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Abstract

We consider stochastic different equations on R? with coefficients depending on the path
and distribution for the whole history. Under a local integrability condition on the time-
spatial singular drift, the well-posedness and Lipschitz continuity in initial values are proved,
which is new even in the distribution independent case. Moreover, under a monotone condi-
tion, the asymptotic log-Harnack inequality is established, which extends the corresponding
result of [5] derived in the distribution independent case.

Keywords: Path-distribution dependent SDEs, well-posedness, asymptotic log-Harnack inequal-
ity, gradient estimate.

1 Introduction

The dimension-free Harnack inequality with power was first introduced in [11] to study the log-
Sobolev inequality on Riemanian manifolds, and has been intensively extended and applied to
derive regularity estimates many for SDEs (stochastic differential equations), SPDEs (stochastic
partial differential equations), path dependent SDEs, and distribution-dependent SDEs, see
[13, 10, 9] and references therein. As a limit version when the power goes to infinite, the log-
Harnack inequality has been introduced in [12] to characterize the curvature lower bounded
and entropy-cost estimates, and has been extended to metric measure spaces [1, 8. When the
noise of a stochastic system is weak such that the log-Harnack inequality is not available, the
asymptotic log-Harnack inequality has been studied in [5, 16] for path-dependent SDEs and
SPDESs, which in particular implies an asymptotic gradient estimate.

In this paper, we study the well-posedness and asymptotic log-Harnack inequality for path-
distribution dependent SDEs with infinite memory.

*Supported in part by the National Key R&D Program of China (No. 2022YFA1006000, 2020YFA0712900).



Let (R%,|-|) be the d-dimensional Euclidean space for some d € N. Denote by R? @ R? the
family of all d x d-matrices with real entries, which is equipped with the operator norm || - ||.
Let A* denote the transpose of A € R @ R?, and let || - ||« be the uniform norm for functions
taking values in R, R? or R% @ R,

To describe the path dependence with exponential decay memory, let € := C((—oc, 0]; R%)
and for 7 > 0, set

Cr = {f €C &= sup (e™|&(9)]) < oo} . (1.1)

s$€(—00,0]

It is well known that (C'((—o0,0]; R?), |- ||s) is complete but not separable, so is (¢, || - ||+) due
to the isometric

Cro>&:= (58)56(700,0] —elE = (engs)se(foo,O] € C((—O0,0];Rd).

Let &2 and Z(%,) be the set of all probability measures on (R?, Z(R%)) and (%, B(%,)),
respectively, equipped with the weak topology. Let %,(%;) be the class of bounded measurable
functions on €, and %j (€>) the set of strictly positive functions in %(%).

Let (W(t))i>0 be a d-dimensional Brownian motion defined on a complete filtered probability
space (Q,.Z,(%t)i>0,P). For an .#p-measurable random variable X := ((—00,0] 3 7 — X (7))
on %,, we consider the following path-distribution dependent SDE with infinite memory:

dX(t) = b(t, Xy, Lx,)dt + o(t, Xy)dW (t), t >0, (1.2)
where for each fixed t > 0, Xy(-) € € is defined by
X(r):=X({t+r), re(—o00,0],
which is called the segment process of X(t), £Lx, € Z(%;) is the distribution of X;, and
b:RT X € x 2(¢,) - RY, o:RT x%6 - RI@R?

are measurable. When different probability spaces are concerned, we use Ly, p in place of Zx,
to emphasize the underline probability.
For any constant k£ > 0, let

Pu(6r) = {p e P(&) : |ully = p(ll - [£)F < o},

where for k = 0 we set (|| - |£)% = 1 such that Py(%,) = P(%,). When k > 0, P,(€,) is a
complete metric space under the LF-Wasserstein distance,

1

1VE
We(iv) == sup _inf ( / Hf—nH’fv,ﬂ(df,dn)> L v e PyE),
N>17€C(pY) \ J&, x.

where C(u,v) is the set of all coupling of 1 and v, and
€]

N = sup (e%|&(s)]), N eN.
SE[—N,0]



To see this, let (%) be the space of all probability measures on ¢y, := C([—N,0]; R?)
with finite k-moment of the uniform norm, let pun € &% (%én ) be the marginal distribution on
€N, of u, and let

1
1Vk
Wi(un,on) = in ( / e - nllf?v,ﬂ(df,dn)>
(gN,T X%N,T

m€C(uN,VN)

Since € is Polish under the norm || - || v+, (Zk(én,r), Wi) is a Polish space as well, and

1

~ 1Vk

Wi (pn,vn) = Wi(un,vN) := inf </ 1€ —nl% » W(dﬁ,dn)) : (1.3)
TeC(wv) \ J%, x%,

Since the marginal distribution on 4, x €N, of a coupling for ; and v is a coupling of uy
and vy, we have }
We(un,vn) < Wi(un, vN)-

On the other hand, let mx € € (un,vn) such that

1
1Vk
Wi, var) = ( / HsN—nNm,m<d§N,an>) .
%N,TX N,

Noting that %, is separable under norm || - ||;+1, the completeness €, of €, under this norm
becomes a Polish space. Since

|l = Jim [l 720,

and || - || v+ is continuous with respect to | - ||+ for any 7,7’ > 0, we conclude that | - ||, and
| - |ltaus1 induce the same Borel o-field on 4. So, by extending u,v € P(€,) as probability
measures on the Polish space @, such that Z\‘KT is a null set, p and v have regular conditional
distributions pu(-|€n) and v(-|€y) on C((—oo, —N);RY) given &y € €n,. So, for any & € €,
letting
En = £|[—N,O]7 v = §|(—oo,—N)>
the measure
m(d&, dn) := mn (dén, dnn ) u(dERIEN) v (dny nn )

is a coupling of x4 and v, and
llk
vy < ([ el nias.an)
CrXCr

1
1Vk
- < / el mv(da,dn)) = Wl o).
CrXCr

Thus, (1.3) holds, so that Wy, is a complete metric on & (én,-), which trivially implies the
triangle inequality of Wy on & (%;). If {M(n)}n21 is a Wy-Cauchy sequence in 7 (%;), then
so is {M%)}nzl for every N € N. Hence, Mg\TrL) has a unique limit py in P (én,) under Wy,



and the family {un}n>1 is consistent, so that by Kolmogorov’s extension theorem, there exists
a unique pu € P (¢,) with {un}n>1 as marginal distributions, so that

lim Wy (u™, p) = lim sup Wi (e, i) = lim sup lim Wi, 1)
— 00

< lim lim sup Wk(ugv),,ugv )) = lim lim Wk(,u( ),u(m)) =0.

n—0o0 Mm—0o0 N n—o0 m—oo

Hence, & (%;) is complete under Wy.
Moreover, for any k > 0, (%) is a complete (but not separable) metric space under the
weighted variation distance

sup (f) = v(N)l = lp = |+ - 15,
FEB( ) \fI<1H

|1

where |y — v| is the total variation of y — v. According to [10, Remark 3.2.1], for any k£ > 0,
there exists a constant ¢ > 0 such that

H:U' - l/HUaT‘ + Wk(,uv V)l\/k < CH,U/ - V”k,’uarv IR fgzk<ch) (14)

Denote Wy, yor = Wi + || - ||k var for simplicity.
We will solve (1.2) for distribution £, belonging to a subclass & (%,) C P, (%€;) such that
Zx, is weakly continuous in ¢ > 0.

Definition 1.1. (1) An adapted continuous process (X¢)s>0 on % is called a segment solution
of (1.2) with initial value Xy, if Xy is an Zp-measurable random variable on %, and
(X(t) := X1(0))>0 satisfies

t
/ E[[b(r, Xy, Zx)| + lo(r X,) 2| %] dr < o0, ¢ >0,
0
and P-a.s.
t t
X(t) = X(0) +/ b(r, Xr,fxr)dr+/ o(r, X,)dW(r), t=>0.
0 0

In this case (X(t))i>0 is called the (strong) solution. The SDE (1.2) is called strongly
well-posed for distributions in & (¢7), if for any Fp-measurable X with £x, € P (¢;),
it has a unique segment solution with Zx, € & (%;) for t > 0.

(2) A couple (X¢, W(t))¢>0 is called a weak segment solution of (1.2) with initial distribution
1 € P(€,), if there exists a probability space under which W (t) is d-dimensional Brown-
ian motion and £x, = u, such that (X (¢) := X4(0));>0 solves the SDE (1.2). We call (1.2)
weakly unique, if for any two weak segment solutions (X7, W(t));>o under probabilities
P’ with common initial distribution, we have Lxapr = Lxzppe for all t > 0. We call (1.2)

weakly well-posed for distributions in P, (¢), if for any initial distribution it has a unique
weak segment solution.



(3) The SDE (1.2) is called well-posed for distributions in (%), if it is both strongly and
weakly well-posed for distributions in @k(‘@) In this case, for any £ € %, such that
.ﬁ/ﬂg € @k(%q—), let

Pt*7:gxf7 Y :gﬁ

and denote
Pf(7) == E[f(X5)] = L FAPIYY, v =2t >0, f € B(E),

where (Xf)tzo is the unique solution to (1.2) with Xg =¢.

To characterize the singularity of coefficients in time—space variables, we recall some func-
tional spaces introduced in [14]. For any p > 1, LP(R?) is the class of measurable functions f

on R? such that 1
P
1 fll e ey == </Rd | f(2)|P da:) < 0.

For any p,q > 1 and 0 < s < t, let f)g(s,t) denote the class of measurable functions f on
[5,t] x R? such that

t q
Hf“f/g(s,t) ‘= sup (/ ||lB(z,1)fr|qu(Rd)dr> < 00, (1'5)
z€R4 s

where B(z,1) := {z € R?: |z — 2| < 1}.
When s = 0, we simply denote

We will take (p, q) from the class

H = {(p,q):p,q€(2,oo), i+z<1}. (1.6)

2 The Singular Case: Well-Posedness and Lipschitz Continuity
in Initial Value

In this section, we let £ > 0 and consider (1.2) with singular drifts and o(t,£) = o(¢,£(0)).

2.1 Path Dependent SDEs with Infinite Memory
In this part, we consider the following path dependent SDE with infinite memory on R%:

dX(t) =0b(t, Xp)dt + o(t, X (t))dW (t), t>0, Xog=¢&€ E;. (2.1)
To ensure the existence and uniqueness of solutions to (2.1), we decompose b as

b(t, &) = b (¢, £(0)) + b (t,€), t>0, E€F



and make the following assumptions on @ (1) and . For any ¢ € %, let €9 € %, be defined
as

(A1) a:=oc* is invertible with ||a||s + ||(a)}|se < K for some constant K > 0 and

lim sup ||Cl,t({li) - at(y)H = 07 T e (07 OO), T,y € Rd'
el |z—y|<e,te[0,T]

i 75 Qi i i = L, P ) i > Ju
(A2) There exist constants {(p;,q)}o<i<t € # with [ > 1, p; > 2, and functions 0 < f; €
NnenLhi(n), 0 < i <, such that
l
DO < fo, Vel <> fir
i=0

(Asz) For every n > 0, there exists a constant K, > 0 such that

b, 6) = b0t )| < Kall€ = nllr, >0, (€]l Inll- < n. (2.2)

Moreover, there exists a constant K > 0 such that

bW (¢, &) — bW (¢, %) < K1+ [|€]l7), t>0,€ €% (2.3)

Theorem 2.1. Assume (A1)—(As). Then (2.1) is well-posed for any initial value in €, and
for any constants k, T > 0, there exists a constant ¢ > 0, such that

E Xo

sup (14 1X%)
t€[0,7]

<1+ IXollt). (2.4)

Let Xf be the segment solution with X ¢ = &. To ensure the Lipschitz continuity of Xf in &,
we strengthen (As) to

(A3) sup;>o 16 (,0)| < 0o, and there exist constants K > 0 and « € [0, 1] such that

D (t,€) — bD (2, )| < K€ = 1|,
bW (¢, &) — b (¢, %) < K 1+ [|€]2), t>0, &n € E,

Theorem 2.2. Assume (A1), (A2) and (A%5). Then for any constants € € (0,1) and k, T > 1,
there exists a constant ¢ > 0 such that

E

2a 2
s I1x¢ — Xfll'ﬁ] < et HIE) e — )k, ¢ € @, (2.5)
te|0,



2.2 Path-Distribution Dependent SDEs with Infinite Memory

To ensure the well-posedness of solutions to (1.2) with singular drift for distributions in (%),
we decompose b as

b(t, &, 1) = b (8,6(0)) + 6t E ), 120, E€Cr, € Pi(Ey),
and impose the following assumptions on b©,b(!) and o.
(Hp) b and a := oo* satisfy (A1) and (Ay).

(Ha2) sup;> 61 (£,0,80)| < 0o, and there exists a function H € L}, ([0, 00); (0,00)) and con-
stants K > 0, o € [0,1] such that

W (¢, &, 1) — bD (t,n,v) | < K€ — |2 + H ()W war (11, 0)2, (2.6)
W (¢, &, 1) —bM (£, €%, )| < K {1+ [|€]12 + ||pllw}
t>0, {n€EC, uve P(E,). (2.7)

Theorem 2.3. Assume (Hi)-(Hz). Then the SDE (1.2) is well-posed for distributions in
PR (Cr), where

P o(Cr) = {u € Py(€r) (eEH'Haa) < oo for some ¢ € (0, 1)} (2.8)

Moreover, for anyn > 1 and T € (0,00), there exists a constant ¢ > 0 such that any solution to
(1.2) satisfies

E | sup [ X7

te[0,7)

Xo] < c(1+[|Xoll7)- (2.9)

3 The Monotone Case: Well-Posedness and Asymptotic log-
Harnack inequality

In this section, we consider (1.2) with monotone coefficients and establish the well-posedness
and asymptotic log-Harnack inequality.

3.1 Path Dependent SDEs with Infinite Memory
Note that when the SDE
dX(t) = b(t, Xp)dt + o(t, Xp)dW (t), t >0, Xog=¢& € ;. (3.1)

is time-homogenous and monotone, the asymptotic log-Harnack inequality has been derived in
[5, Theorem 3.1] for the Markov semigroup

Pf(€) =E[f(X})], t20, E€%, feB(E).



We call i an invariant probability measure of F;, if it is a probability measure on %, such that

| rrdu= | fan e
%, @
An important application of this inequality is the gradient estimate. For any function f on %,

“ £~ F)
IVF(©)lloc = sup !
nee ey M€ —mnll+
be the Lipschitz constant of a function f at point £ € %, which coincides with the norm of the
gradient V f(§) if f is Gateaux differentiable at £&. We denote f € Cy, 1,(%7) if
[flloo + IV flloo < o0

Since the proof of [5, Theorem 3.1 and Theorem A.1] apply also to the time-inhomogenous case
which is crucial in the study of distribution dependent SDEs, we reformulate this result and its
consequence for (3.1) with time dependent coefficients without proof.

(B) b(t,-) € C(€r;RY) for each t > 0, o is invertible, and there exists a constant K > 0 such
that

lo(t, &) — a(t,n)||? + (b(t, &) — b(t, 1), £(0) — n(0)* < K& — |2,
ot O+ [lot )7 +[b(t,0)| < K, t>0, &{neES;,
where 0 € €, with 0(r) =0,r <0.

Theorem 3.1. Under assumption (B), for any £ € €r, the SDE (3.1) has a unique solution

with Xg = £ such that Xf is a Markov process on €;. Moreover, for any 19 € (0,7), there exists
a constant ¢ > 0 such that for any t >0, &,n € €, and f € B, (€¢;) with |Vlog fls < o0,

E[|X;1I7] < ee (1 +1I<113),

P,log f(n) < log Pf(€) + cl|é — nll2 + ce™ ™|V log fllocl€ — nll- (3.2)
The following result is a direct consequence of Theorem 3.1 and [5, Theorem 2.1] with
E=%, p&n)=6-nlr Tu&)=ce™, AE=c (3.3)

Corollary 3.2. In the situation of Theorem 3.1, the following assertions hold.
(1) For anyt>0,§ € €, and f € Cy1(%r),

IVES(E)] < v/ 2e[Pef? = (PHDE) + ce ™|V fll.

(2) When the coefficients do not depend on t, P, has at most one invariant probability measure,
and if p is its invariant probability measure, then

f
limsup P; f(£) < log e )2 . EEC, B ().
t—00 ﬁgT e—C”f—W”rM(dn)

Consequently, for any closed set A C €, with u(A) =0,
lim P14(€) =0. € €%,
t—00

8



(3) Let & € € and A C €, be a measurable set such that
I A) = litrgiant(ﬁ,A) > 0.
Then for anye >0 and A. :=={n €&, : |In—&| <e,& € A},

litrginf Pi(n,As) >0, ne€E,.

Moreover precisely, for any gy € (0,0(&, A)), there exists a constant tog > 0 such that for
any n € € and e > 0,

1 A —nl-
inf{Pt(n,Ag): t>t0\/(m10g(n)”f€0n”)}>0, n € ;.

3.2 Path-Distribution Dependent SDEs with Infinite Memory

we assume that the following monotone assumption holds, as in [5] in the distribution-free case.

(H') sup;sg |b(t,0,00)| < oo, and b(t,-, 1) € C(%r; R?) holds for any ¢t > 0, u € P(;). More-
over, there exist constants K, Ko > 0 such that and

<b(ta§7lu') - b(tana V)?ﬁ(o) - 77(0)>+ + HJ(t,f) - U(t7n>H2
é K1||£ - 77||’2r + KQWQ(NJ/)Q’ t Z 07 5777 € (gTa M,V € y?(ch)

Theorem 3.3. Assume (H'). Then the following assertions hold.

(1) The SDE (1.2) is well-posed for distributions in &5(€;), and there exists a constant ¢ > 0
such that

Wy (P o, Pivo) < ce®Wa(po,v0), >0, po,vo € Pa(6r). (3.4)

(2) If o is invertible with ||0||oo + |0 oo < 00, then for any 1o € (0,7), there exists a constant
c > 1 such that

Pilog f(v) <log Pif (1) + cK2e“Wo(p,v)? + ce™ ™|V log f|looWa (s, ) (3.5)

holds for t >0, u,v € P5(¢;) and f € B, (€;) with |[V1og flec < 00. Consequently, for
any t >0 and f € Cy 1(€;),

|Pof (1) = Puf (V)] < Wa(p, v)[ce™ ™ |V flloo + 2/ cBoe | floo] - (3.6)

Remark 3.4. Note that (3.5) implies (3.2) for = 0¢, v = 6, and Ky = 0.



4 Proof of Theorem 2.1 Theorem 2.2

To prove these two theorems , we present some lemmas below.

Lemma 4.1. Assume (A1), (A2), (A3) and ||bV]| < co. Then for any initial value & € €,
(2.1) has a unique non-explosive strong solution satisfying (2.4), and for any T € (0,00) there
exists a constant ¢ > 0 such that

E | sup |X%(t) — X”(t)\] <clé=mnll-, &nee (4.1)

t€[0,T
Proof. The desired estimate follows from the proof of [18, Lemma 4.1] with || - ||+ in place of
uniform norm || - || on the path space with finite time interval. O

Next, consider the local Hardy-Littlewood maximal function for a nonnegative function f
on R%:

M f(z) ;== sup !

re(0,1) |B(O7 T)‘ B(0,r)

where |B(0,7)| is the volume of B(0,r) := {y : |y| < r}. The following result is taken from [15,
Lemma 2.1].

Lemma 4.2. (1) There erists a constant ¢ > 0 such that for any f € Cy(R?) with |[Vf| €
Lj,(RY),

loc

[f(x) = f)| < clz = y[(A |V fl(@) + AV () + | flloo), @y €RE (43)

(2) For any T,p,q € (1,00), there exists a constant ¢ > 0 such that
I8 25y < lFzgerys § € ZR(D) (14)
The lemma below examines the exponential integrability of functionals for segment process.

Lemma 4.3. Assume (A1), (A2) and (A%). For any T € (1,00), there exist constants B, kp > 0
such that for any solution (Xi)iepo, 1) to (2.1),

t
E [exp (5 / 1|2 du) ‘g?] < FrB(LHIX ) (4.5)

holds for any 0 < B < Br and 0 < s <t <T.

Proof. Obviously, (4.5) holds for a = 0. By shifting the starting time from 0 to s, we may and
do assume that s = 0. So, by Jensen’s inequality, it suffices to find constants Sr, kT > 0 such
that

T 2
E [exp <,6’T/O [| X || 2 du> 'ﬂo} < ok Br (1] Xo12%) (4.6)

10



By [14, Theorem 3.2] and [17, Theorem 2.1], there exists a constant Ao > 0 such that for any
A > )\, the PDE for u(t,-) : R — R?

(8 + LO)u(t, ) = Au(t,) —bO(¢,), t€[0,T], up=0 (4.7)

has a unique solution in H2(T)), where LO(t) := Vo, + str({oo*}(t,-)V?), and there exist
constants ¢, 6 > 0 such that

N (ulloe + [ Veullo) + 1Betll 20y + IV %ll 20 7y < € A > Do, (4.8)

We may take A > Ao such that

1
Julo + [Vedloc < 5, (49)
so that ©(t,x) := x + u(t, x) satisfies
1 2 2 2 d

For any ¢t € [0,T7], let Y(t) = ©(t, X (¢)). By It6’s formula in [10, Theorem 1.2.3(3)] and (4.7),
we obtain

dY (t) = {Mu(t, X (1)) + VO(t, X ()b (¢, Xy) Yt + ({VO}o)(t, X (£))dW ().

Combining this with (A1), (A2), the second inequality in (A%), (4.9) and It6’s formula, we find
a constant c¢g > 0 such that

Y (@) + 132 <co{[Y ()2 + 1}* 2 {1 + | Y;]|*}dt + dM(t), ¢ € [0,T], (4.11)
where
M (1) = 2a{|Y (1) + 1} (Y (1), ({VO}o) (t, X (1)) AW (2)).
Note that

X2 = sup (TIN5
s€(—00,0]

< sup (") X(s)[P) + sup (eP7°|X(s)[P) (4.12)

s$€(—00,0] s€[0,¢]

= | Xoll7 + sup (e"°[X(s)["), ¢ =0.
s€[0,¢]

Combining this with (4.11), Young’s inequality, Itd’s formula, and (s + 1)" < 1 for s > 0 and
r <0, we find a constant ¢; > 0 such that

d{e® TV (1)]* + 117} < e®THAM(t) + c1 (1 + || Yol2¥) dt

+ sup 7 (Y (s)]* + 1)adt, t e [0,T]. (4.13)
s€[0,t]

11



So, letting
[(t) = H{Y () + 1} +ex (1+ Yol 7*)
L= sup U(s) te 0T,
s€[0,¢]
we find a constant ¢ > 0 and a martingale M (¢) such that

di(t) < clydt + dM(t). (4.14)

Then by [6, Lemma 3.1], we find a constant ¢y > 0 such that
€ ! I(s)+1 %
E|:exp (W/O >‘90:| <e€()+ (]E [exp (28 < ) |ﬂ0:|>
1
t 2
< 0+ (E [exp <6262/ I(s) ds> ‘ﬂ‘ﬂ) , €>0,tel0,T].
0

Taking € = we derive

1
c2TelJrcT I

g t_
. [exp (W /0 I ds>‘£4‘o] < 2EOHD 4 (0,7,

By combining this with (4.9) and (4.12), we derive (4.6) for Br = 75 5er and some constant
kr > 0. O

In the next result, we present Krylov-Khasminskii estimates for SDEs with memory.

Lemma 4.4. Assume (A1), (A2) and (A%). For any constants T, p,q > 1 such that (2p,2q) € #
and & > 0, there exist constants ¢ = ¢(T,p,q,€) > 0 and 6 = 0(T,p,q) > 0 such that the solution

to (2.1) satisfies
e[ [ x>

oo ([ Inx rdu)\ | e[ ce(1esty,,)] @

foranyOSsStSTandfeLg(T).

| < e X 111y, (4.15)
Proof. Without loss of generality, we may simply prove these estimates for s = 0.
For any = € R%, let ¢* € €, be defined as

For any t € [0,T], 2 € R? and £ € %, let

b(t, ) = b0 (t,2) + b (8,67, b(t,€) == bV (t,€) — b (2,€°).

12



By (4.9), (4.12), (4.13) and the Burkholder-Davis-Gundy (BDG) inequality, we find a constant
k1 > 0 such that

E [ sup 12 ﬁ] <y (141 X0 ]12) (4.17)
te[0,T]
For any n > 1, let
Tp = inf{t € [0,T] : || X¢|lr > n}, inf@:=T. (4.18)

By (4.17), (A1), (A2), the second inequality in (A%), and applying Krylov’s estimate in [17,

Theorem 3.1] for b(t, x) in place of b(t, ), see also [10, Theorem 1.2.3(2)], we find constants ko
depending on € and k3 > 0 independent of € such that

e[ R e as

tAT 3
- 3 4.19
g{l@—lre [E </ b(s, X,)|> ds %ﬂ }Hf”i%;(o,t) 19
0

<ks (k2 + el XolI?) 1/l zp 0,0)» ¢ € [0, T7.

#|

Letting n — oo, we derive (4.15) since € > 0 is arbitrary.
To prove (4.16), we shall use Girsanov’s transform. Let

v = {o*(o0®) T ¢, X (£)b(t, Xy), t€[0,T]. (4.20)
Then for any n > 1 and 7, in (4.18),
tATh 1 tATn
Ra(t) = exp [— [ omawey =5 [ b dr], te0,T)
0 0
is a martingale. By Girsanov’s theorem,
tATh
W(t) = W (1) +/ yods, te0,T]
0
is a Brownian motion under the probability measure dQ,, := R,,(7")dP, and X solves the equation
t t
X(t) = X(0) —|—/ b(s, X (s))ds —I—/ o(s,X(s))dW,(s), te€0,7,]. (4.21)
0 0

Since the Krylov estimate in [10, Theorem 1.2.4] holds for (4.21), letting f;*(z) = fr(7)1{jz)<n}>
by the argument in the proof of [18, Lemma 4.4], we find a constant & > 0 independent of s
such that for any ¢ € [0, 7],

t
Eg, [exp (/\/O I (X (r ATy)) dr) ’ﬁo] < exp {k + kaHIEg(O,t) . (4.22)
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On the other hand, for constants K in (A;) (A2), (A%), and S in Lemma 4.3, let

i 3 VIH8BE

0 ‘= .
4

We have

k(p) == (p—1)2p— K> € (0,B7], p < (1,p0.

Thus, taking p € [1, pp] with p — 1 small enough such that krk(p) < 2e, by (A1) (A2), (A%) and
(4.5), we find a constant S = f(p,q,e) > 0 such that

E[| R, (T)|~P~D]%]

& [exp ((5-1) oo+ 2 [ ) 7
< (m [exp <(z5 -yep-1 [ Tl ds) %] )% (4.23)
(& eww (20-1) [ T W) — 25— 17 / o s ) ﬁD

<exp [B+ ]| Xo|[7%] x 1= exp [B + e[| Xo[I7*] -
Combining this with (4.22) and applying Hélder’s inequality, we find constants ¢ = ¢(p, g, €)

and 6 = 6(p, q) > 0 such that

e [o ([ 1720c Am) as) | 2]
_Eq, [Rn(T)l exp (/Ot (X (5 A )] ds> ‘%]

g(IE[Rn(T)*(ﬁ*w?o]) <IEQn [exp( / IR (X (s ATy) \ds> '/o]>
<oxp [ellXoll2 + ¢ (14 /1230 ) |-

This with n — oo implies (4.16).

>0

Bl

—1

O
By Lemma 4.3 and (4.16), we have the following corollary which is a key in the proofs of
Theorem 2.1 and 2.2.

Corollary 4.5. Assume (A1), (A2) and (Af).

(1) For any T € (1,00), (p,q) € # and € € (0,1), there exist constants k = k(T,p, q,¢)

= , e)>0
and 8 = 0(T, p,q) > 0 such that any solution Xs to (2.1) satisfies
2a
e [osn ([ @)z an) | 2] < o0 [+ (100018000,
0<s<t<T, felk(T).

14



(2) For any T € (1,00), there exist constants Br,kr > 0 such that any solution to (2.1)
satisfies

sup E [eﬂnxtuia
t€[0,T)

Jo} < FTBUHIXlZ) 8 ¢ [0, By (4.25)

Proof. (a) Let Br,kr > 0 be in Lemma 4.3, and let €,¢ > 0 be in Lemma 4.4. We choose
B € (0,Br] such that kpS < 2e, so that by Lemma 4.3, (4.16) and Young’s and Holder’s
inequalities, we find constants 6 = 0(T',p, q),k = k(T,p,q,&) > 0 such that

e [oxo ([ 1K@ 1l ) | 2]
E[xp(/( AR + 51X au) | 2]

<(2[ow (5 [ mruran) M)(E o (5 [ 162 ) M)

el 0/2 a
<esp |2k (112100 )| = e [l 4k (1171

IA

(b) In the case where b)) = 0, (4.25) can be obtained by repeating the proof of [4, Lemma
2.4] and [3, Corollary 2.5], so that by Girsanov’s theorem, for the segment solution to (4.21)
and Q,, in the proof of Lemma 4.4, there exists constants cg,c; > 0 such that

Bg, [e@lXnml®*| 5] < evterlXoll ¢ e f0,7], 0> 1. (4.26)

Letting p > 1 be in (4.23) and taking

DCo

BT ::]3_17

by combining (4.23) with (4.26) and using Holder’s inequality, we find a constant ¢ > 0 such
that
E[efr1Xnm | 2] < B, {R (T)fleﬂT||an||3&‘%]

1 p

7)) (o, o (20X ) || ) 7 (42D

<exp (c+c||Xol|?*), t€[0,T], n>1.

By letting n — oo we derive

< (2.

E[eBTHXtHzO‘ ‘54\0] < exp (C + CHXOHE-O[) . te [O,T],
which implies (4.25) for kp := - by Jensen’s inequality. O

Proof of Theorem 2.1. Let X be an .#p-measurable random variable in €. Take 1) € Cy°([0, 00))
such that 0 < <1, ¢(u) =1 for u € [0,1], and ¥(u) = 0 for u € [2,00). Define

.6 =6 w (1

> , t>0, E€F. (4.28)
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By (2.2), for any n > 1, b is bounded and satisfies (A5). So, Lemma 4.1 ensures that the SDE
AX"(t) = b (t, XP)dt + bO (¢, X (2))dt + o (t, X" (£))AW (t), X = Xo, t € [0,T]

has a unique strong solution. Let 7, be in (4.18). It suffices to prove that for any k > 2 there
exists a constant ¢(7, k) > 0 such that

E[wpmwm
te[0,T

94gc@mxrwmwﬂ,nzL (4.29)
This implies P(r,, =T) — 1 as n — oo and
X(t) =1y X (0) + > Xn(O)l(r, s 7y(t), t€[0,7T]
n=1

is the unique solution to (2.1) and (2.4) holds, where 7y := 0. To prove (4.29), we use Zvonkin’s
transform.
For A > )\ and u solving the PDE (4.7) such that (4.8) and (4.9) hold, let

O(t,z) ==z +u(t,z), Y"(t):=0( X"(t)), te]0,T].
By It6’s formula, we obtain

AV (t) ={Ve(t, X" ()M (¢, XI) + Au(t, X" (t))}dt

g (4.30)
+ {(VOo)(t, X" (t)) }dW ().
Let
Z(t) =y )|F 4+ 1.
By (A1)-(A3), (4.9) and Itd’s formula, we find a constant ¢; > 0 such that
AZ(t) <er (1 + HYO"HE) dt +¢1 sup Z(s)dt + dM(E), t< 1, (4.31)

s€[0,¢]

where

AM(t) = ke Y ()P 2V (1), ({VO}o) (1, X" (1) dW (1)).
By the BDG inequality and the Young inequality, we find constants ca, cg > 0 such that

=

E[ sup  M(s)

SE[0,tATR]

t
5?0] < CQE[/ Z(S/\Tn)QdS ﬂo]
0

1
<-E [ sup  Z(s)
2 s€[0,tATy]

%] +C3/OtE[Z(sATn)\3ZO] ds, te€l0,T).

Combining this with (4.12), (4.31) and
(X" () =Y (#)] < [Julloo < oo,

we may apply Gronwall’s inequality to derive the desired (4.29) for some constant ¢ = ¢(T, k) >
0. O
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Proof of Theorem 2.2. Let O(t,x) := x + u(t,x) for u solving the PDE (4.7) such that (4.8) and
(4.9) holds, and denote

YE(t) := O(t, X5(t)), Y'(t) := O(t, X"(t)),

B(1) = e(XE(E) — X)), 2(1) = HTYE() — Y1),
g1(t) i= A2l (1, XE(8) + | V20l (8, X)),

0o(t) 1= 1(t) + 4| Vo, XE(b)) + .4 Vol (¢, X7(2)),
A@) = [ (14 w6f +aIXER) s, te 0.1

By Lemma 4.2, Lemma 4.4, Corollary 4.5 and Holder’s inequality, for any 5 > 0 and € € (0,1)
we find a constants ¢(/,¢) > 0 such that

E [eﬁA(T)} < eclBe)telllElz +nlz) . (4.32)
By (A1), (A2), (A5), (4.9) and Lemma 4.2, we find a constant kg > 0 such that
Vot XD XF) — VO, X7(1)b (1, X))
< ol X5 — X7ll- + ko (1+ g1(8) | XFI21XE(8) = X7 (1),

|1v6lo) (1, X4(6)) — ((vOlo) (1, X7 | < o (1 4+ 92(0)%) 1X5(5) — X7

Combining this with (4.10), (4.12), (4.30) and Itd’s formula, for any k > 1, we find a martingale
M (t) and a constant ¢;(T, k) > 0 such that for any ¢ € [0, 7],

d2(t) < 1 (T, k) {E(t)dA(t) + sup E(s)dt + ||V - YO’VHEkdt} + dM (t).
s€[0,t]

Using the It6 formula, the stochastic Gronwall inequality in [3, Lemma A.5] and (4.10), there
exists a constant co(7T, k) > 0 such that

(E

By combining this with (4.32) and Hoélder’s inequality, we find a constant c3(e, T, k) > 0, such
that

3
2

2
sup (e_“(T”“)A(S)@(s)IZ’“)3]) < (T k)€ =, ¢ €[0T,
s€[0,¢]

E| sup [®(s)| <E ezt (TRAW®) [ g e—%q(T,k)A(S)@(S”k
s€[0,1] s€[0,¢]
3
1 27\ 4 (4.33)
<(E e201(T,k)A(t) 4 E | sup e_cl(T’k)A(s)’q)(S)’2k 3
(=] (e ( )

< es(e, T, k)ea(\\flliaJrllnllia)Hg _ 77H]T€a te[o,7).

This together with (4.12) yields the desired estimate (2.5) for some constant ¢ > 0 depending
on ¢, T and k. O
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5 Proof of Theorem 2.3

It suffices to prove the assertions up to any fixed time 7" € (0, 00). To this end, we use the fixed
point argument as in [7].

Let Xo be an Fp-measurable random variable on ¢, with v := Zx, € & (¢;). For any
constant N > 2, let 7

S {M € CY([0,T); Z2o(%r)) o =, sup e (1 + (]| 15)) < N} :

te[0,7]
where
C*([0,T); 2% (€. )) {0, T] — P2 (¢+)) is weakly continuous},
C ([0, T): Z5e(%7)) = { € ([0, T); 27,(%7) | Wraarlps 1) < o).
Then as N 1 0o,
PN 4 ¢ = L€ CR((0,T); PE(%)) : o = 7} (5.1)

According to Theorem 2.1 and Corollary 4.5, under the assumptions (H;)—(Hz), for any u € C},
the SDE

dXH(t) = b(t, X}, p)dt + o (t, XH(8)dW (¢), t€[0,T], X = Xo (5.2)
has a unique segment solution with
Py = Lxn ().

Then the well-posedness of (1.2) follows if the map ®” has a unique fixed point in C. To this
end, we need to verify that there exists a constant Ny > 2 such that for any N > Ny, the
following two assertions hold:

(a) @7 : CIZ’N — CIZ’N

sup e~ <1 + ||} ,u||k,) <N, pe C'y’ (5.3)
t€[0,T]

(b) ®7 has a unique fixed point in Cg’N.

Once these two assertions are confirmed, ®7 has a unique fixed point p € €/, and X; = X}' is
the unique segment solution of (1.2) with initial value Xy, so that (2.9) follows from (5.8).
In the following two subsections, we prove assertions (a) and (b) respectively.
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5.1 Proof of (a)

It suffices to prove (5.3) for k£ > 0 and large N. By Lemma 4.4, (Hy)-(H3) implies that for some
constant ¢; > 0 we have

E [exp ( / " fols XH)P d)} < GERIREIR] = oy (117) < oo, (5.4)

Hence,

sup E(/OT |f0(s,X“(s))|2ds>k < .

~
HeC,

Combining this with (H1)-(H2), v := Zx, € P} (¢+), the It6 formula and the BDG inequality,
we find constants co, cg > 0 such that

E | sup (1 + ekTS|X“(s)|k)] < RE(1+ | X(0)[%)
s€0,t]
t k
+ E </O e™ I XE N + [ fols, XH ()| + Il sl } d8> (5.5)

k
t 2
<cotal ([ (IR + P ll)as) L ce DL
0
Below we verify (5.3) by considering k > 2 and k € (0, 2) respectively.

(a1) Let k> 2. By (4.12) and (5.5), there exists a constant ¢4 > 0 such that for any ¢t € [0, 7],
¢
E [ sup (1 +e’m\|X§‘!’ﬁ)] < it e / {E [ X 2)5] + e 1} ds.
s€[0,t] 0

Using Gronwall’s lemma, it holds

t
E | sup (1+e’m|yxguﬁ)] < c4ecT <1+/ e’muﬂsyv,gds), t e [0, 7.
0

s€[0,¢]

Hence, by noting that y € C,Z’N, we can find a constant cs such that

E[1+XF)E] <146 B | sup (1+ emuxynﬁ)]
]

s€[0,t

t
Seotes [ e fds (5:6)
0

t
<cs+ C5N€Nt/ e N9 ds < 256Nt t e [0, 7).
0

Taking Ng = 2¢5, we derive

sup e N (1 + H@?u”ﬁ) = sup e VIE (1 + ||X#Hf> <N, N>Ny, pe Cg’N.
te[0,T] t€[0,T7]
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(ag) Let k€ (0,2). By (4.12) and (5.5), we find constants cg, ¢7,cg > 0 such that

k
t 2
U ::E[Sup (1 b ltlt) | < ot cob ([ {2 IXER + 2l as)
0

s€[0,¢]

1-% .
2
sup e’mnxynil < /0 e’mnxyu’;ds)

k

t 2
<cr+ey </ e2Ts||uS||%ds> +cE
0 s€[0,1]

k
t bl 1 t
<t e </ e2TsHMs||%dS> +2Ut+08/ Usds, te]0,T],
0 0

then Gronwall’s lemma, implies that

t 2
Uy < 27”7 {1 + </ 7| s I3 dS)
0

Thus, there exist constants cg, c1g > 0 such that for any p € C,Z’N,

}, t € [0,T].

k
t 2

B (1 1) <140 < e ([ a0 fas)
0 (5.7)

k
3 2
< cg 4 cgNeN?t (/ e 2N(t=s) ds> < cg+ clolegeNt, t €[0,7].
0
Thus, there exists a constant Ny > 2 such that for any N > Ny,
sup e N (14 07 ullf) = sup ¢ 'E (14| X|F)
t€[0,T) t€[0,T]

k
<cg+ecoN'"2 <N, pe C;Z’N-

5.2 Proof of (b)

To ensure that ®7 has a unique fixed point in CZ’N for N > Ny, we shall prove that it is
contractive under a complete metric.
For any 6 > 0, let

Wk,@,vm‘(ﬂa V) ‘= sup eiatH,ut - VtHk,'UCLT'7
te[0,7

Wi o(p,v) :== sup e_eth(,ut,l/t), W,V € C,Z’N.
t€[0,T]

Then the metric Wk,g,vm« = W 6,0ar + Wi, is complete on C,Z’N. We intend to show that ®7 is
contractive in CZ’N under the metric Wy, g 4 when 0 is large enough.

By Theorem 2.1, (H;)-(Hz2), (5.3) and v := Zx, € P(%;), we find a constant Cp(N) > 0
such that

sup E(E[ sup || X1k %Dé < Cy(N)E (1+ |yX0||’:) < . (5.8)

ueC,Z’N te[0,T7]

20



Next, since u, v € C;’N, we find a constant Cy(N) > 0 such that

sup Wk,var(/"t: Vt) < CO(N)
t€[0,T]

Thus, by (Hy) and (Hs), we find a constant C1(N) > 0 such that for any u,v € C,Z’N,
G = {0 (00") 1} (5, X(s)) [0 (5, X2 1) — 0 (s, X2, )| s € [0,
satisfies
1G5 < CLN)YH (5) (1 A Wiar (s, v5)?) , s € [0,T]. (5.9)
Recalling that H € L} ([0,00); (0,00)), we have

t t
/ H(s) (1 /\kaw(,us,us)z) ds < / H(s)ds < oo,
0 0

then by (H2) and Girsanov’s theorem, for any ¢ € [0, 71,

Ry := exp </t<c5,dw / [k ds) (5.10)

Wu::Wu—/ Cods, u €0,
0

is a martingale and

is a Brownian motion under the probability measure Q; := R(¢)P. Since ¢® — 1 < se® for s > 0,
we find constants Co(N), C3(N) > 0 such that

E (R — 112 F0) = [zfo%dw 2 [ IGs[2 ds f5 112 s | g

J0:| —1
t

< 1N Jo HE) (1A War o)) ds 1 < Gy () / H(5)Wh o (p1s, v5)? ds (5.11)
0

< Cy(N)e Wiy (1, / H(s)e =) s, v € P,

Reformulating (5.2) as
dX*(r) = b(r, X2, v.)dr + o (r, X*(r)dW (1), Lxn=r,r€[0,t]. (5.12)

By the uniqueness, we obtain
O]y = Lxy = zX{‘IQt’

where Zxx g, stands for the distribution of X! under Q;. Thus, by (5.8), (5.9), (5.11) and
Holder’s inequality, we find constant Cy(N) > 0 such that

1271 = @/ vlkwar = sup [E[F(X}) = F(X])]]
FEERHE
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= swp B[R~ DX <E |1+ [ XFIDIR, - 1]
[FI<1+]-]|%

<e|{e(0+ X171 70) ) (B (- 1) |

- t 2
< 04(N)eatwk,0,’um"(,uﬂ V) </ H(5)6720(t78) d8> y MV E C]Z7N‘
0

Therefore,

Wk,e,var(q)’y,u; (I)’YV) = Ssup e_etH‘I)zM - q)gy”k,var

te[0,7)
t 3 (5.13)
< 04(N) sup </ H(S)6729(tis) dS) Wk,@,var(ﬂ'u V)a JI2RAS C]Z7N‘
te[0,7] 0
We will finish the proof by considering £ < 1 and k > 1 respectively.
(b1) Let k <1. By (1.4) and (5.13), we obtain
Wk,@,var<(p’yﬂ7 (I)’YV) < (1 + C)Wkﬁ,var(q)’yﬂa Q)'Yy)
1
t 2
< (1+¢)Ca(N) ( / H(s)e (=% ds) Wi pwar (1 v), mov €.
0
Noting that H € L, .([0,00); (0,00)) yields that
t 3
lim sup </ H(s)e 20(t=9) ds) =0, (5.14)
0—00 tefo,1] \Jo

we may choose 6 > 0 large enough such that

T o N
Wk,&var(q)vﬂa (I)Vy) < sz,@,var(ﬂa V)v JURZAS C]Z’ .

N |

This together with (a) implies that ®7 has a unique fixed point in C’,Z’N.

(b2) Let k> 1. Let ©O(t,-) := id+u(t,-) for u solving (4.7) such that (4.8) and (4.9) holds. Let

Z(t) = X"(t) + O(t, X" (t)) — X" (t) — O(t, X" (1)),
g1(t) := ANVl (8, XH(2)) + || VPul|(t, X* (1)),
92(t) == g1 (t) + A ||Vo||(t, X"(t)) + .| Vo | (t, X" (t), tel0,T]

By (Hi)-(H3), (4.9), (4.10) and Itd’s formula, we find a constant ¢;(k) > 0 such that

QXM ZWOF} < o1 (k) {2 Z2E + H (0 Wi (1) |

5.15
+ e2k7t|Z(t)|2de(t) + dM(t)7 te [07 T]’ ( )
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where

At) = 1 (k) /0 (1+ g2(s)? + ()| X2]2) ds
A(M)(t) < (k) (1 + g2(t)® 7| Z (1) ** dt.

Combining this with (4.10), (4.12), the stochastic Gronwall inequality in [3, Lemma A.5] ,
Lemma 4.4, Corollary 4.5 and the fact that X}' = X} = Xj, we find a constant cz(k) > 0 such
that

(5.16)

E | sup || X# — XY|*| =E

7
s€[0,¢]

sup e X (s) — X (s)|*
s€[0,¢]

3
7\ 3

W=

< (E [e%A(t)D E | sup e 406?75 XA (s) —X”(s)]%]

s€[0,t]

t
< co(k) (/ H(s)e%mwk,wr(ps,us)% ds>
0

Since ®) = .,?Xtu and ®]v = Zxv, by the inequalities above, we find a constant c3(k) > 0 such
that

Sl

Wio(®7p1, ®70) = sup e "Wy (®7p, @) < sup e (B [|x} - x7|11])
te[0,T] t€[0,T]

1

2k

< CQ(k’) sup (/ H _letwk var(,USaVs)2kd >
t€[0,T]

1

2k

< C3(k)wk‘9’ua7“ ,LL7 sup </ H 72k9t S)d > y MV E Cz7N7 0> 0.
te[OT

Combining this with (5.13) and (5.14), we may choose 6 > 0 such that
- 1~
Wigar (8710, 870) < 5 Wi puar(1,v), v € CL (5.17)

Thus, ®” has a unique fixed point in C,Z’N.

6 Proof of Theorem 3.3

Proof of Theorem 3.3(1). The well-posedness can be proved by using a standard fixed point
theorem. Let Xy be .Zp-measurable with v := Zx, € H3(%,). For any constant 6,7 > 0, the
path space

Cy = {ne C((0,T); P2(€;)) : po =1}

is complete under the metric

Wag(p,v) = sup e "Wy(u, ).
te[0,T]
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According to Theorem 3.1, (H’) implies that for any u € CJ, the SDE
dX*(t) = b(t, X', pe)dt + o (¢, X[)dW (1), t € [0,T], X = Xo (6.1)

is well-posed with
QT = Lyn € C;.

For the well-posedness of (1.2), it suffices to show that ®7 has a unique fixed point in C,.
Now, for vy € P5(%;), for simplicity, we assume that we can choose .%j-measurable random
variables X{f and X§ on ¢ such that

Wa(po, v0)* = E[IIXG — Xg[17]. (6.2)

Otherwise, in the following it suffices to first replace (X', X}) be the sequences (X", X;")
such that
nt 4+ Wa(po, v0)® = E[| X" — Xg™"|17], n>1,

then let n — oo.
For any v € C5° which is defined as CJ for vy replacing v, let X} be the unique solution to

dX"(t) = b(t, Xy, v)dt + o(t, X7 )dW (t), t e [0,T] (6.3)
with initial value X§. By (H’) and Itd’s formula, we obtain
A X4(t) — X¥ (D2 < K™ (|X} — XP |2 + W, ve)2)dt + AM (1)
for some constant K > 0, where M; is a martingale with
(M) (1) < Ke*™!|[XF — XY||4dt.

Combining this with (4.12), Itd’s isometry and Young’s inequality, we find a constant ¢; > 0
such that

: :
B[ sup e - X2 < amlxg - g2+ e ([ emxe - xzitas)]
s€[0,¢] 0

t
ber [ SUBIXY - XY + Wl v ds

0
2 t

< X, - X2+ (e + L) [ UEIXE — XU + Walue, )] ds
0

1
+ E[ sup eS| XH — X;’H?}, te0,T].
2 s€[0,t]

By an approximation argument with stopping times, we may and do assume that

E[ sup €| X% Xswi] < oo,
s€[0,¢]
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so that the above estimate together with (6.2) and Gronwall’s inequality yields

t
E| suwp |X5—X:||3} < ea(T)Walpi 1)+ ea(T) [ Walps,ve)? s (6.4)
s€[0,t] 0

for any t € [0, 7] and some constant c2(7") > 0. In particular, when po = vy = 7y, we derive

Wa (@7, )2 < sup e "E[|| X} — X7|?]
te[0,T]

t
< co(T) sup e‘et/ Wa (s, vs)? ds < cﬁWz,e(u, v)?, v eC;.
te€[0,7 0

So, when 6 > ¢y, ®7 is contractive in the complete metric space (C;, W), hence it has a unique
fixed point.

Moreover, letting py = Py, v, = Pfv, we have .,?Xtu = Pfp and Lxr = P/v, so that (6.4)
and Gronwall’s inequality yield (3.4) for some constant ¢ > 0. O

Now, let 79 € (0,7) and ||o||oo + [|0 |0 < 00, it remains to verify (3.5), which implies (3.6)
through repeating the proof of [5, Theorem 2.1(1)] for

E =28 .(€;), p(u,v) = Wa(pu,v), Ty = ce™ ™, (6.5)
and Ay = ce® in place of A.

Proof of (3.5). Let X!' be the unique solution to (1.2) with the initial distribution x and denote
we = Pip, v = Pfv,

(s = {0 (00™) 7} (s, X [b(s, XL, pus) — b(s, X', vs)]
R, :—exp[ /S<Cu,dW /gqudu], s €[0,t].

Then (H') and (3.4) implies that
1Gsl? < 1 EKoWo (s, vs)? < e Wo(p, v)? (6.6)

for some constants ci,cy > 0. Thus by Girsanov’s theorem, R, is a martingale and

W(s /er s €[0,¢]

is a Brownian motion under the probability measure P := R;P. Then (1.2) can be reformulated
as

dX*(s) = b(s, X¥, v5)ds + o (s, X})dW (s), Lxp=p, s€[0,t]. (6.7)
For any k > 7, where 7 > 0 is given in (1.1), consider the following SDE:

dY (s) ={b(s,Ys,vs) + ko (s, Yy)o(s, XP) "L XH(s) — Y (s))}ds

+0(s,Yy)dW(s), s€0,t], Yo=X§. (6.8)
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Let
Cs = ko (s, XE)TH(XH(s) = Y (s)),

R, = exp [— [ Gawen - [ @Pdr} Csef.

Due to [5, Lemma 3.2] with P replaced by P, under the assumption (H'),

W(s) = W(s) + /OS Crdr = W(s) + /OS (fr + @) dr, s€0,t]

is a Brownian motion under the probability measure Q = R,P = R,R,P. Hence (6.8) can be
reformulated as

dY (s) = b(s, Ys, vs)ds 4 o (s, Ys)dW (s), s€[0,t], Yo = XY, (6.9)

which together with the uniqueness of (6.3) derives that %y, o = £x». Moreover, if we choose
Fo-measurable random variables X{f and X§ on ¢ such that

W (u,v)* = E[J| X% — X5I12]. (6.10)

By (6.7), (H') and the proof of [5, Lemma 3.3], for any p > 0 and 79 € (0, 7) we find a constant
k > T to define Y in (6.8) such that

Eq [[|X}" - Y[ o] < ce ™| Xg — XE|I%, t20 (6.11)
holds for some constant ¢ > 0. Therefore, applying Young’s inequality in [2, Lemma 2.4],

Pylog f(v) = Eq [log f(Y})] = Eq [log f(X!)] + Eq [log f(¥;) — log f(X}")
< B[ RRylog (X)) + |V log fllnEgl X/ — Yill, (6.12)

<E [Rtf%t log (Rt}?t)} +log Py f (1) + ¢||V log flloce ™' Wa(p,v), t>0

holds for any f € %, (¢,) with ||V log f|| < 0. Next, denote R; = Ry Ry, it follows from (6.6),
(6.11) that for some positive constants cs, 4,

1 t t t
E(Rilog Re] < 3B | G, +Gl?ds <Bo [ [GLds+Bq [ G ds
0 0 0
t
< CgKQGCBtWQOJ,, I/)2 -+ 63/ EQHX? — Y;H?_ ds < (Cgngcst + 04) Wg(,u,, V)Z.
0
Substituting this back into (6.12) yields (3.5). O
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