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Abstract

By developing a new technique called the bi-coupling argument, we estimate the rela-
tive entropy between different diffusion processes in terms of the distances of initial dis-
tributions and drift-diffusion coefficients. As an application, the entropy-cost inequality
is established for McKean-Vlasov SDEs with spatial-distribution dependent noise, which
is open for a long time and has potential applications in optimal transport, information
theory and mean field particle systems.
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1 Introduction

The main purpose of this paper is to establish the entropy-cost inequality for McKean-Vlasov
SDEs with spatial-distribution dependent noise, which has been open for a long time due to the
essential difficulty caused by the distribution dependence of noise. To overcome this difficulty,
we develop a new coupling argument, called bi-coupling, to cancel the short time singularity in
the entropy upper bound for two diffusions presented in [8].

In this part, we first introduce the background of the study from applied areas including
the information theory, optimal transport and mean field particle systems, then explain the
main difficulty of the study, and finally figure out the main idea of the present study and the
structure of the paper.

*Supported in part by the National Key R&D Program of China (No. 2022YFA1006000, 2020YFA0712900)
and NNSFC (11921001).



1.1 Background of the study

Let &, be the space of probability measures on R? having finite second moments, which is a
Polish space under the quadratic Wasserstein distance
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(1.1) Wy (p,v) := inf (/ |x—y|27r(dx,dy)> , MV E P,
Rd xRd

TEE (1)

where €' (u,v) is the set of all couplings of p and v. In the theory of optimal transport, Wy
refers to the optimal transportation cost induced by the quadratic cost function, and (£, Ws)
is called the Wasserstein space where a nice analysis and geometry structure has been developed,
see for instance Otto’s celebrated paper [20] and Villani’s monograph [28].

In the information theory, the relative entropy functional describes the chaos of a distribu-
tion with respect to a reference measure, which refers to the difference of Shannon entropies
for two distributions, and is known as the Kullback-Leibler divergence or the information di-
vergence [17]. For two probability measures p and v, the relative entropy of v with respect pu
is defined as

Ent(v]js) = {fRd{log j—l’:}du, if § e)%ists,
00, otherwise.

Both Wasserstein distance and relative entropy have wide applications in applied areas
including deep learning and Bayesian statistics [9]. When p is the standard Gaussian measure
on R? Talagrand [27] found the beautiful inequality

Ws(v, p)? < 2Ent(v|p), v € Py,
where the constant 2 is sharp. This inequality was then extended in [21, 6] as
(1.2) Wy (v, u)? < CEnt(v|p), ve P,

for a constant C' > 0 and a probability measure p satisfying the log-Sobolev inequality
p(flog £2)i= [ flog P < Cu(VIP), 1 € CURY, () = 1.
R

The inequality (1.2) enables one to estimate the cost from above by using the entropy.

However, comparing with the Wasserstein distance Wy, the entropy is usually harder to
estimate from above. For instance, Wy between the distributions of two SDEs can be bounded
by the expectation of the distance square of the solutions, which is easily derived using Ito’s
formula. But the entropy between solutions of SDEs is harder to estimate from above, since
the heat kernels (distribution densities) are unknown. So, it is crucial to establish the inverse
Talagrand inequality by bounding the entropy using Ws.

In general, W(u, v)? can not dominate Ent(v|u) since the former is finite for any u,v € &,
but the latter becomes infinite when v is not absolutely continuous with respect to u. So, to
derive an inverse Talagrand inequality, we consider the entropy between two stochastic systems
for which the entropy decays in time according to the H-theorem in information theory. In this
spirit, a sharp entropy-cost inequality was found by the second named author [30] for diffusion
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processes on a manifold M. According to [30, Theorem 1.1], for any constant K € R, the
Bakry-Emery curvature of the diffusion process is bounded below by K € R if and only if the
following entropy-cost inequality holds:

(1.3) Ent(P;p|Pfv) < Wh(i,v)?, pv € Po(M), t>0,

2(e2Kt — 1)
where P} is the distribution of the diffusion process at time ¢ with initial distribution g, W% is
the quadratic Wasserstein distance induced by the Riemannian distance p on M (when M = R?
it reduces to W, defined in (1.1)), and &5(M) is the set of probability measures on M having
finite second moment. This inequality has applications for both short and long times:

e For small time, (1.3) describes an instant finite property of the entropy, i.e. even though
the initial entropy is infinite, the entropy at any time ¢ > 0 becomes finite, and the short
time behavior of the entropy behaves like t—1;

e For long time, (1.3) provides exponential decay of P/ in entropy by using that in Wy
which is easier to verify in applications.

The inequality (1.3) is equivalent to the log-Harnack inequality (see [31])

Kp(z,y)?

i1y DY€ Rt >0, f e BT (M),

Pylog f(z) <log P f(y) +
where B1 (M) is the space of all uniformly positive measurable functions on M, and P, f(z) :=
Jga f(y)d(P}d,) is the associated diffusion semigroup. As a member in the family of dimension-
free Hananck inequalities (see [29, 30, 32]), the log-Harnack inequality has crucial applications
in optimal transport, curvature on Riemennian manifolds or metric measure spaces, see for
instance [2, 24, 30, 31].

In this paper, we aim to establish the entropy-cost inequality of type (1.3) for the nonlinear
Fokker-Planck equation on &s:

(14) 8t,ut = (L;ﬁt)*/,bt, te [O,T],
where T > 0 is a fixed time, and for any (¢,4) € [0,T] x P, (L{)* is the L*(R%)-adjoint
operator of

d

d
(1.5) Ly =) a(t, -, 1)0,0; + Y V'(t, -, )0

ij=1 i=1

Recall that a continuous map . : [0, 7] — £, is called a solution to (1.4), if for any f € C5°(R?)
we have [ |115(Ls,. f)|ds < 0o and

wlf) = polf) + / (Lo f)ds, t € [0.7).



By the propagation of chaos, see [25], under reasonable conditions we have

N
1
= lim — Z(sXZ-,N in L*(Q — 2, P),
=1

N—)ooN'

where for every N € N, (XZ ’N)lgig ~ is the associated mean field particle system with N many
particles, and p, is the distribution of the solution X; to the following McKean-Vlasov SDE:

(1.6) dX, = b(t, Xy, ZLx,)dt + o(t, Xy, Lx,)dW,, t € [0,T],

where Z, is the distribution of X;, W, is the d-dimensional Brownian motion under a standard
probability base (2, 7, {Z }icpo1], P), 0 := v/2a, and (a, b) comes from L?ﬁ in (1.5). According
to [5], under a mild integrability condition, (1.4) is well-posed in #, if and only if (1.6) has
weak well-posedness for distributions in %, and in this case p; = Pfu := XX; is the unique
solution to the nonlinear Fokker-Planck equation (1.4) with py = p, where X} solves (1.6) with
& Xo — M-

We intend to find a constant ¢ > 0 such that

(1.7) Ent(P;u|Piv) < i;WQ(u,m?, te(0,T], u,v € Ps.

When the noise is distribution-free, i.e. o(t,z,u) = o(t,z) does not depend on g, (1.7) has
already been derived and applied in the literature, (1.7) has been established in [13, 16, 24,
33, 35] under different conditions, see also [11, 12, 34] for extensions to the infinite-dimensional
and reflecting models. When the noise coefficient is also distribution dependent, the coupling
by change of measures applied in the above references does not apply. Recently, for o(t, z, u) =
o(t, ) independent of the spatial variable x, (1.7) has been established in [15] by using a noise
decomposition argument, see also [4] for the study on a special model.

However, when the noise is spatial-distribution dependent, this type inequality has been
open for a long time until the new coupling technique (bi-coupling) is developed in the present
paper, for which we construct a new diffusion process which is coupled with the other two
processes respectively, see Section 2 below for details.

We would like to indicated that after an earlier version of this paper is available online
(arXiv:2302.13500), the bi-coupling method has been applied in [22, 10] to different models to
derive new estimates on entropy and probability distances, so that the efficient and originality
of this new method has been illustrated.

1.2 Existing entropy inequality and difficulty of the present study

Noting that P;u is the distribution of the diffusion process X;' generated by (L; ’]l;t* e,

the left hand side in (1.7) is the entropy between the distributions of two diffusion processes
generated by Lf,’lb;t* ., and LZ’Jth*u respectively. So, the study reduces to estimate the entropy
between two different diffusion processes.

In general, let I" be the space of (a,b), where

b:[0,T) xR* - RY  a:[0,7T] x R - R @ R?
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are measurable, and for any (¢,2) € [0,T] x R?, a(t,z) is positive definite. For any (a,b) € T,
consider the time dependent second order differential operators on R%:

L= tr{a(t, )V} + b(t,-) -V, t€[0,T].

Let (a;,b;) € I';i = 1,2, such that for any s € [0,T), each (Lfi’bi)te[s,ﬂ generates a unique
diffusion process (Xo7).z)e(srxre With X% = x, and for any ¢ € (s,T7], the distribution P
of Xﬁ”f has positive density function péf with respect to the Lebesgue measure. When s = 0,

we simply denote
i,iF _ i,a; 'l:,ll' . 7,0
Xor =Xy, By =B

The associated Markov semigroup (PS(?)OSSS,:ST is given by

PO f(x) = E[f(X!D)], 0<s<t<T,xcR’fecB(RY,

s,t

where %,(R?) is the space of all bounded measurable functions on R?. If the initial value is
random with distributions v € &, where & is the set of all probability measures on R¢, we
denote the diffusion process by X", which has distribution

Pti’y = / ‘Pti@V(dl’)’ 1= ]-)27 te (07T]
Rd

Let pi”’ be the density function of PZ ¥ with respect to the Lebesgue measure.
We intend to estimate the relative entropy

1,11

aptm
(P P2) = [ (1o G Jar = (1o %) (x)]
Rd dPt ’ pt7

for t € (0, 7] and vy, v5 € P5. Before moving on, let us recall a nice entropy inequality derived
by Bogachev, Réckner and Shaposhnikov [8]. For a d x d-matrix valued function a = (a*);< <4,
the divergence is an R%valued function defined by

d
diva := ( E 8lakl) ,
— 1<k<d

where 0 := % for = (2!)1<1<q4 € R Let

(s,y) = (a1(s,y) — az(s,y))Viog py” (y) + div{ai(s,-) — as(s, ) }(y)
+ by(s,y) — bi(s,y), s€(0,T],y c R ve P,

where V is the gradient operator for weakly differentiable functions on R?. In particular,
|V flloo is the Lipschitz constant of f.
By [8, Theorem 1.1}, the entropy inequality

1 t
(1.8) Ent(P"|P?") < 5/ E[|as(s, X2) 20" (s, X1*)|*]ds, ¢ € (0,T]
0

holds under the following assumption (H).



(H) For each i = 1,2, b; is locally bounded, and there exists a constant K > 1 such that
las(t, )| V llas(t, 2)7H| V[ Vait, ) (@)l < K, (t,2) € [0,T] x R,

Moreover, at least one of the following conditions hold:

laz(t X)) b2 (t,X,)0Y) | +H|@Y (£,X)] )
fO [ 1+ X072 T 14X, }dt<oo’

(2) there exist 1 <V € C%(R?) with V(z) — oo as |z| — oo, and a constant K > 0 such
that

|<(I)V(t’ th,u)’ VV(XtLV)>|

" dt < 0.
V(X)

L%V (2) < KV (2), /TE[

It is well known that (H) implies the existence and uniqueness of the diffusion processes
(XZ’”)Z-:LQ for any v € £, and the existence of the density functions (pf;’”)izl,z, see for in-
stance [7].

As observed in [8, Remark 1.4] that one may have

t
/ E[|Vlogpy” [P (X2")]ds < oo,
0
provided v has finite information entropy, i.e. p(z) := 9 satisfies [;.(p|log p|)(z)dz < co. In
this case, (1.8) provides a non-trivial upper bound for Ent(P"|P>").
However, when X1 is the standard Brownian motion starting from a fixed initial value x,
ie. v =0,, we have

1
E[|Vlogpi*?(X1")] = 8—2E|X§’“” —a’ =

w | =

So, for elliptic diffusions the best possible short time estimate on E[|V log pl-*|?(X )] behaves

like s7!, so that
t
/ E[|V log p2(X1)]ds = o0, > 0.
0

Consequently, the estimate (1.8) becomes trivial when

(1.9) inf |lai(s,x) — as(s,x)| > 0.

(s,2)€[0, T xR4

So, the key point of the present study is to cancel the small time singularity in (1.8), which
stimulates us to develop a new coupling method, i.e. the bi-coupling method in Section 2 below.

1.3 Main idea and structure of the paper

To kill the singularity in (1.8) for small ¢ > 0, in Section 2 we introduce a new technique by
constructing an interpolation diffusion process which is coupled with each of the given two
diffusion processes respectively, so we call it the bi-coupling argument. In Section 3 we apply
the bi-coupling to estimate the entropy between two diffusion processes, and as an application,
in Section 4 we establish the entropy-cost inequality (1.7) for the McKean-Vlasov SDE (1.6).



To measure the singularity /regularity of coefficients in (1.6), we introduce the following
class of Dini functions

1
D = {gp :[0,00) — [0, 00) is increasing and concave, p(0) = 0,/ SO(S)ds < oo}
0 S

For ¢ € 9,t > 0 and a function f on [0,] x RY, let

[F oo = sup [f(t,2)], [ fllr—t00 = sup [ flls oo, 7€ [0,1],

$6Rd s€ [T‘,t]

f(tx) - f(t,y)|)
elle—yl) /)

[floory == sup (rf<t,x>|+

te[0,T],x#£ycR

In the following, ¢ = ¢(K,T,d, ) stands for a constant depending only on K,T,d and ¢
given in (A;) and (Ag).

2 Bi-coupling method and density estimates
Let 0; = v/2a;,i = 1,2. Consider SDEs:
(2.1) dX] = bi(t, X))dt + o(t, X)W, t€1[0,T], i=1,2.

We make the following assumptions (A;) and (Ay) where b; may have a Dini continuous term
with respect to some ¢ € 9.

(Ay) For each i = 1,2, b; = bﬁ‘” + bgl) is locally bounded, and there exists a constant K > 0
such that

15 o700 V IVBM losro0 V laillosise V | loozoe V | Vaillosree < K.

(As) There exist i € {1,2} and ¢ € Z such that ||b,§0)||0—>T,<p <K.

According to [23, Theorem 2.1], (A4;) implies the well-posedness of (2.1). For any s € [0,7)
and z € R? let X_7 be the unique solution of (2.1) for ¢ € [s,T] with X} = z. Then

(X i’f)(t,$)€[07T]XRd is the diffusion process generated by (L?i’bi)te[s,T]a 1=1,2.

S,

For fixed 21,25 € RY, let X" := Xéf’ solve (2.1) for X" = x;. We have

Ptiwi = gX?zia 1=1,2, 1€ (O’T]

To estimate Ent(P.™|P""*) for some t; € (0,77, we choose t, € (0, +t1] and construct a bridge

diffusion process X" starting at x; which is generated by L™ for ¢ € [0, 9] and LI for
t € (to, t1]. More precisely, let

b<t0>(tv ) = 1[0,t0](t)b1 (tv ) + 1(to,t1](t)b2(t’ ')7
U<t0>(t7 ) = 1[0,150} (t)al (t> ) + 1(t0,t1](t)02(t7 ')7 te [07 tl]-
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We consider the interpolation SDE
(2.2) dx o = pltod (¢ x 01 qg 4+ glto) (¢, X OTYAW,,  XE =2y, t € [0, 4],

Let Pt .= XX (toye: - We will deduce from (1.8) a finite upper bound for Ent(P,"*| P, (fojery,
where the singulamty at t = 0 disappears since the distance of diffusion coefficients vanishes
for t € [0,%o]. Moreover, we will estimate the moment for the density of P 071 With respect
to PZ’”, so that by the following entropy inequality (2.3), we derive the de51red upper bound
on Ent(P}™|P>"). We remark that (2.3) has been presented in [12] for p = 2, but in the
present study we shall need the inequality for p > 2 as required in the dimension-free Harnack
inequality due to [23], see the proof of Proposition 2.3 for details.

Lemma 2.1. Let py, po and p be probability measures on a measurable space (E, ). Then for
any p > 1,

dp \ 551
(23 Ent(pi]p12) < pEnt () + (p — 1) log / (5=)" du
B NAH2
where the right hand side is set to be infinite if 75 d“l or 75 - does not exist.

Proof. 1t suffices to prove for the case that di and C‘l% exist such that the upper bound is
finite. In this case, we have

dpn du
Ent — Ent — log /% — log —L 1q
nt (g |po) — Ent(uy|p) /E{ 08 1., 18 du} th

/{log(f }d,ul p; ! : (j—Z;) log (j—;l)ppldug.

Combining with the Young inequality [3, Lemma 2.4], we obtain

—1 —1 dp \ 7
Ent(ju|p2) — Ent () < 2—=Ent(jur ) + 7 1og/ (—M> Cdps.
p p g Nduo

By Lemma 2.1, for any p > 1 we have

dpffomN st
1 ;L2
t1

24) BRI < B (P P 4 - o [
Rd

Noting that a(t,-) —ay(t,) = 0 for t € [0,¢y], we may apply (1.8) to derive a non-trivial upper
bound on the first term in the right hand side of (2.4), see Proposition 3.2 for details. So, in
the following, we only estimate the second term. To this end, we need the following simple
lemma.



Lemma 2.2. Let & > 0 be a continuous semi-martingale such that
d§ < ki&dt +dA, +dM,, te 0,77,

where k1 > 0 is a constant, A; is an increasing function with Ag = 0, and M; is a local
martingale with
d(M); < k& dt.

Then for any to € (0,T A k') and constants \, k > 0 such that

A
(2.5) k(l — klto) > ky <1 + E)a
we have
E exp [ Aty } < exp [Ao + AAy, .
14 ktgd — 0
Proof. Let n; := exp [%] By Itd’s formula, we find a local martingale M, such that
A A2 kX, ~
dn = n.f d A(M), — —dth + ai
M= T st s prr M)~ ety M
Akq A2k, kX ~
< - A M, T].
By (2.5) we have
Ak A2k kX
: L <0, tel0t,

1+ kt i 2014+ kt)2  (1+kt)2 — 7
so that i
dn, < Mpd Ay +dM,, t € [0, 1)
By Gronwall’s lemma, this implies
E[ne,] < noeo,
which coincides with the desired estimate.
O]

Proposition 2.3. Assume (Ay) and (As). Then there exist constants p = p(K,T,d) > 2,e =
e(K,T,d) € (0,%] and c = ¢(K,T,d) > 0, such that for any v,z € R% t; € (0,T] and ty = ety

72

dPt<tO>$1 ﬁ 2 C 9 tl 9 )
! ( : )‘del‘2<_ - / - by — b2 }dt ).
Og/Rd P hoS (le o] + i {llar — a2l o + 161 — ba||7 oo }

Proof. (a) Recall that %,(R?) is the space of all bounded measurable functions on R?, and let

P f(a) = E[f (X)), PP f(x) :=E[f(XP7)], fe€BRT), (t.x)€[0,T] xR
Then the desired estimate follows from the inequality
|PA ()] < (P11 (22))

(2.6) —1 t
LD (o aaP [ s = i+ I -l e ) 1 € e
0

xexp{

9



dP<to>w1 1

Indeed, taking f := (n A d;T@)”j for n > 1, this inequality implies
31

dp<t0>zl p% p dp(t0>$1 p% p
(L ) = ([ o) e
Rd dPt1 Rd dIDt1
ARty 5
(LS
Rd dp; ™ !

clp—1 t
e [ (o -t [ s = ool + I - el )|
1 0

Taking log in both sides we derive

(to)z1 . _p_

t p—1 2,x
o o )

t
¢ e 2 2
< (o=l [l = aallt Do = wlJar ), nz
1 0

which implies the desired estimate as n — 0o. So, it remains to find constants p > 2 and ¢ > 0
such that (2.6) holds.

Let (Ps(,2t))0§s§t§T be the semigroup generated by L{>", i.e.

P fa) =Elf(XI)), | € B (RY,
where (X27)ie(s.m) solves
AXZ7 = bo(t, X27)dt + o(t, X27)dAW,, X2T =, t € [5,T).
By the Markov property and the SDE (2.2), we obtain
(2.7 P f (o) = B[(Pon G Py f(a) = E[(RGNXG™)].

By [23, Theorem 2.2] which applies to a more general setting where bgo) only satisfies a local
integrability condition, and noting that ¢; —ty = (1 —€)t;, we find constants p; = p; (K, T, d) >
1v %l and ¢; = ¢;(K,T,d,e) > 0 such that

c1lz—y|?

(2.8) P2 F@)[" < (PO W)e &, f€B(RY),z,y R
Combining this with (2.7) and Jensen’s inequality, for p := 2p; > 2V d we obtain

x 2p1 x 2
[P f(an) P = [BIRC) S5 < (B[BS) 17 (0]

) Cllewl - X27m2|2 ’
< (B[P 1) e (A7)

z 20| X" — X2
< (B[P |1 (i 2)])E{exp< = T |>]

2¢1| X;;" — Xff"’?)}

= (1%<3>|f|f°<x2>)E[exp ( ;
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Thus, to prove (2.6), it remains to estimate the expectation term in the upper bound.
(b) Since the exponential term is symmetrlc in (X", X2**), without loss of generality, in

(A2) we may and do assume that ||b ||0_>T¢, < K. We shall use Zvonkin’s transform to kill
this non-Lipschitz term. By (Al) b\ is bounded and noting that p := 2p; > 2V d, for a fixed
constant ¢ > 2 such that ;l + 2 = <1, we have Hbl |72 < 00. So, according to [38, Theorem 2.1],

there exist constants ¢; = ¢;(K,T,d,p,q) > 0 and § = B(p,q) € (0,1) such that for any A\ > 0,
the PDE

(2.10) (0, + L — Ny = —b"(¢,), t€[0,T),ur =0
has a unique solution satisfying
(2.11) N (llullos.co + [V tllosro0) + 10l gy + IV2ullzy < e,

where for any measurable function g on [0, 7] x R¢,

: .
(2.12) me—wp(A|MM1< ST ).

2z€R4

(1) ) )
Let Py " be the Markov semigroup generated by L™ | and let pilt’bl be the heat kernel
with respect to the Lebesgue measure. By Duhamel’s formula, we have

T
(2.13) us:/ e A=) ‘”” {vb(O)uter (t,-)}dt, se]0,T).

Let V2 be the Hessian operator in z. By [18, Theorem 1.2], under (A;) we find a constant
d =0(K,T,d) > 1 such that

a b()
IV2pei ' (z,y)] <

A
; gs(t —s,2,y), 0<s<t<T,z,ycR?
— 8

holds for
(2.14) gs(r,x,y) == (wér) 2" &, r>0,1,y € R
where 6 : [0,T] x [0,T] x R — R? is a measurable map. So, letting

(2.15) hi(y) = (0 (t,y) - V)uly) + 07t y),

and denoting by (V., V2) the gradient and Hessian operators in x € R?, we obtain

9 T efA( ) 2 ai, b(
|Vius(z)| < / ‘prst (he — ht(z))(ar)t:@&t(x)dt
(2.16)

;/A m/\%ﬁf 2.9)] - 1hey) — he(Bus(@))]dy.
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By (As), (2.11) for A > 1, and (2.15), we have

(2.17)  |hi(y) — he(Bse(2))] < (14 )b (1 y) — b7 (1, 04 ()] + K[V (y) — V(s 4())].

In the following, we estimate these two terms in the upper bound respectively.
Since ¢ is concave, we find a constant ¢o = co(K,T,d) > 0 such that

0 ) = B (2 01 () g5t~ 5.2, y)dy
R

<K [ el = bua())gs(t = 5,,)dy
R

< Kgp(/d|y—Qs,t(aj)|g(5(t—s,x,y)dy) §02<,0<\/t—3>, 0§s<t§T,x€Rd.
R

Hence,
T e—)\(t—s) ) )
sup [ St [ 090 b Bt 2,0y
(2.18) A
T =Mt (4%
t
302/ S A f(Q)dt::a?
0

where g1 = 1(\, K, T, d, ). Since ¢ € Z implies

T 1k T%
/ Mdt = 2/ @ds < 00,
0 t 0

S

by the dominated convergence theorem we derive limy_,,, 1 = 0.
On the other hand, let « =1 — % € (0,1). By the Sobolev embedding theorem, see e.g. [1],
there exists a constant ¢y > 0 depending on p and d such that

IO EYC]

sAyeB(z1) Y — 2|

< collpeny (/I + IV D), 2 €RY [ e WP(RY).
So,
[V (y) = Vuy(2)] < eoly = 21 11pe0 (Ve + [V2ul)l p@ay), i [y — 2| < 1.

Noting that ]‘;l + % <landa=1-— % imply (1 — )% <1, by combining this with (2.11) and

(2.14), we find constants c3 = c3(p,d) > 0 and ey = e9(\, K, T, d,p,q) > 0, where 5 — 0 as
A — 00, such that

T e—>\(t—8)
/ ; dt IVur(y) — Vu(0s4(x))|gs(t — s, z,y)dy

g—1

T q
< 03(/ e A= (¢ — s)(la)qldt) (IIVullosree + HVZUHZ{;) < ey, s€0,7T].
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By (2.11), and combining this with (2.16), (2.17), and (2.18), we find large enough A =
MK, T,P,¢) > 0 such that ||[V?ulor,00 < 3. Combining this with (2.11), we may choose
large enough A > 0 such that

(2.19) oo V [ Vuloroo V IVl < 5.

In particular, letting

(2.20) X7 = X5 (X)), i=1,2,

we have

(2.21) %!th’“ — X7 <X = XPT < 21X — X,

Hence, to bound the exponential moment in (2.9), it suffices to estimate the corresponding
term for |Xt10’z1 — Xt20’3”|2 replacing |X,510’$1 — Xfo’”|2.
(c) Let I be the d x d identity matrix. By (2.10), (2.20) and It&’s formula, we obtain
AX = D + B (, ) XA+ { T+ Vg (X)) Yoo (, X2)awy,
(2.22) AXP™ = Dy + (L% = L Yug + (by — 67) (8, )V (XP™)dt
+ {La+ Vu (X772 boo (t, X772)dW,.

By (A1), (2.19), (2.21), and It6’s formula, we find ky = ki (K, T,d, ¢) > 0 such that

(2.23) d[X)" = X772 < K| X0 — XP72)2dt + d A+ dM,, t € [0, 6],
where

t
2:20 A=k [ (s =l = B )

0

and M, is a martingale satisfying
(2.25) A(M); < ky| X" — X772 2dt.
For any n > 1, let

Tpi=to Adnf {t >0 | X[ — XD > n}, 4, = s[up | X — X2
te|0,mn,

By (2.21) we have
(2.26) | X" — X072 < dlzy — x0)?

Moreover, to apply Lemma 2.2, let

tl 801(1 + k?to) ]{31 A
tg == , Ai=—m—mm k= (1 —)7
0 2[(Tk1 + 4]{3101) vV 1] tl 1-— ]{tho + 2

13



so that (2.5) holds and
A . 801

1+ kte  t

Combining this with (2.23)-(2.26), we may apply Lemma 2.2 for & = |X;""* — X" to find a
constant ko = ko(K,T,d, p) > 0 such that

8c 1,zq 2122 2 2 2
E[e 51567 X571 < o8 (lmn—sal 50 lor ozl 101l )t).

This together with (2.9) implies (2.6) for some constant ¢ = ¢(K,T,d, ¢), and hence finishes

the proof.
[

3 Entropy estimates between two diffusion processes

With the bi-coupling method and density estimates addressed in Section 2, we are able to prove
the following result on entropy upper bound estimates for diffusion processes with arbitrary
initial distributions in &%, for which the existing estimates may be invalid as explained in
Section 1.2.

Theorem 3.1. Assume (A1) and (Ag). Then the following assertions hold for some constants
c=c(K,T,d,p) >0 ande =¢(K,T,d,p) € (0, %]

(1) For any vy,vs € & and t € (0,T],
CWz V1>V2

Ent(PL P2y < 02 v2) /{mlbm o — aalf?., }ds
(3.1)

cnm—@@%m+/Nww@—@mmm]
et
(2) If there ezists a constant C(K) > 0 such that

(3.2) Vb1 [lo700 + Va1 Josr,00 < C(K), i=1,2,

then for any vy,vs € & and t € (0,7,

t
Ent(P, " |PP") < g [W2(V1,V2)2 +/ (161 = b2 o + llar — a2 o) ds
(3.3) 0

¢
+/ ||div(ay —a2)||§’oods.
et

To prove Theorem 3.1, we shall apply (2.4), where the second term in the upper bound has
been estimated in Proposition 2.3, and the first term will be estimated by using (1.8) and the
following result.

Proposition 3.2. Assume (Ay). Then the following assertions hold.

14



(1) There exists a constant ¢ = c¢(K,T,d) > 0 such that

1,x|2 t
(3.4) / / | dy<clog<1+ ), 0<r<t<T,zecR%L
Rd

S

(2) If (3.2) holds, then exists a constant ¢ = ¢(K,T,d) > 0 such that

v 1,x |2
(35) | B L ay <
R

1,x
2

€ (0,T],x € R

+1 0

To prove Proposition 3.2, we first present the following lemma.

Lemma 3.3. Assume (Ay) with the condition on ||Vai|losr0o Teplacing by the weaker one:
there exists B € (0,1) such that

H(Il(t,$) - al(tay)H S K|$ - y|/87 le [O,T},:B,y € Rd-

Then there ezists a constant ¢ = ¢(K,T,d, ) > 0 such that

‘/ L og ph )dy—/d(pi’””logpi’m)(y)dy
R

(3.6) .
§clog<1+—>, O<r§t§T,x€Rd.
r

Proof. Let x € R? be fixed. Simply denote p;(y) := ptl’x(y),t € (0,T],y € RY. Let 6;(x) solve
(3.7) 00 (z) = b1(t, 04(x)), Oo(x) =z, t€][0,T].
By [18, Theorem 1.2], there exists a constant cq = ¢o(K,T,d) > 1 such that

1 cl6r () —y[? co _lor(@)-v?

(3.8) ¢ <ply) <o o, ryeRLte(0,7].
cot2 t2
Consequently,
(3.9) /d pi(y) log pe(y)dy < /d pi(y) log[eot™2]dy = loglegt 2], t € (0, ).
R R

On the other hand, by (3.8) and Jensen’s inequality, there exists a constant ¢; > 0 such that
_1 1
—/d pe(y) log pi(y)dy = 2/ pe(y)log pe(y) 2 dy < 2log/dpt(y)2dy
R R
1 g _ 1@ -y? 1,4
<2log |cgt™3 [ e 2ot dy| =2logle, 2y 4] log[ey t2].
R4

Hence,
[ et og m(u)ay = loglent ).t e 0.7],
R

15



Combining this with (3.9), we derive find a constant ¢ > 0 such that

t
| oz oy = [ oo )y = loglewr4) ~ togleot 4] = ~elog (1+ ).
R4 R4 T

and similarly,

t
[ oz oy = [l tog )y < loglewr4) ~loglert 4] < clog (14 ).
R4 R4 T

So, (3.6) holds. O

Proof of Proposition 3.2. Let x € R? be fixed, and simply denote p, := p,™.
(a) We first consider the smooth case where

(3.10) Vb llosTeo + Va1 osTee < 00, > 1.

By [18, Theorem 1.2], there exist a constant A > 1 and a measurable map @ : [0, 7] — R? such
that

d+z 161 —y|?

<|Viplly) <X zew, te(0,T,yeR,i=0,1,2.

d+1 )\Wt y|2

(3.11) A

Moreover, by the Kolmogorov forward equation and integration by parts formula, we have
(3.12) Bipr = div [al( VWi + peddivay(t, ) — b (t, -)}], te (0,7].
By (3.11), (3.12) and integration by parts formula, we obtain
t

/d {pilog pr — prlog p, } (y)dy = / dS/d {(1 +1log ps)sps } (y)dy
(3.13) . r R
= [Cas [ (s, b0+ divans.) (s ). VYo

r R4

Since a; > K11, this implies

\% 52
/{ptlogpt prlog pr }( dy+K/dS/ Vet
Rd  Ps

(3.14) < —/r ds /Rd divay(s,-) — by (s, -),Vp5>(y)dy

:/,,tds/w“bg — divay] (s, "), Vps dy+/ dS/Rd Vps>(y)dy-

By (3.10), (3.11) and Lemma 3.3, we derive

2
(3.15) / /d |v'08’ y)dy < oo.
R Ps
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Noting that (A;) implies |b§0) — diva;| < 2K, so that

t
/ds/ bg dlval]( )Vps>(y)dy
Rd
2K°
_ZK/ /Rd Ps y)y + /ds/des

2K/ Rd' pal” (y)dy + 2K3(t — 7).

S

Moreover, by the integration by parts formula, (3.11) and Hngl)Ho_)T,oo < K, we obtain

/ ds / (W65, 0,90 ) ) / ds / div{B" (s, y)}ps(y)dy < K(t 7).

Combining these with (3.14) and (3.15), we derive

/tds VoL )y
(3.16) ro JREPs

< 2K/ {prlog p, — pilog pi} (y)dy + 2K*(2K* + 1)(t — 7).
Rd

(b) In general, let 0 < ¢ € Cg°(R?) such that [p,¢(z)dz = 1, and define the smooth
mollifier .¥,:

Fuf@)=n [ flo= oty 0z 11 € L, @)
R
Let
V(L) = b (L, ), aP(t,) = Fpar(t,), n>1.
Then (a1 R ) satisfies (3. 10) and (A;) for the same constant K. So, by step (a) and Lemma

n) n)

3.3, the density function p; ) for the diffusion process generated by L;'" "I satisfies

(3.17)

t
dy<clog<1+ >, O<r<t<T,n>1

Rd
for some constant ¢ = ¢(K, T, d) > 0. Equivalently, for any
feCP*([r,t] x R :={f € Cy([r, 1] x RY) : V[, V2f € Cy([r,t] x RY)},

we have

ds

’/t] Rd Afs dsdy { Vlogps ,st>ps }( )

t
< clog (1+—) / \VfSIQ(y)pZ)(y)dsdy, w1
7 Jr ] xRd

17



By [26, Theorem 11.1.4],

lim [ o2 (y)g(y)dy = /R PsWay)dy, g€ Co(RY), s € [r1].

n—oo Rd

So, the above estimate implies

2
‘/ (y)Afs(y)dsdy
r,t] XRd

for any f € Co”([r,t] x R?). Therefore, (3.4) holds.
(c) If (3.2) holds, then by Malliavin’s calculus, see for instance [19] or [36, Remark 2.1], for
any v € R? with |v] = 1, there exists a martingale M,"*" such that

t
<clog(1+1) [ [VAPmm)dsdy
r [rt] xRd

E[V,f(X,")] = E[f(X;")M;""), | € CyRY).t e (0,T]

and E[|M""2] < ¢ holds for some constant ¢ = ¢(7T', K,d) > 0 and all ¢ € (0,7]. This implies

‘/Rd{@,vxlogpt ) f )" (y)dy

Equivalently,

_t/f Vot (y)dy, feCHRY), |v] = 1.

V2 cd
RE Py

so that (3.5) holds. O
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (1) Let p > 1 and e € (0,3] be in Proposition 2.3. By Proposition 3.2
and (A;), (H) holds for v = §,, and (a‘*) b)) replacing (as, by). By (1.8) with v = §,, and
(3.4), we find a constant ¢; = ¢1(K,T,d, ) > 0 such that

Ent(P."| P, )

(3.18) <er|lar — a2”zt1—>thoo +/

ety

t1

(Ildiv(ar — as)| + lor — bzllf)dt],
€ (0,T],z; € RY.

Combining this with (2.4) and Proposition 2.3, we find a constant ¢ = ¢(K,T,d,¢) > 0 such
that for any t; € (0,7] and x1, 25 € R?,

X X C tl
Ent(Ptllv 1’Pt21, 2) <Ly (x1,29) = t—(]xl — 332‘2 +/ {Hbl — bgHioo + ||lay — agHioo}ds)
1 0

t1
el = aall o+ [ laivian - alds)
£

t1
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Equivalently, for any ¢ € (0,7] and f € %, (R?),

(3.19) /Rd{log F)}PF (dy) < log /Rdf(y)Pf’“(dy) + L(w1, 22), 1,79 € RY

Let m € €(v4, 12) such that

WQ(Vl,V2)2 == / |I1 —$2|27T(d1‘1,d(l,’2>.

R xR4

we obtain

Ent(PM[P2) = sup { {log £ P ()~ 1og | f(y)Pf’”Q(dy)}
0<feBy®d) | JRrd Rd

S/ [t(l’l,LEg)’/T(dl'l,d.fEQ)
R4 xR?
c t
=W+ [ (= el e - ol Jas)
0
t
el = aalPi [ aivian - o) cds).
et

Hence, (3.1) holds.
(2) Let (3.2) hold. By (1.8) and (3.5), we find a constant ¢; = ¢;(K,T,d, ) > 0 such that
for any ¢t € (0,T] and x; € R%,

t t
z z 1 :
Eut(P R) < e [ Cllan = aalfads o [ [ldiv(an - an) P+ o~ Bl ],
&

et t
t t

C .
<=l - as |l ods + Cl/ [ldiv(ar — a2)]|? o + [|br — bal|? ] ds.
Et et et

Then as explained above that using this estimate to replace (3.18), we derive (3.3) for some
constant ¢ = ¢(K, T, d, ) > 0. O

4 Application to McKean-Vlasov SDEs

As an application of Theorem 3.1, we are able to establish (1.7) for (1.6) with distribution
dependent multiplicative noise. For any pu € C([0,T]; %), let

1
au(ta x) = 5(00*)<t7$7 ,ut)a b“(t, .’K) = b(ta xnut)a (tv .Z') < [07 T] X Rd'
Correspondingly to (A;) and (As), we make the following assumption.

(B) There exists a constant K > 0 such that a* and b* = b0 + b satisfy the following
conditions.
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(1) For any pu € C([0,T]; &,), b* is locally bounded, and for any (¢,x,u) € [0,T] x R% x P,

IV o700 + 0" lor,c0 + (@) losr00 + VA lomr,c0 < K.

(2) There exists ¢ € Z such that
12l < K, € C([0,T]; 22).

(3) For any v, u € Ps,

||by - buHO—)T,oo V ||CZV — CLMHO_)T,OO V ||diV(CLV —at S KWQ(I/, u)

)HO—>T7oo

Theorem 4.1. Assume (B). Then (1.6) is well-posed for distributions in &5, and there exists
a constant ¢ = ¢(K,T,d, ) > 0 such that (1.7) holds.

Proof. By (B), for any p € Py, b"(t,z) := b(t, x, u) has decomposition 6% + b* such that b'*
is locally bounded and
b4 V| Vb < K.

Let b := b19%  where d; is the Dirac measure at 0, and let b®#) := p* — b, Then (B) implies
Vb < K, (b9 < K + Kp(| - [*)2.

This together with the the condition on ¢ included in (B) implies assumptions (Ap) and (A;)
in [14] for k = 2. Therefore, by [14, Theorem 1.1}, (1.6) is well-posed for distributions in Z?,,
and there exists a constant ¢ > 0 such that

(4.1) sup E[|X;|?] < (1 + E[|Xo[*]) < o0
te[0,7

holds for any solution with Ly, € Zs.
For v; € P5,i= 1,2, and (t,z) € [0,T] x R?, let

1
a;(t,x) :=a(t,z, P'v;) = =(o0™)(t,x, P'v;),
", (t.2) = alt, &, Prvi) = 5(00) (1,2, P

) i

bi(t, x) = b(t,z, Prvy), b (t,z) =0t x), k=0,1.
By Theorem 3.1, under (B), there exists a constant ¢; = ¢;(K,T,d, ) > 0 such that for any
t € (0,7,
Ent(P 11| P]vs) < i—lwg(ul, vy)?
+ crllbr — boll} oo + c1log(L+t7N)]Jar — aslf} o + crtl|div(ar — as)|]7

< %Wz(m, ) + o K {1+ log(1 +t7") + ¢} sup Wa(Pl1, Pln)?.
s€[0,t]

Then there exists a constant ¢o = (K, T, d, p) > 0 such that

Ent(Pv|Pvs) < %WQ(M,VZF + 2 qup Wo(Prun, Prn)?, t e (0,T).
s€[0,t]

Combining this with the following Proposition 4.2, we derive (1.7) for some constant ¢ > 0,
and hence finish the proof. O

20



Proposition 4.2. Assume (B). Then there exists a constant ¢ > 0 such that
W2(Pt*l/17 Pt*l/g) S CWQ(I/l, 1/2), t e [O7T], Vi,V € e@g.

Proof. Let a; and b; be in (4.2), and let u; be in (2.10) for large enough A > 0 such that (2.19)
holds. Let X}, X2 be Z#;-measurable such that

(4.3) Ly =vi, i=12, E[|Xo— Xg|"] = Wa(v1,10)".
Let X solve (2.1) with initial value X¢. We have Zy; = P;v;, so that
(4.4) Wa(Pfvr, Pivn)* <E[IX] — X7PP], ¢ €[0,T).

Let X! = X! +u,(X}),i=1,2. Then

1 L
(4.5) 1K= X <X =X <2 = X7, e[0T,
and similarly to (2.22), by (2.10), (1.6) for X} and It6’s formula, we have

AX} = Dy + 00 )Y A+ {1+ Vg (XD oo (¢, X AW,
AX? = {hug + (L% — Ly + (by — 07) (8, ) H(X2)dt
+ {Is+ Vu(X}) }oo(t, X7)AW,.

Combining this with (B)(1), (2.19), (4.3) and Ito’s formula, we find ky = ki (K, T, d,¢) > 0
such that

dIX; = XEP < (1X) = XPP 4 llar = aafoc + [1b1 = ballf)dt + A, t € [0, T,
Noting that (B)(3) and (4.2) imply

lar = agll? o + [1br = ball7 o < 2K2&, & := sup Wa(Pjvy, Pwg)?,
s€[0,¢]

and due to (2.19), (4.3) and (4.4)

L L 1
E[| Xy — X5°] < AW (11, 1)%, E[IX) — X7 > SE[|IX; — X7°] > ZWZ(Pt*VhPt*V?)Z?

| =

we find a constant ky = ko( K, T, d, @) > 0 such that

t
ét S kQWQ(Vl, 1/2)2 + k’z/ fst, t e [O,T]
0

Since (4.1) implies & < oo, by Gronwall’s inequality, this implies

SFP]W2(P:V17 Puy)? = & < koeP2TWy (g, 1)
t€0,T

So, the proof is finished. O
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Remark 4.1. After an earlier version of this paper is available online, the bi-coupling argu-
ment developed here has been applied in [10, 22] for singular and degenerate models, where
condition (B)(3) is weakened in [10] by using W, + W, replacing Wy, see [10, Theorem 1.3,
Remark 1.2 for details. We believe that with additional efforts this new coupling argument
will enables one to derive the entropy-cost inequality for McKean-Vlasov SDEs with singular
potentials, where b;(z, i) is given by

be(x, 1) = /Rd V(r —y)u(dy)

for V being a singular potential such as the Coulomb potential V(z) = |z|*>7¢ for d > 2 and
V(z) = log|z| for d = 2. This will be addressed in a forthcoming paper.
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