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Abstract

By developing a new technique called the bi-coupling argument, we estimate the rela-
tive entropy between different diffusion processes in terms of the distances of initial dis-
tributions and drift-diffusion coefficients. As an application, the entropy-cost inequality
is established for McKean-Vlasov SDEs with spatial-distribution dependent noise, which
is open for a long time and has potential applications in optimal transport, information
theory and mean field particle systems.
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1 Introduction

The main purpose of this paper is to establish the entropy-cost inequality for McKean-Vlasov
SDEs with spatial-distribution dependent noise, which has been open for a long time due to the
essential difficulty caused by the distribution dependence of noise. To overcome this difficulty,
we develop a new coupling argument, called bi-coupling, to cancel the short time singularity in
the entropy upper bound for two diffusions presented in [8].

In this part, we first introduce the background of the study from applied areas including
the information theory, optimal transport and mean field particle systems, then explain the
main difficulty of the study, and finally figure out the main idea of the present study and the
structure of the paper.

∗Supported in part by the National Key R&D Program of China (No. 2022YFA1006000, 2020YFA0712900)
and NNSFC (11921001).
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1.1 Background of the study

Let P2 be the space of probability measures on Rd having finite second moments, which is a
Polish space under the quadratic Wasserstein distance

(1.1) W2(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|2π(dx, dy)

) 1
2

, µ, ν ∈P2,

where C (µ, ν) is the set of all couplings of µ and ν. In the theory of optimal transport, W2

refers to the optimal transportation cost induced by the quadratic cost function, and (P2,W2)
is called the Wasserstein space where a nice analysis and geometry structure has been developed,
see for instance Otto’s celebrated paper [20] and Villani’s monograph [28].

In the information theory, the relative entropy functional describes the chaos of a distribu-
tion with respect to a reference measure, which refers to the difference of Shannon entropies
for two distributions, and is known as the Kullback-Leibler divergence or the information di-
vergence [17]. For two probability measures µ and ν, the relative entropy of ν with respect µ
is defined as

Ent(ν|µ) :=

{∫
Rd{log dν

dµ
}dν, if dν

dµ
exists,

∞, otherwise.

Both Wasserstein distance and relative entropy have wide applications in applied areas
including deep learning and Bayesian statistics [9]. When µ is the standard Gaussian measure
on Rd, Talagrand [27] found the beautiful inequality

W2(ν, µ)2 ≤ 2Ent(ν|µ), ν ∈P2,

where the constant 2 is sharp. This inequality was then extended in [21, 6] as

(1.2) W2(ν, µ)2 ≤ C Ent(ν|µ), ν ∈P2

for a constant C > 0 and a probability measure µ satisfying the log-Sobolev inequality

µ(f 2 log f 2) :=

∫
Rd
f 2 log f 2dµ ≤ Cµ(|∇f |2), f ∈ C1

b (Rd), µ(f 2) = 1.

The inequality (1.2) enables one to estimate the cost from above by using the entropy.
However, comparing with the Wasserstein distance W2, the entropy is usually harder to

estimate from above. For instance, W2 between the distributions of two SDEs can be bounded
by the expectation of the distance square of the solutions, which is easily derived using Itô’s
formula. But the entropy between solutions of SDEs is harder to estimate from above, since
the heat kernels (distribution densities) are unknown. So, it is crucial to establish the inverse
Talagrand inequality by bounding the entropy using W2.

In general, W2(µ, ν)2 can not dominate Ent(ν|µ) since the former is finite for any µ, ν ∈P2

but the latter becomes infinite when ν is not absolutely continuous with respect to µ. So, to
derive an inverse Talagrand inequality, we consider the entropy between two stochastic systems
for which the entropy decays in time according to the H-theorem in information theory. In this
spirit, a sharp entropy-cost inequality was found by the second named author [30] for diffusion
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processes on a manifold M . According to [30, Theorem 1.1], for any constant K ∈ R, the
Bakry-Emery curvature of the diffusion process is bounded below by K ∈ R if and only if the
following entropy-cost inequality holds:

(1.3) Ent(P ∗t µ|P ∗t ν) ≤ K

2(e2Kt − 1)
Wρ

2(µ, ν)2, µ, ν ∈P2(M), t > 0,

where P ∗t µ is the distribution of the diffusion process at time t with initial distribution µ, Wρ
2 is

the quadratic Wasserstein distance induced by the Riemannian distance ρ on M (when M = Rd

it reduces to W2 defined in (1.1)), and P2(M) is the set of probability measures on M having
finite second moment. This inequality has applications for both short and long times:

• For small time, (1.3) describes an instant finite property of the entropy, i.e. even though
the initial entropy is infinite, the entropy at any time t > 0 becomes finite, and the short
time behavior of the entropy behaves like t−1;

• For long time, (1.3) provides exponential decay of P ∗t in entropy by using that in W2

which is easier to verify in applications.

The inequality (1.3) is equivalent to the log-Harnack inequality (see [31])

Pt log f(x) ≤ logPtf(y) +
Kρ(x, y)2

2(e2Kt − 1)
, x, y ∈ Rd, t > 0, f ∈ B+(M),

where B+(M) is the space of all uniformly positive measurable functions on M , and Ptf(x) :=∫
Rd f(y)d(P ∗t δx) is the associated diffusion semigroup. As a member in the family of dimension-

free Hananck inequalities (see [29, 30, 32]), the log-Harnack inequality has crucial applications
in optimal transport, curvature on Riemennian manifolds or metric measure spaces, see for
instance [2, 24, 30, 31].

In this paper, we aim to establish the entropy-cost inequality of type (1.3) for the nonlinear
Fokker-Planck equation on P2:

(1.4) ∂tµt = (La,bt,µt)
∗µt, t ∈ [0, T ],

where T > 0 is a fixed time, and for any (t, µ) ∈ [0, T ] ×P2, (La,bt,µ)∗ is the L2(Rd)-adjoint
operator of

(1.5) La,bt,µ :=
d∑

i,j=1

aij(t, ·, µ)∂i∂j +
d∑
i=1

bi(t, ·, µ)∂i.

Recall that a continuous map µ· : [0, T ]→P2 is called a solution to (1.4), if for any f ∈ C∞0 (Rd)
we have

∫ t
0
|µs(Ls,µsf)|ds <∞ and

µt(f) = µ0(f) +

∫ t

0

µs(Ls,µsf)ds, t ∈ [0, T ].
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By the propagation of chaos, see [25], under reasonable conditions we have

µt = lim
N→∞

1

N

N∑
i=1

δXi,N
t

in L2(Ω→P2;P),

where for every N ∈ N, (X i,N
t )1≤i≤N is the associated mean field particle system with N many

particles, and µt is the distribution of the solution Xt to the following McKean-Vlasov SDE:

(1.6) dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dWt, t ∈ [0, T ],

where LXt is the distribution of Xt, Wt is the d-dimensional Brownian motion under a standard
probability base (Ω,F , {Ft}t∈[0,T ],P), σ :=

√
2a, and (a, b) comes from La,bt,µ in (1.5). According

to [5], under a mild integrability condition, (1.4) is well-posed in P2 if and only if (1.6) has
weak well-posedness for distributions in P2, and in this case µt = P ∗t µ := LXµ

t
is the unique

solution to the nonlinear Fokker-Planck equation (1.4) with µ0 = µ, where Xµ
t solves (1.6) with

LX0 = µ.
We intend to find a constant c > 0 such that

(1.7) Ent(P ∗t µ|P ∗t ν) ≤ c

t
W2(µ, ν)2, t ∈ (0, T ], µ, ν ∈P2.

When the noise is distribution-free, i.e. σ(t, x, µ) = σ(t, x) does not depend on µ, (1.7) has
already been derived and applied in the literature, (1.7) has been established in [13, 16, 24,
33, 35] under different conditions, see also [11, 12, 34] for extensions to the infinite-dimensional
and reflecting models. When the noise coefficient is also distribution dependent, the coupling
by change of measures applied in the above references does not apply. Recently, for σ(t, x, µ) =
σ(t, µ) independent of the spatial variable x, (1.7) has been established in [15] by using a noise
decomposition argument, see also [4] for the study on a special model.

However, when the noise is spatial-distribution dependent, this type inequality has been
open for a long time until the new coupling technique (bi-coupling) is developed in the present
paper, for which we construct a new diffusion process which is coupled with the other two
processes respectively, see Section 2 below for details.

We would like to indicated that after an earlier version of this paper is available online
(arXiv:2302.13500), the bi-coupling method has been applied in [22, 10] to different models to
derive new estimates on entropy and probability distances, so that the efficient and originality
of this new method has been illustrated.

1.2 Existing entropy inequality and difficulty of the present study

Noting that P ∗t µ is the distribution of the diffusion process Xµ
t generated by (La,bt,P ∗t µ)t∈[0,T ],

the left hand side in (1.7) is the entropy between the distributions of two diffusion processes
generated by La,bt,P ∗t µ and La,bt,P ∗t ν respectively. So, the study reduces to estimate the entropy
between two different diffusion processes.

In general, let Γ be the space of (a, b), where

b : [0, T ]× Rd → Rd, a : [0, T ]× Rd → Rd ⊗ Rd
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are measurable, and for any (t, x) ∈ [0, T ]× Rd, a(t, x) is positive definite. For any (a, b) ∈ Γ,
consider the time dependent second order differential operators on Rd:

La,bt := tr{a(t, ·)∇2}+ b(t, ·) · ∇, t ∈ [0, T ].

Let (ai, bi) ∈ Γ, i = 1, 2, such that for any s ∈ [0, T ), each (Lai,bit )t∈[s,T ] generates a unique

diffusion process (X i,x
s,t )(t,x)∈[s,T ]×Rd with X i,x

s,s = x, and for any t ∈ (s, T ], the distribution P i,x
s,t

of X i,x
s,t has positive density function pi,xs,t with respect to the Lebesgue measure. When s = 0,

we simply denote
X i,x

0,t = X i,x
t , P i,x

0,t = P i,x
t .

The associated Markov semigroup (P
(i)
s,t )0≤s≤t≤T is given by

P
(i)
s,t f(x) := E[f(X i,x

s,t )], 0 ≤ s ≤ t ≤ T, x ∈ Rd, f ∈ Bb(Rd),

where Bb(Rd) is the space of all bounded measurable functions on Rd. If the initial value is
random with distributions ν ∈ P, where P is the set of all probability measures on Rd, we
denote the diffusion process by X i,ν

t , which has distribution

P i,ν
t =

∫
Rd
P i,x
t ν(dx), i = 1, 2, t ∈ (0, T ].

Let pi,νt be the density function of P i,ν
t with respect to the Lebesgue measure.

We intend to estimate the relative entropy

Ent(P 1,ν1
t |P 2,ν2

t ) :=

∫
Rd

(
log

dP 1,ν1
t

dP 2,ν2
t

)
dP 1,ν1

t = E
[(

log
p1,ν1
t

p2,ν2
t

)
(X1,ν1

t )

]
for t ∈ (0, T ] and ν1, ν2 ∈P2. Before moving on, let us recall a nice entropy inequality derived
by Bogachev, Röckner and Shaposhnikov [8]. For a d×d-matrix valued function a = (akl)1≤k,l≤d,
the divergence is an Rd-valued function defined by

diva :=
( d∑
l=1

∂la
kl
)

1≤k≤d
,

where ∂l := ∂
∂xl

for x = (xl)1≤l≤d ∈ Rd. Let

Φν(s, y) := (a1(s, y)− a2(s, y))∇ log p1,ν
s (y) + div{a1(s, ·)− a2(s, ·)}(y)

+ b2(s, y)− b1(s, y), s ∈ (0, T ], y ∈ Rd, ν ∈P,

where ∇ is the gradient operator for weakly differentiable functions on Rd. In particular,
‖∇f‖∞ is the Lipschitz constant of f .

By [8, Theorem 1.1], the entropy inequality

(1.8) Ent(P 1,ν
t |P

2,ν
t ) ≤ 1

2

∫ t

0

E
[∣∣a2(s,X1,ν

s )−
1
2 Φν(s,X1,ν

s )
∣∣2]ds, t ∈ (0, T ]

holds under the following assumption (H).
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(H) For each i = 1, 2, bi is locally bounded, and there exists a constant K > 1 such that

‖ai(t, x)‖ ∨ ‖ai(t, x)−1‖ ∨ ‖∇ai(t, ·)(x)‖ ≤ K, (t, x) ∈ [0, T ]× Rd.

Moreover, at least one of the following conditions hold:

(1)
∫ T

0
E
[‖a2(t,X1,ν

t )‖
1+|X1,ν

t |2
+
|b2(t,X1,ν

t )|+|Φν(t,X1,ν
t )|

1+|X1,ν
t |

]
dt <∞;

(2) there exist 1 ≤ V ∈ C2(Rd) with V (x)→∞ as |x| → ∞, and a constant K > 0 such
that

La2,b2t V (x) ≤ KV (x),

∫ T

0

E
[ |〈Φν(t,X1,ν

t ),∇V (X1,ν
t )〉|

V (X1,ν
t )

]
dt <∞.

It is well known that (H) implies the existence and uniqueness of the diffusion processes
(X i,ν

t )i=1,2 for any ν ∈ P, and the existence of the density functions (pi,νt )i=1,2, see for in-
stance [7].

As observed in [8, Remark 1.4] that one may have∫ t

0

E
[
|∇ log p1,ν

s |2(X1,ν
s )
]
ds <∞,

provided ν has finite information entropy, i.e. ρ(x) := dν
dx

satisfies
∫
Rd(ρ| log ρ|)(x)dx < ∞. In

this case, (1.8) provides a non-trivial upper bound for Ent(P 1,ν
t |P

2,ν
t ).

However, when X1,x
s is the standard Brownian motion starting from a fixed initial value x,

i.e. ν = δx, we have

E[|∇ log p1,x
s |2(X1,x

s )] =
1

s2
E|X1,x

s − x|2 =
1

s
.

So, for elliptic diffusions the best possible short time estimate on E[|∇ log p1,x
s |2(X1,x

s )] behaves
like s−1, so that ∫ t

0

E[|∇ log p1,x
s |2(X1,x

s )]ds =∞, t > 0.

Consequently, the estimate (1.8) becomes trivial when

(1.9) inf
(s,x)∈[0,T ]×Rd

‖a1(s, x)− a2(s, x)‖ > 0.

So, the key point of the present study is to cancel the small time singularity in (1.8), which
stimulates us to develop a new coupling method, i.e. the bi-coupling method in Section 2 below.

1.3 Main idea and structure of the paper

To kill the singularity in (1.8) for small t > 0, in Section 2 we introduce a new technique by
constructing an interpolation diffusion process which is coupled with each of the given two
diffusion processes respectively, so we call it the bi-coupling argument. In Section 3 we apply
the bi-coupling to estimate the entropy between two diffusion processes, and as an application,
in Section 4 we establish the entropy-cost inequality (1.7) for the McKean-Vlasov SDE (1.6).
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To measure the singularity/regularity of coefficients in (1.6), we introduce the following
class of Dini functions

D :=

{
ϕ : [0,∞)→ [0,∞) is increasing and concave, ϕ(0) = 0,

∫ 1

0

ϕ(s)

s
ds <∞

}
.

For ϕ ∈ D , t > 0 and a function f on [0, t]× Rd, let

‖f‖t,∞ := sup
x∈Rd
|f(t, x)|, ‖f‖r→t,∞ := sup

s∈[r,t]

‖f‖s,∞, r ∈ [0, t],

‖f‖0→T,ϕ := sup
t∈[0,T ],x 6=y∈Rd

(
|f(t, x)|+ |f(t, x)− f(t, y)|

ϕ(|x− y|)

)
.

In the following, c = c(K,T, d, ϕ) stands for a constant depending only on K,T, d and ϕ
given in (A1) and (A2).

2 Bi-coupling method and density estimates

Let σi =
√

2ai, i = 1, 2. Consider SDEs:

(2.1) dX i
t = bi(t,X

i
t)dt+ σi(t,X

i
t)dWt, t ∈ [0, T ], i = 1, 2.

We make the following assumptions (A1) and (A2) where bi may have a Dini continuous term
with respect to some ϕ ∈ D .

(A1) For each i = 1, 2, bi = b
(0)
i + b

(1)
i is locally bounded, and there exists a constant K > 0

such that

‖b(0)
i ‖0→T,∞ ∨ ‖∇b(1)

i ‖0→T,∞ ∨ ‖ai‖0→T,∞ ∨ ‖a−1
i ‖0→T,∞ ∨ ‖∇ai‖0→T,∞ ≤ K.

(A2) There exist i ∈ {1, 2} and ϕ ∈ D such that ‖b(0)
i ‖0→T,ϕ ≤ K.

According to [23, Theorem 2.1], (A1) implies the well-posedness of (2.1). For any s ∈ [0, T )
and x ∈ Rd, let X i,x

s,t be the unique solution of (2.1) for t ∈ [s, T ] with X i,x
s,s = x. Then

(X i,x
s,t )(t,x)∈[0,T ]×Rd is the diffusion process generated by (Lai,bit )t∈[s,T ], i = 1, 2.

For fixed x1, x2 ∈ Rd, let X i,xi
t := X i,xi

0,t solve (2.1) for X i,xi
0 = xi. We have

P i,xi
t := L

X
i,xi
t
, i = 1, 2, t ∈ (0, T ].

To estimate Ent(P 1,x1
t1 |P

2,x2
t1 ) for some t1 ∈ (0, T ], we choose t0 ∈ (0, 1

2
t1] and construct a bridge

diffusion process X
〈t0〉x1
t starting at x1 which is generated by La1,b1t for t ∈ [0, t0] and La2,b2t for

t ∈ (t0, t1]. More precisely, let

b〈t0〉(t, ·) := 1[0,t0](t)b1(t, ·) + 1(t0,t1](t)b2(t, ·),
σ〈t0〉(t, ·) := 1[0,t0](t)σ1(t, ·) + 1(t0,t1](t)σ2(t, ·), t ∈ [0, t1].
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We consider the interpolation SDE

(2.2) dX
〈t0〉x1
t = b〈t0〉(t,X

〈t0〉x1
t )dt+ σ〈t0〉(t,X

〈t0〉x1
t )dWt, Xx1

0 = x1, t ∈ [0, t1].

Let P
〈t0〉x1
t := L

X
〈t0〉x1
t

. We will deduce from (1.8) a finite upper bound for Ent(P 1,x1
t1 |P

〈t0〉x1
t1 ),

where the singularity at t = 0 disappears since the distance of diffusion coefficients vanishes
for t ∈ [0, t0]. Moreover, we will estimate the moment for the density of P

〈t0〉x1
t1 with respect

to P 2,x2
t1 , so that by the following entropy inequality (2.3), we derive the desired upper bound

on Ent(P 1,x1
t1 |P

2,x2
t1 ). We remark that (2.3) has been presented in [12] for p = 2, but in the

present study we shall need the inequality for p > 2 as required in the dimension-free Harnack
inequality due to [23], see the proof of Proposition 2.3 for details.

Lemma 2.1. Let µ1, µ2 and µ be probability measures on a measurable space (E,B). Then for
any p > 1,

(2.3) Ent(µ1|µ2) ≤ pEnt(µ1|µ) + (p− 1) log

∫
E

( dµ

dµ2

) p
p−1

dµ2,

where the right hand side is set to be infinite if dµ1
dµ

or dµ
dµ2

does not exist.

Proof. It suffices to prove for the case that dµ1
dµ

and dµ
dµ2

exist such that the upper bound is
finite. In this case, we have

Ent(µ1|µ2)− Ent(µ1|µ) =

∫
E

{
log

dµ1

dµ2

− log
dµ1

dµ

}
dµ1

=

∫
E

{
log

dµ

dµ2

}
dµ1 =

p− 1

p

∫
E

(dµ1

dµ2

)
log
( dµ

dµ2

) p
p−1

dµ2.

Combining with the Young inequality [3, Lemma 2.4], we obtain

Ent(µ1|µ2)− Ent(µ1|µ) ≤ p− 1

p
Ent(µ1|µ2) +

p− 1

p
log

∫
E

( dµ

dµ2

) p
p−1

dµ2.

By Lemma 2.1, for any p > 1 we have

(2.4) Ent(P 1,x1
t1 |P

2,x2
t1 ) ≤ pEnt(P 1,x1

t1 |P
〈t0〉x1
t1 ) + (p− 1) log

∫
Rd

(
dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1 .

Noting that a(t, ·)− a1(t, ·) = 0 for t ∈ [0, t0], we may apply (1.8) to derive a non-trivial upper
bound on the first term in the right hand side of (2.4), see Proposition 3.2 for details. So, in
the following, we only estimate the second term. To this end, we need the following simple
lemma.
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Lemma 2.2. Let ξt ≥ 0 be a continuous semi-martingale such that

dξt ≤ k1ξtdt+ dAt + dMt, t ∈ [0, T ],

where k1 > 0 is a constant, At is an increasing function with A0 = 0, and Mt is a local
martingale with

d〈M〉t ≤ k1ξtdt.

Then for any t0 ∈ (0, T ∧ k−1
1 ) and constants λ, k > 0 such that

(2.5) k(1− k1t0) ≥ k1

(
1 +

λ

2

)
,

we have

E exp
[ λξt0

1 + kt0

]
≤ exp

[
λξ0 + λAt0

]
.

Proof. Let ηt := exp
[
λξt

1+kt

]
. By Itô’s formula, we find a local martingale M̃t such that

dηt = ηt

{ λ

1 + kt
dξt +

λ2

2(1 + kt)2
d〈M〉t −

kλξt
(1 + kt)2

dt
}

+ dM̃t

≤ ηtξt

{ λk1

1 + kt
+

λ2k1

2(1 + kt)2
− kλ

(1 + kt)2

}
dt+ ληtdAt + dM̃t, t ∈ [0, T ].

By (2.5) we have
λk1

1 + kt
+

λ2k1

2(1 + kt)2
− kλ

(1 + kt)2
≤ 0, t ∈ [0, t0],

so that
dηt ≤ ληtdAt + dM̃t, t ∈ [0, t0].

By Gronwall’s lemma, this implies
E[ηt0 ] ≤ η0eλAt0 ,

which coincides with the desired estimate.

Proposition 2.3. Assume (A1) and (A2). Then there exist constants p = p(K,T, d) > 2, ε =
ε(K,T, d) ∈ (0, 1

2
] and c = c(K,T, d) > 0, such that for any x1, x2 ∈ Rd, t1 ∈ (0, T ] and t0 = εt1,

log

∫
Rd

(dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1 ≤ c

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
}

dt

)
.

Proof. (a) Recall that Bb(Rd) is the space of all bounded measurable functions on Rd, and let

P
〈t0〉
t f(x) := E[f(X

〈t0〉x
t )], P

(2)
t f(x) := E[f(X2,x

t )], f ∈ Bb(Rd), (t, x) ∈ [0, T ]× Rd.

Then the desired estimate follows from the inequality∣∣P 〈t0〉t1 f(x1)
∣∣p ≤ (P (2)

t1 |f |
p(x2)

)
× exp

[
c(p− 1)

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
}

dt

)]
, f ∈ Bb(Rd).

(2.6)
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Indeed, taking f :=
(
n ∧ dP

〈t0〉x1
t1

dP
2,x2
t1

) 1
p−1 for n ≥ 1, this inequality implies

(∫
Rd

(
n ∧

dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1

)p
≤
(∫

Rd

(
n ∧

dP
〈t0〉x1
t1

dP 2,x2
t1

) 1
p−1

dP
〈t0〉x1
t1

)p
≤
(∫

Rd

(
n ∧

dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1

)
× exp

[
c(p− 1)

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
}

dt

)]
.

Taking log in both sides we derive

log

∫
Rd

(
n ∧

dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1

≤ c

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
}

dt

)
, n ≥ 1,

which implies the desired estimate as n→∞. So, it remains to find constants p > 2 and c > 0
such that (2.6) holds.

Let (P
(2)
s,t )0≤s≤t≤T be the semigroup generated by La2,b2t , i.e.

P
(2)
s,t f(x) := E[f(X2,x

s,t )], f ∈ Bb(Rd),

where (X2,x
s,t )t∈[s,T ] solves

dX2,x
s,t = b2(t,X2,x

s,t )dt+ σ2(t,X2,x
s,t )dWt, X2,x

s,s = x, t ∈ [s, T ].

By the Markov property and the SDE (2.2), we obtain

(2.7) P
〈t0〉
t1 f(x1) = E

[
(P

(2)
t0,t1f)(X1,x1

t0 )
]
, P

(2)
t1 f(x2) = E

[
(P

(2)
t0,t1f)(X2,x2

t0 )
]
.

By [23, Theorem 2.2] which applies to a more general setting where b
(0)
2 only satisfies a local

integrability condition, and noting that t1− t0 = (1− ε)t1, we find constants p1 = p1(K,T, d) >
1 ∨ d

2
and c1 = c1(K,T, d, ε) > 0 such that

(2.8)
∣∣P (2)

t0,t1f(x)
∣∣p1 ≤ (P (2)

t0,t1|f |
p1(y)

)
e
c1|x−y|

2

t1 , f ∈ Bb(Rd), x, y ∈ Rd.

Combining this with (2.7) and Jensen’s inequality, for p := 2p1 > 2 ∨ d we obtain∣∣P 〈t0〉t1 f(x1)|p =
∣∣E[P

(2)
t0,t1f(X1,x1

t0 )]
∣∣2p1 ≤ (E[|P (2)

t0,t1f |
p1(X1,x1

t0 )
])2

≤
{
E
[(
P

(2)
t0,t1|f |

p1(X2,x2
t0 )

)
exp

(c1|X1,x1
t0 −X2,x2

t0 |2

t1

)]}2

≤
(
E
[
P

(2)
t0,t1|f |

2p1(X2,x2
t0 )

])
E
[

exp
(2c1|X1,x1

t0 −X2,x2
t0 |2

t1

)]
=
(
P

(2)
t1 |f |

p(x2)
)
E
[

exp
(2c1|X1,x1

t0 −X2,x2
t0 |2

t1

)]
.

(2.9)
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Thus, to prove (2.6), it remains to estimate the expectation term in the upper bound.
(b) Since the exponential term is symmetric in (X1,x1

t0 , X2,x2
t0 ), without loss of generality, in

(A2) we may and do assume that ‖b(0)
1 ‖0→T,ϕ ≤ K. We shall use Zvonkin’s transform to kill

this non-Lipschitz term. By (A1), b
(0)
1 is bounded, and noting that p := 2p1 > 2∨ d, for a fixed

constant q > 2 such that d
p

+ 2
q
< 1, we have ‖b(0)

1 ‖L̃pq <∞. So, according to [38, Theorem 2.1],

there exist constants c1 = c1(K,T, d, p, q) > 0 and β = β(p, q) ∈ (0, 1) such that for any λ > 0,
the PDE

(2.10) (∂t + La1,b1t − λ)ut = −b(0)
1 (t, ·), t ∈ [0, T ], uT = 0

has a unique solution satisfying

(2.11) λβ(‖u‖0→T,∞ + ‖∇u‖0→T,∞) + ‖∂tu‖L̃pq + ‖∇2u‖L̃pq ≤ c1,

where for any measurable function g on [0, T ]× Rd,

(2.12) ‖g‖L̃pq := sup
z∈Rd

(∫ T

0

‖1B(z,1)g(t, ·)‖q
Lp(Rd)

dt

) 1
q

.

Let P
a1,b

(1)
1

s,t be the Markov semigroup generated by L
a1,b

(1)
1

t , and let p
a1,b

(1)
1

s,t be the heat kernel
with respect to the Lebesgue measure. By Duhamel’s formula, we have

(2.13) us =

∫ T

s

e−λ(t−s)P
a1,b

(1)
1

s,t

{
∇
b
(0)
1
ut + b

(0)
1 (t, ·)

}
dt, s ∈ [0, T ].

Let ∇2
x be the Hessian operator in x. By [18, Theorem 1.2], under (A1) we find a constant

δ = δ(K,T, d) > 1 such that

|∇2
xp

a1,b
(1)
1

s,t (x, y)| ≤ λ

t− s
gδ(t− s, x, y), 0 ≤ s < t ≤ T, x, y ∈ Rd

holds for

(2.14) gδ(r, x, y) := (πδr)−
d
2 e−

|θs,t(x)−y|
2

δr , r > 0, x, y ∈ Rd,

where θ : [0, T ]× [0, T ]× Rd → Rd is a measurable map. So, letting

(2.15) ht(y) := (b
(0)
1 (t, y) · ∇)ut(y) + b

(0)
1 (t, y),

and denoting by (∇x,∇2
x) the gradient and Hessian operators in x ∈ Rd, we obtain

|∇2
xus(x)| ≤

∫ T

s

e−λ(t−s)

t− s
∣∣∇2

xP
a1,b

(1)
1

s,t (ht − ht(z))(x)
∣∣
z=θs,t(x)

dt

≤
∫ T

s

e−λ(t−s)

t− s
dt

∫
Rd

∣∣∇2
xp

a1,b
(1)
1

s,t (x, y)| · |ht(y)− ht(θs,t(x))|dy.
(2.16)
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By (A2), (2.11) for λ ≥ 1, and (2.15), we have

(2.17) |ht(y)− ht(θs,t(x))| ≤ (1 + c1)|b(0)
1 (t, y)− b(0)

1 (t, θs,t(x))|+K|∇ut(y)−∇ut(θs,t(x))|.

In the following, we estimate these two terms in the upper bound respectively.
Since ϕ is concave, we find a constant c2 = c2(K,T, d) > 0 such that∫

Rd
|b(0)

1 (t, y)− b(0)
1 (t, θs,t(x))|gδ(t− s, x, y)dy

≤ K

∫
Rd
ϕ(|y − θs,t(x)|)gδ(t− s, x, y)dy

≤ Kϕ

(∫
Rd
|y − θs,t(x)|gδ(t− s, x, y)dy

)
≤ c2ϕ

(√
t− s

)
, 0 ≤ s < t ≤ T, x ∈ Rd.

Hence,

sup
s∈[0,T ]

∫ T

s

e−λ(t−s)

t− s
dt

∫
Rd
|b(0)

1 (t, y)− b(0)
1 (t, θs,t(x))|gδ(t− s, x, y)dy

≤ c2

∫ T

0

e−λtϕ(t
1
2 )

t
dt =: ε1,

(2.18)

where ε1 = ε1(λ,K, T, d, ϕ). Since ϕ ∈ D implies

∫ T

0

ϕ(t
1
2 )

t
dt = 2

∫ T
1
2

0

ϕ(s)

s
ds <∞,

by the dominated convergence theorem we derive limλ→∞ ε1 = 0.
On the other hand, let α = 1− d

p
∈ (0, 1). By the Sobolev embedding theorem, see e.g. [1],

there exists a constant c0 > 0 depending on p and d such that

sup
z 6=y∈B(z,1)

|f(y)− f(z)|
|y − z|α

≤ c0‖1B(z,1)(|f |+ |∇f |)‖Lp , z ∈ Rd, f ∈ W 1,p
loc (Rd).

So,
|∇ut(y)−∇ut(z)| ≤ c0|y − z|α‖1B(z,1)(|∇ut|+ ‖∇2ut‖)‖Lp(Rd)

)
, if |y − z| < 1.

Noting that d
p

+ 2
q
< 1 and α = 1− d

p
imply (1− α) q

q−1
< 1, by combining this with (2.11) and

(2.14), we find constants c3 = c3(p, d) > 0 and ε2 = ε2(λ,K, T, d, p, q) > 0, where ε2 → 0 as
λ→∞, such that∫ T

s

e−λ(t−s)

t− s
dt

∫
Rd
|∇ut(y)−∇ut(θs,t(x))|gδ(t− s, x, y)dy

≤ c3

(∫ T

s

e−λ(t−s)(t− s)−(1−α) q
q−1 dt

) q−1
q (
‖∇u‖0→T,∞ + ‖∇2u‖L̃pq

)
≤ ε2, s ∈ [0, T ].
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By (2.11), and combining this with (2.16), (2.17), and (2.18), we find large enough λ =
λ(K,T, P, ϕ) > 0 such that ‖∇2u‖0→T,∞ ≤ 1

2
. Combining this with (2.11), we may choose

large enough λ > 0 such that

(2.19) ‖u‖0→T,∞ ∨ ‖∇u‖0→T,∞ ∨ ‖∇2u‖0→T,∞ ≤
1

2
.

In particular, letting

(2.20) X̃ i,xi
t := X i,xi

t + ut(X
i,xi
t ), i = 1, 2,

we have

(2.21)
1

2
|X1,x1

t −X2,x2
t | ≤ |X̃1,x1

t − X̃2,x2
t | ≤ 2|X1,x1

t −X2,x2
t |.

Hence, to bound the exponential moment in (2.9), it suffices to estimate the corresponding
term for |X̃1,x1

t0 − X̃2,x2
t0 |2 replacing |X1,x1

t0 −X2,x2
t0 |2.

(c) Let Id be the d× d identity matrix. By (2.10), (2.20) and Itô’s formula, we obtain

dX̃1,x1
t =

{
λut + b

(1)
1 (t, ·)

}
(X1,x1

t )dt+
{
Id +∇ut(X1,x1

t )
}
σ1(t,X1,x1

t )dWt,

dX̃2,x2
t =

{
λut + (La2,b2t − La1,b1t )ut + (b2 − b(0)

1 )(t, ·)
}

(X2,x2
t )dt

+
{
Id +∇ut(X2,x2

t )
}
σ2(t,X2,x2

t )dWt.

(2.22)

By (A1), (2.19), (2.21), and Itô’s formula, we find k1 = k1(K,T, d, ϕ) > 0 such that

(2.23) d|X̃1,x1
t − X̃2,x2

t |2 ≤ k1|X̃1,x1
t − X̃2,x2

t |2dt+ dAt + dMt, t ∈ [0, t0],

where

(2.24) At := k1

∫ t

0

(‖a1 − a2‖2
s,∞ + ‖b1 − b2‖2

s,∞
)
ds,

and Mt is a martingale satisfying

(2.25) d〈M〉t ≤ k1|X̃1,x1
t − X̃2,x2

t |2dt.

For any n ≥ 1, let

τn := t0 ∧ inf
{
t ≥ 0 : |X̃1,x1

t − X̃2,x2
t | ≥ n

}
, γn := sup

t∈[0,τn]

|X̃1,x1
t − X̃2,x2

t |2.

By (2.21) we have

(2.26) |X̃1,x1
0 − X̃2,x2

0 |2 ≤ 4|x1 − x2|2.

Moreover, to apply Lemma 2.2, let

t0 :=
t1

2[(Tk1 + 4k1c1) ∨ 1]
, λ :=

8c1(1 + kt0)

t1
, k =

k1

1− k1t0

(
1 +

λ

2

)
,
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so that (2.5) holds and
λ

1 + kt0
=

8c1

t1
.

Combining this with (2.23)-(2.26), we may apply Lemma 2.2 for ξt = |X̃1,x1
t − X̃2,x2

t |2 to find a
constant k2 = k2(K,T, d, ϕ) > 0 such that

E
[
e

8c1
t1
|X̃1,x1
t0
−X̃2,x2

t0
|2] ≤ e

k2
t1

(
|x1−x2|2+

∫ t0
0 (‖a1−a2‖2t,∞+‖b1−b2‖2t,∞)dt

)
.

This together with (2.9) implies (2.6) for some constant c = c(K,T, d, ϕ), and hence finishes
the proof.

3 Entropy estimates between two diffusion processes

With the bi-coupling method and density estimates addressed in Section 2, we are able to prove
the following result on entropy upper bound estimates for diffusion processes with arbitrary
initial distributions in P2, for which the existing estimates may be invalid as explained in
Section 1.2.

Theorem 3.1. Assume (A1) and (A2). Then the following assertions hold for some constants
c = c(K,T, d, ϕ) > 0 and ε = ε(K,T, d, ϕ) ∈ (0, 1

2
].

(1) For any ν1, ν2 ∈P and t ∈ (0, T ],

Ent(P 1,ν1
t |P 2,ν2

t ) ≤ cW2(ν1, ν2)2

t
+
c

t

∫ t

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

+ c
[
‖a1 − a2‖2

εt→t,∞ +

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds

]
.

(3.1)

(2) If there exists a constant C(K) > 0 such that

(3.2) ‖∇ib1‖0→T,∞ + ‖∇ia1‖0→T,∞ ≤ C(K), i = 1, 2,

then for any ν1, ν2 ∈P and t ∈ (0, T ],

Ent(P 1,ν1
t |P 2,ν2

t ) ≤ c
t

[
W2(ν1, ν2)2 +

∫ t

0

(
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
)
ds

]
+

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds.

(3.3)

To prove Theorem 3.1, we shall apply (2.4), where the second term in the upper bound has
been estimated in Proposition 2.3, and the first term will be estimated by using (1.8) and the
following result.

Proposition 3.2. Assume (A1). Then the following assertions hold.
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(1) There exists a constant c = c(K,T, d) > 0 such that

(3.4)

∫ t

r

ds

∫
Rd

|∇p1,x
s |2

p1,x
s

(y)dy ≤ c log
(

1 +
t

r

)
, 0 < r ≤ t ≤ T, x ∈ Rd.

(2) If (3.2) holds, then exists a constant c = c(K,T, d) > 0 such that

(3.5)

∫
Rd

|∇p1,x
t |2

p1,x
t

(y)dy ≤ c

t
, t ∈ (0, T ], x ∈ Rd.

To prove Proposition 3.2, we first present the following lemma.

Lemma 3.3. Assume (A1) with the condition on ‖∇a1‖0→T,∞ replacing by the weaker one:
there exists β ∈ (0, 1) such that

‖a1(t, x)− a1(t, y)‖ ≤ K|x− y|β, t ∈ [0, T ], x, y ∈ Rd.

Then there exists a constant c = c(K,T, d, β) > 0 such that∣∣∣∣ ∫
Rd

(p1,x
r log p1,x

r )(y)dy −
∫
Rd

(p1,x
t log p1,x

t )(y)dy

∣∣∣∣
≤ c log

(
1 +

t

r

)
, 0 < r ≤ t ≤ T, x ∈ Rd.

(3.6)

Proof. Let x ∈ Rd be fixed. Simply denote ρt(y) := p1,x
t (y), t ∈ (0, T ], y ∈ Rd. Let θt(x) solve

(3.7) ∂tθt(x) = b1(t, θt(x)), θ0(x) = x, t ∈ [0, T ].

By [18, Theorem 1.2], there exists a constant c0 = c0(K,T, d) > 1 such that

(3.8)
1

c0t
d
2

e−
c0|θt(x)−y|

2

t ≤ ρt(y) ≤ c0

t
d
2

e
− |θt(x)−y|

2

c0t , x, y ∈ Rd, t ∈ (0, T ].

Consequently,

(3.9)

∫
Rd
ρt(y) log ρt(y)dy ≤

∫
Rd
ρt(y) log[c0t

− d
2 ]dy = log[c0t

− d
2 ], t ∈ (0, T ].

On the other hand, by (3.8) and Jensen’s inequality, there exists a constant c1 > 0 such that

−
∫
Rd
ρt(y) log ρt(y)dy = 2

∫
Rd
ρt(y) log ρt(y)−

1
2 dy ≤ 2 log

∫
Rd
ρt(y)

1
2 dy

≤ 2 log

[
c

1
2
0 t
− d

4

∫
Rd

e
− |θt(x)−y|

2

2c0t dy

]
= 2 log[c

− 1
2

1 t−
d
4 ] = log[c−1

1 t
d
2 ].

Hence, ∫
Rd
ρt(y) log ρt(y)dy ≥ log[c1t

− d
2 ], t ∈ (0, T ].
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Combining this with (3.9), we derive find a constant c > 0 such that∫
Rd
ρr(y) log ρr(y)dy −

∫
Rd
ρt(y) log ρt(y)dy ≥ log[c1r

− d
2 ]− log[c0t

− d
2 ] ≥ −c log

(
1 +

t

r

)
,

and similarly,∫
Rd
ρr(y) log ρr(y)dy −

∫
Rd
ρt(y) log ρt(y)dy ≤ log[c0r

− d
2 ]− log[c1t

− d
2 ] ≤ c log

(
1 +

t

r

)
.

So, (3.6) holds.

Proof of Proposition 3.2. Let x ∈ Rd be fixed, and simply denote ρt := p1,x
t .

(a) We first consider the smooth case where

(3.10) ‖∇ib1‖0→T,∞ + ‖∇ia1‖0→T,∞ <∞, i ≥ 1.

By [18, Theorem 1.2], there exist a constant λ > 1 and a measurable map θ : [0, T ]→ Rd such
that

(3.11) λ−1t−
d+i
2 e−

λ|θt−y|
2

t ≤
∣∣∇iρt

∣∣(y) ≤ λt−
d+i
2 e−

|θt−y|
2

λt , t ∈ (0, T ], y ∈ Rd, i = 0, 1, 2.

Moreover, by the Kolmogorov forward equation and integration by parts formula, we have

(3.12) ∂tρt = div
[
a1(t, ·)∇ρt + ρt{diva1(t, ·)− b1(t, ·)}

]
, t ∈ (0, T ].

By (3.11), (3.12) and integration by parts formula, we obtain∫
Rd

{
ρt log ρt − ρr log ρr

}
(y)dy =

∫ t

r

ds

∫
Rd

{
(1 + log ρs)∂sρs

}
(y)dy

= −
∫ t

r

ds

∫
Rd

〈
a1(s, ·)∇ log ρs + diva1(s, ·)− b1(s, ·),∇ρs

〉
(y)dy.

(3.13)

Since a1 ≥ K−1Id, this implies∫
Rd

{
ρt log ρt − ρr log ρr

}
(y)dy +

1

K

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy

≤ −
∫ t

r

ds

∫
Rd

〈
diva1(s, ·)− b1(s, ·),∇ρs

〉
(y)dy

=

∫ t

r

ds

∫
Rd

〈[
b

(0)
1 − diva1

]
(s, ·),∇ρs

〉
(y)dy +

∫ t

r

ds

∫
Rd

〈
b

(1)
1 (s, ·),∇ρs

〉
(y)dy.

(3.14)

By (3.10), (3.11) and Lemma 3.3, we derive

(3.15)

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy <∞.
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Noting that (A1) implies |b(0)
1 − diva1| ≤ 2K, so that∫ t

r

ds

∫
Rd

〈[
b

(0)
1 − diva1

]
(s, ·),∇ρs

〉
(y)dy

≤ 1

2K

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy + 2K3

∫ t

r

ds

∫
Rd
ρs(y)dy

=
1

2K

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy + 2K3(t− r).

Moreover, by the integration by parts formula, (3.11) and ‖∇b(1)
1 ‖0→T,∞ ≤ K, we obtain∫ t

r

ds

∫
Rd

〈
b

(1)
1 (s, ·),∇ρs

〉
(y)dy = −

∫ t

r

ds

∫
Rd

div{b(1)
1 (s, y)}ρs(y)dy ≤ K(t− r).

Combining these with (3.14) and (3.15), we derive∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy

≤ 2K

∫
Rd

{
ρr log ρr − ρt log ρt

}
(y)dy + 2K2(2K2 + 1)(t− r).

(3.16)

(b) In general, let 0 ≤ ψ ∈ C∞0 (Rd) such that
∫
Rd ψ(x)dx = 1, and define the smooth

mollifier Sn:

Snf(x) := nd
∫
Rd
f(x− y)ψ(ny)dy, n ≥ 1, f ∈ L1

loc(Rd).

Let
b
n)
1 (t, ·) := Snb1(t, ·), a

n)
1 (t, ·) := Sna1(t, ·), n ≥ 1.

Then (a
n)
1 , b

n)
1 ) satisfies (3.10) and (A1) for the same constant K. So, by step (a) and Lemma

3.3, the density function ρ
n)
t for the diffusion process generated by L

a
n)
1 ,b

n)
1

t satisfies

(3.17)

∫ t

r

ds

∫
Rd

|∇ρn)
s |2

ρ
n)
s

(y)dy ≤ c log
(

1 +
t

r

)
, 0 < r ≤ t ≤ T, n ≥ 1

for some constant c = c(K,T, d) > 0. Equivalently, for any

f ∈ C0,2
0 ([r, t]× Rd) :=

{
f ∈ Cb([r, t]× Rd) : ∇f,∇2f ∈ C0([r, t]× Rd)

}
,

we have ∣∣∣∣ ∫
[r,t]×Rd

ρ(n)
s (y)∆fs(y)dsdy

∣∣∣∣2 =

∣∣∣∣ ∫ t

r

ds

∫
Rd

{
〈∇ log ρn)

s ,∇fs〉ρn)
s

}
(y)dy

∣∣∣∣2
≤ c log

(
1 +

t

r

)∫
[r,t]×Rd

|∇fs|2(y)ρn)
s (y)dsdy, n ≥ 1.
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By [26, Theorem 11.1.4],

lim
n→∞

∫
Rd
ρn)
s (y)g(y)dy =

∫
Rd
ρs(y)g(y)dy, g ∈ Cb(Rd), s ∈ [r, t].

So, the above estimate implies∣∣∣∣ ∫
[r,t]×Rd

ρs(y)∆fs(y)dsdy

∣∣∣∣2 ≤ c log
(

1 +
t

r

)∫
[r,t]×Rd

|∇fs|2(y)ρs(y)dsdy

for any f ∈ C0,2
0 ([r, t]× Rd). Therefore, (3.4) holds.

(c) If (3.2) holds, then by Malliavin’s calculus, see for instance [19] or [36, Remark 2.1], for
any v ∈ Rd with |v| = 1, there exists a martingale M1,x,v

t such that

E[∇vf(X1,x
t )] = E[f(X1,x

t )M1,x,v
t ], f ∈ C1

b (Rd), t ∈ (0, T ]

and E[|M1,x,v
t |2] ≤ c

t
holds for some constant c = c(T,K, d) > 0 and all t ∈ (0, T ]. This implies∣∣∣∣ ∫

Rd

{
〈v,∇x log p1,x

t 〉f
}

(y)p1,x
t (y)dy

∣∣∣∣2 ≤ c

t

∫
Rd
f(y)2p1,x

t (y)dy, f ∈ C1
b (Rd), |v| = 1.

Equivalently, ∫
Rd

|∇p1,x
t |2

p1,x
t

(y)dy ≤ cd

t
, t ∈ (0, T ],

so that (3.5) holds.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (1) Let p > 1 and ε ∈ (0, 1
2
] be in Proposition 2.3. By Proposition 3.2

and (A1), (H) holds for ν = δx1 and (a〈t0〉, b〈t0〉) replacing (a2, b2). By (1.8) with ν = δx1 and
(3.4), we find a constant c1 = c1(K,T, d, ϕ) > 0 such that

Ent(P 1,x1
t1 |P

〈t0〉x1
t1 )

≤ c1

[
|a1 − a2‖2

εt1→t1,∞ +

∫ t1

εt1

(
‖div(a1 − a2)‖2

t,∞ + ‖b1 − b2‖2
t

)
dt

]
,

t1 ∈ (0, T ], x1 ∈ Rd.

(3.18)

Combining this with (2.4) and Proposition 2.3, we find a constant c = c(K,T, d, ϕ) > 0 such
that for any t1 ∈ (0, T ] and x1, x2 ∈ Rd,

Ent(P 1,x1
t1 |P

2,x2
t1 ) ≤ It1(x1, x2) :=

c

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

)
+ c

(
‖a1 − a2‖2

εt1→t1,∞ +

∫ t1

εt1

‖div(a1 − a2)‖2
s,∞ds

)
.
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Equivalently, for any t ∈ (0, T ] and f ∈ B+
b (Rd),

(3.19)

∫
Rd

{
log f(y)

}
P 1,x1
t (dy) ≤ log

∫
Rd
f(y)P 2,x2

t (dy) + It(x1, x2), x1, x2 ∈ Rd.

Let π ∈ C (ν1, ν2) such that

W2(ν1, ν2)2 =

∫
Rd×Rd

|x1 − x2|2π(dx1, dx2).

we obtain

Ent(P 1,ν1
t |P 2,ν2

t ) = sup
0<f∈Bb(Rd)

{∫
Rd

{
log f(y)

}
P 1,ν1
t (dy)− log

∫
Rd
f(y)P 2,ν2

t (dy)

}
≤
∫
Rd×Rd

It(x1, x2)π(dx1, dx2)

=
c

t

(
W2(ν1, ν2)2 +

∫ t

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

)
+ c

(
‖a1 − a2‖2

εt→t,∞ +

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds

)
.

Hence, (3.1) holds.
(2) Let (3.2) hold. By (1.8) and (3.5), we find a constant c1 = c1(K,T, d, ϕ) > 0 such that

for any t ∈ (0, T ] and x1 ∈ Rd,

Ent(P 1,x1
t |P 〈t0〉x1t ) ≤ c1

∫ t

εt

1

s
‖a1 − a2‖2

s,∞ds+ c1

∫ t

εt

[
‖div(a1 − a2)‖2

s,∞ + ‖b1 − b2‖2
s,∞
]
ds,

≤ c1

εt

∫ t

εt

‖a1 − a2‖2
s,∞ds+ c1

∫ t

εt

[
‖div(a1 − a2)‖2

s,∞ + ‖b1 − b2‖2
s,∞
]
ds.

Then as explained above that using this estimate to replace (3.18), we derive (3.3) for some
constant c = c(K,T, d, ϕ) > 0.

4 Application to McKean-Vlasov SDEs

As an application of Theorem 3.1, we are able to establish (1.7) for (1.6) with distribution
dependent multiplicative noise. For any µ ∈ C([0, T ]; P2), let

aµ(t, x) :=
1

2
(σσ∗)(t, x, µt), bµ(t, x) := b(t, x, µt), (t, x) ∈ [0, T ]× Rd.

Correspondingly to (A1) and (A2), we make the following assumption.

(B) There exists a constant K > 0 such that aµ and bµ = bµ,0 + bµ,1 satisfy the following
conditions.
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(1) For any µ ∈ C([0, T ]; P2), bµ is locally bounded, and for any (t, x, µ) ∈ [0, T ]×Rd×P2,

‖∇bµ,1‖0→T,∞ + ‖aµ‖0→T,∞ + ‖(aµ)−1‖0→T,∞ + ‖∇aµ‖0→T,∞ ≤ K.

(2) There exists ϕ ∈ D such that

‖bµ,0‖T,ϕ ≤ K, µ ∈ C([0, T ]; P2).

(3) For any ν, µ ∈P2,

‖bν − bµ‖0→T,∞ ∨ ‖aν − aµ‖0→T,∞ ∨
∥∥div(aν − aµ)

∥∥
0→T,∞ ≤ KW2(ν, µ).

Theorem 4.1. Assume (B). Then (1.6) is well-posed for distributions in P2, and there exists
a constant c = c(K,T, d, ϕ) > 0 such that (1.7) holds.

Proof. By (B), for any µ ∈P2, bµ(t, x) := b(t, x, µ) has decomposition b0,µ + b1,µ such that b1,µ

is locally bounded and
|b0,µ| ∨ ‖∇b1,µ‖ ≤ K.

Let b(1) := b1,δ0 , where δ0 is the Dirac measure at 0, and let b(0,µ) := bµ− b(1). Then (B) implies

|∇b(1)| ≤ K, |b(0,µ)| ≤ K +Kµ(| · |2)
1
2 .

This together with the the condition on σ included in (B) implies assumptions (A0) and (A1)
in [14] for k = 2. Therefore, by [14, Theorem 1.1], (1.6) is well-posed for distributions in P2,
and there exists a constant c > 0 such that

(4.1) sup
t∈[0,T ]

E[|Xt|2] ≤ c(1 + E[|X0|2]) <∞

holds for any solution with LX0 ∈P2.
For νi ∈P2, i = 1, 2, and (t, x) ∈ [0, T ]× Rd, let

ai(t, x) := a(t, x, P ∗t νi) =
1

2
(σσ∗)(t, x, P ∗t νi),

bi(t, x) := b(t, x, P ∗t νi), b
(k)
i (t, x) := b

k,P ∗t νi
i (t, x), k = 0, 1.

(4.2)

By Theorem 3.1, under (B), there exists a constant c1 = c1(K,T, d, ϕ) > 0 such that for any
t ∈ (0, T ],

Ent(P ∗t ν1|P ∗t ν2) ≤ c1

t
W2(ν1, ν2)2

+ c1‖b1 − b2‖2
t,∞ + c1 log(1 + t−1)‖a1 − a2‖2

t,∞ + c1t‖div(a1 − a2)‖2
t,∞

≤ c1

t
W2(ν1, ν2)2 + c1K

2
{

1 + log(1 + t−1) + t
}

sup
s∈[0,t]

W2(P ∗s ν1, P
∗
s ν2)2.

Then there exists a constant c2 = c2(K,T, d, ϕ) > 0 such that

Ent(P ∗t ν1|P ∗t ν2) ≤ c1

t
W2(ν1, ν2)2 +

c2

t
sup
s∈[0,t]

W2(P ∗s ν1, P
∗
s ν2)2, t ∈ (0, T ].

Combining this with the following Proposition 4.2, we derive (1.7) for some constant c > 0,
and hence finish the proof.
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Proposition 4.2. Assume (B). Then there exists a constant c > 0 such that

W2(P ∗t ν1, P
∗
t ν2) ≤ cW2(ν1, ν2), t ∈ [0, T ], ν1, ν2 ∈P2.

Proof. Let ai and bi be in (4.2), and let ut be in (2.10) for large enough λ > 0 such that (2.19)
holds. Let X1

0 , X
2
0 be F0-measurable such that

(4.3) LXi
0

= νi, i = 1, 2, E[|X0 −X2
0 |2] = W2(ν1, ν2)2.

Let X i
t solve (2.1) with initial value X i

0. We have LXi
t

= P ∗t νi, so that

(4.4) W2(P ∗t ν1, P
∗
t ν2)2 ≤ E[|X1

t −X2
t |2], t ∈ [0, T ].

Let X̃ i
t = X i

t + ut(X
i
t), i = 1, 2. Then

(4.5)
1

2
|X1

t −X2
t | ≤ |X̃1

t − X̃2
t | ≤ 2|X1

t −X2
t |, t ∈ [0, T ],

and similarly to (2.22), by (2.10), (1.6) for X i
t and Itô’s formula, we have

dX̃1
t =

{
λut + b

(1)
1 (t, ·)

}
(X1

t )dt+
{
Id +∇ut(X1

t )
}
σ1(t,X1

t )dWt,

dX̃2
t =

{
λut + (La2,b2t − La1,b1t )ut + (b2 − b(0)

1 )(t, ·)
}

(X2
t )dt

+
{
Id +∇ut(X2

t )
}
σ2(t,X2

t )dWt.

Combining this with (B)(1), (2.19), (4.3) and Itô’s formula, we find k1 = k1(K,T, d, ϕ) > 0
such that

d|X̃1
t − X̃2

t |2 ≤ k1

(
|X̃1

t − X̃2
t |2 + ‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
)
dt+ dMt, t ∈ [0, T ].

Noting that (B)(3) and (4.2) imply

‖a1 − a2‖2
t,∞ + ‖b1 − b2‖2

t,∞ ≤ 2K2ξt, ξt := sup
s∈[0,t]

W2(P ∗s ν1, P
∗
s ν2)2,

and due to (2.19), (4.3) and (4.4)

E[|X̃1
0 − X̃2

0 |2] ≤ 4W2(ν1, ν2)2, E[|X̃1
t − X̃2

t |2] ≥ 1

4
E[|X1

t −X2
t |2] ≥ 1

4
W2(P ∗t ν1, P

∗
t ν2)2,

we find a constant k2 = k2(K,T, d, ϕ) > 0 such that

ξt ≤ k2W2(ν1, ν2)2 + k2

∫ t

0

ξsds, t ∈ [0, T ].

Since (4.1) implies ξt <∞, by Gronwall’s inequality, this implies

sup
t∈[0,T ]

W2(P ∗t ν1, P
∗
t ν2)2 = ξT ≤ k2ek2TW2(ν1, ν2)2.

So, the proof is finished.
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Remark 4.1. After an earlier version of this paper is available online, the bi-coupling argu-
ment developed here has been applied in [10, 22] for singular and degenerate models, where
condition (B)(3) is weakened in [10] by using Wψ + Wk replacing W2, see [10, Theorem 1.3,
Remark 1.2] for details. We believe that with additional efforts this new coupling argument
will enables one to derive the entropy-cost inequality for McKean-Vlasov SDEs with singular
potentials, where bt(x, µ) is given by

bt(x, µ) :=

∫
Rd
V (x− y)µ(dy)

for V being a singular potential such as the Coulomb potential V (x) = |x|2−d for d > 2 and
V (x) = log |x| for d = 2. This will be addressed in a forthcoming paper.
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