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1 Úó

�âM. Kac[27, 28]u1950c�¤JÑ�¦^VlasovÄåÆnØ�·bDÂ5£ãBoltzmann�

§�g�, H. McKean [30,31] éu�a�K�²þ|âfXÚy²
·bDÂ§¿Ú\©Ù�6�

Å�©�§(g�p�^�ÅXÚ)5�x��5Fokker-Planck �§"d�, 'u²þ|âfXÚ�

·bDÂÚ©Ù�6�Å�©�§�ïÄÉ��5�õ<�'5, Åì/¤
VÇØ��'+��

ïÄ9:"

�P�Rdþ¤kBorelVÇÿÝ¤|¤��m, D�fÿÀ"�ÄXe©Ù�6���ý��©

�f:

Lµ =
1

2
tr{a(·, µ)∇2}+ b(·, µ) · ∇, µ ∈ P̂

Ù¥P̂�P���È�f�m,

a : Rd × P̂ → Rd ⊗ Rd, b : Rd × P̂ → Rd
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��ÿN�"�{üP, �©��Ä�à�/§=a, bØ�6u�mëêt"

éuµ ∈ P±9f ∈ L1(µ),Pµ(f) :=
∫
Rd fdµ.þã�©Ù�6�féAu��5Fokker-Planck

�§

∂tµt = L∗µtµt, t > 0, (1.1)

Ù)(µt)t>0�P̂þ�fëY;�, ¦�?�f ∈ C∞0 (Rd), kLµsf ∈ L1(µs) (a.e. s > 0), µ·(Lµ·f) ∈
L1
loc([0,∞)), �

µt(f) = µ0(f) +

∫ t

0

µs(Lµsf)ds, t > 0.

´�, d©ÙÈ©, �§(1.1)�)÷v

µt(ft) = µ0(f0) +

∫ t

0

µs(Lµsfs + ∂sfs)ds, t > 0, f ∈ C∞0 ([0, t]× Rd).

XJ�Ýρt := dµt
dx
�3,K�§(1.1)=z�

∂tρt = L∗ρtρt, t > 0, (1.2)

Ù¥L∗ρt�Lρt := Lρt(x)dx'uL
2(dx)���(adjoint)�f"

�¦^VÇ�{ïÄ��5Fokker-Planck�§(1.1)½(1.2), �ÄXe�©Ù�6�Å�©�§

dXt = b(Xt,LXt)dt+ σ(Xt,LXt)dWt, t > 0, (1.3)

Ù¥Wt���ÈÅVÇ�m(Ω, {Ft}t>0,F ,P)þ�m�Brown$Ä, LXt ∈ P�Xt�©Ù, �ÿN�

σ : Rd × P̂ → Rd ⊗ Rm

÷vσσ∗ = a. �§(1.3)�)´�Rdþ·A�ëY�ÅL§Xt, ÷v{LXt : t > 0} ⊂ P̂, �∫ t

0

E
[
‖σ(Xs,LXs)‖2 + |b(Xs,LXs)|

]
ds <∞,

Xt = X0 +

∫ t

0

b(Xs,LXs)ds+

∫ t

0

σ(Xs,LXs)dWs, t > 0, P-a.s.

dItôúª, XJXt�(1.3)�), Kµt := LXt�(1.1)�)"��, dU\�n[3], XJ(1.1)�)µt÷v∫ t

0

ds

∫
Rd

{
‖σ(·, µs)‖2 + |b(·, µs)|

}
dµs <∞, t > 0,

K��E��ÈÅVÇ�m±9�þ�m�Brown$ÄWt,¦��§(1.3)äk±µ0�Ð©Ù�

)Xt¦�LXt = µt, t > 0.

XJ©Ù�6�Å�©�§(1.3)éu¤kÐ©Ùµ ∈ P̂´·½�, K-Xµ
t ´±µ�Ð©Ù�),

¿½Â

P ∗t µ := LXµt , t > 0, µ ∈ P̂.

d�Xµ
t 'u�mäkÃPÁ5, =ê¼5, 
'uÐ©Ùµ´��5�, =P ∗t÷v65�

P ∗t+sµ = P ∗t P
∗
s µ, t, s > 0, µ ∈ P̂,

2
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�Ï~

P ∗t µ 6=
∫
Rd

(P ∗t δx)µ(dx), t > 0,

ùpδx�x?�DiracÿÝ"l
Xµ
t �McKean¡���5ê¼L§"

�¦^�5ê¼L§5�x��5Fokker-Planck�§(1.1)±9©Ù�6�Å�©�§(1.3), �

ÄRdþäkN(> 2)�âf�²þ|âfXÚXN
t = (XN,i

t )16i6N ∈ RNd:

dXN,i
t = b(XN,i

t , µNt )dt+ σ(XN,i
t , µNt )dW i

t , t > 0, 1 6 i 6 N, (1.4)

Ù¥(W i
t )16i6N�Õá�m�Brown$Ä, (Xi

0)16i6N�F0�ÿ�ÕáÓ©Ù�ÅCþ,Ù©Ù�µ0 ∈
P̂, �

µNt :=
1

N

N∑
i=1

δXN,it

�âfXÚ�²�©Ù"3·��^�e, �§(1.4)´·½�, Ù)�²;��5ê¼L§, �

�N →∞�µNt fÂñ�Xt�©ÙLXt , l
(1.1)�À��âfêªuÃ¡�, ü�âf�4�üz

XÚ"ÏL¦^Kac�·bDÂg�, ù��5�®²�î�y²"

3�©�{eÜ©, 0�'u²þ|âfXÚ�©Ù�6�Å�©�§ïÄ¥��
c÷¯K§

øk,��Ó1Æöë�"�u�ö�Æ£Uå, J�!�¦�, $��3n)þ� �, ��Öö

1µ��"

2 Kac·bDÂ

�XÚ¥�âfÕáÓ©Ù�, ØÓ�âf?u���Ó�Õá/ , ùáu4à�ÃSG�,

¤±�Kac¡�“·b”"âfXÚäk·b5�, ´��âfêªuÃ¡�, XÚ¥�âfÅìC¤

ÕáÓ©Ù�G�"
·bDÂ´�, �âfêªuÃ¡�, �X�müz�âfXÚòÐ©���

·by�DÂ�
?¿��"

½½½ÂÂÂ2.1 (Kac·b) �éuz�N > 2, {XN,i}16i6N�RdþN��ÅCþ(N��Åâf�

 �), ÙéÜ©Ùäk���5, =µ?�(1, · · · , N)���­ü(i1, · · · , iN ), k

L(XN,i1 ,··· ,XN,iN ) = L(XN,1,··· ,XN,N ).

XJ�N →∞�, ?�k ∈ NkfÂñ

L(XN,1,··· ,XN,k) → µ⊗k0 ,

Ù¥µ⊗k0 �,VÇÿÝµ0 ∈ P�kgÕá¦È, K¡TâfXÚ�·b�"

w,, c¡¤`�ÕáÓ©Ù��ÅCþx{XN,i
0 = Xi

0}N>2,16i6N´Kac·bXÚ���A

~"

½½½ÂÂÂ2.2 (Kac·bDÂ) �{XN,i
t }16i6N,N>2,t>0�RdþâfXÚ��ÅüzL§, XJÐ©

XÚ{XN,i
0 }16i6N,N>2´·b�, K?�t > 0 ���XÚ{XN,i

t }16i6N,N>2�´·b�, ù��5�

¡�âfXÚ�·bDÂ"
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'u·bDÂ�ïÄ®²�~õ"{ó�§�Xêb, σ÷v�½^��, �±(½�mP̂ ¦�
�§(1.1)Ú(1.3)·½, ��A�²þ|âfXÚäk·bDÂ5�"AO�, éuÕáÓ©Ù�Ð

�{XN,i
0 = Xi

0}N>2,16i6N , LXN,i0
= LX0

= µ0 ∈ P̂, �N →∞�k

L(XN,1t ,··· ,XN,kt ) → µ⊗kt , k ∈ N, t > 0, (2.1)

Ù¥(XN,1
t , · · · , XN,N

t )�²þ|âfXÚ(1.4)�), µt�(1.1)�)"

Ø
½5�x, ©z¥��Ñ
·bDÂ�½þ�O, =�O�N → ∞�(2.1)¥fÂñ�Âñ

�Ý"^5£ãÂñ�Ý��ª�)VÇål!�é�½Fisher&E"e¡=éuRdþ�VÇÿÝ
0�ùA�þ, éuN�âfXÚ, �IòRd�¤RNd.

?�p ∈ [0,∞), p�Wassrsteinål½Â�

Wp(µ, ν) := inf
π∈C(µ,ν)

(∫
Rd×Rd

|x− y|pπ(dx, dy)

) 1
p∨1

, µ, ν ∈ P,

Ù¥C(µ, ν)�µ�ν�ÍÜ(=éÜ©Ù)�N"3�`DÑ¥, ù�þL«3p�¤^¼êe©

Ùµ�ν�m��`DÑ¤^"�p > 0�, p�Wassetstein�m

Pp :=
{
µ ∈ P : µ(| · |p) <∞

}
3Wpe´Polish(���©Ýþ)�m, �¡·�¬0�Wasserstein�mþ��©(�"éup =

0,-|x− y|0 := 1x 6=y, KW0´�C�ål���:

2W0(µ, ν) = ‖µ− ν‖var := sup
‖f‖∞61

|µ(f)− ν(f)|.

3¿, P0 = P3W0e´����Ø�©"

,��­��þ´�é�, §£ã
��©Ùµ�éu,��©Ùν�·b§Ý:

Ent(µ|ν) :=


∫
Rd log f dµ, e f := dµ

dν
�3,

∞, ÄK.


µ'uν�Fisher&E�

I(µ|ν) :=

ν(f−1|∇f |2), e f := dµ
dν
�3,

∞, ÄK.

�{üP, e¡=�Äm = d, σ = σ0Id×d (σ0 > 0�~ê)�

b(x, µ) :=

∫
Rd
K(x, y)µ(dy) =: (K ∗ µ)(x), (2.2)

ùpK(x, y)L«?u �x�y�âf�m��p�^"u´, âfXÚ(1.1)Ú�Å�©�§(1.3)

�{z�

dXN,i
t = (K ∗ µNt )(XN,i

t )dt+ σ0dW i
t , t > 0, (2.3)

4
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dXt = (K ∗ LXt)(Xt)dt+ σ0dWt, t > 0. (2.4)

�(2.4)¥�Brown$ÄWt = W i
t�, òÙ)P�Xi

t , =:

dXi
t = (K ∗ LXit )(X

i
t)dt+ σ0dW i

t , t > 0.

·�b�{Xi
0}i>1Õá��X0Ó©Ù, l
{(Xi

t)t>0}i>1�ÕáÓ©Ù��ÅL§"

éuLipschitzëY�òÈØK, McKean[30] ®²y²
ü�âf3´»�mþ·bDÂ:

E
[

sup
t∈[0,T ]

|XN,1
t −X1

t |2
]
6
C(T )

N
, T > 0, N > 2,LX0

∈ P2,

Ù¥~êC(T ) ∈ (0,∞)Ø�6uÐ©Ù"ùp�Âñ�ÝN−1´�`�"©z[41]¦^ÍÜ�{­

#y²
T(J"dd, ?�k > 1,

E
[ k∑
i=1

sup
t∈[0,T ]

|XN,i
t −Xi

t |2
]
6
kC(T )

N
, T > 0, N > 2,LX0

∈ P2,

l
��´»�mþ�·bDÂ:

Wk,T
2

(
L(XN,1,···XN,k)0→T ,L

⊗k
X0→T

)
6
(kC(T )

N

) 1
2

, T > 0, N > 2,LX0
∈ P2, (2.5)

Ù¥

(XN,1, · · ·XN,k)0→T := (XN,1
t , · · ·XN,k

t )t∈[0,T ]

´´»�mCk,T := C([0, T ];Rkd)þ��ÅCþ, aq�, X0→T := (Xt)t∈[0,T ]´C([0, T ];Rd) þ��
ÅCþ, �

Wk,T
2 (µk,T , νk,T ) := inf

Γ∈C(µk,T ,νk,T )

(∫
Ck,T×Ck,T

(
sup
t∈[0,T ]

|ξt − ηt|2
)

Γ(dξ,dη)

) 1
2

´Ck,T þVÇÿÝµk,T Úνk,T �m�2�Wasserstein ål"dK�Lipschitz5±9(2.5), �±��

�é�e�·bDÂ: �3~êC(T ) > 0¦�

Ent
(
L(XN,1,···XN,k)0→T

∣∣L⊗kX0→T

)
6
kC(T )

N
, N > k > 1.

'u·bDÂ�ïÄ�¹�ë�nã©z[7], e¡=�ÄK�ÛÉ¼ê�/"

·�b�K÷v

|K(x, y)| 6 κ

|x− y|β
, x 6= y ∈ Rd,

Ù¥κ > 0, β ∈ (0, d)�~ê"Ï�ý�.*ÑL§�©Ù'uLebesgueÿÝäk���Ý, β < d�

b�´Ün�, ÄK(2.2)¥�b(x, µ)éuµ = LXt�UÃ½Â"�3�½�b�e, 'XK(x, y) =

K(x− y)��é¡¼ê, éuβ ∈ [d, d+ 1)±9äkHölderëY�Ý¼ê�ÿÝµ, b(x, µ)´�±½Â

�, ��¡�¯K2.1"e¡0�A�­���p�^¼êK(x, y) = K(x− y), x 6= y, �[39]"

5
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(1) Coulomb/Newton �p�^"-ωd�d�ü ¥�NÈ"CoulombØ�^

KC(x) =
x

dωd|x|d

�x>Ö�m��p�^, 
Newton�p�^KN = −KC �xÔN�m�Úå�^"

(2) Biot-Savart �p�^"�sd−1�Rd¥ü ¥¡�¡È"Biot-SaravtØ

KBS(x) =


(−x2,x1)

2π|x|2 , if d = 2, x = (x1, x2) ∈ Rd,
x

sd−1|x|d , if d > 3,

£ãØ�Ø6N¥��p�^"

(3) Riesz�p�^"�0 6= κ ∈ R, β ∈ (0, d+ 1)�~ê"RieszØ

KR =
κx

|x|β

´Coulomb�Biot-Savart(d > 3)Ø�í2/ª"

�β < 1�, éuäkRiesz�p�^�²þ|âfXÚ, [18]y²
´»���·bDÂ:

lim
N→∞

E
[

sup
t∈[0,T ]

|XN,1
t −X1

t |p
]

= 0, p ∈ (0, 2), T > 0.

éu2�Coulomb�p�^�XÚ, [5]y²
ü���3�é�e�·bDÂ:

Ent(L(XN,1t ,··· ,XN,kt ),L
⊗k
Xt

) 6 kcecε
−1tε logN

N
, N > k > 1, t > 0, ε ∈ (0, 1),

Ù¥~êc > 0Ø�6uε"'uÛÉ�p�^XÚ·bDÂ��õïÄ, �±�[5, 18]¥�ë�©

z"d	, [26]��O
äkW−1,∞�p�^�²þ|âfXÚ�·bDÂ"

¯̄̄KKK2.1 ïÄäk�ÛÉ��p�^��., 'X3(2.2) ¥K(x, y) = K(x− y)÷v

K(−x) = −K(x), |K(x)| ∼ |x|−d−α, α ∈ [0, 1).

T�p�^30?'RieszØ�\ÛÉ, �µäk(α+)�HölderëY��Ý¼ê�, (2.2)¥�b(x, µ) k

½Â"éuùa�ÛÉ��p�^Ø, ïÄ²þ|âfXÚ(2.3)�·bDÂ, ±9©Ù�6�Å�

©�§(2.4)�5�"

éu�K��p�^âfXÚ, �ü�âf�üzÉ�ÑÑ	å��^�, �±¤á�m���

·bDÂ: �N →∞�,

sup
t∈[0,∞)

(
E
[
|XN,1

t −X1
t |2
]

+ Ent(LXN,1t
,LXt)

)
→ 0,

�[15, 37]9Ù©z"

6
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¯̄̄KKK2.2 éuäkÑÑ	å�ÛÉ�p�^âfXÚ, 'X3(2.3)¥££��K ∗ µNt −∇V ,

Ù¥Vî�à, ïÄ�m���·bDÂ; 3�K�p�^�/, �O�Û´»��·bDÂ�Ý:

�N →∞�,

E
[

sup
t∈[0,∞)

|XN,1
t −X1

t |2
]
, Ent(LXN,10→∞

,LX0→∞)→ 0.

�XÚäkPÁ�, �Ä´»�6�âfXÚ:

dXN,i
t =

{
H(XN,i

t−r→t, µ
N
t−r→t) + (K ∗ µNt )(XN,i

t )
}

dt+ σ0dW i
t , 1 6 i 6 N, t > 0,

Ù¥r ∈ (0,∞)´��~ê(PÁ�Ý),

Xt−r→t ∈ C(r) := C([−r, 0];Rd), Xt−r→t(s) = Xt+s, s ∈ [−r, 0],

µNt−r,t :=
1

N

N∑
i=1

δXN,it−r→t
,

�Ð�{XN,i
−r→0 = Xi

−r→0}16i6n�C(r)þÕáÓ©Ù��ÅCþ"�K = 0�

H : C(r)× Pp(C(r))→ Rd

LipschitzëY�, Ù¥p > 1, Pp(C(r))�C(r)þ'u��ål�p�Wasserstein�m, ©[20]y²
´

»���·bDÂ:

lim
N→∞

E
[

sup
t∈[0,T ]

|XN,1
t −X1

t |p
]

= 0, T > 0.

XJH'u©ÙCþ3�C�åle´LipschitzëY�, T©�y²
�C�åle�·bDÂ"

¯̄̄KKK2.3 ïÄäkÛÉ�p�^�´»�6âfXÚ�·bDÂ; ïÄäkÃ¡PÁ(r =

∞)âfXÚ�·bDÂ"

�Ä�ÅHamilton(ÄåÆ)XÚ:3(1.1)Ú(1.4)¥,-d = 2m�éux = (z, v) ∈ Rd = Rm×Rm,

σ = diag{0, Im×m}, b(x, µ) =
(
v, (K ∗ µ)(x)

)
.

�K�LipschitzëY¼ê�, [15]��
W2e��m���°(·bDÂ�Ý. éuKáu·�

�Besov�m, �D(�Brown$Ä½α­½L§, [17]�O
òKìC�1�²þ|âfXÚ�´»

��·bDÂ�Ý"

¯̄̄KKK2.4 3þã¯K¥, ïÄD(�LévyL§½äkòzBrownD(��."

3 �K5

�¦^VÇ�{�x �©�§��K5, Bismut[4]¦^Malliavin©Ûïá
*Ñ�+�ê

�VÇúª, T/ª��êúª3©z¥�¡�Bismutúª"d	, ��O�+��Ø 5Ú*Ñ

L§�log-SobolevØ�ª~ê, �ö[43]uy
*Ñ�+�Ã¡�HarnackØ�ª, d�q3[44]¥

7
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Ú\
�f/ª�log-HarnackØ�ª, §�Ø=UéÐ��x�ÅXÚ��K5, �3�½�µ

ee�duBakry-Emery�­Çe.^�±9�é�-DÑ¤^Ø�ª�, �[45]"Bismutúª±9

Ã¡�Harnack Ø�ª®��þA^uNõØÓ�.�ïÄ"ùp·��Ä©Ù�6�Å�©�

§(1.4)�BismutúªÚlog-Harnack Ø�ª"

b�©Ù�6�Å�©�§(1.3)éu©Ùµ ∈ P2´·½�, PP ∗t µ = LXt"·��xN�

µ 7→ P ∗t µ, t > 0

��K5"duP ∗t µdÙéuk.�ÿ¼ê�È©¤(½, ¤±�I�ÄP2 þ�¼ê

P2 3 µ 7→ Ptf(µ) :=

∫
Rd
fd(P ∗t µ), t > 0, f ∈ Bb(Rd)

��K5"Äu6�5�P ∗t+s = P ∗t P
∗
s , s, t > 0, �K5�À�á�m5�, ¤±·�=�Ät ∈

[0, T ], Ù¥T > 0��½~ê"

3±eü��!¥, ·�©O'5äkÛÉ�p�^�Ptf�log-HarnackØ�ª�Bismut.

�êúª"�Xê'u©ÙCþäk�K5�, 'X'uWassersteinål!\�C�ålä

kLipschitz5, �NN'u�mCþÛÉ, �'ó�®²�o(3#CÑ��;Í[56] ¥"

3.1 Log-HarnackØ�ª

·�ïÄ©Ù�6�Å�©�§�Xe�log-HarnackØ�ª

Pt log f(µ) 6 logPtf(ν) +
c

t
W2(µ, ν)2, t ∈ (0, T ], µ, ν ∈ P2, f ∈ B+

b (Rd),

Ù¥B+
b (Rd)´Rdþk.�¼ê�N, c > 0�~ê"TØ�ª�du�é�-DÑ¤^Ø�ª

Ent(P ∗t µ|P ∗t ν) 6
c

t
W2(µ, ν)2, t ∈ (0, T ], µ, ν ∈ P2. (3.1)

3¿, ùp�t−1�´�`���m�O"¯¢þ, dPinskerØ�ª, (3.1)%¹

‖DPtf‖∞ := sup
µ6=ν

|Ptf(µ)− Ptf(ν)|
W2(µ, ν)

6
(2c

t

) 1
2

‖f‖∞,

ùp�t−
1
2´ý�*Ñ�+FÝ�O¥��`��m1�"

ïÄlog-HarnackØ�ª���k�óä´�ö[44]¤uÐ�CÿÝÍÜ�{, �D(XêσØÓ

��6u©ÙÚ�mCþ�, T�{±�k�A^u�)££�b'u�mÛÉ!'u©ÙCþ'

uW2ålLipschitzëY��.[24, 32, 51]"#C, Äu[35]¤uÐ�V>ÍÜ�{, ©[21]éuD(Ó

��6u�mCþÚ©ÙCþ��.ïá
log-Harnack Ø�ª, �NN££�¥'u©Ù��65

fuW2�e�Lipschitz5, =�3~êc > 0¦�

|b(x, µ)− b(x, ν)| 6 c
(
W2(µ, ν) + Wψ(µ, ν)

)
,

Ù¥ψ�Dini¼ê�²��,

Wψ(µ, ν) := inf
π∈C(µ,ν)

∫
Rd×Rd

ψ(|x− y|)π(dx, dy).
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T^�®²'��CuäkÛÉ�p�^��."�C, ·�[22]Ú\dÛÜ�È¼êp��VÇå

l5ïÄlog-HarnackØ�ª, CX
12!¤?Ø�ÛÉ�p�^�., �NND(Xê�6u�m

Cþ(�Ø�6u©ÙCþ)"

¯̄̄KKK3.1 éuäkÛÉ�p�^�©Ù�6�Å�©�§(1.3)ïálog-HarnackØ�ª, Ù

¥b�¹ÛÉòÈ

K ∗ µ :=

∫
Rd
K(·, y)µ(dy),

K�¹Coulomb/Biot-Savart/Riesz�p�^"�D(XêσØ�6u�mCþ�§·�[22]éuβ <

1�Riesz.�p�^ïá
�N(=?¿t ∈ (0, T ])�log-HarnackØ�ª, 
éuÙ§�/ïá
Û

Ü(=��m)�log-HarnackØ�ª"��]Ô5�¯K´XÛéuD(�6u©Ù�äkÛÉ�p

�^��.ïálog-HarnackØ�ª"ùpNND(Xê'u©Ù��65´�K�"

¯̄̄KKK3.2 éu�ò´��., �D(Ø�6u©Ù�Xê'u©Ù�W2LipschitzëY�,

[23] ïá
log-HarnackØ�ª"?�ÚïÄD(�6u©Ù!äkÛÉ�p�^��ò´�.

�log-HarnackØ�ª"

3.2 Bismut úª

·�k0�'uVÇ©Ù�S%�ê�	%�ê, §�©O£ãâfXÚ¥âf�“£Ä”�“)

k”ü«üzª³"�{üP, ·�=�ÄP2þ¼ê��ê, 'u�2�/�ïÄ�[2, 34,61]"

½½½ÂÂÂ3.1 �f : P2 → R�ëY¼ê, µ ∈ P2.

(1) XJ

L2(Rd → Rd, µ) 3 φ 7→ Dφf(µ) := lim
ε↓0

f(µ ◦ (id+ εφ)−1)− f(µ)

ε
∈ R

´��û½�k.�5�¼, Ù¥id : Rd → Rd´ðÓ�f,

(µ ◦ (id+ εφ)−1)(A) := µ({x : x+ εφ(x) ∈ A}),

K¡f3µ?S%��"d�, �3���Df(µ) ∈ L2(Rd → Rd, µ)¦�

Dφf(µ) = 〈Df(µ), φ〉L2(µ) :=

∫
Rd
〈Df(µ), φ〉(x)µ(dx), φ ∈ L2(Rd → Rd, µ).

·�¡L2(Rd → Rd, µ)�µ?���m, Df(µ)�f3µ?�S%�ê"

(2) XJ?�x ∈ Rd,

Def(µ)(x) := lim
ε↓0

f((1− ε)µ+ εδx)− f(µ)

ε
∈ R

�3, K¡f3µ?	%��, Def(µ) : Rd → R�	%�ê"

�*þ, Dφf(µ)£ã�âfXÚ÷X�þ|φ��£Ä�, 3fe¼ê��CzÇ; 
	%�

êDef(µ)(x) �x�XÚ3x?)Ñ�þÃ¡�âfεδx, Ó��XÚoN~��Ó�Ã¡��þεµ,

3fe¼ê��CzÇ"Ïd, ùü«�ê©O�x
âf�$ÄÚ)k"

9
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�σ(x, µ) = σ(x)Ø�6u©Ù, �b(x, µ)'uxäk,«ÛÜ�È5!'uµS%���, ·�

®²ïá
Bismut .S%�êúª(�[52]9Ù©z):

DφPtf(µ) = E
[
f(Xt)M

φ
t

]
, f ∈ Bb(Rd), t ∈ (0, T ],

Ù¥Xt´Ð©Ù�µ��§(1.3)�), Mφ
t ´��wª�E�'uφ�5��"#C, ©[25]3�f�

©Ù�65^�eïá
Túª, 
[33]KéuPtf�	%�ê�ïá
Bismut .úª"

¯̄̄KKK3.3 éuD(�6u©Ù��.ïáS%�ê!	%�ê�Bismutúª; éuäkÛÉ

�p�^��.ïáS%�ê!	%�ê�Bismutúª"

��±?�Ú�Ä�ò´��."éuD(Ø�6u©Ù!Ø�¹ò´, �££���K��

/, ©[2]éuI�L§��+ïá
S%�ê�Bismutúª"

¯̄̄KKK3.4 éu�ò´��.§ïá	%�ê�Bismutúª; éuD(�6u©Ù�Ø�6u

ò´!¤£�äkÛÉ�p�^��., ïáS!	%�ê�Bismutúª"

¯̄̄KKK3.5 3þã¯K¥,ïÄ�LévyD(�©Ù�6�Å�©�§�Bismutúª"©z[40]®

²ïÄ
Xê�K��."

��, (Ü·bDÂ�S%�ê�Bismutúª, ·��Ä�ê6�·bDÂ"�½ÕáÓ©Ù

�Ð�{Xi
0}i>1, µ := LXi0 ∈ P2, {XN,i

t }16i6N�²þ|âfXÚ(1.4)"�½φ ∈ L2(Rd → Rd, µ),

±9ε ∈ (0, 1), -{XN,i,ε
t }16i6N´±{Xi

0 + εφ(Xi
0)}i>1�Ð��²þ|âfXÚ, 
Xi,ε

t �(1.3)¥

±W i
t�D(±X

i
0�Ð��)"

¯̄̄KKK3.6 3�½�^�e, y²±e��ê63L1(Ω→ C([0, T ];Rd),P)¥�3:

∇φXN,i
t := lim

ε↓

XN,i,ε
t −XN,i

t

ε
,

∇φXi
t := lim

ε↓

Xi,ε
t −Xi

t

ε
, t ∈ [0, T ].

ïÄ�ê6�·bDÂ

lim
N→∞

E
[

sup
t∈[0,T ]

|∇φXN,1
t −∇φX1

t |2
]

= 0,

�OÂñ�Ý"±d�Ä:, ïÄ�N →∞�

∇PN1
t f(µ) := lim

ε↓0

E[f(XN,1,ε
t )− f(XN,1

t )]

ε

�Bismutúª´ÄÂñ, XJ´, �Ù4�AT´Ptf(µ)�Bismutúª"

4 �¼Ø�ª�H{5

�ÄRdþdL := ∆ −∇V)¤�*ÑL§, Ù¥V´Rdþ�ÿ¼ê¦�µ(dx) := e−V (x)dx�V

10
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ÇÿÝ"-Pt��A�*Ñ�+"dÌnØ, éu~êλ > 0, PoincaréØ�ª

Varµ(f) := µ(f2)− µ(f)2 6
1

λ
µ(|∇f |2), f ∈ C1(Rd)

�duLäkÌ�Ygap(L) > λ, ±9Pt3L
2(µ)¥�êªÂñ

‖Pt − µ‖L2(µ) := sup
‖f‖L2(µ)61

‖Ptf − µ(f)‖L2(µ) 6 e−λt, t > 0.

d	, éu~êρ ∈ (0,∞), log-SobolevØ�ª

Entµ(f2) := µ(f2 log f2)− µ(f2) logµ(f2) 6
1

ρ
µ(|∇f |2), f ∈ C1(Rd)

�duPt��Ø 5[8, 13,14]

‖Pt‖Lp(µ)→Lq(µ) := sup
‖f‖Lp(µ)61

‖Ptf‖Lq(µ) 6 1, q > p > 1, t >
1

4ρ
log

q − 1

p− 1
,

±93�é�e��êÂñ5[1]

Entµ(Ptf) 6 e−4ρtEntµ(f), f ∈ B+
b (Rd).

b�þ¡�~êλ, ρÑ´�`�, K[38]y²λ > 2ρ, ���3λ¤éA�A�¼êu¦�µ(u3) 6= 0 �

kλ > 2ρ.

�PoincaréØ�ªØ¤á�, ©z[36]Ú\
Xe�fPoincaréØ�ª5�x�+úu�êª�

Âñ�Ý:

Varµ(f) 6 α(r)µ(|∇f |2) + rΦ(f), r > 0, f ∈ C1(Rd),

Ù¥α : (0,∞)→ (0,∞) ¡��Ç¼ê, �r ↓ 0�α(r) ↑ ∞; �

Φ : L2(µ)→ [0,∞]

¦�{f : Φ(f) <∞}3L2(µ)¥È�, ±9

Φ(cf) = c2Φ(f), Φ(Ptf) 6 Φ(f), c ∈ R, t > 0, f ∈ L2(µ).

�Ç¼êαéAu�+�XeÂñ�Ý:

sup
Φ(f)61

‖Ptf − µ(f)‖L2(µ) ↓ 0.

3�½�k���/,Ï~�Φ(f) = ‖f‖2∞, 
éuÃ¡âfXÚ, Φ�À���â�.g��5�,

ë�@Ï�©z[29] ¤À��Φ, ±ïÄ�C��p�^âfXÚ��êªH{5"

�Ä©Ù�6�Å�©�§

dXt = −
{
V (Xt) + (K ∗ LXt)(Xt)

}
dt+

√
2dWt, t > 0, (4.1)

±9�A�²þ|âfXÚ

dXNi
t = −

{
V (Xi

t) + (K ∗ µNt )(Xi
t)
}

dt+
√

2dW i
t , t > 0, 1 6 i 6 N, N > 2, (4.2)

11
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Ù¥µNt := 1
N

∑N
i=1 δXN,it

, V ∈ C2(Rd)�âf�g� ³¦�

µV (dx) :=
e−V (x)dx∫
Rd eV (x)dx

∈ P,

W ∈ C2(Rd × Rd) ��p�^Ø. 3�½�^�e, ©Ù�6�Å�©�§(4.1)éu©ÙáuP2´

·½�, �N -âfXÚ�Harmilton þ

HN (xN ) :=
N∑
i=1

V (xN,i) +
1

N

N∑
i,j=1

W (xN,i, xN,j), xN = (xN,i)16i6N ∈ RdN

¤éA�Gibbs ÿÝ

GN (dxN ) :=
1

ZN
e−HN (xN )dxN , ZN :=

∫
RdN

e−HN (xN )dxN <∞

÷v���log-SobolevØ�ª

EntGN (f2) 6
1

ρ
GN (|∇f |2), f ∈ C1

b (RdN ), N > 2, (4.3)

Ù¥ρ ∈ (0,∞)�~ê"KXN
t �ê¼�+P

N
t 3�é�eäkXe��êÂñ:

EntGN (PNt f) 6 e−4ρtEntGN (f), f ∈ B+
b (RdN ).

��xTØ�ª¤%¹�©Ù�6�Å�©�§�H{5�O, �ÄXÚ�gdU:

EV,W (ν) := Ent(ν|µV ) +
1

2

∫
Rd×Rd

W (x− y)ν(dx)ν(dy), ν ∈ P2.

K

EntV,W (f) := EV,W (ν)− inf
γ∈P

EV,W (γ) > 0.

©z[16]y², k

lim inf
N→∞

1

N
EntGN (ν⊗N ) = EntV,W (ν), ν ∈ P2,

Ù¥l
EntV,W�¡�XÚ�²þ|�é�"d	, -P ∗t ν = LXt , Xt ´±ν�Ð©Ù�§(4.1)�

), �(PNt )∗ν⊗N = LXNt , XN
t = (XN,i

t )16i6N´Ð©Ù�LXN0 = ν⊗N�²þ|âfXÚ(4.2) �)"

�[16] �y²

lim inf
N→∞

1

N
EntGN ((PNt )∗ν⊗N ) > EntV,W (P ∗t ν), t > 0, ν ∈ P2.

l
���log-Sobloev Ø�ª(4.3) %¹©Ù�6�Å�©�§'u²þ|�é��êH{:

EntV,W (P ∗t ν) 6 e−4ρtEntV,W (ν), t > 0, ν ∈ P2.

��p�^�K�, 'u©Ù�6�Å�©�§��m1��ïÄó���)3ØÓ¿Âe�

�êH{5!Donsker-Varadhan � ��n!¯úXÚ�²þz�n�, �[19, 56]9¤Ú©z"

¯̄̄KKK4.1 Ïé¿y²²þ|âfXÚ���PoincaréØ�ª¤%¹�©Ù�6�Å�©�§

�H{5, 'X©Ù�Ý¼ê33,«¿Âe��êÂñ5"

12
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¯̄̄KKK4.2 éuÑÑ��f�²þ|âfXÚ, Ø¤á���PoincaréØ�ª, ëì©z[29, 36],

ïá���fPoincaré Ø�ª, �x©Ù�6�Å�©�§�g�êªH{5"

¯̄̄KKK4.3 éuäkÛÉ�p�^��., ïÄ²þ|âfXÚ����¼Ø�ª, ¿�x�A

�©Ù�6�Å�©�§�H{5"

¯̄̄KKK4.4 éuäkÛÉ�p�^��., ïÄ©Ù�6�Å�©�§�H{5!Donsker-

Varadhan� ��n, ïá¯úXÚ�²þ�n"

5 D(�äkÛÉ�p�^�©Ù�6�Å�©�§

c¡¤?Ø�ÛÉ�p�^, =�3u¤£�"
éu�
­��Ôn�., ÛÉ��p�^�

Ñy3D(�, =3(1.3)¥b(x, µ)dÛÉØKÏL(2.2)5(½, 
D(�d,��ÛÉØσ0¤(½:

σ(x, µ) = (σ0 ∗ µ)(x) :=

∫
Rd
σ0(x, y)µ(dy).

��;.�~f´3DàgLandau�§(Bolthman�§�grazing collision4�): 3R3þ�ÄVÇ�

Ý¼êρt¤÷v��§

∂tρt =
1

2
div

{∫
R3

a(· − z)
(
ρt(z)∇ρt − ρt∇ρt(z)

)
dz

}
,

Ù¥éu~êγ ∈ [−3, 1],

a(x) := |x|2+γ
(
I − x⊗ x

|x|2
)
, x ∈ R3.

T�§¤éA�©Ù�6�Å�©�§�

dXt = (K ∗ LXt)(Xt)dt+ (σ0 ∗ LXt)(Xt)dWt,

Ù¥Wt�3�Brown$Ä, K(x, y) = K(x− y), σ0(x, y) = σ0(x− y)÷v

K(x) := −2|x|γx, x ∈ R3,

σ0(x) := |x|
γ
2


x2 0 x3

−x1 x3 0

0 −x2 −x1

 , x = (x1, x2, x3) ∈ R3.

3�K�/,=γ = 0 (Maxwell molecules)Úγ ∈ (0, 1] (hard potential)�,®k�þ�ïÄ¤J,�)

·bDÂ!H{5!Harnack Ø�ª�, �[6,9–11,46]"�γ ∈ (−2, 0)(moderately soft potential)�,

[12]��
²þ|âfXÚ�·bDÂ"3ù
�¹e, D(Xê¥��p�^Øσ0��´Hölderë

Y�, ÛÉ5'�f"

¯̄̄KKK5.1 ïÄD(äkÛÉ�p�^�©Ù�6�Å�©�§, �x�½5!�K5!H{

5Ú·bDÂ"AO�, A^urÛÉγ ∈ [−3,−2](soft potential)�/Landau�§¤éA�©Ù�

6�Å�©�§"
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6 ²�©Ù3Wassersteinåle�Âñ�Ý

ê¼L§�²�©Ù´^5�O²­©Ù�­�ÚOþ"'uH{ê¼L§²�©Ù��

m1��ïÄ®k´L�¤J, ïá
r�êÇ!¥%4�½nÚ� �!¥ ��, �[59, 60]"

Cc5,�ö�Ü�öïÄ
ê¼L§²�©Ù3Wassersteinåle�Âñ�Ý, éuAaØÓ�

.��
Âñ�Ý�°(�O, ¿3$��/��
2�Wassersteinål�­�z4�, �[42, 48–

50,53,54,57,58], ±9nã©Ù[55]"

b�M�d�;Riemann6/, Xt�dL := ∆ + U)¤�*ÑL§, Ù¥∆�Laplace�f, U�

��k.�þ|"KT*ÑL§´�êH{�, ��3Mþ�1w¼êV¦����ØCVÇÿÝ

�L«�

µ(dx) = eV (x)dx,

ùpdxL«Mþ�NÈÿÝ"K)¤�f�©)�

L = L̂+ Z, L̂ := ∆ +∇V, Z := U −∇V,

Ù¥é¡Ü©L̂�L2(µ)þg��f, �é¡Ü©Z'uµ�ÑÝdivµ(Z) = 0, =:∫
M

〈Z,∇f〉dµ = 0, f ∈ C1(M).

�âr�êÆÚ¥%4�½n[59], �t→∞�, ²�©Ù

µt :=
1

t

∫ t

0

δXsds

±VÇ1Âñ�µ, �?�0 6= f ∈ L2(µ), µ(f) = 0, �t→∞�fÂñ

√
t µt(f) =

1√
t

∫ t

0

f(Xs)ds→ N(0, 2V(f))

¤á, Ù¥N(0, 2V(f))L«þ��0!���2V(f)���©Ù,

V(f) :=

∫ ∞
0

µ(fPtf)dt ∈ (0,∞).

�ρ�Mþ�Riemannål, ?�p ∈ [1,∞), dρp��p�Wassersteinål½Â�

Wp(µ, ν) := inf
π∈C(µ,ν)

(∫
M×M

ρ(x, y)pπ(dx,dy)

) 1
p

,

Ù¥C(µ, ν)´µ�ν�ÍÜ�N"

�{λi}i>0 �g��f−L̂�¤kA��, l���ü�¿P­ê"Ù�,

λi � i
2
d , i > 0,

Ù¥A � BL«, �3~êc ∈ (1,∞)¦�ü��KCþA�B÷vA 6 cB,B 6 cA.
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©z[57]y², éu¤k�p ∈ [1,∞)±9q ∈ (0,∞),

(E[Wq
p(µt, µ)])

1
q �


t−

1
2 , if d 6 3,

t−
1
2

√
log t, if d = 4,

t−
1
d−2 , if d > 5

éut > 2'uÐ©Ù��¤á"

©z[53]y², ��êd 6 3�, ­�z4�

lim
t→∞

tE[W2(µt, µ)2] =
∞∑
i=1

2

λ2
i

(
1− 1

λi
V(Zφi)

)
éuÐ©Ù��¤á, Ù¥φi�λiéA�ü A�¼ê"
�Z = 0�, [58]y²
fÂñ

lim
t→∞

tW2
2(µt, µ) =

∞∑
i=1

2ξ2
i

λ2
i

,

Ù¥{ξi}i>1�ÕáÓ©Ù�1�IO���ÅCþ"

éud = 4�/, ©z[42]y²
­�z4�

lim
t→∞

t

log t
Eν [W2(µt, µ)2] =

vol(M)

8π2

éuÐ©Ù��¤á, Ù¥vol(M)�M�NÈ"ù�(JL², d = 4��­�z4�Ú££�Ã

'"

©z[47, 50]ïÄ
�àk>.*ÑL§�^�²�©Ù3W2e���m1�"éuL§�)

·�ζ�[²­©Ùµ0, �t→∞�, ©z[47]��
W2(E[µt|t < ζ], µ0)�4�, ©z[50] �Ñ
^�

Ï"E[W2(µt, µ0)2|t < ζ]�°(Âñ�Ý±9$��/�­�z4�"

¯̄̄KKK6.1 ïÄd > 5�/�­�z4�

lim
t→∞

t
2
d−2E[W2

2(µt, µ)] = ?

XJ4�Ø�3, O�þ!e4�"

¯̄̄KKK6.2 éuàk>.�*ÑL§, ïÄ^�²�©Ù3Wp(p 6= 2)e�Âñ�Ý"

¯̄̄KKK6.3 �Ä©Ù�6�*ÑL§Xt, Ù¥�þ|Z�O��Z(Xt,LXt), �éuØCÿÝµ,

Z(·, µ)´�é¡�, =÷vdivµ(Z(·, µ)) = 0. ��p�^v
f�, =Zéu©ÙCþ��6§Ýv


f�, òþã®k(Jí2�©Ù�6�/"

¯̄̄KKK6.4 3©z[48]Ä:þ, ïÄRdþ©Ù�6�Å�©�§�²�©Ù3Wp(p ∈ [1,∞)) e

�Âñ�Ý"

�� �öa�¥I�ÆêÆ?�¬���, a�
ï°�Ç!ë�Æ¬u�)Ø"

ë�©z
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Abstract McKean-Vlasov stochastic system is a crucial research object in stochastic analysis, partial differential

equations and mathematical physics. In this paper, we introduced some frontier problems in this model, which

include: propagation of chaos for mean field particle systems with singular interactions, regularity and ergodicity

for distribution dependent SDEs with singular kernels, functional inequalities and applications to distribution

dependent SDEs, and Wasserstein convergence rate for the empirical measure of distribution dependent SDEs.

Keywords McKean-Vlasov stochastic system, propagation of chaos, regularity, ergodicity, empirical mea-

sure.
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