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Abstract

By using stochastic analysis, two probability versions of Li-Yau type inequalities are
established for diffusion semigroups on a manifold possibly with (non-convex) boundary.
The inequalities are explicitly given by the Bakry-Emery curvature-dimension, as well
as the lower bound of the second fundamental form if the boundary exists. As appli-
cations, a number of global and local estimates are presented, which extend or improve
existing ones derived for manifolds without boundary. Compared with the maximum prin-
ciple technique developed in the literature, the probabilistic argument we used is more
straightforward and hence considerably simpler.
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1 Introduction

Since Li-Yau [?] established their famous parabolic Harnack inequality for the heat semigroup
on Riemannian manifolds, a number of extensions and refinements have been intensively made
in the literature, which will be briefly recalled latter on.
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The purpose of this paper is to provide probability versions of Li-Yau type inequalities
for the diffusion semigroups on a complete Riemannian manifold possibly with a Neumann
boundary, which are formulated by expectations on functionals of the corresponding diffusion
process, which are explicitly given by the Bakry-Emery curvature-dimension of the generator,
the second fundamental form of the boundary if exists, and an adapted process ¢, satisfying
ly =1 and ¢; = 1, see Theorem ??. With specific choices of the reference adapted process £,
these inequalities imply new explicit gradient estimates on the heat semigroup, see Corollary
77?7 for global estimates and Corollary ?7 for local estimates.

Compared with the maximum principle technique developed from [?] and adopted in sub-
stantial references, the martingale argument we used here considerably simplify the proof. The
main idea of the study comes from Arnaudon-Thalmaier [?], where some global and local gra-
dient estimates on the heat semigroup is presented by using stochastic analysis on manifolds.

Before moving on, let us recall some existing results on Li-Yau type inequalities, which are
derived on manifolds without boundary, and in most cases for the Laplacian without drift. See
[?7, 7] for extensions to manifolds with boundary.

Let M be an m-dimensional connected complete Riemannian manifold without boundary,
let L := A+ Z for some vector field Z. Assume that for some constants n > m and K € R the
following Bakry-Emery curvature-dimension condition holds:

Z®Z2K,

n—m

(1.1) Ricy™™ := Ricy —

where Ricy := Ric — VZ is the Bakry-Emery curvature, and Ric is the Ricci curvature. This
condition is equivalent to

(1.2) SLIVIP — (VL) > KIVP+ L (LfP € Co(M)

When Z = 0 we may take n = m in (77?), so that this condition reduces to Ric > K.
Consider a bounded positive solution to the heat equation

atut = Lut, t Z 0.
Li-Yau [?] proved that when Z = 0 and Ric > K for some constant K,

|V Au;  nK-a? na?
7 >« + ,
u; w  2@—1) 2t

t>0,a>1,

where K~ := max{—K, 0} is the negative part of K. In particular, when K = 0 (i.e. Ric > 0)
with « | 1, this implies
V>  Aw;,  n
<=4
u? T oy 2t
where the equality holds for u; being the standard heat kernel on M = R™.

The above Li-Yau inequality has been extensively extended or refined. For instances, by
Davies [?] (for Z = 0)

|V Auy  nK~a? N na?
w? T uy Aa—1) 2t

(1.3) a>1,t>0;
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by Yau [?] (for Z = 0)

Uk 2t

A
|Vf| UV+J___¢WMA +21¥—% t>0,

which is then improved by Bakry-Qian [?, (6)]

\Y V2 K-
St o e (7

u? 4 2t
by [?, (54)]
|Vut]2 2 _ Aut n nkK~ 1 _

14 1+4=-Kt)] — — |1+ =Kt t > 0;
(14) u? * 3 Uy Ty 2t T3 * 3 ’ ’
and more recently by Bakry-Bolley-Gentil [?] (also for Z # 0)

4 Luy 2
1.5 — < ——
(1.5) nK + K22’
\Vus >  Luy nK 4 Luy

1.6 < Co(1- =), >,
(1.6) uzT 2 ) 2! nK
where

K+/r coth(Kt+\/T), r >0,
<I>t(r) = %7 r =0,

K\/—rcot(Kt\/—r), B <1 <0,
Moreover, Li-Xu [?] proved (for Z = 0)
|V7~;t|2 < (1 N sinh(K~t) cosh(K~t) — Kt) Auy N nkK~

(L.7) sinh?(K )

(LHMMKTD,t>Q

see also Qian [?, ?] for conditions on functions a and ¢ such that

2
]Vut] a(t)%

uz Uy

+c(t), t>0.

All these inequalities are proved by using the technique of maximum principle developed in

Li-Yau [7].

In the next section, we present two probability versions of Li-Yau type inequalities for the
heat semigroup generated by L := A + Z with Neumann boundary if M is non-empty, by
using the diffusion process X; generated by L with reflecting boundary if OM is non-empty.
The inequalities are explicitly given by K and n in (??) for some constant n > m and a
function K € C(M), and the lower bound of the second fundamental form of OM if it exists.
As applications, besides extensions of existing estimates to the case with boundary, some new
global and local estimates are presented in Sections 3 and 4 respectively, where the curvature

may be unbounded from below.



2 General results

Let M be an m-dimensional connected complete Riemannian manifold possibly with a boundary
OM. Let L := A+ Z for some vector field Z such that (??) holds for some constant n > m
and a function K € C'(M). When OM exists, let 0 € C(OM) be a lower bound of the second
fundamental form of OM, i.e. the inward unit normal vector field N of OM satisfies

(2.1) I(v,v) := —(V,N,v) > o|v]>, ve&TOM.

From now on, let 0 < uy € Z(L) N C}(M) be positive with bounded ug + |Lug|, and
Nugloyr = 0 if OM exists. Let u : [0,00) x M — (0, 00) solve the following heat equation
)

(2.2) Oyuy(r) = Luy(x), Nuglopr =0, t>0, v € M,

where the Neumann boundary condition Nu|sy = 0 applies only when 0M exists.
Let X, be the diffusion process generated by L with reflecting boundary if M exists, which
can be constructed as the unique solution to the following SDE on M:

(2.3) dX, = Z(X,)dt +V2U, o dB, + N(X,)d.%,

where B, is the standard m-dimensional Brownian motion on a probability space (€2, #,P)
with natural filtration {.%;};>0, U; is the horizontal lift of X; to the frame bundle O(M), and
%, is the local time of X; on OM if exists, so that %, = 0 if OM does not exist. For any x € M
let E* denote the expectation taken for the diffusion process with initial value X, = z. By (?7?)
and Ito’s formula, we have

(2.4) u(z) = E[uog(Xy)], Luy(z) = E*[Luo(Xy)], t>0,x€ M.

In the following two subsections, we present a global probability version and a local probability
version of Li-Yau type inequalities for u; respectively.

When 0M is either empty or convex (i.e. ¢ = 0) so that o(X;)d.%; = 0, and K is a constant,
by choosing deterministic /5 with ¢, = 1 and ¢, = 0, and applying the equations in (?7), the
estimate (??) below reduces to

L,
(2.5) |Vut| / 1 [2e=2K 55 — /<£2) 2K s t>0,
u? 2 t Jo

t u

which has been proved in [?, Proposition 2.4] (see also [?]) by using analytic arguments.

Theorem 2.1. Assume (??) for some constant n > m and a function K € C(M), and also
(??) for some o € C(OM) if OM exists. Lett > 0,2 € M, and ({s)scpo, be an adapted real
process such that by = 1,0, =0, V', exists ds x P-a.e. on [0,t] x Q, and

2
Ex{ sup (fgef(fmxr) arsox)-az Vsl XS)) ]
s€0,t] Ut—s

(2.6)

< Q.

t
+E$ |:/ (|€/|2 +£2) —2[0 (X7)dr+o(X,)dZr] ds
0

Then



|Vut|2

t
(2) < 58 [uo(x) [ [ere 2 mxriorn s gy
ut - 2 0 5

@) t
_ E*= |:(LU0)(X,5)/ (gz)/e—2f05{K(XT)dr—f—a(XT)dfir} d8:| :
0

(2) Moreover, if {s is deterministic with ¢, <0 and 0 =0 (i.e. OM 1is convex or empty), then
for any a € (1,00) and any constant Ky such that K > K,

Vu|?
(14200 2 ) — L)
(2.8) S
no K (X, 2 9 s ,
=5 E {“o(XO / <a(_ 1)&%) er-t Iy KOO g

where

t
a 1
Vo = QKO/ éﬁeaQ—lKOS ds > — — 1.
0 e

Proof. (a) When OM is non-empty, noting that Nug|sy = 0 implies Vug|gns € TOM, we derive
from (?7?) that on OM,

S 2 N S 2 2]1 S S S 2
(2.9) N|Vu| _ NIVu|® (vu7vu)220(Xs)M, s> 0
’U,S us U’S U’s
Next, u is the solution to the equation (??) which implies
(2.10) (L+05)us—s = 0= (L +0s)Lus—s, s€]0,t).
This together with the Bochner-Weitzenbock formula leads to
Vi _o|? 1
(L + 85)(| | ) = — (LIVur_o? = 2(V L, Vi)
Ut—s Ut—s
4 2|Vut_5|4
_ o Hess,, . (Vui_s, Vuy_s) + T
2 2 V" .
= <|]Hessut_s|\%ls — ——Hess,, (Vui—g, Vui_s) + % + Ricz(Vuy_s, Vuts))
Up—g Ut—s Us_g
YV @ Vg, || 2 .
= Hess,, ., — Ut=s O Vth + Ricz(Vu_s, Vuy_g)
Up—g Ut—s HS Up—s
2 Vg2
Z (Aut_s — M) + RiCZ(VUt_S, Vut_s).
mug—s Ut—s Ut—s

Combining this with (??) and the fact that

1 L\ 1 2 2
il <Aut—s _ M) — —(Lut—s _ M _ Zut—s)
m m

Ut—s Up—s
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> l(Lut_s - lvuts|2>2 -t

n Up_sg n—m
we derive
V|2 2 Vues?\° V|2
(2.11) (L+8s)<| trs| ) > (Luts - u) Y A= S 1)
Ut—s nu¢—s Ut—s Ut—s

In the following, we use the above estimates and Ité’s formula to prove (?7) and (?77?)

m m
respectively. For simplicity, let >, < and £ denote the corresponding inequalities and equality

up to an additive local martingale term.
(b) Let hy = (2. By (?7?), (?7), (??) and Itd’s formula, we obtain

Ut—s

d (hse_2 fos [K(Xy)dr4+o(X,)dZ] M (Xs)>

2 2
m -2 [K(Xr)dr—i-U(Xr)dfr]{(h’s _ 2th(Xs))M(XS) +h, [(L 1 @)M} (Xs)}ds
Ut—g Ug—s
2 2
4 he 2 RIEG drie(xaz) [ [Vu—|*\ QOWUt—s\ (X.)d.Z
° Ut—s Ut—s ° °
y |V ?
> Ble 2o IK(Xr)drto(Xp)dL] [ 1Y 2t=sl Lus o + Luy_, (Xs) ds
- Ut—s
2\ 2
L2 e arecenaz (1, VO
nuy_s(Xs) Up—s
2
> _n|h;‘ 672 fOS[K(XT)dT+U(XT)d'ZT]Ut,S(XS) ds + h/se,Q oK (X)) dr+o(Xr) d‘%}Lut,s (Xs) ds.

8hs

Since hy = (*, hy = 1 and h; = 0, and |u| + |Lu| is bounded on [0,¢] x M, by (??) and the
dominated convergence theorem, this implies

2 t
o) < | [ a2 oo as g
Ut 0

(2.12) t
| [ () (ye 2o 4z g5
0

Noting that (??) and the Markov property imply
(2.13) (Lu—s)(Xs) = E¥(Lug(Xy)|-Fs),  wi—s(Xs) = E*(uo(Xe)|-Fs),
we derive (?77).

(c) Let o = 0 and /4 be deterministic with ¢, < 0. Noting that N Lu;_s|gar = 0 for s € [0, 1),
by (??), (??) for 0 = 0, and Itd’s formula, we obtain

2 s 2
d(ea—l I K(Xr)dr£§(|vlbts’ B ozLut_s> (Xs))

Up—s



m 2K (X sl
L eatelions (B gy g) (=l ari ) oo

o — Ut—s
‘Vut,s‘z

Up—s

(2.14) + oo o K(Xr)dry2 [(L +0,) ( - aLut_s)} (Xs)ds, s €0,

Combining this with (?7) and (?7), we obtain

2
d<ea—1 N K(XHdTg?(M — aLUt—s) (X5)>

t—s

m s 2
> 20&6% fo K(Xr)dr (ﬂgz + €;€s> (M - LUtfs> (Xs) ds
a—1 Up_g

9eazt Jo K(Xr)dr p2

nuy—s(Xs)
2
—2(a — 1)ea—t Jo K(Xr)drgsg;M(Xs) ds
U

t—s

|V

Ug—s

<L gy — )2(XS) ds

2
> _n;z ot Ji K(X)dr <M£s + g;) 2ut,S(XS) ds

2
—2(a —1)ea1lo K(Xr)drﬁsﬁ/SM(Xs) ds, sel0,t].
Ut—s
Combining the condition (?7) with the boundedness of u and Lu, ¢y, = 1 and ¢, = 0, this
implies

’VUtP 2

(2.15) (z) — alu(z) < %11 +(a— 1)k,

Uy

where by (?77),

t 5 B 2
I, = E* |:/ ea—1 Jo K(X;p)dr (K(XS)ES + E;) Utfs(Xs) dS:|
0

o —

1
By s K(X 2
:Ew{uovﬁ)/ ea-1h K(Xr)dr< ( S)gs—i-gls) dS]v
0

a—1

and ¢ \V 2
]2 = 2E* |:/ e% fos K(Xr) drésélsﬂ(‘){;) d8:| :
0

Ut—s

So, to prove (77?), it remains to estimate I5.
By (??), (?7?), (??) and It6’s formula, we obtain

2 m
d (e—QKoSM(XS)> >0, s€l0,t,

Up—s
which together with ﬁKO + 2Ky = %KO and ¢, < 0 yields

|Vut\2

Uy

t
(2.16) I, < (z) / (£2Y ea-TK05qs,
0
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By 0. < 0,0y =1,¢; = 0 and integration by parts formula, we derive

2a
a_

t t
(2.17) 0< —/ e%KOS(fi)’ds =1+ 1 / @Koe%m’s ds=1+ Tt
0 0

oa—1
SO, Yo > = — 1 and combining with (??) and (??) implies (?7?). O

Remark 2.2. By using uy + € replacing ug then letting € — 0, we may and do assume that

infug > 0. When M is compact, the continuous functions % on [0,T) x M as well as K and
o on M are bounded, so that the condition (?7) is easily checked. When M is non-compact, if
one of the following two conditions hold:

1) OM s either convexr or empty;

2) 1 and Z are bounded, the sectional curvature on M is bounded above, and K € Cy(M),
then by [?, Theorem 3.2.9], see also [?] for Z =0 and M is compact, we have

(2.18) Vuy(2)] < E° [|Vu0|(Xt)e_ I {K<X~s>ds+a<xs>dfs}], t>0.

Moreover, EeP?t < oo holds for any constants t,p > 0. Hence, the boundedness of |Vug| implies
that of |Vu| on [0,T] x M, and (??) holds provided K is bounded from below and there exists
a constant 0 > 2 such that

t
(2.19) IE”/ 1°ds < oo,
0

since |0 = | [T 0.ds| < () |€’S|5ds)%.

When 0M is non-convex, to apply Theorem ?? we have to estimate the exponential moment
of the local time, which have been done in [?, 7, ?]. However, in this way one can only derive
a weaker version of Li-Yau inequality where in the upper bound u; and Lu, are enlarged as
(Ptug)% and (Pt|Lu0]p)% for some constant p > 1.

To derive the exact Li-Yau type inequality for non-convex M, we present the following result
by modifying the proof of Theorem ??. To this end, we follow the line of [?] to make use of a
reference function in the following class:

2 :={1<¢eCHM): (I+ Nlogo)lanr > 0}.

Concrete choices of ¢ € Z can be found in [?] as functions of the distance to OM, which
are explicitly constructed by using bounds on the sectional curvature of M and the second
fundamental form of OM, see also the proof of Corollary 7?7 below.

Theorem 2.3. Let OM be non-convez, and let (7?) hold for some K € Cy(M). Assume that
there ezists ¢ € D such that || Z¢|l < 0o. Then

K, = 21}1\1/[f{K +¢ Lo} > —o0,

(2.20) K& + ¢Lo
o QT QLY - 2
Kogp = 21Ar}[f 5 > —00, a> 9],

and the following assertions hold for any t > 0 and { € CL([0,t]) with £y =1 and ¢; = 0.

8



(1) For any constant € > 0,

2 2 t
(b |V2Ut’2 < (2/ gswue(a—Kq;)s ds) %

1 2 t
+ (2 + Hv Ogngoo) / (g;)Ze(a—Kqﬁ)s ds.
2 € 0

2) For any constants o > 2 ande >0,
( Y 5

&*|Vuy|? Ly
1 o —

t > o2V log ol
< eFeao=e)s (K — &), + 20, 2 (na + al Oo) ds,
/ (Koo =)o + 20\ 5+ 1(a — 02

where Yip.6 = Q(W — 1) [7 [0 |eFastKo=2)s 45 > 0.

(2.22)

Proof. We may assume that infug > 0. Since ¢ € CZ(M), [|Z¢|l < oo implies condition
(3.2.15) in [?], then [?, Theorem 3.2.7] for f = ug implies the boundedness of |Vu| on [0, ¢] x M.
So, @ is bounded on [0,¢] x M.

By ¢ € & and (??) for 0 = —(N log ¢), we obtain

¢2 VUS 2 2¢2
(2.23) N(%) ‘aM — U—S(I[(Vus, Vus) + (Nlog ¢)[Vugl?)|,,, > 0.
By (??) and the display after (??), we obtain
2V, 2 262 .
(L + 0s) ¢ |ut_ts | — ujis (HHessuH — Vu_s ® Vlog ut_SHiIS + Ricz (Vuy_s, Vut_s)>
L2 2 42 042 P
+ (L) + ¢ Hess,, . (Vu,_s, Viog ¢) — M(Vlog s, V1og o)
Ut—s Ut—s Ut—s
922 2
= 4 (HHessutfs — Vu—s ® Vlog Ut + Ricz(Vuy_s, Vut_s))
Ut—g HS
L IV (L6t~ 2V
Ut—s
2¢2 1 Ut—s 2 :
> — — _
Z [m (Lut,s <Vut,s, V log 5 > Zut,s> + Ricz(Vuy_s, Vut,s)}
 206L0)[Vur_.P
Ut—s
2¢2 1 Ut—s 2 . (n—m)
> il _
Z [n (Lut_s <Vut_s,V10g 5 >> + Ric), (Vut_s,Vut_s)]
. 2(pLg)|Vuy_|?
U—s
2¢2 Up—s 2 2<K¢2 + ¢L¢)fvut75‘2
> <Lut_8 — <Vut_s, V log >> + )
Nnug—s ¢ Up—s

9



Hence, (?77) and (?7) yield

(L + oy 1Vl
’ Ut—s
292 Co\\2 | 2(K¢? + pLG) |V, 2
(2.24) an (Lut_s—<Vut_8,v10g“t7>> L 2K +i )| Vuy—s|
t—s I—s
2¢2 K¢¢2’vut_8‘2

>

U—s 2
<Lut_s — <Vut_s, V log —>) +
Nut—s ¢ Ut—s

(a) By (?7), (??7) and Itd’s formula, we derive

d (fge(e—K¢)8—¢2|Z:ft_s’2 (Xs))

2
“;S >) (X,)ds
ul;bs> — Lut_s> (Xs)ds

2Ll NG (X) (L + (Vup, Tlog ) ) (X,) ds
¢2|vut—s‘2

Up—s

m 2(X
> 2£§e<E-K¢>SM (Lut_s —~ <Vut_s, V log

nu—s

+ 20,0 E KRS g2 X ) <<Vut_s,

+ g2 Ko)s (Xs)ds

Va2 ().,
> el G2 (X,) () Ly + 20,6V, V1og 6) + = Vi nll)

Ut—g 2
Thus,
d £2 (e—Kg)s |V’U¢ S|2< s)
(2.25) s
' m \val 2
> e(st¢)S¢2(Xs) |:(€§)/Luts . <g + %) (g;)Qut5:| (Xs) ds.
Combining this with the boundedness of [Vuesl® g explained in the beginning of the proof,

ly=1,¢; =0, and that u; and Lu,; are bounded with
Efu—o(Xs) = w(z), E*Luy_o(Xs) = Lug(x),

we derive (77).
(b) Simply denote f = K, 4 — . Combining (??) with (??), (??), NLu;_sJonr = 0 and
(L4 0s)Luy_s =0 for s € [0,1), and applying 1td’s formula to (?7), we derive

d{eﬁsgi(M _ aLuH> (Xs)}

Ut—s
¢2 ’vut—s|2

Ut—s

¢2|vut—s|2

Ut—s

m s {zg(L +9,) + (B2 +20,0) ( - aLut,s) }(Xs) ds

10



Up—s\ |2
5))
“tqj )) = a8 +26,6)( Vu,_,, Vlog “;>
) ¢*|Vuy_|*

Ut—s

Nut—s

2 2 42
2 e/BS{ €S¢ (Lut—s - <vut—sa

— a(B 4 20,0) (Lut_s - <wt_s,

+ ([5 + 2K + 207 L) 2 + 20,0, }(Xs) ds

2 /\2 2
> 6’85{ . no (65;53' 265) s + (2K¢2 + ¢L¢+/8<¢2 . Oé))£§|v5t_8|

|Vut—5’2 2 /
D=l 01BE2 4 20,][[9 log dllocl Ve, | §(X,) ds.

t—s

— 200 (o — gz52)
Since (0, <0, a > ¢ > 1, and § = K, 4 — € yields

2K¢° +20L¢ + B(¢° — ) = (B — Kug)(¢” — a) = (a — [|9[5)e,

this further implies

2 2
d{e&@((b’:#s‘ - aLut_5> (Xs)}
t—s
na? o Vleg |13,
8 dla—|ol3)e
5s¢2|vut—8|2(X )dS
u s

t—s

—e™* (Bl + 26;)2( )ut_S(XS) ds

+ 210l | (g™ — 1)e
Combining this with Eu, 4(X,) = u(x) for Xy = x, the boundedness of W“tt—” Up—g, Luy_g as

explained in the beginning of the proof, and ¢y = 1, ¢, = 0, we derive

gb2|Z—tut|2(gz:) — aLuy(z)

(2.26) < ut(:c)(ng2 + (QJJYT;TZH; ) / e (Bl +20,)2ds

2
_2/ 10, z'\eﬂsE )'V“t 1 ](Xs)ds.

—S

By (??) for ¢ =1 and ¢ | 0, we have

2 2
d <e_K¢S—¢ V| (XS)> > 0,

Ut—s

so that

—S

2 |Vut—8|2

Ut—s

<2 / 08 (]2 = 1)e MME{ Ko x| ds

11



2 / \Y% t2
—2(allél|? - ( / 0,05+ g )'¢ wl” ),

Combining this with (??), 8 = K, 4 — ¢ and the definition of 7, 44, we finish the proof of
(77). m

3 Global Li-Yau type estimates

We will present explicit Li-Yau type estimates by using Theorem ?? and Theorem 7?7 for the
convex and non-convex cases respectively.

3.1 OM is convex or empty

By Remark ??, (??) holds for all £ € C}([0,¢]) provided K is bounded from below and 9M is
either convex or empty. Therefore, estimates (??) holds for ¢ = 0, and (??) holds for ¢, < 0.
By taking specific choices of ¢, in these estimates, we present explicit Li-Yau type inequalities
in the following Corollaries 7?7 and 7?7, where

e (??7) improves (??) when ¢ > %, and is sharp for small time as shown by [?, Corollary
2.3];

e (??) and (??) are new even for Z = 0 and OM = {);

e (?77?) is due to [?] for 9M = (), which improves a number of classical bounds recalled in

the introduction as shown in [?, Section 5.
When OM is strictly convex such that o is a positive constant, E*[e=2°%:] decays exponentially
fast as s — oo according to [?, Lemma 3.1], so that (??) may provide better estimates than

those presented in Corollary ?7?.

Corollary 3.1. Assume that OM is either empty or convex, and let (??) hold for a constant
K € R. Then the inequality (??) holds for o = 0, which implies the following estimates.

(1) For anyt >0,

2

Luy gﬁ[(m)mju([;;m}, if K >0,
> vV (

(3.1) kel - .

(2) When K # 0, for any constant o € R such that 1;—?‘ > 9”92;264, let

1
l+a 972 —64)\2 8
pie (e 900y}

Kt 92 3r
Then
(3.2) Vu,|*  aLu, o K(a—1) N (1+a)r® 2B, 3n°
' u? w2 2 2K 12 t 8t )

12



(3) When K > 0, for any constant K' > K such that Ricy > K', we have

‘VUt‘Q < ﬁ '/TQK _ 5 _ 3K7T2 e—?K’(t—K71)+ >0
2\2[IAN (Kt 2 8[1A(Kt) ’ '

(3.3)

(4) (??) holds.

Proof. When OM is empty or convex, we may take o = 0 such that for any deterministic ¢
with /o =1 and ¢; =0,

t t
[@yessimonnsasanel g — 1o [ c)e 00w 2as
0 0
When K is a constant, then (?7) reduces to

(3.4) Wu;‘ { / €% QKSds} (1—2K / e —mds) Lue
Uy Ut

(1) For a fixed constant a € R, let

s $
ls = eKS<Cos7T— +asin%>, s € [0,t].

2t

We have

t t
3.5 ez—md:/[ 210 22 ™2 2( E)'E}d
(3.5) /o ‘e s i cos 2t—|—a sin t—i—acos275 sin —-| ds,

t t

/|€;|262K5d5:K2/ e ?Rsds — K
3.6 0
(3:6) +/t [772a2 2T, 2 2T 7r2a< 7rs> 7TS:|d

cos — — ——|( cos — ) sin — | ds.
0 2 t 4¢? 2t 2 t 2t

Note that

t t s t t
/ sin? 72 ds = = / sin?6df = - :/ COSQEdS,
. ¢ 2 Jo ¢
t
/cos —ds-—/ cos’0df = — :/ smﬂr—sds,
0 2t

! 2t it (2 At
/ (cos E) sin > ds = — (cos 0)sin(20)df = —— ’ (cos*@)dcosf = —,
0 2t t U 0 0 3T

! 2 2 2
/ (cos 7r_s> sin > ds = = (008(29)) sin 9 df = ——t (2 cos’f — 1) dcost = ——t.
0 t 2t T Jo T Jo 3T

Combining these with (?7) and (??7), we obtain

16Kta
3r

t
QK/ e ?Ksds = Kt(1 +a?) +
(3.7) 0

16Kta> K4 m2a T 2ra
T

t K
/ |0 )2 2K ds = 5 <Kt(1 +a%) +
0

13



Substituting into (?7?) and letting a — oo, we derive that when K > 0,

Lu, _n . fot [0 )Pe2Ksds n w2
— < — lim 5 = —< _>a
up T 20902 [F2e2Ksds 4 K¢
while for K < 0,
t
_ Vi 2 —2st 2
Lutzﬁlim f0|f\e S:ﬁ< 7r>‘
Uy 2 a—oc0 _ 9K fo (2e—2Ks ds 4 Kt2

Condition (?77?) is trivially also satisfied for any & < K, the derived estimates hence hold for
k replacing K as well. By taking k = K A T for K >0, and K = K A (—F) for K <0, the
above estimates for k replacing K imply (?77).

(2) By the definition of 3;, and (?7), we obtain

1 + ].6/8,5
2 o
-9 ’
Bra Kt 3
and .
16 K8 o
2K/ e K ds = Kt(1+ 2,) + 3—@ =1+a.
0 ’ T
Combining these with (??) and (??) for a = S, we derive
|vuzt|2 _ aLuy < E/t |£/S|2672Ks ds
Uy Uy 2 /o
n{(l+a)K /14« 165 w2 21l
e ke
2( 2 HETANTT 37 ) TR T T
o (a — 1)K n (1 + «) _ 2mBra 3
-2 2 2Kt? t & )

Then (?77?) holds.
(3) When t < % and a = 0, we have f;, > 0, so that (??) implies

|V < Q((a - 1)K N ™ 271Bia 3_7r2)
- w2 2 2 oKE2 ¢ 8t
<" (i K 3_7TQ)
— 2\ 2Kt? 2 8t )

Let P, be the (Neumann) semigroup generated by L. Then u;, = Py_g-1)+upi—1 and it is well
known that Ricz > K’ implies

—K'(t—-K—1)*t

‘V’Ut‘ = |VP(t—K—1)+ut/\K—1‘ S e P(t_K—1)+\Vut/\K—1\.

Combining this with (??) for ¢t A K~! replacing ¢, we derive (?7).
(4) By (2?), A\:=1— A Lw 5 % Choose (, = hyeXs for

nK u: KZ2t2°
sinh(K v/ X(t—s)) .
sinh(KVXt) A > 0;
hy =1 £ A=0;
sin(Kv/—X\(t—s)) w2
sin(Kv/=Xt) ’ Ac (_W’O)

14



We have ¢/ = hle®* + Khee®*. So, (?7) implies

2 t t
|VUt| < E/ |€;|26—2K5 ds — 2 [/ KSK;G_QKS d8:| %
0 0

uz T2 Uy

2Lut

Uy

n t
= —/ (R + Khy)2ds —
0

t
/ ho(h, + Khy)ds
2 0

n

¢ 2Lut ¢
= 5/ (]h’s|2—|—2Khsh’S+K2h§)ds— / (hsh's—l—Kh?)ds
0 U Jo

t 2L t K2 L t
:2/ |h’8\2ds+(Kn— i /hsh’sds+( ok “t)/ h2 ds.
2 0 Ut 0 2 /U/t 0

It is easy to see that
t t n2 — j2 1
/ hsh;ds = / hodhy, = +—0 =~
0 0 2 2

Moreover, by h” = K?Ah, for A := 1 — 2. L% due to the definition of h,, one has

nkK wut

t t t 4 LUt t
s = s = slo — s A8 = —Ng — - S.
K2d K. dhy = K.l h'hyd h— K2 (1 h2d
0 0 0 nkK uy 0

We then conclude that

Vult Iy S (1 ) Mirass (B o) [aag
0 0

2

U i 2 2 2 nk u Ut
_Lw_n, Kn
w 2° 27
This implies (??) by noting that h{ = —®;(\). O

Estimates in the next corollary are implied by (??), where (?7) is new, and (??) improves
(??7) by noting that for K < 0 and a > 1,

K th( Kt ><K_ a—1
1M\ —) T2 Ty

and as in (??7) we have

Corollary 3.2. Assume that OM is either empty or convex, and let (??) hold for a constant
K € R. Then the inequality (??) holds for o0 = 0 and implies the following estimates.

(1) For any constant o > 1
2K [[(1—e"
L g
(1—e a-1)2

< Lu, n nKa
~ou 4la—1)

2
Uy

aK_Sl )QeZK(tfs) dS) |VUt‘2

(3.9)
Kt

2(a—1)

coth( ), t> 0.

15



(2) Foranyt >0 and a > 1,

K1 1N |Vw]®?  Lu;  na
3.10 (— — —) < 4 —
(3.10) 2K2¢t2 Kt/ w? — wy * 2t
Consequently, when K > 0,
2 |Vug|>  Luy n
3.11 (1 —Kt) <2 s,
(8:11) i 3 u? Ty * 2t

Proof. If (?7) holds for a constant K € R and 0M is convex or empty, then the inequality (?7?)
reduces to

V> Lu,  na [! A2 2 g
3.12 1 MUl 2t e ( ¢ e) ks g
( ) ( +’Yt,a> U% Ut —_ 2 0 a — 1 5+ S € S
h
where C X
Vo 1= 2K/ ﬁzeafl *ds > — — 1.
0 a
(1)Let€—mse[0t] Then ¢y = 1,4, = 0 and
s — fteDéKjldr ’ s Ul- 0— L, 4t —
0
K(t—ls) K 1
—e a-— —
Uy = —=% = s — - <0.
P a—1 t —
Jyeatdr Jyea—Tdr
So,

bk K 2 ft e% ds K Kt
/ ea-1 <€’S + —€s> ds = g — = coth (—> :
0 a—1 (Ji ea=t dr)? 2(a—1) 2(a—1)

Moreover, according to the definition of 7 4,

t—s Kr 2 ' ks N
Vi = QK/t (M) 200Ks qg — 2K [j(1—e a1 ) 22Kt )ds.
0

ea-1"%(s
fotechf1 dr (1- e_a}%)2

Then (??) follows by combining these estimates with (77?).

(2) For o € (1,00), let
14 —ef%t_s

, s €0,
Then ¢y = 1,4, =0, and when o« > 1 + K~ t we have

Ks

e_a—l < O

K
14

1

V= — s — —
s a—1 t
1

t

K .
0+ ———f, = —=¢ o,
a—1

16



Then

t 2K
/ ea715<

0
t 2Kt
t—5\2 -1 1
Voo = 2K <T8> €2Ks ds = ¢

oK Kt

K 2 b1 1
£S+1z;) ds—/ S p——
a—1 o 12 t
1

0

Thus, (??) implies (??), and further (??) by estimating

2Kt_1 1

2
¢ —>14 2K,

Ve = S ~ 1 3

and letting o | 1 when K > 0.

3.2 OM is non-convex

Let py be the Riemannian distance to OM. By choosing specific ¢ € & as function of py, we
obtain explicit Li-Yau type inequality from Theorem ?? with geometry quantities, by choosing
test functions ¢ as in the proofs of Corollary 7?7 and Corollary ?7?.

Corollary 3.3. Assume that (?7?) and (??) hold for some constants K € R and o < 0, and there
exist constants k,0,0 > 0 and ro > 0 such that py is smooth on Oy, M = {x € M : py(x) < 1o},

I <0, the sectional curvature of M on 0., M is bounded above by k, and |Zps| is bounded on
Opg M. Let

0
he :=cosVks — —=sinVks, s>0,
Vk

J<1 - h?"o)dil
70 (hy — hyy)@1ds’

To T0
Ki=1+ 5/ (hs — hm)l‘d/ (hy — hyo )t dr,
0 s

T
v=6(1— hm)l‘d/ (hs — hyy)? ! ds,
0

0= —

where for k = 0 the function hs is defined by the limit as k | 0. Then (??) and (?7?) hold for
[9lloe = &, |V 10g ¢||oc =, and

Ky = —=2(K =0+ 0| Zpsllo, n),
2k%(6 — al|Zpollo,jm + K7)

o — K2

. a > K

Kop=—

Proof. According to the proof of Theorem 3.2.9(2) in [?], we may choose ¢ = ¢ o py, where

r 0o
p(r) =1+ 6/ (hs — hro)ld/ (ha — hyy)* Y dads, r>0.
0 s

ATQ

17



Then éAqﬁ > —§, so that
2inf{K + ¢~ Lo} > —2(K — 5+ 0| Zpallo,m);

g 2010+ K¢?) 26%(0 = ol Zpollo,,m + K7)
M o — ¢?

o — K2

4 Local Li-Yau Estimates

When M is non-compact and does not satisfy any conditions in Remark ??, to estimate |Vu;(x)|
we may first restrict our calculus to a compact domain D containing x as an interior point,
by using stochastic analysis as in the proof of Theorem ?? before the exit time of X; from D.
Under this restriction, we may estimate |Vu,_¢(Xs)| by using bounded geometry quantities on
D, so that the condition (??) is replaced by a suitable choice of the test function f satisfying
(??7) below.

Theorem 4.1. Let x € M, and let D be a compact domain in M such that x € D° := D\ 0D
and when D NOM # ()

(4.1) o|prom > 0.
Let Kp > 0 be a constant such that (??) holds on D for K = —Kp. Let f € CZ(D) such that
(4.2) flo <1, f(x)=1, flop=0, flpo >0, Nf|prom =0,

where the condition N f|praar > 0 applies only when OM exists. Then the following estimates
hold.

(1) For any constant € > 0, let

Be.f = sup {ZKD —2fLf + (6+m>|Vf|2}.
D 5

Then for any t,e > 0,

|V, |? (2) n(l+¢e)*B. ¢
R T ey

t

4.3
(4:3) 2(1 +€)B. 5 [, (e720s5 — e s (o+0))e2Kbs (g Lut< )
(1 _ e_IBE,ft>2 Uy xZ).
(2) For any constant o > 1, let
~ 2 2K
B = sup (64 ) [Vf2 = 2fLf = Z2Ef2 0
D a—1 a—1

Then for any t > 0,

|V, |? L, na? [ Kp Ba s
4.4 <a— ’~ .
(44) u? (x)_ozm (z) + 2 a—1+1_e—5a,ft

18



Proof. (a) We follow the line of [?] by making a suitable time change X, of the (reflecting)
diffusion process X;, where {7(¢)}:>o are stopping times satisfying

7(t) < 7p := inf {t >0:X; € 3D} < 00 a.8..

/ 2 t €10, 7p],

7(t) :=1inf{s > 0:T(s) > t}, t>0.

To this end, let

We have T'(7(t)) =t for all t > 0, 7(T'(t)) =t for ¢t € [0, 7p] and
(4.5) dT(t) = f2(Xy) dt, dr(t) = f2(Xp@) dt.

The time-changed diffusion X, := X, is generated by L’ := f2L which never hits the boundary
0D, see [?].
Since f <1, we have T'(t) >t and 7(t) < t. For fixed t > 0, let

e_ﬁs,fs — e_ﬂaft

(4.6) he= s s€[0.1]

Then h € C([0,1]) satisfies
(4.7) ho=1, hy=0, h'=—B.;h. sel0.t.

By (??) with ¢ > 0 due to (??), (??) for K = —Kp, and Itd’s formula since X. is a solution to
(7?), we obtain

Vg7 2
d(hieQKD8—| =05 (Xf(s)))

Ut—1(s)
m \Y —7(s 2
L 21p(1 - Pzt Vol )
Ut—1(s)
Vi —r(s)?
+ QhSh;GQKDSM(X’T(S)) ds
Ut—7(s)

2h2 f2

Nut—r(s)

(V75|72
ST (X)) ds.

+ (Xr(0))e 0" (Lt (o) -

Ut—7(s)

Noting that f < 1 and for any ¢ € (0, 1),

2 9p2 42 2. 9
o VU 2hs] (Lu——lvu’>
nu u
2
= och it MU W C 901 4 )bl L

+2(1+ s)hsh;('V;"z )4 2 g IV

nu u
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|Vu |2 n(1l+¢)?

> —2eh bl +2(1 + e)hyh, Lu — (W) ?uf2,

we derive

|vut—’r(s) |2

d (hze%s
Ut—7(s)

(Xr<s>)>

> Vo)
2 (200 4+ )hahe? 7 L) — 2h, o2Kos [V Uizr(o)”

Ut—7(s)

) (X7(5))ds

n(l+¢)? o _
_ %QZKD (hS)Q(Uth(s)f 2)<X‘r(s))d8'

Since dLu,_4(X,) £ 0 so that E*[Lug—r(5)(X7(5))] = Lug(x), combining this with hg = 1,h; =0
and 7(0) = 0 implies

1+¢)*n K -
uEx/ov (h;)QeQKDS(f QUt_T(s))(XT(S)) ds

|vut77(s) |2

Ut—7(s)

‘VUtP
- <
Ut (x) o 2

t t
—2(1 + &) (Luy(z)) / h.h.e*5P* ds + 2eE” / R, h e ps
0 0

(4.8)
(XT(5)> ds.

To bound the first term in the right hand side, we apply Ito’s formula to derive

d{e(zKD_ﬁg’f)sf_QUtfr(s)}(XT(S))
Z (= Beg + 2Kp + FULI7 (X)) Uy (X)) 72 (X)) ds
o 46(2KD_/Bs,f)5f_1(XT(S))<Vf(XT(S)), vut ‘r s ( )) dS

1+¢ _
<e(2KD Be.)s ( Be f_|_2KD—|—f Lf~ +u|Vf|2) (f 2ut_7(s))(XT(s))ds
4e _ ‘Vut—*r s |2
2Kp—pep)s LY 2Ty 1y g
pGEEL T (Xr(s)) ds

4e o2KD—B.,5)s |VUH(S) ’2

NZEEAY) XT s d )
= n(l + )2 Ut r(s) ( ( )) S
where the last step follows from the fact that the definition of . ; implies

(1+5)

Bgyf:sup{2KD+f4Lf_2 ——|Vf] }
D

Hence, by Gronwall’s lemma and f(X,) = f(z) = 1, we obtain

E” [e2KDS (f_zut—T(S) ) (XT(S) )}

4.9 deobess  [* Vits—r(r

( ) < eﬁs’fsut(x) + - 2 / KD Pe TR [M(XT(T))} dr.
(1+¢)*n Jo Ui—r(r)

Since h? = —f. sh!, due to (?77), we obtain

(holter%)" = [(H)* + Dol + B phohl] 0% = (h)*e,
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so the integration by parts formula yields

t s \Y —7(r 2
/ (h;)QGBE’fS / e(ZKDfﬁa,f)TEI {M(XT(T))} drds
0 0

ut—’T(’I‘)

t \V4 (s 2
_— /0 bl e2K P [—' te-rto) (XT(5>)1 ds.

Ut—7(s)
Combining this with (??) and (?7), we arrive at
\V/ 2 1 2 t t
Nul® ) < nL+ eV (@) / (R.)2ePr% ds — 2(1 + £)(Luy(z)) / B! hye?Kps s,
Ut 2 0 0
which implies the desired estimate (?7) by the definition of h, in (77).
(b) Recall that X, := X, is the diffusion process generated by f2L on D\ dD. Let

Ky = s%p {6|Vf]?— fLf}.

By 1to’s formula, we obtain

df2(Xo) 2 FPLI(Xo)ds = fHX){6|V P = FLFH(X)ds < Kpf 7(Xo)ds.
This together with f(Xo) = f(z) = 1 yields
(1.10) E*[f2(Xo(o)] < 057, 520,
For any constant 5 > 0, let

o~ BT(sAT() _ =Bt

(4.11) ls = = . s€]0,t].
Then ¢, < 0,0; =0 for s > 7(t) where 7(t) <t A7p. By (??), (??) and the integral transform
s = 7(r), we obtain

t 2
Ez[ sup ﬁg} :Ex{ sup (/ E;dr) }
s€[0,t] s€[0,¢] s

(4.12) e [f e tp? . [T _2BT(sAT(t)) p—4
: <tE i () ds:(—)QE i e fH(Xs)ds

1 —e Bt
t/3?

t
= mEx/O‘ ei2ﬁrf72(X7-(T)) dT‘ < Q.

This implies that condition (??) holds, since % is bounded on [0,¢] x D, K~ = Kp on D,
and ¢ = 0 on D NIM. So, by step (c) in the proof of Theorem ??, we obtain (??) for the
present /£, i.e.

\V4 2 2
%(m) < aLuy(z) + %Il — (a— 1)1,
t

(t) ) K 2
_ x _mKDS /_ D
(4.13) L=E {uo(Xt) /0 e (65 —0 1@) ds],

7(t) ) 2
I, = 2E” [/ e*ﬁKDS}eSQM(XS) ds].
0 Ut

—S
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By (?7) and the Markov property, we have
(414) (Lut—T(s))<X'r(s)) - EI(LUO(Xt)lgT(s))a ut—T(S) (X'r(s)) - EI(UO(Xt”gT(s))
Moreover, by f <1, (??), (??), €y = 1,4, = 0 and the integral transform s = 7(r), we obtain

M) .k K 2
| (- o) as
0 a—1
) gy Ko 0 Ko N2 [0
:/ e a 23 ()2 ds — 22 / =) ds+( D ) / e~ a2 ds
7(t) 2 p7(t)
—/ efi%)s(ﬁgyds—i- Ko _ ( Kp > / eff{%%gds
0 a—1 a—1 0
2

ﬁQe—QﬁT— afll) 7‘(7’) . KD
< d
-~ /0 (1—eiﬁt>2 f ( ) T+ _ 1

Hence, (?77) and (?7?) imply

2 t K
(4.15) I S(l_ﬁTt)Q/(; EI[ —265——T s)<f Uy TS))(XT(S))] ds + a_Dlut(x>-

Similarly, by (??), (??) and the integral transform s = 7(r), we obtain

26 ! —28s s x _2KD (s |Vut*7'5 |2
[2:m/0 (€72 — e PUHNE { — ()—()(XT(S)) ds

Ut—7(s)

262 t t B |vut )|2
4.16 = —Bs —Prdr | E* 4 )] d
( ) (1—eB1)2 /0 € (/S € 7“> [ Ut—r(s) (X ( )) S

2 2 t r \V4 ()
— —57 oy / e Prdr / e PR” { -2 (9 [VUtrio) (XT(S))} ds.
(1 —e P2 J 0 Ut—7(s)

Since X, := +(s) 1s generated by f2L, us_(5)(X(s)) 1s a local martingale, and 7/(s) = f*(X,(s)),
by It6’s formula we obtain

d(e™e (fur(s)) (Xr(s)))

( 5“'fo ( T(s)_j[le

—QKDT( s)

—2Kp7(s)

fQ(XT(s))) e e e T (f Uy () (X)) ds

—2KpT7(s)
—de P e ot f 1( T(s><vut 7—(5( T(S)vf( 7( )>d5

< (<0 L) + 2P - 22

2
s o ~2pt2 [Viti-rio) |

—2KpT(s)

f2( )) e e o T (f P U—r(s)) (X)) ds

+ 2ee” (X7(s))ds, €>0.
Ut—r(s)
Choosing 3 = f s and € = G 1) such that
2K
84 ULFH(Xog) + 2V P () = 22 (X <0,
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we derive

4 —1
(O( )efﬁs e
nao? Ut—r(s)

—2KpT(s)
a—1

Vut—T(s) |2

d(e™™ e o (f Pur(s) (Xr(s)) < .

This together with f(Xo) = f(z) =1 and 7(0) = 0 yields

! T | —2Bs— KDT(&
| = (F2tr9) (Ko)] s
t 4 o 1 t S V r
< ut(:v)/ e~ Ps ds + (04—2)/ e—ﬁsds/ ,BrEx[ L7 (r) W_'(XT(T))] dr.
0 no 0 0 Ut—7(r)
Combining this with (?7), (??) and ¢ = 2(5;21), we derive

2K
%1—1 (Oé — 1)]2 S n;)é ( D + 5 ) ut(x),

a—1 1—ebt

where 8 = 4. Then (??) follows from (??).
O

To derive explicit estimates from Theorem 7?7, we take D = B(x, R), the geodesic ball in
M centered at x with radius R, for any R > 0 and x € M. Let

K, = inf {Ric(Z”_m) (0,0) 1 v € UyeparT,M, |v] = 1}.

We have the following result.

Corollary 4.2. Assume that OM s either conver or empty. Let x € M andt > 0. Then the
following assertions hold.

(1) For anye € (0,1), (??) holds for Be s replaced by

2

T T 2
(4.17) Ben 2KxR+2R Konln=1) + 1= [4+( (1+¢) +2)n]
(2) For any a > 1, (??) holds with Ba,f replaced by
~ 71'2 na2 ™ 2KrR
4.18 : D e K, n(n—1 13
(4.18) Bur = 37 LT )) oV Kerln =1+ 7

Proof. Let D = B(x, R), and let p, be the Riemannian distance to point x. Choose

(4.19) f =cos (g?)

Since OM is either convex or empty, we have Np,|an < 0 so that f satisfies (77?).
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Next, by the curvature-dimension condition (??) on D for K = —K, g, and taking
sinh(y/ K, r/(n—1)s)
sinh(y/Ko.r/(n — 1) py)’

in [?, (3)], we obtain the following Laplacian comparison theorem:

Lp.(y) < /Ky r(n—1)coth <\/KI7R/(n —1) px(y)>, r#y €D\ cut(x),

where cut(x) is the cut-locus of x, such that f is smooth on D \ cut(z).

(a) When cut(z) = 0, f € CZ(D) satisfying (??). Since M is convex or empty, we have
o = 0. Combining these with |Vp,| = 1, we conclude that f. ; in Theorem ?7(1) can be
estimated:

2
Be.f = sup {QK%R —2fLf + (6 + @NV}CP}

< sup]{QKxR+ﬁsm <Z>\/Kz73(n— 1)coth< Ky r/(n— 1)7“>

. ﬁ (Z5) + (6+ uﬁ sin? (17 }

Noting that sinr < 1 A7, sin?r + cos?r =1 and cothr < 14 77! for r > 0, this implies
2

o(s) == s €0, pal,

ﬁs,f§2KxR+—< szR(n—l)-FM) +<6+n(1+5)2) T

2R R £ 4R?
2
2
—2Ka:R+ﬁ Kx,R(n—1)+4—RQ[4+( "14¢) —i—2)n]
So, by Theorem ??(1), (??) holds for S, ; replaced by f. g in (?7).

Similarly,

- 2K,

s 1= sup{( ) VR —2fLs - ’ff?}
g -

no? 7r2 ™ r 2K, R
< (6 )— T ( ),/Kw —1 th( K, p/(n—1 ) @
—( R 4R2+TEB%]{2RSIH R r(n=1)co wfn=1)r )T

2 a? s 2K, r
< 2 ) K, pn—1 z
<om (2t o D) TV Rerln =

( a—1
So, by Theorem ?2(2), (??) holds for £, s replaced by B,z in (?7?).
)

(b) When cut(x) # (), noting that Np,|ars < 0 by the convexity of dM, the Ito6 formula for
pz(X¢) due to [?] implies

dps(X,) < Lp,(X,)dt + v/2db,

< \JEen(n— 1) coth (\/Kon/(n = 1) pu(X) )t + V2by, £ < 7,

where b; is the one-dimensional Brownian motion. With this inequality and the fact that cosr
is smooth and decreasing in 7 € [0, 7], the argument in the proof of Theorem ?? still works for
the present choice of f, so that the proof is finished as in the above step (a).

[
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