊ (f, f) + βs(r)µ(|f |)2, r > 0, f ∈ C1(∆(N)), f |Dcs = 0

holds for some βs : (0,∞)→ (0,∞), then there exists a constant c1 > 0 such that

(5.6) µ(f 2) ≤ rÊ (f, f) + β(r)µ(|f |)2, f ∈ D(Ê ), r > 0

holds for

(5.7) β(r) := c1 +
(
2 + 8Nrs2

r

)
β3sr

( r

8 + 4Nrs2
r

)
, r > 0.

(b) Let E be in (5.2). By [37, Lemma 3.2], there exist constants c2, s0 > 0 such that

inf
{
E (f, f) : f ∈ C1(∆(N)), f |Ds = 0, µ(f 2) = 1

}
≥ c2s, s ≥ s0.

Noting that Ê (f, f) ≥ sE (f, f) holds for f ∈ C1(∆(N)), f |Ds = 0, this implies

λ(s) ≥ c2s
2, s ≥ s0.

Hence, we find a constant c3 > 0 such that

(5.8) sr ≥ c3(1 + r−
1
2 ), r > 0.

(c) To estimate βs(r) in (5.5), we first consider the following product probability measure
µ̃ on [0, 1]N :

µ̃(dx) :=
N∏
i=1

µi(dxi), µi(dxi) := qix
qi−1
i dxi, 1 ≤ i ≤ N.

For any r ∈ (0, 1
2
] and I := [a, b] ⊂ [0, 1] with µi(I) = r, we intend to prove

(5.9) µ∂i ((∂I) \ {0, 1}) = µ∂i ({a, b} \ {0, 1}) ≥ qir
1−q−1

i ,

where µ∂i ({s}) := qis
qi−1 for s ∈ [0, 1] is the boundary measure induced by µi. We have

bqi = µ([0, b]) ≥ µ(I) = r,

so that b ≥ rqi . If b < 1, then

µ∂i ((∂I) \ {0, 1}) ≥ µ∂i ({b}) = qib
qi−1 ≥ qir

1−q−1
i .
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When b = 1, we have
1− aqi = µi([a, 1]) = µi(I) = r,

which implies a ≥ (1− r)q−1
i and hence, for r ∈ (0, 1

2
],

µ∂i ((∂I) \ {0, 1}) ≥ µ∂i ({a}) = qia
qi−1 ≥ qi(1− r)1−q−1

i ≥ qir
1−q−1

i .

In conclusion, (5.9) holds for any r ∈ (0, 1
2
] and interval I ⊂ [0, 1] with µi(I) = r, so that

κ(r) := inf
µi(I)≤r

µ∂i ((∂I) \ {0, 1})
µi(I)

≥ qir
−q−1

i , r ∈ (0, 1/2].

This implies

κ−1(2r−
1
2 ) := sup

{
r′ ∈ (0, 1/2] : κ(r′) ≥ 2r−

1
2

}
≥ 1

2
∧
{
qqii r

qi
2

}
, r > 0.

According to [27, Theorem 3.4.16(1)], we find a constant c4 > 0 such that this implies

µi(f
2) ≤ rµi(|f ′|2) + c4(1 + r−

qi
2 )µi(|f |)2, f ∈ C1([0, 1]), r > 0, 1 ≤ i ≤ N.

By [37, Proposition 2.2], we derive

(5.10) µ̃(f 2) ≤ rµ̃(|∇f |2) + c5

(
1 + r−

1
2

∑N
i=1 qi

)
µ̃(|f |)2, f ∈ C1([0, 1]N), r > 0.

Now, given f ∈ C1(∆(N)) with f |Dcs = 0, take

g(x) := f(x)(1− |x|1)
qN+1−1

2 , x ∈ ∆(N).

By (5.10), we find constants c6, c7 > 0 such that

µ(f 2) = c6µ̃(g2) ≤ c6r1µ̃(|∇g|2) + c6c5

(
1 + r

− 1
2

∑N
i=1 qi

1

)
µ̃(|g|)2

≤ c7r1µ(|∇f |2) + c7s
2r1µ(f 2) + c7

(
1 + r

− 1
2

∑N
i=1 qi

1

)
sqN+1−1µ(|f |)2, r1 > 0.

For any r > 0, by choosing

r1 =
1

2c7

(
r ∧ s−2

)
in the above inequality, we find a constant c8 > 0 such that (5.5) holds for

βs(r) := c8

(
1 + (r ∧ s−2)−

1
2

∑N
i=1 qi

)
sqN+1−1, s > 1, r > 0.

Combining this with (5.8), we find a constant c > 0 such that β(r) in (5.7) satisfies

β(r) ≤ c(1 + r−
|q|1−1

2 ), r > 0,

and hence (5.4) follows from (5.6).
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Proof of Theorem 5.1. Note that ρ is bounded. Moreover, by (5.14) below, pB1 = E[pSB1 ], and

the second inequality in (2.33), we see that pB1 is also bounded. Then the desired estimate
follows from (2.13) for q = 2. Noting that qi ≥ 1 implies

d′ = 4
N∑
i=1

qi + 2qN+1 − 2 ≥ 4
N∑
i=1

qi ≥ 8 > 4α,

by Theorem 2.2, it suffices to verify (A1) and (2.10) for the given constants d, d′ and

β :=
1

2
+
d(p− 2)

4p
,

for which we have Kβ,d,d′,α = K.
(1) Let h be in (2.12). Since qi ≥ 1, we have ∇2 log h ≤ 0, so that the Bakry-Emery

curvature of L̂ is nonnegative. Since ∆(N) is convex, according to [28, Theorem 3.3.2(11)], we
have

(5.11) |∇P̂tf | ≤
1√
t
(P̂t|f |2)

1
2 , t > 0.

Since the Dirichlet form Ê of P̂t is larger than E , (5.3) implies the same inequality for Ê , so
that

(5.12) ‖P̂t − µ‖L2(µ) ∨ ‖Pt − µ‖L2(µ) ≤ e−λt, t ≥ 0.

Then (2.6) holds. Moreover, it is easy to see that (5.4) implies the Nash inequality

µ(f 2) ≤ c1

(
1 + Ê (f, f)

) d
d+2 , f ∈ D(Ê ), µ(|f |) = 1

for some constants c1 > 0, so that by [9, Corollary 2.4.7],

‖P̂t‖L1(µ)→L∞(µ) ≤ ‖P̂ t
2
‖L1(µ)→L2(µ)‖P̂ t

2
‖L2(µ)→L∞(µ)

= ‖P̂ t
2
‖2
L1(µ)→L2(µ) ≤ c(1 ∧ t)−

d
2 , t > 0

holds for some constant c > 0. Combining this with the interpolation theorem, we find a
constant c2 > 0 such that

(5.13) ‖P̂t‖Lq1 (µ)→Lq2 (µ) ≤ c2

(
1 + t

− d(q2−q1)
2q1q2

)
, t > 0, 1 ≤ q1 ≤ q2 ≤ ∞.

Taking q1 = 1 and q2 =∞ we derived (2.5), while choosing q1 = 2, q = p we deduce (2.3) with

β = 1
2

+ d(p−2)
4p

from (5.11) and (5.12).

On the other hand, by [37, Proof of (3.1)], the super Poinaré inequality

µ(f 2) ≤ rE (f, f) + c3(1 + r1−2
∑N
i=1 qi−qN+1)µ(|f |)2, r > 0, f ∈ D(E )
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holds for some constant c3 > 0. Noting that 2
∑N

i=1 qi + qN+1 − 1 = d′

2
, as explained above, we

find a constant c > 0 such that

(5.14) ‖Pt‖L1(µ)→L∞(µ) ≤ c(1 ∧ t)−
d′
2 , t > 0,

so that (2.10) holds.
(2) It remains to verify (2.4). Since qi − 1 ≥ 0, for any x, y ∈ ∆(N), we have

N∑
i=1

(yi − xi)
(qi − 1

xi
− qN+1 − 1

1− |y|1

)
=

N∑
i=1

(qi − 1)(yi − xi)
yi

+
(qN+1 − 1)(|x|1 − |y|1)

1− |y|1

≤
N+1∑
i=1

(qi − 1) <∞.

So, for any 2 ≤ n ∈ N, we find constants c1(n), c2(n) > 0 such that

L̂|x− ·|n(y) ≤ c1(n)|x− y|n−2 + n|x− y|n−2

N∑
i=1

(yi − xi)
(qi − 1

xi
− qN+1 − 1

1− |y|1

)
≤ c2(n)|x− y|n−2, x, y ∈ ∆(N).

This implies

Ex|x− X̂x
t |n ≤ c2(n)

∫ t

0

Ex|x− X̂x
s |n−2ds, t ≥ 0.

By induction in n ≥ 2, we find constants {c(n) > 0}n≥2 such that

Ex|x− X̂x
t |n ≤ c(n)t

n
2 , t ≥ 0, x ∈ ∆(N), n ≥ 2.

In particular, (2.4) holds for some constant k > 0.

6 Subordinate stable like processes

In this section, we consider the subordinate stable like process in a connected closed smooth
domain M ⊂ Rn, n ∈ N.

Let 0 ≤ V ∈ C2(M) such that

µ = µV :=
e−V (x)dx∫
M

e−V (x)dx

is a probability measure on M . Let δ′ ∈ (0, 2), and let Xt be the Markov process on M
associated with the α′-stable like Dirichlet form

E (f, g) :=

∫
M×M

(f(x)− f(y))(g(x)− g(y))

|x− y|n+α′
µ(dx)µ(dy),

f, g ∈ D(E ) := {f ∈ L2(µ) : E (f, f) <∞}.
(6.1)

Let µBt be the empirical measure of XB
t := XSBt

, where B ∈ B.
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6.1 Bounded M

When M is bounded, we have the following result for the above defined µBt .

Theorem 6.1. Assume that M is bounded. Let ρ(x, y) = |x− y| for x, y ∈M, let B ∈ Bα for
some α ∈ (0, 1], and let ξt be in (2.11) for

(6.2) β :=
1

2
+
n(p− 2)

4p
, d := n, d′ :=

2n

α′
.

Then for any p ∈ [2,∞), there exists a constant c > 0 such that

sup
x∈M

Ex[Wp(µ
B
t , µ)2] ≤ cξt, t ≥ 2.

Proof. Let L̂ = ∆ +∇V be equipped with the Neumann boundary condition. It is well-known
that (2.3)-(2.5) hold for some constant λ > 0 and constants β and d′ in (6.2). According to [7,
Theorem 1.1], there exists a constant k > 0 such that

(6.3) sup
x,y∈M

pt(x, y) ≤ k(1 ∧ t)−
n
α
′
, t > 0.

Although only V = 0 is considered in [7], this estimate also holds for V ∈ C2(M). Indeed,
according to [9, Corollary 2.4.7], (6.3) is equivalent to the Nash inequality

µ(f 2) ≤ c
(
1 + Ê (f, f)

n
n+α′

)
, f ∈ D(Ê ), µ(|f |) = 1

for some constant c > 0. If this inequality holds for V = 0, then it also holds for bounded V ,
which is the case when V ∈ C2(M) for compact M .

By (6.3), (2.10) holds for d′ = 2n
α

′
, and the generator L of Pt has discrete spectrum. Since

the Dirichlet form E is irreducible, the discreteness of the spectrum implies the existence of
a spectral gap, so that (2.6) holds for some constant λ > 0. Since ρ is bounded, and by the
second inequality in (2.33), (6.3) implies

‖pB1 ‖∞ ≤ kE[(1 ∧ SB1 )−
n
α
′
] =: c0 <∞.

Combing this with ‖ρ‖∞ := supx,y∈M |x− y| <∞ since M is bounded, and applying (2.13) for
q = 2, we obtain

Ex[Wp(µ
B
t , µ)2] ≤ 2

t2
‖ρ‖2

∞ + 2c0cξt−1,

which implies the desired estimate, since there exists a constant c′ > 0 such that t−1∨ξt−1 ≤ c′ξt
holds for t ≥ 2.

Remark 6.1. To show the optimality of Theorem 6.1, we simply consider p = 2, α = 1, α′ = 2,
and denote µBt = µt. Then Theorem 6.1 implies

sup
x∈M

Ex[W2(µt, µ)2] ≤ c


t−1, if n ≤ 3,

t−1{log(2 + t)}3, if n = 4,

t−
2

n−2 , if n ≥ 5,

which is sharp except for n = 4 where the exact order is t−1 log(2 + t) according to [39]. This
minor loss is caused by the fact that in general Pt 6= P̂t, so that in proof of Theorem 2.2 we can
not combining them together by using the semigroup property as in [39].
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6.2 M = Rn.

Assume that V satisfies the following conditions for some constants k > 0, d ≥ n:

∇2V ≥ −kIn, e−V ∈ C2
b (Rn),(6.4)

lim inf
|x|→∞

1

|x|
〈∇V (x), x〉 > 0,(6.5) ∫

Rn

µ(dx)

µ(B(x, r))
≤ kr−d, r ∈ (0, 1],(6.6)

inf
x∈Rn

eV (x)

(1 + |x|)n+α′
> 0,(6.7)

lim
r→∞

inf
|x|≥r−1

rn+α′−1
{
|∇e−V (x)|+ r−1e−V (x)

}
= 0.(6.8)

We have the following result for µBt defined for the subordinate process of the jump process
with Dirichlet form (2.40).

Theorem 6.2. Assume (6.4)-(6.8), and let B ∈ B. Then the following assertions hold.

(1) There exists a constant c > 0 such that

(6.9) Eµ[W2(µBt , µ)2] ≤ ct−
2
d , t ≥ 1.

(2) Let B ∈ Bα for some α ∈ (0, 1], and there exist constants k, d′ > 1 such that

(6.10) ‖Pt‖L1(µ)→L∞(µ) ≤ k(1 ∧ t)−
d′
2 , t ∈ (0, 1],

then there exists a constant c > 0 such that

(6.11) sup
x∈Rn

Ex[W2(µBt , µ)2] ≤ cξt, t ≥ 2,

where ξt is in (2.11) for β = 1
2
, d in (6.6) and d′ in (6.10).

Proof. (1) Let L̂ = ∆−∇V . Then (6.5) implies

lim sup
|x|→∞

L̂| · |(x) < 0,

so that [26, Corollary 1.4] implies gap(L̂) > 0, so that by Proposition 2.1, (2.3) holds for p = 2
and β = 1

2
. Moreover, (2.4) and (2.5) have been verified in steps (b) and (c) in the proof of

Theorem 3.1, respectively. Finally, by [35, Theorem 1.1(1)], (6.7) and (6.8) imply the Poincaré
inequality for E , so that (2.6) holds for k = 1 and some constant λ > 0. Therefore, the estimate
(6.9) follows from (2.12) with β = 1

2
, α = 1 and d′ =∞.

(2) When (6.10) holds, by the second inequality in (2.33), we have

‖pB1 ‖∞ ≤ kE[(1 ∧ SB1 )−
d′
2 ] <∞.
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Moroever, (6.5) implies µ(| · |l) < ∞ for all l ∈ (1,∞). Combining this with (6.10), for large
enough l we find constants c1, c2 > 0 such that

sup
x∈Rn

∫ 1

0

Ex|XB
s |2ds ≤ E

∫ 1

0

∥∥PSBs | · |2∥∥∞ds

≤ µ(| · |2l)
1
lE
∫ 1

0

‖PSBs ‖Ll(µ)→L∞(µ)ds

≤ c1

∫ 1

0

E
[
(1 ∧ SBs )−

d′
2l

]
ds ≤ c2

∫ 1

0

s−
d′
2lαds <∞.

Therefore, (6.11) follows from (2.13) with q = 2.

Example 6.1. Let 0 ≤ V ∈ C2(Rn) be in Example 2.1 for some τ > 1
2
. Let B ∈ Bα for some

α ∈ (0, 1], and let ξt(K) be in (2.14) for

Kδ :=
1

2
+
τn(δn+ δα′ − αα′)
2δ(2τ − 1)(n+ α′)

, δ > 2.

Then for any δ > 2 there exists a constant c > 0 such that

(6.12) sup
x∈Rn

Ex[W2(µBt , µ)2] ≤ cξt(Kδ), t ≥ 1.

Proof. Conditions (6.4), (6.5), (6.7), and (6.8) trivially hold. Next, as shown in the proof of
(2.17), (6.6) holds for d = 2τn

2τ−1
. Moreover, by [35, Corollary 1.5], for any δ > 2 there exists a

constant k > 0 such that

‖Pt‖L1(µ)→L∞(µ) ≤ k(1 ∧ t)−
δ(n+α′)
α′ , t ∈ (0, 1],

so that (6.10) holds for d′ = 2δ(n+α′)
α′

, which satisfies d′ > 2α. It is easy to see that for β = 1
2

and d, d′ given above we have Kδ = Kβ,d,d′,α, so that (6.12) follows from (6.11).
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[21] M. Röckner, F.-Y. Wang, Weak Poincaré inequalities and convergence rates of Markov semi-
groups, J. Funct. Anal. 185(2001), 564–603.

[22] R. Schilling, R. Song, Z. Vondracek,Bernstein Functions, Walter de Gruyter, Berlin 2010.

[23] W. Stannat, On validity of the log-Sobolev inequality for symmetric Fleming-Viot operators,
Ann. Probab. 28(2000), 667–684.

[24] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202(2009), iv+141.

[25] C. Villani, Optimal transport: Old and New Part 1,2, Springer, 2009.

[26] F.-Y. Wang, Existence of the spectral gap for elliptic operators, Arkiv för Math. 37(1999),
395–407.

[27] F.-Y. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory, Science
Press/Elsevier, 2005.

[28] F.-Y. Wang, Analysis of Diffusion Processes on Riemannian Manifolds, World Scientific, 2014.

[29] F.-Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct.
Anal. 272(2017), 5360–5383.

[30] F.-Y. Wang, Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet
diffusion processes, J. Funct. Anal. 280(2021), 108998, 23pp.

[31] F.-Y. Wang, Wasserstein convergence rate for empirical measures on noncompact manifolds,
Stoch. Proc. Appl. 144(2022), 271–287.

[32] F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of semilinear SPDEs,
Ann. Appl. Probab. 33(2023), 70–84.

[33] F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion
processes on manifolds, J. Eur. Math. Soc. 25(2023), 3695–3725.

[34] F.-Y. Wang, Convergence in Wasserstein distance for empirical measures of non-symmetric
subordinated diffusion processes, arXiv:2301.08420.

[35] F.-Y. Wang, J. Wang, Functional inequalities for stable-like Dirichlet forms, J. Theor. Probab.
28(2015), 423–448.

[36] F.-Y. Wang, B. Wu, Wasserstein convergence for empirical measures of subordinated diffusion
processes on Riemannian manifolds, Potential Anal. 59(2023), 933–954.

[37] F.-Y. Wang, W. Zhang, Nash inequality for Diffusion processes associated with Dirichlet distri-
butions, Front. Math. China 14(2019), 1317–1338.

[38] F.-Y. Wang, X. Zhang, Derivative formula and applications for degenerate diffusion semigroups,
J. Math. Pures Appl. 99(2013), 726–740.

35



[39] F.-Y. Wang, J.-X. Zhu, Limit theorems in Wasserstein distance for empirical Measures of dif-
fusion processes on Riemannian manifolds, Ann. Inst. Henri Poincar. Probab. Stat. 59(2023),
437–475.

[40] Jie-Xiang Zhu, Asymptotic behavior of Wasserstein distance for weighted empirical measures of
diffusion processes on compact Riemannian manifolds, arXiv: 2310.01670.

36


