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Abstract

We identify the leading term in the asymptotics of the quadratic Wasserstein distance
between the invariant measure and empirical measures for diffusion processes on closed
weighted four-dimensional Riemannian manifolds. Unlike results in lower dimensions, our
analysis shows that this term depends solely on the Riemannian volume of the manifold,
remaining unaffected by the potential and vector field in the diffusion generator.
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1 Introduction and main result

On a d-dimensional closed Riemannian manifold M , let L := ∆ +∇V∇+ Z,

L(f) = ∆f +∇V ∇f + Zf, ∀f ∈ C2(M),

where ∆ is the Laplacian, V ∈ C2(M) such that for the Riemannian volume measure vol

µ(dx) := eV (x)vol(dx)

is a probability measure, and Z is a C1-vector field (i.e., a derivation) with divµ(Z) = 0:
∫

M

Zfdµ = 0, ∀f ∈ C1(M).
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Let X := (Xt)t≥0 be the diffusion process generated by L and write Pt for its transition
semigroup. It is well-known that X is exponentially ergodic with µ as its unique invariant
probability measure. Consider then the empirical measure

µT :=
1

T

∫ T

0

δXtdt, T > 0,

where for any x ∈ M , δx denotes the Dirac measure at point x. By ergodicity, a.s. the
weak convergence of probabilities µT → µ holds as T → ∞. It is of interest to establish
quantitative convergence results in terms of suitable metrics on the space of probabilities on
M . A natural choice is provided here by the Wasserstein distance Wp (for any p ≥ 1) induced
by the Riemannian distance ρ on M . The distance Wp is the p-th root of the optimal cost
required to transport µT into µ, where the displacement cost from x to y is given by the p-th
power of the Riemannian distance ρ(x, y)p. In this context, it has been deeply investigated in
a series of recent works [11, 12, 14] and the following asymptotic behavior holds [13, theorem

1.1], given 1 ≤ p ≤ max
{

2d
(d−2)+

, d(d−2)
2

}

, for every x ∈M :

(1.1) E
x
[

W
p
p(µT , µ)

]

∼ 1











T−p/2 if d ≤ 3,

((log T )/T )p/2 if d = 4,

T−p/(d−2) if d ≥ 5,

where E
x denotes the expectation with respect to the probability P

x under which the diffusion
process has initial condition X0 = x. It is conjectured that (1.1) can be extended to all
1 ≤ p <∞.

If one denotes with Rp,d(T ) the right hand side in (1.1), the existence of the limit

(1.2) lim
T→∞

E
x
[

W
p
p(µT , µ)

]

Rp,d(T )
=: c(L, p)

is also naturally conjectured, although it is only proved so far in the case d ≤ 3 in [12,13]. For
p = 2, it reads

(1.3) lim
T→∞

TEx
[

W
2
2(µT , µ)

]

=

∞
∑

i=1

2

λ2i

(

1− 1

λi
V(Zφi)

)

,

where {λi}i≥1 are the strictly positive eigenvalues of −(∆+∇V ) in L2(µ), {φi}i≥1 are associated
unit L2(µ)-norm eigenfunctions and V denotes the quadratic form

(1.4) V(φ) :=

∫ ∞

0

∫

M

φPtφ dµ dt.

1The notation f(T ) ∼ g(T ) means that it holds c−1 ≤ f(T )/g(T ) ≤ c for T sufficiently large, for some
constant c ∈ (0,∞) possibly depending on M , L and other parameters but not T . We also collect for later use
the notation f(T ) . g(T ), when it holds f(T ) ≤ cg(T ) for T sufficiently large, for some constant c < ∞.
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The appearance of V is ultimately due to the central limit theorem in this setting [15]: for
every φ ∈ L2(µ) with

∫

M
φ dµ = 0, one has convergence in law, as T → ∞,

(1.5)
1√
T

∫

φdµT =
1√
T

∫ T

0

φ(Xt)dt→ N (0, 2V(φ)).

Let us notice that, since V(φ) ≥ 0 for every φ, the limit (1.3) yields that c(L, 2) ≤ c(∆ +
∇V∇, 2), i.e., convergence is faster (although with the same asymptotic rate) in the non-
symmetric case, i.e., if Z 6= 0.

If the dimension of M is larger than 3, existence of the limit (1.2) is currently an entirely
open problem. In [10, section 1.3], it is conjectured that for d ≥ 5, the constant c(∆+∇V∇, p)
could be given by an expression in terms of the corresponding limiting constant for the Brownian
interlacement occupation measure, although only an upper bound for M = T

d the flat torus
and V = 0 is established [10, theorem 1.2].

In this communication we show the validity of (1.2) for d = 4 and p = 2.

Theorem 1.1. With the notation introduced above, for a closed Riemannian manifold M with
dimension d = 4, weighted volume measure µ, and the occupation measure µT of the diffusion
process with generator L = ∆+∇V∇+ Z, it holds

(1.6) sup
x∈M

∣

∣

∣

∣

T

log T
E
x
[

W
2
2 (µT , µ)

]

− vol(M)

8π2

∣

∣

∣

∣

.

√

log log T

log T
.

Thus, we explicitly compute that c(L, 2) = vol(M)/(8π2) for any 4-dimensional closed Rie-
mannian manifold. In particular, we show that the leading term in the Wasserstein asymptotics
does not depend on V , nor Z. In particular, the independence from the field Z can be explained
as follows: in (1.3), the series of the terms 1/λ2i diverges logaritmically when d = 4, but the
series of terms V(Zφi)/λ

3
i is still convergent (see (2.8) below). This phenomenon, although

novel in this setting, is not completely unexpected, for in the transport of i.i.d. samples on
weighted two-dimensional manifolds [1–4] the leading term in the asymptotics also depends on
the volume only.

The overall structure of the proof borrows from the literature of transport of i.i.d. samples,
and in particular [1]: in Section 2, we prove Theorem 2.1 concerning the asymptotics for the
transport cost between a smoothed empirical measure µT,ε := P̂ ∗

ε µT for ε > 0, where P̂ε is the

symmetric diffusion semigroup generated by L̂ := ∆ + ∇V∇, and P̂ ∗
ε denotes its dual action

on measures. Next, in Section 3, we provide an estimate on the expectation of W2
2(µT , µT,ε),

which refines the simpler contraction estimate

(1.7) W
2
2(µT , µT,ε) ≤ cε, T > 0, ε ∈ (0, 1)

valid for some constant c = c(M) > 0. We acknowledge that both these facts parallel the
argument from [1], but they require new considerations and the introduction of different tools
than the case of transport of i.i.d. points. Finally, in Section 4, we combine them to establish
our main result.

Unless otherwise stated, we always take in what follows d = 4 and set ε := (log T )γ/T for
some fixed constant γ > 3 and consider the case of X being stationary, i.e., any marginal law
of X equals µ. To keep notation simple we write P and E for expectation with respect to this
law.
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2 Asymptotics for the smoothed empirical measures

Theorem 2.1. With the notation introduced above, on a four dimensional closed Riemannian
manifold M , it holds

∣

∣

∣

∣

T

log T
E[W2

2(µT,ε, µ)]−
vol(M)

8π2

∣

∣

∣

∣

.
log log T

log T
.

To prove this result, we rely on a well-known bound for W2 in terms of the H−1 norm of
the density uT,ε of the smoothed empirical measure µT,ε with respect to µ.

We introduce first some notation. Let p̂t be the (symmetric) heat kernel of P̂t with respect
to µ. Then, we have

(2.1) µT,ε = P̂ ∗
ε µT =: uT,εµ, uT,ε :=

1

T

∫ T

0

p̂ε(Xt, ·)dt.

Next, we consider the Poisson kernel

qε(x, y) :=

∫ ∞

0

[p̂t+ε(x, y)− 1]dt, x, y ∈M,

so that

(2.2) fT,ε := (−L̂)−1(uT,ε − 1) =
1

T

∫ T

0

qε(Xt, ·)dt.

In the following, we first estimate the expectation of µ(|∇fT,ε|2) :=
∫

M
|∇fT,ε|2dµ, then prove

the above theorem by comparing it with E[W2
2(µT,ε, µ)].

2.1 Estimate of E
[

µ(|∇fT,ε|2)
]

Recall that, for i ≥ 1, φi denotes a (zero mean) unit norm eigenfunction (for L̂) with eigenvalue
−λi < 0, i.e. ‖φi‖L2(µ) = 1 and L̂φi = −λiφi. We define

ψi(T ) :=
1√
T

∫

M

φidµT =
1√
T

∫ T

0

φi(Xt)dt, T > 0,

where the factor 1/
√
T arises from the central limit theorem (1.5). By (2.1) and the spectral

representation p̂ε(x, y)− 1 =
∑∞

i=1 e
−λiεφi(x)φi(y), we have

(2.3) uT,ε − 1 =
1√
T

∞
∑

i=1

e−λiεψi(T )φi.

Therefore,

fT,ε = (−L̂)−1(uT,ε − 1) =
1√
T

∞
∑

i=1

e−λiε

λi
ψi(T )φi.
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Since (φi)i≥1 is an orthonormal sequence in L2(µ), we find after an integration by parts

(2.4) E
[

µ
(

|∇fT,ε|2
)]

= E

[
∫

M

fT,ε(−L̂)fT,εdµ
]

=
1

T

∞
∑

i=1

e−2λiε

λi
E[|ψi(T )|2].

We claim that the following expansion for E
[

|ψi(T )|2
]

holds (we keep the dimension d
general, for possible future reference).

Proposition 2.2. For any closed Riemannian manifold M with dimension d ≥ 1, there exists
a constant c = c(M,L) > 0 such that

(2.5)
∣

∣

∣
E
[

|ψi(T )|2
]

− 2

λi
+

2

λ2i
V(Zφi)

∣

∣

∣
≤ c

λi(1 + T )
, i ≥ 1, T > 0.

Using this in our four-dimensional setting we deduce the main bound for this part:

(2.6)

∣

∣

∣

∣

T

log T
E
[

µ
(

|∇fT,ε|2
)]

− vol(M)

8π2

∣

∣

∣

∣

.
log log T

log T
.

Indeed, combining ‖∇φi‖L2(µ) =
√
λi with the gradient estimate from [12, Lemma 3.1], we find

that for some constants c = c(M,L) <∞ and λ = λ(M,L) > 0, it holds

‖∇Ptf‖L2(µ) ≤ c(1 ∧ t)− 1
2 e−λt‖f‖L2(µ), t > 0, f ∈ L2(µ),

and we have, integrating by parts and using that divµZ = 0,

∣

∣µ((Zφi)Pt(Zφi))
∣

∣ =
∣

∣µ(φiZPt(Zφi))
∣

∣ ≤ c‖Z‖2∞(1 ∧ t)− 1
2 e−λt

√

λi.

So, V(Zφi) ≤ c1
√
λi for some constant c1 = c1(M,L) < ∞. Next, we recall the small time

asymptotics for the heat trace [5, Corollary 3.2.]:

∞
∑

i=1

e−tλi = tr etL̂ − 1 =
vol(M)

16π2t2
+O(t−1), as t→ 0.(2.7)

By standard Tauberian arguments we find for the eigenvalue counting function N(λ) :=
∑∞

i=1 1{λi≤λ} the asymptotics λ−2N(λ) = vol(M)/(32π2) + o(λ−2), which yields convergence
of the series

(2.8)

∞
∑

i=1

1

λ3i
V(Zφi) ≤ c1

∞
∑

i=1

λ
−5/2
i =

5c1
2

∫ ∞

0

λ−5/2−1N(λ)dλ <∞;

as well as the asymptotics

(2.9)

∞
∑

i=1

e−2ελi

λ2i
=

vol(M)

16π2
log(ε−1) +O(1), as ε→ 0,
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which can be also obtained directly from (2.7) and integrating by parts. Indeed,

(2.10)

∞
∑

i=1

e−λis

λi
=

∫ 1

s

∞
∑

i=1

e−λitdt+O(1) =
vol(M)

16π2s
+O(log s−1) as s→ 0,

and

∞
∑

i=1

e−2ελi

λ2i
=

∫ ∞

2ε

∞
∑

i=1

e−λis

λi
ds =

∫ 1

2ε

∞
∑

i=1

e−λis

λi
ds+O(1)

=

∫ 1

2ε

[vol(M)

16π2s
+O(log s−1)

]

ds+O(1) =
vol(M)

16π2
log(ε−1) +O(1), as ε→ 0.

Combining the claim (2.5) with these estimates in (2.5) yields (2.6).

Proof of Proposition 2.2. By [12, Lemma 4.2(1)], we have the identity

(2.11) V(φi) =
1

λi
− 1

λ2i
V(Zφi).

By the Markov property and stationarity of X , it follows that (writing µ(g) =
∫

M
gdµ)

E
[

|ψi(T )|2
]

=
2

T

∫ T

0

dt1

∫ T

t1

µ(φiPt2−t1φi)dt2 =
2

T

∫ T

0

dt1

∫ T−t1

0

µ(φiPtφi)dt

= 2
( 1

λi
− 1

λ2i
V(Zφi)

)

− 2

T

∫ T

0

dt1

∫ ∞

T−t1

µ(φiPtφi)dt.

(2.12)

We next evaluate the integrand µ(φiPtφi). By Duhamel’s formula

(2.13) Ptf = P̂tf +

∫ t

0

Ps(ZP̂t−sf)ds, t ≥ 0

and φi being an eigenfunction for L̂, so that P̂tφi = e−λitφi, we have

(2.14) Ptφi = e−λitφi +

∫ t

0

e−λi(t−s)Ps(Zφi)ds,

and therefore

(2.15) µ(φiPtφi) = e−λit +

∫ t

0

e−λi(t−s)µ
(

(P ∗
s φi)Zφi

)

ds,

where we write P ∗
t for the semigroup with generator L∗ := L̂ − Z. Noting that µ(φiZφi) = 0

and using Duhamel’s formula (2.13) again

P ∗
s φi = e−λisφi −

∫ s

0

e−λi(s−r)P ∗
r (Zφi)dr,

6



we obtain

µ
(

(P ∗
s φi)Zφi

)

= −
∫ s

0

e−λi(s−r)µ
(

(Zφi)Pr(Zφi)
)

dr.

Combining above identities with the fact that

∣

∣µ
(

(Zφi)Pr(Zφi)
)
∣

∣ ≤ e−λ1r‖Zφi‖2L2(µ) ≤ ‖Z‖2∞λie−λ1r,

we derive

∣

∣µ(φiPtφi)− e−λit
∣

∣ ≤ ‖Z‖2∞λi
∫ t

0

e−λi(t−s)ds

∫ s

0

e−λi(s−r)−λ1rdr ≤ Cλ−1
i e−λ1t/2.

Combining with (2.12) we finish the proof.

2.2 Estimate on E[|W2
2(µT,ε, µ)− µ(|∇fT,ε|2)|]

The main result in this part is the following (with the assumptions d = 4 and on ε).

Proposition 2.3. It holds

(2.16) E

[
∣

∣

∣

∣

W2 (µT,ε, µ)−
√

µ(|∇fT,ε|2)
∣

∣

∣

∣

]

.

√

1

T log T
,

and

(2.17) E
[
∣

∣W
2
2 (µT,ε, µ)− µ(|∇fT,ε|2)

∣

∣

]

.
1

T
.

To prove this result, we need some lemmas. Let L̂x and ∇n
y , for n ∈ N stand for the

corresponding operators acting on variables x, y ∈ M respectively (let ∇0 be the identity
operator). We state and prove the following result for general dimension d and ε ∈ (0, 1), for
possible future reference.

Lemma 2.4. For any n ∈ N and p ∈ (1,∞), there exists a constant c = (n, p,M, V ) <∞ such
that, for any ε ∈ (0, 1),

(2.18) sup
y∈M

∫

M

∣

∣∇xL̂
−1
x ∇n

yqε(x, y)
∣

∣

p
µ(dx) ≤ c











ε−
(d+n−3)p−d

2 , if (d+ n− 3)p > d;

{log(1 + ε−1)
}p
, if (d+ n− 3)p = d;

1, if (d+ n− 3)p < d.

and

(2.19) sup
y∈M

∫

M

∣

∣∇n
yqε(x, y)

∣

∣

p
µ(dx) ≤ c











ε−
(d+n−2)p−d

2 , if (d+ n− 2)p > d;

{log(1 + ε−1)
}p
, if (d+ n− 2)p = d;

1, if (d+ n− 2)p < d.

7



Proof. These bounds could be established by the same argument in [1, Corollary 3.13] using
pointwise upper bound of

∣

∣∇xL̂
−1
x ∇n

yqε
∣

∣. Here we provide an alternative approach. Let ρ be the
Riemannian distance on M , so that the standard heat kernel bounds give, for some constants
c ∈ (1,∞) and λ > 0,

(2.20)
∣

∣∇n
y

(

p̂t(x, y)− 1
)
∣

∣ ≤ ct−
d+n
2 e−λt− ρ(x,y)2

ct , x, y ∈M, t > 0.

Consequently, given 1 < p <∞, for every y ∈M and t > 0,

∫

M

|∇n
y

(

p̂t(x, y)− 1
)

|pµ(dx)

≤ c1t
− (d+n)p

2

(
∫

{x ; ρ(x,y)≤
√
t}
+

∞
∑

k=1

∫

{x ; k
√
t<ρ(x,y)≤(k+1)

√
t}

)

e−pλt− pρ(x,y)2

ct µ(dx)

≤ ct−
(d+n)p

2
+ d

2 e−pλt
(

1 +
∞
∑

k=1

(k + 1)de−
pk2

c

)

≤ ct−
(d+n)p

2
+ d

2 e−pλt,

where we conventionally keep denoting with c possibly different constants, and we also used
the fact that supy∈M µ({x ; ρ(x, y) ≤ r}) ≤ crd for some (possibly different) constant c < ∞.
Then,

(2.21) sup
y∈M

∥

∥∇n
y

(

p̂t(·, y)− 1
)
∥

∥

Lp(µ)
≤ ct−

d+n
2

+ d
2p e−λt.

On the other hand, notice that

∇x(−L̂x)
−1∇n

y p̂t(x, y) = ∇x(−L̂x)
− 1

2∇n
y (−L̂x)

− 1
2 p̂t(x, y) = ∇x(−L̂x)

− 1
2∇n

y (−L̂y)
− 1

2 p̂t(x, y).

By the definition of qε and the Lp-boundedness of the Riesz transform, we find a constant c
such that

(2.22) I :=
∥

∥∇(−L̂)−1∇n
yqε(·, y)

∥

∥

Lp(µ)
≤ c

∥

∥∇n
y (−L̂y)

− 1
2 qε(·, y)

∥

∥

Lp(µ)
.

Since

(−L̂y)
− 1

2 qε(x, y) =
1√
π

∫ ∞

0

1√
s
P̂tqε(x, ·)(y)dt =

1√
π

∫ ∞

0

dt

∫ ∞

0

p̂t+s+ε(x, y)− 1√
s

ds,

(2.21) and (2.22) yield

I ≤ c

∫ ∞

0

dt

∫ ∞

0

∥

∥∇n
y

(

p̂t+s+ε(·, y)− 1
)
∥

∥

Lp(µ)√
s

ds

≤ c

∫ ∞

0

s−
1
2ds

∫ ∞

0

e−λ(t+s+ε)(t+ s+ ε)−
d+n
2

+ d
2pdt

≤ c

∫ ∞

0

s−
1
2 e−λs

{

(s+ ε)−
[(d+n−2)p−d]+

2p + 1{(d+n−2)p=d} log{1 + (s+ ε)−1}
}

ds.

8



This implies the desired estimate (2.18). Similarly,

∥

∥∇n
yqε

∥

∥

Lp(µ)
≤

∫ ∞

ε

∥

∥∇n
y

(

p̂t(·, y)− 1
)
∥

∥

Lp(µ)
dt.

Combined this with (2.21), the proof of (2.19) is complete.

Remark 2.5. It is easy to see that (2.20) also implies that for any n ∈ N such that d+ n > 2,

∥

∥∇nfT,ε
∥

∥

∞ ≤ c

∫ ∞

ε

sup
x,y∈M

∣

∣∇n
y

(

p̂t(x, y)− 1
)
∣

∣dt . ε−
d+n−2

2 .(2.23)

The second step towards the proof of Proposition 2.3 is to evaluate the probability of the
event

(2.24) Aξ
T,ε :=

{
∥

∥∇2fT,ε
∥

∥

∞ ≤ ξ
}

,

for ξ > 0. To this aim, we collect the following concentration inequality for diffusion processes,
see also [13, Corollary 3.2].

Lemma 2.6. Assume that the dimension of M is d ≥ 3. Then, there exists a constant c =
c(M,L) ∈ (0,∞) such that, for every g ∈ Ld/2(M) with zero mean (i.e., µ(g) = 0) and T, ξ > 0,

P

(
∣

∣

∣

∣

1

T

∫ T

0

g(Xt)dt

∣

∣

∣

∣

> ξ

)

≤ 2 exp

(

− 2Tξ2

σ2(g)
(

√

1 + 2c‖g‖Ld/2(µ)ξ/σ
2(g) + 1

)2

)

≤ 2 exp

(

− Tξ2

2
(

σ2(g) + c‖g‖Ld/2(µ)ξ
)

)

,(2.25)

where

σ2(g) := 2

∫

M

g(−L̂)−1g dµ =

∫

M

∣

∣

∣

∣

∇
∫ ∞

0

P̂tg

∣

∣

∣

∣

2

dµ.

Proof. By [16, theorem 1] we have

(2.26) P

(
∣

∣

∣

∣

1

T

∫ T

0

g(Xt)dt

∣

∣

∣

∣

> ξ

)

≤ 2 exp
(

− TIg(ξ−)
)

, ∀T, ξ > 0,

where

Ig(ξ) := inf
{

µ(|∇h|2) ; h ∈ W 2,1(µ), µ(h2) = 1, |µ(h2g)| = ξ, µ(h2|g|) <∞
}

and
Ig(ξ−) := lim

ε→0+
Ig(ξ − ε).

Following to the argument used in [7, theorem 2.2], for every h ∈ W 2,1(µ) with µ(h2) = 1, we
notice that

2|µ(gh2)|2

σ2(g)
(

√

1 + 2c‖g‖Ld/2(µ)|µ(gh2)|/σ2(g) + 1
)2

≤ µ(|∇h|2)

9



is equivalent to

(2.27) |µ(gh2)| ≤
√

2σ2(g)µ(|∇h|2) + c‖g‖Ld/2(µ)µ(|∇h|2).
So, by (2.26), it suffices to verify (2.27) for some constant c > 0. We write

µ(gh2) = 2h̄µ(gh) + µ
(

g(h− h̄)2
)

,

where h̄ := µ(h). Since |h̄| ≤ µ(h2)1/2 = 1 and by Cauchy-Schwarz inequality

|µ(gh)| = |µ
(

(−L̂)− 1
2 g · (−L̂) 1

2h
)

| ≤
√

σ2(g)µ(|∇h|2)
2

,

we obtain
|2h̄µ(hg)| ≤

√

2σ2(g)µ(|∇h|2).
On the other hand, by the Sobolev-Poincaré inequality on M , it follows that h ∈ L

2d
d−2 (µ) and

there exists c <∞ such that

‖h− h̄‖
L

2d
d−2 (µ)

≤ cµ(|∇h|2)1/2.

Combined with Hölder’s inequality, it follows that
∣

∣µ
(

g(h− h̄)2
)
∣

∣ ≤ ‖g‖Ld/2(µ)‖h− h̄‖2
L

2d
d−2 (µ)

≤ c2‖g‖Ld/2(µ)µ(|∇h|2),

which implies (2.27) up to replacing c with c2.

Back to our four-dimensional setting, we apply the concentration inequality to estimate the
probability of Aξ

T,ε with ξ = 1/(log T ), which is sufficient for our purposes.

Lemma 2.7. There exists a constant C = C(M,L, γ) > 0 such that, for ξ = 1/ log T , it holds

P
(

(Aξ
T,ε)

c

)

. exp
(

− C(log T )γ−2
)

.

Proof. For fixed y ∈ M , applying (2.25) with g = ∇2
yqε(·, y), and using Lemma 2.4 with

p = n = 2 and d = 4, we find a constant C > 0 such that

P
(
∣

∣∇2
yfT,ε(y)

∣

∣ > ξ/2
)

. exp

(

− Tξ2

2
∫

M
|∇xL̂−1

x ∇2
yqε(x, y)|2µ(dx) + c‖∇2

yqε(·, y)‖L2(µ)ξ

)

. exp
(

− C(log T )γ−2
)

.

Furthermore, by (2.23) with n = 3, we can always bound the Lipschitz constant of y 7→
|∇2fT,ε|(y) in terms of

K :=
∥

∥∇3fT,ε
∥

∥

∞ . ε−
5
2 .

Thus, choosing a suitable ℓ-net with K ·ℓ = ξ/2, hence with N(ℓ) . (K/ξ)4 elements, we obtain
that

P

(

sup
y∈M

∣

∣∇2
yfT,ε(y)

∣

∣ > ξ

)

. N(ℓ) · exp(−C(log T )γ−2
)

. ε−10ξ−4 exp(−C(log T )γ−2).

This implies the desired estimate, for a smaller constant C > 0.
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Proof of Proposition 2.3. We set ξ = 1/ log T and consider the event Aξ
T,ε. By Lemma 2.7,

(2.16) follows if

(2.28) E

[

1Aξ
T,ε

∣

∣

∣

∣

W2 (µT,ε, µ)−
√

µ(|∇fT,ε|2)
∣

∣

∣

∣

]

.

√

1

T log T
.

To prove this estimate, we introduce the probability measure µ̂T,ε := exp(∇fT,ε)#µ. By [8,

theorem 1.1] on Aξ
T,ε the map ∇fT,ε is the optimal map transforming from µ to µ̂T,ε, so that

(2.29) W
2
2 (µ̂T,ε, µ) = µ(|∇fT,ε|2).

Next, we argue that, still on Aξ
T,ε

(2.30) W
2
2 (µT,ε, µ̂T,ε) . ξ2µ(|∇fT,ε|2).

This is a consequence of the Dacorogna-Moser interpolation scheme: since fT,ε = (−L̂)−1(uT,ε−
1) and divµ ◦ ∇ = L̂, where, the function us := (1− s) + suT,ε and the time-dependent vector
field

Ys :=
∇fT,ε
us

, s ∈ [0, 1]

satisfy the equation
d

ds
us + divµ

(

usYs
)

= 0.

Then, by [1, Proposition A.1.], one obtains (2.30).
By the triangle inequality, we derive

(2.31) E

[

1Aξ
T,ε

∣

∣

∣

∣

W2 (µT,ε, µ)−
√

µ(|∇fT,ε|2)
∣

∣

∣

∣

]

. ξE
[

µ(|∇fT,ε|2)
]1/2

.

This together with (2.6) implies (2.28), and hence (2.16) is proved.
To prove the other estimate, write

E
[
∣

∣W
2
2 (µT,ε, µ)− µ(|∇fT,ε|2)

∣

∣

]

≤
(

E
[

A2
] )1/2

(

(

E
[

A2
] )1/2

+ 2
(

E
[

B2
] )1/2

)

,

where

A = W2 (µT,ε, µ)−
√

µ(|∇fT,ε|2), B =
√

µ(|∇fT,ε|2).
Noting that (2.29) and the triangle inequality imply

E
[

A2
]

= E

[

∣

∣

∣

∣

W2(µT,ε, µ)−
√

µ(|∇fT,ε|2)
∣

∣

∣

∣

2
]

≤ E
[

W
2
2

(

µT,ε, µ̂T,ε

)]

≤ D2
P
(

(Aξ
T,ε)

c
)

+ E
[

1Aξ
T,ε
W

2
2

(

µT,ε, µ̂T,ε

)]

. ξ2µ(|∇fT,ε|2) .
1

T log T
,

where D is the diameter of M . Then (2.17) follows from (2.6), Lemma 2.7 and (2.30).
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3 Improved contractivity estimate

Aim of this section is to establish the following improved version of (1.7).

Lemma 3.1. With the notation introduced above, on a four dimensional closed Riemannian
manifold M , it holds

(3.1) E
[

W
2
2 (µT , µT,ε)

]

.
log log T

T
.

Proof. Let ξ = 1/log T . Then on the event Aξ
T,ε introduced in (2.24), we have

‖uT,ε − 1‖∞ = ‖L̂fT,ε‖∞ . ‖∇2fT,ε‖∞ ≤ ξ = 1/(log T )

where we have used the fact that |∇V∇fT,ε| . ‖∇V ‖∞‖∇2fT,ε‖∞. Combining this with
Ledoux’s upper bounds for W2 (see [1,9] or [11, Lemma A.1]), we have for large T > 0 and any
ε′ ∈ (0, ε),

W
2
2(µT,ε′, µT,ε) ≤ 4

∫

M

|∇(−L̂)−1(uT,ε′ − uT,ε)|2
uT,ε

dµ ≤ 8

∫

M

|∇(−L̂)−1(uT,ε′ − uT,ε)|2dµ.

Then, on Aξ
T,ε we find

W
2
2(µT,ε′, µT,ε) .

∫

M

|∇(−L̂)−1(uT,ε′ − uT,ε)|2dµ =
1

T

∞
∑

i=1

(e−λiε
′ − e−λiε)2

λi
|ψi(T )|2

≤ 1

T

∞
∑

i=1

e−2λiε′ − e−2λiε

λi
|ψi(T )|2 = 2

∫ ε

ε′
‖uT,s − 1‖2L2(µ)ds.

(3.2)

Next, by (2.3), Lemma 2.2 and (2.10), we have

E

[

‖uT,s − 1‖2L2(µ)

]

=
1

T

∞
∑

i=1

e−2λisE
[

|ψi(T )|2
]

. T−1
∞
∑

i=1

λ−1
i e−2λis . T−1s−1.

By (3.2), this gives
E
[

1Aξ
T,ε
W

2
2(µT,ε′, µT,ε)

]

. T−1 log(ε/ε′).

Then, using the triangle inequality and the fact that E
[

W
2
2(µT , µT,ε′)

]

. ε′ by (1.7), we derive

E

[

1Aξ
T,ε
W

2
2 (µT , µT,ε)

]

. E
[

W
2
2(µT , µT,ε′)

]

+ E
[

1Aξ
T,ε
W

2
2(µT,ε′, µT,ε)

]

. ε′ + T−1 log(ε/ε′).

Choosing finally ε′ = log log T
T

and combining with Proposition 2.7, we finish the proof.
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4 Proof of theorem 1.1

We consider first the case of X being stationary. In this situation, we argue that

(4.1)

∣

∣

∣

∣

T

log T
E[W2

2(µT , µ)]−
vol(M)

8π2

∣

∣

∣

∣

.

√

log log T

log T
.

Indeed, by (2.6) and Proposition 2.3 we have
∣

∣

∣

∣

T

log T
E[W2

2(µT,ε, µ)]−
vol(M)

8π2

∣

∣

∣

∣

.
log log T

log T
.

Combining this with Lemma 3.1 implies
∣

∣

∣

∣

T

log T
E[W2

2(µT , µ)]−
vol(M)

8π2

∣

∣

∣

∣

.
log log T

log T
+

T

log T

∣

∣

∣
E[W2

2(µT , µ)−W
2
2(µT,ε, µ)]

∣

∣

∣

≤ log log T

log T
+

T

log T

(

E[W2
2(µT , µT,ε)] + 2

√

E[W2
2(µT , µT,ε)] · E[W2

2(µT , µ)]
)

.
log log T

log T
+

√

log log T

log T
.

√

log log T

log T
.

So, (4.1) holds in the case of X stationary.
To address the general case, for any x ∈ M , let (Xx

t , X
µ
t ) be the coupling by reflection

for the diffusions generated by L with initial distributions δx and µ respectively (so that Xµ

is stationary). According to the proof of [6, Theorem 1], there exists an increasing function
g : [0, D] → [0,∞), where D is the diameter of M , such that

c1r ≤ g(r) ≤ c2r, r ∈ [0, D]

holds for some constants c2 > c1 > 0 (independent of x) and that

dg(ρ(Xx
t , X

µ
t )) ≤ dMt − δg(ρ(Xx

t , X
µ
t ))dt

holds for some martingaleMt and a constant δ > 0. Therefore by taking expectation, we obtain

E[g(ρ(Xx
t , X

µ
t ))] ≤ µ

(

g(ρ(x, ·))
)

e−δt.

Consequently, writing

µx
T :=

1

T

∫ T

0

δXx
t
dt and µµ

T :=
1

T

∫ T

0

δXµ
t
dt

satisfy

E[W2
2(µ

x
T , µ

µ
T )] ≤

1

T

∫ T

0

E[ρ2(Xx
t , X

µ
t )]dt ≤

c−1
1 c2D

2

T

∫ T

0

e−δtdt ≤ c−1
1 c2D

2

δT
.
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We thus derive from (4.1) that

sup
x∈M

∣

∣E
x[W2

2(µT , µ)]− E[W2
2(µ

µ
T , µ)]

∣

∣ = sup
x∈M

∣

∣E[W2
2(µ

x
t , µ)−W

2
2(µ

µ
T , µ)]

∣

∣

≤ sup
x∈M

(

E[W2
2(µ

x
T , µ

µ
T )] + 2E

[

W2(µ
x
T , µ

µ
T )W2(µ

µ
T , µ)

]

)

.
1

T
+

1√
T

√

E[W2
2(µ

µ
T , µ)] .

√
log T

T
.

Applying (4.1) again, we derive that for large T ,

sup
x∈M

∣

∣

∣

∣

T

log T
E
x[W2

2(µT,ε, µ)]−
vol(M)

8π2

∣

∣

∣

∣

.

√

log log T

log T
+

1√
log T

.

√

log log T

log T
,

and the proof is completed.
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