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ABSTRACT. Consider the following stochastic differential equation for (Xt)t≥0 on Rd and its
Euler-Maruyama (EM) approximation (Ytn)n∈Z+ :

dXt = b(Xt)dt+ σ(Xt)dBt,

Ytn+1
= Ytn + ηn+1b(Ytn) + σ(Ytn)

(
Btn+1

−Btn

)
,

where b : Rd 7→ Rd, σ : Rd → Rd×d are measurable, Bt is the d-dimensional Brownian motion,
t0 := 0, tn :=

∑n
k=1 ηk for constants ηk > 0 satisfying limk→∞ ηk = 0 and

∑∞
k=1 ηk = ∞.

Under (partial) dissipation conditions ensuring the ergodicity, we obtain explicit convergence rates
of Wp(L (Ytn),L (Xtn)) + Wp(L (Ytn), µ) → 0 as n → ∞, where Wp is the Lp-Wasserstein
distance for certain p ∈ [0,∞), L (ξ) is the distribution of random variable ξ, and µ is the unique
invariant probability measure of (Xt)t≥0. Comparing with the existing results where b is at least
C2-smooth, our estimates apply to Hölder continuous drift and can be sharp in several specific
situations.
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1. INTRODUCTION

We consider the following time homogenous stochastic differential equation(SDE) on Rd:

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ 0,(1.1)

where b : Rd 7→ Rd, σ : Rd → Rd×d are measurable, and Bt is the d-dimensional Brownian
motion under a probability base (Ω,F , {Ft}t≥0,P). Under conditions allowing singular drift, the
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well-posedness, regularity estimates and exponential ergodicity have been derived for (1.1), see
for instance [10, 21, 26, 28, 25, 27] and references therein.

In recent years, stochastic algorithms arising from statistics and machine learning have been
intensively developed to simulate the invariant probability measure for a stochastic system, where
a practical algorithm is the unadjusted Langevin algorithm (ULA) using the Euler-Maruyama(EM)
scheme of the associated SDE. See for instance [8, 4, 5, 16, 6, 19] for the background of the study.

For a sequence of step sizes {ηk}k≥1, the EM Scheme of (1.1) is defined by the following
induction

Ytk+1
= Ytk + ηk+1b(Ytk) + σ(Ytk)

(
Btk+1

−Btk

)
, Yt0 = Y0 = X0, k ∈ Z+,(1.2)

with Y0 = X0 = x, where tk :=
∑k

i=1 ηi and Btk+1
− Btk can be identified as

√
ηk+1ζk for i.i.d.

d-dimensional standard normal distributed random variables {ζk}k≥1. The associated continuous
time Euler Scheme is defined by

Yt = Ytk + (t− tk)b(Ytk) + σ(Ytk) (Bt −Btk) , t ∈ [tk, tk+1), k ≥ 0, Y0 = X0.(1.3)

In addition to the aforementioned ULA algorithm, the equation (1.2) can also be interpreted as
a noisy gradient descent(GD) algorithm as b(x) = −∇V (x) with V (x) being a loss function in
a certain optimization problem. Motivated by these two algorithms and their variants, the Euler-
Maruyama(EM) scheme of SDEs have been extensively investigated under different assumptions
and settings, see for instance [1, 4, 5, 6, 17, 22].

In this paper, we investigate the convergence rate of

Wp(L (Xtn),L (Ytn)) + Wp(L (Ytn), µ)→ 0 as n→∞,
where p ∈ [0,∞), µ is the unique invariant probability measure of (Xt)t≥0, L (ξ) is the distribution
of a random variable ξ, and for C (µ1, µ2) being the class of couplings of probability measures
µ1, µ2 on Rd,

Wp(µ1, µ2) := inf
π∈C (µ1,µ2)

(∫
Rd×Rd

1{x 6=y}|x− y|pπ(dx, dy)

) 1
p∨1

is the Lp-Wasserstein distance. By Kantorovich’s dual formula, for any p ∈ [0, 1] we have

Wp(µ1, µ2) = sup
f∈Bb,[f ]p≤1

|µ1(f)− µ2(f)|,

where Bb is the set of all bounded measurable functions on Rd, and

[f ]p := sup
x 6=y

|f(x)− f(y)|
|x− y|p

is the p-order modulus of continuity for f . In particular,

2W0(µ1, µ2) = ‖µ1 − µ2‖TV := sup
|f |≤1

|µ1(f)− µ2(f)|

is the total variation distance.
It is worthy to point out that for b(x) = −∇V (x) and σ = Id (the d×d identity matrix), where V

is a strictly convex function with bounded ∇2V, the convergence rate under the Kullback-Leibler
divergence (i.e. the relative entropy) has been studied in [4, 1, 17].

By the ergodicity, we have L (Xtn) → µ as tn → ∞, where L (Xtn) is the distribution of Xtn

and µ is the unique invariant probability measure. So, it is essential to assume tn →∞ as n→∞,
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i.e.
∑∞

k=1 ηk =∞. On the other hand, to approximate L (Xtn) by L (Ytn), the step size ηn should
decay to 0 as n→∞. Thus, throughout the paper we make the following assumption.

(A0) The step size sequence {ηk > 0}k≥1 is non-increasing and satisfies

lim
k→∞

ηk = 0,
∞∑
k=1

ηk =∞.

A typical examples of step size {ηk}k≥1 satisfying (A0) is ηk = θk−a for some θ ∈ (0,∞) and
a ∈ (0, 1].

Before moving on, let us recall some existing estimates on the convergence rate presented in the
literature for ηk = 1

k
.

When b = −∇V for V being strictly convex and ∇2V being bounded, Durmus and Moulines
[5, 6] showed that W2(L (Ytn), µ) and W0(L (Ytn), µ) are both bounded by O(d

1
2n−

1
2 ), and that

their bounds can be improved to O(dn−1) and O(d
1
2n−

3
4 ) respectively if V ∈ C3 has Lipschitz

continuous first and second order derivatives.
Recently, Pagès and Panloup [19] studied the non-asymptotic bounds related to the EM scheme

(1.2), for which they replaced the strongly convex assumption on V in [6] with a weaker assump-
tion on the drift b and allows a multiplicative noise (i.e. σ is non-constant). They obtained an
O(n−1+ε) upper bound with ε ∈ (0, 1), for W0(L (Ytn), µ) under the conditions b, σ ∈ C6, and
an O(n−1 log(n)) upper bound for W1(L (Ytn), µ) under the conditions b, σ ∈ C4. When σ is
a constant matrix, their upper bounds for both distances can be improved to O(n−1) under the
weaker condition that b ∈ C3. Note that their results fail to provide an explicit dependence on the
dimension d.

However, in many important applications such as lasso and bridge regressions, the drift b is
much more singular than those required in the above references. This motivates us to study the
convergence of the unadjusted Langevin algorithm for SDE (1.1) in the case b ∈ Cα with α ∈ (0, 2]
for partially filling this gap. If b ∈ Cα with α ∈ (0, 1], it means that b is α-Hölder continuous,
while if b ∈ Cα with α ∈ (1, 2], it means that∇b is (α− 1)-Hölder continuous.

To compare our main results with the above introduced estimates, we simply let ηk = 1
k

and
briefly summarize our results as follows.

1. When b is partially dissipative with b ∈ Cα for some α ∈ (0, 2], and σ(x) = σ is constant,
Theorem 2.1 implies that

W1(L (Ytn), µ) + W0(L (Ytn), µ) ≤ O(d
1
2

+1{1<α≤2}n−
α
2 ).

This estimate is also extended to Wp for p ∈ (0, 1).When α = 2, and p = 0, 1, the order of
n in our result matches the optimal order shown in [19, Theorem 2.3]. Note that our result
is obtained under weaker condition on b rather than b ∈ C3 as in [19].

2. When b is uniformly dissipative and in Cα for some α ∈ (0, 1], Theorem 3.1 implies

Wp(L (Ytn),L (Xtn)) ≤ O(d
1
2n−

α
2 )

for any p ∈ (1,∞). In particular, when α = 1 and p = 2 this estimate has the same order
as that in [6].
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Let us briefly discuss our approach to proving the main results. In the uniform dissipation case,
we use a synchronuous coupling of the solutions of (1.1) and (1.3) and compare their difference
directly. However, this method is not applicable in the case of partial dissipation. Alternatively, we
apply a domino decomposition in [19], whose probability version was recently established in [3] by
a generalized Lindeberg principle and seems more powerful in applications. Comparing to [19], it
seems to us that our one-step error estimation is a little more delicate, and thus allows us to achieve
the optimal rate under a weaker assumption on b. More precisely, we establish an integration by
parts formula for the unadjusted Langevin algorithm rather than directly estimate a Malliavin ma-
trix, which helps us to get estimates explicitly depending on the dimension d. Girsanov’s theorem
and Pinsker’s inequality also play an important role in our proof.

The paper is organized as follows. When the coefficients only satisfy a partial dissipation con-
dition, we consider the additive noise where σ(x) = σ does not depend on x and t, and estimate
Wp(L (Ytn), µ) in Section 2 for p ∈ [0, 1]. In Section 3, we estimate Wp(L (Ytn),L (Xtk)) for
p > 1 under the uniform dissipation condition, where the time in-homogenous case is also consid-
ered.

Throughout this paper, let | · | be the Euclidean norm, let ‖ · ‖op and ‖ · ‖HS denote the operator
norm and Hilbert-Schmidt norm for matrices respectively. We will use c = c(· · · ) to denote a
constant c which only depends on the quantities “ · · · ". The notations Ck(X ,Y) is used to denote
the classes of continuous functions mapping from X to Y that have continuous first, second,. . . and
k-th order partial derivatives and if the context of the function’s space is clear, we will abbreviate
the notation of the space as Ck.

2. Wp-ESTIMATE FOR p ∈ [0, 1]: PARTIAL DISSIPATION CASE

2.1. Main result and an example.
In this section, we study the Wp-estimate for p ∈ [0, 1] under the following assumptions

(A1) Let α ∈ (0, 2]. σ(x) = σ does not depend on x and is invertible, and there exist constants
K1, K2 ∈ (0,∞) such that

‖σ‖op ∨ ‖σ−1‖op ≤ K1

and b is partially dissipative, i.e.

〈b(x)− b(y), x− y〉 ≤ K1 −K2|x− y|2, x, y ∈ Rd.

Moreover,
• when α ≤ 1,

|b(x)− b(y)| ≤ K1(|x− y|+ |x− y|α), x, y ∈ Rd;

• when α ∈ (1, 2], b ∈ Cα(Rd) and

‖∇b‖op ≤ K1, ‖∇b(x)−∇b(y)‖op ≤ K1|x− y|α−1, x, y ∈ Rd.

This assumption implies the well-posedness of (1.1), see [21, 29] for the well-posedness of more
singular SDEs. The following result improves [19, Theorem 2.2]. In particular, when α = 2 and
p > 0, the order n−1 in (2.3) is sharp for ηk ∼ 1

k
is sharp since it is reached by the Ornstein-

Uhlenbeck process, for which W0(L (Y x
tn), µ) can be computed explicitly (see [19, Section 4.6]).
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Theorem 2.1. Assume (A0) and (A1) for some α ∈ (0, 2]. Then there exist constants c1 =
c1(K1, K2, η, α), c2 = c2(K1, K2) ∈ (0,∞) such that the following statements hold for any x ∈ Rd

and n ≥ 2.
(1) Let α ∈ (0, 1]. We have

W1

(
L (Xx

tn),L (Y x
tn)
)

+ W1

(
µ,L (Y x

tn)
)

≤ c1d
1
2 (1 + |x|)

n−1∑
k=1

e−c2(tn−tk)η
1+α

2
k ,

(2.1)

W0

(
L (Xx

tn),L (Y x
tn)
)

+ W0

(
µ,L (Y x

tn)
)

≤ c1d
1
2 (1 + |x|)

[
n−1∑
k=1

e−c2(tn−tk)(tn − tk)−
1
2η

1+α
2

k + η
1+(α∧1)

2
n

]
.

(2.2)

In particular, if we choose ηk = θ
k

for some constant θ > α
2c2

, then there exists a constant
c′1 = c′1(K1, K2, θ, α) ∈ (0,∞) such that

(2.3) Wi

(
L (Xx

tn),L (Y x
tn)
)

+ Wi

(
µ,L (Y x

tn)
)
≤ c′1d

1
2n−

α
2 , i = 0, 1.

(2) Let α ∈ (1, 2]. We have

W1

(
L (Xx

tn),L (Y x
tn)
)

+ W1

(
µ,L (Y x

tn)
)

≤ c1d
3
2 (1 + |x|2)

n−1∑
k=1

e−c2(tn−tk)η
1+α

2
k ,

(2.4)

W0

(
L (Xx

tn),L (Y x
tn)
)

+ W0

(
µ,L (Y x

tn)
)

≤ c1d
3
2 (1 + |x|2)

[
n−1∑
k=1

e−c2(tn−tk)(tn − tk)−
1
2η

1+α
2

k + η
1+(α∧1)

2
n

]
.

(2.5)

In particular, if we choose ηk = θ
k

for some constant θ > α
2c2

, then there exists a constant
c′1 = c′1(K1, K2, θ, α) ∈ (0,∞) such that

Wi

(
L (Xx

tn),L (Y x
tn)
)

+ Wi

(
µ,L (Y x

tn)
)
≤ c′1d

3
2n−

α
2 , i = 0, 1.(2.6)

(3) For any p ∈ (0, 1),

Wp

(
L (Xx

tn),L (Y x
tn)
)

+ Wp

(
µ,L (Y x

tn)
)

≤ c1d
1+ p

2
+1{1<α≤2}

(
1 + |x|1+1{1<α≤2}

) [n−1∑
k=1

e−c2(tn−tk)(tn − tk)−
1
2η

1+α
2

k + η
1+(α∧1)

2
n

]
.

Example 2.1. Let us consider using the ULA algorithm for sampling from a d-dimensional dis-
tribution with density function 1

Z
e−

1
2
|x|2+ 1

4
|x|α+1

, α ∈ (0, 1] where Z is the normalization constant.
In this case, the iterative formula for the ULA algorithm with decreasing step size ηk, k ≥ 1 is as
follow

Yk+1 = Yk + ηk+1

(
−Yk +

α + 1

4
|Yk|α−1 Yk

)
+
√

2ηk+1ζk+1, k ≥ 0,
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where ζ1, . . . , ζk, . . . are i.i.d. d-dimensional standard normal distributed random variables, and
the corresponding SDE should be

dXt =

(
−Xt +

α + 1

4
|Xt|α−1Xt

)
dt+

√
2dBt, t ≥ 0.

It can be easily verified that in this case, the drift coefficient b(x) = −x + α+1
4
|x|α−1x is not

uniformly dissipative (in other words, V is non-convex for V satisfying b = −∇V ), and non-
differentiable near the origin if α < 1. However, this example satisfies our assumptions in (A1).
Hence, according to Theorem 2.1, if ηk is chosen to be θ

k
for some suitable θ > 0, then the approx-

imation error of this algorithm under W1 + W0 has convergence rate O(d
1
2n−

α
2 ).

2.2. Proof of Theorem 2.1.
We first present the following moment estimates on Yt and Xt which are crucial for the proofs.

Lemma 2.2. Assume that (A0) holds, (1.1) is well-posed and there exist positive constants κ1, κ2

such that

(2.7) 〈x, b(x)〉 ≤ κ1 − κ2|x|2, |b(x)| ≤ κ2(1 + |x|), ‖σ‖op ≤ κ2, ∀x ∈ Rd.

Then for any p ∈ (0,∞), there exists a constant κ = κ(κ1, κ2, p) ∈ (0,∞) such that

(2.8) sup
t≥0

E|Xx
t |p ≤ κ(d

p
2 + |x|p), ∀x ∈ Rd.

If moreover

(2.9) |b(x)− b(y)| ≤ K(|x− y|+ |x− y|α), ∀x, y ∈ Rd

holds for some constant K ∈ (0,∞) and α ∈ (0, 1], then there exists κ′ = κ′(κ1, κ2, K, η, α, p) ∈
(0,∞) such that

(2.10) sup
t≥0

E|Y x
t |p ≤ κ′(d

p
2 + |x|p), ∀x ∈ Rd.

Proof. By Jensen’s inequality, we only need to prove for p ≥ 2.
(1) Proof of (2.8). All constants ci in this step depend only on κ1, κ2 and p. By (2.7), ‖σ‖2

HS ≤
d‖σ‖2

op and Young’s inequality, there exist constants c1, c2 ∈ (0,∞) such that, for any x, y ∈ Rd

p|x|p−2〈x, b(x)〉+
1

2
p(p− 1)|x|p−2‖σ‖2

HS

≤ −κ2p|x|p + κ1p|x|p−2 +
1

2
κ2p(p− 1)d|x|p−2

≤ c1d
p
2 − c2|x|p.

(2.11)

So, by Itô’s formula and ‖σ‖op ≤ ‖σ‖HS,

d|Xx
t |p − dMt

=

[
p|Xx

t |p−2〈Xx
t , b(X

x
t )〉+

1

2
p|Xx

t |p−2‖σ‖2
HS +

1

2
p(p− 2) |Xx

t |
p−4 |σXx

t |
2

]
dt

≤
[
p|Xx

t |p−2〈Xx
t , b(X

x
t )〉+

1

2
p(p− 1)|Xx

t |p−2‖σ‖2
HS

]
dt
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≤
(
c1d

p
2 − c2|Xx

t |p)dt

holds for some martingale Mt. Then it follows from Gronwall’s inequality that

E|Xx
t |p ≤ |x|pe−c2t + c1d

p
2

∫ t

0

e−c2(t−s)ds ≤ c1d
p
2

c2

+ |x|p,

so that (2.8) follows.
(2) Proof of (2.10). All constants ci in this step depend only on κ1, κ2, K, η, α and p. For any

k ≥ 1, by (2.7), (2.9) and (2.11), and noting that

|Y x
t − Y x

tk−1
|+ |Y x

t − Y x
tk−1
|α ≤ c(1 + |Y x

t − Y x
tk−1
|)

holds for some constant c > 0, we find a martingale Mt such that for t ∈ [tk−1, tk]

d|Y x
t |p − dMt ≤

(
p|Y x

t |p−2〈Y x
t , b(Y

x
tk−1

)〉+
1

2
p(p− 1)|Y x

t |p−2‖σ‖2
HS

)
dt

≤
(
p|Y x

t |p−2〈Y x
t , b(Y

x
t )〉+

1

2
p(p− 1)|Y x

t |p−2‖σ‖2
HS

)
dt

+ p|Y x
t |p−1|b(Y x

t )− b(Y x
tk−1

)|dt

≤
[
−κ2p |Y x

t |
p +

1

2
κ2p(p− 1)d |Y x

t |
p−2 +Kp |Y x

t |
p−1
(∣∣∣Y x

t − Y x
tk−1

∣∣∣+ 1
)]

dt

≤
(
− c2

2
|Y x
t |p + c3

{
d
p
2 + |Y x

t − Y x
tk−1
|p
})

dt,

where the last step follows from the Young’s inequality. This implies

E|Y x
tk
|p ≤ e−

1
2
c2ηkE|Y x

tk−1
|p + c3d

p
2 ηk

+ 2c3

∫ tk

tk−1

E[|Y x
t − Y x

tk−1
|p]dt, k ≥ 1.

(2.12)

By the boundedness of σ and the linear growth of b, we find a constant c4 > 0 such that

E|Y x
t − Y x

tk−1
|p = E

∣∣(t− tk−1)b(Y x
tk−1

) + σ(Bt −Btk−1
)
∣∣p

≤ c4

[
ηpk(1 + E|Y x

tk−1
|p) + η

p
2
k d

p
2

]
, t ∈ [tk−1, tk], k ≥ 1.

Since {ηk}k≥1 is non-increasiong, combining this with (2.12), we can find a constant c5 > 0 such
that

E|Y x
tk
|p ≤

(
e−

1
2
c2ηk + 2c3c4η

1+p
k

)
E|Y x

tk−1
|p + c3d

p
2 ηk + 2c3c4

[
η1+p
k + η

1+ p
2

k d
p
2

]
≤
(

e−
1
2
c2ηk + c5η

1+p
k

)
E|Y x

tk−1
|p + c5d

p
2 ηk, k ≥ 1.

(2.13)

Since ηk → 0 as k →∞, we can find a k0 ≥ 1 such that

(2.14) 0 ≤ e−
1
2
c2ηk + c5η

1+p
k ≤ 1− 1

4
c2ηk, k ≥ k0.

Consequently,

c6 := sup
k≥1

k∏
i=1

(
e−

1
2
c2ηj + c5η

1+p
j

)
<∞.
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So, iterating the estimate (2.13) yields

(2.15) E|Ytk |p ≤ c6|x|p + c5d
p
2

[
ηk +

k−1∑
i=1

ηi

k∏
j=i+1

(
e−

1
2
c2ηj + c5η

1+p
j

)]
.

By (2.14) we obtain
k−1∑
i=1

ηi

k∏
j=i+1

(
e−

1
2
c2ηj + c5η

1+p
j

)
≤ c6

k0−1∑
i=1

ηi +
k−1∑
i=k0

ηi

k∏
j=i+1

(
1− 1

4
c2ηj

)

= c6

k0−1∑
i=1

ηi +
4

c2

k−1∑
i=k0

[
1− (1− 1

4
c2ηi)

] k∏
j=i+1

(
1− 1

4
c2ηj

)

= c6

k0−1∑
i=1

ηi +
4

c2

k−1∑
i=k0

[
k∏

j=i+1

(
1− 1

4
c2ηj

)
−

k∏
j=i

(
1− 1

4
c2ηj

)]

≤ c6

k0−1∑
i=1

ηi +
4

c2

<∞, ∀k ≥ k0.

Combining this with (2.15), we prove (2.10) for some constant κ′ and k ≥ k0, while for k ≤ k0

the estimate follows from (2.13). �

Lemma 2.3. Assume that the conditions in Lemma 2.2 hold. Then, for any p > 0 there exists a
constant κ = κ(κ1, κ2, p) ∈ (0,∞) such that

E|Xx
t − x|p ≤ κ(d

p
2 + |x|p)(1 ∧ t)

p
2
∧1, x ∈ Rd, t ≥ 0.

If moreover (2.9) holds, then there exists κ′ = κ′(κ1, κ2, η,K, p, α) ∈ (0,∞) such that

E|Y x
t − Y x

tk−1
|p ≤ κ′(d

p
2 + |x|p)η

p
2
k , x ∈ Rd, k ≥ 1, t ∈ [tk−1, tk].

Proof. Again, by Jensen’s inequality, we only need to prove for p ≥ 2.
(1) Applying Itô’s formula, (2.11) and Young’s inequality gives us

d |Xx
t − x|

p − dMt

≤
[
p|Xx

t − x|p−2〈Xx
t − x, b(Xx

t )〉+
1

2
p(p− 1)|Xx

t − x|p−2‖σ‖2
HS

]
dt

≤
(
c1d

p
2 − c2 |Xx

t − x|
p + p|Xx

t − x|p−2〈Xx
t − x, b(Xx

t )− b(Xx
t − x)〉

)
dt

≤
(
c1d

p
2 − c2 |Xx

t − x|
p + 2K1p|Xx

t − x|p−1(1 + |x|)
)

dt

≤
(
c′1

(
d
p
2 + |x|p

)
− c′2 |Xx

t − x|
p
)

dt

where the third inequality is a consequence of (2.9) andMt is the Martingale term. SinceXx
0 −x =

0, it follows from Gronwall’s inequality that

E |Xx
t − x|

p ≤ c′1(d
p
2 + |x|p)
c′2

(
1− e−c′2t

)
≤ κ(d

p
2 + |x|p) (1 ∧ t) , ∀x ∈ Rd, t ≥ 0,

for some κ = κ(κ1, κ2, p).
8



(2) For the second one, notice that for t ∈ [tk, tk+1), the conditional distribution of Y x
t − Y x

tk
given Y x

tk
is

Y x
t − Y x

tk
|Y xtk ∼ N

(
(t− tk)b(Y x

tk
), (t− tk)σσT

)
.

Hence, it follows from (2.7) and (2.10) that for some constants c′3 = c′3(p) > 0 and c′4 =
c′4(p, κ2) > 0,

E|Y x
t − Y x

tk
|p ≤ c′3

[
(t− tk)pE|b(Y x

tk
)|p + (t− tk)

p
2‖σ‖pHS

]
≤ c′3κ

p
2

[
(t− tk)p

(
1 + E|Y x

tk
|
)p

+ (t− tk)
p
2d

p
2

]
≤ c′4

(
d
p
2 + |x|p

)
(t− tk)

p
2 .

So the proof is complete. �

To prove Theorem 2.1, we consider the SDEs (1.1) and (1.3) on each time interval [tk, tk+1) for
k ∈ Z+, where t0 := 0. For any x ∈ Rd and k ∈ Z+, let (Ytk,t(x))t∈[tk,tk+1] solve the SDE

dYtk,t(x) = b(x)dt+ σdBt, Xtk,tk(x) = Ytk,tk(x) = x, t ∈ [tk, tk+1].

Define

Qtk,tk+1
f(x) := E[f(Ytk,tk+1

(x))], Qtk,tn := Qtk,tk+1
Qtk+1,tk+2

· · ·Qtn−1,tn , n ≥ k + 1.

Correspondingly, for any s ≥ 0 and x ∈ Rd, we let {Xs,t(x)}t≥s solve the SDE

dXs,t(x) = b(Xs,t(x))dt+ σdBt, t ≥ s,Xs,s(x) = x.

Then the Markov semigroup Pt associated with (1.1) satisfies

(2.16) Pt−sf(x) = Ps,tf(x) := E[f(Xs,t(x))], t ≥ s ≥ 0.

Let Q0,0 = P0 be the identity operator. We have the domino decomposition

Ptn −Q0,tn =
n∑
k=1

Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,tn , n ∈ N.

Combining this with

Wp

(
L (Xx

tn),L (Y x
tn)
)

= sup
[f ]p≤1

|E[f(Xx
tn)− f(Y x

tn)]| = sup
[f ]p≤1

|P0,tnf(x)−Q0,tnf(x)|, n ≥ 1,

we derive

(2.17) Wp

(
L (Xx

tn),L (Y x
tn)
)

= sup
[f ]p≤1

∣∣∣ n∑
k=1

Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,tnf(x)

∣∣∣.
To prove Theorem 2.1 using this formula, we need the following derivative estimates on Pt.

Lemma 2.4. Assume (A0) and (A1). There exist constants κ1 = κ1(K1, K2), κ2 = κ2(K1, K2) ∈
(0,∞) such that

(2.18) ‖∇Ptf‖∞ ≤ κ1e−κ2t‖∇f‖∞, t > 0,

(2.19) ‖∇Ptf‖∞ ≤ κ1e−κ2tt−
1
2‖f‖∞, t > 0.

9



Moreover, when α ≥ 1,

(2.20) ‖‖∇2Ptf‖op‖∞ ≤ κ1e−κ2t
(
t−

1
2 +
√
d 1{α<2}

)
‖∇f‖∞, t > 0.

Proof. (a) By [7, Corollary 2.3], (A1) implies

sup
‖∇f‖∞≤1

|Ptf(x)− Ptf(y)| = W1(L (Xx
t ),L (Xy

t ))

≤ κ1e−κ2t|x− y| ∀ t ≥ 0, x, y ∈ Rd,

for some constants κ1, κ2 ∈ (0,∞) depending only on K1, K2. Consequently, (2.18) holds.
Next, by [20, Theorem 3.4], there exists constant k1 ∈ (0,∞) depending only on K1, K2 such

that
‖∇vPtf‖∞ ≤ k1t

− 1
2‖f‖∞|v|, t ∈ (0, 1],∀v ∈ Rd.

Combining this with (2.18) and the semigroup property of Pt, we prove (2.19) for some constants
κ1, κ2 ∈ (0,∞) depending only on K1, K2.

(b) When α = 2, we have ‖∇b‖op ∨ ‖∇2b‖op ≤ K1. In general, we let ‖∇2b‖op ≤ K ′1 for some
constant K ′1 possibly different from K1. Then for any v, w ∈ Rd,

φt(v) := ∇vX
x
t := lim

ε↓0

Xx+εv
t −Xx

t

ε
, ϕt(v, w) := lim

ε↓0

∇vX
x+εw
t −∇vX

x
t

ε

exist and solve the equations

∂tφt(v) = ∇φt(v)b(X
x
t ), φ0(v) = v,

∂tϕt(v, w) = ∇ϕt(v,w)b(X
x
t ) +∇φt(w)∇φt(v)b(X

x
t ), ϕ0(v, w) = 0.

Consequently,

(2.21) sup
|v|≤1

|φt(v)| ≤ eK1 , sup
|v|,|w|≤1

|ϕt(v, w)| ≤ K ′1e3K1 , t ∈ [0, 1].

Combining this with the Bismut–Elworthy–Li formula

∇vPtf(x) =
1

t
E
[
f(Xx

t )

∫ t

0

〈σ−1φs(v), dBs〉
]
,

we derive
∇w∇vPtf(x) = I1 + I2,

where

I1 :=
1

t
E
[
〈∇f(Xx

t ), φt(w)〉
∫ t

0

〈σ−1φs(v), dBs〉
]
,

I2 :=
1

t
E
[
f(Xx

t )

∫ t

0

〈σ−1ϕs(v, w), dBs〉
]
.

(2.22)

By (2.21) and ‖σ−1‖op ≤ K1, for any x ∈ Rd and t ∈ (0, 1],

|I1| ≤ ‖∇f‖∞K1e2K1t−
1
2 ,

|I2| =
1

t

∣∣∣∣E[{f(Xx
t )− Ptf(x)

}∫ t

0

〈σ−1ϕs(v, w), dBs〉
]∣∣∣∣

≤ 1

t

(
E|f(Xx

t )− Ptf(x)|2
) 1

2K1K
′
1e3K1 .

(2.23)

10



Noting that (2.18) implies

E|f(Xx
t )− Ptf(x)|2 = Ptf

2(x)− (Ptf(x))2

=

∫ t

0

d
ds
Ps(Pt−sf)2(x)ds

=

∫ t

0

Ps
(
L (Pt−sf)2 − 2Pt−sf · LPt−sf

)
(x)ds

=

∫ t

0

Ps|σ∗∇Pt−sf |2(x)ds ≤ ‖∇f‖2
∞(K1κ1)2t, t > 0,

(2.24)

where L := tr{σσ∗∇2} + b · ∇ is the generator associated with (1.1). We derived (2.20) for
t ∈ (0, 1] for some larger constant κ1 = κ1(K1, K2) since K ′1 = K1 under (A1). And for
t ∈ (1,∞), the desired result follows from

‖‖∇2Ptf‖op‖∞ = ‖‖∇2P1Pt−1f‖op‖∞
≤ κ1e

−κ2‖∇Pt−1f‖∞ ≤ κ1e
−κ2t‖∇f‖∞,

where the last inequality is a consequence of (2.18).
Now, let α ∈ [1, 2). Let b̃(x) = E[b(x+B1)]. Then

|∇v b̃(x)| ≤ E[|∇vb(x+B1)|] ≤ K1, |v| ≤ 1,

|b(x)− b̃(x)| ≤ K1E|B1| ≤ K1

√
d.

(2.25)

By the Bismut formula,
∇v b̃(x) = E

[
b(x+B1)〈v,B1〉

]
.

For w ∈ Rd with |w| ≤ 1, ‖∇b‖op ≤ K1 yields∣∣∇w∇v b̃(x)
∣∣ =

∣∣∣∣ limε↓0 1

ε
E
[{
b(x+B1 + εw)− b(x+B1)

}
〈v,B1〉

]∣∣∣∣ ≤ K1.

Let P̃t generated by L̃ := tr{σσ∗∇2}+ b̃ · ∇. By the result for α = 2 case, we can find a constant
c1 = c1(K1) ∈ (0,∞) such that the semigroup satisfies

sup
x∈Rd,|v|∨|w|≤1,‖∇f‖∞≤1

|∇w∇vP̃tf(x)| ≤ c1 t
− 1

2 , t ∈ (0, 1].(2.26)

Combining this with (2.18), (2.25), ‖∇b‖op ≤ K1 and the formula

Ptf = P̃tf +

∫ t

0

P̃s∇b−b̃Pt−sfds,

we derive that for any x ∈ Rd, |v| ∨ |w| ≤ 1, t ∈ (0, 1] and ‖∇f‖∞ ≤ 1,

|∇w∇vPtf(x)| =
∣∣∣∣∇w∇vP̃tf(x) +

∫ t

0

∇w∇vP̃s∇b−b̃Pt−sf(x)ds
∣∣∣∣

≤ c1t
− 1

2 + c1

∫ t

0

s−
1
2‖∇∇b−b̃Pt−sf‖∞ds.
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By denoting ξt := supx∈Rd,|v|∨|w|≤1,‖∇f‖∞≤1 |∇w∇vPtf(x)|, we then have

ξt ≤ c1t
− 1

2 + c1K1

√
d

∫ t

0

s−
1
2 ξt−sds, t ∈ (0, 1].

Let at = sups∈[0,t]{s
1
2 ξs} and notice that

∫ 1

0
s−

1
2 (1− s)−

1
2 ds = B(1, 1) = 1 with B(·, ·) being

the beta function. It follows that

at ≤ c1 + c1

√
dK1t

1
2

(∫ t

0

s−
1
2 (t− s)−

1
2 ds

)
at

= c1 + c1

√
dK1t

1
2B(1, 1)at.

Solving this inequality yields, for any t ∈ (0, t0/2) with t0 = 1
(c1K1)2d

,

at ≤
c1

1− c1

√
dK1t

1
2

≤ 2c1,

which implies

‖‖∇2Ptf‖op‖∞ = ξt‖∇f‖∞ ≤ 2c1t
− 1

2‖∇f‖∞.
Similar as before, for t ∈ (t0/2,∞), the proof is finished by

‖‖∇2Ptf‖op‖∞ = ‖‖∇2P t0
4
Pt− t0

4
f‖op‖∞

≤ 4c1t
− 1

2
0 ‖∇Pt− t0

4
f‖∞ ≤ κ1

√
dt−

1
2 e−κ2t‖∇f‖∞,

for some κ1, κ2 ∈ (0,∞). �

Lemma 2.5. Assume (A0) and (A1). Then there exists a constant κ = κ(K1, K2, η, α) such that
the following statements hold for any x ∈ Rd and k ∈ N.

(1) When α ∈ (0, 1],

sup
‖∇f‖∞≤1

∣∣Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,tf(x)

∣∣
≤ κd

1
2 (1 + |x|)e−κ2(t−tk)η

1+α
2

k , t > tk.

(2) When α ∈ (1, 2],

sup
‖∇f‖∞≤1

∣∣Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,tf(x)

∣∣
≤ κd

3
2 (1 + |x|2)e−κ2(t−tk)

(
η

1+α
2

k + (t− tk)−
1
2η3

k

)
, t > tk.

(2.27)

Proof. (a) Let α ∈ (0, 1]. By Lemma 2.3 and and Lemma 2.2, we can find a constant k1 =
k1(K1, K2) ∈ (0,∞) such that

E[|Xtk−1,t(Y
x
tk−1

)− Y x
tk−1
|+ |Xtk−1,t(Y

x
tk−1

)− Y x
tk−1
|α]

= E
{(

E[|Xtk−1,tk(z)− z|+ |Xtk−1,tk(z)− z|α]
)
z=Y xtk−1

}
≤ κ

[(
d

1
2 + E

∣∣∣Y x
tk−1

∣∣∣) η 1
2
k +

(
d
α
2 + E

∣∣∣Y x
tk−1

∣∣∣α) η α2k ]
≤ k1d

1
2 (1 + |x|)η

α
2
k , t ∈ [tk−1, tk].

(2.28)
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Meanwhile, by (1.1), (1.2), (2.18) and (A1), we obtain

sup
‖∇f‖∞≤1

∣∣Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,tf(x)

∣∣
≤ ‖∇Ptk,tf‖∞ sup

‖∇g‖∞≤1

∣∣Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)g(x)

∣∣
≤ κ1e−κ2(t−tk) sup

‖∇g‖∞≤1

∣∣∣E[g(Xtk−1,tk(Y
x
tk−1

))− g(Ytk−1,tk(Y
x
tk−1

))]
∣∣∣

≤ κ1e−κ2(t−tk)E
∣∣∣Xtk−1,tk(Y

x
tk−1

))− Ytk−1,tk(Y
x
tk−1

)
∣∣∣

= κ1e−κ2(t−tk)

∫ tk

tk−1

E[|b(Xtk−1,t(Y
x
tk−1

))− b(Y x
tk−1

)|]dt

≤ κ1K1e−κ2(t−tk)

∫ tk

tk−1

E
{(

E[|Xtk−1,s(z)− z|+ |Xtk−1,s(z)− z|α]
)
z=Y xtk−1

}
ds.

Combining this with (2.28) we prove the first assertion.
(b) Let α ∈ (1, 2]. For any function g on Rd with ‖∇ig‖∞ <∞, i = 1, 2, we have

g(z)− g(y) =

∫ 1

0

∇z−yg(y + r(z − y))dr

=

∫ 1

0

∇z−yg(y + r(z − y))−∇z−yg(y)dr + (∇z−yg(y)−∇z−yg(u)) +∇z−yg(u)

=

∫ 1

0

∫ 1

0

r1∇z−y∇z−yg(y + r1r2(z − y))dr2dr1

+

∫ 1

0

∇y−u∇z−yg(u+ r(y − u))dr +∇z−yg(u), u, y, z ∈ Rd.

Let ‖∇f‖∞ ≤ 1. We shall apply this formula for

g = Ptk,tf, z = Xtk−1,tk(Y
x
tk−1

), y = Ytk−1,tk(Y
x
tk−1

), u = Y x
tk−1

.

Let

∆k := Xtk−1,tk(Y
x
tk−1

)− Ytk−1,tk(Y
x
tk−1

), ∆̃k := Y x
tk
− Y x

tk−1
.(2.29)

By (2.16) and noting that Ytk−1,tk(Y
x
tk−1) = Y x

tk
, we deduce from the above formula that∣∣Q0,tk−1

(Ptk−1,tk −Qtk−1,tk)Ptk,tf(x)
∣∣

=
∣∣∣E [Ptk,tf (Xtk−1,tk(Y

x
tk−1

)
)]
− E

[
Ptk,tnf

(
Ytk−1,tk(Y

x
tk−1

)
)]∣∣∣

≤
∣∣∣∣E∫ 1

0

∫ 1

0

r1∇∆k
∇∆k

Ptk,tf
(
Ytk−1,tk(Y

x
tk−1

) + r1r2∆k

)
dr2dr1

∣∣∣∣
+

∣∣∣∣E∫ 1

0

∇∆̃k
∇∆k

Ptk,tf
(
Y x
tk−1

+ r
(
Y x
tk
− Y x

tk−1

))
dr

∣∣∣∣
+
∣∣∣E[∇∆k

Ptk,tf(Y x
tk−1

)]
∣∣∣

:= J1 + J2 + J3,

(2.30)
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To estimate these terms, we need to bound ∆k and ∆̃k. For t ∈ [tk−1, tk], define

∆k,t := Xtk−1,t(Y
x
tk−1

)− Ytk−1,t(Y
x
tk−1

) = Xtk−1,t(Y
x
tk−1

)− Y x
t ,(2.31)

∆̃k,t := Ytk−1,t(Y
x
tk−1

)− Y x
tk−1

= Y x
t − Y x

tk−1
.(2.32)

By Lemma 2.3, we can find a constant C0 = C0(K1, K2, η, α) ∈ (0,∞) such that

(2.33) E|∆̃k,t|4 ≤ C0d
2(1 + |x|4)(t− tk−1)2, ∀t ∈ [tk−1, tk].

We claim that there exist constants Ci = Ci(K1, K2, η, α) ∈ (0,∞), i = 1, 2, such that

(2.34) sup
t∈[tk−1,tk]

E|∆k,t|4 ≤ C1d
2(1 + |x|4)η6

k,

(2.35) E
∣∣E[∆k|Y x

tk−1
]
∣∣ ≤ C2d

α
2 (1 + |x|α)η

1+α
2

k .

Indeed, by (2.33) and that (A1) for α ∈ (1, 2],

E|∆k,t|4 = E|Xtk−1,t(Y
x
tk−1

)− Ytk−1,t(Y
x
tk−1

)|4

≤ η3
k

∫ t

tk−1

E|b(Xtk−1,s(Y
x
tk−1

))− b(Y x
tk−1

)|4ds

≤ 8K2
1η

3
k

∫ t

tk−1

E
{
|Xtk−1,s(Y

x
tk−1

)− Ytk−1,s(Y
x
tk−1

)|4 + |Ytk−1,s(Y
x
tk−1

)− Y x
tk−1
|4
}

ds

≤ 8K2
1η

3
k

∫ t

tk−1

E|∆k,s|4ds+ 8K2
1C0d

2(1 + |x|4)η6
k, t ∈ [tk−1, tk].

By Grownwall’s inequality, we find a constant C1 ∈ (0,∞) depending on K1, K2, η and α, such
that (2.34) holds. On the other hand, by (A1) for α ∈ (1, 2], we have

|E[∆k|Ytxk−1
]| = |E[Xtk−1,tk(z)− Ytk−1,tk(z)]|z=Ytx

k−1

=

∣∣∣∣ ∫ tk

tk−1

E[b
(
Xtk−1,t(z)

)
− b(z)]dt

∣∣∣∣
z=Ytx

k−1

=

∣∣∣∣ ∫ tk

tk−1

∫ 1

0

E
[
∇Xtk−1,t

(z)−zb
(
z + r(Xtk−1,t(z)− z)

)]
drdt

∣∣∣∣
z=Ytx

k−1

≤
∣∣∣∣ ∫ tk

tk−1

∫ 1

0

E
[
∇Xtk−1,t

(z)−z
(
b
(
z + r(Xtk−1,t(z)− z)

)
− b(z)

)]
drdt

∣∣∣∣
z=Ytx

k−1

+

∣∣∣∣ ∫ tk

tk−1

E[∇Xtk−1,t
(z)−zb(z)]dt

∣∣∣∣
z=Ytx

k−1

≤ K1

∫ tk

tk−1

(
E|Xtk−1,t(z)− z|α

)
z=Ytx

k−1

dt+K1

∫ tk

tk−1

dt
∫ t

tk−1

E|b(Xtk−1,s(z))|z=Ytx
k−1

ds.

So, by the linear growth of b, Lemma 2.2 and Lemma 2.3, we find constants k1, k2 ∈ (0,∞)
depending on K1, K2, η and α, such that

E|E[∆k|Ytxk−1
]| ≤ k1η

1+α
2

k E(d
α
2 + |Y x

tk−1
|α)
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≤ k2d
α
2 (1 + |x|α)η

1+α
2

k .

Hence, (2.35) holds. By (2.33), (2.34), (2.35) and Lemma 2.4, we find constants p1, p2 ∈ (0,∞)
depending only on K1, K2, η and α, such that ‖∇f‖∞ ≤ 1 implies

J1 ≤
∥∥‖∇2Ptk,tf‖op

∥∥
∞E|∆k|2

≤ p1d
3
2 (1 + |x|2)e−κ2(t−tk)(t− tk)−

1
2η3

k,

and

J3 =
∣∣E〈∇Ptk,tf(Y x

tk−1
),E[∆k|Y x

tk−1
]〉
∣∣

≤
∥∥‖∇Ptk,tf‖op

∥∥
∞E
∣∣E[∆k|Y x

tk−1
]
∣∣

≤ p2d
α
2 (1 + |x|2)e−κ2(t−tk)η

1+α
2

k , t > tk.

Combining this with (2.30), we derive the desired estimate provided we find a constant κ > 0 such
that

(2.36) J2 ≤ κd
3
2 (1 + |x|2)e−κ2(t−tk)η

2∧ 3α
2

k , t > tk.

(c) To verify (2.36), we apply the integration by parts formula for Malliavin’s derivative. It
suffices to prove for large k, say k ≥ 2. Let

m := inf
{
i ∈ Z+ : tk − ti ≤ 3η1

}
.

We have 0 ≤ m ≤ k − 2 and

(2.37) η1 ≤ tk−1 − tm ≤ 3η1.

Let {el}1≤l≤d be the canonical orthonormal basis in Rd. For each 1 ≤ l ≤ d, let hl(0) = 0,

h′l(t) :=
k−1∑
i=m

1[ti,ti+1)(t)σ
−1
( el
tk − tm

− ti − tm
tk − tm

∇elb(Y
x
ti

)
)
, t ∈ [0, tk].

Since hl(t) is adapted with respect to the filtration generated by the Brownian motion, it is clear
that (see [18, Proposition 1.3.11])

δ(hl) :=

∫ tk

0

〈h′l(t), dW2〉 =

∫ tk

tm

〈h′l(t), dW2〉,

where δ is the divergence operator in Malliavin calculus. By (2.37), there exist constants c1, c2 > 0
depending only on K1, η such that

(2.38) |h′l(t)| ≤ c11[tm,tk](t), E[δ(hl)
4] ≤ c1E

(∫ tk

tm

|h′l(t)|2dt
)2

≤ c2.

Let Dhl be the Malliavin derivative along hl. We claim that

(2.39) DhlY
x
ti

=
ti − tm
tk − tm

el, m ≤ i ≤ k.
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The formula is trivial for i = m. If it holds for some m ≤ i ≤ k − 1, by the definition of Y x
t , we

have

DhlY
x
ti+1

= DhlY
x
ti

+ ηi+1Dhlb(Y
x
ti

) + σ (hl(ti+1)− hl(ti))

=
ti − tm
tk − tm

el +∇elb(Y
x
ti

)
(ti+1 − ti)(ti − tm)

tk − tm
+ σ(hl(ti+1)− hl(ti))

=
ti+1 − tm
tk − tm

el,

so that by induction we derive (2.39), which together with (A1) and (2.37) yields

(2.40) |Dhl(Y
x
t − Y x

tk−1
)| ≤

∣∣∇DhlY
x
tk−1

b(Y x
tk=1

)(t− tk−1)
∣∣+ |σ(hl(t)− hl(tk−1))| ≤ c3ηk

for some constant c3 > 0 and all t ∈ [tk−1, tk]. In particular,

(2.41) |Dhl∆̃k| =
∣∣DhlY

x
tk
−DhlY

x
tk−1

∣∣ ≤ c3ηk.

Moreover, ∆k,t in (2.31) satisfies

Dhl∆k,t = DhlXtk−1,t(Y
x
tk−1

)−DhlY
x
t ,

so that
d
dt
Dhl∆k,t =

(
∇DhlXtk−1,t

(Y xtk−1
)b
)(
Xtk−1,t(Y

x
tk−1

)
)
−
(
∇DhlY

x
tk−1

b
)

(Y x
tk−1

)

=
(
∇Dhl∆k,t

b
)(
Xtk−1,t(Y

x
tk−1

)
)

+
(
∇Dhl (Y

x
t −Y xtk−1

)b
)(
Xtk−1,t(Y

x
tk−1

)
)

+
(
∇DhlY

x
tk−1

b
)(
Xtk−1,t(Y

x
tk−1

)
)
−
(
∇DhlY

x
tk−1

b
)

(Y x
tk−1

)

:=
(
∇Dhl∆k,t

b
)(
Xtk−1,t(Y

x
tk−1

)
)

+Rk(t).

Note that Dhl∆k,tk−1
= 0. So solving this ODE yields,

Dhl∆k,t =

∫ t

tk−1

exp

(∫ t

s

∇b
(
Xtk−1,r(Y

x
tk−1

)
)

dr
)
Rk(s)ds, ∀t ∈ [tk−1, tk].

Combining this with (2.34), (2.39), (2.40) and (A1), we can find constants c4, c5 > 0 such that

E|Dhl∆k|2 = E|Dhl∆k,tk |2

≤ ηk

∫ tk

tk−1

exp (2K1ηk)E |Rk(s)|2 ds

≤ ηk

∫ tk

tk−1

K2
1 exp (2K1ηk)E

(∣∣∣Dhl(Y
x
s − Y x

tk−1
)
∣∣∣2 + |∆k,s|2(α−1)

)
ds

≤ c4η
2
k

(
η2
k + sup

t∈[tk−1,tk]

E|∆k,t|2(α−1)
)

≤ c5d
α−1(1 + |x|2)α−1η

2+min{2,3(α−1)}
k .

(2.42)

Let
Ξr := (1− r)Y x

tk−1
+ rY x

tk
, r ∈ [0, 1].
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By (2.37) and (2.39), it is clear that

DhlΞr =
((1− r)(tk−1 − tm)

tk − tm
+ r
)
el,

and
(1− r)(tk−1 − tm)

tk − tm
+ r ≥ tk−1 − tm

tk − tm
≥ 1

3
.

So, for any function f with ‖∇f‖∞ ≤ 1, by (2.18) and the integration by parts formula for
Malliavin derivative (see, for instance, [18, Section 1.3] for more details), we then have∣∣E[∇∆̃k

∇∆k
Ptk,tf(Ξr)]

∣∣ =

∣∣∣∣∣
d∑

j,l=1

E
[
(∆k)l (∆̃k)j∇el∇ejPtk,tf (Ξr)

]∣∣∣∣∣
≤ 3

∣∣∣∣∣
d∑

j,l=1

E
[
(∆k)l (∆̃k)j∇DhlΞr

∇ejPtk,tf (Ξr)
]∣∣∣∣∣

= 3

∣∣∣∣∣
d∑

j,l=1

E
[
(∆k)l (∆̃k)jDhl

{
∇ejPtk,tf (Ξr)

}]∣∣∣∣∣
= 3

∣∣∣∣∣
d∑

j,l=1

E
[
δ
(

(∆k)l (∆̃k)jhl

)
∇ejPtk,tf (Ξr)

]∣∣∣∣∣
= 3

∣∣∣∣∣
d∑

j,l=1

E
[(
−Dhl{(∆k)l}(∆̃k)j − (∆k)lDhl{(∆̃k)j}+ (∆k)l (∆̃k)jδ(hl)

)
∇ejPtk,tf (Ξr)

]∣∣∣∣∣
= 3

∣∣∣∣∣E
[
∇∆̃k

Ptk,tf (Ξr)

(
d∑
l=1

Dhl{(∆k)l}

)]∣∣∣∣∣+ 3

∣∣∣∣∣E
[

d∑
l=1

(∆k)l

(
∇Dhl{∆̃k}Ptk,tf (Ξr)

)]∣∣∣∣∣
+ 3

∣∣∣∣∣E
[
∇∆̃k

Ptk,tf (Ξr)

(
d∑
l=1

(∆k)l δ(hl)

)]∣∣∣∣∣
:= T1 + T2 + T3,

where (∆k)j denotes the j-th component of ∆k ∈ Rd. It follows from Cauchy-Schwarz inequality,
(2.18), (2.33), (2.38), (2.41) and (2.42) that

T1 ≤ 3κ1e−κ2(t−tk)
(
E|∆̃k|2

) 1
2

E

(
d∑
l=1

Dhl{(∆k)l}

)2
 1

2

≤ c6e−κ2(t−tk)d
α+1
2

(
1 + |x|2

)α
2 η

5
2
∧ 3α

2
k ,

T2 ≤ 3κ1e−κ2(t−tk)
(
E|∆k|2

) 1
2

(
E

d∑
l=1

(
Dhl{∆̃k}

)2
) 1

2

≤ c6e−κ2(t−tk)d(1 + |x|2)
1
2η

5
2
k ,
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and

T3 ≤ 3κ1e−κ2(t−tk)
(
E|∆̃k|2

) 1
2 (E|∆k|4

) 1
4

(
d

d∑
l=1

E
[
δ(hl)

4
]) 1

4

≤ c6e−κ2(t−tk)d
3
2 (1 + |x|2)η2

k,

for some constant c6 > 0. Combining these estimates, we derive (2.36). �

Proof of Theorem 2.1. For p ∈ (0, 1), according to [13, Lemma 2.1] forψ(r) = rp and W0(µ1, µ2) =
1
2
‖µ1 − µ2‖TV, it holds for any two probability measures µ and ν that

Wp(µ, ν) ≤ inf
t>0

{
2
√
dt

p
2W0(µ, ν) + dt

p−1
2 W1(µ, ν)

}
≤ 22−pd

1+p
2 W0(µ, ν)1−pW1(µ, ν)p.

So, we only need to prove statements (1) and (2).
It is well known that Pt is ergodic and admits a unique invariant measure µ under (A1) (see for

instance [12]). By (2.18) and (2.19), we have

W1(L (Xx
t ), µ) = sup

‖∇f‖∞<1

∣∣∣∣Ptf(x)−
∫
Rd
Ptf(y)µ(dy)

∣∣∣∣
≤ sup
‖∇f‖∞<1

∣∣∣∣∫
Rd

(Ptf(x)− Ptf(y))µ(dy)

∣∣∣∣
≤ sup
‖∇f‖∞<1

‖∇Ptf‖∞
∫
Rd
|x− y|µ(dy)

≤ κ1e−κ2tµ(|x− ·|) ≤ c1(d
1
2 + |x|)e−κ2t,(2.43)

where the last inequality is a consequence of the ergodicity and Lemma 2.2 and similarly,

W0(L (Xx
t ), µ) = sup

‖f‖∞<1

∣∣∣∣Ptf(x)−
∫
Rd
Ptf(y)µ(dy)

∣∣∣∣
≤ min

{
1, κ1e−κ2tt−

1
2µ(|x− ·|)

}
≤ c1(d

1
2 + |x|)e−κ2t, t > 0,

for some constant c1 = c1(K1, K2) ∈ (0,∞). So we only need to prove the desired upper bound for
Wi(L (Xx

tn),L (Y x
tn)), i = 1, 0. For any z ∈ Rd, let µzn := L (Xtn−1,tn(z)), νzn := L (Xtn−1,tn(z)).

(a) Estimate on W1. When α ∈ (0, 1], (2.1) follows from (2.17) and Lemma 2.5(1). When α ∈
(1, 2], by (2.17) and Lemma 2.5(2) for t = tn, we find a constant κ = κ(K1, K2, η, α) ∈ (0,∞)
such that for any 1 ≤ k ≤ n− 1,

W1(L (Xx
tn ,L (Y x

tn)) ≤ κd
3
2 (1 + |x|2)

n−1∑
k=1

e−κ2(tn−tk)η
1+α

2
k

+ sup
‖∇f‖∞≤1

|Q0,tn−1(Ptn−1,tn −Qtn−1,tn)f(x)|.
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Notice that
n−1∑
k=1

e−κ2(tn−tk)η
1+α

2
k ≥ η

α
2
n

n−1∑
k=1

e−κ2(tn−tk)ηk ≥ η
α
2
n

∫ tn−1

0

e−κ2(tn−t)dt ≥ 1

κ2

η
α
2
n .(2.44)

At the same time, (2.34) implies that, for any f satisfying ‖∇f‖∞ ≤ 1,∣∣Q0,tn−1

(
Ptn−1,tn −Qtn−1,tn

)
f(x)

∣∣ =
∣∣E [f (Xtn−1,tn(Y x

tn−1
)
)
− f(Y x

tn)
]∣∣

≤ E |∆n| ≤ C1d
1
2 (1 + |x|2)

1
2η

3
2
n ,

where ∆n is defined as in (2.29). Thus, according to (2.44), the last term can be absorbed by the
sum term and (2.4) holds for a possibly larger constant κ ∈ (0,∞).

(b) Estimate on W0. By (2.19) and Lemma 2.5 for t = tn, we can find a constant k0 =
k0(K1, K2, η, α) ∈ (0,∞) such that for any 1 ≤ k ≤ n− 1,

sup
‖f‖∞≤1

|Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,tnf(x)|

= sup
‖f‖∞≤1

|Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,

tk+tn
2
{P tk+tn

2
,tn
f}(x)|

≤

(
sup
‖f‖∞≤1

‖∇P tk+tn
2

,tn
f‖∞

)
sup

‖∇g‖∞≤1

|Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,

(tk+tn)

2

g(x)|

≤ 2κ1e−κ2(tn−tk)/2(tn − tk)−
1
2 sup
‖∇g‖∞≤1

|Q0,tk−1
(Ptk−1,tk −Qtk−1,tk)Ptk,

(tk+tn)

2

g(x)|

≤ 1(0,1](α)
k0d

1
2 (1 + |x|)√
tn − tk

e−κ2(tn−tk)η
1+α

2
k + 1(1,2](α)

k0d
3
2 (1 + |x|2)√
tn − tk

e−κ2(tn−tk)η
1+α

2
k .

Combining this with (2.17), we derive (2.2) and (2.5) provided there exists a positive constant
k1 = k1(K1, K2, η, α) such that

(2.45) sup
‖f‖∞≤1

|Q0,tn−1(Ptn−1,tn −Qtn−1,tn)f(x)| ≤ k1(1 + |x|)d
1
2η

1+(α∧1)
2

n , n ≥ 2.

To this end, for any z ∈ Rd, let

µzn = L (Xtn−1,tn(z)), νzn = L (Ytn−1,tn(z)).

By Lemma 2.2, (2.45) follows if we can find constants k2 = k2(K1, K2, η, α) ∈ (0,∞) such that

(2.46) W0(µzn, ν
z
n) ≤ k2(d

1
2 + |z|)η

1+(α∧1)
2

n , n ≥ 2, z ∈ Rd.

Let us now show (2.45). Write

dXtn−1,t(z) = b(z)dt+ σdB̃t, Xtn−1,tn−1(z) = z, t ∈ [tn−1, tn],

where

B̃t = Bt −
∫ t

tn−1

{
b(z)− b(Xtn−1,s(z))

}
ds, t ∈ [tn−1, tn].
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Let R := exp
(∫ tn

tn−1
〈b(z)− b

(
Xtn−1,s(z)

)
, dBs〉 − 1

2

∫ tn
tn−1

∣∣b(z)− b
(
Xtn−1,s(z)

) ∣∣2ds
)
. In order

to apply the Girsanov’s theorem, we first show that E[R] = 1. By the continuity assumption of b
in (A1) and Young’s inequality, there exist a positive constant k3 = k3(K1, α) such that∣∣b(Xtn−1,s(z))− b(z)

∣∣2 ≤ 4K2
1

∣∣Xtn−1,s(z)− z
∣∣2∧2α ≤ k3

(∣∣Xtn−1,s(z)− z
∣∣2 + 1

)
.(2.47)

So, according to [23, Ch.8,Exercise 1.40](another Novikov’s type criterion), it suffices to show
that,

E
[
exp

(
a
∣∣Xtn−1,t(z)− z

∣∣2)] ≤ c,(2.48)

for any t ∈ [tn−1, tn] and two constants a and c. It follows from Itô’s formula, (A1) and Young’s
inequality that, for any t ∈ [tn−1, tn],∣∣Xtn−1,t(z)− z

∣∣2 = 2

∫ t

tn−1

〈Xtn−1,s(z)− z, b(Xtn−1,s(z))〉ds+ 2

∫ t

tn−1

〈Xtn−1,s(z)− z, σdBs〉

+ ‖σ‖2
HS(t− tn−1)

≤ −2K2

∫ t

tn−1

∣∣Xtn−1,s(z)− z
∣∣2 ds+ 2

∫ t

tn−1

〈Xtn−1,s(z)− z, σdBs〉

+ 2

∫ t

tn−1

∣∣Xtn−1,s(z)− z
∣∣ |b(z)| ds+K1dηn

≤ −2K̃2

∫ t

tn−1

∣∣Xtn−1,s(z)− z
∣∣2 ds+ 2

∫ t

tn−1

〈Xtn−1,s(z)− z, σdBs〉+ k4dηn

for some positive constant k4 = k4(K1, K2, b(z)) and K̃2 ∈ (0, K2). As a consequence, for any
γ > 0, we have

E
[
exp

(
γ
∣∣Xtn−1,t(z)− z

∣∣2 + 2K̃2γ

∫ t

tn−1

∣∣Xtn−1,s(z)− z
∣∣2 ds

)]
≤ ek4dηnE

[
exp

(
2γ

∫ t

tn−1

〈Xtn−1,s(z)− z, σdBs〉
)]

.

Further more, Hölder’s inequality , (A1) and the local exponential martingale property implies
that, for any fixed γ ∈ (0, K̃2

4K2
1
) and t ∈ [tn−1, tn],

E
[
exp

(
2γ

∫ t

tn−1

〈Xtn−1,s(z)− z, σdBs〉
)]

≤
(
E
[
exp

(
4γ

∫ t

tn−1

〈Xtn−1,s(z)− z, σdBs〉 − 8γ2

∫ t

tn−1

∣∣σ (Xtn−1,s(z)− z
)∣∣2 ds

)]) 1
2

×
(
E
[
exp

(
8γ2

∫ t

tn−1

∣∣σ (Xtn−1,s(z)− z
)∣∣2 ds

)]) 1
2

≤
(
E
[
exp

(
8γ2

∫ t

tn−1

∣∣σ (Xtn−1,s(z)− z
)∣∣2 ds

)]) 1
2
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≤
(
E
[
exp

(
8K2

1γ
2

∫ t

tn−1

∣∣Xtn−1,s(z)− z
∣∣2 ds

)]) 1
2

≤
(
E
[
exp

(
γ
∣∣Xtn−1,t(z)− z

∣∣2 + 2K̃2γ

∫ t

tn−1

∣∣Xtn−1,s(z)− z
∣∣2 ds

)]) 1
2

.

Hence, (2.48) follows with a = γ, c = e2k4dηn and R is a martingale.
Now, by Girsanov’s theorem, (B̃t)t∈[tn−1,tn] is a Brownian motion under the probability measure

RdP. Clearly, E[R− 1] = 0. Notice that, by Cauchy-Schwarz inequality,

(E|R− 1|)2 =

E

 |R− 1|√
1 + R−1

3

√
1 +

R− 1

3

2

≤ E

[
(R− 1)2

1 + R−1
3

]
E
[
1 +

R− 1

3

]
.

Combining this with the fact that

(1 + x) log(1 + x)− x ≥ 1

2

(
x2

1 + x
3

)
, ∀x > −1,

yields

1

2
(E|R− 1|)2 =

1

2

(E|R− 1|)2

E
[
1 + R−1

3

] ≤ 1

2
E

[
(R− 1)2

1 + R−1
3

]
≤ E[R logR],

which is also known as a Pinsker type inequality. Hence, combining this with the definition of W0,
Girsanov’s theorem and Lemma 2.3, we find k5 = k5(K1, K2, η, α) ∈ (0,∞) such that

W0(µzn, ν
z
n)2 =

1

4
sup
‖f‖∞≤1

|µzn(f)− νzn(f)|2

=
1

4
sup
‖f‖∞≤1

∣∣E[f(Xtn−1,tn(z))−Rf(Xtn−1,tn(z))]
∣∣2 ≤ 1

4
[E|R− 1|]2 ≤ 1

2
E[R logR]

=
1

4

∫ tn

tn−1

E[R|b(z)− b
(
Xtn−1,s(z)

)
|2]ds =

1

4

∫ tn

tn−1

E[|b(z)− b
(
Ytn−1,s(z)

)
|2]ds

≤ K2
1

∫ tn

tn−1

E
[
|Ytn−1,s(z)− z|2 + |Ytn−1,s(z)− z|2(1∧α)

]
ds ≤ c2(d+ |z|2)η1+(1∧α)

n .

So, (2.46) holds.
(c) For the particular case, let ηk = θ

k
for some θ > α

2c2
. Since θ (log(n)− log(k + 1)) ≤

tn − tk ≤ θ (log(n− 1)− log(k)), we can find a positive constant k6 = k6(θ, α, c2) (may vary
from line to line) such that

n−1∑
k=[n−1

2
]+1

e−c2(tn−tk)(tn − tk)−
1
2η

1+α
2

k ≤ k4

n−1∑
k=[n−1

2
]+1

(
k

n

)θc2 1√
log n− log k

k−1−α
2

≤ k4n
−α

2

n−1∑
k=1

1√
log n− log(k)

k−1
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≤ k4n
−α

2

∫ n−1

n−1
2

1

t
√

log n− log(t)
dt

≤ k4n
−α

2 ,

and
[n−1

2
]∑

k=1

e−c2(tn−tk)(tn − tk)−
1
2η

1+α
2

k ≤ k4n
−θc2

[n−1
2

]∑
k=1

k−1+θc2−α2 ≤ k4n
−α

2 .

So (2.6) follows by combining above estimates with (2.43). (2.3) can be proved through the same
argument and the proof is complete. �

3. Wp-ESTIMATE FOR p > 1: THE UNIFORM DISSIPATION CASE

To cover typical time dependent models, see Example 3.1 below, we consider the following time
in-homogenous SDE:

dXt = bt(Xt)dt+ σt(Xt)dBt, t ≥ 0,(3.1)

where b : Rd× [0,∞) 7→ Rd, σ : Rd× [0,∞)→ Rd×d are measurable. The associated continuous
time Euler Scheme is defined by

Yt = Ytk + (t− tk)btk(Ytk) + σtk(Ytk) (Bt −Btk) , t ∈ [tk, tk+1), k ≥ 0, Y0 = X0.(3.2)

3.1. Main result and an example of bridge regression.
(A2) Let α ∈ (0, 1] and p ∈ (1,∞). There exist positive constants K1, K2 such that for any

x, y ∈ Rd, s, t ∈ [0,∞)

(3.3) |bt(x)− bs(y)| ≤ K1 (|x− y|α + |x− y|+ |t− s|) ,

(3.4) ‖σt(x)− σs(y)‖HS ≤ K1 (|x− y|+ |t− s|) , ‖σt(x)‖op ≤ K1,

p〈bt(x)− bt(y), x− y〉+
p

2
‖σt(x)− σt(y)‖2

HS(3.5)

+
p(p− 2)

2|x− y|2
∣∣(σt(x)− σt(y))∗(x− y)

∣∣2 ≤ −K2|x− y|2.

We call (3.5) the uniform dissipation condition.

Theorem 3.1. Assume (A0) and (A2). Then (3.1) is well-posed . Moreover, for any K ′2 ∈ (0, K2),
there exists a positive constant c = c(K1, K2, η,K

′
2, p, α) such that

Wp(L (Xx
tn),L (Y x

tn))p ≤ cd
p
2 (1 + |x|p)

n∑
k=1

η
1+αp

2
k e−K

′
2(tn−tk), n ≥ 1,∀x ∈ Rd.(3.6)

Consequently, when ηk = θ
k

for some constant θ ∈ (0,∞), there exists a positive constant c′ =
c′(K1, K2, θ,K

′
2, p, α) such that

Wp(L (Xx
tn),L (Y x

tn))p ≤ c′d
p
2 (1 + |x|p)n−

(
(θK′2)∧αp

2

)
, n ≥ 1,∀x ∈ Rd.(3.7)
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In particular, if (σt, bt) = (σ, b) does not depend on t, then the solution of (3.1) is exponentially
ergodic with unique invariant probability measure µ, and

Wp(L (Xx
tn),L (Y x

tn))p + Wp(µ,L (Y x
tn))p

≤ cd
p
2 (1 + |x|p)

n∑
k=1

η
1+αp

2
k e−K

′
2(tn−tk), n ≥ 1,∀x ∈ Rd.

As an application of Theorem 3.1, we consider the following optimization problem that arises
in the Bridge regression with the shrinkage parameter γ ∈ (1, 2] and the tuning parameter λ ≥ 0
(see, i.e., [9] for more details):

β̃ = argminβ∈Rd {L(β)} , L(β) :=
N∑
i=1

(
yi − xTi β

)2
+ λ

d∑
j=1

|βj|γ(3.8)

where (xi, yi){1≤i≤N} are Rd × R-valued data points. In particular, when γ = 1, 2, β̃ corresponds
to the estimators of the well-known Lasso and Ridge regression, respectively. In practical ap-
plications, such optimization problems are usually solved by gradient descent algorithm and its
variants. One common variant is the gradient descent algorithm with slowly decreasing Gaussian
noise given by the following iterative formula

βk+1 = βk − ηk+1∇L(βk) +
√
ηk+1σk+1ζk+1, k ≥ 0,(3.9)

where σk ↓ 0 as k ↑ ∞, and {ηk}k≥1 are i.i.d. d-dimensional standard Gaussian random variables.
Similarly, we may consider it as an approximation of the following SDE:

dβ̄t = −∇L(β̄t)dt+ σ̄tdBt, β̄0 = β0.(3.10)

It has been shown in [11] that, under appropriate assumptions on the drift coefficient, if we set
σk = 1√

log log k
for large k and ηk = θ

k
(correspondingly, σ̄t ∼ 1√

log t
for large t), then this algorithm

will converge in probability to β̃.
It is easy to verify that L is strongly convex, i.e.,

〈∇L(β1)−∇L(β2), β1 − β2〉 ≥ K|β1 − β2|2, ∀β1, β2 ∈ Rd(3.11)

holds for some constant K = K(x, γ, λ) > 0. Below we use Theorem 3.1 to analyze the conver-
gence rate of this algorithm.

Example 3.1. Let β̃, βk and β̄t be defined as in (3.8), (3.9) and (3.10) respectively. For any

p ≥ 1 and K ′ ∈ (0, K), let σk = {k−
K′θ
p (θ log k)−

2
p ∧ 1} and ηk = θ

k
for some θ > (γ−1)p

2K′
with

γ > 1. Then there exists c > 0 such that for large n,

E|βn − β̃|p ≤ cd
p
2

[
|β0 − β̃|p + (1 + |β0|p)

]
n−

(γ−1)p
2 .

Proof. By Jensen’s inequality, it suffice to consider p ≥ 2. To apply Theorem 3.1, let σ̄t =

{e−
K′
p
tt−

2
p ∧ 1}. Consider the gradient flow β̃t defined by

dβ̃t = −∇L(β̃)dt, β̃0 = β0.(3.12)

By Itô’s formula, (3.11) and Young’s inequality, for any K ′ ∈ (0, K), we can find a positive
constant c such that

d|β̄t − β̃t|p − dMt
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=

[
p|β̄t − β̃t|p−2〈β̄t − β̃t,−∇L(β̄t) +∇L(β̃t)〉+

1

2
p(p− 2 + d)σ̄2

t |β̄t − β̃t|p−2

]
dt

≤
[
−K ′|β̄t − β̃t|p + cd

p
2 σ̄pt

]
dt,

which yields that

E|β̄t − β̃t|p ≤ e−K
′t

[
|β̄0 − β̃|p + cd

p
2

∫ t

0

eK
′
2sσpsds

]
≤ e−K

′t

[
|β̄0 − β̃|p + cd

p
2

(∫ 1

0

eK
′
2sds+

∫ t

1

1

s2
ds

)]
≤ e−K

′t
[
|β̄0 − β̃|p + c′d

p
2

]
.

As tn ∼ θ log(n) for large n and K ′θ > (γ−1)p
2

, it follows that

Wp(L (β̄tn), δβ̃)p = E|β̄tn − β̃|p ≤
[
|β̄0 − β̃|p + c′d

p
2

]
n−K

′
2θ ≤

[
|β̄0 − β̃|p + c′d

p
2

]
n−

(γ−1)p
2 .

On the other hand, It can be verified that L and σ̄t satisfy (A2) with α = γ − 1. Hence, Theorem
3.1 implies that, for any K ′ ∈ (0, K), n ≥ 1,

Wp(L (β̄tn),L (βn))p ≤ cd
p
2 (1 + |β0|p)n−

(γ−1)p
2 .

Using triangle inequality to combining above two upper bounds gives us the desired result. �

3.2. Proof of Theorem 3.1.
Similar to the previous section, we first present the following two lemmas regarding the moment
estimates which can be proved through the same way as Lemma 2.2 and 2.3.

Lemma 3.2. Assume that (A0) holds, (3.1) is well-posed and there exist positive constants κ1, κ2

such that

(3.13) 〈x, bt(x)〉 ≤ κ1 − κ2|x|2, |bt(x)| ≤ κ2(1 + |x|), ‖σt(x)‖op ≤ κ2, ∀x ∈ Rd.

Then for any p ∈ (0,∞), there exists a constant κ = κ(κ1, κ2, p) ∈ (0,∞) such that

(3.14) sup
t≥0

E|Xx
t |p ≤ κ(d

p
2 + |x|p), ∀x ∈ Rd.

If moreover

(3.15) |bt(x)− bs(y)| ≤ K(|x− y|+ |x− y|α + |t− s|), ∀x, y ∈ Rd

holds for some constant K ∈ (0,∞), then there exists κ′ = κ′(κ1, κ2, K, η, α, p) ∈ (0,∞) such
that

(3.16) sup
t≥0

E|Y x
t |p ≤ κ′(d

p
2 + |x|p), ∀x ∈ Rd.

Lemma 3.3. Assume that the conditions in Lemma 3.2 hold. Then, for any p > 0 there exists a
constant κ = κ(κ1, κ2, p) ∈ (0,∞) such that

E|Xx
t − x|p ≤ κ(d

p
2 + |x|p)(1 ∧ t)

p
2
∧1, x ∈ Rd, t ≥ 0.
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If moreover (3.15) holds, then there exists κ′ = κ′(κ1, κ2, η,K, p, α) ∈ (0,∞) such that

E|Y x
t − Y x

tk−1
|p ≤ κ′d

p
2 (1 + |x|p)η

p
2
k , x ∈ Rd, k ≥ 1, t ∈ [tk−1, tk].

Proof of Theorem 3.1. All constants below depend only on K1, K2, K
′
2, η, α and p.

(a) In the uniform dissipation case, the well-posedness is well known, see for instance [2]. Let
k ≥ 0. By [24, Theorem 4.1], we can choose Ftk-measurable random variables X̄tk and Ȳtk such
that

(3.17) L (Xx
tk

) = L (X̄tk), L (Y x
tk

) = L (Ȳtk), Wp(L (Xx
tk

),L (Y x
tk

))p = E|X̄tk − Ȳtk |p.
We consider the SDEs for t ∈ [tk, tk+1],

dX̄t = bt(X̄t)dt+ σt(X̄t)dBt,

dȲt = btk(Ȳtk)dt+ σtk(Ȳtk)dBt.

By the weak uniqueness and the definition of Wp, we obtain

(3.18) Wp

(
L (Xx

tk+1
),L (Y x

tk+1
)
)p ≤ E|X̄tk+1

− Ȳtk+1
|p.

Let Zt = X̄t − Ȳt. By (A2) and Itô’s formula, we find a martingale (Mt)t∈[tk,tk+1] such that

d|Zt|p − dMt

= |Zt|p−2
[
p〈Zt, bt(X̄t)− btk(Ȳtk)〉+

p

2
‖σt(X̄t)− σtk(Ȳtk)‖2

HS

+
1

2
p(p− 2)

|{σt(X̄t)− σtk(Ȳtk)}∗Zt|2

|Zt|2
]
dt

≤ |Zt|p−2
[
p〈Zt, bt(X̄t)− bt(Ȳt)〉+

p

2
‖σt(X̄t)− σt(Ȳt))‖2

HS

+
1

2
p(p− 2)

|{σt(X̄t)− σt(Ȳt)}∗Zt|2

|Zt|2

+ p|Zt||bt(Ȳt)− btk(Ȳtk)|+
1

2
p(p− 1)

{
‖σt(Ȳt)− σtk(Ȳtk)‖2

HS

}]
dt,

≤ −K2|Zt|pdt+ pK1|Zt|p−1
(
|Ȳt − Ȳtk |α + |Ȳt − Ȳtk |+ |t− tk|

)
dt

+ p(p− 1)K2
1 |Zt|p−2

[
|Ȳt − Ȳtk |2 + (t− tk)2

]
dt, t ∈ [tk, tk+1].

By Young’s inequality, for any fixed K ′2 ∈ (0, K2), we find a constant c1 > 0 such that

d|Zt|p − dMt ≤ −K ′2|Zt|pdt+ c1

(
|Ȳt − Ȳtk |pα + |Ȳt − Ȳtk |p + ηpk+1

)
dt, t ∈ [tk, tk+1],

which further implies that, for t ∈ [tk, tk+1]

(3.19) E|Zt|p ≤ e−K
′
2(t−tk)E|Ztk |p + c1E

∫ t

tk

(
|Ȳs − Ȳtk |αp + |Ȳs − Ȳtk |p + ηpk+1

)
ds.

By Lemma 3.3, Lemma 3.2 and L (Ȳtk) = L (Y x
tk

), we can find a constant c2 > 0 such that

(3.20) E|Ȳs − Ȳtk |p = E
[
|Y z
s−tk − z|

p
∣∣z = Y x

tk

]
≤ c2(dηk+1)

p
2 (1 + |x|p), s ∈ [tk, tk+1],
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so that by Jensen’s inequality and (3.19), we find a constant c3 > 0 such that

E|Zt|p ≤ e−K
′
2(t−tk)E|Ztk |p + c3d

p
2 η

1+ pα
2

k+1 (1 + |x|p), t ∈ [tk, tk+1].

Combining this with (3.17) and (3.18), we derive

Wp

(
L (Xx

tk+1
),L (Y x

tk+1
)
)p ≤ e−K

′
2ηk+1Wp

(
LXx

tk
,LY xtk

)p
+c3d

p
2 η

1+ pα
2

k+1 (1+ |x|p), k ≥ 0, x ∈ Rd.

Iterating in k we prove the desired upper bound estimate in (3.6).
(b) Let ηk = θ

k
(k ≥ 1) for some constant θ ∈ (0,∞). Then there exists a constant c4 ∈ (0,∞)

such that
θ log

n

k
− c4θ ≤ tn − tk ≤ θ log

n

k
+ θc4, 1 ≤ k ≤ n.

By this and (3.6), when θ 6= αp
2K′2

, we can find constants c5, c6 ∈ (0,∞) such that

Wp

(
L (Xx

tn),L (Y x
tn)
)p ≤ c4(1 + |x|p)n−θK′2

n∑
k=1

k−1−αp
2

+θK′2

≤ c5(1 + |x|p)n−
(

(θK′2)∧αp
2

)
, n ≥ 1, x ∈ Rd.

This implies (3.7) when θ 6= αp
2K′2

. If θ = αp
2K′2

, we may apply the above estimate forK ′′2 ∈ (K ′2, K2)

replacing K ′2, so that (3.7) holds as well.
(c) Let (σt, bt) = (σ, b) does not depend on t. The exponential ergodicity can be proved in a

standard way [12]. By (A2), synchronuous coupling and Itô’s formula, for any x, y ∈ Rd we can
find a martingale Mt such that

d|Xx
t −X

y
t |p ≤ −K2|Xx

t −X
y
t |pdt+ dMt, t ≥ 0.

So, E|Xx
t −X

y
t |p ≤ |x−y|pe−K2t, t ≥ 0. By the Markov property, this implies, for any µ1, µ2 ∈P ,

Wp(P
∗
t µ1, P

∗
t µ2)p ≤ inf

π∈C (µ1,µ2)

∫
Rd×Rd

E [|Xx
t −X

y
t |
p] π(dx, dy)

≤ inf
π∈C (µ1,µ2)

∫
Rd×Rd

|x− y|p e−K2tπ(dx, dy) = Wp(µ1, µ2)pe−K2t,

(3.21)

where the first inequality is by P ∗t ν = L (Xt) for Xt solving (1.1) with initial distribution ν ∈ P.
Moreover, let L be the generator associated with (1.1) given by

Lf = 〈b,∇f〉+
1

2
〈σσT ,∇2f〉HS, ∀f ∈ C2

(
Rd;R

)
.(3.22)

Then (A2) implies that

L| · |p∨2 ≤ c1d
p∨2
2 − c2| · |p

for some constants c1, c2 > 0. By a standard tightness argument, this implies that P ∗t has an

invariant probability measure µ with µ(| · |p) ≤ c1d
p∨2
2

c2
< ∞. Combining this with (3.21) we

conclude that µ is the unique invariant probability measure of P ∗t , and there exists a constant
c′0 ∈ (0,∞) such that

(3.23) Wp(L (Xx
t ), µ)p = Wp(P

∗
t δx, µ)p ≤ µ(|x−·|p)e−K2t ≤ c′0(1+|x|p)e−K2t, x ∈ Rd, t ≥ 1.
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Combining this together with (3.6) and the triangle inequality, implies the desired upper bound for
Wp(L (Y x

tn), µ)p. �
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