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FAM: KFMcKean-Vlasov AL RS 12 T A

AR J9fa B, AR BRI FFEE, Wla, oA A1 24t
XFpePULLS e LY (), iCp(f) = [pa fdp. EIRRII AR T3 B T AE 2k I Fokker-Planck
JitE
8,5,&,5 Lm,ut, t > O (11)
AR (1) 50 AP LSS ESEHE, EEELf € C(RY), HL,. f € L' (i) (ae. s >0), u(L, f) €
Ljo([0,00)), H.

t
ih) = (1) + [ il s, e>0
S, ARG, JTRR(1.1) BIfR i 2

t

,U’t(ft) = NO(fO) + .us(Lusfs + 68fs>d5> t 2 Oa f € C(?O([Oﬂt] X Rd)

S~

R p, = S AEAE M7 R (L.1) by
atpt = L:tpta t 2 Oa (12>

R Ly AL, = Ly, z)a. kT L (dz) I #EEE (adjoint ) 52
A FA 2 7 5 L AR R M Fokker-Planck 7 72 (1.1) 80 (1.2), 25 B4 T 1434 (I BE AL i 73 77 7

dX; = b(X,, Lx,)dt + o(Xy, Lx,)dW,, >0, (1.3)
HA W, R e &I 28 (Q, {Fi }iso, F, P) EIm4EBrowniz s, Ly, € PRAX /A0, n il Bt
R? x P - R!@R™
Wiioo* = a. FEE(1.3)MIfRETERY EiE R ESBNEREX,, W {Lx, :t >0} C P, H
/Ot]E[HU(XS,ﬁXSN2 + |b(XS,£XS)|]ds < 00,
X, = X, + /Ot b(X,, Lx.)ds —i—/oto(Xs,LXS)dWS, t>0, P-as.

HIto AT, WERX, N (1.3)HIRE, W = Lx, N1 EIME. Rz, HEI0EEL[3], an 5 (1.1) HAE w9 2

/ds/ {lo o ps)l” + (b, )| }dps < 00, t >0,

) A 4 3 52 4% Y M 2 23 () DA K 2 b I mZE Browni@ W, 1 45 75 F2(1.3) B A Bhue R 1 43 7 1
X AT Lx, = puu,t > 0.
SRS A A BE LM 23 77 82 (1.3) % F BT W1 53 i € PAEIEE I, T4 X Lhuo 43 A O iR,
e X
Prpi=~Lyxx, t>0, peP.
B X P OGTF BT IR G A2, BB IR, DG T W00 A poi A2 e 1, B Py A o

“D;—s:u Pt*Ps*/J‘v t: s 2 07 [IAS 757
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3B
Pru# / (P, ¢ 0,

X B, N b B Diracill B, T X} #E McKean®roNIELNE S RIS L.
S P £ T R R ok %) i {28 1 Fokker-Planck J5 F2 (1.1) BA K 23 A AR B BE L8020 75 R (1.3), %
JERY EHA N (> 2) MR T Ik 7 RZEXYN = (X)) 1cien € RV

AX = BN )t + o (XN AW, €20, 1< i< N, (1.4)

Hr (W) 1<ian NHOLIImAEBrowni& 3, (X§)1<i<n J9Fo FTI A ARAL[F] 73 A BEHLAR B, o34 M, €

P, H
1 N
N .__ § : )
Ky = =7 ’- 6XtN,1

NELT RAEMAL /A, &R, TR(L4)ZEE R, K vEf 4t 5 IR, B
AN — ool Y SICEEN X, B 73 A L x, , A1) BN 2K 1 B0k T Io 55 I8, SR T IR BRI AL
Y. B KacH R TR B A, AR PEIT O 28 ™ A4 IE .

FEARSCIIAR T, SRR TFEIRT RG0S5 0 A B BE WL 3 T3 RE AT F0 AR (0 — LS i el L,
MBI FIT 2 ESH. WTEER R, Ett—Ia, EEAEMRE L mE, BiFE
HEPFHR IE.

2 KacREfEi&

4 R G5 IR T  [R 43 A B, S R [0 b T e 4 4R I [ ST, 35K R T (0 TE IR A,
BT DU KackR Oy “IRIE" . KIF R RA IR R, B3 SR TR T IS0, ARG R R T W 2
BSLEA AR, TR 15, R TH0E T IE 55, B0 3 1 R T R Ge kT 21
TR S AL R T AT I %,

EX2.1 (KacRi) #HFHEAN > 2, (XN} oy ARTENAEALE ¥ (NABAUE T 89
58 ), ATA DA EA TN, B LB, N)—EH(, - in), B

E(XN»il’.--7XN,iN) — E(XN,17,,,7XN,N).
R YN — coff, 4k € N 550048k
£(XN,1,,,,’XN,1€) — /,L(()@k,

S u$F Ry FREEN B g € PRIKKIR ZRAR, MARZAT R AH it g,

LR, BT T 8 0 83 D 9 A O BE LS B X0 = X3 s n o REKaCIRE R 10—
il

EN2.2 (KacRHEE) (X hcicvnsoso AR LR T R RO AR LA, 4o R4
RN hrcian oo RIRIED, RUAELE > 0 T3 8 R LX) hicion noo R4, A 001 R
AT R R
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KFRMABOHRCEET L. WS, LR, oW — 8 &I, 7T LU E s P 415
TIRE(L)AI(1.3) 1 g, HAHN (- P8k 1 R G AT TR TEAL R BT R 10, X T S7 5] 43 A7 i )
'fa{XévJ = XS}N22,1§i<N7 EXéV,i = ‘CXO = lp € 75, %N — OOEFJ‘ﬁ

Lixni . xNw = p2* keN, t>0, (2.1)

Hep(xM o XN T EIRL T R G (1LA) IR, 19 (1.1) H i

B 7 ez, SCER R T IREAE RE I E AN TR, BIME T UN — ool (2.1) S5 USR SR IS Sk
TR, FRAR SO B ) 7 SRR B B AR Fisher (5 B R IO TR E B A% 200 FE
NHIX AR, S FNNMRT RS, R TR BRI RRYY,

fE%5p € [0, 00), pBrWassrsteinf & 2 LN

m€C(p,v)

W, (p,v) :=  inf (/ |z — y|p7r(dx,dy)> , v EP,
Re x R4

HAC(u, v) N S5vi & & (BB A o ) e k. 78 s A& S, X N &R 7R fEpbh 9% F sR 30T )
fipSvz BRI AT H. Xp > Of, pPrWassetstein =[]

Pyi={peP: ul ") <oc}

TEW, N #&Polish (58 4 1] 43 B &) 23 1], Ji5 [ AT 2 /i @ Wasserstein S 0] F s> 4544, X Tp =
0,2z — y|" := 1,p,, WWoRRZRE K —F:

2Wo(p,v) = [lpp = vllvar = e [u(f) = v(f)]

B, Py = PHEW, F27ZE&IEA 5.
AN EE AR, EHE T A A T 5 — A A TR

4 L ﬂ
Ent(u|v) := {fw log fdu, 5 f:= I {77,

00, .
M pR T riFisher(s BN
v(fTYUVEP), # =SB AFLE,
I(pl) =
00, 750
jﬂﬁﬁﬁlﬂ, TEW%FEm =d,o = oglyxq (0'0 > Oj‘jﬁ%’éﬁ)ﬂ
o) = [ K(puldy) = (K« o) (o), (2.2)
Rd
EEK(x,y) R T B Syfk T 2 B BAEH. T2, KRG (1.1)MBENL D 77 F£(1.3)

BN
AXV = (K« ) (XDt + ogdW}, t >0, (2.3)
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dX; = (K * Lx,)(X)dt + oodW;, t = 0. (2.4)
4(2.4) i Brownla W, = Wik, K I X, B
dX; = (K * Lx;)(X])dt 4+ oodW}, t > 0.

PAMRBA X i n A7 B 5 Xo R A, T (XT )0 Fiz 1 AL R0 AT HREA LS 72
XF T LipschitzZE £ % K, McKean[30] ©4UER] T BN E B A7 2% 8] _E IR AL 75

c(T
E{man“—xﬂﬂg(),T>QN>Z£%6P%
t€[0,T) N

HpHHCO(T) € (0, co) MK TR0 Ao X HLFISGEEN R RAUH. SCHR[41] 68 R & 7 ik E
FHER] Tz 8. Hl, (%5 k > 1,

k

: , kC(T

E[E sup |XtN’l—XZ|2]< ( ), T>0,N>2,Lx, € Pa,
i—1 t€[0,T] N

MG 2] A 25 18] _E PR TR A% 4

LBk ) < (kC(T))57 T>0,N2=22Lx, €Po, (2.5)

k,T
W2 (ﬁ(XN’ly"'XN'k)OHT’ XosT N

Hr
(XN’1, - 'XN,k)O—)T = (XtN,la - 'XtN’k)te[o,T]

B ECHT = ([0, T); RM)_EMBENLAZ &, KB, Xoor = (X4)iep,r2C ([0, T RY) LHIEE
Pz, H

1
2

Wy (T AT = inf <A¥ . (Smnﬁr—mV)Tw&dm>
'.T>< ¢, T

rec(uk T vk T) tel0,T
FECHT FRERMNE T Fvk T 2 [H] 125 Wasserstein #EES.  H K [ Lipschitzf%: PL & (2.5), 7 LA# 2]
AERHGE T RRAL 7 AR 3O (T) > offife
kC(T)
N )
KT IRIMAL TR A TG00 AT 225 23R STk 7], T IS 8 KONt 7 B AUE T
PAUE B K i 2

Ent (E(XN,I’...XN,k)OHT |£®k ) <

XO—)T

NZ>k2>1.

|K (z,y)| < x#yeRY,

|z —y|?’
Hek > 0,8 € (0,d)NHFEC FOERY BOS R 1940 55T Lebesguelll FE LA IEI#E, B < dif)
R A H, B (2.2) FHIb(z, p) X Fu = Lx, TRELE Lo BE—ERBRET, LK (z,y) =
K(z — y) NOSFREREL, T8 € [d, d + 1) VLS AT Holder 2 4522 FE B B BEE 1, b(, ) A2 1T BAE X
(17, LSS T 2. 1. R R LA BB BAEH KK (2, y) = K(z —y),z # y, WL[39]
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(1) Coulomb/Newton ZE{EM. 2wsNd4EHAIERIIAF. CoulombiZ{EH

T
Keo(z) = deog|a]?

Z e B 2 18] S AR A, T Newton 2 HAF I Ky = — Ko 24K Z [ 51 J34F

(2) Biot-Savart X E{EH. sy NRIF AR HIA. Biot-Saravti%

Cra) it g =2,z = (z,7,) € RY,
KBS(JS) = { 2l ifd>3
1 = Iy

FIRAT] AR A A2 BAE o

(3) RieszXZEIEM. W0 #reR,B € (0,d+ 1) NHH. Rieszt%

RX

Kp=—
B Jale

#&Coulomb 5 Biot-Savart(d > 3)#% )
M6 < 18, X T HARiesz & HAF PR 245, [18]UEMA T B2 — SRR 7%

lim E| sup |X/"' = X}P| =0, pe(0,2),T > 0.
N—oo | teo,1]

xFT24ECoulomb a2 HAF K R GE, [5]UEHT 1 5N ZIFE RIS T B TR el A% 4

log N
Ojgv L, N>k>1,t>0, € (0,1),

—1,e
Ent(L oy ynny, L) < kee™ !

Ko e > OB Te. 6T & 5738 BAEH RGIRMAL RIS Z B 5T, T LAIL[5, 18]H1 5% X
ke BEAh, (2638 MGTH T BAW LS EAR T S 1 R G TR AL
BIRE2.1 WA RN AR R, LEnfE(2.2) K (2,y) = K(x — )il 2

K(—z)=—-K(x), |K(x)|~ |x|_d_a, a€0,1).

A HAF FIAEOAE e Riesz A% BN AT 7, 2p B A (a4 BrHOlder & 42 5 B e 80N, (2.2) 1 ib(x, p) A
SE 3o X T IX G AR S 1A AR A, W S0P 2T R S8(2.3) RO MAR 1, LR A O RE AL Bk
O JTHE(2.4) VSR

X IR RS AR PR T R S, 24 SR I 52 BUREO N J0 B0 /R I, AT LRSS I 18] — 250
TRMAERE: 29N — cofif,

sup (E“XtNl — XM + Ent(;CXzV,l,EXt)> — 0,

t€[0,00)

(15, 37] K H SR
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ERE2.2 T RAMBONINE R Z EAERRL T RS, TR (2.3) W B UMK « uf — VV,
Ferb Vg O, B SO A) — BRI A B A2 IR S BAR SR, Al 4R AR — BUR AL
N — coff,

E| sup [Xi" = X[[P|, Ent(Lyxa Ly, ) = 0.

te[0,00)

Y RGEA N, ISR IR T R
dXNl = {H(Xt r—>t7ut r~>t) (K * N:{V)(XtN’i)}dt + Uothi7 I<i< N, t=20,
Hrbr € (0, 00) R —MHEE(LIZKEE),

Xt r—t € C(T C([ } )7 thrﬂt(s) = Xt+57 s € [77"7 0]7

N 1
Hiry = NZ6 xNi

=1

BHAME{X N0 = X, o hicicn NC(r) ST R AR BENLAS B, 4K = 0H
H :C(r) x P,(C(r)) — R

LipschitziZ 82, Hrfp > 1, P,(C(r))NC(r) bk T — B0 & 1) pbr Wasserstein =¥ [A], SC[20]1ER] 1 %
— BRI 1

lim E| sup |XV' —X}P| =0, T>0.
N—oo | ¢e0,1)

R HRT 342 B 44D 7205 3 T /& Lipschitz@E 221, 1Z 0B UERE T 4248 25 06 B R HIVR AL 45
BlER2.3 WA AR A BAE BRI REFREAARE, TR ARG LS I8 =
0o BT~ R G PITR AL K.

% [E A Hamilton (3] /%) &4t 1E(1.1) M (1.4) %, &d = 2mBXFa = (2,v) € R = R™ xR™,

o = diag{0, Lxm}, bz, p) = (v, (K * p)(z)).

4 K Y Lipschitzi% 22 i $UN, [15]45 2 17 Wo T A I 8] — SRS 8 TR T A FR 3 2. X T K8 13 4
ffiBesov#E[a], HIE A NBrowniz shmlafa € A, (171 7R KHHL OG5 T Bkl 1 R 481 AT
— BRI AL R L

iB)E2.4  {E LR, BT S A O Lévy i A2 BUR A IR H Brown i A AL,

3 IENfE

O A AL 5 7 25 220 i 17 7 R B IR U, Bismut [4]43 F Malliavin 7 A7 2 37 197 B3 5 40
PINER A S, 1ZTE 0 T A A TR R RR 9 Bismut A X oAk, 9l v 2435 B T 4 PE A 5
i 2 [log-Sobolev AN &5 XU H £, 1 # [43) K I 1 9 #1076 75 4EHarnack A 55 50, 65 3AE([44]
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FIN T 855 % X ilog-Harnack A S X, B AT A BEAR 47 1 Z1 5 B8 B 2 42 1 12 A%, 38 AE — %€ HIHE
T S T Bakry-Emery 1 1l 58T 525 414 DL AR 0542 4 2 A AN 45 2055, I [45]. Bismut 2 2 BL A
7655 #EHarnack ANGE X OO RN TV 2 AN FERBR AT 78, 3X B 3RATT 2% 18 70 A WO BE AL 23 J7
F£(1.4) P Bismut A K fillog-Harnack A%,

ABAL 3 AT A BE AL 73 77 2 (1.3) RT3 At € Posid €W, 0P = Lx, o FATZ H B

w— Py, t>0
ERME, T P2 ot EC o T2 T B SR i, DL Fe Py L B
Py 5 s Puf(n) i= / FA(PI), t>0,f € By(RY)
]Rd

P IENE. B TR P, = PrPr,s,t > 0, 1EWIE W] R 9 40 i (8] 1 5T, P AFRATTAN 2% e €
0,7, HAT > 04 & & %

TECLR AN o, JRAT 43 ) o0 B A 3 7 22 HAE A I P, fiflog-Harnack A~ % X 5 Bismut 4!
SHANX. UNRFKT M EBAIENMER, LA 5¢ T Wassersteinh &, IS % 5 & 2
A Lipschitz{, HEVFCT AR Z 7, AKX LA OS5 3 BRI L3 [56] 4.

3.1 Log-Harnack"NZE3x
PATTHIE T 53 A OB BE AL 73 77 R2 I 40 ) log-Harnack A5 20
Pylog f(u) < log Pif (v) + SWa(u,v)?, ¢ € (0.T], pv € Pa, f € Bf (R,
HABf (RY) AR LA FIERB AR, ¢ > ONHEH ZAEEN T A E-1E 450 5% A S
Ent(P; u|Pv) < §W2(M, V)2, te(0,T], v e Py (3.1)
R, XA RN Al . F5 E) HPinsker NER, (3.1) 8

IDP Al = sup LRI < (26 .
X L e = SR R I BB A T T B B AR /NS TR AT 9

W Ftlog-Harnack A& Q) —NE R T B2 VB35 [44]) Fr KRR R G 715, 24 Ko A A
B AR T 73 A A 2 (A AR B, 1% 07k DA A ON T B AL ik T S [H) & . KT ARk
FW, B B LipschitziE 4[24, 32, 51]. HFIE, 6T [35]51 R R MU XL & 07, SC[21)% T 7t )
R4 - 2 ) A B RN 20 AT A8 B (AR AL 78 37 T log-Harnack AN, H VRIS 10 b 5C -0 A B s 1
55T W, 2 T HLipschitz 4, BIAA7EH £ > 0fE15

|b($, M) - b(xa V)' < C(W2(:u’ V) + Ww(ﬂv V))a
Horfp N Dini & E I T7 4R,

Woluw)i= ot [ (e yl)(da.dy)

el (u,v)
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M CAEEL T EAA R OEANER, fir, FA1[22]51 N &30 nT AR o6 205 5 2R BE
2R Filog-Harnack A5, 5 7 8270 iR (3 o 38 AR RS AY, HLZR Vi A R 5000t T2 1)
AR (AR T 7 AL & ).

BlEE3.1 X T B A A8 HARE B 5 AT WO R AL 43 77 A% (1.3) 8 Slog-Harnack AN 55 X, H
SRS o oA

Kxp:= | K(,y)u(dy),
Rd

K% Coulomb/Biot-Savart /RieszA HAEH. XM R Ao AR T 2 AR R, FAI22)% T8 <
11 Riesz B =2 BAE FH . T BAR(RMEEL € (0,T))log-Harnack AN S5, Xt T H e B HEY TR
HB (RPN ED) ) log-Harnack ANSE e — MBI R Il 232 Gn o T 75 RO T 0 A A A1 R 2 L
1 FH IR AL 22 S log-Harnack NS e 1X BLAS VM 22 5006 T 70 A (AR P =2 T2 U

Bl EE3.2 % T B IR LAY, Y M E AR T o A H R HOR T 5 A KW, Lipschitzide 25 1
(23] #7 [ log-Harnack NS5 20 #3F — 30 0F 50 0 A5 A T o0 Ay A &5 e 28 B4R FH I Ay 1 IR AL Y
HJlog-Harnack 4~ %5 7.

3.2 Bismut 2%,

FAVSAN AR TR N 25 S ECUS AR T2, e IR T R G okl 1) <R 3 5 “E
eI RhEA S, ATEEIC, ATE B P, LR 34, T ) S TR 8 72 02, 34, 61]

(1) d= R

LQ(Rd — Rd,,u) 5 ¢ — quf(,u) — hﬁ)l f(,u' O (Zd+€j)71) B f(:u) c R
A—NRRAREMZL, Ldid: R — RIZERHET,
(wo (id+eg) " )(A) := p({z : x + ep(x) € A}),

MARfAEpsE BT Fo LB, BERE—8Df(u) € L*(RY — RY, p) 243
Dy f(n) = (Df(), ®) L2y = /R (Df(n), ¢)(x)u(dz), ¢ € L*(R? = R, p).
BAARLA(RY — R, ) Ay p 69302 18, D f(u)H fAEuR G P 28 F 3o
(2) 4= RtE%a € RY,

Def(u)(z) == hIBL f(A=e)p tﬂsz) — f(p) cR

B, MARFAEURINET S, Def(u) : RY — RAIZEF o

B E, Dyf(p)HR 201 R 7R IHe)T MBI, 76T R BB 2R, mAh 4L 3
HDe f(p) (@) ZIHE 2 RGAE AL E R TC T IR e, [R5 R G AR s> AR R K T 75 /) i B,
FEF N AR AR R, DRI, X PRh S E A2 1R s s A A A,
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W (2, 1) = o (@) RRBT 4047, EHb(e, u) % Fo B SR R AT B, 56 T L 20T S, T
B4 T Bismut 52§50 R (L [52) R ESCHR):

DyPf(p) = E[f(Xt)Mt¢]v fe Bb(Rd)a t € (0,1,

Hrp X A5 Rl 7 R (1.3) (A, MR — AN RIS M 6 T o e ME B B, SC(25]7E #3511
I ATHAGNE S A RS %A S, T [33] T Py fH M S S T Bismut B A

E)RE3.3  Xf MR T A A R T A A R AN R B Bismut 24 3 xR AR ST
AZHAE AR S N 24 S H Aha S Bismut 24 7K.

ST DA — 25 R AR R, X M R T A, R AR, LIRS Ty I U
7%, (20T 6 e R B S T 2 S Bismut A 2.

BIEE3.4 T AR ORI, bR SR Bismut 2 3t 0 T 5 T 4 A (B R I T
GEIR. IR A R A RO, B AhE SR Bismut A K

E)&E3.5  fE IR, B U Lévy W 1 73R A BE L 5 B Bismut 24 2. SCRR[40] 2
ZWTIL T ABUEN AR,

BJa, S5 6 RS WA T Bismut A 3, BAVH S HUR IR TR B, 45 8 BT R 43 A
BB X }is1, 1= Ly € Po, {X " i NPT REG(1.4). HEd € L2 (R — RY, p),
Dl Ke € (0,1), 2{X" hcian & B{XE + e(XE) imt IHME HIFEI5H T R 5L, 1M1 X7 R (1.3) 1
DA, A0 s DL X N A A

BE3.6 fE MM, IEH UL TR SEGRAELY(Q — C([0, T); RY), P)HA77E:

Nyje XtN,i

VXN = lim %

VX lim At N e [0,77].
ot ol € ’ ’

W 7C 3 AR R TR A 4%

lim E| sup |V¢X,5N’1 - Vo X{|*| =0,
N—oo te[0,7]

ISR . AR, BEFEEN — ool

RS o110 e\ B 10 e
VPN f(4) = lim -

[P Bismut 2 2 S, s, HHWRRN %72 P, f (1) B Bismut 2 2.

4 ZEAFXSERLE
HIERY EML = A — VVAERIY BOLRE, V2R B R E T u(dz) = eV da ol

10
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T, S PONHMNEY HEERE. B, X550 > 0, Poincaré A&7
1
Var,(f) = p(f?) — u(f)? < XM(|Vf|2)a feC'(RY)
SN T LEAEZMeap(L) = A\, VL& PAEL? (n)H a2k

1P = pillzzgy = sup |Pf — p(f)llrzgy <e ™, t>0.

‘fl L2(}1~)<1

AR, X T HEp € (0, 00), log-SobolevAEE

1
Ent,, (f?) := p(f*log f?) — p(f?)log p(f?) < < op p(IVf1), feC (R
ST P R4 (8, 13, 14]
—1
1Pl spagn == sup [Biflleog <1, a>p>1 ¢ > = log —

[ fllLe <1
PASAERE R o Fi Bl st (1]
Ent, (P.f) < e *'Ent,(f), f¢€ B} [R?).

B 6 THI R 55 BN, p BTS2 B A0, T [BSPIE AN > 2p, HAAFFENITN I I RFAE R w13 (u®) # O B
B> 2p.
i Poincaré NEE AL, SCHR[36] 51 A T 1N B 55 Poincaré A5 sOR 21 m #1815 2
WS SR -
Var, (f) < a(r)u([VF?) +r@(f), r>0,feC (R,

Hrfa:(0,00) — (0,00) FNEZEREL, Y4r | OFfa(r) + oo; H
@ : L*(p) — [0, 0]
fEF3{f : ®(f) < coEL? () H B, LA
D(cf) = A0(f), P(Pf)<P(f), ceR, t=0, fe L.
R B B oot B T2 R A S SO

sup || P f — p(f)ll L2 4 0-
(f)<1

FELRE A FRYETS L JBH IO (f) = || f[12,, TR TRITH T R4, HEIERIERET 5 S PR,
Z25 ELIRSCHR[29] Prdk B ®, LARIEFT I 48 52 BAT FRL5 2 Gt i) A8 [ 1
& AT BE LI 7 5 R

AX, = —{V(X,) + (K * Lx,)(X:) }dt + V2dW,, ¢ >0, (4.1)
PASAH B P 2T R 4t

AXN = —{V(X]) + (K * p)(X]) )t +vV2dW), t20, 1<i< N, N =2, (4.2)
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Sot = LN S, V € CHRA MR E 5 G387

e V@dyg
pv (dz) = T.ov@ds P,

W e C*(R? x RY) NZHAEM. £ —=HFMET, 2 A0 HOBE N 73 77 72 (4.1) % T2 4 J& T Pa 2
EER, HN-F T R4 Harmilton &

N N
) 1 ) ) )
HN(LL‘N) — § :V(l‘N’l) + N § : W(xN,’L,:L,N,j>’ ZL‘N — (xN’l)lgigN c RdN
=1

i,j=1
Frxt B Gibbs 1 B

1
Gy(da™) := —e’HN(””N)de, Zn :—/ e HNEN qaN < oo
ZN RAN

i 2 — 2 H1og-Sobolev AN & 2
Eatay (%) < SGN(VIP). € CUR™).N >2 (4.3)
Sotlrp € (0,00) R ML TXD 955 FBE PN EAIRRE T A 01 0 0ol
Entc, (PN f) <e *'Ente, (f), f€ B (RY).
SR8 3 T 006 B L7 R AR (i, 678 7 5000 4 e i

1
EYW(v) := Ent(v|uy) + 2/ W(z —y)v(de)v(dy), v € Ps.
R xR?

)

Ent""V(f) := EV'W(v) - ig’) EVY(y) = 0.

SCHR[16]IEM, A

1
liminf —Entg, (v®Y) = Ent"" (v), v € Py,
N—oo NN

Horf AT Ent "V BN RGN RIS, Bhoh, 2Py = Ly, X; &L AP T2 (4.1) 1
f#, B(PN) veN = Lon, XN = (X ) 1<ian RVIBATNL x5 = vV FIFGRT R G5(4.2) HIfR
N[16]) EAER

lim inf %EntGN((PtN)*V@’N) > Ent""V(P/v), t>0, veP,.

N—oc0

MM — 2 f¥log-Sobloev A&E3(4.3) 25 73 AT KA i T RE 2% TP B A x4 40k 5
Ent""(P/v) < e *'Ent"" (v), t>0, v e P,.

458 FAE RIS, 56 T3 A7 AR BE L0737 R I TR AT A Bt 98 AR IS A AN R 2 SO )
RH08 [P, Donsker-Varadhan KAmZE R H,  PR1E RGP0 BESE, W[19,56) & FT 5] SRR

BlfE4.1  FHRIFIE PR T RS — i Poincard AN 45 20FT 4L & 19 53 A7 A BE AL 23 5 A2
Ry3i Jt, EL o3 A1 %5 e BAE AR TR R SO IR Eiic st
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E)EE4.2 T AERORELS T 2R R G, A O BN Poincaré A3, 2 ESCHR[29, 36],
L — BN 88 Poincaré ANGEI, ZE 73 AT HASBE ML 20 75 B2 (1 O 2o [ 1

BIEE4.3 T EAT AR AR A, BT AR RS Sz AN, I A
) A RS B A LA 5 75 R 3 A 1

B RE4.4 T HAA A A EAT F RORETY, BT TS0 A O BE WL 7> 5 FE 3 I . Donsker-
Varadhan K {22 J5 B, G 37 PR 18 2 G- 2 i 2

5 BRENAEASFEXEERNSHRBHEIHS IE

A TR a5 A A AR, AUAAE TR I T T — Lo s S B, 27 57 158 AR
HHIAE R A T, BIAE (1.3) b (w, p) BT 5 AZ KT (2.2) KM e, T A T EH 55 — 3 etk oo T i«

(o) = (0 10(@) = [ anlepty)
— AN (5] - 7 3DFF Ik Landau /5 #2 (Bolthman 77 2 [ grazing collisiont} R ): 7ER3 25 f&fE % %5
JE BR o, BT R T R
1
Oipy = 2div{/ a(-— z) (pt(z)th — ptht(z))dz},
R3
Horpxt T #E#y € [-3,1],
a(z) = |z[** (1 _res
%07 RE TR L 3 A M B AT 20 7 BN
dXt = (K * Exf)(Xt)dt + (0'0 * L:Xt)(Xt)tha
Hrh W, h34EBrowniz3)), K (z,y) = K(x — y), 00(z,y) = ool — y)IHi &
K(z):= =2|z|"z, =€ R
re 0 x3
oo(x) == |z|? —2, 23 0 |, 7= (x1,72,23) € R%

0 —Xy —XI1

TEIENNETE, By = 0 (Maxwell molecules)fily € (0, 1] (hard potential)bf, CAF KEMIBF SR, BIE
TRIEAERE. WM. Harnack A% &, IL[6,9-11,46]. v € (—2,0)(moderately soft potential )i,
[12]13 3 |~k RS RMAE R, X EAENT, BB REP I BAE oo 2 /0 2 HolderiE
Zei, A e L.

BIRES.1 A FUME A B A A A AR F R o AT BEAL G o 7 A, Z R Ik, IR 3
PERRIAL . Rl 0, M T8 E Fy € [—3, —2](soft potential )& ¥ Landau s 2 Fr Xt B 1 73 Aii 4
FREALIN > TT R
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6 LU0 4rFp1E Wassersteinih 5 T BIUTSURE

O R F2 B 258 50 A 2 FORAL T PR A B B gt & T 5 IR AR 58 4 A K
AT NI A FF BFRCR, B 7R, oD B B 22, i 22 58, IL[59, 60].
IEFERAEEEGIEET R T 5 IR REL I 9 A6 £ Wasserstein i B T FJULSIGE B, X T JLZ-AN [F) 45
A3 7 SloE B RS i Al T, JFEIRZETS T2 43 21 1 2/ Wassersteinh 5 () B BRI, W.[42, 48—
50,53, 54,57, 58], LA ZRIR L [55]

R M Nd4E B Riemanniit 2, X, NHIL (= A + UE R BULFE, HAANLaplacef L+, UN
—ME AR, WY BOd R R E0E P, BAREM 86 o5V 45 ME— (A 32 HE 2 0 2
RN

p(dz) = e @da,

KR deFom M ERARFIIN L. WA TR N
L=L+2Z L:=A+VV, Z:=U-VV,
Hp R o LA L2 () B E AT, ROFRE 53 Z KT plifE div, (Z2) = 0, Bi:
/M<Z, Vf)du=0, feCYM).

AR 5 KB A AR IR E BE [59], 24t — oo, L2670 Af

1 t
L = / 0x.ds
tJo

DML TSRS, BLAEER0 £ £ € L2(), p(f) = 0, 24t — ool §5HL8L
Viu(n =2 | ' F(X.)ds — N(0,2V(f))
FRAL, FeHN (0, 2V () RARIIENO. TRV (f)IMIES AR,
V(f) = / W(FPf)dt € (0,00).
0

Wp AM EfRiemannfi &, {F45p € [1, 00), Hpifs T MIpki Wasserstein i 2 2 N

W, (i) = inf ( / XMp(x,wa(dx,dy))’l’,

meC(p,v)

HiC(p, v)&p SviIaE k.
B\ tiso NEFEE T — LIOFTARHERE, ADEICHES 0 E R B,

o= id, >0,
HAA =< BFR, FEEFHc e (1, 00)fEBFHANERTERASBIKEA < cB, B < cA.
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SCER[BTIIEM], XT B Hp € [1, 00) BL K g € (0, 00),

t 2, if d <3,
(E[W (e, w)])7 = { t-3/Togt, if d =4,
tmas ifd>5
Xt > 20 T34 —BUR AL
SCHR[B3]UE R, 4EEd < 30, AR
. =2 1
Tim (E[W) (s, )] = Z v (1 -y V(zo)

X WA —BORAL, Herh oy NS R RALRFE PR AL T4 Z = O, [58JIERH T 5548k

S 2
: 2 _ i
tlggo tWQ (Mtv /L) - )\g ’

i=1

oo

Horb {& bim s WAL IR 70 A B THERRE I S BE AL AR
X Yd = 4157, SCHR[42]0F 8 T B B AR IR

. t o, 9, VOl(M)
tliglo logtIE (Wa (e, )] = 82

XTI AT —BURAL, Fevol(M) MBI, EAEEREKY, d = AR R R A0SR 500
Ko

SCHR[A7, 5018 FE T 4 R AL T4 BOS AR 0 25 AR 50 70 A AEW o T BRI TRIAT Jye X Tl e g A=
i CE AR AT o, 2t — oo, STHR[ATIAF RN T W (Bt < €], po) FIBKBR, SCHR[50] 45 1 2% AF
SEE[W, (11, p10)? [t < IR HCEIGE E UL R ARLE R T ) S B AL AR

B)&E6.1  WFFtd > STH M EBEALRIR

lim ¢72 B[W3 (u, 1)) = ?

t—o00

R IRAEAE, THE B IR

E]EE6.2 Xt ORSLIA S YOS RE, B TR AR ATEW, (p # 2) T RIS

B)@E6.3  FHEB AR Y B REX,, R RESZEBINZ(X,, Lx,), HX T AR E L,
Z (-, pu) R SRR, B /2 div, (Z (-, 1)) = 0. B HAF RS 55, BI Z5% T 70 A A% B (1 MR AE B A
i G, R L3R CAT 45 R B AR

E]RE6.4  FESCHR[48] A L, BT FIRY AT KAEENL G T R AR A ATEEW, (p € [1,00)) T
RIS 5 o

B MH Mt ERFRFREQNEIF, Rt EEHR. REFETHETLER

SE R

1 Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Springer, 2014.
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Abstract McKean-Vlasov stochastic system is a crucial research object in stochastic analysis, partial differential
equations and mathematical physics. In this paper, we introduced some frontier problems in this model, which
include: propagation of chaos for mean field particle systems with singular interactions, regularity and ergodicity
for distribution dependent SDEs with singular kernels, functional inequalities and applications to distribution
dependent SDEs, and Wasserstein convergence rate for the empirical measure of distribution dependent SDEs.

Keywords McKean-Vlasov stochastic system, propagation of chaos, regularity, ergodicity, empirical mea-

sure.
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