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Abstract

We consider stochastic different equations on Rd with coefficients depending on the path
and distribution for the whole history. Under a local integrability condition on the time-
spatial singular drift, the well-posedness and Lipschitz continuity in initial values are proved,
which is new even in the distribution independent case. Moreover, under a monotone condi-
tion, the asymptotic log-Harnack inequality is established, which extends the corresponding
result of [5] derived in the distribution independent case.

Keywords: Path-distribution dependent SDEs, well-posedness, asymptotic log-Harnack inequal-
ity, gradient estimate.

1 Introduction

The dimension-free Harnack inequality with power was first introduced in [11] to study the log-
Sobolev inequality on Riemanian manifolds, and has been intensively extended and applied to
derive regularity estimates many for SDEs (stochastic differential equations), SPDEs (stochastic
partial differential equations), path dependent SDEs, and distribution-dependent SDEs, see
[13, 10, 9] and references therein. As a limit version when the power goes to infinite, the log-
Harnack inequality has been introduced in [12] to characterize the curvature lower bounded
and entropy-cost estimates, and has been extended to metric measure spaces [1, 8]. When the
noise of a stochastic system is weak such that the log-Harnack inequality is not available, the
asymptotic log-Harnack inequality has been studied in [5, 16] for path-dependent SDEs and
SPDEs, which in particular implies an asymptotic gradient estimate.

In this paper, we study the well-posedness and asymptotic log-Harnack inequality for path-
distribution dependent SDEs with infinite memory.

∗Supported in part by the National Key R&D Program of China (No. 2022YFA1006000, 2020YFA0712900).

1



Let (Rd, | · |) be the d-dimensional Euclidean space for some d ∈ N. Denote by Rd ⊗ Rd the
family of all d × d-matrices with real entries, which is equipped with the operator norm ‖ · ‖.
Let A∗ denote the transpose of A ∈ Rd ⊗ Rd, and let ‖ · ‖∞ be the uniform norm for functions
taking values in R,Rd or Rd ⊗ Rd.

To describe the path dependence with exponential decay memory, let C := C((−∞, 0];Rd)
and for τ > 0, set

Cτ =

{
ξ ∈ C : ‖ξ‖τ := sup

s∈(−∞,0]
(eτs|ξ(s)|) <∞

}
. (1.1)

It is well known that (C((−∞, 0];Rd), ‖ · ‖∞) is complete but not separable, so is (Cτ , ‖ · ‖τ ) due
to the isometric

Cτ 3 ξ := (ξs)s∈(−∞,0] 7→ eτ ·ξ := (eτsξs)s∈(−∞,0] ∈ C((−∞, 0];Rd).

Let P and P(Cτ ) be the set of all probability measures on (Rd,B(Rd)) and (Cτ ,B(Cτ )),
respectively, equipped with the weak topology. Let Bb(Cτ ) be the class of bounded measurable
functions on Cτ , and B+

b (Cτ ) the set of strictly positive functions in Bb(Cτ ).
Let (W (t))t≥0 be a d-dimensional Brownian motion defined on a complete filtered probability

space (Ω,F , (Ft)t≥0,P). For an F0-measurable random variable X0 := ((−∞, 0] 3 r 7→ X(r))
on Cτ , we consider the following path-distribution dependent SDE with infinite memory:

dX(t) = b(t,Xt,LXt)dt+ σ(t,Xt)dW (t), t ≥ 0, (1.2)

where for each fixed t ≥ 0, Xt(·) ∈ Cτ is defined by

Xt(r) := X(t+ r), r ∈ (−∞, 0],

which is called the segment process of X(t), LXt ∈P(Cτ ) is the distribution of Xt, and

b : R+ × Cτ ×P(Cτ )→ Rd, σ : R+ × Cτ → Rd ⊗ Rd

are measurable. When different probability spaces are concerned, we use LXt|P in place of LXt

to emphasize the underline probability.
For any constant k ≥ 0, let

Pk(Cτ ) :=
{
µ ∈P(Cτ ) : ‖µ‖k := µ(‖ · ‖kτ )

1
k <∞

}
,

where for k = 0 we set µ(‖ · ‖kτ )
1
k = 1 such that P0(Cτ ) = P(Cτ ). When k > 0, Pk(Cτ ) is a

complete metric space under the Lk-Wasserstein distance,

Wk(µ, ν) := sup
N≥1

inf
π∈C(µ,ν)

(∫
Cτ×Cτ

‖ξ − η‖kN,τ π(dξ,dη)

) 1
1∨k

, µ, ν ∈Pk(Cτ ),

where C(µ, ν) is the set of all coupling of µ and ν, and

‖ξ‖N,τ := sup
s∈[−N,0]

(eτs|ξ(s)|), N ∈ N.
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To see this, let Pk(CN,τ ) be the space of all probability measures on CN,τ := C([−N, 0];Rd)
with finite k-moment of the uniform norm, let µN ∈Pk(CN,τ ) be the marginal distribution on
CN,τ of µ, and let

Wk(µN , νN ) := inf
π∈C(µN ,νN )

(∫
CN,τ×CN,τ

‖ξ − η‖kN,τ π(dξ,dη)

) 1
1∨k

.

Since CN,τ is Polish under the norm ‖ · ‖N,τ , (Pk(CN,τ ),Wk) is a Polish space as well, and

Wk(µN , νN ) = W̃k(µN , νN ) := inf
π∈C(µ,ν)

(∫
Cτ×Cτ

‖ξ − η‖kN,τ π(dξ,dη)

) 1
1∨k

. (1.3)

Since the marginal distribution on CN,τ × CN,τ of a coupling for µ and ν is a coupling of µN
and νN , we have

Wk(µN , νN ) ≤ W̃k(µN , νN ).

On the other hand, let πN ∈ C (µN , νN ) such that

Wk(µN , νN ) =

(∫
CN,τ×CN,τ

‖ξN − ηN‖kN,τ πN (dξN ,dηN )

) 1
1∨k

.

Noting that Cτ is separable under norm ‖ · ‖τ+1, the completeness Cτ of Cτ under this norm
becomes a Polish space. Since

‖ · ‖τ = lim
N→∞

‖ · ‖N,τ , τ ≥ 0,

and ‖ · ‖N,τ is continuous with respect to ‖ · ‖τ ′ for any τ, τ ′ ≥ 0, we conclude that ‖ · ‖τ and
‖ · ‖tau+1 induce the same Borel σ-field on Cτ . So, by extending µ, ν ∈ Pk(Cτ ) as probability
measures on the Polish space Cτ such that Cτ \Cτ is a null set, µ and ν have regular conditional
distributions µ(·|ξN ) and ν(·|ξN ) on C((−∞,−N);Rd) given ξN ∈ CN,τ . So, for any ξ ∈ Cτ
letting

ξN := ξ|[−N,0], ξcN := ξ|(−∞,−N),

the measure
π(dξ,dη) := πN (dξN ,dηN )µ(dξcN |ξN )ν(dηcN |ηN )

is a coupling of µ and ν, and

W̃k(µN , νN ) ≤
(∫

Cτ×Cτ

‖ξ − η‖kN,τ π(dξ,dη)

) 1
1∨k

=

(∫
Cτ×Cτ

‖ξ − η‖kN,τ πN (dξ,dη)

) 1
1∨k

= Wk(µN , νN ).

Thus, (1.3) holds, so that Wk is a complete metric on Pk(CN,τ ), which trivially implies the
triangle inequality of Wk on Pk(Cτ ). If {µ(n)}n≥1 is a Wk-Cauchy sequence in Pk(Cτ ), then

so is {µ(n)N }n≥1 for every N ∈ N. Hence, µ
(n)
N has a unique limit µN in Pk(CN,τ ) under Wk,
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and the family {µN}N≥1 is consistent, so that by Kolmogorov’s extension theorem, there exists
a unique µ ∈Pk(Cτ ) with {µN}N≥1 as marginal distributions, so that

lim
n→∞

Wk(µ
(n), µ) = lim

n→∞
sup
N≥1

Wk(µ
(n)
N , µN ) = lim

n→∞
sup
N≥1

lim
m→∞

Wk(µ
(n)
N , µ

(m)
N )

≤ lim
n→∞

lim
m→∞

sup
N≥1

Wk(µ
(n)
N , µ

(m)
N ) = lim

n→∞
lim
m→∞

Wk(µ
(n), µ(m)) = 0.

Hence, Pk(Cτ ) is complete under Wk.
Moreover, for any k ≥ 0, Pk(Cτ ) is a complete (but not separable) metric space under the

weighted variation distance

‖µ− ν‖k,var := sup
f∈Bb(Cτ ),|f |≤1+‖·‖kτ

|µ(f)− ν(f)| = |µ− ν|(1 + ‖ · ‖kτ ),

where |µ − ν| is the total variation of µ − ν. According to [10, Remark 3.2.1], for any k > 0,
there exists a constant c > 0 such that

‖µ− ν‖var + Wk(µ, ν)1∨k ≤ c‖µ− ν‖k,var, µ, ν ∈Pk(Cτ ). (1.4)

Denote Wk,var = Wk + ‖ · ‖k,var for simplicity.

We will solve (1.2) for distribution LXt belonging to a subclass P̃k(Cτ ) ⊂Pk(Cτ ) such that
LXt is weakly continuous in t ≥ 0.

Definition 1.1. (1) An adapted continuous process (Xt)t≥0 on Cτ is called a segment solution
of (1.2) with initial value X0, if X0 is an F0-measurable random variable on Cτ , and
(X(t) := Xt(0))t≥0 satisfies∫ t

0
E
[
|b(r,Xr,LXr)|+ ‖σ(r,Xr)‖2

∣∣F0

]
dr <∞, t ≥ 0,

and P-a.s.

X(t) = X(0) +

∫ t

0
b(r,Xr,LXr) dr +

∫ t

0
σ(r,Xr) dW (r), t ≥ 0.

In this case (X(t))t≥0 is called the (strong) solution. The SDE (1.2) is called strongly
well-posed for distributions in P̃k(Cτ ), if for any F0-measurable X0 with LX0 ∈ P̃k(Cτ ),
it has a unique segment solution with LXt ∈ P̃k(Cτ ) for t ≥ 0.

(2) A couple (Xt,W (t))t≥0 is called a weak segment solution of (1.2) with initial distribution
µ ∈ P̃k(Cτ ), if there exists a probability space under which W (t) is d-dimensional Brown-
ian motion and LX0 = µ, such that (X(t) := Xt(0))t≥0 solves the SDE (1.2). We call (1.2)
weakly unique, if for any two weak segment solutions (Xi

t ,W
i(t))t≥0 under probabilities

Pi with common initial distribution, we have LX1
t |P1 = LX2

t |P2 for all t ≥ 0. We call (1.2)

weakly well-posed for distributions in P̃k(Cτ ), if for any initial distribution it has a unique
weak segment solution.
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(3) The SDE (1.2) is called well-posed for distributions in P̃k(Cτ ), if it is both strongly and
weakly well-posed for distributions in P̃k(Cτ ). In this case, for any ξ ∈ Cτ such that
Lξ ∈ P̃k(Cτ ), let

P ∗t γ = L
Xξ
t
, γ = Lξ

and denote

Ptf(γ) := E[f(Xξ
t )] =

∫
Cτ

f d {P ∗t γ} , γ = Lξ, t ≥ 0, f ∈ Bb(Cτ ),

where (Xξ
t )t≥0 is the unique solution to (1.2) with Xξ

0 = ξ.

To characterize the singularity of coefficients in time–space variables, we recall some func-
tional spaces introduced in [14]. For any p ≥ 1, Lp(Rd) is the class of measurable functions f
on Rd such that

‖f‖Lp(Rd) :=

(∫
Rd
|f(x)|p dx

) 1
p

<∞.

For any p, q ≥ 1 and 0 ≤ s < t, let L̃pq(s, t) denote the class of measurable functions f on
[s, t]× Rd such that

‖f‖L̃pq(s,t) := sup
z∈Rd

(∫ t

s
‖1B(z,1)fr‖

q
Lp(Rd) dr

) 1
q

<∞, (1.5)

where B(z, 1) := {x ∈ Rd : |x− z| ≤ 1}.
When s = 0, we simply denote

L̃pq(t) = L̃pq(0, t), t > 0.

We will take (p, q) from the class

K :=
{

(p, q) : p, q ∈ (2,∞),
d

p
+

2

q
< 1
}
. (1.6)

2 The Singular Case: Well-Posedness and Lipschitz Continuity
in Initial Value

In this section, we let k ≥ 0 and consider (1.2) with singular drifts and σ(t, ξ) = σ(t, ξ(0)).

2.1 Path Dependent SDEs with Infinite Memory

In this part, we consider the following path dependent SDE with infinite memory on Rd:

dX(t) = b(t,Xt)dt+ σ(t,X(t))dW (t), t > 0, X0 = ξ ∈ Cτ . (2.1)

To ensure the existence and uniqueness of solutions to (2.1), we decompose b as

b(t, ξ) = b(0)(t, ξ(0)) + b(1)(t, ξ), t ≥ 0, ξ ∈ Cτ

5



and make the following assumptions on b(0), b(1) and σ. For any ξ ∈ Cτ , let ξ0 ∈ Cτ be defined
as

ξ0(r) = ξ(0), r ≤ 0.

(A1) a := σσ∗ is invertible with ‖a‖∞ + ‖(a)−1‖∞ < K for some constant K > 0 and

lim
ε↓0

sup
|x−y|≤ε,t∈[0,T ]

‖at(x)− at(y)‖ = 0, T ∈ (0,∞), x, y ∈ Rd.

(A2) There exist constants {(pi, qi)}0≤i≤l ∈ K with l ≥ 1, pi > 2, and functions 0 ≤ fi ∈
∩n∈NL̃piqi (n), 0 ≤ i ≤ l, such that

|b(0)| ≤ f0, ‖∇σ‖ ≤
l∑

i=0

fi.

(A3) For every n > 0, there exists a constant Kn > 0 such that

|b(1)(t, ξ)− b(1)(t, η)| ≤ Kn‖ξ − η‖τ , t ≥ 0, ‖ξ‖τ , ‖η‖τ ≤ n. (2.2)

Moreover, there exists a constant K > 0 such that

|b(1)(t, ξ)− b(1)(t, ξ0)| ≤ K(1 + ‖ξ‖τ ), t ≥ 0, ξ ∈ Cτ . (2.3)

Theorem 2.1. Assume (A1)–(A3). Then (2.1) is well-posed for any initial value in Cτ , and
for any constants k, T > 0, there exists a constant c > 0, such that

E

[
sup
t∈[0,T ]

(
1 + ‖Xt‖kτ

) ∣∣∣∣X0

]
≤ c

(
1 + ‖X0‖kτ

)
. (2.4)

Let Xξ
t be the segment solution with Xξ

0 = ξ. To ensure the Lipschitz continuity of Xξ
t in ξ,

we strengthen (A3) to

(A′3) supt≥0 |b(1)(t,0)| <∞, and there exist constants K > 0 and α ∈ [0, 1] such that

|b(1)(t, ξ)− b(1)(t, η)| ≤ K‖ξ − η‖τ ,
|b(1)(t, ξ)− b(1)(t, ξ0)| ≤ K (1 + ‖ξ‖ατ ) , t ≥ 0, ξ, η ∈ Cτ .

Theorem 2.2. Assume (A1), (A2) and (A′3). Then for any constants ε ∈ (0, 1) and k, T ≥ 1,
there exists a constant c > 0 such that

E

[
sup
t∈[0,T ]

‖Xξ
t −X

η
t ‖kτ

]
≤ ceε(‖ξ‖2ατ +‖η‖2ατ )‖ξ − η‖kτ , ξ, η ∈ Cτ . (2.5)
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2.2 Path-Distribution Dependent SDEs with Infinite Memory

To ensure the well-posedness of solutions to (1.2) with singular drift for distributions in Pk(Cτ ),
we decompose b as

b(t, ξ, µ) = b(0)(t, ξ(0)) + b(1)(t, ξ, µ), t ≥ 0, ξ ∈ Cτ , µ ∈Pk(Cτ ),

and impose the following assumptions on b(0), b(1) and σ.

(H1) b(0) and a := σσ∗ satisfy (A1) and (A2).

(H2) supt≥0 |b(1)(t,0, δ0)| < ∞, and there exists a function H ∈ L1
loc([0,∞); (0,∞)) and con-

stants K > 0, α ∈ [0, 1] such that

|b(1)(t, ξ, µ)− b(1)(t, η, ν)|2 ≤ K‖ξ − η‖2τ +H(t)Wk,var(µ, ν)2, (2.6)

|b(1)(t, ξ, µ)−b(1)(t, ξ0, µ)| ≤ K {1 + ‖ξ‖ατ + ‖µ‖k} ,
t ≥ 0, ξ, η ∈ Cτ , µ, ν ∈P(Cτ ). (2.7)

Theorem 2.3. Assume (H1)-(H2). Then the SDE (1.2) is well-posed for distributions in
Pα
k,e(Cτ ), where

Pα
k,e(Cτ ) :=

{
µ ∈Pk(Cτ ) : µ

(
eε‖·‖

2α
τ

)
<∞ for some ε ∈ (0, 1)

}
. (2.8)

Moreover, for any n ≥ 1 and T ∈ (0,∞), there exists a constant c > 0 such that any solution to
(1.2) satisfies

E

[
sup
t∈[0,T ]

‖Xt‖nτ
∣∣∣∣X0

]
≤ c (1 + ‖X0‖nτ ) . (2.9)

3 The Monotone Case: Well-Posedness and Asymptotic log-
Harnack inequality

In this section, we consider (1.2) with monotone coefficients and establish the well-posedness
and asymptotic log-Harnack inequality.

3.1 Path Dependent SDEs with Infinite Memory

Note that when the SDE

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), t > 0, X0 = ξ ∈ Cτ . (3.1)

is time-homogenous and monotone, the asymptotic log-Harnack inequality has been derived in
[5, Theorem 3.1] for the Markov semigroup

Ptf(ξ) := E
[
f(Xξ

t )
]
, t ≥ 0, ξ ∈ Cτ , f ∈ Bb(Cτ ).
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We call µ an invariant probability measure of Pt, if it is a probability measure on Cτ such that∫
Cτ

Ptf dµ =

∫
Cτ

f dµ, f ∈ Bb(Cτ ).

An important application of this inequality is the gradient estimate. For any function f on Cτ ,
let

‖∇f(ξ)‖∞ := sup
η∈Cτ\{ξ}

|f(ξ)− f(η)|
‖ξ − η‖τ

be the Lipschitz constant of a function f at point ξ ∈ Cτ , which coincides with the norm of the
gradient ∇f(ξ) if f is Gâteaux differentiable at ξ. We denote f ∈ Cb,L(Cτ ) if

‖f‖∞ + ‖∇f‖∞ <∞.

Since the proof of [5, Theorem 3.1 and Theorem A.1] apply also to the time-inhomogenous case
which is crucial in the study of distribution dependent SDEs, we reformulate this result and its
consequence for (3.1) with time dependent coefficients without proof.

(B) b(t, ·) ∈ C(Cτ ;Rd) for each t ≥ 0, σ is invertible, and there exists a constant K > 0 such
that

‖σ(t, ξ)− σ(t, η)‖2 + 〈b(t, ξ)− b(t, η), ξ(0)− η(0)〉+ ≤ K‖ξ − η‖2τ ,
‖σ(t, ξ)‖+ ‖σ(t, ξ)−1‖+ |b(t,0)| ≤ K, t ≥ 0, ξ, η ∈ Cτ ,

where 0 ∈ Cτ with 0(r) = 0, r ≤ 0.

Theorem 3.1. Under assumption (B), for any ξ ∈ Cτ , the SDE (3.1) has a unique solution

with X0 = ξ such that Xξ
t is a Markov process on Cτ . Moreover, for any τ0 ∈ (0, τ), there exists

a constant c > 0 such that for any t ≥ 0, ξ, η ∈ Cτ and f ∈ B+
b (Cτ ) with ‖∇ log f‖∞ <∞,

E
[
‖Xξ

t ‖2τ
]
≤ cect

(
1 + ‖ξ‖2τ

)
,

Pt log f(η) ≤ logPtf(ξ) + c‖ξ − η‖2τ + ce−τ0t‖∇ log f‖∞‖ξ − η‖τ . (3.2)

The following result is a direct consequence of Theorem 3.1 and [5, Theorem 2.1] with

E = Cτ , ρ(ξ, η) = ‖ξ − η‖τ , Γt(ξ) = ce−τ0t, Λ(ξ) = c. (3.3)

Corollary 3.2. In the situation of Theorem 3.1, the following assertions hold.

(1) For any t ≥ 0, ξ ∈ Cτ and f ∈ Cb,L(Cτ ),

|∇Ptf(ξ)| ≤
√

2c[Ptf2 − (Ptf)2)](ξ) + ce−τ0t‖∇f‖∞.

(2) When the coefficients do not depend on t, Pt has at most one invariant probability measure,
and if µ is its invariant probability measure, then

lim sup
t→∞

Ptf(ξ) ≤ log

(
µ(ef )∫

Cτ
e−c‖ξ−η‖2τµ(dη)

)
, ξ ∈ Cτ , f ∈ B+

b (Cτ ).

Consequently, for any closed set A ⊂ Cτ with µ(A) = 0,

lim
t→∞

Pt1A(ξ) = 0. ξ ∈ Cτ .
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(3) Let ξ ∈ Cτ and A ⊂ Cτ be a measurable set such that

δ(ξ, A) := lim inf
t→∞

Pt(ξ, A) > 0.

Then for any ε > 0 and Aε := {η ∈ Cτ : ‖η − ξ‖ < ε, ξ ∈ A},

lim inf
t→∞

Pt(η,Aε) > 0, η ∈ Cτ .

Moreover precisely, for any ε0 ∈ (0, δ(ξ, A)), there exists a constant t0 > 0 such that for
any η ∈ Cτ and ε > 0,

inf

{
Pt(η,Aε) : t > t0 ∨

( 1

τ0
log

Λ(η)‖ξ − η‖τ
εε0

)}
> 0, η ∈ Cτ .

3.2 Path-Distribution Dependent SDEs with Infinite Memory

we assume that the following monotone assumption holds, as in [5] in the distribution-free case.

(H ′) supt≥0 |b(t,0, δ0)| < ∞, and b(t, ·, µ) ∈ C(Cτ ;Rd) holds for any t ≥ 0, µ ∈ P(Cτ ). More-
over, there exist constants K1,K2 > 0 such that and

〈b(t, ξ, µ)− b(t, η, ν), ξ(0)− η(0)〉+ + ‖σ(t, ξ)− σ(t, η)‖2

≤ K1‖ξ − η‖2τ +K2W2(µ, ν)2, t ≥ 0, ξ, η ∈ Cτ , µ, ν ∈P2(Cτ ).

Theorem 3.3. Assume (H ′). Then the following assertions hold.

(1) The SDE (1.2) is well-posed for distributions in P2(Cτ ), and there exists a constant c > 0
such that

W2(P
∗
t µ0, P

∗
t ν0) ≤ cectW2(µ0, ν0), t ≥ 0, µ0, ν0 ∈P2(Cτ ). (3.4)

(2) If σ is invertible with ‖σ‖∞+‖σ−1‖∞ <∞, then for any τ0 ∈ (0, τ), there exists a constant
c ≥ 1 such that

Pt log f(ν) ≤ logPtf(µ) + cK2e
ctW2(µ, ν)2 + ce−τ0t‖∇ log f‖∞W2(µ, ν) (3.5)

holds for t ≥ 0, µ, ν ∈P2(Cτ ) and f ∈ B+
b (Cτ ) with ‖∇ log f‖∞ <∞. Consequently, for

any t > 0 and f ∈ Cb,L(Cτ ),

|Ptf(µ)− Ptf(ν)| ≤W2(µ, ν)
[
ce−τ0t‖∇f‖∞ + 2

√
cK2ect‖f‖∞

]
. (3.6)

Remark 3.4. Note that (3.5) implies (3.2) for µ = δξ, ν = δη and K2 = 0.
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4 Proof of Theorem 2.1 Theorem 2.2

To prove these two theorems , we present some lemmas below.

Lemma 4.1. Assume (A1), (A2), (A′3) and ‖b(1)‖∞ < ∞. Then for any initial value ξ ∈ Cτ ,
(2.1) has a unique non-explosive strong solution satisfying (2.4), and for any T ∈ (0,∞) there
exists a constant c > 0 such that

E

[
sup
t∈[0,T ]

∣∣Xξ(t)−Xη(t)
∣∣] ≤ c‖ξ − η‖τ , ξ, η ∈ Cτ . (4.1)

Proof. The desired estimate follows from the proof of [18, Lemma 4.1] with ‖ · ‖τ in place of
uniform norm ‖ · ‖C on the path space with finite time interval.

Next, consider the local Hardy-Littlewood maximal function for a nonnegative function f
on Rd:

M f(x) := sup
r∈(0,1)

1

|B(0, r)|

∫
B(0,r)

f(x+ y) dy, x ∈ Rd, (4.2)

where |B(0, r)| is the volume of B(0, r) := {y : |y| < r}. The following result is taken from [15,
Lemma 2.1].

Lemma 4.2. (1) There exists a constant c > 0 such that for any f ∈ Cb(Rd) with |∇f | ∈
L1
loc(Rd),

|f(x)− f(y)| ≤ c|x− y|(M |∇f |(x) + M |∇f |(y) + ‖f‖∞), x, y ∈ Rd. (4.3)

(2) For any T, p, q ∈ (1,∞), there exists a constant c > 0 such that

‖M f‖L̃pq(T ) ≤ c‖f‖L̃pq(T ), f ∈ L̃pq(T ). (4.4)

The lemma below examines the exponential integrability of functionals for segment process.

Lemma 4.3. Assume (A1), (A2) and (A′3). For any T ∈ (1,∞), there exist constants βT , kT > 0
such that for any solution (Xt)t∈[0,T ] to (2.1),

E
[
exp

(
β

∫ t

s
‖Xu‖2ατ du

) ∣∣∣∣Fs

]
≤ ekT β(1+‖Xs‖

2α
τ ) (4.5)

holds for any 0 ≤ β ≤ βT and 0 ≤ s ≤ t ≤ T .

Proof. Obviously, (4.5) holds for α = 0. By shifting the starting time from 0 to s, we may and
do assume that s = 0. So, by Jensen’s inequality, it suffices to find constants βT , kT > 0 such
that

E
[
exp

(
βT

∫ T

0
‖Xu‖2ατ du

) ∣∣∣∣F0

]
≤ ekT βT (1+‖X0‖2ατ ). (4.6)
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By [14, Theorem 3.2] and [17, Theorem 2.1], there exists a constant λ0 > 0 such that for any
λ ≥ λ0, the PDE for u(t, ·) : Rd → Rd

(∂t + L0(t))u(t, ·) = λu(t, ·)− b(0)(t, ·), t ∈ [0, T ], uT = 0 (4.7)

has a unique solution in H̃2,p0
q0 (T ), where L0(t) := ∇b(0)(t,·) + 1

2tr({σσ∗}(t, ·)∇2), and there exist
constants c, θ > 0 such that

λθ(‖u‖∞ + ‖∇u‖∞) + ‖∂tu‖L̃p0q0 (T ) + ‖∇2u‖L̃p0q0 (T ) ≤ c, λ ≥ λ0. (4.8)

We may take λ ≥ λ0 such that

‖u‖∞ + ‖∇u‖∞ ≤
1

2
, (4.9)

so that Θ(t, x) := x+ u(t, x) satisfies

1

2
|x− y|2 ≤ |Θ(t, x)−Θ(t, y)|2 ≤ 2|x− y|2, t ∈ [0, T ], x, y ∈ Rd. (4.10)

For any t ∈ [0, T ], let Y (t) = Θ(t,X(t)). By Itô’s formula in [10, Theorem 1.2.3(3)] and (4.7),
we obtain

dY (t) =
{
λu(t,X(t)) +∇Θ(t,X(t))b(1)(t,Xt)

}
dt+

(
{∇Θ}σ

)
(t,X(t))dW (t).

Combining this with (A1), (A2), the second inequality in (A′3), (4.9) and Itô’s formula, we find
a constant c0 > 0 such that

d{|Y (t)|2 + 1}α ≤c0{|Y (t)|2 + 1}α−
1
2 {1 + ‖Yt‖ατ }dt+ dM(t), t ∈ [0, T ], (4.11)

where
dM(t) = 2α{|Y (t)|2 + 1}(α−1)〈Y (t),

(
{∇Θ}σ

)
(t,X(t))dW (t)〉.

Note that

epτt‖Xt‖pτ := sup
s∈(−∞,0]

(
epτ(t+s)|X(t+ s)|p

)
≤ sup

s∈(−∞,0]
(epτs|X(s)|p) + sup

s∈[0,t]
(epτs|X(s)|p)

= ‖X0‖pτ + sup
s∈[0,t]

(epτs|X(s)|p) , t ≥ 0.

(4.12)

Combining this with (4.11), Young’s inequality, Itô’s formula, and (s + 1)r ≤ 1 for s ≥ 0 and
r ≤ 0, we find a constant c1 > 0 such that

d
{

e2ατt{|Y (t)|2 + 1}α
}
≤ e2ατtdM(t) + c1

(
1 + ‖Y0‖2ατ

)
dt

+ sup
s∈[0,t]

e2ατs
(
|Y (s)|2 + 1

)α
dt, t ∈ [0, T ]. (4.13)
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So, letting

l(t) = e2ατt{|Y (t)|2 + 1}α + c1
(
1 + ‖Y0‖2ατ

)
,

l̄t = sup
s∈[0,t]

l(s) t ∈ [0, T ],

we find a constant c > 0 and a martingale M̃(t) such that

dl(t) ≤ c l̄tdt+ dM̃(t). (4.14)

Then by [6, Lemma 3.1], we find a constant c2 > 0 such that

E
[
exp

(
ε

T e1+cT

∫ t

0
l̄s ds

)∣∣∣∣F0

]
≤ eεl(s)+1

(
E
[
exp

(
2ε2〈M̃〉(t)

) ∣∣F0

]) 1
2

≤ eεl(0)+1

(
E
[
exp

(
c2ε

2

∫ t

0
l(s) ds

) ∣∣∣∣F0

]) 1
2

, ε > 0, t ∈ [0, T ].

Taking ε = 1
c2T e1+cT

, we derive

E
[
exp

(
ε

T e1+cT

∫ t

0
l̄s ds

)∣∣∣∣F0

]
≤ e2(εl(0)+1), t ∈ [0, T ].

By combining this with (4.9) and (4.12), we derive (4.6) for βT = ε
T e1+cT

and some constant
kT > 0.

In the next result, we present Krylov-Khasminskii estimates for SDEs with memory.

Lemma 4.4. Assume (A1), (A2) and (A′3). For any constants T, p, q > 1 such that (2p, 2q) ∈ K
and ε > 0, there exist constants c = c(T, p, q, ε) > 0 and θ = θ(T, p, q) > 0 such that the solution
to (2.1) satisfies

E
[∫ t

s
|fu(X(u))| du

∣∣∣∣Fs

]
≤ (c+ ε‖Xs‖ατ ) ‖f‖2

L̃pq(s,t)
, (4.15)

E
[
exp

(∫ t

s
|fu(X(u))| du

) ∣∣∣∣Fs

]
≤ exp

[
ε‖Xs‖2ατ + c

(
1 + ‖f‖θ

L̃pq(s,t)

)]
(4.16)

for any 0 ≤ s ≤ t ≤ T and f ∈ L̃pq(T ).

Proof. Without loss of generality, we may simply prove these estimates for s = 0.
For any x ∈ Rd, let φx ∈ Cτ be defined as

φx(r) := x, r ≤ 0.

For any t ∈ [0, T ], x ∈ Rd and ξ ∈ Cτ , let

b̄(t, x) := b(0)(t, x) + b(1)(t, φx), b̂(t, ξ) := b(1)(t, ξ)− b(1)(t, ξ0).
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By (4.9), (4.12), (4.13) and the Burkholder-Davis-Gundy (BDG) inequality, we find a constant
k1 > 0 such that

E

[
sup
t∈[0,T ]

‖Xt‖2ατ
∣∣∣∣F0

]
≤ k1

(
1 + ‖X0‖2ατ

)
. (4.17)

For any n ≥ 1, let
τn := inf{t ∈ [0, T ] : ‖Xt‖τ ≥ n}, inf ∅ := T. (4.18)

By (4.17), (A1), (A2), the second inequality in (A′3), and applying Krylov’s estimate in [17,
Theorem 3.1] for b̄(t, x) in place of b(t, x), see also [10, Theorem 1.2.3(2)], we find constants k2
depending on ε and k3 > 0 independent of ε such that

E
[∫ t∧τn

0
|fs| (X(s)) ds

∣∣∣∣F0

]
≤

{
k2 + ε

[
E
(∫ t∧τn

0
|b̂(s,Xs)|2 ds

∣∣∣∣F0

)] 1
2

}
‖f‖L̃pq(0,t)

≤k3 (k2 + ε‖X0‖ατ ) ‖f‖L̃pq(0,t), t ∈ [0, T ].

(4.19)

Letting n→∞, we derive (4.15) since ε > 0 is arbitrary.
To prove (4.16), we shall use Girsanov’s transform. Let

γt = {σ∗(σσ∗)−1}(t,X(t))b̂(t,Xt), t ∈ [0, T ]. (4.20)

Then for any n ≥ 1 and τn in (4.18),

Rn(t) := exp

[
−
∫ t∧τn

0
〈γr, dW (r)〉 − 1

2

∫ t∧τn

0
|γr|2 dr

]
, t ∈ [0, T ]

is a martingale. By Girsanov’s theorem,

Wn(t) := W (t) +

∫ t∧τn

0
γs ds, t ∈ [0, T ]

is a Brownian motion under the probability measure dQn := Rn(T )dP, and X solves the equation

X(t) = X(0) +

∫ t

0
b̄(s,X(s)) ds+

∫ t

0
σ(s,X(s)) dWn(s), t ∈ [0, τn]. (4.21)

Since the Krylov estimate in [10, Theorem 1.2.4] holds for (4.21), letting fnr (x) = fr(x)1{|x|<n},
by the argument in the proof of [18, Lemma 4.4], we find a constant k > 0 independent of s
such that for any t ∈ [0, T ],

EQn

[
exp

(
λ

∫ t

0
|fnr (X(r ∧ τn))| dr

) ∣∣∣∣F0

]
≤ exp

[
k + k‖f‖k

L̃pq(0,t)

]
. (4.22)

13



On the other hand, for constants K in (A1) (A2), (A′3), and βT in Lemma 4.3, let

p0 :=
3 +

√
1 + 8βTK−3

4
.

We have
k(p) := (p− 1)(2p− 1)K3 ∈ (0, βT ], p ∈ (1, p0].

Thus, taking p̃ ∈ [1, p0] with p̃− 1 small enough such that kTk(p̃) ≤ 2ε, by (A1) (A2), (A′3) and
(4.5), we find a constant β = β(p, q, ε) > 0 such that

E
[
|Rn(T )|−(p̃−1)

∣∣F0

]
=E

[
exp

(
(p̃− 1)

∫ T∧τn

0
〈γs, dW (s)〉+

p̃− 1

2

∫ T∧τn

0
|γs|2 ds

)∣∣∣∣F0

]
≤
(
E
[
exp

(
(p̃− 1)(2p̃− 1)

∫ T∧τn

0
|γs|2 ds

)∣∣∣∣F0

]) 1
2

×
(
E
[
exp

(
2(p̃− 1)

∫ T∧τn

0
〈γs,dW (s)〉 − 2(p̃− 1)2

∫ T∧τn

0
|γs|2 ds

)∣∣∣∣F0

]) 1
2

≤ exp
[
β + ε‖X0‖2ατ

]
× 1 = exp

[
β + ε‖X0‖2ατ

]
.

(4.23)

Combining this with (4.22) and applying Hölder’s inequality, we find constants c = c(p, q, ε) > 0
and θ = θ(p, q) > 0 such that

E
[
exp

(∫ t

0
|fns (X(s ∧ τn))| ds

) ∣∣∣∣F0

]
=EQn

[
Rn(T )−1 exp

(∫ t

0
|fns (X(s ∧ τn))| ds

) ∣∣∣∣F0

]

≤
(
E
[
Rn(T )−(p̃−1)

∣∣F0

]) 1
p̃

(
EQn

[
exp

(
p̃

p̃− 1

∫ t

0
|fnr (X(s ∧ τn))|ds

) ∣∣∣∣F0

]) p̃−1
p̃

≤ exp
[
ε‖X0‖2ατ + c

(
1 + ‖f‖θ

L̃qp(0,t)

)]
.

This with n→∞ implies (4.16).

By Lemma 4.3 and (4.16), we have the following corollary which is a key in the proofs of
Theorem 2.1 and 2.2.

Corollary 4.5. Assume (A1), (A2) and (A′3).

(1) For any T ∈ (1,∞), (p, q) ∈ K and ε ∈ (0, 1), there exist constants k = k(T, p, q, ε) > 0
and θ = θ(T, p, q) > 0 such that any solution Xs to (2.1) satisfies

E
[
exp

(∫ t

s
|fu(X(u))|‖Xu‖ατ du

) ∣∣∣∣Fs

]
≤ exp

[
ε‖Xs‖2ατ + k

(
1 + ‖f‖θ

L̃pq(s,t)

)]
,

0 ≤ s ≤ t ≤ T, f ∈ L̃pq(T ).

(4.24)
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(2) For any T ∈ (1,∞), there exist constants βT , kT > 0 such that any solution to (2.1)
satisfies

sup
t∈[0,T ]

E
[
eβ‖Xt‖

2α
τ

∣∣∣F0

]
≤ ekT β(1+‖X0‖2ατ ), β ∈ [0, βT ]. (4.25)

Proof. (a) Let βT , kT > 0 be in Lemma 4.3, and let ε, c > 0 be in Lemma 4.4. We choose
β ∈ (0, βT ] such that kTβ ≤ 2ε, so that by Lemma 4.3, (4.16) and Young’s and Hölder’s
inequalities, we find constants θ = θ(T, p, q), k = k(T, p, q, ε) > 0 such that

E
[
exp

(∫ t

s
|fu(X(u))| · ‖Xu‖ατ du

) ∣∣∣∣Fs

]
≤E

[
exp

(∫ t

s

(
1

2β
|fu(X(u))|2 +

β

2
· ‖Xu‖2ατ

)
du

) ∣∣∣∣Fs

]
≤
(
E
[
exp

(
1

β

∫ t

s
|fu(X(u))|2 du

) ∣∣∣∣Fs

]) 1
2
(
E
[
exp

(
β

∫ t

s
‖Xu‖2ατ du

) ∣∣∣∣Fs

]) 1
2

≤ exp

[
ε‖Xs‖2ατ + k

(
1 + ‖f2‖θ/2

L̃
p/2
q/2

(s,t)

)]
= exp

[
ε‖Xs‖2ατ + k

(
1 + ‖f‖θ

L̃pq(s,t)

)]
.

(b) In the case where b(1) = 0, (4.25) can be obtained by repeating the proof of [4, Lemma
2.4] and [3, Corollary 2.5], so that by Girsanov’s theorem, for the segment solution to (4.21)
and Qn in the proof of Lemma 4.4, there exists constants c0, c1 > 0 such that

EQn

[
ec0‖Xt∧τn‖

2α
τ
∣∣F0

]
≤ ec1+c1‖X0‖2ατ , t ∈ [0, T ], n ≥ 1. (4.26)

Letting p̃ > 1 be in (4.23) and taking

βT :=
p̃c0
p̃− 1

,

by combining (4.23) with (4.26) and using Hölder’s inequality, we find a constant c > 0 such
that

E
[
eβT ‖Xt∧τn‖

2α
τ
∣∣F0

]
≤ EQn

[
Rn(T )−1eβT ‖Xt∧τn‖

2α
τ
∣∣F0

]
≤
(
E
[
Rn(T )−(p̃−1)

∣∣∣∣F0

]) 1
p̃
(
EQn

[
exp

(
p̃βT
p̃− 1

‖Xt∧τn‖2ατ
) ∣∣∣∣F0

]) p̃−1
p̃

≤ exp
(
c+ c‖X0‖2ατ

)
, t ∈ [0, T ], n ≥ 1.

(4.27)

By letting n→∞ we derive

E
[
eβT ‖Xt‖

2α
τ
∣∣F0

]
≤ exp

(
c+ c‖X0‖2ατ

)
, t ∈ [0, T ],

which implies (4.25) for kT := c
βT

by Jensen’s inequality.

Proof of Theorem 2.1. LetX0 be an F0-measurable random variable in Cτ . Take ψ ∈ C∞b ([0,∞))
such that 0 ≤ ψ ≤ 1, ψ(u) = 1 for u ∈ [0, 1], and ψ(u) = 0 for u ∈ [2,∞). Define

b(1)n (t, ξ) = b(1)(t, ξ)ψ

(
‖ξ‖τ
n

)
, t ≥ 0, ξ ∈ Cτ . (4.28)
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By (2.2), for any n ≥ 1, b
(1)
n is bounded and satisfies (A′3). So, Lemma 4.1 ensures that the SDE

dXn(t) = b(1)n (t,Xn
t )dt+ b(0)(t,Xn(t))dt+ σ(t,Xn(t))dW (t), Xn

0 = X0, t ∈ [0, T ]

has a unique strong solution. Let τn be in (4.18). It suffices to prove that for any k ≥ 2 there
exists a constant c(T, k) > 0 such that

E
[

sup
t∈[0,T ]

‖Xn
t ‖kτ
∣∣∣∣F0

]
≤ c(T, k)

(
1 + ‖X0‖kτ

)
, n ≥ 1. (4.29)

This implies P(τn = T )→ 1 as n→∞ and

X(t) := 1{t=0}X(0) +
∞∑
n=1

Xn(t)1(τn−1,τn](t), t ∈ [0, T ]

is the unique solution to (2.1) and (2.4) holds, where τ0 := 0. To prove (4.29), we use Zvonkin’s
transform.

For λ ≥ λ0 and u solving the PDE (4.7) such that (4.8) and (4.9) hold, let

Θ(t, x) := x+ u(t, x), Y n(t) := Θ(t,Xn(t)), t ∈ [0, T ].

By Itô’s formula, we obtain

dY n(t) ={∇Θ(t,Xn(t))b(1)n (t,Xn
t ) + λu(t,Xn(t))}dt

+ {(∇Θσ)(t,Xn(t))}dW (t).
(4.30)

Let
Z(t) = ekτt|Y n(t)|k + 1.

By (A1)–(A3), (4.9) and Itô’s formula, we find a constant c1 > 0 such that

dZ(t) ≤c1
(

1 + ‖Y n
0 ‖kτ

)
dt+ c1 sup

s∈[0,t]
Z(s)dt+ dM(t), t ≤ τn, (4.31)

where
dM(t) = kekτt|Y n(t)|j−2〈Y n(t),

(
{∇Θ}σ

)
(t,Xn(t))dW (t)〉.

By the BDG inequality and the Young inequality, we find constants c2, c3 > 0 such that

E
[

sup
s∈[0,t∧τn]

M(s)

∣∣∣∣F0

]
≤ c2E

[ ∫ t

0
Z(s ∧ τn)2 ds

∣∣∣∣F0

] 1
2

≤1

2
E
[

sup
s∈[0,t∧τn]

Z(s)

∣∣∣∣F0

]
+ c3

∫ t

0
E
[
Z(s ∧ τn)

∣∣F0

]
ds, t ∈ [0, T ].

Combining this with (4.12), (4.31) and

|Xn(t)− Y n(t)| ≤ ‖u‖∞ <∞,

we may apply Gronwall’s inequality to derive the desired (4.29) for some constant c = c(T, k) >
0.
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Proof of Theorem 2.2. Let Θ(t, x) := x+u(t, x) for u solving the PDE (4.7) such that (4.8) and
(4.9) holds, and denote

Y ξ(t) := Θ(t,Xξ(t)), Y η(t) := Θ(t,Xη(t)),

Φ(t) := eτt(Xξ(t)−Xη(t)), Ξ(t) := e2kτt|Y ξ(t)− Y η(t)|2k,
g1(t) := M ‖∇2u‖(t,Xξ(t)) + M ‖∇2u‖(t,Xη(t)),

g2(t) := g1(t) + M ‖∇σ‖(t,Xξ(t)) + M ‖∇σ‖(t,Xη(t)),

A(t) :=

∫ t

0

(
1 + g2(s)

2 + g1(s)‖Xξ
s‖ατ
)

ds, t ∈ [0, T ].

By Lemma 4.2, Lemma 4.4, Corollary 4.5 and Holder’s inequality, for any β > 0 and ε ∈ (0, 1)
we find a constants c(β, ε) > 0 such that

E
[
eβA(T )

]
≤ ec(β,ε)+ε(‖ξ‖

2α
τ +‖η‖2ατ ). (4.32)

By (A1), (A2), (A′3), (4.9) and Lemma 4.2, we find a constant k0 > 0 such that∣∣∣[∇Θ(t,Xξ(t))]b(1)(t,Xξ
t )− [∇Θ(t,Xη(t))]b(1)(t,Xη

t )
∣∣∣

≤ k0‖Xξ
t −X

η
t ‖τ + k0 (1 + g1(t)) ‖Xξ

t ‖ατ |Xξ(t)−Xη(t)|,∥∥∥([∇Θ]σ) (t,Xξ(t))− ([∇Θ]σ) (t,Xη(t))
∥∥∥2
HS
≤ k0

(
1 + g2(t)

2
)
|Xξ(t)−Xη(t)|2.

Combining this with (4.10), (4.12), (4.30) and Itô’s formula, for any k ≥ 1, we find a martingale
M(t) and a constant c1(T, k) > 0 such that for any t ∈ [0, T ],

dΞ(t) ≤ c1(T, k)

{
Ξ(t)dA(t) + sup

s∈[0,t]
Ξ(s)dt+ ‖Y ξ

0 − Y
η
0 ‖

2k
τ dt

}
+ dM(t).

Using the Itô formula, the stochastic Grönwall inequality in [3, Lemma A.5] and (4.10), there
exists a constant c2(T, k) > 0 such that(

E

[
sup
s∈[0,t]

(
e−c1(T,k)A(s)|Φ(s)|2k

) 2
3

]) 3
2

≤ c2(T, k)‖ξ − η‖2kτ , t ∈ [0, T ].

By combining this with (4.32) and Hölder’s inequality, we find a constant c3(ε, T, k) > 0, such
that

E

[
sup
s∈[0,t]

|Φ(s)|k
]
≤ E

[
e

1
2
c1(T,k)A(t)

(
sup
s∈[0,t]

e−
1
2
c1(T,k)A(s)|Φ(s)|k

)]

≤
(
E
[
e2c1(T,k)A(t)

]) 1
4

(
E

[
sup
s∈[0,t]

(
e−c1(T,k)A(s)|Φ(s)|2k

) 2
3

]) 3
4

≤ c3(ε, T, k)eε(‖ξ‖
2α
τ +‖η‖2ατ )‖ξ − η‖kτ , t ∈ [0, T ].

(4.33)

This together with (4.12) yields the desired estimate (2.5) for some constant c > 0 depending
on ε, T and k.
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5 Proof of Theorem 2.3

It suffices to prove the assertions up to any fixed time T ∈ (0,∞). To this end, we use the fixed
point argument as in [7].

Let X0 be an F0-measurable random variable on Cτ with γ := LX0 ∈ Pα
k,e(Cτ ). For any

constant N ≥ 2, let

Cγ,Nk :=

{
µ ∈ Cwb ([0, T ]; Pα

k,e(Cτ )) : µ0 = γ, sup
t∈[0,T ]

e−Nt(1 + µt(‖ · ‖kτ )) ≤ N

}
,

where

Cw([0, T ]; Pα
k,e(Cτ )) := {µ : [0, T ]→Pα

k,e(Cτ )) is weakly continuous},

Cwb ([0, T ]; Pα
k,e(Cτ )) :=

{
µ ∈ Cw([0, T ]; Pα

k,e(Cτ )) : sup
t∈[0,T ]

Wk,var(µt, µ0) <∞
}
.

Then as N ↑ ∞,

Cγ,Nk ↑ Cγk :=
{
µ ∈ Cwb ([0, T ]; Pα

k,e(Cτ )) : µ0 = γ
}
. (5.1)

According to Theorem 2.1 and Corollary 4.5, under the assumptions (H1)–(H2), for any µ ∈ Cγk ,
the SDE

dXµ(t) = b(t,Xµ
t , µt)dt+ σ(t,Xµ(t))dW (t), t ∈ [0, T ], Xµ

0 = X0 (5.2)

has a unique segment solution with

Φγ
· µ := LXµ

·
∈ Cγk .

Then the well-posedness of (1.2) follows if the map Φγ has a unique fixed point in Cγk . To this
end, we need to verify that there exists a constant N0 ≥ 2 such that for any N ≥ N0, the
following two assertions hold:

(a) Φγ : Cγ,Nk → Cγ,Nk , i.e.

sup
t∈[0,T ]

e−Nt
(

1 + ‖Φγ
t µ‖kk

)
≤ N, µ ∈ Cγ,Nk . (5.3)

(b) Φγ has a unique fixed point in Cγ,Nk .

Once these two assertions are confirmed, Φγ has a unique fixed point µ ∈ Cγk , and Xt = Xµ
t is

the unique segment solution of (1.2) with initial value X0, so that (2.9) follows from (5.8).
In the following two subsections, we prove assertions (a) and (b) respectively.
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5.1 Proof of (a)

It suffices to prove (5.3) for k > 0 and large N . By Lemma 4.4, (H1)-(H2) implies that for some
constant c1 > 0 we have

E
[
exp

(∫ T

0
|f0(s,Xµ(s))|2 ds

)]
≤ c1E[eε‖X

µ
0 ‖2ατ ] = c1γ(eε‖·‖

2α
τ ) <∞. (5.4)

Hence,

sup
µ∈Cγk

E
(∫ T

0
|f0(s,Xµ(s))|2 ds

)k
<∞.

Combining this with (H1)-(H2), γ := LX0 ∈Pα
k,e(Cτ ), the Itô formula and the BDG inequality,

we find constants c2, c3 > 0 such that

E

[
sup
s∈[0,t]

(
1 + ekτs|Xµ(s)|k

)]
≤ c2E(1 + |X(0)|k)

+ c2E
(∫ t

0
eτs {‖Xµ

s ‖τ + |f0(s,Xµ(s))|+ ‖µs‖k} ds

)k
≤ c3 + c3E

(∫ t

0

{
e2τs‖Xµ

s ‖2τ + e2τs‖µs‖2k
}

ds

) k
2

, t ∈ [0, T ].

(5.5)

Below we verify (5.3) by considering k ≥ 2 and k ∈ (0, 2) respectively.

(a1) Let k ≥ 2. By (4.12) and (5.5), there exists a constant c4 > 0 such that for any t ∈ [0, T ],

E

[
sup
s∈[0,t]

(
1 + ekτs‖Xµ

s ‖kτ
)]
≤ c4 + c4

∫ t

0

{
E
[
ekτs‖Xµ

s ‖kτ
]

+ ekτs‖µs‖kk
}

ds.

Using Grönwall’s lemma, it holds

E

[
sup
s∈[0,t]

(
1 + ekτs‖Xµ

s ‖kτ
)]
≤ c4ec4T

(
1 +

∫ t

0
ekτs‖µs‖kk ds

)
, t ∈ [0, T ].

Hence, by noting that µ ∈ Cγ,Nk , we can find a constant c5 such that

E
[
1 + ‖Xµ

t ‖kτ
]
≤ 1 + e−kτtE

[
sup
s∈[0,t]

(
1 + ekτs‖Xµ

s ‖kτ
)]

≤ c5 + c5

∫ t

0
e−kτ(t−s)‖µs‖kk ds

≤ c5 + c5NeNt
∫ t

0
e−N(t−s)ds ≤ 2c5e

Nt, t ∈ [0, T ].

(5.6)

Taking N0 = 2c5, we derive

sup
t∈[0,T ]

e−Nt
(

1 + ‖Φγ
t µ‖kk

)
= sup

t∈[0,T ]
e−NtE

(
1 + ‖Xµ

t ‖kτ
)
≤ N, N ≥ N0, µ ∈ Cγ,Nk .
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(a2) Let k ∈ (0, 2). By (4.12) and (5.5), we find constants c6, c7, c8 > 0 such that

Ut := E

[
sup
s∈[0,t]

(
1 + ekτs‖Xµ

s ‖kτ
)]
≤ c6 + c6E

(∫ t

0

{
e2τs‖Xµ

s ‖2τ + e2τs‖µs‖2k
}

ds

) k
2

,

≤ c7 + c7

(∫ t

0
e2τs‖µs‖2k ds

) k
2

+ c7E


[

sup
s∈[0,t]

ekτs‖Xµ
s ‖kτ

]1− k
2 (∫ t

0
ekτs‖Xµ

s ‖kτ ds

) k
2


≤ c7 + c7

(∫ t

0
e2τs‖µs‖2k ds

) k
2

+
1

2
Ut + c8

∫ t

0
Us ds, t ∈ [0, T ],

then Grönwall’s lemma implies that

Ut ≤ 2c7e
2c8T

{
1 +

(∫ t

0
e2τs‖µs‖2k ds

) k
2

}
, t ∈ [0, T ].

Thus, there exist constants c9, c10 > 0 such that for any µ ∈ Cγ,Nk ,

E
(

1 + ‖Xµ
t ‖kτ
)
≤ 1 + e−kτtUt ≤ c9 + c9

(∫ t

0
e−2τ(t−s)‖µs‖2k ds

) k
2

≤ c9 + c9Ne
Nt

(∫ t

0
e−2N(t−s) ds

) k
2

≤ c9 + c10N
1− k

2 eNt, t ∈ [0, T ].

(5.7)

Thus, there exists a constant N0 > 2 such that for any N ≥ N0,

sup
t∈[0,T ]

e−Nt
(

1 + ‖Φγ
t µ‖kk

)
= sup

t∈[0,T ]
e−NtE

(
1 + ‖Xµ

t ‖kτ
)

≤ c9 + c10N
1− k

2 ≤ N, µ ∈ Cγ,Nk .

5.2 Proof of (b)

To ensure that Φγ has a unique fixed point in Cγ,Nk for N ≥ N0, we shall prove that it is
contractive under a complete metric.

For any θ > 0, let

Wk,θ,var(µ, ν) := sup
t∈[0,T ]

e−θt‖µt − νt‖k,var,

Wk,θ(µ, ν) := sup
t∈[0,T ]

e−θtWk(µt, νt), µ, ν ∈ Cγ,Nk .

Then the metric W̃k,θ,var = Wk,θ,var + Wk,θ is complete on Cγ,Nk . We intend to show that Φγ is

contractive in Cγ,Nk under the metric W̃k,θ,var when θ is large enough.
By Theorem 2.1, (H1)-(H2), (5.3) and γ := LX0 ∈ Pk(Cτ ), we find a constant C0(N) > 0

such that

sup
µ∈Cγ,Nk

E
(
E
[

sup
t∈[0,T ]

‖Xµ
t ‖2kτ

∣∣∣F0

]) 1
2 ≤ C0(N)E

(
1 + ‖X0‖kτ

)
<∞. (5.8)
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Next, since µ, ν ∈ Cγ,Nk , we find a constant C0(N) > 0 such that

sup
t∈[0,T ]

Wk,var(µt, νt) ≤ C0(N).

Thus, by (H1) and (H2), we find a constant C1(N) > 0 such that for any µ, ν ∈ Cγ,Nk ,

ζs :=
{
σ∗(σσ∗)−1

}
(s,Xµ(s))

[
b(1)(s,Xµ

s , µs)− b(1)(s,Xµ
s , νs)

]
, s ∈ [0, T ]

satisfies

|ζs|2 ≤ C1(N)H(s)
(
1 ∧Wk,var(µs, νs)

2
)
, s ∈ [0, T ]. (5.9)

Recalling that H ∈ L1
loc([0,∞); (0,∞)), we have∫ t

0
H(s)

(
1 ∧Wk,var(µs, νs)

2
)

ds ≤
∫ t

0
H(s) ds <∞,

then by (H2) and Girsanov’s theorem, for any t ∈ [0, T ],

Rt := exp

(∫ t

0
〈ζs, dW (s)〉 − 1

2

∫ t

0
|ζs|2 ds

)
(5.10)

is a martingale and

W̃u := Wu −
∫ u

0
ζs ds, u ∈ [0, t]

is a Brownian motion under the probability measure Qt := R(t)P. Since es − 1 ≤ ses for s ≥ 0,
we find constants C2(N), C3(N) > 0 such that

E
(
|Rt − 1|2

∣∣F0

)
= E

[
e2

∫ t
0 〈ζs,dW (s)〉−2

∫ t
0 |ζs|

2 ds+
∫ t
0 |ζs|

2 ds

∣∣∣∣F0

]
− 1

≤ eC1(N)
∫ t
0 H(s)(1∧Wk,var(µs,νs)

2) ds − 1 ≤ C2(N)

∫ t

0
H(s)Wk,var(µs, νs)

2 ds

≤ C3(N)e2θtW̃k,θ,var(µ, ν)2
∫ t

0
H(s)e−2θ(t−s) ds, µ, ν ∈ Cγ,Nk .

(5.11)

Reformulating (5.2) as

dXµ(r) = b(r,Xµ
r , νr)dr + σ(r,Xµ(r))dW̃ (r), LXµ

0
= γ, r ∈ [0, t]. (5.12)

By the uniqueness, we obtain
Φγ
t ν = LXν

t
= LXµ

t |Qt ,

where LXµ
t |Qt stands for the distribution of Xµ

t under Qt. Thus, by (5.8), (5.9), (5.11) and
Hölder’s inequality, we find constant C4(N) > 0 such that

‖Φγ
t µ− Φγ

t ν‖k,var = sup
|f |≤1+‖·‖kτ

|E [f(Xν
t )− f(Xµ

t )]|
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= sup
|f |≤1+‖·‖kτ

|E [(Rt − 1)f(Xµ
t )]| ≤ E

[
(1 + ‖Xµ

t ‖kτ )|Rt − 1|
]

≤ E
[{

E
(

(1 + ‖Xµ
t ‖kτ )2

∣∣F0

)} 1
2 {E (|Rt − 1|2

∣∣F0

)} 1
2

]
≤ C4(N)eθtW̃k,θ,var(µ, ν)

(∫ t

0
H(s)e−2θ(t−s) ds

) 1
2

, µ, ν ∈ Cγ,Nk .

Therefore,

Wk,θ,var(Φ
γµ,Φγν) = sup

t∈[0,T ]
e−θt‖Φγ

t µ− Φγ
t ν‖k,var

≤ C4(N) sup
t∈[0,T ]

(∫ t

0
H(s)e−2θ(t−s) ds

) 1
2

W̃k,θ,var(µ, ν), µ, ν ∈ Cγ,Nk .

(5.13)

We will finish the proof by considering k ≤ 1 and k > 1 respectively.

(b1) Let k ≤ 1. By (1.4) and (5.13), we obtain

W̃k,θ,var(Φ
γµ,Φγν) ≤ (1 + c)Wk,θ,var(Φ

γµ,Φγν)

≤ (1 + c)C4(N)

(∫ t

0
H(s)e−2θ(t−s) ds

) 1
2

W̃k,θ,var(µ, ν), µ, ν ∈ Cγ,Nk .

Noting that H ∈ L1
loc([0,∞); (0,∞)) yields that

lim
θ→∞

sup
t∈[0,T ]

(∫ t

0
H(s)e−2θ(t−s) ds

) 1
2

= 0, (5.14)

we may choose θ > 0 large enough such that

W̃k,θ,var(Φ
γµ,Φγν) ≤ 1

2
W̃k,θ,var(µ, ν), µ, ν ∈ Cγ,Nk .

This together with (a) implies that Φγ has a unique fixed point in Cγ,Nk .

(b2) Let k > 1. Let Θ(t, ·) := id+u(t, ·) for u solving (4.7) such that (4.8) and (4.9) holds. Let

Z(t) := Xµ(t) + Θ(t,Xµ(t))−Xν(t)−Θ(t,Xν(t)),

g1(t) := M ‖∇2u‖(t,Xµ(t)) + M ‖∇2u‖(t,Xν(t)),

g2(t) := g1(t) + M ‖∇σ‖(t,Xµ(t)) + M ‖∇σ‖(t,Xν(t)), t ∈ [0, T ].

By (H1)-(H3), (4.9), (4.10) and Itô’s formula, we find a constant c1(k) > 0 such that

d
{

e2kτt|Z(t)|2k
}
≤ c1(k)

{
e2kτt‖Zt‖2kτ +H(t)e2kτtWk,var(µt, νt)

2k
}

dt

+ e2kτt|Z(t)|2kdA(t) + dM(t), t ∈ [0, T ],
(5.15)
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where

A(t) := c1(k)

∫ t

0

(
1 + g2(s)

2 + g1(s)‖Xµ
s ‖ατ

)
ds,

d〈M〉(t) ≤ c1(k) (1 + g2(t))
2 e4kτt|Z(t)|4k dt.

(5.16)

Combining this with (4.10), (4.12), the stochastic Grönwall inequality in [3, Lemma A.5] ,
Lemma 4.4, Corollary 4.5 and the fact that Xµ

0 = Xν
0 = X0, we find a constant c2(k) > 0 such

that

E

[
sup
s∈[0,t]

ekτs‖Xµ
s −Xν

s ‖kτ

]
= E

[
sup
s∈[0,t]

ekτs|Xµ(s)−Xν(s)|k
]

≤
(
E
[
e

3
2
A(t)
]) 1

3

E

[
sup
s∈[0,t]

e−A(s)e2kτs|Xµ(s)−Xν(s)|2k
] 3

4


2
3

≤ c2(k)

(∫ t

0
H(s)e2kτsWk,var(µs, νs)

2k ds

) 1
2

.

Since Φγ
t µ = LXµ

t
and Φγ

t ν = LXν
t
, by the inequalities above, we find a constant c3(k) > 0 such

that

Wk,θ(Φ
γµ,Φγν) = sup

t∈[0,T ]
e−θtWk(Φ

γ
t µ,Φ

γ
t ν) ≤ sup

t∈[0,T ]
e−θt

(
E
[
‖Xµ

t −Xν
t ‖kτ
]) 1

k

≤ c2(k) sup
t∈[0,T ]

(∫ t

0
H(s)e−2kθtWk,var(µs, νs)

2k ds

) 1
2k

≤ c3(k)W̃k,θ,var(µ, ν) sup
t∈[0,T ]

(∫ t

0
H(s)e−2kθ(t−s) ds

) 1
2k

, µ, ν ∈ Cγ,Nk , θ > 0.

Combining this with (5.13) and (5.14), we may choose θ > 0 such that

W̃k,θ,var(Φ
γµ,Φγν) ≤ 1

2
W̃k,θ,var(µ, ν), µ, ν ∈ Cγ,Nk . (5.17)

Thus, Φγ has a unique fixed point in Cγ,Nk .

6 Proof of Theorem 3.3

Proof of Theorem 3.3(1). The well-posedness can be proved by using a standard fixed point
theorem. Let X0 be F0-measurable with γ := LX0 ∈ P2(Cτ ). For any constant θ, T > 0, the
path space

Cγ2 :=
{
µ ∈ Cw([0, T ]; P2(Cτ )) : µ0 = γ

}
is complete under the metric

W2,θ(µ, ν) := sup
t∈[0,T ]

e−θtW2(µt, νt).
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According to Theorem 3.1, (H ′) implies that for any µ ∈ Cγ2 , the SDE

dXµ(t) = b(t,Xµ
t , µt)dt+ σ(t,Xµ

t )dW (t), t ∈ [0, T ], Xµ
0 = X0 (6.1)

is well-posed with
Φγ
· µ := LXµ

·
∈ Cγ2 .

For the well-posedness of (1.2), it suffices to show that Φγ has a unique fixed point in Cγ2 .
Now, for ν0 ∈P2(Cτ ), for simplicity, we assume that we can choose F0-measurable random

variables Xµ
0 and Xν

0 on Cτ such that

W2(µ0, ν0)
2 = E

[
‖Xµ

0 −X
ν
0 ‖2τ
]
. (6.2)

Otherwise, in the following it suffices to first replace (Xµ
0 , X

ν
0 ) be the sequences (Xµ,n

0 , Xν,n
0 )

such that
n−1 + W2(µ0, ν0)

2 ≥ E
[
‖Xn,µ

0 −Xn,ν
0 ‖

2
τ

]
, n ≥ 1,

then let n→∞.
For any ν ∈ Cν02 which is defined as Cγ2 for ν0 replacing γ, let Xν

t be the unique solution to

dXν(t) = b(t,Xν
t , νt)dt+ σ(t,Xν

t )dW (t), t ∈ [0, T ] (6.3)

with initial value Xν
0 . By (H ′) and Itô’s formula, we obtain

de2τt|Xµ(t)−Xν(t)|2 ≤ Ke2τt
(
‖Xµ

t −Xν
t ‖2τ + W2(µt, νt)

2
)
dt+ dM(t)

for some constant K > 0, where Mt is a martingale with

d〈M〉(t) ≤ Ke4τt‖Xµ
t −Xν

t ‖4τdt.

Combining this with (4.12), Itô’s isometry and Young’s inequality, we find a constant c1 > 0
such that

E
[

sup
s∈[0,t]

e2τs‖Xµ
s −Xν

s ‖2τ
]
≤ c1E‖Xµ

0 −X
ν
0 ‖2τ + c1E

[(∫ t

0
e4τs‖Xµ

s −Xν
s ‖4τ ds

) 1
2
]

+ c1

∫ t

0
e2τsE

[
‖Xµ

s −Xν
s ‖2τ + W2(µs, νs)

2
]

ds

≤ c1E‖Xµ
0 −X

ν
0 ‖2τ +

(
c1 +

c21
2

)∫ t

0
e2τsE

[
‖Xµ

s −Xν
s ‖2τ + W2(µs, νs)

2
]

ds

+
1

2
E
[

sup
s∈[0,t]

e2τs‖Xµ
s −Xν

s ‖2τ
]
, t ∈ [0, T ].

By an approximation argument with stopping times, we may and do assume that

E
[

sup
s∈[0,t]

e2τs‖Xµ
s −Xν

s ‖2τ
]
<∞,
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so that the above estimate together with (6.2) and Grönwall’s inequality yields

E
[

sup
s∈[0,t]

‖Xµ
s −Xν

s ‖2τ
]
≤ c2(T )W2(µ0, ν0)

2 + c2(T )

∫ t

0
W2(µs, νs)

2 ds (6.4)

for any t ∈ [0, T ] and some constant c2(T ) > 0. In particular, when µ0 = ν0 = γ, we derive

W2,θ(Φ
γµ,Φγν)2 ≤ sup

t∈[0,T ]
e−θtE

[
‖Xµ

t −Xν
t ‖2τ
]

≤ c2(T ) sup
t∈[0,T ]

e−θt
∫ t

0
W2(µs, νs)

2 ds ≤ c2
θ
W2,θ(µ, ν)2, µ, ν ∈ Cγ2 .

So, when θ > c2, Φγ is contractive in the complete metric space (Cγ2 ,W2,θ), hence it has a unique
fixed point.

Moreover, letting µt = P ∗t µ, νt = P ∗t ν, we have LXµ
t

= P ∗t µ and LXν
t

= P ∗t ν, so that (6.4)
and Grönwall’s inequality yield (3.4) for some constant c > 0.

Now, let τ0 ∈ (0, τ) and ‖σ‖∞+ ‖σ−1‖∞ <∞, it remains to verify (3.5), which implies (3.6)
through repeating the proof of [5, Theorem 2.1(1)] for

E = Pα
2,e(Cτ ), ρ(µ, ν) = W2(µ, ν), Γt = ce−τ0t, (6.5)

and Λt = cect in place of Λ.

Proof of (3.5). Let Xµ
t be the unique solution to (1.2) with the initial distribution µ and denote

µt = P ∗t µ, νt = P ∗t ν,

ζ̄s :=
{
σ∗(σσ∗)−1

}
(s,Xµ

s ) [b(s,Xµ
s , µs)− b(s,Xµ

s , νs)] ,

R̄s := exp

[
−
∫ s

0
〈ζ̄u,dW (u)〉 − 1

2

∫ s

0
|ζ̄u|2 du

]
, s ∈ [0, t].

Then (H ′) and (3.4) implies that

|ζ̄s|2 ≤ c1K2W2(µs, νs)
2 ≤ c2K2e

c2sW2(µ, ν)2 (6.6)

for some constants c1, c2 > 0. Thus by Girsanov’s theorem, R̄s is a martingale and

W̄ (s) = W (s) +

∫ s

0
ζ̄r dr, s ∈ [0, t]

is a Brownian motion under the probability measure P̄ := R̄tP. Then (1.2) can be reformulated
as

dXµ(s) = b(s,Xµ
s , νs)ds+ σ(s,Xµ

s )dW̄ (s), LXµ
0

= µ, s ∈ [0, t]. (6.7)

For any κ > τ , where τ > 0 is given in (1.1), consider the following SDE:

dY (s) ={b(s, Ys, νs) + κσ(s, Ys)σ(s,Xµ
s )−1(Xµ(s)− Y (s))}ds

+ σ(s, Ys)dW̄ (s), s ∈ [0, t], Y0 = Xν
0 .

(6.8)
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Let

ζ̃s := κσ(s,Xµ
s )−1(Xµ(s)− Y (s)),

R̃s := exp

[
−
∫ s

0
〈ζ̃r,dW̄ (r)〉 − 1

2

∫ s

0
|ζ̃r|2 dr

]
, s ∈ [0, t].

Due to [5, Lemma 3.2] with P replaced by P̄, under the assumption (H ′),

W̃ (s) = W̄ (s) +

∫ s

0
ζ̃r dr = W (s) +

∫ s

0

(
ζ̃r + ζ̄r

)
dr, s ∈ [0, t]

is a Brownian motion under the probability measure Q = R̃tP̄ = R̃tR̄tP. Hence (6.8) can be
reformulated as

dY (s) = b(s, Ys, νs)ds+ σ(s, Ys)dW̃ (s), s ∈ [0, t], Y0 = Xν
0 , (6.9)

which together with the uniqueness of (6.3) derives that LYt|Q = LXν
t
. Moreover, if we choose

F0-measurable random variables Xµ
0 and Xν

0 on Cτ such that

W2(µ, ν)2 = E
[
‖Xµ

0 −X
ν
0 ‖2τ
]
. (6.10)

By (6.7), (H ′) and the proof of [5, Lemma 3.3], for any p > 0 and τ0 ∈ (0, τ) we find a constant
κ > τ to define Ys in (6.8) such that

EQ [‖Xµ
t − Yt‖pτ |F0] ≤ ce−pτ0t‖Xµ

0 −X
ν
0 ‖pτ , t ≥ 0 (6.11)

holds for some constant c > 0. Therefore, applying Young’s inequality in [2, Lemma 2.4],

Pt log f(ν) = EQ [log f(Yt)] = EQ [log f(Xµ
t )] + EQ [log f(Yt)− log f(Xµ

t )]

≤ E
[
R̄tR̃t log f(Xµ

t )
]

+ ‖∇ log f‖∞EQ‖Xµ
t − Yt‖τ

≤ E
[
R̄tR̃t log

(
R̄tR̃t

)]
+ logPtf(µ) + c‖∇ log f‖∞e−τ0tW2(µ, ν), t ≥ 0

(6.12)

holds for any f ∈ B+
b (Cr) with ‖∇ log f‖∞ <∞. Next, denote Rt = R̄tR̃t, it follows from (6.6),

(6.11) that for some positive constants c3, c4,

E [Rt logRt] ≤
1

2
EQ

∫ t

0
|ζ̄s + ζ̃s|2 ds ≤ EQ

∫ t

0
|ζ̄s|2 ds+ EQ

∫ t

0
|ζ̃s|2 ds

≤ c3K2e
c3tW2(µ, ν)2 + c3

∫ t

0
EQ‖Xµ

s − Ys‖2τ ds ≤
(
c3K2e

c3t + c4
)
W2(µ, ν)2.

Substituting this back into (6.12) yields (3.5).
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