UNADJUSTED LANGEVIN ALGORITHMS FOR SDES WITH HOLDER DRIFT

XIANG LI, FENG-YU WANG, AND LIHU XU

ABSTRACT. Consider the following stochastic differential equation for (X;);>o on R? and its
Euler-Maruyama (EM) approximation (Y3, ),ez+:

dXt = b(Xt)dt + O'(Xt)dBt,

}/tn+1 = }/tn + nn+1b(}/tn) + O-()/tn) (Btn+1 - Btn) )
where b : R? — R?, ¢ : R? — R%¥¢ are measurable, B, is the d-dimensional Brownian motion,
to := 0,t, := > p_, mi for constants 7, > 0 satisfying limy_,oom = 0 and Y ;0 mp = .
Under (partial) dissipation conditions ensuring the ergodicity, we obtain explicit convergence rates
of W,(Z(Y,,), L (X4,)) + W, (L (Y2,), ) — 0asn — oo, where W, is the LP-Wasserstein
distance for certain p € [0, 00), Z(£) is the distribution of random variable &, and y is the unique
invariant probability measure of (X;);>o. Comparing with the existing results where b is at least
C?-smooth, our estimates apply to Holder continuous drift and can be sharp in several specific
situations.
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1. INTRODUCTION

We consider the following time homogenous stochastic differential equation(SDE) on R¢:
(1.1) dX; = b(Xy)dt + o(X,)dBy, t >0,
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2
22
24
27

where b : R? — R?, o : R? — R% are measurable, and B, is the d-dimensional Brownian
motion under a probability base (2, .#, {.%#; }+>0, P). Under conditions allowing singular drift, the
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well-posedness, regularity estimates and exponential ergodicity have been derived for (1.1), see
for instance [10, 21, 26, 28, 25, 27] and references therein.

In recent years, stochastic algorithms arising from statistics and machine learning have been
intensively developed to simulate the invariant probability measure for a stochastic system, where
a practical algorithm is the unadjusted Langevin algorithm (ULA) using the Euler-Maruyama(EM)
scheme of the associated SDE. See for instance [8, 4, 5, 16, 6, 19] for the background of the study.

For a sequence of step sizes {7 }r>1, the EM Scheme of (1.1) is defined by the following
induction

(1‘2) }/tk+1 - thk + T}k-‘rlb(}/tk) —I— O-(}/;fk) (Btk+1 - Btk) 9 Y;f() = Yb = X07 k S Z+7

with Yy = X, = z, where ¢, .= Zle n; and By, — By, can be identified as /M1 1C for i.i.d.
d-dimensional standard normal distributed random variables {(},>1. The associated continuous
time Euler Scheme is defined by

(13) Y;:}/tk—i—(t—tk)b(y;k)—FU(Y;k) (Bt_Btk.)a t e [tk,tk+1),k20,%:X0.

In addition to the aforementioned ULA algorithm, the equation (1.2) can also be interpreted as
a noisy gradient descent(GD) algorithm as b(z) = —VV (x) with V(x) being a loss function in
a certain optimization problem. Motivated by these two algorithms and their variants, the Euler-
Maruyama(EM) scheme of SDEs have been extensively investigated under different assumptions
and settings, see for instance [1, 4, 5, 6, 17, 22].

In this paper, we investigate the convergence rate of

W,(ZL(X4,), L (Ys,)) + W, (Z(Ys,), 1) = 0asn — oo,

where p € [0, 00), s the unique invariant probability measure of (X;);>¢, -Z(€) is the distribution
of a random variable £, and for & (p1, 112) being the class of couplings of probability measures
{11, iz on RY,

1
W, (1, pto) == inf (/ Liztyy | — y\pﬂ(d:v,dy))
R4 xRd

WS AW

is the LP-Wasserstein distance. By Kantorovich’s dual formula, for any p € [0, 1] we have
Wy (pr, p2) = sup [pa(f) — p2(f)],

fe«%b,[f]pgl

where %, is the set of all bounded measurable functions on R¢, and

flo) = fly
1y i sup L) = F10)
TH£Y |x - y|
is the p-order modulus of continuity for f. In particular,
2Wo(p1, p2) = [[pa — pallry = sup [ (f) — p2(f)]

1fI1<

is the total variation distance.

It is worthy to point out that for b(z) = —VV (z) and o = I; (the d x d identity matrix), where /
is a strictly convex function with bounded V2V, the convergence rate under the Kullback-Leibler
divergence (i.e. the relative entropy) has been studied in [4, I, 17].

By the ergodicity, we have .Z(X;, ) — p as t, — oo, where £ (X, ) is the distribution of X,

and p is the unique invariant probability measure. So, it is essential to assume ¢,, — oo as n — oo,
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i.e. Y po, M = co. On the other hand, to approximate .2’ (X, ) by .Z(Y;,), the step size 7,, should
decay to 0 as n — oo. Thus, throughout the paper we make the following assumption.

(A0) The step size sequence {7 > 0}x>1 is non-increasing and satisfies
lim 7 = 0, ;nk = o0.

A typical examples of step size {n }r>1 satisfying (A0) is np = 0k~* for some 6 € (0,00) and
a € (0,1].

Before moving on, let us recall some existing estimates on the convergence rate presented in the
literature for n;, = +.

When b = —VV for V being strictly convex and V2V being bounded, Durmus and Moulines
[5, 6] showed that W,(.Z(Y;,), 1) and Wo(.Z(Y,,), 1) are both bounded by O(d2n ), and that
their bounds can be improved to O(dn~') and O(dzn"1) respectively if V € C? has Lipschitz
continuous first and second order derivatives.

Recently, Pages and Panloup [ 9] studied the non-asymptotic bounds related to the EM scheme
(1.2), for which they replaced the strongly convex assumption on V' in [6] with a weaker assump-
tion on the drift b and allows a multiplicative noise (i.e. ¢ is non-constant). They obtained an
O(n=17¢) upper bound with ¢ € (0, 1), for Wo(Z(Y;,), 1) under the conditions b, € C, and
an O(n~'log(n)) upper bound for W, (.Z(Y;,), ;1) under the conditions b, € C*. When o is
a constant matrix, their upper bounds for both distances can be improved to O(n~!) under the
weaker condition that b € C3. Note that their results fail to provide an explicit dependence on the
dimension d.

However, in many important applications such as lasso and bridge regressions, the drift b is
much more singular than those required in the above references. This motivates us to study the
convergence of the unadjusted Langevin algorithm for SDE (1.1) in the case b € C* with « € (0, 2]
for partially filling this gap. If b € C* with o € (0, 1], it means that b is a-Holder continuous,
while if b € C* with « € (1, 2], it means that Vb is (a — 1)-Holder continuous.

To compare our main results with the above introduced estimates, we simply let 7, = % and
briefly summarize our results as follows.

1. When b is partially dissipative with b € C'“ for some « € (0, 2], and o(x) = o is constant,
Theorem 2.1 implies that

Wy (L(Ya), 1) + Wo(L (V) 1) < O(dzHHasesaing=3),

This estimate is also extended to W, for p € (0,1).When a = 2, and p = 0, 1, the order of
n in our result matches the optimal order shown in [19, Theorem 2.3]. Note that our result
is obtained under weaker condition on b rather than b € C? asin [19].

2. When b is uniformly dissipative and in C* for some « € (0, 1], Theorem 3.1 implies

W,(L(Y.,), Z(X,,)) < O(din~ %)

for any p € (1,00). In particular, when o« = 1 and p = 2 this estimate has the same order

as that in [0].
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Let us briefly discuss our approach to proving the main results. In the uniform dissipation case,
we use a synchronuous coupling of the solutions of (1.1) and (1.3) and compare their difference
directly. However, this method is not applicable in the case of partial dissipation. Alternatively, we
apply a domino decomposition in [ | 9], whose probability version was recently established in [3] by
a generalized Lindeberg principle and seems more powerful in applications. Comparing to [19], it
seems to us that our one-step error estimation is a little more delicate, and thus allows us to achieve
the optimal rate under a weaker assumption on b. More precisely, we establish an integration by
parts formula for the unadjusted Langevin algorithm rather than directly estimate a Malliavin ma-
trix, which helps us to get estimates explicitly depending on the dimension d. Girsanov’s theorem
and Pinsker’s inequality also play an important role in our proof.

The paper is organized as follows. When the coefficients only satisfy a partial dissipation con-
dition, we consider the additive noise where o(z) = o does not depend on = and ¢, and estimate
W, (Z(Y;,), i) in Section 2 for p € [0, 1]. In Section 3, we estimate W,(.Z(Y,), £ (X, )) for
p > 1 under the uniform dissipation condition, where the time in-homogenous case is also consid-
ered.

Throughout this paper, let | - | be the Euclidean norm, let || - ||, and || - ||us denote the operator
norm and Hilbert-Schmidt norm for matrices respectively. We will use ¢ = ¢(---) to denote a
constant ¢ which only depends on the quantities “- - - ". The notations C*(X’,))) is used to denote
the classes of continuous functions mapping from X" to ) that have continuous first, second,. . . and
k-th order partial derivatives and if the context of the function’s space is clear, we will abbreviate
the notation of the space as C*.

2. W,-ESTIMATE FOR p € [0, 1]: PARTIAL DISSIPATION CASE

2.1. Main result and an example.
In this section, we study the W -estimate for p € [0, 1] under the following assumptions

(Al) Let o € (0,2]. o(z) = o does not depend on z and is invertible, and there exist constants
K, Ky € (0, 00) such that

o llop V ||U_1H0p < K
and b is partially dissipative, i.e.
(b(z) —bly),x —y) < K — Kolz —y|?, z,yecR%

Moreover,
e whena <1,

b(z) = b(y)] < Ki(lz =yl + |z —y|*), w,y € RYE
e when o € (1,2], b € C*(R?) and
IVbllop < K1, [[VD(x) = Vb(y)lop < Kilz —y|*™!, 2,y €R™

This assumption implies the well-posedness of (1.1), see [21, 29] for the well-posedness of more
singular SDEs. The following result improves [19, Theorem 2.2]. In particular, when o = 2 and
p > 0, the order n~! in (2.3) is sharp for 7;, ~ % is sharp since it is reached by the Ornstein-

Uhlenbeck process, for which W (£ (Y;*), i) can be computed explicitly (see [19, Section 4.6]).
4



Theorem 2.1. Assume (AQ) and (
c1(Kq, Ka,m, ), co = co( Ky, K) €
andn > 2.

(1) Let a € (0, 1]. We have
Wi (ZL(X7), Z(V)) + Wi (1, Z2(Y7))

Al) for some o € (0,2]. Then there exist constants ¢; =
(0, 00) such that the following statements hold for any x € R¢

2.1) -
<Cld2 1+|:L’| Z tn*tk) 1+ :
k=

Wo (Z(X3), Z(Y;) + Wo (1, Z(Y;))

(2.2) nd o 1t(eAl)
< edi(L+faf) | Y et (g, — )73, 2 4 2
k=

1

In particular, if we choose 1, =

Cl _CI(K17K279 a) ( )
(2.3) W, (Z(X YN + W, (1, L(YE)) < ddin™3, i=0,1.

(2) Let o € (1,2]. We have
Wi (Z(X3), £ (Vi) + W (p, (V7))
24 n-l1 N
. < Cld%(l + |z[?) Ze_"?(tn_tk)n;”,
k=1

Wo (LX), L(Y7)) + W (1, Z(V))

n—l o 1+(aAl)
St — ) e g 2|
k=1

% O for some constant 6 > oo, then there exists a constant
such that

2.5 3
22 < cd}(1 4 ]aP)

for some constant ) > -, then there exists a constant
uch that

In particular, if we choose 1
) = (K, Ky, 0,a) € (

o0)
(2.6) W, (L(XE), L)) + W, (1, L(Y7)) < didin3, i=0,1.
(3) Foranyp € (0,1),
W, (Z(X5,), Z(Y5)) + Wy (i, Z(Y))

—1
k=1

< cld1+§+1{1<a§2} (1 + |x|1+1{1<a§2}

Example 2.1. Let us consider using the ULA algorithm for sampling from a d-dimensional dis-
tribution with density function %6_%|m|2+i|x‘a+l, a € (0,1] where Z is the normalization constant.
In this case, the iterative formula for the ULA algorithm with decreasing step size 1, k > 1 is as
follow

a+1 o—
Yit1 =Y + i1 <_Yk + 1 Yy | ! Yk> + vV 201Ckt1, k>0,
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where (y,...,(x, ... are i.i.d. d-dimensional standard normal distributed random variables, and
the corresponding SDE should be

1
dX, = (—Xt + O‘I |Xt|0“1Xt) dt +v2dB,, t>0.
It can be easily verified that in this case, the drift coefficient b(z) = —x + %H|z|*'z is not
uniformly dissipative (in other words, V' is non-convex for V satisfying b = —VV)), and non-

differentiable near the origin if @ < 1. However, this example satisfies our assumptions in (A1).
Hence, according to Theorem 2.1, if 7 is chosen to be % for some suitable 6 > 0, then the approx-

imation error of this algorithm under W, 4+ W has convergence rate O(d%n_%).

2.2. Proof of Theorem 2.1.
We first present the following moment estimates on Y; and X; which are crucial for the proofs.

Lemma 2.2. Assume that (AQ) holds, (1.1) is well-posed and there exist positive constants k1, ko
such that

(2.7 (2,b(z)) < Ky — Kalz|?, |b(@)] < Ka(L+ |2]), ||o]lop < K2, Yz € R
Then for any p € (0, 00), there exists a constant k = k(k1, k2, p) € (0,00) such that

(2.8) sup B| XT|P < k(d® + |z[P), Vz € R
t>0

If moreover
(2.9) [b(z) = b(y)| < K(lz =yl + |z —y|*), Y,y € R

holds for some constant K € (0,00) and o € (0, 1], then there exists k' = K/(k1, ke, K,n,a,p) €
(0, 00) such that
(2.10) sup B|Y?|P < &'(d? + |z[P), Vz € R%
>0
Proof. By Jensen’s inequality, we only need to prove for p > 2.
(1) Proof of (2.8). All constants c¢; in this step depend only on £y, k9 and p. By (2.7), ||o||4g <
d||o|2, and Young’s inequality, there exist constants ¢1, ¢; € (0, 00) such that, for any z,y € R?

- 1 _
plal™ (@, b)) + 5p(p = D]z o s

_ 1 _
< —raplal” + mapla|” + Srap(p — Dd|z|"

@2.11)

<cd: — colx|P.
So, by It6’s formula and ||o||op < ||o]|ns,

d[X7[" — dM,

T|p— T T 1 T |p— 1 TP T
= |:p|Xt |p 2<Xt , (X )> + §p|Xt P 2||0||2HS + 517(]7 —2)[X; |p ! |‘7Xt |2 dt

x - x €T 1 T |p—
< |PIXEP DX + ol ~ DIXE o] a



< (c1d? — oo X7|P)dt

holds for some martingale M;. Then it follows from Gronwall’s inequality that

o
2
+ |f?,

t
p d
E[X?P < |efPe! + cidb / eeali=s)gs < 1
0 C2
so that (2.8) follows.
(2) Proof of (2.10). All constants c¢; in this step depend only on k1, ko, K, 7, @ and p. For any
k > 1,by (2.7), (2.9) and (2.11), and noting that

Y =Y I+ Y =Y [ < e+ Y7 =Y ])

tk 1 tk 1 tk 1

holds for some constant ¢ > 0, we find a martingale M/, such that for t € [t;_y, t]

i x| p— T x 1 T D—
AP —aM, < (pIYEP2 0 ) + oplp — DIV o3 )

T |p— x T 1 T p—
< (PP 20V, B0Y)) + 5o — DIVEP 2ol ) at
DY B0 - bV ld
Y:II

tk—1

1
< |- VT + Sl = Dl + Kp vy (v

+1>] dt

C P
< (= 21l + eo{ad + e - v}

where the last step follows from the Young’s inequality. This implies
Elyxlp <e QCZWk]E| i 1|p + C3dg77k

(2.12) L

+203/ E[Y7 - Y Pldt, k> 1.

lk—1

By the boundedness of o and the linear growth of b, we find a constant ¢4 > 0 such that
ElY;" — P =E|(t—ti-)b(YS )+ 0(Bi— By,_,)["

tk 1 th—1

S Cq |:77k( +]E| the— 1‘ )+77]§d§:| ) S [tk—latk]7k Z 1.

Since {7y }x>1 is non-increasiong, combining this with (2.12), we can find a constant c5 > 0 such
that

p
Lop
2dz2

E’}/;a;’p < <e7%02nk + 263C4T] ) ’p + ng%nk + 20304 |:?7]1+p + 77]14_ d

’tkl

(2.13) )
< (e 2k 4 ¢ UHP)E] o P esdin, k> 1

Since 1, — 0 as k — oo, we can find a ky > 1 such that
1
(2.14) 0<e s e <1 - Zeame k> ho.

Consequently,
k

Ce = supH (e 29 4 ¢ an) < 00.
k2150
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So, iterating the estimate (2.13) yields

k—1 k
(2.15) E|Y,|? < colal? +esd® [me+ > m [T (e ““C”Hp)]
=1 j=itl

By (2.14) we obtain

ko—1
an H (e_%”’”+c5n )<c Zm—FZm H (1—ic2ﬁj>

= j=i+1 i=ko j=i+1
ko—1 1 k 1
= Cg Z n; + — Z 1-— (1 — 162771):| H (1 — 1_162%)
i=ko - Jj=i+1
ko—1 [k 1 k 1
= C¢ Z M+ — Z H (1 - 102773') - H <1 - 1027”)]
i=ko Lj=i+1 Jj=t
ko—1 4
<6 Y mi+— <00, Vk> ko
=1 €2

Combining this with (2.15), we prove (2.10) for some constant ' and k > ko, while for k£ < kg
the estimate follows from (2.13). 0

Lemma 2.3. Assume that the conditions in Lemma 2.2 hold. Then, for any p > 0 there exists a
constant k = k(K1, Ko, p) € (0, 00) such that

E|X7 — xfP < k(d? +|zP)(1 A1), 2 €R?, ¢>0.
If moreover (2.9) holds, then there exists k' = K/(k1, ko, 1, K, p, ) € (0,00) such that

E[Y? - Y P < w'(df + |a")ni, v €RY k> 1, b€ [ty ti]

tk1

Proof. Again, by Jensen’s inequality, we only need to prove for p > 2.
(1) Applying Itd’s formula, (2.11) and Young’s inequality gives us

d|X? — z” — M,

— x x 1 x —
< [Pz = a2 20O + ol — DIXE — a2l

< (e1df — cu X7 — a4 pIXF — olP2(XF — 0, BXE) — BXE — )
< (cld% e |XP — P + 2K, p| X — 2P(1 4 |35|)> dt

< (¢ (dF +lal) = |7 —al?) at
where the third inequality is a consequence of (2.9) and M/, is the Martingale term. Since X —x =
0, 1t follows from Gronwall’s inequality that

cy(ds + z]P)
— (
for some k = Kk(K1, Ko, D).

E|X; —a" < 1— e’d?t> < K(d? 4+ |zP) (1AL), VezeR4t>0,



(2) For the second one, notice that for ¢ € [t,tx+1), the conditional distribution of Y;* — Y
given Y7 is
Y — Ytih}i ~ N ((t—te)b(YE), (t — tr)oo").
Hence, it follows from (2.7) and (2.10) that for some constants ¢, = c4(p) > 0 and ¢, =
6/4 (pa K’Q) > 07

E|Y? - Yl < & [ (6 = t)BOP + (¢ = ) o s
< Kb [(t —tp)? (L+E[Y) + (t — tk)gdﬂ

< (@b + Jof?) (0 = 1)k,

So the proof is complete. ([

To prove Theorem 2.1, we consider the SDEs (1.1) and (1.3) on each time interval [ty tx.) for
k € Z", where t := 0. Forany « € R?and k € Z7, let (Y}, +())1e(ty t,.,) S0lve the SDE

dY;, «(x) = b(x)dt + 0dBy, Xy, 4, (v) =Yy, 1. (x) = 2, € [tg, trsa]-
Define
Qutr [ (@) = E[f (Yt (@)], Qe = Qe Qtisitirn  Quuitay n =k + 1.
Correspondingly, for any s > 0 and = € R?, we let { X, ;(z)};>5 solve the SDE
dX(2) = b(Xss(2))dt + 0dBy, t > s, X, 4(2) = 2.
Then the Markov semigroup F; associated with (1.1) satisfies
(2.16) Biosf(x) = Poof(x) = E[f(Xou(2))], 12520

Let Qo0 = F) be the identity operator. We have the domino decomposition

n
Py = Qopn = Y Qotrs (P e — Que ) Pty €N,
k=1

Combining this with
W, (Z(X3), 2(Y)) = sup [E[f(X]) = fF(Y)]l = sup |Pog, f(z) — Qo f(2)], n>1,

[flp<1 [flp<1

we derive

(2‘17) Wp ("?(Xgl)’g(y;fi)) = Sup Z Qoﬂfk—1 (Ptk—l,tk - th‘—lvtk)Ptk:atnf(x) .

(<1 | =

To prove Theorem 2.1 using this formula, we need the following derivative estimates on F;.

Lemma 2.4. Assume (AO) and (A1). There exist constants k1 = k1(K1, Ks), ke = ko(K1, Ky) €
(0, 00) such that

(2.18) IVPiflloo < 16|V flloo, t>0,

(2.19) IVPflloo < k18242 || floo, t> 0.
9



Moreover, when o > 1,
(2.20) V2P, f floplloo < 16728 (172 + Vid 11aeny) ||V flloor ¢ > 0.
Proof. (a) By [7, Corollary 2.3], (A1) implies

sup |Ff(z) = Pof(y)] = Wi(Z(XY), Z(X))

VFlle<1
< kie "tz — y vV t>0,z,y € RY

for some constants k1, k2 € (0, 00) depending only on K7, K5. Consequently, (2.18) holds.
Next, by [20, Theorem 3.4], there exists constant k; € (0, c0) depending only on K, K5 such
that
IVoPiflloe < kit 2| fllsolv], ¢ € (0,1],Yv € RL

Combining this with (2.18) and the semigroup property of F;, we prove (2.19) for some constants
K1, k2 € (0,00) depending only on K, Ks.

(b) When o = 2, we have || Vb]|op V || V2D]op < K7. In general, we let ||V?b||o, < K for some
constant K possibly different from K. Then for any v, w € R,
X:c+£v _ Xtm

VX[ — VX7
=V, X} =1 ¢ , yw) =i el vt
21C) ;= lim —— (v, w) = lim .

exist and solve the equations

0191 (v) = Vo, wm)b(XY),  ¢o(v) = v,

00, ) = Vo (XY) + V) Vi) XT), - olv, w) = 0.
Consequently,
(2.21) sup | (v)] <ef', sup (v, w)| < Kje*f, t e [0,1].

v[<1 |v],lw]<1

Combining this with the Bismut—Elworthy-Li formula

VA0 = E[107) [ (o003,

we derive
vavptf(x) = Il + IZ;
where
1 t
= JE[(VFOE ) [ (oo a8)|
(2.22) X . 0
I := EE {f(th)/O (0_1@S(v,w),st>].

By (2.21) and ||[c™!||op < K, forany z € R% and ¢ € (0, 1],
L] < |Vl e,

02 1= 1[0 - P} [ et am)

1 1
< Z(E’f(th) - Ptf(37)|2) ZKlKiegKl'
10



Noting that (2.18) implies
E|f(X7) = Pif(2)] = Pif(z) — (Pif(2))*

t d )
_ /O L P (P ()ds

(2.24) _ / " (L(Pof)? — 2P f - LP_f) (x)ds
0

t
:/ Po*V P fI2(2)ds < [V 2 (Kuka)%, ¢ > 0,
0

where L := tr{ooc*V?} + b - V is the generator associated with (1.1). We derived (2.20) for
t € (0,1] for some larger constant k; = k1(K;, Ky) since K] = K; under (Al). And for
t € (1, 00), the desired result follows from

NV2Pf lloplloo = NIV PLP-1 fllop oo
< r1e VP flloo < m1e”™ [V flloo,

where the last inequality is a consequence of (2.18).

Now, let o € [1,2). Let b(z) = E[b(x + B;)]. Then
2.25) Vob(@)| S E[|Vob(x + By)|] < Ki, o] < 1,
' b(x) — b(z)| < K\E|By| < K, Vd.

By the Bismut formula,
V,b(z) = E[b(z + Bi){v, B1)].
For w € R? with |w| < 1, || Vb||op < K yields

IV, Vob(z)| =

lim %E[{b(w + By +ew) — b(x + By) o, Bl)} ‘ <K,

Let P, generated by L := tr{oco*V?} + b- V. By the result for a = 2 case, we can find a constant
c1 = ¢1(K1) € (0, 00) such that the semigroup satisfies

(2.26) sup VoV B f(z) < et 2, te(01].

TER,|v|V|w|<L, |V flloo <1

Combining this with (2.18), (2.25), ||Vb||op < K7 and the formula
t
Ptf = Ptf + / Psvb_gpt—sfdsa
0
we derive that for any z € R?, |v| V |w| < 1,t € (0,1] and ||V f| < 1,

t
VWV, Pif(z)| = ’VwVthf(x) +/ VuVoP NV, ;P f(x)ds
0

t
<atTi+ Cl/ 8_%||vvb43pt—sf||ood3'
0

11



, we then have

By denoting & := sup,cra ju|vju|<1,|v/w<t | Vo Vobrf(x)
t

& < cltfé + clKl\/E/ s’%&,sds, t € (0,1].
0

Let a; = supse[o,t]{séﬁs} and notice that fol s72(1— s)_% ds = B(1,1) = 1 with B(-,-) being
the beta function. It follows that

t
a < ¢+ cp/EKlt% (/ 3_%(15 — s)_éds) a;
0
=cC + Cl\/aKlt%B(l, 1)at.
Solving this inequality yields, for any ¢ € (0,%0/2) with to = 72

< @
ap >
' 1-— Cl\/EKlt%

S 2017

which implies

_1
HNV2PS lloplloo = &IV fllse < 262672 ]|V f .
Similar as before, for ¢t € (¢y/2, 00), the proof is finished by

VP fllopllse = 11V Peg P, _to flloplloc
4 4

< 4clt(;§||vpt—tzof”oo < Kl\/at_%e_thvf“ow
for some k1, ko € (0,00). O
Lemma 2.5. Assume (A0) and (Al). Then there exists a constant k = k(K1, K, 1, «) such that
the following statements hold for any x € R% and k € N.
(1) When « € (0,1],

sup | Qo s (P iy — Qo) Pyt f ()]
IV flloo<1

< kdz(1+ |z))e 2w tE s gy
(2) When a € (1,2],

sup ‘Qovtk—l(Ptk—htk - th—lytk)Bk7tf($)‘
IV fllo<1

(2.27) , e .
< kd2(1+ |z|Pe =W ("2 £ (t—t) "2} ), t >t
k k

Proof. (a) Let « € (0,1]. By Lemma 2.3 and and Lemma 2.2, we can find a constant k; =
k1(K1, K3) € (0,00) such that
EHthth(Ym

tk—1

= B{EI1Xy 10 (2) = 2 +1Xe 10 () =2 Ly}

)i

) =Y

te—1

| + |th717t(yx

te—1

) =Y I

(2.28)
Y.’L’

tk—1

S/@[(d%—HE

1 o
YLD ng + (df +E

< kydz (14 |z))nZ, t € [tes, ti).
12



Meanwhile, by (1.1), (1.2), (2.18) and (A1), we obtain

sup ’Qo,tkfl(Ptk—lvtk - th—l7tk)Ptk7tf(x)’
IV flloo <1

< ||thk7tf||Oo sup }Qo,tk_l(Ptk_htk - th—lytk)g(x)‘

[Vglloo<1

< e sup |Blg(Xo 0 (V) — 90V (Vi)

Vgllo<1

< /fle_ﬁ2 (t_tk)]E ‘thfl,tk (Yx

tp—1

)) - }/tk—lytk (Y;tg;i_l)

ty
_ el / El[b(X, (Y )~ b(YF )dt

te—1

ty
< /ﬁKle”Q(ttk)/ E{(E[\thfl,s(z) — 2|+ Xy, s(2) — z\o‘])zzw }ds.
th—1

te—1

Combining this with (2.28) we prove the first assertion.
(b) Let a € (1, 2]. For any function g on R? with || Vig| . < 00,i = 1,2, we have

9(z) —g(y) = /0 V. yg(y +r(z —y))dr

= /0 Voyg(y+7(z—y) = Vooyg(y)dr + (V.yg(y) — Voyg(u)) + V._yg(u)
= /0 /0 11V oyVeyg(y + rira(z — y))dredry

1
- / VyuV.yglu+r(y —u))dr+ V. ,g(u), u,y,z € R™
0

Let ||V f||c < 1. We shall apply this formula for
9= Ptk,tfv z = thﬂ,tk (}/tr )7 Y= Y;k—htk (Y;i,l)v u = Yti,l‘

k—1
Let
(2.29) Ak = th—htk (Y;tifl) - }/;k—lytk (Yt::ﬂ)’ Ak = )/tg;i - Y;gz:ff

By (2.16) and noting that Y;, _, ;, (Y;7 ;) = Y;7, we deduce from the above formula that

}Qo,tk,l(Ptk,l,tk - th,l,tk)Ptk,tf<x>‘
= B [Past (Ko s )| = B [P (Vi (052) ]|

1 1
S ‘E/ / TlvAkvAthlmtf (Ytk_l,tk (}/;fli—l) + T1T2Ak> dTQd/rl
0 0

(2.30)

1
+ ‘E/ Va VP (Vi +r (Ve =ve ) ar
0

+ [EIVa, Pt ()
= J1 + JQ + Jg,

13



To estimate these terms, we need to bound Ay and Ay. For ¢ € [tr_1, k], define

(2.31) Ak,t = th,l,t(Ytg,:fl) - Y;tk,l,t(y;gi 1) = th,l t(Y;:i 1) Y;xa
(2.32) Appi=Ys (Y ) =Y0 =Y =Y .
By Lemma 2.3, we can find a constant Cy = Cy( K7, K2, 7, ) € (0, 00) such that
(2.33) E|Ap|* < Cod®(1 + |z|*)(t — tp1)?, Yt € [troy, ti).
We claim that there exist constants C; = C;( K7y, Ko, 1, ) € (0,00),7 = 1,2, such that
(2.34) sup  E|A, " < Cid?(1 + |2y,

tE[tk—1,tk)
(2.35) E[E[ALY; ]| < Cad? (1 + |2]*)n, "2

Indeed, by (2.33) and that (A1) for « € (1, 2],
E| A" = El Xy Yy ) = Y oYy )I*

t
<} / Eb(X, ,o(Y7 ) — b(Y )|*ds
th—1

t
< 8K [ B{IX (V) = Vi s (VI Y ) = 2[4
te—1

t
< 8K} / E| Ay, [*ds + 8K2Co(1 + [a| Yl t € [t ).
te—1

By Grownwall’s inequality, we find a constant C; € (0, c0) depending on K, K5, 7 and «, such
that (2.34) holds. On the other hand, by (A1) for « € (1, 2], we have

|E[Ak|}/t’,§,1]| = |E[th717tk (Z) - Y;k—lytk (Z)]|Z=Yt%71

_ / "R (X u(2) — b(2)ldt

z=Y,x
te—1

— /t / thk wo)=ab (2 (X 4(2) — Z))} drdt

z=Yx
te—1

/t / thk L (b (z + (X, 4(2) — z)) _ b(z))} drdt

VAN

z=Y;x
k—1

+

/ E[Vth_l,t( )—z b( )]dt

tk—1

z=Y,x
U1

tg
< Kl/ (E|th_17t(2) _Z|a)Z:Y,‘z dt+K1/ dt E|b th 15( ))|z Ytz dS
k— tk—1

te—1 th—1
So, by the linear growth of b, Lemma 2.2 and Lemma 2.3, we find constants ki, ko € (0, 00)
depending on K, (5,7 and «, such that

E[E[AWY: )| < ki FE(dS + Y7 |)
14



< hd (14 ||y 2.

Hence, (2.35) holds. By (2.33), (2.34), (2.35) and Lemma 2.4, we find constants p;, p, € (0, 00)
depending only on K7, K5, n and «, such that ||V f||.. < 1 implies

Ji < IV Py i fllop] | E|Ak|2
< prd2 (1 + [z]})e =2 (¢ — ) "2,

and
= |E(VP, f(YS ) E[AY D)
<V Pyt fllop || JE[E[ALY ]
< pod (14 |z[2)e ™ 2 ¢ s gy

Combining this with (2.30), we derive the desired estimate provided we find a constant x > 0 such
that

(2.36) T < kd3 (1 + |2|2)e 2 F g sy

(c) To verify (2.36), we apply the integration by parts formula for Malliavin’s derivative. It
suffices to prove for large k, say £ > 2. Let

= inf {z €Lt —t; < 3771}.
We have 0 < m < k — 2 and
(2.37) m < tp—1 —ty < 301
Let {e;}1<i<q be the canonical orthonormal basis in R. For each 1 <1 < d, let h;(0) = 0,

k—1
€ tz — tm x
=3 L (o (- Vb(Y)), te 0.4

tk_tm tk_tm

Since h;(t) is adapted with respect to the filtration generated by the Brownian motion, it is clear
that (see [ ! 8, Proposition 1.3.11])

5(hy) = / (), dWy) = / (), W),

where 0 is the divergence operator in Malliavin calculus. By (2.37), there exist constants ¢y, ¢, > 0
depending only on K, 7 such that

tr 2
(2.38) \h ()] < erlp,, (1), E[0(R)"] < clE( / |h;(t)|2dt> < cy.
t

m

Let Dy, be the Malliavin derivative along h;. We claim that
ti - tm

te — tm
15
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The formula is trivial for « = m. If it holds for some m < ¢ < k — 1, by the definition of Y;*, we
have
Dy Y7

tit1

= Dp, Y+ 0ig1 D b(YT) + 0 (hi(tign) — Iu(ts))

ti—tm (e — )t —tm

it vt ) ) — k)
tivi —tm

= "¢,
ty — tm

so that by induction we derive (2.39), which together with (A1) and (2.37) yields
(240) Dy (Y =Y DI < Vv bV )t = tea)| + o (hu(t) = ha(ti-))| < esm
for some constant ¢z > 0 and all ¢ € [t_1, tx]. In particular,
(241) | DiAx| = [ DYy = DYyt | < ey
Moreover, Ay, in (2.31) satisfies
D Agy = Dy Xy 4(Yep ) — D Yi",

so that

d x x
_thAk,t = (thlth—l’t()/tZ,I)b) (thfht(Y;k,l)) - <thlYtz,1 b) (}/tk,l)

dt
= (VD}LlAk,tb> (thfl,t(ytg,i_l)) + <thl (Yf*Yt’;fl)b) (thflvt(}/;i_l))
+ (thlYtz,lb> (thfht(Y;:,l)) - <thlY{;€71 b) (S/t:;z,l)
= <VDhlAk,tb> (th—ht(y;fi_l)) + Rk’(t)
Note that Dy, Ay, , = 0. So solving this ODE yields,

t t
Dy, Ay = / exp (/ Vb (th_l,r(}/;i_l)> dr) Ri(s)ds, Vit € [tr_1,tx]-

te—1

Combining this with (2.34), (2.39), (2.40) and (A1), we can find constants ¢4, ¢5 > 0 such that
E| Dy, Ak|? = E[ Dy, Ay,

tg
<o [ exp @K E[Ru(o) ds

lk—1
tg
(2.42) < 0k K7 exp (2K ni) E (’Dm (Y=Y )

tk—1

2
+ |A,§75|2<“1>) ds

< cany (77/3 + sup E’Ak,tﬁ(ml)>

t€[tr—1,tk]

< C5da71(1 + ‘x|2)a—1nz+min{2,3(a—1)}.

Let

==Yy  +rYy, rel01].

te—1
16



By (2.37) and (2.39), it is clear that

)t — 1)
Dhl:'r = ( te—t, —|—’l“>€l,
and
(1 - ’r)(tk—l - tm) r le—1—tm > 1
te —t, = l—t, — 3

So, for any function f with |V f|.c < 1, by (2.18) and the integration by parts formula for

Malliavin derivative (see, for instance, [ 18, Section 1.3] for more details), we then have

d
[EIV5, VarPuaf G0l = | 3B [(A0), (B0);Ve Ve, P f (E0)]

fy]
<3 iE :(Ak)l (A); VD= Ve, Prof (Er)} ‘

—3 i:lza :(Ak)l (Aw); Dy {Ve, Py f (Er)}}

—3 % E :5 ((A@l (Ak>jhl) Ve, Potf (Er)]

=3 iE (= Dn (A0, HAR; = (A0), DiA(Bi)s} + (A8), (Ae)j0()) Ve, P f (E0)]
=3|E |Vx, Poef (E (Zth {(An)} ) 3|E il@k)z (VDhl{Ak}Rkvtf<E’">>]|

E V&, Pyif (=) <Z (Ar), le))] ‘

=1

=T+ 1>+ 1,

where (A},); denotes the j-th component of A € RY. It follows from Cauchy-Schwarz inequality,
(2.18), (2.33), (2.38), (2.41) and (2.42) that

1 d 2
Ty < 3k 207t (E|Ak|2> “|E (Z Dhl{(Ak‘)l})
=1

o a  5a3a
< e (1 o) of

d 3
Ty < 3rpe"2070) (E|AL2)2 (EZ (Dhl{Ak}f)

1
2

=1

5
< cge A1+ |z)?) 702,
17



and

1

Ty < 3wpe 2=t <]E|Ak] ) (E| A" (dZE

\_/
PN

< cge T (1+ [z )7,
for some constant cg > (. Combining these estimates, we derive (2.36). ]

Proof of Theorem 2.1. Forp € (0,1), according to [ 13, Lemma 2.1] for ¢)(r) = r? and W (pu1, o) =
21111 — w2l oy, it holds for any two probability measures 4 and v that

W, (p,v) < inf {2\/Et%WO(,u, v)+ dt%Wl(u, v)}

< 922rq" W, 1) PW (1, )P

So, we only need to prove statements (1) and (2).
It is well known that P is ergodic and admits a unique invariant measure y under (A1) (see for
instance [12]). By (2.18) and (2.19), we have

W (ZL(X{), u) = sup

Piw) - [ Psntay)

IV flloo<1
< s |f (Ptf(ﬂf)—ﬂf(y))u(dy)'
(IVflloo<1 | /R
< swp VRSl / & — ylu(dy)
IV flleo<1 Rd

(2.43) < ke 2|z — ) < er(d? + |z])e ",

where the last inequality is a consequence of the ergodicity and Lemma 2.2 and similarly,
WL = s |Pfto) - [ Prwstan)
[ flloo<1 R

< min {1, ke 3|z — )}

<e(dr +|z)e ™, t>0,

for some constant ¢; = ¢; (K, K») € (0,00). So we only need to prove the desired upper bound for
W,(Z(X}), Z(YE)),i=1,0.Forany z € R% ety := L (X, 1 1.(2)), V2 = L(Xo, 1 1.(2)).

(a) Estimate on W;. When « € (0, 1], (2.1) follows from (2.17) and Lemma 2.5(1). When « €
(1,2], by (2.17) and Lemma 2.5(2) for ¢ = t,,, we find a constant k = k(K;, Ky, 1, a) € (0,00)

such that forany 1 < k <n —1,

n—1
W (Z(XE, L)) < Rd3 (14 |af?) Y ettt 73
k=1
+ sup Qo (P yitn — Qb vt0) f(2)].

IV flleo <1
18



Notice that
tn—1
ko (tn— 1+ — kg (tn—ty) g — kg (tn—t) g
(2.44) e m2ltn=ti)y T2 > 2 e "2 e > 0 / e dt > —n; .
> 5 0

At the same time, (2.34) implies that, for any f satisfying ||V f||. < 1,

Qo (Prustn = Quuia) f(2)] = [B [ (Xo1 0 (V7)) = £
<E|A] < Cdd(1+ [o)ind,

where A, is defined as in (2.29). Thus, according to (2.44), the last term can be absorbed by the
sum term and (2.4) holds for a possibly larger constant x € (0, 00).

(b) Estimate on W,. By (2.19) and Lemma 2.5 for t = t,, we can find a constant k, =
ko(K1, K2,1n,a) € (0,00) such that forany 1 < k <n —1,

sup |Q0,tk71 <Ptk71,tk - th—lvtk)Ptkytnf(x)‘

[flloe<1

= Ssup |Q07tk—1(‘Ptk—17tk - th—latk)Ptk’@{P@inf}(x)|

[flloe<1

[fllc<1 Vglloo<1

< ( sup ||vptk+t", fHOO) sup |Q0,tk—1(Ptk—1,tk - th—l,tk)Ptk’(tk;tn)g(mﬂ

1

< ket =t/ (4 )73 “ s|1|1p Qo (Pry 0 — th_l,tk)Ptk (tk+tn>g($)|
Vglleo<1 ’

—k0d2 (1 - |ZL‘|) k0d2 (1 + |l’| ) e h2 (tn—tx) 1+%
\/t — 1 /t — 1 Mg :

Combining this with (2.17), we derive (2.2) and (2.5) provided there exists a positive constant
]{31 = kl (Kl, KQ, n, a) such that

< 1(071]( ) —Ka tn—tk),r] +3 + 1(12]( )

1+(a/\1)

(2'45) Sup ’Qo,tn—l(Ptn—lytn - Qtn—lytn) ( )| < kl(l + ’x‘) : ) n Z 2

[ fllo<1
To this end, for any 2z € R<, let
:qu - "%(thflatn (Z>>7 v, = "%(Y;nflytn(z))'

n

By Lemma 2.2, (2.45) follows if we can find constants ko = ko( K1, K3, 1, ) € (0, 00) such that

1+(aA1)

(2.46) Wo(u2,v?) < ko(d? + |2])1m ., n>2zcR

Let us now show (2.45). Write
dthfl,t(Z) = b(Z)dt + UdBt, th717tn71(2) =z, t -~ [tn—latn]7
where

B =B - /t [b(z) = b(Xo, 1 o(2)}ds, ¢ € [tus,to].
19



tn n 2
Let R == exp ( i (=) = b (X ys(2)) 1 dB) = 3 [ [b(2) = b (X, (2) | ds) . In order
to apply the Girsanov’s theorem, we first show that E[R] = 1. By the continuity assumption of b
in (A1) and Young’s inequality, there exist a positive constant k3 = k3( K7, «) such that

b (o111,

So, according to [23, Ch.8,Exercise 1.40](another Novikov’s type criterion), it suffices to show
that,

(2.48) E [exp (a | X1 0(2) — 2‘2)} <cg,
for any ¢ € [t,,—1,t,] and two constants a and c. It follows from It6’s formula, (A1) and Young’s

inequality that, for any ¢ € [t,_1, t,],

}th_l,t(z) — 2‘2 = 2/ (Xt 1s(2) — 2,0(Xy, 4 s(2)))ds + 2/ (X, ,.s(2) — z,0dBs)

th—1 tn—1

+ [lolfEs (t — tai)

QA7) |b(X, ,s(2) = 0(2)]" <AKZ| X, o(2) — 2

‘2/\204

t

t
< —2K2/ | Xt 1s(2) — z|2 ds + 2/ (X, 1.5(2) — z,0dBs)

tn—1 tn—1

¢
—|—2/ ‘thfhs(z) —z‘ b(2)|ds + Kidn,
tn—1

t t
< —2K2/ | X, 1s(2) — z|2 ds + 2/ (X1, ,.s(2) — z,0dBg) + kqdn,
tn—1

tn—1

for some positive constant ky = ky(K, Ko, b(z)) and Ky € (0, K3). As a consequence, for any
v > 0, we have

E [exp (”y X, 1 i(2) — 2| + 2Ky /tt 1 X s(2) — 2 ds)}

t
< gkadmg {exp (27/ (X, 1s(2) — 2, adBS>)] :
tn—1
Further more, Holder’s inequality , (A1) and the local exponential martingale property implies

that, for any fixed v € (0, %) and t € [t,_1,t,),
1

E {exp (27 /t:_1<xtn1,s(z> . adBS>>]
< (]E [exp (47 /t:_1<th1,s(z) — z,0dB;) — 8y° /tt_
X (IE {exp (872 /ttl |0 (Xt ys(2) — »2)|2<18)Dé

< (efosn (5 [ 1 (-9 1) )5

20

(NI

o (X 1s(2) — 2) ‘2dS)D



< (o (sr222 [ (o))
< (]E [exp (”y | X 1i(2) — 2| + 2Ky /tt 1 X0, s(2) — z|2ds)}); .

Hence, (2.48) follows with a = v, ¢ = ¢**97 and R is a martingale.

Now, by Girsanov’s theorem, (Bt)te[tn_l,tn] is a Brownian motion under the probability measure
RdP. Clearly, E[R — 1] = 0. Notice that, by Cauchy—Schwarz inequality,

—1 R-1 R—1)? —1
(E|R —1])* = £~ 1] Y Rf)l ]E{lJrR—]

1+ B +5 3

Combining this with the fact that
(1+2)log(l+2) -z > = ) v

x)log T) -T2 g I+z) x :

yields
1 1(E|R - ]) 1_ | (R—1)
ER—l —— = < -E |———| <E[RlogR|,

which is also known as a Pinsker type inequality. Hence, combining this with the definition of Wy,
Girsanov’s theorem and Lemma 2.3, we find k5 = k5( K7, K2, 71, ) € (0, 00) such that

Wo(ui v2) = & sup [2(f) — vi(f)P

4 fllesa
! 2 o 1 1
=750 (B (Ko (2)) = RFX s < G [BIR ~ 1" < SE[RIog A
B i/t BIRI) = b (X0 10(2) Plds = /t E[[b(z) — b (¥;, () Plds

tn
< Kf/ E[[Yi, 1s(2) = 2 + Vi, 1s(2) — 2" ]ds < ea(d + |2 .
tn—1
So, (2.46) holds.
(c) For the particular case, let 1, = £ for some § > 5~ Since 0 (log(n) —log(k + 1)) <
tn — tr < 0(log(n —1) —log(k)), we can find a positive constant kg = kg(6, o, co) (may vary
from line to line) such that

n—1 e n—1 k? Oc2 1
6*02(tn*tk) tn —t *% +3 <k n kfl,%
Z ( B T S Z n Viogn —logk

k=["51]+1 k=["51]+1




n—1
Skﬂlg/‘ ! dt
n=1 ty/logn —log(t)

and

[251] 3
Z e—cz(tn—tk)(tn _ tk)—%n;+§ S k4n—902 Z k—1+902—% S k4n—%.
k=1 k=1

So (2.6) follows by combining above estimates with (2.43). (2.3) can be proved through the same
argument and the proof is complete. ([

3. W,-ESTIMATE FOR p > 1: THE UNIFORM DISSIPATION CASE

To cover typical time dependent models, see Example 3.1 below, we consider the following time
in-homogenous SDE:

(31) dXt = bt(Xt>dt + O't(Xt)dBt, t Z 0,

where b : R x [0,00) = R?, o : R?x [0, 00) — R?*? are measurable. The associated continuous
time Euler Scheme is defined by

(B.2) Y=Y + (t—ti)by, (V) + 00, (Yy,) (Bi— By,),  t€ [tu,ti1), k>0, = Xo.

3.1. Main result and an example of bridge regression.

(A2) Let « € (0,1] and p € (1,00). There exist positive constants K, K5 such that for any
z,y € RY st €[0,00)

(3.3) () = ba(y)| < K (ja = y|" + o = g] + [t = s]).
(3:4) o) = 0w s < K (o =yl + 1t = 5]} [lou(@) op < K0,
(3.5) p(bu() = buly), @ = ) + o) = ou(y) s

p(p—2

) " 2 2
2o |Ct@) = o) @ =y < ~Kale —

We call (3.5) the uniform dissipation condition.

Theorem 3.1. Assume (AQ) and (A2). Then (3.1) is well-posed . Moreover, for any K, € (0, K5),
there exists a positive constant ¢ = (K1, Ky, n, K}, p, ) such that

(3.6) W, (L(XE), Z(YE)P < cd? (14 |z|P) Znﬁ%e%(tn*tw, n>1vzeR

k=1
Consequently, when 1y, = % for some constant 6 € (0,00), there exists a positive constant ¢ =
d(Ky, K3, 0, K}, p,«) such that

3.7 W, (L(XE), LV < dab(1+ [af)n (D7 E) | 0> 1 ve e R
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In particular, if (o4,b;) = (0, b) does not depend on t, then the solution of (3.1) is exponentially
ergodic with unique invariant probability measure 1, and

Wy (Z(X3), L (Vi) + Wy, L (V7))

<ed?(1+ |zP) Zny%e_Ké(t”_tk), n>1,Vr € R%
k=1
As an application of Theorem 3.1, we consider the following optimization problem that arises
in the Bridge regression with the shrinkage parameter v € (1, 2] and the tuning parameter A > 0
(see, i.e., [9] for more details):
N

d
(3.8) B = argmingepa {L(B)}, L(B) == > (i — 2T B)* + A [,
Jj=1

i=1

where (z;, yi){lgig N} are R? x R-valued data points. In particular, when v = 1,2, 5 corresponds
to the estimators of the well-known Lasso and Ridge regression, respectively. In practical ap-
plications, such optimization problems are usually solved by gradient descent algorithm and its
variants. One common variant is the gradient descent algorithm with slowly decreasing Gaussian
noise given by the following iterative formula

(3.9) Brr1 = Br — M1 VL(Br) + /Mt 10k41Chr1, k>0,

where oy, | 0 as k 1 oo, and {n; }x>; are i.i.d. d-dimensional standard Gaussian random variables.
Similarly, we may consider it as an approximation of the following SDE:

(3.10) dBy = =VL(B,)dt + 5,dB,, By = fo.
It has been shown in [I 1] that, under appropriate assumptions on the drift coefficient, if we set
o = W for large k and 7, = % (correspondingly, o; ~ ﬁ for large t), then this algorithm
will converge in probability to B.

It is easy to verify that L is strongly convex, i.e.,

(3.11) (VL(B1) = VL(Ba), B1 — Ba) > K|B1 — Bof*, VP, s € RY

holds for some constant KX = K (x,v,A) > 0. Below we use Theorem 3.1 to analyze the conver-
gence rate of this algorithm.
Example 3.1. Let ﬁ B, and f3; be deﬁned as in (3 8), (3.9) and (3.10) respectively. For any

p>land K’ € (0,K), let oy, = {k (Hlogk) P A 1} and n;, = £ for some 6 > 2K’) with
~ > 1. Then there exists ¢ > 0 such that for large n,
~ P ~ _(=Dp
E|fn — BIP < cd¥ [0 — BIP + (1+|Gol?)]
Proof. By Jensen’s inequality, it suffice to consider p > 2. To apply Theorem 3.1, let 5, =
{e_%tt_% A 1}. Consider the gradient flow ; defined by

(3.12) dB, = —=VL(B)dt, By = fo.

By It6’s formula, (3.11) and Young’s inequality, for any K’ € (0, K), we can find a positive
constant ¢ such that

d|B; — Bi|P — dM;
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L L _ . 1 L
= [plﬁt — BBy — B, =V L(By) + VL(B3)) + 5]9(17 — 2+ d)5} B — PP dt
< [0~ Bl + cdiot] at,
which yields that

r ¢
E|B, — P < e K 1Bo — BIP + cd? / eKésagds}
L 0

! [ = ~ P 1 ! t 1
< e K |Bo — BIP + cd? (/ ef25ds + / s_QdS)]
L 0 1

<e M8 — PP+ c’dg] :

As t,, ~ 6log(n) for large n and K'0 > h;—l”’, it follows that

Wy(L(50),05) = BBy, — B < [|Bo = BIP + ¥ | n~% < [1Fy — B + | nm 5"
On the other hand, It can be verified that L and &, satisfy (A2) with « = 7 — 1. Hence, Theorem
3.1 implies that, for any K’ € (0, K),n > 1,

(v=1p

Wy (L (Br,), L (Bn))" < cd? (1 +|BofP)n™ 2

Using triangle inequality to combining above two upper bounds gives us the desired result. U

3.2. Proof of Theorem 3.1.
Similar to the previous section, we first present the following two lemmas regarding the moment
estimates which can be proved through the same way as Lemma 2.2 and 2.3.

Lemma 3.2. Assume that (AQ) holds, (3.1) is well-posed and there exist positive constants k1, ko
such that

(3.13) (2,b(2)) < K1 — kalz% |be(2)| < Ka(1+ |2]), |low(@)|lop < K2, Vo € R™
Then for any p € (0, 00), there exists a constant k = K(k1, ko, p) € (0,00) such that

(3.14) sup E|X?P < k(d? + |z|P), Vz e R%
t>0

If moreover
(3.15) b(2) — bs(y)| < K(|Jz —y| + |x —y|* + |t — 5]), Va,y € R?

holds for some constant K € (0,00), then there exists k' = r/'(k1, ko, K, 1, a,p) € (0,00) such
that

(3.16) sup E|Y2[P < k/(d? + |z|P), Vz € R%

t>0

Lemma 3.3. Assume that the conditions in Lemma 3.2 hold. Then, for any p > 0 there exists a
constant k = k(k1, k2, p) € (0,00) such that

E|X? — 2P < k(d> + |[z]P) (LA, z e RY, > 0.
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If moreover (3.15) holds, then there exists k' = K'(k1, k2,1, K, p, ) € (0, 00) such that

ElY —Y" P <KdE(1+|zP)n?, z €RY k> 1, t€ [ty ty].

Proof of Theorem 3.1. All constants below depend only on K, Ko, K}, 1, « and p.

(a) In the uniform dissipation case, the well-posedness is well known, see for i{lstance [2]. Let
k > 0. By [24, Theorem 4.1], we can choose .%, -measurable random variables X;, and Y;, such
that

GAT  LXD) = L(K,), L) = L(V,), W(L(XE), LY =E|%, — Ty l"
We consider the SDEs for t € [ty, tg11],

dX,; = b (X;)dt + 04(X;)dB;,

dY; = by, (Y, )dt + oy, Yy, )dB,.

By the weak uniqueness and the definition of W,,, we obtain

(3'18) Wp("g(XtiH)?g(Y;iH))p < E’thﬂ - }_/thrl |p'
Let Z, = X; — Y;. By (A2) and It0’s formula, we find a martingale (M;)ieps, 1, ] such that
d|Z,]P — dM,
_ > S Py o S
= |z [p(Zt, br(X1) = by, (V) + §H<7t(Xt) — 5, (Ve lliis
1 {oe(Xe) — 04, (Yo )} Zi?
“p(p—2 Lt Jat

<12 {22 0(X) = B(10) + 5 lon(Xe) = (Vo) s

Loty ol R0 ) 2

_ _ 1 _ _
+ P12 [be(V) = by, (Vi )] + 5p(p = D{[lon(Ye) — O'tk(Ytk)H%s}}dt,
< —Ky|Zy|Pdt + pK| Z,P (|Yt =Y "+ Y = Vi | + |t - tk|>dt

+p(p — VKT ZJP 2 |V, = Vi [P + (8 — te)?] dt, t € [ty tha].
By Young’s inequality, for any fixed K € (0, K5), we find a constant ¢; > 0 such that

d|Zi]" = dM; < —K3|Z3[Pdt + o1 (|9 = Vo P + ¥ = Vo 1, )t ¢ € [t b,

which further implies that, for t € [ty t51]

t
(3.19) E|Z[ < e MU"WE|Z, [P + ¢\E / (IYS = Y [+ |V, = Vi P+ n’éﬂ)ds-

tg

By Lemma 3.3, Lemma 3.2 and .2 (Y;,) = .Z(Y;*), we can find a constant ¢, > 0 such that
(20) BV, - VP =E[VZ, — 2P|z = Y] < caldnmen) E0+ 2P, s € [t trea]
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so that by Jensen’s inequality and (3.19), we find a constant c3 > 0 such that

E|Z[ < e M0 WE|Z, P + csdin F (14 |2), ¢ € [t tigal.
Combining this with (3.17) and (3.18), we derive

W, (L (X}

to+1

), LY

) S e W, (L Ly ) +eadin (L4 ]af?), k> 0,2 € R
Iterating in & we prove the desired upper bound estimate in (3.6).

(b) Let i, = 2(k > 1) for some constant 6 € (0, 00). Then there exists a constant ¢4 € (0,00)
such that

QIOg%—c48§tn—tk§610g%+964, 1<k<n.

By this and (3.6), when 6 # &,

we can find constants ¢, ¢g € (0, 00) such that
W, (L(XE), L)) < ca(1 + |2]P)n 0% Zk 1—22 40K

< cs(1+ |zP)n <9K2) 7p), n>1zeR%
This implies (3.7) when 0 # £, If 0 =

2K}
replacing K, so that (3.7) holds as well.
(c) Let (0y,b;) = (0,b) does not depend on ¢. The exponential ergodicity can be proved in a
standard way [12]. By (A2), synchronuous coupling and It6’s formula, for any z,y € R¢ we can

find a martingale M; such that
d[X7 — XV|P < K| XT — XP|Pdt +dM,, t > 0.
So, E|XZ— X/ |P < |z—y[Pe %2t t > 0. By the Markov property, this implies, for any 1, iy € 2,

5 K, , we may apply the above estimate for K7 € (K}, K5)

WP PP < _jnf [ B(XE - XY m(de,dy)
(321) e Jad

< inf / |z — y|P e Fn(da, dy) = W (1, po)Pe ",
TEE (u1,12) JRd R

where the first inequality is by P;v = Z(X;) for X; solving (1.1) with initial distribution v € P.

Moreover, let L be the generator associated with (1.1) given by

(3.22) Lf=(b,VFf)+ 1(00 V’fius, VfeC? (REGR).
Then (A2) implies that

L|- P2 < e1d™s —cy| - P

for some constants c;,co > 0. By a standard tightness argument, this implies that P has an

pV2
invariant probability measure ;o with p(| - |P) < CldT2 < oo. Combining this with (3.21) we
conclude that y is the unique invariant probability measure of P, and there exists a constant

., € (0,00) such that

(3.23) W,(L(X]), )P = W, (P8, 1) < pl|lz—P)e ™ < & (1+|z|P)e ™, » e REt > 1.
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Combining this together with (3.6) and the triangle inequality, implies the desired upper bound for
W (Z(Ye), w)?- [
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