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Abstract

We identify the leading term in the asymptotics of the quadratic Wasserstein distance
between the invariant measure and empirical measures for diffusion processes on closed
weighted four-dimensional Riemannian manifolds. Unlike results in lower dimensions, our
analysis shows that this term depends solely on the Riemannian volume of the manifold,
remaining unaffected by the potential and vector field in the diffusion generator.
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1 Introduction and main result

On a d-dimensional closed Riemannian manifold M, let L := A+ VVV + Z,

L(f)=Af+VVVf+Zf VfeC*M),

where A is the Laplacian, V € C?(M) such that for the Riemannian volume measure vol

p(dz) == e"@vol(dz)

is a probability measure, and Z is a C''-vector field (i.e., a derivation) with div,(Z) = 0:

/ Zfdu=0, VYfeCYM).
M
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Let X := (Xi)i>0 be the diffusion process generated by L and write P, for its transition
semigroup. It is well-known that X is exponentially ergodic with p as its unique invariant
probability measure. Consider then the empirical measure

1 T
= = Ox,dt, T >0
HT T/O XU, ;

where for any « € M, 0, denotes the Dirac measure at point z. By ergodicity, a.s. the
weak convergence of probabilities pur — p holds as T — oo. It is of interest to establish
quantitative convergence results in terms of suitable metrics on the space of probabilities on
M. A natural choice is provided here by the Wasserstein distance W,, (for any p > 1) induced
by the Riemannian distance p on M. The distance W, is the p-th root of the optimal cost
required to transport pr into u, where the displacement cost from z to y is given by the p-th
power of the Riemannian distance p(z,y)?. In this context, it has been deeply investigated in
a series of recent works [11L[12,[14] and the following asymptotic behavior holds [I3] theorem

1.1], given 1 < p < max{(df‘é)+, d(dz_z)}, for every x € M:
T-r/? if d <3,
(1.1) E* [W2(ur, )] ~01 (logT)/T)"? if d = 4,
T-r/(d=2) if d > 5,

where E* denotes the expectation with respect to the probability P* under which the diffusion
process has initial condition X, = z. It is conjectured that (LI]) can be extended to all
1<p<oo.

If one denotes with R, 4(7") the right hand side in (L), the existence of the limit

(1.2) Tim = [ngg)’ ] _ c(L.p)

is also naturally conjectured, although it is only proved so far in the case d < 3 in [12/[13]. For
p = 2, it reads

(1.3) lim TE® [W3(ur, 1)) = Z% (1 - A%V(Zcbi)) ,

T—o0 -
i=1

where {\; };>1 are the strictly positive eigenvalues of —(A+V V) in L?(u1), {¢; }i>1 are associated
unit L?(p)-norm eigenfunctions and V denotes the quadratic form

(1.4) V(o) = /0 h /M 6P dpdt.

!The notation f(T) ~ g(T) means that it holds ¢~ < f(T)/g(T) < c for T sufficiently large, for some
constant ¢ € (0,00) possibly depending on M, L and other parameters but not T. We also collect for later use
the notation f(T') < g(T'), when it holds f(T') < ¢g(T') for T sufficiently large, for some constant ¢ < co.



The appearance of V is ultimately due to the central limit theorem in this setting [15]: for
every ¢ € L*(u) with [}, ¢du = 0, one has convergence in law, as T — oo,

1 1 (T
(1.5) = [ odur = —= /0 H(X)dt — N (0,2V(9)).
v(9)

Let us notice that, since > 0 for every ¢, the limit (I3)) yields that c(L,2) < c(A +
VVV,2), ie., convergence is faster (although with the same asymptotic rate) in the non-
symmetric case, i.e., if Z # 0.

If the dimension of M is larger than 3, existence of the limit (L2]) is currently an entirely
open problem. In [I0] section 1.3], it is conjectured that for d > 5, the constant c(A+VV'V, p)
could be given by an expression in terms of the corresponding limiting constant for the Brownian
interlacement occupation measure, although only an upper bound for M = T? the flat torus
and V' = 0 is established [10, theorem 1.2].

In this communication we show the validity of (L2) for d = 4 and p = 2.

Theorem 1.1. With the notation introduced above, for a closed Riemannian manifold M with
dimension d = 4, weighted volume measure i, and the occupation measure urp of the diffusion
process with generator L = A+ VVV + Z, it holds

T vol(M) /loglog T
1. E® [W? — <.
(16) SSJB logT [ 2 ('LLT"M)} 872 ' ~ logT

Thus, we explicitly compute that c(L,2) = vol(M)/(87?) for any 4-dimensional closed Rie-
mannian manifold. In particular, we show that the leading term in the Wasserstein asymptotics
does not depend on V', nor Z. In particular, the independence from the field Z can be explained
as follows: in (L3), the series of the terms 1/)\? diverges logaritmically when d = 4, but the
series of terms V(Z¢;)/\} is still convergent (see (Z8) below). This phenomenon, although
novel in this setting, is not completely unexpected, for in the transport of i.i.d. samples on
weighted two-dimensional manifolds [IH4] the leading term in the asymptotics also depends on
the volume only.

The overall structure of the proof borrows from the literature of transport of i.i.d. samples,
and in particular [I]: in Section 2 we prove Theorem 2] concerning the asymptotics for the
transport cost between a smoothed empirical measure pi7 . = P*,uT for € > 0, where P. is the
symmetric diffusion semigroup generated by L := A + VVV, and PE* denotes its dual action
on measures. Next, in Section B, we provide an estimate on the expectation of Wi (ur, pir.),
which refines the simpler contraction estimate

(1.7) Wi(pr, pre) <ce, T>0,e€(0,1)

valid for some constant ¢ = ¢(M) > 0. We acknowledge that both these facts parallel the
argument from [I], but they require new considerations and the introduction of different tools
than the case of transport of i.i.d. points. Finally, in Section d we combine them to establish
our main result.

Unless otherwise stated, we always take in what follows d = 4 and set ¢ := (logT")?/T for
some fixed constant v > 3 and consider the case of X being stationary, i.e., any marginal law
of X equals p. To keep notation simple we write P and E for expectation with respect to this
law.




2 Asymptotics for the smoothed empirical measures

Theorem 2.1. With the notation introduced above, on a four dimensional closed Riemannian
manifold M, it holds

VOI(M)' ~ loglog T

T
— F[W?2 . —

To prove this result, we rely on a well-known bound for W, in terms of the Z~! norm of
the density ur. of the smoothed empirical measure pr. with respect to p.

We introduce first some notation. Let p; be the (symmetric) heat kernel of P, with respect
to p. Then, we have

1

T
(2.1) pre = Plup = urep, urpe = T/ Pe( Xy, -)dt.
0

Next, we consider the Poisson kernel

0(a,y) = / Proa(z,y) — 1dt, @,y € M,
0

so that

T

(2.2) Fro= (—L) Mup. — 1) = ¢-(X,, )dt.

N =

0

In the following, we first estimate the expectation of u(|V frc|?) := [}, |V fre|[*dp, then prove
the above theorem by comparing it with E[W3(ur ., 1)].

2.1 Estimate of E [pu(|V fr.[?)]

Recall that, for i > 1, ¢; denotes a (zero mean) unit norm eigenfunction (for L) with eigenvalue
=X <0, ie. |||z = 1 and Lp; = —Xi¢;. We define

T
i (T) = %/quidw _ %/0 6:(X,)dt, T >0,

where the factor 1/4/T arises from the central limit theorem (IH). By (ZI) and the spectral
representation p.(z,y) — 1 = >0, e ¢ ()¢ (y), we have

1 = L N —Aig, )y .
(2.3) up, — 1 = 7 ; e = (T) .
Therefore,
. 1 - —\e
fre=(~L)ure =1) = 7= 3~ ——%(0)9,



Since (¢;);>1 is an orthonormal sequence in L?(), we find after an integration by parts

(2.4) E (1 (IV frel?)] [/ fre(— fTadu} Z N E[|¢:(T)]?).

We claim that the following expansion for E[[¢;(T)|?] holds (we keep the dimension d
general, for possible future reference).

Proposition 2.2. For any closed Riemannian manifold M with dimension d > 1, there exists
a constant ¢ = ¢(M, L) > 0 such that

(2.5) E[w@F] - 5 + 5 V(Za)| < i>1LT>0

c
N(1+T)
Using this in our four-dimensional setting we deduce the main bound for this part:

vol(M) o loglogT

2.6
(2:6) 872 ‘N log T

o B (7)) -

Indeed, combining ||V ;|| r2(,) = v/A; with the gradient estimate from [I2, Lemma 3.1], we find
that for some constants ¢ = ¢(M, L) < oo and A = \(M, L) > 0, it holds

IVPf oy < e(t A8 "2 fllzegn, >0, f € L (1),
and we have, integrating by parts and using that div,Z = 0,

(26 Pi(26:))| = (02 Pi(Z61))| < e Z|L (1 A1) "2e M V/N

So, V(Z¢;) < c1v/A; for some constant ¢; = ¢;(M, L) < oo. Next, we recall the small time
asymptotics for the heat trace [5, Corollary 3.2.]:

- N t1 N vol(M) —1
(2.7) Ze =tre’ —1= = +0(t™), ast—0.

By standard Tauberian arguments we find for the eigenvalue counting function N(\) :=
> Ly the asymptotics A2N(X) = vol(M)/(327%) + o(A~2), which yields convergence
of the series

o0 1 o0 B 00
(2.8) S Ve <a Y N = E/ A2 TN () dA < oo;
i=1 1

i=1 2 Jo
as well as the asymptotics

(2.9) Z ¢ o= V?éﬂ) log(e™) + O(1), ase—0,

i=1 v




which can be also obtained directly from (27) and integrating by parts. Indeed,

- (M
(2.10) Z e)\ / Ze_A fdt+0(1) = Vf6§r2s) +O(logs™) ass—0,

and

o —28)\ oo e—)\is 1 e—)\is
§:A2 szlxﬁzéizxdwﬂm
€ =1 € =1 "7

_ vol(M) 1 ~ vol(M) .
- /25 [ 16725 + O(log s )}ds+0(1) T log(e7" )+ O(1), ase—0.

Combining the claim (2.1) with these estimates in (2.0 yields (Z.6]).
Proof of Proposition[2Z.2. By [12, Lemma 4.2(1)], we have the identity

(2.11) Vo) = 5 - 55V (200

By the Markov property and stationarity of X, it follows that (writing u(g) = [,, gdu)

E[|¢:(T /dtlf (3 Pyyy, i)dty = = /dt1/T ! (i Pigy)d

_Q(Ai— % Z@ / dty /T ) 1(6: P)d

We next evaluate the integrand u(¢; Pi¢;). By Duhamel’s formula

(2.12)

t
(213) Rf=Bf+ [ PAZEops 120
0
and ¢; being an eigenfunction for L, so that ptgbi = e Mg, we have

t
(2.14) P = e g, + / e MU= P (Zp)ds
0

and therefore
t
(2.15) (i Pip) = e N + / e_/\i(t_s)ﬂ((Ps*@)Z@)dS
0

where we write P for the semigroup with generator L* := L — Z. Noting that pu(¢;Z¢;) = 0
and using Duhamel’s formula ([2.13]) again

Pl = e Mg, - / P (Za0)dr



we obtain i
W((Pr6)Z,) = — /0 N 1 (Z0) P (Z65))dr.

Combining above identities with the fact that
1(Z6)P,(26))] < e 1204y < 212N,

we derive

‘M(@Pt(f?i) —e M

t s

< ||Z||go)‘i/ e_k"(t_s)dS/ e MmNy < ONTle M2,
0 0

Combining with (2I2) we finish the proof.

2.2 Estimate on E[\W§<MT,E,N) - N(‘va,aF)H

The main result in this part is the following (with the assumptions d = 4 and on ).

Proposition 2.3. It holds

(2,10 B | W uron) = V)] | S
and
(2.17) E [[W3 (ire, ) — (19 f22P)] S 7

To prove this result, we need some lemmas. Let L, and Vy, for n € N stand for the
corresponding operators acting on variables x,y € M respectively (let VY be the identity
operator). We state and prove the following result for general dimension d and ¢ € (0, 1), for

possible future reference.

Lemma 2.4. For anyn € N and p € (1,00), there ezists a constant ¢ = (n,p, M, V) < oo such

that, for any e € (0,1),

_ (d+n—3)p—d

e 2, if (d4+n—3)p>d;

(2.18)  sup / VoL ' Vyae(2,y)[ p(da) < e {log(1+e71)}", if (d+n —3)p = d;
M

yeM
1

and

_ (d+n—2)p—d

: if (d+n—2)p>d;
(2.19) sup / Vyae(zy)| p(dze) < e q {log(1+=1)}", if (d+n—2)p=d
YA 1, if (d+n—2)p<d



Proof. These bounds could be established by the same argument in [I, Corollary 3.13] using

pointwise upper bound of ‘fo/; 1V;‘q5 ‘ Here we provide an alternative approach. Let p be the

Riemannian distance on M, so that the standard heat kernel bounds give, for some constants
€ (1,00) and A > 0,

pla.y)?

(2.20) ‘V"(pt:)sy —1)‘<ct A= , w,y €M, t>0.

Consequently, given 1 < p < oo, for every y € M and t > 0,

/M IV (be(x,y) — 1) Pu(da)

o0

< Clt_ (d+2n)p </ + Z/ )e—pAt_Pﬂ(igy)zu(dx)
{z;plzy)<VEy 2 e kvVi<p(a,y)<(k+1)VE}

o
_(d4npd _pk? _(d4npd
<ctm Tz Tae pAt(l—irE (k+1)% o) <c 2 tae M
k=1

where we conventionally keep denoting with ¢ possibly different constants, and we also used
the fact that sup,c,, p({z; p(z,y) < r}) < er? for some (possibly different) constant ¢ < oc.
Then,

n(n _dinid
(2.21) SBE Hvy (pt(-,y) - 1)HLP(H) St e,

On the other hand, notice that

1 1

Val=Lo) V(. y) = Vo(—Ly) 2 V(= Ly) "2 (2, y) = V(= Ly) "2V (—Ly) "2 pi(x,y).

By the definition of ¢. and the LP-boundedness of the Riesz transform, we find a constant ¢
such that

(2.22) [:=||V(=L)'Vg.(y < c||VE(~L,)"2¢.(y)

Ol 1 2o

Since

i taten = L [T L p e L [ [~ 1
FM<MM—WA\5%mmw ﬁAwA T

221) and 222)) yield

o o0 HVZ(ZA)t—l—s—l—s('uy) - 1) HLP(
1< dt H)d
<o Tuf 7 ’

_c/ s_%ds/ e M) (¢ 4 5 4 g) B ot
0 0

o [(d+n—2)p—d]t _
< c/ s_%e_“{(s o) 4 Lapnayp—ay log{1 + (s +¢) 1}}d5
0

N



This implies the desired estimate (ZI8). Similarly,

HVZ%HLP(“) < /E HVZ(ﬁt(,y) - 1)HLP(H)dt.

Combined this with (Z21]), the proof of (2.I9]) is complete. O
Remark 2.5. [t is easy to see that [220) also implies that for any n € N such that d+n > 2,

d+n—2

(2.23) V" fre]| < e / wxsg V7 (il y) — 1) |t < ™3

The second step towards the proof of Proposition is to evaluate the probability of the
event

(2.24) A= {|| V2 e, < €3,

for £ > 0. To this aim, we collect the following concentration inequality for diffusion processes,
see also [I3] Corollary 3.2].

Lemma 2.6. Assume that the dimension of M is d > 3. Then, there exists a constant ¢ =
c(M, L) € (0,00) such that, for every g € L¥?(M) with zero mean (i.c., u(g) = 0) and T, & > 0,

# (|7 ava =€) <2em (- 7(9) (/1 + 2c||92||752w>€/02<9> + 1)2)

(2.25) < 2exp < — re )
- 2(02(9) + cligllzarz) )

a*(9) :ZQ/MQ(—ﬁ)‘lgdusz‘V/Ooo Py

Proof. By [16], theorem 1] we have

where

2
dp.

(2.20) P (|7 [ ok > ) <200 (- 7). vrEs0
T J
where

Iy(€) = inf {u(|VA[*) s h € W (), u(h?) = 1, |u(h?g)| = €, u(h?|g]) < oo}

and

Following to the argument used in [7, theorem 2.2], for every h € W2!(u) with u(h?) = 1, we
notice that o
2|p(gh”)]

5 < ulIVA)
0*(9) (/1 + 2ellg sz ln(gh?)]/o*(g) +1)

9



is equivalent to

(2.27) u(gh®)| < v/202(9)u(IVAI?) + cllgll Loz ([ VRI?).

So, by (2.26), it suffices to verify ([2.27)) for some constant ¢ > 0. We write
p(gh®) = 2hu(gh) + u(g(h — h)?),

where h := u(h). Since |h| < p(h?)'/? = 1 and by Cauchy-Schwarz inequality

ulgh)| = ln((—D) Y- (~Eyt) < [ ZOAIVAE)

we obtain

[2hp(hg)| < /202 (g)u([VRP2).

On the other hand, by the Sobolev-Poincaré inequality on M, it follows that h € Ld%(u) and
there exists ¢ < oo such that

7 2\1/2
o =Rl 2, < en(IVAI)T.

Combined with Hélder’s inequality, it follows that
|u(g(h = h)?)| < llgllzargylIh — ﬁlli%(m < | gllgar ([ VA,

which implies (Z27) up to replacing ¢ with ¢?. O

Back to our four-dimensional setting, we apply the concentration inequality to estimate the
probability of A%E with & = 1/(log T'), which is sufficient for our purposes.

Lemma 2.7. There exists a constant C' = C (M, L,~) > 0 such that, for £ = 1/logT, it holds
IP’((A§7€)C) Sexp (= C(logT)™?).

Proof. For fixed y € M, applying [2.25) with ¢ = V2q.(-,y), and using Lemma 24 with
p=mn=2and d =4, we find a constant C' > 0 such that

| | |
P (}VyfT,a(y)‘ > 5/2) S exp < 2fM \VIL 'W2q(z, y)|2pu(dr) + cl| V2q (-, y) | 2§

Sexp (= C(logT)"™?).

Furthermore, by (2.23)) with n = 3, we can always bound the Lipschitz constant of y
V2 fr|(y) in terms of

K= Ve £ 7%

Thus, choosing a suitable f-net with K -¢ = £/2, hence with N(¢) < (K/£)* elements, we obtain
that

P (sup [V fr0)] > €)  N(0) - exp(-Cllog T)"™%) £ &% exp(~Clog )"
yeM
This implies the desired estimate, for a smaller constant C' > 0. O

10



Proof of Proposition[2.3. We set £ = 1/logT and consider the event A%E. By Lemma 27
([216) follows if

(2.28) E [11“%5 'Wz (Hres 1) = A/ (IV f1e]?)

< 1 .

~\ TlogT
To prove this estimate, we introduce the probability measure fir. := exp(V fr.)zp. By [8
theorem 1.1} on A%a the map V fr. is the optimal map transforming from g to fir., so that

(2.29) W2 (fire, 1) = 1|V frel?).
Next, we argue that, still on AfT’€
(230) W% (MT,su ﬂT,s) 5 52/1’(‘va,€‘2>‘

This is a consequence of the Dacorogna-Moser interpolation scheme: since fr. = (—f))_l(uﬂe —
1) and div, o V = L, where, the function u, := (1 — s) + suz. and the time-dependent vector
field vy

Y, = s e0,1]

Us

satisfy the equation
d
—ug + div, (uyYs) = 0.
ds K ( )
Then, by [, Proposition A.1.], one obtains (2.30]).
By the triangle inequality, we derive

Wy (,UT,aa,U) - ,U(|VfT,a|2)

(2.31) E {114%5

] < 6B [u(1V fro )]

This together with (2.6]) implies (228)), and hence (2.1I6]) is proved.
To prove the other estimate, write

E [[W3 (tres 1) — IV frc )] < (B [47)) " ((E[47) +2(E [B7]) "),

A= W2 ,U/Ta \/ ‘vas B = \/ |va€
'wg e 1) — /(1Y frel?)

Noting that (229) and the triangle mequahty imply
2]
S E [W2 (:U’T,ev /J/T,e)}

< D*P((A7.)) +E[Lys Wi(ure, jire)]

1
552 (|vaa|) Tlo gT

where D is the diameter of M. Then (2I7) follows from (2.6]), Lemma 27 and (2.30).

where

E [A?] =

11



3 Improved contractivity estimate

Aim of this section is to establish the following improved version of (7).

Lemma 3.1. With the notation introduced above, on a four dimensional closed Riemannian
manifold M, it holds

loglog T

(3.1) E [W3 (ur, pre)] S T

Proof. Let £ = 1/logT. Then on the event A%E introduced in ([Z24)), we have
lure = Uiow = [ILfrelloe S IV frelloe < € =1/(logT)
where we have used the fact that |[VVVfr.| < [IVV]eol V2 frelloo. Combining this with

Ledoux’s upper bounds for Wy (see [I,9] or [11, Lemma A.1]), we have for large 7" > 0 and any
e’ € (0,¢e),

\V4 —f/ 1y e — UT.¢ 2 A
W%(MT,&H,U/T,&) S 4/ | ( ) ( & L )‘ d,U/ S 8/ |V(_L)_1(UT,€’ - uT,€>|2d:U"
M M

UT e

Then, on A;e we find

A1 2 1 o (e — e hie)2 2
(—E) e = ur P = = 30 E =Ty

W3 (pirer, pir,e)

A
=
<4

(3.2)

=1
I =e ) ‘ )
<Gy WD =2 | Jur = 1agds.

Next, by ([23), Lemma 2.2 and (2.10), we have
1 = - iS — - — —_ .S — —
E |||urs — 1]|%2(u)] — Tze 2]is[g [|¢i(T)|2] <T 12)\i Lo=2\i < 7lgt
i=1 i=1

By [B2), this gives
E[lAgswg(MT,eu pre)] ST ' log(e/e').

Then, using the triangle inequality and the fact that E[W3(ur, pr)] S € by (), we derive
E |l W3 (MT7/~LT,€):| S E[Wi(ur, pre)] + E[1 e Wi(ure, pre)]
<&+ T og(e/e).

loglog T
T

Choosing finally &' = and combining with Proposition [2.7], we finish the proof. O

12



4 Proof of theorem [1.1]

We consider first the case of X being stationary. In this situation, we argue that

T vol(M) loglog T’
E[W3 — <y :

Indeed, by (2:6) and Proposition 23 we have

(4.1)

E[W3(pre, b)) —

vol(M) o loglogT
log T 82 |~ logT

Combining this with Lemma [B.1] implies

T vol(M)
— F[W? —
B ] -
loglog T T
S Tlort F Tog B, 1) = Wi, )]

log log T T )
< 2 . 2
log T + Tog T (E[Wz(,u% pre)l + 2\/E[W2(,UT, pre)] - B[W3(ur, M)])

<loglogT+\/loglogT<\/loglogT.

~ logT logT ™~ log T

So, (A1) holds in the case of X stationary.

To address the general case, for any z € M, let (X7, X}') be the coupling by reflection
for the diffusions generated by L with initial distributions d, and p respectively (so that X*
is stationary). According to the proof of [0, Theorem 1], there exists an increasing function
g:10,D] — [0,00), where D is the diameter of M, such that

ar < g(r) <cr, rel0,D]
holds for some constants ¢y > ¢; > 0 (independent of x) and that
dg(p(X7, X{")) < dM, — 6g(p(X7, X{'))dt
holds for some martingale M; and a constant 9 > 0. Therefore by taking expectation, we obtain
Elg(p(X7, XI))] < u(g(p(z,)))e™.
Consequently, writing

T 1 T
- ::T/0 Oxzdt and  pf ::T/o Oxpdt

satisfy

x 1 T x c_lc D? T _ C_lc D?
W3 (i, )] < T/o E[p*(XF, X[))dt < == /0 et < L2

13



We thus derive from (Z1]) that

ng\%‘Ex[Wg(U%N)] E[W3 (1, )] | = sup [E[W3 (s, 1) — W3y, )]

< sup (E[Wg(u§, )] + 2E [Wz(MTa ) Wo (., M)D

1 2
S 7+ 7=V EWR G 0] S

T

log T’
T

Applying ([@T]) again, we derive that for large T,

sup
xeM

T Vol [log log T /log log T
E* W2 €9 -
logT (Walpre, i) log T logT logT

and the proof is completed.
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