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Preface

Why shall we learn the course “Foundation of Probability Theory” after the

elementary course “Probability Theory”? The reason is that the elemen-

tary probability theory describes specific distributions induced by random

trials, which is intuitively clear but mathematically less rigorous, while the

foundation of probability established by Kolmogorov is an axiomatization

theory, which makes probability theory as a rigorous branch of mathemat-

ics.

For example, in the elementary probability theory the sample space is

the total of the possible results appearing in a random trial, and each subset

of this space is called an event, whose probability is defined as the limit of

its appearing frequency as the number of the trials goes to infinity. These

concepts are intuitively clear but not mathematically rigorous: Why the

trial can be repeated infinite times? Why the frequency must converges?

And how to fix the limit if it dose converge? One may argue that this limit

exists due to the law of large numbers. However, the law of large numbers

itself is established based on the definition of probability, which leads to a

circular argument.

Now the motivation to learn the course becomes clear, it enables us to

grasp a serious foundation of probability theory in the mathematical ax-

iomatic system. Contrast to the elementary probability theory which deals

with random events in specific examples of random trials, Foundation of

Probability Theory is a general mathematical theory which provides rigorous

descriptions of these examples. Therefore, this course has all characters of

mathematical theories: abstract contents, extensive applications, complete
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structures, and clear conclusions. Due to abstract contents, we will face

many difficulties during learning. To overcome these difficulties, a crucial

trick is to keep in mind those concrete examples when try to understand

an abstract context, and compare the abstract theory with related courses

learned before, especially with the Lebesgue measure theory. In the follow-

ing, we give a brief chapterwise summary of main contents of this textbook,

chapter by chapter.

To define events without random trials, we first fix a global set Ω, then

construct a class A of subsets of Ω, which is equipped with an algebra

structure so that each element in A is measurable in a reasonable way.

We then call the couple (Ω,A ) a measurable space, where Ω refers to the

sample space of a random trial, and A stands for the set of events. In

general, A is strictly smaller than the class of all subsets of Ω, i.e. not

all subsets of Ω are measurable. For instance, there exist non-measurable

sets in the Lebesgue measure theory. Following the line of the Lebesgue

measure theory, we assume that A contains Ω and is closed under countable

set operations, which leads to the concept of σ-algebra. Furthermore, the

probability of an event can be thought as the nonnegative survey results

for sets in A , which is this a function P : A → [0,∞). According to the

requirement of probability measure in the probability theory, we postulate

that P(Ω) = 1 and P has σ-additivity, i.e. P
( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An) for a

sequence of mutually disjoint sets {An}n>1 ⊂ A . Without the restriction

P(Ω) = 1 the map P is called a measure, and is denoted by µ rather than P
to emphasize the difference. In this way, we construct a triple (Ω,A ,P) or

more generally (Ω,A , µ), which is called a probability space or a measure

space.

So, how can we construct a probability measure on a σ-algebra? Ac-

cording to the Lebesgue measure theory, we first define the measure value

for simple sets, for instance the intervals, then extend it to all measurable

sets by an extension argument. To abstract this method in the general

framework, we first introduce the semi-algebra for subsets of Ω in terms of

the property of right semi-closed intervals in the Euclidean space. From
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this semi-algebra of sets, we generate the σ-algebra A by establishing the

monotone class theorem. Moreover, by the monotone class theorem and

the construction ideas of Lebesgue measure, a measure defined on a semi-

algebra S can be (under a σ-finite condition, uniquely) extended to the

minimal σ-algebra generated by S . This is known as the Measure Exten-

sion Theorem, the core result of Chapter One.

Having the measure space (Ω,A , µ) in hands, the tasks in Chapter Two

and Chapter Three are to survey a measurable function, and the value is

called the integral of the function with respect to µ. The definition and

properties of integrals are inhered from the theory of Lebesgue integrals,

hence are easy to understand with a basis of Lebesgue measure theory.

In particular, on a probability space (Ω,A ,P), a measurable function is

called a random variable, whose expectation is defined as the integral with

respect to the probability measure. By the integral transformation formula

(Lebesgue-Stieltjes integral expression), the expectation can be formulated

as integral of the identity function with respect to the distribution of the

random variable, where the distribution is a probability measure on the real

line. In order to classify the distributions of random variables, we consider

the decomposition of measures in Chapter Three.

To study several or infinite many random variables together, we intro-

duce product probability spaces, and consider the conditional properties of

some random variables given other ones. These are treated in Chapter Four

and Chapter Five, where the main difficulty is to clarify the definition of

conditional expectation given a sub σ-algebra, and to introduce the regular

conditional probability which enables one to construct measures on product

spaces which is fundamental for the further study of stochastic processes.

Chapter Six presents several equivalent definitions of the weak conver-

gence for finite measures, which are also equivalent to the convergence of

the characteristic functions for finite measures in the multidimensional Eu-

clidean space. Chapter Seven introduces some probability distances on the

space of probability measures. Both chapters are important to develop the

limit theory of random variables and stochastic processes.

Finally, Chapter 8 introduces derivatives for functions of finite mea-
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sures, establishes the chain rule and derivative formulas. These provide a

quick way for readers to enter the frontier of analysis and geometry on the

space of measures.

In conclusion, this course is an abstract rigorization of the elementary

probability theory. Key points include the monotone class theorem, mea-

sure extension theorem, conditional expectation and regular conditional

probability, and the weak convergence. To make the whole book easy to

follow, in the beginning of each part, we briefly introduce the main purpose

of study based on previous contents, figure out the main structure, and ex-

plain the key idea of study. If one understands clearly the backgrounds

and basic ideas for the study of each part, it is not hard to grasp the whole

contents of this textbook. There are many books containing these contents,

see an incomplete list of references in the end of this book.

The first seven chapters of the textbook are translated and modified

from the Chinese version published in 2010 by Beijing Normal University

Press. We would like to thank the executive editor Ms Fengjuan Liu for

encouragement and efficient work. We gratefully acknowledge the sup-

port from the National Key R&D Program of China (2022YFA1006000,

2020YFA0712900) and the National Nature Science Foundation of China

(11921001).

WANG Feng-Yu,

MAO Yong-Hua

April, 2024
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Chapter 1

Class of Sets and Measure

What is a measure? It is a tool to determine the weights of “measurable

sets” which satisfy the countable additivity property, i.e. the sum of weights

for countable many disjoint sets coincides with the weight of the union of

these sets. For example, under the Lebesgue measure, the weight of an

interval [a, b) for real numbers b > a is its length b − a, which uniquely

determines a measure on the class of “Lebesgue measurable sets” on R.

The aim of this chapter is to choose a reasonable class of subsets (i.e.

measurable sets) for a given global set Ω, and to construct a measure on

this class. To this end, we first generate a class of subsets sharing the

following features of Lebesgue measurable sets:

(1) it contains the empty set and the total set;

(2) it is closed under the countably infinite set operations (set union,

intersection and difference).

A class of sets with these properties is called a σ-algebra or σ-field, which

is our ideal class of “measurable subsets” of the abstract global set Ω. To

define a measure on the σ-algebra, let us again go back to the Lebesgue

measure on R.

As mentioned above that the Lebesgue measure of an interval is defined

as the length. By a natural extension procedure, this measure can be

1



2 1 Class of Sets and Measure

extended to the smallest σ-algebra containing intervals, which is nothing

but the Borel σ-algebra whose completion is class of Lebesgue measurable

sets. To realize the same procedure for the present abstract setting with Ω

in place of R, we consider the “semi-algebra” which is a class of sets sharing

the following features of intervals:

(1) it contains the empty set and the total set;

(2) it is closed under the set intersection; and

(3) the difference of any two sets can be expressed by the union of finite

disjoint sets in the class.

We first induce the smallest σ-algebra from the semi-algebra, where the

main tool is called the monotone class theorem; then extend a measure

from the semi-algebra to the induced σ-algebra, where the key step is to

establish the measure extension theorem. These two theorems are key

results of this chapter.

1 Class of Sets and Monotone Class Theorem

§ 1.1.1 Semi-algebra

We first introduce operations for subsets of the global set Ω. Let ∪ and ∩
denote the union and intersection respectively, let Ac be the complement

of the set A, and let A−B := A ∩Bc be the difference of A and B, which

is called a proper difference if B ⊂ A. For simplicity, we will use AB to

stand for A ∪B, A+B for A ∪B with AB = ∅, and
∑

nAn for the union

of finite or countable many disjoint sets {An}.

Then the semi-algebra of sets is defined in terms of the above mentioned

features of intervals.

Definition 1.1. A class S of subsets of Ω is called a semi-algebra (of sets)

in Ω, if

(1) Ω,∅ ∈ S ,
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(2) A ∩B ∈ S for A,B ∈ S ,

(3) for A1, A ∈ S with A1 ⊂ A, there exist n > 1 and A1, A2, · · · , An ∈
S disjoint mutually, such that A =

n∑
i=1

Ai.

Property 1.2. Under items (1) and (2) in Definition 1.1, item (3) is equiv-

alent to

(3′) if A ∈ S , then ∃n > 1 and A1, A2, · · · , An ∈ S mutually disjoint,

such that Ac =
n∑
i=1

Ai.

Proof. (3) ⇒ (3′): Since A ⊂ Ω, it follows from (3) that ∃n > 1 and

A1, A2, · · · , An ∈ S disjoint mutually which are all disjoint with A, such

that Ω = A+
n∑
i=1

Ai, so Ac =
n∑
i=1

Ai.

(3′) ⇒ (3): It follows from (3′) that ∃n > 2 and A2, · · · , An ∈ S

mutually disjoint, such that Ac1 =
n∑
i=2

Ai, so A = A1 +
n∑
i=2

Ai ∩A. �

Example 1.3. Let Ω = [0,+∞), S = {[a, b) : 0 6 a 6 b 6 +∞} . Then S

is a semi-algebra in Ω.

To induce the σ-algebra from a semi-algebra, we introduce a relay notion

“algebra”, which is closed under finite many operations.

§ 1.1.2 Algebra

Definition 1.4. A class F of subsets of Ω is called an algebra (of sets) in

Ω, or Boolean algebra in Ω, if

(1) Ω ∈ F ,

(2) A,B ∈ F implies A−B ∈ F .

Property 1.5. Under item (1) in Definition 1.4, item (2) is equivalent to any

one of

(2′) A,B ∈ F implies A ∪B,Ac, Bc ∈ F ,

(2′′) A,B ∈ F implies A ∩B,Ac, Bc ∈ F .

Proof. We will prove (2′′)⇒ (2′)⇒ (2)⇒ (2′′).



4 1 Class of Sets and Measure

(2′′) ⇒ (2′): It follows from (2′′) that F is closed under complement

and intersection, so that A,B ∈ F implies A ∪B = (Ac ∩Bc)c ∈ F .

(2′) ⇒ (2): Assume A,B ∈ F . It follows from (2′) that F is closed

under complement and union, so that A−B = (Ac ∪B)c ∈ F .

(2) ⇒ (2′′): Assume A,B ∈ F . It follows from (2) that Ac = Ω −
A,Bc = Ω−B ∈ F , so that A ∩B = A−Bc ∈ F . �

Proposition 1.6. If F is an algebra in Ω, then ∀A,B ∈ F we have

Ac, Bc, A ∩B,A ∪B,A−B ∈ F .

Obviously, an algebra is a semi-algebra. The following theorem provides

an explicit formulation of the induced algebra from a semi-algebra.

Theorem 1.7. If S is a semi-algebra, then

F :=

{
n∑
k=1

Ak : n > 1, Ak ∈ S (1 6 k 6 n) are mutually disjoint

}
is the smallest algebra containing S , which is called the algebra induced (or

generated) by S , and is denoted by F (S ).

Proof. Firstly we prove that F is an algebra. Obviously item (1) in Def-

inition 1.4 is fulfilled. Moreover ∀A,B ∈ F , ∃A1, A2, · · · , An ∈ S and

B1, B2, · · · , Bm ∈ S , mutually disjoint respectively, such that A =
n∑
i=1

Ai,

B =
m∑
i=1

Bi. Then A ∩ B =
∑
i,j
Ai ∩ Bj . It follows from Definition 1.1–(2)

that A ∩B ∈ F , so that F is closed under finite intersections.

Next, by Property 1.5, to prove that F is an algebra in Ω, we need only

verify Ac ∈ F for any A ∈ F . Let

A =
n∑
i=1

Ai ∈ F , Ai ∈ S .

Then Ac =
n⋂
i=1

Aci . By Property 1.2, we see that Aci can be expressed by

the union of mutually disjoint sets in S , so Aci ∈ F . Since F is closed

under finite many intersections, we obtain Ac ∈ F .

Finally, for any algebra F ′ ⊃ S , Property 1.5 implies F ′ ⊃ F . �
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Example 1.8. S in Example 1.3 is not an algebra, and by Theorem 1.7, its

induced algebra is

F (S ) =

{
n∑
i=1

[ai, bi) : n > 1, 0 6 a1 6 b1 6 a2 6 b2 6 · · · 6 an 6 bn

}
.

§ 1.1.3 σ-algebra

According to the property of Lebesgue measurable sets, a σ-algebra should

be closed under the countable many operations of sets. Since the union and

the intersection of sets are dual to each other by complement, it suffices to

have the closedness by complement and countable many unions.

Definition 1.9. A class A of subsets of Ω is called a σ-algebra (or σ-field)

in Ω, if

(1) Ω ∈ A ,

(2) Ac ∈ A holds for A ∈ A ,

(3)
∞⋃
n=1

An ∈ A holds for any {An}n>1 ⊂ A .

In this case, we call (Ω,A ) a measurable space, and each element in A is

called an A -measurable set, or simply a measurable set.

Property 1.10. A σ-algebra is an algebra.

Property 1.11. Under items (1) and (2) in Definition 1.9, (3) is equivalent

to

(3′)
∞⋂
n=1

An ∈ A for An ∈ A , n = 1, 2, · · · .

Proof. Note that
∞⋂
n=1

An =

( ∞⋃
n=1

Acn

)c
. �

Property 1.12. The intersection of a family of σ-algebras in Ω is also a

σ-algebra.

Proof. Let {Ar : r ∈ Γ} be a family of σ-algebras in Ω. Then A =
⋂
r∈Γ

Ar

is a σ-algebra in Ω as well, because:

(1) For any r ∈ Γ, we have ∅,Ω ∈ Ar, so that ∅,Ω ∈ A ;
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(2) If A ∈ A , then A ∈ Ar for any r ∈ Γ, so that Ac ∈ Ar (r ∈ Γ), i.e.

Ac ∈ A ;

(3) If A1, A2, · · · ∈ A , then A1, A2, · · · ∈ Ar for any r ∈ Γ, so that
∞⋃
n=1

An ∈ Ar for all r ∈ Γ, hence
∞⋃
n=1

An ∈ A . �

Example 1.13. A = {∅,Ω} is the smallest σ-algebra in Ω, while

A = 2Ω := {A : A ⊂ Ω}

is the largest σ-algebra in Ω, where the notation 2Ω comes from the fact that

a subset A of Ω is identified with the element in {0, 1}Ω: Ω 3 ω 7→ 1A(ω),

where 1A is the indicator function of A.

Theorem 1.14. Let C be a class of subsets of Ω. Then there exist a unique

σ-algebra A in Ω such that

(1) C ⊂ A ,

(2) if A is a σ of Ω and A ⊃ C , then A ⊃ A .

We denote A by σ(C ), and call it the σ-algebra induced (or generated) from

C .

Proof. Since the largest σ-algebra includes C , there exists at least one σ-

algebra including C . Let A be the intersection of all σ-algebras including

C . By Property 1.12, A is the smallest σ-algebra including C . �

The following theorem shows that the induced procedure from a semi-

algebra to σ-algebra can be decomposed into two steps, i.e. induce first the

algebra then the σ-algebra.

Theorem 1.15. If S is a semi-algebra of Ω, then σ(S ) = σ(F (S )).

Proof. Since σ(F (S )) ⊃ S , we have σ(F (S )) ⊃ σ(S ). Conversely,

since σ(S ) is an algebra including S , we have σ(S ) ⊃ F (S ), and hence

σ(S ) ⊃ σ(F (S )).

�

Example 1.16. Let (Ω,T ) be a topology space where T is the class of all

open subsets of Ω. The σ-algebra B := σ(T ) is called Borel field (or Borel

σ-algebra).
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§ 1.1.4 Monotone class theorem

By Theorem 1.7, the algebra is easily induced from a semi-algebra. Com-

bining this with Theorem 1.15, to induce the σ-algebra from a semi-algebra,

one only needs to generate it from the induced algebra. Noting that the

difference between the algebra and the σ-algebra is that, the former is

only closed under finite many operations, while the latter is closed under

countably infinite many operations. Intuitively, countably infinite many

operations can be characterized as the limit of finite many operations. So,

it is reasonable to consider the limit for sequences of sets.

Note that the limit for a sequence of sets is defined only in the monotone

case, by the union (respectively, intersection) for an increasing (respectively,

decreasing) sequence. This leads to the notion of monotone class.

Definition 1.17. A class M of subsets of Ω is called a monotone class, if it

is closed for the limits of monotone sequences; that is,

(1) if An ∈M , n = 1, 2, · · · , and A1 ⊂ A2 ⊂ · · · , then
∞⋃
n=1

An ∈M ;

(2) if An ∈M , n = 1, 2, · · · , and A1 ⊃ A2 ⊃ · · · , then
∞⋂
n=1

An ∈M .

Theorem 1.18. A class of subsets of Ω is a σ-algebra if and only if it is both

an algebra and a monotone class.

Proof. It suffices to prove the sufficiency. Let A be both an algebra and a

monotone class. We only need to show that A is closed under countably

many unions. Since A is an algebra, ∀A1, A2, · · · ∈ F , Bn :=
n⋃
i=1

Ai ∈ A

is increasing in n. Since A is a monotone class, this implies

∞⋃
i=1

Ai =
∞⋃
n=1

Bn ∈ A .

Then the proof is finished. �

Theorem 1.19. Let C be an algebra in Ω. Then there exists a unique

monotone class M0 in Ω fulfilling

(1) M0 ⊃ C ,
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(2) M ⊃M0 holds for any monotone class M including C .

We call M0 the monotone class induced (or generated) from C , and denote it

by M (C ).

Theorem 1.20. Let F be an algebra. Then M (F ) = σ(F ).

Proof. By Theorem 1.18, it suffices to prove that M (F ) is an algebra.

(a) We first show that A ∈M (F )⇒ Ac ∈M (F ). Let

M1 = {A : Ac ∈M (F )} .

For any decreasing sequence {An} ⊂ M1, we have {Acn} ⊂ M (F ), which

is increasing. Since M (F ) is a monotone class, we have
∞⋃
n=1

Acn ∈M (F ),

so
∞⋂
n=1

An =

( ∞⋃
n=1

Acn

)c
∈M1.

Similarly, we see that M1 is closed under the limits of increasing sequences.

Thus M1 is a monotone class including F , so it includes M (F ). Thus

Ac ∈M (F ) for any A ∈M (F ).

(b) Next, we prove that for any A ∈ F , A
⋂
B ∈ M (F ) holds for

B ∈M (F ). To this end, let

MA = {B ∈M (F ) : A ∩B ∈M (F )} .

Then MA ⊃ F . If {Bn} ⊂MA is increasing, then so is {A
⋂
Bn} ⊂M (F ).

Since M (F ) is a monotone class, we obtain A∩
( ∞⋃
n=1

Bn

)
∈M (F ), which

implies
∞⋃
n=1

Bn ∈MA(F ). Similar argument shows that MA is a monotone

class. Thus MA ⊃M (F ); i.e. A ∩B ∈M (F ) holds for any B ∈M (F ).

(c) Finally, we prove A∩B ∈M (F ) for A,B ∈M (F ). By (b), MA is

a monotone class including F , so that MA ⊃M (F ). Thus A∩B ∈M (F ).

�

The trick behind the proof can be summarized as follows. To prove that

a class C1 of sets has certain property, we define a new class C2 consisting
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of all sets having this property, then it suffices to show that C1 ⊂ C2. To

realize this procedure, we sometimes need to split it into several steps, as

we have done above with two steps. This technique will be used frequently.

The monotonicity is easier to check than the closedness under countable

unions (or intersections). In the spirit of Theorem 1.18 that the monotone

class and algebra give rise to σ-algebra, in the following we introduce an-

other pair of classes to form σ-algebra.

Definition 1.21. (1) A class C of subsets of Ω is called a π-system, if it is

closed under intersections.

(2) A class C of subsets of Ω is called a λ-system, if it fulfills

(i) Ω ∈ C ,

(ii) B −A ∈ C holds for A,B ∈ C , A ⊂ B,

(iii)
∞⋃
n=1

An ∈ C holds for any increasing {An} ⊂ C .

Property 1.22. If C is a λ-system, then it is a monotone class.

Proof. If {An} ⊂ C is decreasing, then {Acn} ⊂ C is increasing. By the

definition of λ-system, we obtain
∞⋃
n=1

Acn ∈ C , so that

∞⋂
n=1

An = Ω−
∞⋃
n=1

Acn ∈ C .

�

Property 1.23. If C is both a π-system and a λ-system, then C is a σ-

algebra.

Proof. By Theorem 1.18 and Property 1.22, it suffices to prove that C is

an algebra, which follows easily from Definition 1.21 of π-system and (ii)

in Definition 1.21 of λ-system. �

In the same spirit of Theorems 1.14 and 1.19 for the induced σ-algebra

and monotone class, any class of sets C induces a unique λ-system λ(C ),

which is the smallest λ-system including C .
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Theorem 1.24. Let C be π-system. Then λ(C ) = σ(C ).

Proof. Since λ(C ) ⊂ σ(C ) and λ(C ) is a monotone class, by Theorem 1.18

it suffices to prove λ(C ) is an algebra. By the definition of λ-system, λ(C )

is closed under complement, so it remains to verify the closedness under

intersections. We split the proof into two steps.

(1) Let A ∈ λ(C ), B ∈ C . We intend to prove that A ∩B ∈ λ(C ). By

the trick explained above, let

CB = {A : A ∩B ∈ λ(C )} .

Since C is a π-system, we have CB ⊃ C . By the definition of CB and the

fact λ(C ) is a λ-system, it is easy to verify that CB is also a λ-system, so

CB ⊃ λ(C ), that is A ∩B ∈ λ(C ) for any A ∈ λ(C ).

(2) Let B ∈ λ(C ). From (1) we see that CB ⊃ C and it is a λ-system,

so that CB ⊃ λ(C ). Thus A ∩B ∈ λ(C ) for A,B ∈ λ(C ). �

Having the above preparations, we obtain the following important the-

orem.

Theorem 1.25 (Monotone class theorem). Let C and A be two classes of

subsets of Ω with C ⊂ A .

(1) If A is a λ-system and C is π-system, then σ(C ) ⊂ A .

(2) If A a monotone class and C is an algebra, then σ(C ) ⊂ A .

This is the main result for classes of sets. In the following we explain

the main idea to apply the monotone class theorem. Let C be a class of

sets having certain property S, one wants to verify the same property for

sets in σ(C ). For this, let

A := {B : B has property S},

so that A ⊃ C . By the monotone class theorem, it suffices to show that

C is a π-system or an algebra, and accordingly, A is a λ-system or a

monotone class.
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Remark 1.26. The following diagram summarizes the relations of various

classes of sets:

σ-

algebra

=⇒ alg. =⇒ s.-alg. =⇒ π-system

⇐⇒ + + ⇐⇒
mon.cl. ⇐= λ-system ⇐=

σ-

algebra

where alg.= algebra, mon.cl.=monotone class, s.-alg.=semi-algebra.

§ 1.1.5 Product measurable space

Let (Ωi,Ai), i = 1, · · · , n be finite many measurable spaces. Let

C = {A1 × · · · ×An : Ai ∈ Ai, 1 6 i 6 n} ,

where each element in C is called a rectangle in the product space

Ω := Ω1 × · · · × Ωn.

It is easy to check that C is a semi-algebra in Ω. We call A := σ(C ) the

product σ-algebra of A1, · · · ,An, and denote it by A1×· · ·×An. Moreover,

(Ω,A ) is called the product measurable space of (Ωi,Ai), i = 1, · · · , n.

Theorem 1.27 (Associative law). ∀n > 3, 1 6 k 6 n, we have

A1 ×A2 × · · · ×An = (A1 × · · · ×Ak)× (Ak+1 × · · · ×An).

Theorem 1.27 can be derived by the definition of product σ-algebra and

the monotone class theorem, whose proof is left as an exercise.

2 Measure

After constructing a measurable space (Ω,A ), we intend to define a real

function on A , which is called a measure if it is nonnegative and satisfies

the countable additivity. In general, we consider a real function defined on

a class of sets, which is called a function of sets.
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§ 1.2.1 Function of sets

Definition 1.28. A function on a class of sets C in Ω is a map

Φ : C → (−∞,+∞]

such that Φ(A) <∞ for some A ∈ C .

We allow a function of sets taking value +∞, such that the Lebesgue

measure is included. On the other hand, we do not allow it taking value

−∞ to avoid the the sum of +∞ and −∞ when the additivity property

is considered. In general, we study functions of sets with the following

properties.

(1) (Additivity) A function Φ of sets is called additive, if Φ(A + B) =

Φ(A) + Φ(B) holds for any disjoint A,B ∈ C such that A+B ∈ C .

(2) (Finite additivity) A function Φ of sets is called finitely additive,

if

Φ

(
n∑
i=1

Ai

)
=

n∑
i=1

Φ(Ai)

holds for any n > 2, and A1, · · · , An ∈ C mutually disjoint with
n∑
i=1

Ai ∈ C .

(3) (σ-additivity, or countable additivity) A function Φ of sets is called

σ-additive, if

Φ

( ∞∑
i=1

Ai

)
=
∞∑
i=1

Φ(Ai)

holds for any {An}n>1 ⊂ C mutually disjoint with
∞∑
i=1

Ai ∈ C .

(4) (Finiteness) A function Φ of sets is called finite, if Φ(A) ∈ R holds

for all A ∈ C .

(5) (σ-finiteness) A function Φ of sets is called σ-finite, if for any A ∈ C ,

there exists a sequence {An}n>1 ⊂ C such that Φ(An) ∈ R (∀n > 1)

and A =
∞⋃
n=1

An.

Definition 1.29. A signed measure is a function of sets with σ-additivity. A

measure is a signed measure taking non-negative values. A probability measure
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is a measure with Φ(Ω) = 1. If a function Φ of sets takes non-negative values

and is finitely additive, then it is call a finitely additive measure.

Notice that a signed measure or a finitely additive measure may not be

a measure. The following propositions for functions of sets are obvious, so

the proofs are omitted.

Proposition 1.30. Let Φ be a function on C .

(1) Finite additivity ⇒ additivity.

(2) If ∅ ∈ C , then σ-additivity ⇒ finite additivity.

(3) If C is an algebra, then finite additivity ⇔ additivity.

(4) If Φ is additive and ∅ ∈ C , then Φ(∅) = 0.

The next result characterizes properties of functions on different classes

of sets.

Property 1.31.

(1) (Subtractivity) Let Φ be an additive function on an algebra F , and

let A,B ∈ F with A ⊂ B. We have

Φ(B) = Φ(A) + Φ(B −A).

If Φ(A) <∞, then Φ(B −A) = Φ(B)− Φ(A).

(2) (Monotonicity) Let µ be a finitely additive measure on a semi-algebra

S . Then µ(A) 6 µ(B) holds for A,B ∈ S with A ⊂ B.

(3) (Finiteness) Let Φ be a finitely additive function on a semi-algebra

S . If Φ(B) < ∞ and A ⊂ B, then Φ(A) < ∞. In addition, if

Φ(Ω) <∞, then Φ is finite.

(4) (σ-finiteness) Let Φ be a finitely additive function on a semi-algebra

S . If Ω =
∞⋃
n=1

An with An ∈ S and Φ(An) < ∞ (∀n > 1), then for

∀A ∈ S ,∃ {A′n} ⊂ S mutually disjoint, such that

A =
∞∑
n=1

A′n and Φ(A′n) <∞ (∀n > 1).

Proof. We only prove (2) and (4), the rest is obvious.
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(2) By the property of semi-algebra, there exist A1, · · · , An ∈ S mu-

tually disjoint such that B = A + A1 + · · · + An. By the finite additivity

and non-negativeness of µ, we have

µ(B) = µ(A) +
n∑
i=1

µ(Ai) > µ(A).

(4) We prove first that Ω can be expressed as the union of countable

many disjoint sets whose Φ-values are finite. Let

B1 = A1, Bn = An −
n−1⋃
k=1

Ak, ∀n > 1.

By the definition of semi-algebra, there exists ∃Bn1, · · · , Bnkn ∈ S mutu-

ally disjoint and Bn =
kn∑
i=1

Bni, so that

Ω =

∞∑
n=1

kn∑
i=1

Bni
renumber
———

∞∑
k=1

B′k,
{
B′k
}
⊂ S mutually disjoint.

From (3) it follows that Φ(An) < ∞ (∀n > 1), which implies Φ(Bk) <

∞ (∀k > 1). Then the desired assertion follows by letting A′n = An ∩ B′n.

�

Proposition 1.32.

(1) (Finite subadditivity) Let µ be a finite additive measure on an al-

gebra F . For any A,A1, · · · , An ∈ F with A ⊂
n⋃
k=1

Ak, there holds

µ(A) 6
n∑
k=1

µ(Ak).

(2) (σ-subadditivity) Let µ be a measure on an algebra F . If A ∈ F and

{An}n>1 ⊂ F such that A ⊂
∞⋃
n=1

An, then µ(A) 6
∞∑
n=1

µ(An).

Proof. (1) By induction, we need only to prove for n = 2. By the mono-

tonicity and additivity,

µ(A) 6 µ(A1 ∪A2) = µ(A1 + (A2 −A1))

= µ(A1) + µ(A2 −A1) 6 µ(A1) + µ(A2).
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(2) Let A0 = ∅. By the monotonicity and σ-additivity,

µ(A) = µ

( ∞⋃
n=1

An ∩A

)
= µ

( ∞∑
n=1

A ∩

(
An −

⋃
i6n−1

Ai

))

=
∞∑
n=1

µ

(
A ∩

(
An −

⋃
i6n−1

Ai

))
6
∞∑
n=1

µ(An).

�

Definition 1.33. A function Φ on a class C is called lower continuous at

A ∈ C , if lim
n→∞

Φ(An) = Φ(A) for any sequence C 3 An ↑ A; while it is

called upper continuous at A ∈ C , if lim
n→∞

Φ(An) = Φ(A) for any sequence

C 3 An ↓ A with Φ(An) < ∞ holds for some n. Moreover, Φ is called

continuous at A ∈ C , if it is both lower and upper continuous at A. Φ is

called continuous if it is continuous at every A ∈ C .

Note that we require the condition ∃n such that Φ(An) < ∞ for the

upper continuity. Otherwise, the classical Lebesgue measure is excluded.

More precisely, for Ω = R and Φ being the Lebesgue measure, An := (n,∞)

is decreasing to ∅, but Φ(∅) = 0 6=∞ = lim
n→∞

Φ(An).

Theorem 1.34. Let Φ be a signed measure on an algebra F . Then Φ is

continuous.

Proof. Let F 3 An ↑ A ∈ F . We have A =
∞⋃
n=1

An = A1 +
∞∑
n=2

(An−An−1).

If there exists n such that Φ(An) = ∞, then Φ(A) = ∞ = lim
n→∞

Φ(An). If

Φ(An) <∞ for every n, then by the σ-additivity and subtractive property,

Φ(A) = Φ(A1) +
∞∑
n=2

Φ(An −An−1)

= Φ(A1) +
∞∑
n=2

[Φ(An)− Φ(An−1)]

= Φ(A1) + lim
n→∞

n∑
k=2

[Φ(Ak)− Φ(Ak−1)]

= lim
n→∞

Φ(An).
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So, Φ is lower continuous.

On the other hand, let F 3 An ↓ A ∈ F with Φ(An0) < ∞ for some

n0. Then An0 −An ↑ An0 −A, so that

Φ(An0 −An)→ Φ(An0 −A) as n→∞

by the lower continuity. This and the subtractive property imply Φ(An)→
Φ(A). �

Corollary 1.35. A measure on an algebra is continuous.

The next theorem shows that when Φ is finitely additive, the continuity

also implies the σ-additivity. This together with Theorem 1.34 implies

the equivalence of the σ-additivity and the continuity of finitely additive

functions on an algebra.

Theorem 1.36. Let Φ be a finitely additive function on an algebra F . If Φ

satisfies one of the following conditions, then Φ is σ-additive.

(a) Φ is lower continuous;

(b) Φ is finite, and is continuous at ∅.

Proof. Let (a) hold. If {An}n>1 ⊂ F mutually disjoint and A =
∞∑
n=1

An ∈

F , then Bn :=
n∑
k=1

Ak ↑ A. It follows from the lower continuity and the

finite additivity that

Φ(A) = lim
n→∞

Φ(Bn) = lim
n→∞

Φ

(
n∑
k=1

Ak

)

= lim
n→∞

n∑
k=1

Φ(Ak) =

∞∑
k=1

Φ(Ak).

Let (b) hold, and let {An}n>1 and {Bn}n>1 as in above. We have

F 3 A−Bn ↓ ∅. By the continuity at ∅ and the subtractive property, we

obtain

0 = lim
n→∞

Φ(A−Bn) = Φ(A)− lim
n→∞

Φ(Bn).

Thus Φ(A) =
∞∑
k=1

Φ(Ak). �
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§ 1.2.2 Measure space

Definition 1.37. Let A be a σ-algebra in Ω and µ be a measure on A .

Then (Ω,A , µ) is called a measure space. If µ is a probability measure, then

(Ω,A , µ) is called a probability space, and in this case µ is often denoted by

P, and a measurable set is called an event.

Let (Ω,A ,P) be a probability space. By properties of a finite measure,

we have the following assertions for the probability measure P.

(1) (Nonnegativity) P(A) > 0, ∀A ∈ A .

(2) (Normality) P(Ω) = 1.

(3) (σ-additivity, hence finite additivity) If An ∈ A , n = 1, 2, · · · are

mutually disjoint, then

P

( ∞∑
n=1

An

)
=
∞∑
n=1

P(An).

(4) (Subtractive property, hence monotonicity) If A ⊂ B,A,B ∈ A ,

then

P(B −A) = P(B)− P(A)⇒ P(B) > P(A).

(5) (Additive formula) P(A∪B) = P(A)+P(B)−P(A∩B). In general,

∀ {An}∞n=1 ⊂ A , we have

P

(
n⋃
k=1

Ak

)

=

n∑
k=1

P(Ak)−
∑

16i<j6n

P(Ai ∩Aj)+· · ·+ (−1)n−1P(A1 ∩· · ·∩An)

=

n∑
`=1

(−1)`−1
∑

16i1<i2<···<i`6n
P(Ai1 · · ·Ai`).

(6) (Continuity) For A,An ∈ A , n > 1,

An ↑ A⇒ P(An) ↑ P(A); An ↓ A⇒ P(An) ↓ P(A).
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Example 1.38 (Geometric probability medel). Let Ω ⊂ R be a Lebesgue

measurable set and 0 < |Ω| < ∞, where | · | denotes the Lebesgue measure.

Assume A is a class of Lebesgue measurable subsets of Ω, P(A) = |A|
|Ω| , A ∈ A .

Then (Ω,A ,P) is a probability space.

3 Extension and Completion of Measure

As explained in the beginning of this chapter, a measure is often easily

defined on a semi-algebra. So, to built up a measure space, it is crucial to

extend a measure from a semi-algebra to the induced σ-algebra. In this sec-

tion, we first extend a measure from a semi-algebra to its generated algebra,

which is easy to do according to the formula of the induced algebra, then

further extend to the generated σ-algebra, and finally, make completion of

the resulting measure space.

§ 1.3.1 Extension from semi-algebra to the induced algebra

Definition 1.39. Let C1 ⊂ C2 be two classes of sets in Ω, and let µi be

measures (or finitely additive measures) defined on Ci (i = 1, 2) respectively.

If µ1(A) = µ2(A) holds for any A ∈ C1, then we call µ2 an extension of µ1

from C1 to C2, and call µ1 the restriction of µ2 on C1 which is denoted by

µ1 = µ2|C1
.

Theorem 1.40. Let µ be a measure (or finitely additive measure) on a semi-

algebra S . Then µ can be uniquely extended to a measure (or finitely additive

measure) µ̃ on F (S ).

Proof. By Theorem 1.7, for any A ∈ F (S ), there exist B1, · · · , Bn ∈ S

mutually disjoint such that A =
n∑
i=1

Bi. Define µ̃(A) =
n∑
i=1

µ(Bi). First we

prove that µ̃(A) is independent of the choices of {Bi}. Let B′1, · · · , B′n′ ∈ S

be mutually disjoint such that A =
n′∑
i=1

B′i. Then B′i =
n∑
j=1

B′i ∩ Bj . Since
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B′i ∩Bj ∈ S , by the finite additivity, we have µ(B′i) =
n∑
j=1

µ(B′i ∩Bj). So

n′∑
i=1

µ(B′i) =

n′∑
i=1

n∑
j=1

µ(B′i ∩Bj) =

n∑
j=1

n′∑
i=1

µ(B′i ∩Bj)

=
n∑
j=1

µ(Bj) = µ̃(A).

Thus µ̃(A) is independent of the choice of {Bi}.

Next, we prove that µ̃ is a measure (or finitely additive measure). It is

obvious for nonnegativeness and uniqueness, as well as finitely additivity.

We are going to prove the σ-additivity. Let {An}n>1 ⊂ F (S ) be mutually

disjoint such that A =
∞∑
n=1

An ∈ F (S ). Take B1, · · · , Bk ∈ S mutually

disjoint such that A =
k∑
i=1

Bi. Again, ∀n > 1, take Cn1, · · · , Cnkn ∈ S

mutually disjoint, satisfying An =
kn∑
i=1

Cni. Then ∀i 6 k,Bi =
∞∑
n=1

An∩Bi =

∞∑
n=1

kn∑
l=1

Bi ∩ Cnl is the union of mutually disjoint subsets in S . By the σ-

additivity of µ, we have µ(Bi) =
∞∑
j=1

kj∑
l=1

µ(Bi ∩ Cjl). From this and the

finite additivity, it follows that

µ̃(A) = µ̃

(
k∑
i=1

Bi

)
=

k∑
i=1

∞∑
n=1

kn∑
l=1

µ(Bi ∩ Cnl)

=

∞∑
n=1

kn∑
l=1

k∑
i=1

µ(Bi ∩ Cnl) =

∞∑
n=1

µ̃(An).

�

By applying Proposition 1.32 to µ̃ on F (C ), we obtain the following

result.

Corollary 1.41. Let µ ba a finite additive measure on a semi-algebra S ,

and let A,A1, · · · , An ∈ S .
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(a) If A1, · · · , An are mutually disjoint and
n∑
i=1

Ai ⊂ A, then
n∑
i=1

µ(Ai) 6

µ(A).

(b) If
n⋃
i=1

Ai ⊃ A, then
n∑
i=1

µ(Ai) > µ(A).

If µ is σ-additive, the above assertions hold for n =∞.

§ 1.3.2 Extension from semi-algebra to the generated

σ-algebra

Theorem 1.42 (Measure extension theorem). Let µ be a measure on a

semi-algebra S in Ω. Then it can be extended to a measure on σ(S ). If

furthermore µ is σ-finite, then the extension is unique.

Following the line of the Lebesgue measure theory, we first define an

outer measure for every subsets of Ω by the covering procedure, then prove

that the restriction of the outer measure is σ-additive on the generated

σ-algebra.

Definition 1.43. Let µ be a measure on a semi-algebra S in Ω. For any

A ⊂ Ω,

µ∗(A) := inf

{ ∞∑
n=1

µ(An) : A ⊂
∞⋃
n=1

An, An ∈ S

}
is called the outer measure of A, and the function µ∗ defined on the largest

σ-algebra 2Ω is called the outer measure generated by µ.

Property 1.44.

(1) µ∗|S = µ.

(2) µ∗(A) 6 µ∗(B), ∀A ⊂ B.

(3) µ∗
( ∞⋃
n=1

An

)
6
∞∑
n=1

µ∗(An), ∀An ⊂ Ω, n > 1.

Proof. (1) As A ⊂ A, by letting A1 = A,An = ∅, n > 2, we have µ∗(A) 6

µ(A). On the other hand, by the sub σ-additivity of µ, it follows that

µ(A) 6
∞∑
n=1

µ(An) for any sequence {An} ⊂ S with
∞⋃
n=1

An ⊃ A. So

µ∗(A) > µ(A).
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(2) Obvious.

(3) For any ε > 0 and n > 1, take An1, An2, · · · ∈ S such that
∞⋃
i=1

Ani ⊃

An and µ∗(An) >
∞∑
i=1

µ(Ani) − ε/2n. Thus
∞⋃
n=1

∞⋃
i=1

Ani ⊃
∞⋃
n=1

An, and by

the definition of µ∗

µ∗

( ∞⋃
n=1

An

)
6
∞∑
n=1

∞∑
i=1

µ(Ani) 6
∞∑
n=1

(
µ∗(An) +

ε

2n

)
=

∞∑
n=1

µ∗(An) + ε.

Let ε ↓ 0 to derive the assertion. �

If µ∗ were a measure on 2Ω, then the restriction µ∗|σ(S ) would be an

extended measure as desired. However, this is in general not true, as the

Lebesgue measure is already a counterexample. So, we need to find a class

A ∗ of “regular” sets such that A ∗ ⊃ σ(S ) and µ∗ is σ-additive on A ∗.

An intuition to select a “regular” set is that it does not leads to any loss of

outer measures when using the set to cut others. In this spirit we introduce

the notion of µ∗-measurable set as follows.

Definition 1.45. A set A ⊂ Ω is called µ∗-measurable, if

µ∗(D) = µ∗(A ∩D) + µ∗(Ac ∩D), ∀D ⊂ Ω.

Let A ∗ = {A ⊂ Ω : A is µ∗-measurable}.

We shall prove that A ∗ is a σ-algebra including S and µ∗ is a measure

on A ∗. For this, we first study the properties of µ∗ and A ∗. The following

is a consequence of Property 1.44-(3).

Property 1.46. A is a µ∗ measurable set if and only if

µ∗(D) > µ∗(A ∩D) + µ∗(Ac ∩D), ∀ D ⊂ Ω.

Property 1.47. A ∗ ⊃ S .
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Proof. Let A ∈ S , D ⊂ Ω. For any ε > 0, take {An} ⊂ S such that

∞∑
n=1

An ⊃ D,µ∗(D) >
∞∑
n=1

µ(An)− ε.

Then by σ-subadditivity of µ∗ and finite additivity of µ on F (S ), it follows

µ∗(Ac ∩D) + µ∗(A ∩D) 6
∞∑
n=1

[µ(An ∩A) + µ(Ac ∩An)]

=
∞∑
n=1

µ(An) 6 µ∗(D) + ε.

Let ε ↓ 0 to derive

µ∗(D) > µ∗(A ∩D) + µ∗(Ac ∩D).

Thus A ∈ A ∗ by Property 1.46. �

Theorem 1.48.

(1) A ∗ is a σ-algebra, so that A ∗ ⊃ σ(S ).

(2) If {An} ⊂ A ∗ are mutually disjoint and A =
∞∑
n=1

An, then ∀D ⊂ Ω,

µ∗(D ∩A) =
∞∑
n=1

µ∗(D ∩An).

(3) The restriction of µ∗ on A ∗ is a measure on A ∗.

Proof. (1) We first prove that A ∗ is an algebra. Since A ∗ ⊃ S , ∅,Ω ∈
A ∗. It is obvious that A ∈ A ∗ implies Ac ∈ A ∗. So, it suffices to prove

that A,B ∈ A ∗ ⇒ A ∩B ∈ A ∗. By subadditivity,

µ∗(D) = µ∗(A ∩D) + µ∗(Ac ∩D)

= µ∗(A ∩B ∩D) + µ∗(A ∩Bc ∩D) + µ∗(Ac ∩D)

> µ∗(A ∩B ∩D) + µ∗((Ac ∪Bc) ∩D).

Thus A ∩B ∈ A ∗ by Property 1.46.
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Next we prove that A ∗ is a montone class. Let An ∈ A ∗ such that

An ↑ A. By Property 1.44-(2) and letting A0 = ∅, we have

µ∗(D) = µ∗(A1 ∩D) + µ∗(Ac1 ∩D)

= µ∗(A1 ∩D) + µ∗(A2 ∩Ac1 ∩D) + µ∗(D ∩Ac2)

= · · · =
n∑
i=1

µ∗((Ai −Ai−1) ∩D) + µ∗(D ∩Acn)

>
n∑
i=1

µ∗((Ai −Ai−1) ∩D) + µ∗(D ∩Ac).

(1.3.1)

Letting n→∞ we derive

µ∗(D) > µ∗(D ∩Ac) +
∞∑
i=1

µ∗(D ∩ (Ai−1 −Ai))

> µ∗(D ∩Ac) + µ∗(D ∩A).

Thus, A ∈ A ∗.

Therefore, A ∗ is a σ-algebra by the monotone class theorem.

(2) Let A =
∞∑
n=1

An with An ∈ A ∗ mutually disjoint. Then A ∈ A ∗.

By Property 1.44-(2), it suffices to prove

µ∗(D ∩A) >
∞∑
n=1

µ∗(D ∩An).

Replacing D by A ∩D and An by
n∑
i=1

Ai in (1.3.1), we obtain

µ∗(D ∩A) >
n∑
i=1

µ∗(D ∩Ai).

Then the proof is finished by letting n ↑ ∞.

(3) The σ-additivity of µ∗ on A ∗ is obtained by letting D = Ω in (2).

�

Proof of Theorem 1.42 Since A ∗ ⊃ σ(S ), the restriction of µ∗ on

σ(S ) is obviously a measure, and µ∗(A) = µ(A) for A ∈ S . Thus there

exists an extension of µ on σ(S ).
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Now, let µ be σ-finite on S . By Property 1.31-(4), there exist mutually

disjoint {An} ⊂ S such that Ω =
∞∑
n=1

An and µ(An) < ∞, n > 1. If both

µ1 and µ2 are measures on σ(S ) extended from µ, it suffices to prove

µ1(A ∩An) = µ2(A ∩An) for A ∈ σ(S ) and n > 1. For this, let

Mn := {A : A ∈ σ(S ), µ1(A ∩An) = µ2(A ∩An)}.

Then Mn ⊃ S . By the unique extension of µ on F (S ), we have Mn ⊃
F (S ), thus by the monotone class theorem, it is sufficient to show that M

is a monotone class, which can be derived by the continuity of measures.

�

Corollary 1.49. If S is a semi-algebra in Ω, and P is a probability measure

on S , then P can be uniquely extended to a probability measure on σ(S ).

§ 1.3.3 Completion of measures

Definition 1.50. Let (Ω,A , µ) be a measure space. A subset B of Ω is

called a µ-null set, if there exists A ∈ A such that B ⊂ A and µ(A) = 0. If

all µ-null sets are contained in A , then (Ω,A , µ) is called a complete measure

space.

Theorem 1.51. For a measure space (Ω,A , µ), let

Ā = {A ∪N : A ∈ A , N is a µ-null set} ,

and define µ̄(A∪N) := µ(A) for A ∈ A and N a µ-null set. Then (Ω, Ā , µ̄)

is a complete measure space, which is called the completion of (Ω,A , µ).

Proof. We first prove that Ā is a σ-algebra. By the σ-subadditivity of

µ, the union of countable many µ-null sets is still µ-null, so that Ā is

closed under countable union. It remains to prove that Ā is closed under

complement. Let A ∪ N ∈ Ā with A ∈ A and N a µ-null set. Assume

B ∈ A such that B ⊃ N and µ(B) = 0. Then

(A ∪N)c = Ac ∩N c = Ac ∩Bc +Ac ∩ (N c −Bc).



§3 Extension and Completion of Measure 25

As Ac ∩ (N c−Bc) ⊂ Ω−Bc = B, and µ(B) = 0, Ac ∩ (N c−Bc) is µ-null.

Moreover, Ac ∩Bc ∈ A , so that (A ∪N)c ∈ Ā by definition.

Next, it is easy to check that µ̄ is σ-additive on Ā . It suffices to prove

that (Ω, Ā , µ̄) is complete. Let N̄ be a µ̄-null set. Then ∃B̄ ∈ Ā such that

µ̄(B̄) = 0 and B̄ ⊃ N̄ . By B̄ ∈ Ā , we have B̄ = A ∪ N for some A ∈ A

and a µ-null set N . Then 0 = µ̄(B̄) = µ(A). Take B ∈ A , B ⊃ N such

that µ(B) = 0. We have N̄ ⊂ B̄ ⊂ A ∪ B, and µ(A ∪ B) = 0. So N̄ is

µ-null, and hence N̄ ∈ Ā by the definition of Ā . �

Theorem 1.52. Let µ be a measure on a semi-algebra S , and let µ∗ be the

induced outer measure. The for any A ⊂ Ω with µ∗(A) < ∞, ∃B ∈ σ(S )

such that:

(i) A ⊂ B,

(ii) µ∗(A) = µ(B),

(iii) µ∗(C) = 0, ∀C ⊂ B −A and C ∈ σ(S ).

The above B is called a measurable cover of A.

Proof. ∀n > 1, take {Fnk}k>1 ⊂ S such that A ⊂
∞⋃
k=1

Fnk and

∞∑
k=1

µ(Fnk) 6 µ∗(A) + 1/n.

Let Bn =
∞⋃
k=1

Fnk . Then µ∗(A) 6 µ∗(Bn). By setting B =
∞⋂
n=1

Bn, we have

B ∈ σ(S ) with B ⊃ A and µ∗(B) = µ∗(A). If C ∈ σ(S ) and C ⊂ B −A,

then A ⊂ B − C. Thus,

µ∗(A) 6 µ∗(B − C) = µ(B)− µ(C).

From this and µ∗(B) = µ∗(A) <∞, it follows that µ∗(C) = 0. �

Theorem 1.53. Let µ be a σ-finite measure on a semi-algebra S , and let

µ∗ be the induced outer measure. Then (Ω,A ∗, µ∗) is the completion of

(Ω, σ(S ), µ).
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Proof. By Theorem 1.51, we only need to prove A ∗ = Ā .

Let Ā ∈ Ā . Then ∃A ∈ σ(S ) and a µ-null set N such that Ā = A∪N .

It is clear A ∗ contains all µ null sets, so that Ā ∈ A ∗.

Conversely, for A ∈ A ∗ with µ∗(A) <∞, let B be a measurable cover of

A, and C be a measurable cover of B−A. Then A = (B−C)∪(C−(B−A)),

where B − C ∈ σ(S ), C − (B − A) are µ-null. Thus A ∈ Ā . When

µ∗(A) = ∞, by the σ-finiteness of µ we have ∃ {An}n>1 ⊂ S such that
∞∑
n=1

An = Ω and µ(An) < ∞, n > 1. From the previous proofs, it follows

A ∩An ∈ Ā for n > 1. Thus A =
∞∑
n=1

An ∩A ∈ Ā . �

Theorem 1.54. Let µ be a σ-finite measure on a semi-algebra S . Then µ

has a unique measure extension on A ∗.

Proof. By Theorem 1.42, µ is uniquely extended to a measure on σ(S ),

and the extension is the restriction of µ∗ on σ(S ). Let µ1 be another

measure on A ∗ which extends µ. Then for any A ∪N ∈ A ∗ = Ā , where

A ∈ σ(S ) and N is µ-null, we have

µ∗(A ∪N) = µ∗(A) = µ1(A) 6 µ1(A ∪N) 6 µ1(A) + µ1(N)

= µ∗(A) + µ1(N) = µ∗(A ∪N) + µ1(N).

Let B ∈ σ(S ) such that B ⊃ N and µ(B) = 0. We obtain

µ1(N) 6 µ1(B) = µ(B) = 0.

So, µ∗(A ∪N) = µ1(A ∪N). �

Theorem 1.55. Let µ be a measure on a semi-algebra S in Ω. Then

∀A ∈ A ∗ with µ∗(A) < ∞ and ∀ε > 0, there exists Aε ∈ F (S ) such

that µ∗(A∆Aε) < ε, where A∆Aε) := (A−Aε) + (Aε −A).

Proof. ∀ε > 0, there exists a sequence {Bn}n>1 ⊂ S such that
∞⋃
n=1

Bn ⊃ A

and µ∗(A) 6
∞∑
n=1

µ∗(Bn) 6 µ∗(A) + ε
2 . Since µ∗(A) <∞,

∞∑
n=1

µ∗(Bn) <
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∞. Take n0 > 1 such that
∑
n>n0

µ∗(Bn) < ε
2 . Let Aε =

n0∑
n=1

Bn and

Bε =
∑
n>n0

Bn. Then Aε ∈ F (S ). By the σ-subadditivity of µ∗, it follows

µ∗(Bε) <
ε
2 . So µ∗((Aε∪Bε)−A) < ε

2 by monotone property. As A−Aε ⊂
Bε and Aε − A ⊂ (Aε ∪ Bε) − A, we obtain µ∗(A∆Aε) = µ∗((A − Aε) +

(Aε −A)) < ε. �
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4 Exercises

1. Prove Proposition 1.6

2. Prove Property 1.10.

3. Let C be a class of subsets of Ω. Then ∀A ∈ σ(C ), there exists a

countable sub-class CA of C such that A ∈ σ(C1).

4. (Countable generation) A σ-algebra A is called countably generated,

if there exists a countable sub-class C such that σ(C ) = A . Prove

that the Borel σ-algebra Bd in Rd is countably generated.

5. Let {Cn}n>1 be an increasing sequence for classes of sets in Ω.

(a) If {Cn}n>1 are algebras, prove that
∞⋃
n=1

Cn is an algebra.

(b) Exemplify that
∞⋃
n=1

Cn is not a σ-algebra, but {Cn}n>1 are σ-

algebras.

6. Prove Theorem 1.19.

7. Prove that a σ-algebra is either finite or uncountable.

8. Let (Ωi, Ai), 1 6 i 6 n, be measure spaces. Prove that

C := {A1 × · · · ×An : Ai ∈ Ai}

is a semi-algebra in Ω := Ω1 × · · · × Ωn.

9. Prove Theorem 1.27.

10. Exemplify that an additive measure on a class of sets may not be

finitely additive.



§4 Exercises 29

11. Exemplify that the σ-algebra generated by a semi-algebra S can not

be expressed as:

σ(S ) =

{ ∞∑
n=1

An : ∀n > 1, An ∈ S

}
,

and prove this formula when Ω is finite or countable.

12. Let (Ωn,An, µn), n > 1, be a sequence of measure spaces with {Ωn}
mutually disjoint. Set

Ω =
∞∑
n=1

Ωn, A = {A ⊂ Ω : ∀n > 1, A ∩ Ωn ∈ An} ,

µ(A) =
∞∑
n=1

µn(A ∩ Ωn), A ∈ A .

Prove that (Ω,A , µ) is a measure space.

13. Let Ω be infinite, and let F be the class of finite subsets of Ω and

their complements. Define P(A) = 0 if A is finite and = 1 if Ac is

finite.

(a) Prove that F is an algebra and P is finitely additive.

(b) When Ω is countable, prove that P is not σ-additive.

(c) When Ω is uncountable, prove that P is σ-additive.

14. Prove Proposition 1.30.

15. Let (Ω,A ,P) be a probability measure space without atom, i.e. for

any A ∈ A with P(A) > 0, there exists B ∈ A such that B ⊂ A

and 0 < P(B) < P(A). For any A ∈ A with P(A) > 0, prove that

{P(B) : B ∈ A , B ⊂ A} = [0,P(A)].

16. Prove Corollary 1.35.

17. Let ([0, 1],B([0, 1]), µ) be a finite measure space with µ({x}) = 0, ∀x ∈
[0, 1]. ∀ε > 0, prove:
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(a) ∀x ∈ [0, 1], there exists an interval I 3 x such that µ(I) 6 ε;

(b) there exists a dense subset A of [0, 1] such that µ(A) 6 ε.

18. Prove Corollary 1.41.

19. Prove Property 1.46.

20. Construct an example of a measure µ on a semi-algebra C such that

it has more than one extended measures on σ(C ).

21. Prove that a measure space (Ω,A , µ) is complete if and only if A ⊃
{A ⊂ Ω : µ∗(A) = 0}.

22. Let µ be a finite measure on a semi-algebra S . Let

µ∗(A) = sup

{∑
n

µ(An) : An ∈ S mutually disjoint,
∑
n

An ⊂ A

}
,

A∗ = {A ⊂ Ω : µ∗(A) = µ∗(A)} .

Prove A ∗ ⊃ A∗

23. Let (Ω,A , µ) be a measure space. Prove that N ⊂ Ω is µ-null if and

only if µ∗(N) = 0.

24. For a measure space (Ω,A , µ), let Ai, Bi ⊂ Ω satisfy µ∗(Ai∆Bi) =

0, i > 1. Prove that

µ∗

( ∞∑
i=1

Ai

)
= µ∗

( ∞∑
i=1

Bi

)
.

25. Let C = {Ca,b = [−b,−a) ∪ (a, b] : 0 < a < b} and define µ(Ca,b) =

b − a. Prove that µ can be extended to a measure on σ(C ). Ask

whether [1, 2] is µ∗-measurable?

26. Let f : [0,∞) → [0,∞) be strictly increasing, strictly convex and

f(0) = 0. ∀A ⊂ (0, 1], define µ∗(A) = f(λ∗(A)), where λ∗ is the
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Lebesgue outer measure. Prove that µ∗ satisfies µ∗(∅) = 0, non-

negativeness, monotonicity and σ-subadditivity.

27. Let (Ω,A ,P) be a probability space, and let Ω ⊃ A /∈ A . Prove that

P can be extended to a probability measure on A1 := σ(A ∪ {A}).

28. Let f : R 3 x 7−→ x
3 ∈ R and A0 = [0, 1]. Prove that An+1 =

f(An) ∪
(

2
3 + f(An)

)
(n > 0) is decreasing in n > 0, where f(An) :=

{f(x) : x ∈ An}. The limit of An is denoted by C, which is called the

Cantor set. Prove that the Lebesgue measure of C is 0.





Chapter 2

Random Variable and

Measurable Function

Given a probability space (Ω,A ,P), we define random variables and their

distribution functions as follows.

Definition 2.1.

(1) A real function ξ : Ω→ R is called a random variable on (Ω,A ,P), if

{ω : ξ(ω) < x} ∈ A for every x ∈ R. Let i =
√
−1. We call ξ = η+i ζ

a complex random variable on (Ω,A ,P) provided η and ζ are random

variables.

(2) If ξ1, · · · , ξn are real (complex) random variables on (Ω,A ,P), then

vector-valued function ξ := (ξ1, · · · , ξn) is called an n-dimensional real

(complex) random variable on (Ω,A ,P). A multi-dimensional random

variable is also called random vector.

(3) The distribution function of a random variable ξ := (ξ1, · · · , ξn) is

defined as

F : Rn 3 (x1, x2, · · · , xn) 7→ P(ξi < xi : 1 6 i 6 n).

(4) Let ξ := (ξ1, · · · , ξn) and η := (η1, · · · , ηn) be two random variables

on (Ω,A ,P). If

P(ξi 6= ηi) = 0, 1 6 i 6 n,

33
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then these two random variable is called identical almost surely, denoted

by ξ = η a.s. If they have the same distribution function, we call they

identically distributed.

In this chapter, we first extend the concept of random variables to

measurable functions on a measurable space, then study the construction of

measurable functions and convergence theorems. These provide a basis for

the next chapter to define and study the integral (in particular, expectation)

of measurable functions (random variables).

1 Measurable Function

§ 2.1.1 Definition and properties

Let B be the Borel σ-algebra of R, and let

R̄ := [−∞,∞], B̄ := σ(B ∪ {∞} ∪ {−∞}).

Let R̄n be the n-dimensional product space of R̄ and B̄n be the product

σ-algebra. Similarly, we can define n-dimensional product space C̄n of the

generalized complex plane C̄, and the product σ-algebra B̄n
c .

Definition 2.2. Let (Ω,A ) and (E,E ) be two measurable spaces.

(1) A map f : Ω→ E is called measurable from (Ω,A ) to (E,E ), if

f−1(B) := {ω ∈ Ω : f(ω) ∈ B} ∈ A

for every B ∈ E , where f−1(B) is called the inverse image of B under

f .

(2) A measurable map f from (Ω,A ) to (R̄, B̄) is called a measurable

function, denoted by f ∈ A . A measurable map from (Ω,A ) to

(R̄n, B̄n) is called an n-dimensional measurable function. If f1 and f2

are (n-dimensional) measurable functions, then f := f1 + i f2 is called

an (n-dimensional) complex measurable function.

In the following, we only consider real valued measurable functions,

unless otherwise specified. Let C be a class of subsets of E. Then {f−1(B) :
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B ∈ C } is called inverse image of C under f , denoted by f−1(C ) or σ(f).

Obviously, the map

f : (Ω,A )→ (E,E )

is measurable if and only if f−1(E ) ⊂ A .

It is easy to see that the inverse is interchange with any set operations.

Property 2.3. Let f be a map from Ω to E, and let {Bγ}γ∈Γ be a family

of subsets of Ω. Then:

(1) f−1(E) = Ω, f−1(∅) = ∅.

(2) f−1(Bc) = [f−1(B)]c for any B ⊂ E.

(3) f−1(B1 −B2) = f−1(B1)− f−1(B2) for any B1, B2 ⊂ E.

(4) f−1

( ⋃
γ∈Γ

Bγ

)
=
⋃
γ∈Γ

f−1(Bγ).

(5) f−1

( ⋂
γ∈Γ

Bγ

)
=
⋂
γ∈Γ

f−1(Bγ).

Property 2.4. Let (E,E ) be a measurable space. Then for any map f :

Ω→ E, f−1(E ) is the smallest σ-algebra in Ω such that f is measurable.

Property 2.5. Let C be a class of subsets of E and let f : Ω → E be a

map. Then σ(f) := f−1(σ(C )) = σ(f−1(C )).

Proof. Since f−1(σ(C )) is a σ-algebra including f−1(C ), we have f−1(σ(C )) ⊃
σ(f−1(C )). So it suffices to prove

A := {C ⊂ E : f−1(C) ∈ σ(f−1(C ))} ⊃ σ(C ).

In fact, we have (1) A ⊃ C ; (2) f−1(E) = Ω ∈ σ(f−1(C )) ⇒ E ∈
A ; (3) C ∈ A ⇒ f−1(Cc) = (f−1(C))c ∈ σ(f−1(C )) ⇒ Cc ∈ A ;

(4) {Cn}n>1 ⊂ A ⇒ f−1

( ∞⋃
n=1

Cn

)
=
∞⋃
n=1

f−1(Cn) ∈ σ(f−1(C ))⇒
∞⋃
n=1

Cn ∈

A . Thus A is a σ-algebra including C , hence A ⊃ σ(C ). �

Theorem 2.6.

(1) f is a real measurable function on (Ω,A ) if and only if {f < x} ∈ A

for every x ∈ R.
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(2) f = (f1, · · · , fn) is an n-dimensional function on (Ω,A ) if and only

if fk is a real measurable function on (Ω,A ) for 1 6 k 6 n.

Proof. (1) The necessary part is obvious. To prove the sufficiency, let S =

{[−∞, x) : x ∈ R}. Then σ(S ) = B̄, so by Property 2.5 we have

f−1(B̄) = f−1(σ(S )) = σ(f−1(S )) ⊂ σ(A ) = A .

Thus, f is a measurable function on (Ω,A ).

(2) Let f be measurable. Then for any 1 6 k 6 n and Ak ∈ B̄, we have

{fk ∈ Ak} = {f ∈ R̄ × · · · × Ak × · · · × R̄} ∈ A . So, fk is measurable for

any 1 6 k 6 n. On the other hand, let fk be measurable for any 1 6 k 6 n.

To prove the measurability of f , we take

S = {{fk < r} : 1 6 k 6 n, r ∈ R}.

Since

B̄n = σ({{x : xk < r} : 1 6 k 6 n, r ∈ R}),

by Property 2.5, we have f−1(B̄n) = σ(S ). Combining this with the

fact that the measurability of fk (1 6 k 6 n) implies S ⊂ A , we obtain

f−1(B̄n) ⊂ A , which means that f is measurable. �

Theorem 2.7. Let (Ωi,Ai), i = 1, 2, 3, be measurable spaces, and let (Ω1,A1)
f−→ (Ω2,A2)

g−→ (Ω3,A3) be measurable maps. Then g ◦f is a measurable map

from (Ω1,A1) to (Ω3,A3).

Proof. It follows from (g ◦ f)−1(B) = f−1(g−1(B)) immediately. �

By Theorem 2.6-(1) and Definition 2.1, a random variable is nothing

but a finite measurable function on the probability space, while Theorem

2.6-(2) shows that a vector valued function is measurable if and only if

each component is measurable. Theorem 2.7 says that the composition of

measurable maps remains measurable.

Corollary 2.8.
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(1) Let g be a real (complex) measurable function on (R̄n, B̄n) and f1, · · · , fn
be real measurable functions on (Ω,A ). Then g(f1, · · · , fn) is a real

(complex) measurable function on (Ω,A ).

(2) Let g be a real (complex) measurable function on (C̄n, B̄c
n
) and

f1, · · · , fn be complex measurable functions on (Ω,A ). Then g(f1, · · · , fn)

real (complex) measurable function on (Ω,A ).

Corollary 2.9.

(1) Let g be a real (complex) measurable function on (R̄n, B̄n) and f1, · · ·,fn
be real ramdom variables on (Ω,A ,P). If P(|g(f1, · · · , fn)| =∞) = 0,

then g(f1, · · · , fn) is a real (complex) random variable on (Ω,A ,P).

(2) Let g be a real (complex) measurable function on (C̄n, B̄n
c ) and f1, · · · , fn

be complex ramdom variables on (Ω,A ,P). If |g(f1, · · · , fn)| < ∞,

then g(f1, · · · , fn) is a complex ramdom variable on (Ω,A ,P).

§ 2.1.2 Construction of measurable function

We first recall the measurable indicator functions which one-to-one corre-

spond to measurable sets, then use their combinations and limits to con-

struct all measurable functions. This construction is fundamental for the

definition of integrals, where the integral of a measurable function is re-

garded as the measure of the function, so that it is natural to identify the

integral of an indicator function with the measure of the corresponding set.

Definition 2.10.

(1) ∀A ⊂ Ω, its indicator function is defined by

1A(ω) =

{
1, if ω ∈ A;

0, else.

(2) Let {Ak}16k6n be a finite measurable partition of Ω, i.e. they are

mutually disjoint sets in A such that Ω =
n∑
k=1

Ak. Then for any

a1, · · · , an ∈ R, f :=
n∑
k=1

ak1Ak is called a simple function.

(3) If we take n =∞ in (2) above, then f is called an elementary function.
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Property 2.11.

(1) 1A is a measurable function on (Ω,A ) if and only if A ∈ A .

(2) Simple functions and elementary functions are all measurable functions

on (Ω,A ).

Proof. Let f =
n∑
k=1

ak1Ak be a simple (or elementary if n = ∞) function.

Then ∀B ∈ B̄ we have f−1(B) =
⋃

k:ak∈B
Ak ∈ A . �

Theorem 2.12.

(1) A measurable function is the point-wise limit of a sequence of simple

functions.

(2) A measurable function is the uniform limit of a sequence of elementary

functions.

(3) A bounded measurable function is the uniform limit of a sequence of

simple functions.

(4) A non-negative measurable function is the (uniform) limit of a sequence

of increasing simple (elementary) functions.

Proof. (1) For n > 1 and ω ∈ Ω, let

fn(ω) =
n2n−1∑
k=−n2n

k

2n
1{ k

2n
6f(ω)< k+1

2n
} + n1{f(ω)>n} − n1{f(ω)<−n}.

Then fn are simple functions and |fn − f |1{−n6f<n} < 1
2n ; when f = ∞,

fn = n; when f = −∞, fn = −n. Thus the sequence {fn}n>1 converges

point-wisely to f .

(2) For any n ∈ N, let

fn =
∞∑

k=−∞

k

2n
1{ k

2n
6f< k+1

2n
} +∞1{f=∞} −∞1{f=−∞}.

Then {fn}n>1 are elementary functions such that for any n > 1,

|fn − f |1{|f |<∞} <
1

2n
; fn = f when |f | =∞.
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Thus, fn converges uniformly to f as n→∞.

(3) If f is bounded, then by (1), the sequence {fn}n>1 of simple func-

tions converges uniformly to f .

(4) If f is non-negative, then the sequences {fn}n>1 constructed in (1)

and (2) are increasing. �

Let f be a real function on Ω. Define f+ = max{f, 0} and f− =

max{−f, 0}, which are called the positive part and the negative part of f ,

respectively. Then

f = f+ − f−, |f | = f+ + f−, f+ =
|f |+ f

2
, f− =

|f | − f
2

.

Theorem 2.13. The positive part and the negative part of a measurable

function are measurable. So, any measurable function can be expressed as the

difference of two non-negative measurable functions.

§ 2.1.3 Operations of measurable functions

Proposition 2.14. Let {fn}n>1 be a sequence of real functions on Ω.

(1) Super-limit, lower-limit, supremum and infimum of {fn}n>1 all exist,

and

lim
n→∞

fn = lim
n→∞

inf
k>n

fk = sup
n

inf
k>n

fk,

lim
n→∞

fn = lim
n→∞

sup
k>n

fk = inf
n

sup
k>n

fk.

(2) Limit of {fn}n>1, lim
n→∞

fn exists if and only if

∀ω ∈ Ω, lim
n→∞

fn(ω) = lim
n→∞

fn(ω).

In this case, we denote fn → f as n→∞.

A sequence of complex functions fn := gn + hni , n > 1, is called con-

vergent to f := g + hi , if gn → g and hn → h as n→∞.
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Theorem 2.15. Let (Ω,A ) be a measurable space.

(1) Let {fn}n>1 be a sequence of real measurable functions on (Ω,A ).

Then

sup
n>1

fn, inf
n>1

fn, lim
n→∞

fn, lim
n→∞

fn

are measurable as well.

(2) Let {fn}n>1 be a sequence of complex measurable functions on (Ω,A ).

If lim
n→∞

fn exists, then it is measurable.

Proof. Note that ∀x ∈ R,{
inf
n>1

fn < x

}
=
⋃
n>1

{fn < x} ∈ A .

So inf
n>1

fn is measurable. Since sup
n>1

fn = − inf
n>1

(−fn), sup
n>1

fn is measurable.

Finally, for x ∈ R,{
lim
n→∞

fn

}
=
∞⋃
m=1

∞⋃
n=1

⋃
k>n

{
fk < x− 1

m

}
.

Thus lim
n→∞

fn is measurable. As lim
n→∞

fn = − lim
n→∞

(−fn), lim
n→∞

fn is measur-

able. �

Theorem 2.16. Let g be a continuous function on D ⊂ R̄n. Then g is a

measurable function on (D,D ∩ B̄n). The assertion remains true for C̄n in

place of R̄n.

Proof. For simplicity, assume g is real. ∀m > 1, R̄n is divided into countable

many disjoint cubes with side length 1/2m:

Aj1,··· ,jn =

[
j1
2m

,
j1 + 1

2m

)
× · · · ×

[
jn
2m

,
jn + 1

2m

)
, j1, · · · , jn ∈ Z ∪ {±∞},

For j = −∞ or +∞, by convention we set [ j
2m ,

j+1
2m ) = {−∞} or {+∞}.

Rearranging these cubes, we denote them by {Ami : i,m ∈ N}.
Given xim ∈ Ami , define

gm(x) =
∞∑
i=1

1Ami ∩D(x)g(xim).



§1 Measurable Function 41

Then gm is measurable, and the continuity of g implies that gm
m→∞−−−−→ g,

so g is measurable. �

Theorem 2.17. Let D ⊂ C̄n and f1, · · · , fn be measurable functions on

(Ω,A ), such that

(f1, · · · , fn)(Ω) ⊂ D.

If g is a measurable function on D, then g(f1, · · · , fn) is measurable.

Proof. Simply note that the composition of measurable functions is mea-

surable. �

Corollary 2.18. The sum, difference, product and quotient of measurable

functions are measurable (if the operations make sense).

Corollary 2.19. Let ξ1, · · · , ξn be (complex) random variables on (Ω,A ,P)

and let g be a finite continuous function on Rn (Cn). Then g(ξ1, · · · , ξn)

is a (complex) random variable. Specially, the sum, difference, product and

quotient of (complex) random variables are (complex) random variables (if the

operations make sense).

§ 2.1.4 Monotone class theorem for functions

Definition 2.20. Let L be a family of functions on Ω such that f ∈ L ⇒
f+, f− ∈ L . A family L of functions on Ω is called an L -system, if

(1) 1 ∈ L;

(2) L is closed under linear combinations;

(3) for any non-negative and increasing sequence {fn}n>1 ⊂ L such that

fn ↑ f , if either f is bounded or f ∈ L , then f ∈ L.

Theorem 2.21 (Monotone class theorem for functions). Let L be an L -

system. If L contains the indicator functions of all elements in a π-system C ,

then L contains all real σ(C )-measurable functions in L .

Proof. Let Λ = {A : 1A ∈ L}. Then Ω ∈ Λ and Λ is closed under the

proper difference and the union of increasing sets. So Λ is a λ-system.

Since Λ ⊃ C and C is a π-system, by the monotone class theorem we have
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Λ ⊃ σ(C ). From this and Definition 2.20–(2), it follows that L contains

all σ(C )-measurable simple functions. Let f ∈ L be σ(C )-measurable.

Then f+, f− ∈ L are σ(C )-measurable, so that there exists a sequence of

simple functions fn ↑ f+. From this and Definition 2.20–(3) it follows that

f+ ∈ L. Similarly, f− ∈ L. Thus f = f+ − f− ∈ L by Definition 2.20–(2).

�

The monotone class theorem for functions is used to prove that a family

F of functions having certain property A0. To this end, we first choose a

class of functions L ⊃ F , such that L := {f : f have property A0} is an

L -system, then introduce a π-system C such that indicator functions of

all subsets of C are contained in L, and finally verify that the family of all

σ(C )-measurable functions includes F . Thus, by Theorem 2.21 we conclude

that functions of F have property A0.

The following theorem is an example to illustrate this procedure.

Theorem 2.22. Let (E,E ) be a measurable space, and let σ(f) = f−1(E )

for a map f : Ω → E. Then ϕ : Ω → R̄ is σ(f)-measurable if and only if

there exists an (E,E )-measurable function g such that ϕ = g ◦ f . If ϕ is finite

(bounded), then one can take finite (bounded) g as well.

Proof. The sufficiency follows the fact that the composition of measurable

functions is measurable.

To prove the necessity, we choose L to be the class of all σ(f)-measurable

functions on Ω, and let L = {g ◦ f : g ∈ E }. Then L is an L -systems such

that the following items hold.

(1) 1Ω = 1E ◦ f ∈ L.

(2) ∀g1 ◦ f, g2 ◦ f ∈ L and a1, a2 ∈ R such that a1(g1 ◦ f) + a2(g2 ◦ f)

makes sense, we have

a1g1 ◦ f + a2g2 ◦ f = [(a1g1 + a2g2)1A] ◦ f,

where A = {x ∈ E : a1g1(x) + a2g2(x) exists}. Thus a1g1 ◦f+a2g2 ◦f ∈ L.

(3) If ϕn ∈ L,ϕn ↑ ϕ, then ∀n > 1,∃gn ∈ E , such that ϕn = gn ◦ f .

Let g = sup
n>1

gn. Then g ∈ E and ϕ = g ◦ f , so ϕ ∈ L.
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If C ∈ σ(f), then there exists B ∈ E such that C = f−1(B), so that

1C = 1B ◦ f . Thus, L contains indicator functions of all subsets of σ(f).

By Theorem 2.21, L includes L . This proves the first assertion.

If ϕ is finite (bounded), and ϕ = g ◦ f , then we can replace g by

g1{|g|6||ϕ||∞}(g1{|g|<∞}), so that the second assertion holds true. �

Corollary 2.23. Let f be an n-dimensional real function on Ω. Then ϕ is

f−1(B̄n)-measurable if and only if there exists a measurable function g on

(R̄n, B̄n) such that ϕ = g ◦ f .

Theorem 2.24. Let L be the total of real functions on R̄n and L be an L -

system on R̄n containing all bounded continuous functions. Then L contains

all Borel measurable real functions.

Proof. Let S = {A : A is open interval in R̄n}. Then S is a π-system and

σ(S ) = R̄n. For A ∈ S , set d(x,Ac) = inf {|x− y| : y 6∈ A}. ∀m > 1, let

fm(x) =


0, x 6∈ A,
1, x ∈ A, d(x,Ac) > 1

m ,

md(x,Ac), x ∈ A, d(x,Ac) 6 1
m .

Then fm is continuous and fm ↑ 1A, so 1A ∈ L. Now the assertion follows

from Theorem 2.21. �

2 Distribution Function and Law

For a real function F on Rn and a, b ∈ Rn with a 6 b, the difference ∆b,aF

of F on interval [a, b) is defined by ∆b,aF := F (b) − F (a) when n = 1,

and ∆b,aF := ∆b1,a1∆b2,a2 · · ·∆bn,an when n > 2 and a = (a1, · · · , an), b =

(b1, · · · , bn), where ∆bi,ai(1 6 i 6 n) is difference in the i-th component.

We have the following characterization on the distribution function of

a random variable.

Theorem 2.25. Let F be an n-dimensional real function. It is the distribution

function of an n-dimensional random variable if and only if the following four

items hold:
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(a) F is increasing and 4b,aF > 0 for a 6 b,

(b) F is left-continuous,

(c) F (x)→ 0 if ∃1 6 i 6 n such that xi → −∞,

(d) F (∞,∞, · · · ,∞) := lim
n→∞

F (n, · · · , n) = 1.

The necessity is obvious. So, for a function F satisfying the above (a)–

(d), we only need to construct an n-dimensional random variable ξ on a

probability space (Ω,A ,P) such that F is its distribution function. In the

following, we prove a more general result for F not necessarily having prop-

erties (c) and (d). For this, we introduce a general notion of distribution

functions.

Definition 2.26. A left-continuous finite real function F on Rn is called a

distribution function, if it is has non-negative differences, i.e. ∆b,aF > 0 for

any a, b ∈ Rn with a 6 b. In particular, F is called a probability distribution

function, if it satisfies (a)-(d) in Theorem 2.25.

Theorem 2.27. Let F be a distribution function on Rn. Then there exists

a unique measure µF on Bn such that µF ([a, b)) = ∆b,aF, a 6 b. The

completion of µF , denoted again by µF , is called the Lebesgue-Stieltjes (L-S)

measure generated by F .

Proof. Write [a, b) =
n∏
k=1

[ak, bk) for a = (a1, · · · , an) 6 b = (b1, · · · , bn),

where [ak, bk) is understood as (−∞, bk) when ak = −∞. Let

C = {[a, b) : ak 6 bk, ak ∈ [−∞,+∞), bk ∈ (−∞,+∞], 1 6 k 6 n} .

It is clear that C is a semi-algebra in Rn and σ(C ) = Bn.

Define a function on C by µF ([a, b)) = ∆b,aF, a 6 b. When a component

of b or a is ±∞, µF ([a, b)) is understood as the limit when this component

tends to ±∞, respectively. It is easy to check µF is finitely additive. Since

µF takes finite values in finite intervals, it is σ-finite. To prove that µF is

σ-additive, let A ∈ C , {Ak}k>1 ⊂ C mutually disjoint and
∞∑
k=1

Ak = A. It

suffices to verify that
∞∑
k=1

µF (Ak) = µF (A).
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Let µF be uniquely extended to a finitely additive measure on F (C ),

which is denoted again by µF . Then

n∑
k=1

µF (Ak) = µF

(
n∑
k=1

Ak

)
6 µF (A).

Letting n→∞ we obtain
∞∑
k=1

µF (Ak) = µF

( ∞∑
k=1

Ak

)
6 µF (A).

It remains to prove that
∞∑
k=1

µF (Ak) > µF (A). By an approximation

argument, we may assume that A is a finite interval; i.e. by first using

A(N) = A ∩ [−N,N)n and A
(N)
k = Ak ∩ [−N,N)n replacing A and Ak

respectively for N ∈ N, then letting N ↑ ∞.

Now, let A = [a, b) and Ak = [a(k), b(k)) with a, b, a(k), b(k) ∈ Rn such

that a 6 b, a(k) 6 b(k)(k > 1) and
∞∑
k=1

Ak = A. By the left-continuity of F ,

∀ε > 0, ∃δ > 0, such that

µF (A)− ε < µF ([a, b− ~δ)),

where ~δ = (δ, · · · , δ). Moreover, for each k > 1, there exists δ(k) > 0 such

that

µF ([a(k) − ~δ(k), b(k))) 6 µF (Ak) +
ε

2k
.

Since

[a, b− ~δ] ⊂ [a, b) =
∞⋃
k=1

[a(k), b(k)) ⊂
∞⋃
k=1

(a(k) − ~δ(k), b(k)),

by the finite cover theorem we find a natural number N > 1 such that

[a, b− ~δ] ⊂
N⋃
k=1

(a(k) − ~δ(k), b(k)).

Thus

µF ([a, b)) 6 µF ([a, b− ~δ)) + ε 6 ε+

N∑
k=1

µF ((a(k) − ~δ(k), b(k)))

6 2ε+

∞∑
k=1

µF (Ak).
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Letting ε ↓ 0 we obtain
∞∑
k=1

µF (Ak) > µF (A).

So far, we have proved that µF is a σ-finite measure on the semi-algebra

C . The the proof is finished by the measure extension theorem (Theorem

1.42). �

It is clear that the L-S measure induced by a distribution function is

finite on compact sets. Such a measure is called Radon measure. Indeed,

the inverse of Theorem 2.27 also holds, i.e. a Radom measure must be the

L-S measure induced by a distribution function, see exercise 6 in the end

of this chapter.

Proof of Theorem 2.25. Let µF be the induced measure of F on Bn. By

(c) and (d), µF is a probability measure. On probability space (Ω,A ,P) =

(Rn,Bn, µF ), define the random variable ξ(x) := x. Then ξ is an n-

dimensional random variable such that P(ξ < x) := µF ((−∞, x)) = F (x).

�

Example 2.28. Let F (x1, · · · , xn) = x1x2 · · ·xn for (x1, · · · , xn) ∈ Rn.

Then F is a distribution function on Rn and µF is the Lebesgue measure on

Rn.

Definition 2.29. Let ξ be an n-dimensional random variable. The probability

measure

(P ◦ ξ−1)(A) := P(ξ ∈ A), A ∈ Bn

is called the distribution (or law, or distribution law) of ξ.

3 Independent Random Variables

Let T be a non-empty set. We write S b T if S is a non-empty finite subset

of T .

Definition 2.30. Let
{
ξ(t) = (ξt,1, · · · , ξt,mt) : t ∈ T

}
be a family of random

variables on (Ω,A ,P). We call
{
ξ(t) : t ∈ T

}
independent, if for any l ∈ N,
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{t1, · · · , tl} ⊂ T and x(ti) ∈ Rmti , i = 1, · · · , l, there holds

P(ξ(t1) < x(t1), · · · , ξ(tl) < x(tl)) =
l∏

i=1

P
(
ξ(ti) < x(tI)

)
.

The following properties are obvious.

Property 2.31.

(1) {ξ(t) : t ∈ T} are independent if and only if {ξ(t) : t ∈ T ′} are

independent for ∀T ′ b T.
(2) Let

⋃
r∈I

Tr = T and Tr mutually disjoint with |Tr| < ∞. Set ξ̄(r) =

(ξ(t) : t ∈ Tr). If {ξ(t) : t ∈ T} are independent, then {ξ̄(r) : r ∈ I} are

independent as well.

Because of Proposition 2.31, we only need to study the independence

of finite many random variables.

Theorem 2.32. Random variables {ξ(k)}16k6n are independent if and only

if ∀B(mk) ∈ Bmk ,

P

(
n⋂
k=1

{ξ(k) ∈ B(mk)}

)
=

n∏
k=1

P
(
ξ(k) ∈ B(mk)

)
.

Proof. The sufficiency is obvious. By induction, we only need prove the

necessity for n = 2. Indeed, by Proposition 2.31-(2) and the necessity for

n = 2, we obtain that for n = k + 1

P

(
k+1⋂
i=1

{
ξ(i) ∈ B(mi)

})
= P

(
k⋂
i=1

{
ξ(i) ∈ B(mi)

})
P
(
ξ(k+1) ∈ B(mk+1)

)
.

This implies the desired assertion for n = k + 1 by using that for n = k.

Now, let n = 2. We prove the necessity by using the monotone class

theorem in two steps.

(1) Let Sk = {(−∞, bk) : bk ∈ Rmk} for k = 1, 2. Then Sk is a

π-system of Rmk and σ(Sk) = Bmk . Given (−∞, b) ∈ Bm2 , let

C1 =
{
A1 ∈ Bm1 : P

(
ξ(1) ∈ A1, ξ

(2) < b
)

= P
(
ξ(1) ∈ A1

)
P
(
ξ(2) < b

)}
.
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Then C1 ⊃ S1. Now we prove C1 is a λ-sytem.

Obvious Ω ∈ C1. If A(n) ∈ C1 and A(n) ↑ A1, then {ξ(1) ∈ A(n)} ↑
{ξ(1) ∈ A1}. By the continuity of probability, we have A1 ∈ C1. Moreover,

if A1 ⊃ A′1 and A1, A
′
1 ∈ C1, then

P
(
ξ(1) ∈ A1 −A′1, ξ(2) < b

)
= P

(
ξ(1) ∈ A1, ξ

(2) < b
)
− P

(
ξ(1) ∈ A′1, ξ(2) < b

)
= P

(
ξ(1) ∈ A1

)
P
(
ξ(2) < b

)
− P

(
ξ(1) ∈ A′1

)
P
(
ξ(2) < b

)
= P

(
ξ(1) ∈ A1 −A′1

)
P
(
ξ(2) < b

)
.

Thus A1−A′1 ∈ C1, so C1 is a λ-system. It follows form the monotone class

theorem that C1 ⊃ Bm1 .

(2) ∀A1 ∈ Bm1 , let

C2 =
{
A2 ∈ Bm2 : P

(
ξ(1) ∈ A1, ξ

(2) ∈ A2

)
=P

(
ξ(1) ∈ A1

)
P
(
ξ(2) ∈ A2

)}
.

Then C2 ⊃ S2 by (1). Similar proof shows that C2 is a λ-system. Therefore,

the proof is competed by the monotone class theorem. �

As a consequence of Theorem 2.33, the following result says that the

functions of independent random variables are also independent.

Corollary 2.33. Assume
{
ξ(k) : 1 6 k 6 n

}
are independent. Let fk : Rmk →

Rm′k be finite Borel measurable functions. Then
{
fk
(
ξ(k)
)

: 1 6 k 6 n
}

are

independent.

Proof. ∀Ak ∈ B(m′k), we have f−1
k (Ak) ∈ B(mk). Then

P

(
n⋂
k=1

{fk
(
ξ(k)
)
∈ Ak}

)
= P

(
n⋂
k=1

{ξ(k) ∈ f−1
k (Ak)}

)

=
n∏
k=1

P
(
ξ(k) ∈ f−1

k (Ak)
)

=
n∏
k=1

P
(
fk

(
ξ(k)
)
∈ Ak

)
.

�
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Corollary 2.34.
{
ξ(k) : 1 6 k 6 n

}
are independent if and only if the dis-

tribution functions of (ξ(1), · · · , ξ(n)) can be expressed as

F (x(1), · · · , x(n)) =
n∏
k=1

Fk

(
x(k)

)
,

for some real function Fk on Rmk , where mk is the dimension of ξ(k), 1 6 k 6

n.

Proof. The necessity is obvious. To prove the sufficiency, we may assume

that {Fk}16k6n are nonnegative, otherwise simply replace Fk by |Fk|. Since

P
(
ξ(k) < x(k)

)
= P

(
ξ(k) < x(k), ξ(i) <∞, i 6= k

)
= F

(
∞, · · · , x(k),∞, · · · ,∞

)
= Fk

(
x(k)

)∏
i 6=k

Fi(∞),

by letting x(k) →∞ we derive
n∏
i=1

Fi(∞) = 1 and hence distribution of ξ(k)

is given by Fk
(
x(k)

)
/Fk(∞). Thus,

F
(
x(1), · · · , x(n)

)
=

n∏
k=1

Fk

(
x(k)

)
=

n∏
k=1

Fk
(
x(k)

)
Fk(∞)

,

which implies the independence of {ξ(1), · · · , ξ(n)} by definition. �

4 Convergence of Measurable Functions

Let (Ω,A , µ) be a complete measure space. If some relationship holds

outsides a µ-null set, we call it holds µ-almost everywhere, and denote

by µ-a.e. or simply a.e. if there is no confusion. A null set is called an

exception set. In this section, all measurable functions are a.e. finite.

§ 2.4.1 Almost everywhere convergence

Definition 2.35. Let {fn} be a sequence of measurable functions and f be

a measurable function. We say that {fn} converges almost everywhere to f ,
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and denote by fn
a.e.−−→ f, if there exists N ∈ A with µ(N) = 0, such that

fn(ω)→ f(ω), n→∞ for every ω 6∈ N .

The sequence {fn} is called mutually convergent almost everywhere, de-

noted by fn − fm
a.e.−−→ 0, if ∀ω 6∈ N , fn(ω)− fm(ω)→ 0 when n,m→∞.

Obviously, fn−fm
a.e.−−→ 0 if and only if fn+m−fn

a.e.−−→ 0 (n→∞) holds

uniformly in m > 1.

Property 2.36.

(1) If fn
a.e.−−→ f , then any sub-sequence {fnk} satisfies fnk

a.e.−−→ f.

(2) If fn
a.e.−−→ f and fn

a.e.−−→ f ′, then f = f ′ a.e.

(3) If fn
a.e.−−→ f and gn = fn a.e., f = g a.e., then gn

a.e.−−→ g.

(4) If f
(k)
n

a.e.−−→ f (k), k = 1, · · · ,m, and g is a continuous function on

R̄m, then

g(f (1)
n , · · · , f (m)

n )
a.e.−−→ g(f (1), · · · , f (m)).

Theorem 2.37. Let {fn} be a sequence of finite measurable functions. Then

there exists a finite measurable function f such that fn
a.e.−−→ f if and only if

{fn} mutually converges almost everywhere.

Proof. If fn
a.e.−−→ f , then exists a null set N such that fn(ω)→ f(ω), ω 6∈ N ,

so ∀ω 6∈ N, {fn(ω)}n>1 is a Cauchy sequence, that is fn(ω) − fm(ω) → 0

when n,m→∞. Thus {fn}n>1mutually converges almost everywhere.

Conversely, if {fn}n>1mutually converges almost everywhere, then there

exists a null set N such that ∀ω 6∈ N , {fn(ω)}n>1 is a Cauchy sequence,

so it has a limit, denoted by f(ω). When ω ∈ N , set f(ω) = 0. Since

N is measurable due to the completion of measure space, and since the

limit function of measurable functions is measurable, we conclude that f is

measurable and fn
a.e.−−→ f . �

The next theorem follows from Definition 2.35 immediately.

Theorem 2.38. Let f, fn, n > 1 ba finite measurable functions.
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(1) fn
a.e.−−→ f if and only if ∀ε > 0, µ

( ∞⋂
n=1

∞⋃
m=n
{|fm − f | > ε}

)
= 0.

In particular, when µ is finite, fn
a.e.−−→ f if and only if

∀ε > 0, µ

( ∞⋃
m=n

{|fm − f | > ε}

)
→ 0 (n→∞).

(2) fn−fm
a.e.−−→ 0 if and only if ∀ε > 0, µ

( ∞⋂
n=1

∞⋃
v=1
{|fn+v − fn| > ε}

)
=

0.

In particular, when µ is finite, fn − fm
a.e.−−→ 0 if and only if

∀ε > 0, µ

( ∞⋃
v=1

{|fn+v − fn| > ε}

)
→ 0 (n→∞).

§ 2.4.2 Convergence in measure

Definition 2.39. A sequence {fn}n>1 of finite measurable functions is said

to converges in measure µ to a measurable function f , denoted by fn
µ−→ f, if

∀ε > 0, µ(|fn − f | > ε)→ 0(n→∞).

We call {fn}n>1 mutually convergent in measure µ, and denote fn+v −
fn

µ−→ 0, if ∀ε > 0,

sup
v>1

µ(|fn+v − fn| > ε)→ 0, n→∞,

Clearly, if fn
µ−→ f , then f is finite a.e. The following properties are

obvious.

Property 2.40.

(1) If fn
µ−→ f, then any subsequence fnk

µ−→ f .

(2) If fn
µ−→ f and fn

µ−→ f ′, then f = f ′ a.e.

(3) If fn
µ−→ f and gn = fn a.e., g = f a.e., then gn

µ−→ g.

Theorem 2.41. Let f, fn : Ω→ Rm be measurable and let D ⊃ f(Ω), D ⊃
∞⋃
n=1

fn(Ω). If g : D → R is uniformly continuous and fn
µ−→ f , then g(fn)

µ−→

g(f).
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Proof. ∀ε > 0,∃δ > 0, we have |g(x) − g(y)| < ε when x, y ∈ D and

|x− y| < δ. Then {|g(fn)− g(f)| > ε} ⊂ {|fn − f | > δ} . �

Corollary 2.42. If fn
µ−→ f and gn

µ−→ g, then fn + gn
µ−→ f + g.

Theorem 2.43. In Theorem 2.41, if µ is a finite measure on (Ω,A ) and D

is an open set, then g can be replaced by a continuous function.

Proof. Let

DN =

{
x ∈ Rn : |x| 6 N, d(x,Dc) >

1

N

}
, d(x,∅) =∞.

ThenDN is a bounded closed set (as d(·, Dc) is continuous), and d(DN , D
c
N+1) >

1
N(N+1) . When N ↑ ∞, DN ↑ D, so that µ(f−1(D\DN )) ↓ 0. Since g is

uniformly continuous on DN+1, ∀ε ∈ (0, 1), there exists δN > 0 such that

whenever ∀x, y ∈ DN+1, |x− y| < δN , |g(x)− g(y)| < ε. Thus

An : = {|g(fn)− g(f)| > ε} ⊂ (An ∩ {fn, f ∈ DN+1})

∪ {f /∈ DN} ∪
{
|fn − f | >

1

N(N + 1)

}
⊂ {|fn − f | > cN} ∪ {f /∈ DN} ,

where cN := min{δN , 1
N(N+1)}. But lim

n→∞
µ(An) 6 0+µ

(
f−1(D\DN )

)
. Let

N ↑ ∞ to derive

lim
n→∞

µ(|g(fn)− g(f)| > ε) = 0.

�

Finally, we illustrate the relationship between the a.e. convergence and

the convergence in measure.

Theorem 2.44. Let {fn}n>1 be a sequence of finite measurable functions.

(1) If fn
µ−→ f, then there exists a subsequence {fnk} such that fnk

a.e.−−→ f.

(2) If fn+v − fn
µ−→ 0, then there exist a subsequence {fnk} and finite

measurable function f such that fnk
a.e.−−→ f and fn

µ−→ f.

(3) If µ is a finite measure, then fn
a.e.−−→ f implies fn

µ−→ f.
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Proof. (1) ∀k > 1,∃nk ↑ ∞ such that µ
(
|fn − f | > 2−k

)
< 2−k, k > 1. Let

f ′k = fnk . Then µ
(
|f ′k − f | > 2−k

)
< 2−k, k > 1. Thus ∀ε > 0 and k′ > 1

with 2−k
′
6 ε, we have

µ

( ∞⋂
k=1

∞⋃
v=1

{|f ′k+v − f | > ε}

)
6
∞∑
v=1

µ
(
|f ′k′+v − f | > ε

)
6
∞∑
v=1

2−(k′+v) = 2−k
′
.

Let k′ ↑ ∞ to derive that fnk
a.e.−−→ f by Theorem 2.38–(1).

(2) As in (1), we take nk ↑ ∞ such that

sup
v>1

µ
(
|fnk+v − fnk | > 2−k

)
< 2−k, k > 1.

For ∀ε > 0 and k′ > 1 with 21−k′ 6 ε, we have
∑∞

l=k′ 2
−l 6 ε, so that

∪∞v=1{|f ′k′+v − f ′k′ | > ε} ⊂ ∪∞l=k′{|f ′l+1 − f ′l | > 2−l}. Thus,

µ

( ∞⋂
k=1

∞⋃
v=1

{|f ′k+v − f ′k| > ε}

)
6
∞∑
l=k′

µ
(
|f ′l+1 − f ′l | > 2−l

)
6
∞∑
l=k′

2−l = 2−k
′+1.

By letting k′ ↑ ∞, it follows from Theorem 2.38–(2) that fnk converges

mutually almost surely, so that it converges almost surely to some finite

measurable function f .

Next we prove f ′k
µ−→ f. By f ′k

a.e.−−→ f , there exists a null set N such that

f ′k(ω)→ f(ω),∀ω 6∈ N . Then

{|f ′k − f | > ε} ⊂ N
⋃( ∞⋃

i=1

{|f ′k+i − f ′k+i−1| > 2−iε}

)
,

which implies that when ε > 21−k,

µ(|fk − f | > 2ε) 6 µ
(
|f ′k − f | > ε) + µ(|fnk − fk| > ε

)
6
∞∑
i=1

µ
(
|f ′k+i − f ′k+i−1| > 2−(k+i−1)

)
+ µ(|fnk − fk| > ε)

6 21−k + µ(|fnk − fk| > ε).
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Hence fn
µ−→ f.

(3) Let µ be a finite meaaure and fn
a.e.−−→ f . Then

µ(|fn − f | > ε) 6 µ

( ∞⋃
m=n

{|fm − f | > ε}

)
.

Combining this with fn
a.e.−−→ f and the upper continuity of measure, we

obtain

lim
n→∞

µ(|fn − f | > ε) 6 µ

( ∞⋂
n=1

∞⋃
m=n

{|fm − f | > ε}

)
= 0.

�

Theorem 2.45. There exists a finite measurable function f such that fn
µ−→

f if and only if fn+v − fn
µ−→ 0.

Proof. The necessity follows from the triangle inequality. Below is a proof

of the sufficiency.

Let fn+v − fn
µ−→ 0. By Theorem 2.44-(2), there exists a subsequence

such that fnk
µ−→ f for some measurable function f . Then

lim
k→∞

µ(|fk − f | > ε)

6 lim
k→∞

µ
(
|fk − fnk | >

ε

2

)
+ lim
k→∞

µ
(
|fnk − f | >

ε

2

)
= 0.

�

§ 2.4.3 Convergence in distribution

Definition 2.46. Let {ξn}n>1 be a sequence of random variables of same

dimension with the corresponding distribution functions {Fn}. Let ξ have

distribution F . We call ξn convergent in distribution (or law) to ξ, and denote

Fn ⇒ F or ξn
d−→ ξ, if Fn(x0)→ F (x0) holds for every continuous point x0 of

F .

Theorem 2.47. If ξn
P−→ ξ, then ξn

d−→ ξ.
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Proof. By |P(A)− P(B)| 6 P(A4B), where A4B = (A−B) ∪ (B −A) is

symmetric difference of A and B, for any unit vector e ∈ Rn, we have

|Fn(x)− F (x)| = |P(ξn < x)− P(ξ < x)|

= P(ξn < x, ξ 6∈ (−∞, x+ εe)) + P(ξ ∈ (−∞, x+ εe) \ (−∞, x))

+ P(ξn 6∈ (−∞, x), ξ < x− εe) + P(ξ ∈ (−∞, x) \ (−∞, x− εe))

6 P(|ξ − ξn| > ε) + P(ξ ∈ (−∞, x+ εe) \ (−∞, x− εe)).

If x is a continuous point of F , then we derive Fn(x) → F (x) by letting

first n ↑ ∞ then ε ↓ 0. �

Corollary 2.48. Let a be a constant. Then ξn
P−→ a if and only if ξn

d−→ a.

Proof. We need only prove the sufficiency. For simpicity, we only consider

the one dimensional case. Since the distribution for ransom variable ξ ≡ a
is F (x) = 1(a,∞), both a − ε and a + ε are continuous points of F for any

ε > 0. By ξn
d−→ a, it follows for any ε > 0,

P(|ξn − a| > ε) = P(ξn < a− ε) + P(ξn > a+ ε)→ 0(n→∞).

�

Similarly, it is easy to check the following two assertions.

Theorem 2.49. If ξn − ξ′n
P−→ 0 and ξ′n

d−→ ξ , then ξn
d−→ ξ.

Theorem 2.50. If ξn
d→ ξ and ηn

d→ a, where a is a constant, then ξn+ηn
d→

ξ + a.
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5 Exercises

1. Prove Property 2.3.

2. Prove Corollary 2.8.

3. Prove Corollary 2.9.

4. Prove Theorem 2.13.

5. Is a distribution function increasing? Prove or disprove with a coun-

terexample.

6. Prove that a Radon measure must be the L-S measure generated by

some distribution function.

7. Prove that if F (x) = P(ξ < x) is continuous, then η = F (ξ) has the

uniform distribution on [0, 1].

8. Prove Property 2.31.

9. Let {ξn}n>1 be independent with identical distribution µ. Given

A ∈ B with µ(A) > 0, define τ = inf {k : ξk ∈ A}. Prove that the

distribution of ξτ is µ(· ∩A)/µ(A).

10. Let ξ and ξ̃ be independent and identically distributed. Let η = ξ− ξ̃
(which is called the symmetrization of ξ). Prove

P(|η| > t) 6 2P(|ξ| > t/2).

11. Let (Ω,A ,P) be a probability space. Subclasses C1, · · · ,Cn of A are

called independent, if

P(
n⋃
i=1

Ai) =
n∏
i=1

P(Ai), Ai ∈ Ci, 1 6 i 6 n.
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Prove that if C1, · · · ,Cn are independent π-systems, then σ(C1), · · · , σ(Cn)

are independent.

12. Prove the following 0-1 laws.

(a) Let {An}n>1 be a sequence of independent events and T =
∞⋂
n=1

σ {An, An+1, · · · }. Then P (A) = 0 or 1 for any A ∈ T .

(b) Let {ξn}n>1 be a sequence of independent random variables, and

let

T =
∞⋂
n=1

σ {ξn, ξn+1, · · · } ,

where σ {ξn, ξn+1, · · · } is the smallest σ-algebra in Ω such that

{ξk : k > n} are measurable. Then P (A) = 0 or 1 for any

A ∈ T .

13. Prove Property 2.36.

14. Prove Theorem 2.38.

15. Let ξ1, ξ2, · · · ∈ {1, 2, · · · , r} be independent with identical distribu-

tion

P(ξi = k) = p(k) > 0, 1 6 k 6 r.

Set

πn(ω) = p(ξ1(ω)) · · · p(ξn(ω)).

Prove

−n−1 log πn
P−→ H := −

r∑
k=1

p(k) log p(k).

Here H is called Shannon’s information entropy.

16. Let ξn = 1An . Then ξn
P−→ 0 if and only if P(An)→ 0.

17. Let C be a class of sets in Ω, and let f be a function on Ω. If f is

σ(C )-measurable, then there exists a countable subclass Cf of C such

that f ∈ Cf .
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18. If the sequence of random variables {ξn}n>1 is increasing and ξn
P−→ ξ,

then ξn
a.e.−−→ ξ.

19. (a) If ξn
a.e.−−→ ξ, then

Sn :=
1

n

n∑
k=1

ξk
a.e.−−→ ξ.

(b) When ξn
P−→ ξ, does it hold that Sn

P−→ ξ?

20. (Ω,A ,P) is called a pure atom probability space if Ω has a partition

{An}n>1 such that

A = σ({An : 1 6 n <∞}),

each An(6= ∅) is called an atom. Prove that for a sequence of ran-

dom variables on a pure atom probability space, the convergence in

probability is equivalent to the a.s. convergence.

21. (Egorov’s theorem) Let (Ω,A , µ) be a finite measure space, and let

fn, f are fine measurable functions such that fn
a.e.−−→ f . Then ∀ε >

0,∃N ∈ A with µ(N) 6 ε such that fn uniformly converge to f on

N c.

22. For any sequence of random variables {ξn}, there exists a sequence of

positive numbers {an} such that anξn
P−→ 0.

23. Exemplify that Theorem 2.41 may fail when g is only a continuous

function.

24. Prove Theorems 2.49 and 2.50.

25. Let Fn and F be distribution functions of ξn and ξ, respectively. If

ξn
d−→ ξ, then for every continuous point x of F , as n→∞,

P(ξn 6 x)→ P(ξ 6 x),

P(ξn > x)→ P(ξ > x).



Chapter 3

Integral and Expectation

In the elementary probability theory, the expectation (also called math-

ematical expectation) has been defined for two typical types of random

variables, i.e. by using the weighted sum with respect to the distribution

sequence for a discrete random variable, and the Lebesgue integral of the

product of the identity function and the distribution density function for a

continuous random variable. In this chapter, we aim to define and study the

expectation for general random variables on an abstract probability space

(Ω,A ,P). More generally, we define the integral of a measurable function

on a complete measure space (Ω,A , µ), and when µ = P is a probabil-

ity measure, a measurable function reduces to a random variable, and the

integral is called mathematical expectation, or expectation for simplicity.

Intuitively, the integral of a measurable function f with respect to µ

can be regraded as the measurement result of f under µ, so the integral

of a measurable indicator function 1A is naturally defined as µ(A). Com-

bining this with the the construction of a measurable functions based on

simple functions (Theorem 2.12), and equipping the integral with the linear

property, we may define the integral for general measurable functions.

59
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1 Definition and Properties for Integral

§ 3.1.1 Definition of integral

Let (Ω,A , µ) be a complete measure space and f be a real measurable

function on Ω. As explained above, for any A ∈ A , we call µ(A) the

integral of 1A with respect to µ. By equipping with the linear property,

we define integral for nonnegative simple functions as follows. In case an

infinite function is concerned, we use the convention 0×∞ = 0.

Definition 3.1. Let f be a nonnegative simple function, i.e.

f =
n∑
k=1

ak1Ak ,

where n ∈ N, {ak} ⊂ [0,∞], and {Ak} ⊂ A is a partition of Ω. We call∫
Ω
f dµ :=

n∑
k=1

akµ(Ak)

the integral of f with respect to µ. For any A ∈ A , we call
∫
A f dµ =∫

Ω f1A dµ the integral of f on A with respect to µ.

Clearly, the value of
∫

Ω f dµ is independent of the expression of the

simple function f , and hence is well-defined. As the integral is the mea-

surement result of f under µ, we also denote µ(f) =
∫

Ω f dµ. The following

properties are obvious.

Property 3.2. Let f and g be nonnegative simple functions.

(1) (Monotonicity) f 6 g ⇒ µ(f) 6 µ(g).

(2) (Linearity) µ(f + g) = µ(f) + µ(g) and µ(cf) = cµ(f), ∀c > 0.

(3) Let µf (A) =
∫
A f dµ. Then µf is a measure on A , and∫

Ω
g d(µ ◦ f−1) =

∫
Ω
fg dµ.

By the monotonicity and the fact that a nonnegative measurable func-

tion can be approximated from below by non-negative simple functions, we

define the integrals of nonnegative measurable functions as follows.
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Definition 3.3. Let f be a nonnegative measurable function. Then

µ(f) =

∫
Ω
f dµ := sup

{∫
Ω
g dµ : 0 6 g 6 f, g is a simple function

}
is called the integral of f with respect to µ. ∀A ∈ A ,∫

A
f dµ := µ(1Af)

is called the integral of f on A with respect to µ.

By the definition, the monotonicity is kept by the integral of nonnega-

tive measurable functions.

Property 3.4. If 0 6 f 6 g are measurable, then µ(f) 6 µ(g).

The following result is fundamental in the study of limit theorem for

integrals.

Theorem 3.5 (Monotone convergence theorem). Let {fn}n>1 be nonneg-

ative measurable functions on Ω. If fn ↑ f as n ↑ ∞, then

lim
n→∞

µ(fn) = µ(f).

Proof. By the monotonicity, µ(fn) is increasing, hence its limit exists, and

fn 6 f implies

lim
n→∞

µ(fn) 6 µ(f).

We need only to prove the converse inequality, i.e. For any simple function

g =
m∑
j=1

aj1Aj +∞1{f=∞}

such that 0 6 g 6 f , we have

µ(g) 6 lim
n→∞

µ(fn).

To see this, for any

ε ∈ (0, min
16j6m

aj)
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and N > 1, let

gn :=
m∑
j=1

(aj − ε)1Aj∩{|fn−f |6ε} +N1{f=∞,|fn|>N}, n > 1.

It is clear that fn > gn. By fn → f and the monotonicity of integral, we

obtain

lim
n→∞

µ(fn) > lim
n→∞

µ(gn)

=
m∑
j=1

(aj − ε) lim
n→∞

µ(Aj ∩ {|fn − f | 6 ε}) +Nµ({f =∞, |fn| > N})

=
m∑
j=1

(aj − ε)µ(Aj) +Nµ(f =∞).

Since ε and N are arbitrary, this implies the desired inequality

lim
n→∞

µ(fn) > µ(g).

Hence, the proof is finished. �

Finally, we define the integral of a measurable function f by the linearity

and the formula f = f+−f−, where f+ and f− are the positive and negative

parts of f , respectively.

Definition 3.6.

(1) Let f be a measurable function on Ω. If either µ(f+) or µ(f−) is

finite, then

µ(f) =

∫
Ω
f dµ := µ(f+)− µ(f−)

is called the integral of f with respect to µ. For any A ∈ A such that

the integral µ(1Af) exists,∫
A
f dµ := µ(1Af)

is called the integral of f on A with respect to µ. When µ(f) exists

and is finite, f is called integrable (with respect to µ). To emphasize

the dependence of f on x, we also denote

µ(f) =

∫
Ω
f(x)µ(dx), µ(1Af) =

∫
A
f(x)µ( dx).
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(2) Let f = f1 +i f2 be a complex measurable function. If both µ(f1) and

µ(f2) exist, we say that f has integral, which is defined as

µ(f) =

∫
Ω
f dµ :=

∫
Ω
f1 dµ+ i

∫
Ω
f2 dµ.

we call f integrable if both f1 and f2 are integrable.

Proposition 3.7. If f
a.e.
= g and their integrals exist, then µ(f) = µ(g).

§ 3.1.2 Properties of integral

It is easy to see from Property 3.2 and Definition 3.6 that the integral has

the following properties.

Theorem 3.8. Let f and g be real measurable functions.

(1) Linear property

(a) If the sum µ(f) + µ(g) exists, then integral of f + g exists and

µ(f + g) = µ(f) + µ(g).

(b) If µ(f) exists and A,B ∈ A are disjoint, then∫
A+B

f dµ =

∫
A
f dµ+

∫
B
f dµ.

(c) If c ∈ R and µ(f) exists, then µ(cf) exists, and µ(cf) = cµ(f).

(2) Monotonicity

(a) If µ(f) and µ(g) exist and f > g, a.e. then
∫
A f dµ >

∫
A g dµ,

A ∈ A .

(b) If µ(f) exists, then |µ(f)| 6 µ(|f |).

(c) When f > 0, µ(f) = 0 if and only if f = 0 a.e.

(d) Let N be a µ-null set. Then
∫
N f dµ = 0.

(3) Integrability

(a) f is integrable if and only if µ(|f |) <∞; when f is integrable, f

is finite a.e.
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(b) If |f | 6 g and g is integrable, so is f .

(c) If f, g are integrable, so is f + g.

(d) If µ(fg) exists, then
(
µ(fg)

)2
6 µ(f2)µ(g2).

Corollary 3.9 (Markov’s inequality). If f is measurable and nonnegative

on A ∈ A , then ∀c > 0,

µ({f > c} ∩A) 6
1

c

∫
A
f dµ.

Proof. Let g = c1A∩{f>c}. Then g 6 1Af and
∫

Ω g dµ 6
∫
A f dµ, so

cµ({f > c} ∩A) = µ(g) 6
∫
A
f dµ.

�

2 Convergence Theorems

As application of the monotone convergence theorem, we have the following

convergence theorems.

Theorem 3.10 (Fatou-Lebesgue theorem, or Fatou’s lemma). Let g and

h be real integrable functions, and {fn}n>1 be a sequence of real measurable

functions.

(1) If ∀n > 1, g 6 fn, then∫
Ω

lim
n→∞

fn dµ 6 lim
n→∞

∫
Ω
fn dµ.

(2) If ∀n > 1, fn 6 g, then

lim
n→∞

∫
Ω
fn dµ 6

∫
Ω

lim
n→∞

fn dµ.

(3) If g 6 fn ↑ f or ∀n > 1, g 6 fn 6 h a.e. and fn
a.e.→ f , then

lim
n→∞

∫
Ω
fn dµ =

∫
Ω
f dµ.



§2 Convergence Theorems 65

Proof. If g 6 fn, then g− > fn
−, so

∫
Ω fn

− dµ <∞, hence
∫

Ω fn dµ exists.

A similar argument shows that
∫

Ω fn dµ exists in (2) and (3).

(1) Let gn = inf
k>n

(fk − g). Then gn > 0 and

gn ↑ lim
n→∞

(fn − g) = lim
n→∞

fn − g.

By the monotone convergence theorem,∫
Ω

lim
n→∞

fn dµ−
∫

Ω
g dµ = lim

n→∞

∫
Ω

inf
k>n

(fk − g) dµ

6 lim
n→∞

∫
Ω

(fn − g) dµ = lim
n→∞

∫
Ω
fn dµ−

∫
Ω
g dµ.

(2) Replacing fn by −fn in the above proof, (2) follows from (1) im-

mediately.

(3) When g 6 fn ↑ f , 0 6 fn − g ↑ f − g, so the assertion follows by

the monotone convergence theorem. When g 6 fn 6 h a.e. and fn
a.e.→ f ,

let N be a null set such that g 6 fn 6 h and fn → f hold on N c. Then

g1Nc 6 fn1Nc 6 h1Nc . By Theorem 3.10-(1)(2), we have

lim
n→∞

µ(fn1Nc) = µ
(

lim
n→∞

fn1Nc

)
= µ(f1Nc).

Combining this with Theorem 3.8-(1)(a) and (2)(d), we finish the proof.

�

Theorem 3.11 (Dominated convergence theorem). Let g be an integrable

function and let {fn} be measurable functions such that |fn| 6 g a.e. for all

n > 1. If either fn
a.e.−−→ f or fn

µ−→ f, then
∫

Ω fn dµ→
∫

Ω f dµ.

Proof. By theorem 3.10–(3), we need only prove for fn
µ−→ f . By Theorem

3.8-(2)(b), it suffices to show that lim
n→∞

∫
Ω |fn − f |dµ = 0. If this does

not hold, then there exist nk ↑ ∞ and ε > 0 such that
∫

Ω |fnk − f |dµ >
ε, ∀k > 1. Since fnk

µ−→ f , there exists a subsequence fn′k
a.e.−−→ f , so that

by Theorem 3.10-(3) we derive

lim
n→∞

∫
Ω
|fn′k − f |dµ = 0,

which is a contradiction. �
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Corollary 3.12. Let {fn}n>1 be a sequence of measurable functions. If fn

is nonnegative or
∞∑
n=1

∫
Ω |fn| dµ <∞, then the integral of

∞∑
n=1

fn exists, and

∫
Ω

∞∑
n=1

fn dµ =
∞∑
n=1

∫
Ω
fn dµ.

Proof. Let gn =
n∑
k=1

fk. If fn is nonnegative, then gn ↑
∞∑
n=1

fn, so the

assertion follows from the monotone convergence theorem. Assume

∞∑
n=1

∫
Ω
|fn|dµ <∞.

Let

g′ =

∞∑
n=1

|fn|, g′n =

n∑
k=1

|fk|.

Then 0 6 g′n ↑ g′. It follows from the monotone convergence theorem

∞∑
n=1

∫
Ω
|fn|dµ = lim

n→∞

∫
Ω
g′n dµ =

∫
Ω
g′ dµ =

∫
Ω

∞∑
n=1

|fn| dµ,

so g′ is integrable and |gn| 6 g′. Since
∞∑
n=1

∫
Ω |fn| dµ < ∞ and g is a.e.

finite Hence gn
a.e.−→

∞∑
n=1

fn. Then the assertion follows from dominated

convergence theorem. �

Corollary 3.13. If µ(f) exists, for A ∈ A and {An}∞n=1 ⊂ A mutually

disjoint such that A =
∞∑
n=1

An, we have
∫
A f dµ =

∞∑
n=1

∫
An
f dµ.

Proof. As f±1A =
∞∑
n=1

f±1An , we have

∫
A
f± dµ =

∞∑
n=1

∫
An

f± dµ.

Since the integral of f exists, at least one of the previous series is finite, so

we can make subtraction term by term, which gives the assertion. �
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The following result provides the definition of product measures.

Corollary 3.14. Let (Ωi,Ai, µi), 1 6 i 6 n, be finite many σ-finite mea-

sure spaces. Then there exists a unique σ-finite measure µ on the product

measurable space (Ω1 × · · · × Ωn,A1 × · · · ×An) such that

µ(A1 × · · · ×An) = µ1(A1) · · ·µn(An), Ai ∈ Ai, 1 6 i 6 n. (3.2.1)

The measure µ is called the product measure of µi, 1 6 i 6 n, and is denoted

by µ1 × · · · × µn.

Proof. It is easy to see that

C :=
{
A1 × · · · ×An : Ai ∈ Ai, 1 6 i 6 n

}
is a semi-algebra in Ω1×· · ·×Ωn. By Theorem 1.42, it suffices to show that

µ defined by (3.2.1) is a σ-finite measure on C . Since each µi is σ-finite,

so is µ. It remains to prove the σ-additivity of µ. By induction, we only

prove for n = 2.

Let {A × B,Ai × Bi : i > 1} ⊂ C such that A × B =
∑∞

i=1Ai × Bi.
Then for any ω2 ∈ Ω2, we have

1A1B(ω2) = 1A×B(·, ω2) =
∞∑
i=1

1Ai1Bi(ω2).

By Corollary 3.12 for integrals with respect to µ1 we obtain µ1(A)1B =∑∞
i=1 µ1(Ai)1Bi . Applying Corollary 3.12 again for integrals with respect

to µ2 we finish the proof. �

Definition 3.15. Let f be a measurable function such that µ(f) exists. We

call µf (A) :=
∫
A f dµ(A ∈ A ) the indefinite integral of f .

It is clear that when µ(f−) < ∞, the indefinite integral µf is a signed

measure on A .

Proposition 3.16. Let (Ω,A , µ) be a measure space, and ρ > 0 be a

measurable function on (Ω,A ). If a measurable function f on (Ω,A ) f has

integral with respect to µρ, then µ(ρf) exists and µ(ρf) = µρ(f).
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Proof. By definition, the assertion is true for f being a simple function.

Combining this with the linearity of integral, Theorem 2.12-(4), and The-

orem 3.5, we derive the formula first for f being a simple function, then

a nonnegative measurable function, and finally a measurable function such

that µρ(f) exists. �

Corollary 3.17. If f is integrable, then
∫
An
f dµ→ 0 as µ(An)→ 0.

Proof. Assume
∫
An
f dµ9 0. Since∣∣∣∣ ∫

An

f dµ

∣∣∣∣ 6 ∫ |f |dµ <∞,
there exists nk ↑ ∞ such that

∫
Ank

f dµ→ ε 6= 0. Take a subsequence {n′k}

of {nk}, such that µ
(
An′k

)
6 1

2k
. Let Bk =

∞⋃
i=k

An′I . Then µ(Bk) 6
1

2k−1 ,

so Bk ↓ B =
∞⋂
k=1

Bk is a null set. It follows that 1An′
k

f 6 |1Bkf | → 0, a.e.

By the dominated convergence theorem, we have
∫
An′

k

f dµ → 0, which

contradicts that
∫
Ank

f dµ→ ε 6= 0 as nk →∞. �

As applications of the dominated or monotone convergence theorem, we

have the following results concerning the commutable calculations with the

integral.

Corollary 3.18 (Interchange of derivative and integral). Let T ⊂ R be an

open set. If ∀t ∈ T, ft is integrable and ∀ω ∈ Ω, ft(ω) is differential at t0, then
d
dtft(ω)|t0 is measurable. If there exists an integrable function g and ε > 0

such that ∣∣∣∣ft − ft0t− t0

∣∣∣∣ 6 g, for |t− t0| < ε,

then (
d

dt

∫
Ω
ft dµ

)
|t0 =

∫
Ω

dft
dt
|t0 dµ.

Corollary 3.19. Let {ft}t∈(a,b) be a family of real integrable functions and

dft
dt exists. If there exist an integrable function g such that

∣∣∣ dft
dt

∣∣∣ 6 g, then

there exists d
dt

∫
ft dµ =

∫
d
dtft dµ on (a, b).
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Proof. By applying the mean value theorem of differentiation, we have∣∣∣ft−ft0t−t0

∣∣∣ 6 g, t ∈ (a, b) for ∀t0 ∈ (a , b). The assertion follows from Corollary

3.18 immediately. �

Corollary 3.20 (Interchange of integrals).

(1) Let {ft}t∈(a,b) be a family of real integrable functions such that ∀ω ∈
Ω, ft(ω) is continuous in t, and there exists an integrable function g

such that |ft| 6 g for ∀t ∈ (a, b). Then∫ b

a

(∫
Ω
ft dµ

)
dt =

∫
Ω

(∫ b

a
ft dt

)
dµ.

(2) If the above equation holds on finite intervals, and
∫∞
−∞ |ft| dt 6 h

with h integrable, then∫ ∞
−∞

(∫
Ω
ft dµ

)
dt =

∫
Ω

(∫ ∞
−∞

ft dt

)
dµ.

Proof. (1) Let a = t0 < t1 < · · · < tn = b be a partition of [a, b]. Then∫ b

a
ft dt = lim

n→∞

n∑
i=1

(ti − ti−1)fti .

Since

∣∣∣∣ n∑
i=1

(ti − ti−1)fti

∣∣∣∣ 6 (b − a)g, it follows from the dominated conver-

gence theorem that
∫

Ω ft dµ is continuous in t. Thus by the dominated

convergence theorem and the linear property of integral, we have∫
Ω

(∫ b

a
ft dt

)
dµ = lim

n→∞

n∑
i=1

(ti − ti−1)

∫
Ω
fti dµ

=

∫ b

a

(∫
Ω
ft dµ

)
dt.

(2) Since
∫∞
−∞ |ft|dt 6 h, we have gn =

∫ n
−n ft dt satisfies gn →∫∞

−∞ ft dt and |gn| 6 h. Hence the assertion follows from the dominated

convergence theorem. �
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Corollary 3.21 (Interchange of summations). Let {fnm}n,m>1 be a family

of real numbers. Assume fnm > 0 or there exists a sequence of numbers {gn}
such that

∞∑
m=1
|fnm| 6 gn (∀n) and

∞∑
n=1

gn <∞. Then

∞∑
m=1

∞∑
n=1

fnm =

∞∑
n=1

∞∑
m=1

fnm.

Proof. Let Ω = N, µ be the counting measure on Ω and g(n) = gn. Then

g is integrable. Let fm(n) = fnm. Then
∞∑
m=1
|fm| 6 g. From the monotone

convergence theorem or dominated convergence theorem, it follows

∞∑
m=1

∞∑
n=1

fnm =
∞∑
m=1

∫
Ω
fm dµ =

∫
Ω

∞∑
m=1

fm dµ =
∞∑
n=1

∞∑
m=1

fnm.

�

Corollary 3.22. Let {fnm}n,m>1 be a family of real numbers such that

0 6 fnm ↑ fn (m ↑ ∞) or there exists a sequence of real numbers {gn}n>1

such that |fnm| 6 gn,
∞∑
n=1

gn <∞, and lim
m→∞

fnm = fn. Then

lim
m→∞

∞∑
n=1

fnm =

∞∑
n=1

fn.

3 Expectation

In the following we introduce the definition of the expectation and some

characters of a random variable, then establish the integral transformation

formula which implies the L-S representation of expectation.

§ 3.3.1 Numerical characters and characteristic function

Definition 3.23. Let ξ be a random variable on probability space (Ω,A ,P).

If the integral of ξ with respect to P exists, then the integral is called the

expectation of ξ, denoted by Eξ =
∫

Ω ξ dP. If E|ξ| < ∞, we say that ξ has

finite expectation.
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As in the elementary probability theory, by using expectation we define

the characteristic function and numerical characters of random variables

are as follows.

Definition 3.24.

(1) Let ξ = (ξ1, · · · , ξn) be an n-diemnsional random variable. We call

Rn 3 (t1, · · · , tn) 7→ ϕξ(t1, · · · , tn) := Eei 〈t,ξ〉

the characteristic function of ξ, where i :=
√
−1 and 〈t, ξ〉 :=

∑n
j=1 tjξj .

(2) Let ξ be a random variable such that Eξ exists. ThenDξ := E|ξ − Eξ|2

is called the variance of ξ.

(3) Let ξ be a random variable and r > 0. E|ξ|r is called the r-th moment

of ξ. When Eξ exists, E|ξ − Eξ|r is called the r-th central moment of

ξ.

(4) Let ξ and η be two random variables such that Eξ and Eη are finite,

and

bξ,η = E(ξ − Eξ)(η − Eη)

exists. Then bξ,η is called the covariance of ξ and η. If DξDη 6= 0

and is finite, then rξ,η =
bξ,η√
DξDη

is called the covariance coefficient of

ξ and η.

(5) Let ξ = (ξ1, · · · , ξn) be an n-dimensional random variable such that

Eξ = (Eξ1, . . . ,Eξn) and (bij = bξi,ξj )16i,j6n exist. Then

B(ξ) =


b11 · · · b1n

...
...

bn1 · · · bnn


is called the covariance matrix of ξ. If (rij = rξi,ξj )16i,j6n exist, then

R(ξ) =


r11 · · · r1n

...
...

rn1 · · · rnn


is called the correlation matrix of ξ.
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Besides properties listed in Theorem 3.8, the expectations for indepen-

dent random variables also satisfy the following product formula.

Theorem 3.25 (Multiplication theorem). If random variables ξ1, ξ2, · · · ,
ξn on probability space (Ω,A ,P) are independent, all either nonnegative or

having finite expectations, then

E(ξ1ξ2 · · · ξn) = Eξ1Eξ2 · · ·Eξn.

Proof. By induction, we only prove the formula for n = 2.

(1) Let ξ and η be nonnegative simple functions with ξ =
n∑
i=1

ai1Ai (ai 6=

aj , i 6= j) and η =
m∑
i=1

bi1Bi (bi 6= bj , i 6= j). Then P(Ai ∩Bj) = P(Ai)P(Bj)

holds for all i, j, so that

ξη =
n∑
i=1

m∑
j=1

aibj1Ai∩Bj ,

Eξη =

n∑
i=1

m∑
j=1

aibjP(Ai)P(Bj) = EξEη.

This implies the desired formula for nonnegative ξ and η by applying The-

orem 2.12-(4) and Theorem 3.5.

(2) Let ξ and η have finite expectations. By Corollary 2.34, (ξ+, ξ−)

and (η+, η−) are independent nonnegative random variables. Combining

this with ξ = ξ+ − ξ−, η = η+ − η−, and the formula for nonnegative

independent random variables proved in step (1), we finish the proof. �

The characteristic function and numerical characters have the following

properties.

Proposition 3.26.

(1) Random variables ξ1, · · · , ξn are mutually independent if and only if

ϕ(ξ1,··· ,ξn)(t1, · · · , tn) = ϕξ1(t1) · · ·ϕξn(tn), t1, · · · , tn ∈ R.

(2) If ξ1, · · · , ξn are independent variables having finite variances, then

D(ξ1 + · · ·+ ξn) = Dξ1 + · · ·+Dξn.
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(3) If ξ and η are independent and having finite expectations, then bξ,η = 0.

(4) Let ξ be an n-dimensional random vector such that B(ξ) is finite. Then

B(ξ) > 0 (nonnegative definite).

(5) If E|ξ|r <∞ for some r > 0, then E|ξ|s <∞ holds for s ∈ (0, r).

Proof. We only prove (1), (4), and (5), the rest are obvious.

(1) By Theorem 3.25, we only need prove the sufficiency. According

to Theorem 4.9 which will be proved in Chapter 4, we may construct in-

dependent random variables ξ̃1, · · · , ξ̃n such that their characteristic func-

tions are ϕξ1(t1), · · · , ϕξn(tn), respectively. Then ξ̃ := (ξ̃1, · · · , ξ̃n) and

ξ := (ξ1, · · · , ξn) have the same characteristic function, so that by Theo-

rem 6.4 which will be proved in Chapter 6, we know ξ and ξ̃ are identically

distributed. From this and the mutual independence of ξ̃1, · · · , ξ̃n, it follows

that ξ1, · · · , ξn are mutually independent.

(4) ∀t1, · · · , tn ∈ C, we have

n∑
i,j=1

bijtitj = E

∣∣∣∣∣
n∑
i=1

ti(ξi − Eξi)

∣∣∣∣∣
2

> 0.

(5) Notice that |ξ|s 6 1 + |ξ|r for 0 < s < r. �

§ 3.3.2 Integral transformation and L-S representation of

expectation

The expectation of a random variable ξ is defined as its integral with re-

spect to the probability measure P. Since in general the probability space

(Ω,A ,P) is abstract, the expectation is not easy to calculate. Since Eξ is

a distribution property of ξ, we aim to express it by using the integral of

the identity function with respect to the distribution P ◦ ξ−1 of ξ, which is

a probability measure on the Euclidean space, see Definition 2.29. This is

called the L-S representation of expectation.

In general, let f : (Ω,A )→ (E,E ) be a measurable map, and let µ be

a measure on (Ω,A ). Then f maps µ into the following measure µ ◦ f−1
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on (E,E ):

(µ ◦ f−1)(B) := µ(f−1(B)), B ∈ E ,

which is called the image of µ under f . We have the following integral

transformation theorem.

Theorem 3.27 (Integral transformation theorem). Let f : (Ω,A ) −→
(E,E ) be measurable, let µ be a measure on A , and let g be a measurable

function on (E,E ) such that its integral with respect to µ ◦ f−1 exists. Then

the integral of g ◦ f with respect to µ exists and∫
f−1(B)

g ◦ f dµ =

∫
B
g d(µ ◦ f−1), B ∈ E .

Proof. (1) Let g be an indicator function and g = 1B′ , B
′ ∈ E . Then∫

B
g d(µ ◦ f−1) = (µ ◦ f−1)(B ∩B′) = µ(f−1(B ∩B′))

=

∫
f−1(B)

1f−1(B′) dµ =

∫
f−1(B)

1B′ ◦ f dµ.

(2) By step (1), the linear property of integral, and the monotone con-

vergence theorem, we derive the formula first for f being a simple function,

then for f being a nonnegative function f , and finally for f being a mea-

surable function such that µ(g ◦ f) exists. �

In references the L-S measure µ induced by a distribution function F is

also denoted by dµ = dF , and the associated integral is called L-S integral.

Definition 3.28. Let µ be the Lebesgue-Stieljes (L-S, in short) measure on

(Rn,Bn) induced by a distribution function F . Let f be a measurable function

on (Rn,Bn) such that µ(f) exists. Then the integral of f with respect to µ

is called an L-S integral, denoted by

µ(f) =

∫
Rn
f dµ =

∫
Rn
f dF.

Let ξ = (ξ1, · · · , ξn) be an n-dimensional random variable on (Ω,A ,P),

having distribution function F . Then the distribution of ξ is expressed as

(P ◦ ξ−1)(A) := P(ξ ∈ A) =

∫
A

dF =

∫
Rn

1A dF, A ∈ Bn.
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More generally, let g := (g1, · · · , gm) be a finite m-dimensional measurable

function on Rn. Then by Theorem 3.27, the distribution of η := g(ξ) is

(P ◦ η−1)(A) =

∫
g−1(A)

dF, A ∈ Bm.

This implies the following L-S representation of expectation.

Corollary 3.29. Let ξ = (ξ1, · · · , ξn) be an n-dimensional random variable

on (Ω,A ,P), having distribution function F . Let g = (g1, · · · , gm) be a finite

m-dimensional measurable function on Rn such that Eg(ξ) exists. Then

Eg(ξ) =

∫
Rn
g d(P ◦ ξ−1) =

∫
Rn
g dF.

In particular,

Eξ =

∫
Rn
x (P ◦ ξ−1)(dx) =

∫
Rn
x dF (x). (3.3.1)

To conclude this section, we present the following two examples to show

that the general definition of expectation covers that for discrete type and

continuous type random variables presented in the elementary probability

theory.

Example 3.30. Let ξ be a discrete random variable, i.e. it takes values on

a countable set {ai : i > 1} with distribution sequence P(ξ = ai) = pi >

0,
∞∑
i=1

pi = 1. Then (P ◦ ξ−1)(A) =
∑
ai∈A

pi holds for any A ∈ B. By (3.3.1)

and noting that the identity function satisfies

x =
∞∑
i=1

ai1{ai}(x), (P ◦ ξ−1)-a.s.,

we obtain

Eξ =

∫
R
x (P ◦ ξ−1)(dx) =

∞∑
i=1

aipi.

Example 3.31. Let ξ be a continuous type random variable with distribution

density function ρ such that Eξ exists. Then its distribution is the indefinite

integral of ρ with respect to the Lebesgue measure dx, so that by Proposition

3.16 and (3.3.1), we obtain

Eξ =

∫
R
x (P ◦ ξ−1)(dx) =

∫
R
xρ(x) dx.
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4 Lr-space

Definition 3.32. Let (Ω,A , µ) be a measure space and let r ∈ (0,∞).

Lr(µ) := {f : f is a measurable function on Ω, µ(|f |r) <∞}

is called the Lr-space of µ. A sequence {fn} ⊂ Lr(µ) is said to converge in

Lr(µ) to some measurable function f , if µ(|fn − f |r)→ 0 (n→∞), which is

denoted by fn
Lr(µ)−−−→ f.

To ensure the uniqueness of limit, an element in Lr(µ) is regarded as

an equivalent class in the sense of µ-a.e. equal; that is, we identify two

functions f and g in Lr(µ), if f = g µ-a.e.

Let ‖f‖r = µ(|f |r)1/(r∧1). We will prove when r ∈ (0, 1), (Lr(µ), ‖·‖r) is

a complete metric space with distance dr(f, g) := ‖f − g‖r; when r > 1, it

is a Banach space. In particular, L2(µ) is a Hilbert space with inner prod-

uct 〈f, g〉 := µ(fg). To prove this assertion, we first recall some classical

inequalities, then extend them to integrals of functions, and finally com-

pare the convergence in Lr with the convergences in a.e. and in measure.

Moreover, the space (Lr(µ), ‖ · ‖r) is separable if A is generated by an at

most countable sub-class of A , which we will not prove in this text book.

§ 3.4.1 Some classical inequalities

Proposition 3.33. If a > 0, b > 0, 0 < α < 1, α + β = 1, then aαbβ 6

aα+ bβ and the equality holds if and only if a = b.

Proof. Since log is a concave function, we have

log(aα+ bβ) > α log a+ β log b = log(aαbβ),

and it is easy to see that the equality holds if and only if a = b. �

Proposition 3.34 (Hölder’s inequality). Let r > 1, 1
r + 1

s = 1. Then

µ(|f g|) 6 (µ(|f |r))
1
r (µ(|g|s))

1
s . (3.4.1)
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The equality holds if and only if ∃c1, c2 ∈ R with |c1|+ |c2| > 0 such that

c1|f |r + c2|g|s = 0, µ-a.e. (3.4.2)

Proof. The inequality is obvious when f = 0 or g = 0 or the R.H.S. is

infinite, the inequality holds obviously. So, we may and do assume 0 <

µ(|f |r), µ(|g|s) <∞. In this case, let

a =
|f |r

µ(|f |r)
, b =

|g|s

µ(|g|s)
, α =

1

r
, β =

1

s
,

From Proposition 3.33 it follows

|f g|
‖f‖r‖g‖s

6
|f |r

rµ(|f |r)
+

|g|s

sµ(|g|s)
,

where the equality hods if and only if |f |r
µ(|f |r) = |g|s

µ(|g|s) . Combining this with

Theorem 3.8, we may take integrals with respect to µ in both sides to derive

(3.4.1), and the equality holds if and only if |f |r
µ(|f |r) = |g|s

µ(|g|s) holds µ-a.e.,

which implies (3.4.2) for c1 = 1
µ(|f |r) , c2 = − 1

µ(|g|s) . Finally, it is clear that

(3.4.2) implies the equality in (3.4.1). �

Corollary 3.35 (Jensen’s inequality). ∀r > 1,E|ξ| 6 (E|ξ|r)
1
r , and the

equality hold if and only if |ξ|r is a.s. constant.

Proposition 3.36 (Cr-inequality).

∀a1, · · · , an ∈ R, |a1 + · · ·+ an|r 6 n(r−1)+(|a1|r + · · ·+ |an|r).

When r > 1, the equality holds if and only if a1 = · · · = an; when r = 1, the

equality holds if and only if ai have same signs; when r < 1, the equality holds

if and only if at most one of {ai} is not zero.

Proof. (1) Case r > 1. Let Ω = {1, · · · , n}, A = 2Ω equipped with

probability measure P(A) = 1
n |A|, where |A| is the number of points in A.

Consider the random variable ξ(i) := ai, 1 6 i 6 n. Then

E|ξ| = 1

n

n∑
i=1

|ai|, E|ξ|r =
1

n

n∑
i=1

|ai|r.
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By Jensen’s inequality,

n−r

(
n∑
i=1

|ai|

)r
6

1

n

n∑
i=1

|ai|r,

hence the inequality hold, and the equality holds if and only if |ξ| are

constant, i.e. |ai| = |aj |,∀i, j. But∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣ =
n∑
i=1

|ai|

if and only if ai have same signs, so ai = aj ,∀i, j.

(2) Case r 6 1. We only prove ai are not all null. Note

|ak|
n∑
i=1
|ai|
6

|ak|r(
n∑
i=1
|ai|
)r , r 6 1.

Make summation in k on both sides to derive the inequality. When r = 1,

the equality holds if and only if ai have same signs. And when r 6 1, the

equality if and only if ∀k, |ak|/
n∑
i=1
|ai| = 1 or 0, i.e. only one of ai is not

null. �

Proposition 3.37 (Cr-inequality). Let f1, · · · , fn be measurable functions.

Then

µ(|f1 + · · ·+ fn|r) 6 n(r−1)+
n∑
i=1

µ(|fi|r),

and the equality hold if and only if

(1) when r > 1, ∀i 6= j, fi = fj , a.e.;

(2) when r < 1, at most one of µ(|fi|) is not null;

(3) when r = 1, fi a.e. have same sign.

Proposition 3.38 (Minkowski’s inequality). Let r > 1, f, g ∈ Lr(µ). Then

(µ|f + g|r)
1
r 6 (µ|f |r)

1
r + (µ|g|r)

1
r ,

and the equality hold if and only if
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(1) when r > 1, there exist c1, c2 ∈ R not all null and having same signs

such that c1f − c2g = 0, a.e.;

(2) when r = 1, f, g have same sign a.e.

Proof. Since the assertion for r = 1 is trivial, we only consider r > 1. By

Hölder’s inequality we obtain

µ(|f + g|r) 6 µ(|f ||f + g|r−1) + µ(|g||f + g|r−1)

6 ‖f‖r(µ(|f + g|r))
r−1
r + ‖g‖r(µ(|f + g|r))

r−1
r ,

and the equality holds if and only if there exist c1, c2, c3, c4 ∈ R with |c1|+
|c2| > 0 and |c3| + |c4| > 0, such that µ-a.e |f |rc1 + |f + g|rc2 = c3|g|r +

c4|f + g|r = 0 and f, g have same sign. This implies the desired assertion.

�

§ 3.4.2 Topology property of Lr(µ)

Theorem 3.39. Let r ∈ (0,∞). Then Lr(µ) is a complete metric space

under the distance dr(f, g) := ‖f − g‖r. Moreover, it is a Banach space when

r > 1, and a Hilbert space when r = 2.

Proof. (a) Clearly, ‖f‖r = 0 if and only if f = 0, µ-a.e. Thus ∀f ∈
Lr(µ), ‖f‖r = 0 if and only if f = 0. Obviously, Lr(µ) is obviously a

linear space and dr satisfies the triangle inequality by Cr-inequality (for

r < 1) or Minkowski’s inequality (for r > 1). Moreover, when r > 1, ‖ · ‖r
is a norm.

(b) It remains to prove the completeness. Let {fn} be a Cauchy se-

quence in (Lr(µ), dr). Then ∀ε > 0, by Khinchin’s inequality we derive

that when n,m→∞,

µ(|fn − fm| > ε) 6
1

εr
µ(|fn − fm|r)→ 0.

Thus {fn} converges mutually in measure. By Theorem 2.45, there exists a

subsequence nk ↑ ∞ such that fnk
a.e.−−→ f(say). It follows that for ∀m > 1,
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fm − fnk
a.e.−−→ fm − f (nk → ∞). Then Fatou’s lemma (Theorem 3.10)

implies

µ(|fm − f |r) = µ

(
lim

nk→∞
|fm − fnk |

r

)
6 lim

nk→∞
µ (|fm − fnk |

r) .

Since {fn} is a Cauchy sequence in Lr(µ), by letting m → ∞ we obtain

lim
m→∞

µ(|fm − f |r) = 0. �

Proposition 3.40.

(1) Let µ be a finite measure. If fn
Lr(µ)−−−→ f , then fn

Lr
′
(µ)−−−−→ f, r′ ∈ (0, r).

(2) If fn
Lr(µ)−−−→ f , then µ(|fn|r)→ µ(|f |r).

Proof. (1) and (2) follow from Hölder’s inequality and the triangle inequal-

ity of dr, respectively. �

§ 3.4.3 Links of different convergences

Definition 3.41. Let (Ω,A , µ) be a finite measure space, and let {ft, t ∈ T}
be a family of real measurable functions on Ω.

(1) {ft, t ∈ T} is called uniformly continuous in integral, if

lim
µ(A)→0

sup
t∈T

µ(|ft|1A) = 0.

(2) {ft, t ∈ T} is called uniformly integrable, if

lim
n→∞

sup
t∈T

µ(|ft|1{|ft|>n}) = 0.

Theorem 3.42. Let µ be a finite measure and {fn}n>1 ⊂ Lr(µ). The

following statements are equivalent.

(1) fn
Lr(µ)−−−→ f .

(2) fn
µ−→ f and {|fn − f |r}n>1 is uniformly continuous in integral.

(3) fn
µ−→ f and {|fn|r}n>1 is uniformly continuous in integral.

(4) fn
µ−→ f and {|fn|r}n>1 is uniformly integrable.
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Proof. (a) First we prove (1)⇔ (2).

(1)⇒ (2) Since µ(|fn − f | > ε) 6 ε−rµ(|fn − f |r), (1) implies fn
µ−→ f.

To prove {|fn − f |r}n>1 is uniformly continuous in integral, for ∀ε > 0,

take nε > 1 such that µ(|fn − f |r) < ε for ∀n > nε. Then we have

sup
n>1

∫
A
|fn − f |r dµ 6 ε+

nε∑
n=1

µ(1A|fn − f |r).

As for given n, lim
µ(A)→0

µ(1A|fn − f |r) = 0, so

lim
µ(A)→0

sup
n>1

µ(1A|fn − f |r) 6 ε.

Since ε is arbitrary, {|fn − f |r}n>1 is uniformly continuous in integral.

(2)⇒ (1) Let An = {|fn − f | > ε}. Then µ(An)→ 0 and the uniform

continuity in integral implies

µ(1An |fn − f |
r) 6 sup

m>1
µ(1An |fm − f |

r)→ 0 (n→∞).

Hence

lim
n→∞

µ(|fn − f |r) 6 lim
n→∞

µ(|fn − f |r1{|fn−f |>ε}) + εrµ(Ω) = εrµ(Ω).

Since ε is arbitrary, we have fn
Lr(µ)−−−→ f.

(b) Again by Theorem 2.44, fn
µ−→ f implies that there exists a subse-

quence {fnk} such that fnk
a.e.−−→ f. Thus by Fatou’s lemma,

∀A ∈ A , µ(f1A) 6 lim
k→∞

µ(fnk1A) 6 sup
n
µ(fn1A).

Since

|‖1Afn‖r − ‖1A(fn − f)‖r| 6 ‖1Af‖r,

the uniform continuity in integral of {|fn − f |r}n>1 is equivalent to that of

{|fn|r}n>1. That is (2)⇔ (3).

(c) From the equivalence of (2) and (3), it follows that {µ(|fn|)}n>1

is bounded, so that the uniformly continuity of integrals of {|fn|r}n>1 is

equivalent to the uniform integrability of {|fn|r}n>1(cf. Exercise 25 in this

chapter). Hence (3)⇔ (4). �
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Noting that

|µ(fn)− µ(f)| 6 µ(|fn − f |)

and fn
a.e.−−→ f implies fn

µ−→ f for finite µ, we have the following consequence

of Theorem 3.42.

Corollary 3.43 (Dominated convergence). Let (Ω,A , µ) be a finite mea-

sure space, and let {fn, f : n > 1} be uniformly integrable measurable func-

tions. If fn
µ−→ f, then µ(fn)→ µ(f).

5 Decompositions of Signed Measure

Basing on the decomposition f = f+−f− for a function, we aim to formu-

late a signed measure ϕ as the differences of two measures ϕ+ and ϕ−. This

is called Hahn’s decomposition, from which we will we introduce Lebesgue’s

decomposition which uniquely expresses a signed measure as the sum of an

indefinite integral part and a singular part. The uniqueness of Lebesgue’s

decomposition leads to the Radon-Nikodym derivative between measures,

which is crucial to develop analysis on the space of measures. By apply-

ing Lebesgue’s decomposition to L-S measure we decompose a distribution

function into the discrete part, the absolutely continuous part, and the sin-

gular part, which classifies random variables into three types: the discrete

type, the continuous type and the singular type, where the first two types

have been studied in the elementary probability theory.

§ 3.5.1 Hahn’s decomposition theorem

To decompose a signed measure as the difference of two measures, we con-

sider the indefinite integral µf for a measurable function f with µ(f−) <∞,

for which the natural decomposition is µf = µf+ − µf− . To define ϕ+ and

ϕ− for a general signed measure ϕ, we reformulate µf+ and µf− as follows:

µf−(A) = µf (A ∩D), µf+(A) = µf (A ∩Dc), A ∈ A , D := {f 6 0}.

It is clear that µf (D) = infA∈A µf (A). This indicates that for a signed

measure ϕ, if we could find a set D ∈ A reaching infA∈A ϕ(A), we could
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define ϕ+(A) and ϕ−(A) as ϕ(A ∩Dc) and ϕ(A ∩D) respectively. So, we

first prove the existence of D.

Theorem 3.44. Let ϕ be a signed measure on (Ω,A ). Then ∃D ∈ A such

that

ϕ(D) = inf
A∈A

ϕ(A).

Proof. Take {An} such that ϕ(An) ↓ inf
A∈A

ϕ(A). Since inf
A∈A

ϕ(A) 6 0, we

may assume that ϕ(An) are finite. Let A =
∞⋃
n=1

An. For any k > 1, we have

A = Ak + (A−Ak) =: Ak,1 +Ak,2.

∀n > 2, we can write

A =

2∑
i1,i2,...,in=1

A1,i1 ∩A2,i2 ∩ . . . ∩An−1,in−1 ∩An,in .

As n is increasing, the partitions become finer and finer. For each partition,

we take out the subsets with negative ϕ-values. Intuitively, the union of

such subsets approaches the desired set D when n → ∞. To confirm this

observation, for each n > 1 let

Bn =
∑

16i1,i2,...,in62
ϕ(A1,i1

∩A2,i2
∩···∩An,in )60

A1,i1 ∩A2,i2 ∩ · · · ∩An,in =:

kn∑
i=1

A′n,i.

By the σ-additivity of ϕ, we have ϕ(Bn) 6 ϕ(An). Let

D =

∞⋂
n=1

∞⋃
k=n

Bk = lim
n→∞

∞⋃
k=n

Bk.

As (n + 1)-th partition is finer than that of n-th, a subset A′n+1,i of Bn+1

is either included by Bn or disjoint with Bn. Then for any m > n, we have

Bn ∪ · · · ∪Bm = Bn +
∑

A
′
n+1,i∩Bn=∅

A
′
n+1,i +

∑
A
′
n+2,i∩(Bn∪Bn+1)=∅

A
′
n+2,i

+ · · ·+
∑

A
′
m,i∩(Bn∪···∪Bm−1)=∅

A
′
m,i.
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Thus, by the σ-additivity of ϕ and ϕ(A′i,j) 6 0, it follows ϕ(Bn∪· · ·∪Bm) 6

ϕ(Bn) 6 ϕ(An). Letting m ↑ ∞, we obtain −∞ < ϕ

( ∞⋃
k=n

Bk

)
6 ϕ(An),

by the lower continuity of signed measures (notice ϕ(An) is finite). Finally,

the upper continuity of signed measure implies that

ϕ(D) = lim
n→∞

ϕ

( ∞⋃
k=n

Bk

)
6 lim

n→∞
ϕ(An) = inf

A∈A
ϕ(A).

�

Corollary 3.45. Let ϕ be a signed measure on a measurable space (Ω,A ).

Then there exists D ∈ A such that ϕ(A∩D) = inf
B∈A∩A

ϕ(B) and ϕ(A∩Dc) =

sup
B∈A∩A

ϕ(B) for any A ∈ A .

Proof. Let D ∈ A such that ϕ(D) = inf
A∈A

ϕ(A), ϕ(Dc) = sup
A∈A

ϕ(A). Then

∀A ∈ A and B ∈ A ∩A , we have

ϕ(A ∩D) + ϕ(D −A) = ϕ(D)

6 ϕ(B ∪ (D −A)) = ϕ(B) + ϕ(D −A).

Since both ϕ(D) 6 0, ϕ(A∩D) and ϕ(D−A) are finite, ϕ(A∩D) 6 ϕ(B).

Thus,

inf
B∈A∩A

ϕ(B) 6 ϕ(A ∩D) 6 inf
B∈A∩A

ϕ(B),

i.e. ϕ(A ∩D) = inf
B∈A∩A

ϕ(B).

On the other hand, ∀B ∈ A ∩A , we have

ϕ(A ∩Dc) + ϕ(A ∩D) = ϕ(A) = ϕ(B) + ϕ(Bc ∩A).

Since ϕ(A ∩D) = inf
B∈A∩A

ϕ(B) is finite, there holds

ϕ(A ∩Bc) > inf
B∈A∩A

ϕ(B) = ϕ(A ∩D),

so that

ϕ(A ∩Dc) = ϕ(B) + ϕ(Bc ∩A)− ϕ(A ∩D) > ϕ(B).
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Hence

sup
B∈A∩A

ϕ(B) 6 ϕ(A ∩Dc) 6 sup
B∈A∩A

ϕ(B),

i.e. ϕ(A ∩Dc) = sup
B∈A∩A

ϕ(B). �

By Corollary 3.45, we have the following theorem.

Theorem 3.46 (Hahn’s decomposition theorem). Let ϕ be a σ-additive

function on (Ω,A ), and let

ϕ+(A) = sup
A 3B⊂A

ϕ(B), ϕ−(A) = − inf
A 3B⊂A

ϕ(B), A ∈ A .

Then both ϕ+ and ϕ− are measures on A , and ϕ = ϕ+ − ϕ−.

The formula ϕ = ϕ+ − ϕ− is called Hahn’s decomposition of ϕ, where

ϕ+ and ϕ− are called the positive and negative parts of ϕ, respectively.

Moreover, the measure |ϕ| := ϕ+ +ϕ− is called the total variation measure

of ϕ. Notice that in general |ϕ(A)| 6= |ϕ|(A) for A ∈ A .

By Corollary 3.45 and Theorem 3.46, if ϕ = µf for some measurable

function f with µ(f−) <∞, then ϕ+ = µf+ and ϕ− = µf− as suggested in

the beginning of this part.

§ 3.5.2 Lebesgue’s decomposition theorem

Let (Ω,A , µ) be a measure space. If ϕ = µf is the indefinite integral of a

measurable function f with µ(f−) < ∞, then |ϕ|(N) = 0 holds for any µ-

null set N . We will prove the converse result, i.e. a signed measure having

this property must be the indefinite integral of a measurable function with

respect to µ. To this end, we introduce the following notions and establish

Lebesgue’s decomposition theorem.

Definition 3.47. Let (Ω,A , µ) be a measure space, and let ϕ be a signed

measure on A .

(1) ϕ is called absolutely continuous with respect to µ, denoted by ϕ� µ,

if ϕ(N) = 0 holds for all µ-null set N ∈ A ,

(2) We call ϕ and µ (mutually) singular, if there exists N ∈ A such that

µ(N) = 0 and |ϕ|(N c) = 0.
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Theorem 3.48. Let (Ω,A , µ) be a σ-finite measure space, and let ϕ be a

σ-finite signed measure. Then ϕ � µ if and only if there exists a measurable

function f such that µ(f−) <∞ and ϕ = µf .

The sufficient part is obvious, and the necessary part is implied by the

following Lebesgue’s decomposition theorem.

Theorem 3.49 (Lebesgue’s decomposition theorem). Let µ and ϕ be as in

Theorem 3.48. Then ϕ is uniquely decomposed as ϕ = ϕc + ϕs, where ϕc

is the indefinite integral of a measurable function with respect to µ, ϕs is a

signed measure singular to µ. The composition is unique.

Proof. (1) Uniqueness of decomposition.

Consider such two decompositions: ϕ = ϕc +ϕs = ϕ′c +ϕ′s. Then there

are µ-null sets N1, N2 such that |ϕs|(N c
1) = |ϕ′s|(N c

2) = 0. Let N = N1∪N2.

We have µ(N) = 0 and |ϕs|(N c) = |ϕ′s|(N c) = 0. So, ∀A ∈ A ,

ϕs(A ∩N) = (ϕc + ϕs)(A ∩N) = (ϕ′c + ϕ′s)(A ∩N) = ϕ′s(A ∩N),

and ϕs(A ∩ N c) = ϕ′s(A ∩ N c) = 0. Thus ϕs = ϕ′s. Similarly, we have

ϕc(A ∩N) = ϕ′c(A ∩N) = 0 and

ϕc(A ∩N c) = (ϕc + ϕs)(A ∩N c) = (ϕ′c + ϕ′s)(A ∩N c) = ϕ′c(A ∩N c),

so that ϕc = ϕ′c. Then the decomposition is unique.

(2) Existence of decomposition.

(i) Assume that µ and ϕ are finite measures. Let

Φ =

{
f : f > 0,

∫
A
f dµ 6 ϕ(A),∀A ∈ A

}
, α = sup

f∈Φ
µ(f).

Clearly Φ is not empty and α ∈ [0, ϕ(Ω)]. Take {fn}n>1 ⊂ Φ such that

αn := µ(fn) ↑ α 6 ϕ(Ω) <∞.

Set gn = sup
k6n

fk. Then

0 6 gn ↑ f := sup
k>1

fk.
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For given n > 1, put

Ak = {ω : gn(ω) = fk(ω)} (1 6 k 6 n).

Then
n⋃
k=1

Ak = Ω. Moreover, let Bk = Ak−
k−1⋃
i=1

AI . Then {Bk} are mutually

disjoint and
n⋃
k=1

Bk = Ω. Thus ∀A ∈ A ,

∫
A
gn dµ =

n∑
k=1

∫
A∩Bk

fk dµ 6
n∑
k=1

ϕ(Bk ∩A) = ϕ(A).

Hence
∫
A f dµ 6 ϕ(A). By this and definition of α, it follows that µ(f) = α.

Let

ϕc(A) =

∫
A
f dµ, ϕs(A) = ϕ(A)−

∫
A
f dµ.

For any n > 1, let ϕn = ϕs − µ
n . From the proof of Hahn’s decomposition

theorem, it follows that there exists Dn ∈ A such that

ϕn(Dn ∩A) 6 0, ϕn(Dc
n ∩A) > 0, ∀A ∈ A .

Let D =
∞⋂
n=1

Dn. Then ∀n,

D ⊂ Dn, ϕs(D ∩A) 6
1

n
µ(D ∩A).

Thus ϕs(D ∩A) = 0 for any A ∈ A .

To prove µ(Dc) = 0, it suffices to show µ(Dc
n) = 0 for any n. In fact,∫

A

(
f +

1

n
1Dcn

)
dµ = ϕc(A) +

1

n
µ(A ∩Dc

n)

= ϕ(A)− ϕs(A) +
1

n
µ(A ∩Dc

n)

= ϕ(A)− ϕn(A ∩Dc
n)− ϕs(A ∩Dn)

6 ϕ(A)− ϕs(A ∩Dn) 6 ϕ(A).

It follows that f + 1
n1Dcn ∈ Φ. Thus,

α >
∫

Ω
(f +

1

n
1Dcn) dµ =

∫
Ω
f dµ+

1

n
µ(Dc

n) = α.
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This together with µ(f) = α implies 1
nµ(Dc

n) = 0, hence µ(Dc
n) = 0.

(ii) Let µ and ϕ be σ-finite measures. There exists {An}n>1 mutually

disjoint such that
∞⋃
n=1

An = Ω and µ(An), ϕ(An) < ∞ (∀n). From (i) it

follows that there exists ϕ
(n)
c and ϕ

(n)
s such that

ϕ(An ∩ •) = ϕ(n)
c (An ∩ •) + ϕ(n)

s (An ∩ •),

ϕ(n)
c (An ∩ •) =

∫
An∩•

f (n)dµ.

Let Nn be a µ-null set, such that ϕ
(n)
s (N c

n ∩ A ∩ An) = 0 for any A ∈ A .

Set

f =
∞∑
n=1

1Anf
(n), ϕc(A) =

∫
A
f dµ, ϕs(A) =

∞∑
n=1

ϕ(n)
s (An ∩A).

Again let N =
∞⋃
n=1

Nn. Then ∀A ∈ A , we have

ϕ(n)
s (N c ∩A ∩An) 6 ϕ(n)

s (N c
n ∩A ∩An) = 0.

It follows that

ϕs(N
c ∩A) =

∑
n

ϕs
(n)(N c ∩A ∩An) = 0.

Hence ϕs and µ are singular.

(iii) General case. From Hahn’s decomposition theorem, we have ϕ =

ϕ+ − ϕ−. But by (ii) we have ϕ+ and ϕ− have decompositions

ϕ+ = ϕc
+ + ϕs

+, ϕ− = ϕc
− + ϕs

−.

Then

ϕ = (ϕc
+ − ϕc−) + (ϕs

+ − ϕs−).

�

As a direct consequence of Lebesgue’s decomposition theorem, we have

the following result.
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Theorem 3.50 (Radon-Nikodym theorem). Let (Ω,A , µ) be a σ-finite

measure space, and let ϕ be a σ-finite signed measure on A . If ϕ is absolutely

continuous with respect to µ, then there exists a µ-a.e. unique measurable

function f such that ϕ = µf .

This result can be extended to not σ-finite signed measures.

Theorem 3.51 (Generalization of Radon-Nikodym theorem). Let (Ω,A , µ)

be a σ-finite measure space, and ϕ be a signed measure on A . If ϕ is absolutely

continuous with respect to µ, Then there exits a µ-a.e. unique measurable

function f such that ϕ = µf .

Proof. By the σ-finiteness of µ and Hahn’s decomposition of ϕ, we may

assume that µ is a finite measure and ϕ is a measure. In this case, we apply

Theorem 3.50 with Ω replaced by the largest measurable set on which the

restriction of ϕ is σ-finite, then the function f is defined as ∞ outside this

set.

Let

C = {A ∈ A : ϕ is σ-finite on A}.

Set s = sup
B∈C

µ(B) and then take {Bn}n>1 ⊂ C such that µ(Bn) ↑ s.

Let B =
∞⋃
n=1

Bn. Then B ∈ C and s = µ(B). Since ϕ is σ-finite on

B ∩ A , Theorem 3.50 implies that there exists f1 such that ϕ(A ∩ B) =∫
A∩B f1 dµ,A ∈ A . Let

f(ω) =

{
f1(ω), ω ∈ B,
∞, ω /∈ B.

Then for any A ∈ A with µ(A ∩ Bc) > 0, we have
∫
A f dµ = ∞. On the

other hand, if µ(A∩Bc) > 0, then ϕ(A∩Bc) =∞. If not, then ϕ is σ-finite

on B∪A and µ(B∪A) = µ(Bc∩A) +µ(B) > s, which contradicts the fact

s = sup
B∈B

µ(B). Thus ∀A ∈ A ,

∫
A
f dµ =

∫
A∩B

f dµ+

∫
A∩Bc

f dµ = ϕ(A ∩B) +∞ · µ(A ∩Bc) = ϕ(A).

�
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The above theorem leads to the notion of Radon-Nikodym derivative.

Definition 3.52. Let (Ω,A , µ) be a σ-finite measure space and let ϕ be a

signed measure which is absolutely continuous with respect to µ. Then there

exists a µ-a.e. unique measurable function f such that ϕ = µf (equivalently,

dϕ = f dµ). The function f is called the Radon-Nikodym derivative of ϕ with

respect to µ, and is denoted by dϕ
dµ .

The following result follows is reformulated from Proposition 3.16.

Corollary 3.53. Let ν and µ be σ-finite measures on A such that ν � µ.

If f is a measurable function, then the integral of f with respect to ν exists if

and only if the integral of f dν
dµ with respect to µ exists, and∫

A
f dν =

∫
A
f

dν

dµ
dµ, A ∈ A .

§ 3.5.3 Decomposition theorem of distribution function

By applying Lebesgue’s decomposition theorem to the L-S measure induced

by a distribution function with respect to the Lebesgue measure dx, we

derive the following decomposition theorem for distribution function.

Theorem 3.54. Any distribution function F on Rn can be decomposed as

the sum of three distribution functions:

F = Fc + Fd + Fs,

where the L-S measure induced by Fc is absolutely continuous with respect to

dx, the L-S measure induced by Fd is supported on a finite or countable set,

and the L-S measure induced by Fs is singular with dx and having null measure

on singletons. This decomposition is unique in sense of induced L-S measures.

The functions Fc, Fd and Fs are called the absolute part, the discrete part and

the singular part of F , respectively.

Proof. Let µ be the L-S measure induced by F . By the Lebesgue’s decom-

position theorem, we have µ = µc +µ′s, where µc � dx, µ′s is singular with

dx. Let

A = {x ∈ Rn : µ′s({x}) > 0}.
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Then A is at most countable. Define µd(B) =
∑

x∈B∩A
µ′s {x} and let Fd be

distribution function of µd. Finally, let µs = µ′s − µd. Then µs is singular

with dx, and µs({x}) = 0 for every x ∈ Rn, which has distribution function

Fs = F − Fc − Fd.

Uniqueness of decomposition follows from that of Lebesgue decomposi-

tion and properties of Fs and Fd. �

6 Exercises

1. For a nonnegative measurable function f on a measure space (Ω,A , µ),

let

¯∫
Ω
f dµ = inf

{∫
Ω
g dµ : g > f, g is a simple function

}
.

Exemplify that
∫̄

Ωf dµ and
∫

Ω f dµ may not identical.

2. Prove Theorem 3.8.

3. Exemplify that when f is a complex measurable function whose inte-

gral exists and c is a complex, the integral of cf may not exist. What

happens when f is integrable?

4. Let f be a complex measurable function such that µ(f) exists. Prove

|
∫

Ω f dµ| 6
∫

Ω |f | dµ.

5. Exemplify that we can not get rid of dominated condition g 6 fn in

Theorem 3.10–(1).

6. Let {fnm}n,m>1 be a family of nonnegative numbers. Prove

lim
m→∞

∞∑
n=1

fnm >
∞∑
n=1

lim
m→∞

fnm.
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7. Exemplify that for a sequence of random variables, the convergence

in Lr(P) does not imply the a.s. convergence, and vice verse.

8. Let (Ω,A , µ) be a measure space, and let ϕ be a finite signed measure

such that ϕ� µ. Then ϕ(An)→ 0 for any {An} ⊂ A with µ(An)→
0. Exemplify that this assertion does not hold when ϕ is σ-finite.

(Hint: Let Ω = (0, 1), µ = dx, ϕ = µf , f(x) 1
x , An = (0, 1

n).)

9. If {ξn} converges in distribution to ξ, then E|ξ| 6 lim
n→∞

E|ξn|.

10. Prove Corollary 3.35.

11. Prove Proposition 3.37.

12. Let ξ > 0 such that Eξ2 <∞. Prove P(ξ > 0) > (Eξ)2
Eξ2 .

13. Let A1, · · · , An be events and A =
n⋃
i=1

Ai. Prove

(a) 1A 6
n∑
i=1

1Ai .

(b) P(A) >
n∑
i=1
P(Ai)−

∑
i<j
P(Ai ∩Aj).

(c) P(A) 6
n∑
i=1
P(Ai)−

∑
i<j
P(Ai ∩Aj) +

∑
i<j<k

P(Ai ∩Aj ∩Ak).

14. Apply Jensen’s inequality to prove (geometric mean is dominated

by algebraic mean): a1, · · · , an > 0 and α1, · · · , αn > 0 such that

α1 + · · ·+ αn = 1, we have
n∏
i=1

aαii 6
n∑
i=1

αiai.

15. Let ξ > 0. Prove

lim
t→∞

t

∫
[ξ>t]

1

ξ
dP = 0, lim

t→0
t

∫
[ξ>t]

1

ξ
dP = 0.
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16. Let ξ and η be independent random variables with distribution func-

tions F and G, respectively. Formulate the distribution function of

ξ + η using F and G.

17. Random variables ξ and η are independent if and only if for any f, g,

Ef(ξ)g(η) = Ef(ξ)Eg(η).

18. (a) If eventsA1, A2, · · · satisfy
∞∑
n=1

P(An) <∞, then P(
∞⋂
n=1

∞⋃
k=n

Ak) =

0.

(b) If events A1, A2, · · · are independent and
∞∑
n=1

P(An) = ∞, then

P(
∞⋂
n=1

∞⋃
k=n

Ak) = 1.

19. Let pn ∈ [0, 1). Apply the previous exercise to prove
∞∏
n=1

(1− pn) = 0

if and only if
∞∑
n=1

pn =∞.

20. Let ξ a random variable taking values of nonnegative integers. Prove

Eξ =
∑
n>1

P(ξ > n). What happens when ξ takes values of integers?

21. Let ξ be a nonnegative random variable. Prove Eξ =
∫∞

0 P(ξ > x) dx.

What happens for a general real random variable?

22. Prove ξn
P−→ ξ if and only if

E
(
|ξn − ξ|

1 + |ξn − ξ|

)
→ 0.

23. Let φ > 0 such that lim
x→∞

φ(x)/x → ∞ and T be an index set. If

Eφ(|ξt|) 6 C < ∞ for any t ∈ T , then {ξt, t ∈ T} is uniformly inte-

grable.
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24. Let {fn} be a sequence of real measurable functions on (Ω,A , µ). If

sup
n>1

µ(|fn|r) <∞ for some r > 0, then ∀s ∈ (0, r), {|fn|s} is uniformly

continuous in integral.

25. Let (Ω,A , µ) be a finite measure space, and let {ft : t ∈ T} be a

family of random variables such that {µ(|ft|) : t ∈ T} is bounded.

Then {ft}t∈T is uniformly continuous in integral if and only if it is

uniformly integrable.

26. Let r ∈ (0,∞) and let (Ω,A , µ) be a measure space. Prove that the

class of integrable simple functions is dense in Lr(µ).

27. Let 1/p+ 1/q = 1, p, q > 1. Prove ‖f‖p = {µ(fg) : ‖g‖q 6 1}.

28. If a sequence of random variables {ξn}n>1 is uniformly bounded, then

ξn converges in probability if and only if it converges in Lr(P), where

r ∈ (0,∞).

29. For a measurable function f , define the essential supremum by

‖f‖∞ = inf {M : µ({ω : |f(ω)| > M}) = 0} .

(a) Prove that ‖ · ‖∞ satisfies the triangle inequality.

(b) If µ(Ω) <∞, then ‖f‖∞ = lim
r→∞

‖f‖r.

30. Assume Eξ2 < ∞. Prove that Eξ attains the minimum of E(ξ − c)2

over c ∈ R.

31. If ξ and η are independent random variables having finite expecta-

tions, and E|ξ + η|2 <∞. Prove E(|ξ|2 + |η|2) <∞.

32. Let ξ be a random variable with m := Eξ ∈ R and σ2 = Dξ ∈ (0,∞).

(a) Prove

P(ξ −m > t) 6 σ2

σ2 + t2
, t > 0.
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(b) Prove

P(|ξ −m| > t) 6 2σ2

σ2 + t2
, t > 0.

33. Let f be a convex function on R, and let ξ be a random variable with

finite expectation. Prove that Ef(ξ) exists and f(Eξ) 6 Ef(ξ).

34. Let ξ be a random variable with finite expectation. If there is a

strictly convex function φ on R such that Eφ(ξ) = φ(Eξ), then ξ is

an a.s. constant.

35. If independent random variables ξ and η have distributions µ and ν

respectively, then for A ∈ B and B ∈ B2,

P((ξ, η) ∈ B) =

∫
R
P((x, η) ∈ B)µ( dx) =

∫
R
P((ξ, y) ∈ B)ν( dy)

and

P(ξ ∈ A, (ξ, η) ∈ B) =

∫
A
P((x, η) ∈ B)µ( dx).

36. (Uniform distribution on Cantor sets) Let C be the Cantor set defined

in Chapter 2, Exercise 31. We call

F (x) :=



0, x 6 0,

1, x > 1,
1
2 , x ∈ [1

3 ,
2
3 ],

1
4 , x ∈ [1

9 ,
2
9 ],

3
4 , x ∈ [7

9 ,
8
9 ],

· · · · · ·

the uniform distribution function on C. Prove

(a) F is continuous;

(b) F is singular with Lebesgue measure.

37. Let µ1 and µ2 be finite signed measures. Set µ1 ∨ µ2 = µ1 + (µ2 −
µ1)+, µ1 ∧ µ2 = µ1 − (µ1 − µ2)+. Then µ1 ∨ µ2 is the minimal signed
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measure such that ν > µi(i = 1, 2); µ1 ∧ µ2 is the maximal signed

measure such that ν 6 µi(i = 1, 2).

38. Let µ be a σ-finite measure on (Ω,A ) such that A contains all sin-

gletons. Then the set

{x ∈ Ω : µ({x}) > 0}

is at most countable.

39. Let {An} be an increasing sequence of σ-algebras in Ω, and let A =

σ

(⋃
n

An

)
. Assume that µ is a finite measure and ν is a probabil-

ity measure on (Ω,A ). Let µn, νn be the restrictions of µ, ν on An

respectively. If µn � νn, f = lim
n

dµn
dνn

, prove

µ(A) =

∫
A
f dν + µ(A ∩ {f =∞}), A ∈ A .



Chapter 4

Product Measure Space

Why should we study multi-dimensional spaces and even infinite dimen-

sional spaces? Let’s consider a system of n many random particles in

the 3-dimensional real world, where the location of each particle is a 3-

dimensional random variable, and the joint distribution of these particles

is a probability measure on the 3n-dimensional Euclidean space. Another

example is to consider a particle randomly moving on the real line, at each

time its location is a one-dimensional random variable. If we want to de-

scribe the movement of the particle, we have to clarify its path when time

varies, which is an infinite-dimensional random variable (stochastic pro-

cess), whose distribution is a probability measure on an infinite product

space. Note that the finite product measure space has been introduced in

§1.1.5 and Corollary 3.14. We will extend the notion to the infinite product

case.

In this chapter, we first establish Fubini’s theorem, which reduces the

integral with respect to a product measure to the iterated integrals with

respect to the marginal measures, as we have already studied in Lebesgue’s

measure theory. We then extend this theorem to non-product measures

induced by a marginal measure and transition measures. In particular, the

construction of probability measures on infinite product measurable spaces,

is fundamental in the study of stochastic processes.

97
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1 Fubini’s Theorem

Let us recall how to reduce a multiple integral on R2 to iterated integrals,

as we learnt in calculus or Lebesgue’s integral theory. Let A be mea-

surable subset of R2 and f be an integrable function with respect to the

2-dimensional Lebesgue measure. To compute the integral∫
A
f(x1, x2) dx1 dx2,

we first determine x1 and fix the range of x2, i.e.

Ax1 := {x2 ∈ R : (x1, x2) ∈ A} .

Then the multiple integral can be calculated as∫
R

dx1

∫
Ax1

f(x1, x2) dx2.

The aim of this section is to realize this procedure for integrals on a general

product measure space.

Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure spaces. By Corol-

lary 3.14, the product measure space (Ω1×Ω2,A1×A2, µ1×µ2) is σ-finite

as well. Given A ∈ A1×A2 and a measurable function f which is integrable

with respect to µ1 × µ2, we will prove∫
A
f d(µ1 × µ2) =

∫
Ω1

µ1( dω1)

∫
Aω1

f(ω1, ω2)µ2( dω2), (4.1.1)

where Aω1 is the section of A at ω1. This formula is called Fubini’s theorem.

For this, we first introduce the section of a set.

Definition 4.1. Let A ⊂ Ω1 × Ω2. ∀ω1 ∈ Ω1,

Aω1 := {ω2 ∈ Ω2 : (ω1, ω2) ∈ A} ⊂ Ω2

is called the section of set A at ω1. Similarly, we can define Aω2
⊂ Ω1, ∀ω2 ∈

Ω2.

Clearly, sections of sets have the following properties.



§1 Fubini’s Theorem 99

Property 4.2.

(1) A ∩B = ∅⇒ Aωi ∩Bωi = ∅.

(2) A ⊃ B ⇒ Aωi ⊃ Bωi .

(3)

(⋃
n
A(n)

)
ωi

=
⋃
n
A

(n)
ωi .

(4)

(⋂
n
A(n)

)
ωi

=
⋂
n
A

(n)
ωi ,

(5) (A−B)ωi = Aωi −Bωi .

To prove (4.1.1), we need to clarify that the right hand side of this

formula makes sense by verifying that ∀ω1 ∈ Ω1, we have Aω1 ∈ A2,∫
Aω1

f(ω1, ω2)µ2( dω2) is a A1-measurable in ω1 and has integral with re-

spect to µ1.

Theorem 4.3. Let A ∈ A1 × A2. Then for any ωi ∈ Ωi, i = 1, 2, we have

Aω1 ∈ A2 and Aω2 ∈ A1.

Proof. Let

M = {A ∈ A1 ×A2 : ∀ω1 ∈ Ω1, Aω1 ∈ A2; ∀ω2 ∈ Ω2, Aω2 ∈ A1} .

Clearly M includes the semi-algebra {A1 ×A2 : A1 ∈ A1, A2 ∈ A2}. By

Property 4.2, we see that M is a σ-algebra, so it includes A1 ×A2. �

Recall that for a function f and a σ-algebra A , f ∈ A means that f is

A -measurable.

Theorem 4.4. For any A1×A2-measurable function f and any ∀ωi ∈ Ωi, i =

1, 2, we have fω1(·) := f(ω1, ·) ∈ A2 and fω2(·) := f(·, ω2) ∈ A1.

Proof. For any B ∈ B, we have

f−1
ω1

(B) = {ω2 ∈ Ω2 : fω1(ω2) ∈ B}

=
{
ω2 ∈ Ω2 : (ω1, ω2) ∈ f−1(B)

}
=
[
f−1(B)

]
ω1

which is in A2 by Theorem 4.3. So, fω1 is A2-measurable. Similarly, fω2 is

A1-measurable. �

The functions fω1 and fω2 are called the section functions f at ω1 and

ω2, respectively.
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Theorem 4.5. Let f be a nonnegative measurable function on (Ω1×Ω2,A1×
A2). Then∫

Ω1

f(ω1, ω2)µ1( dω1) ∈ A2,

∫
Ω2

f(ω1, ω2)µ2( dω2) ∈ A1.

Proof. By the construction of measurable functions and the properties of

integrals, we only need prove for f = 1A with A ∈ A1 × A2, and by the

monotone class theorem, it suffices to consider A = A1 × A2, Ai ∈ Ai, i =

1, 2. In this case, we have∫
Ω1

f(ω1, ω2)µ1( dω1) = µ1(A1)1A2 ∈ A2,∫
Ω2

f(ω1, ω2)µ2( dω2) = µ2(A2)1A1 ∈ A1. �

Theorem 4.6 (Fubini’s theorem). Let f be an A1×A2-measurable function

having integral with respect to µ1 × µ2. Then∫
Ω1×Ω2

f dµ1 × µ2 =

∫
Ω1

(∫
Ω2

f(ω1, ω2)µ2( dω2)

)
µ1( dω1)

=

∫
Ω2

(∫
Ω1

f(ω1, ω2)µ1( dω1)

)
µ2( dω2).

Proof. By symmetry, we only prove the first equation.

(1) The equation holds obviously for f = 1A1×A2 (Ai ∈ Ai, i = 1, 2).

From this, the monotone class theorem implies the equation holds for f =

1A (A ∈ A1 ×A2).

(2) By the linear property of integral and step (1) in the proof, we

obtain the equation for a simple function f . Combining this with Theo-

rem 2.12-(4) and Theorem 3.5, we prove the equation for a nonnegative

measurable function f .

(3) For a general measurable function f such that (µ1 × µ2)(f) exists,

assume for instance (µ1 × µ2)(f−) <∞. By step (2) we have

∞ >

∫
Ω1×Ω2

f− d(µ1 × µ2) =

∫
Ω1

µ1( dω1)

∫
Ω2

f−(ω1, ·) dµ2.
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Thus µ1-a.e. ω1,
∫

Ω2
f−(ω1, ·) dµ2 <∞, so that∫

Ω2

f(ω1, ·) dµ2 =

∫
Ω2

f+(ω1, ·) dµ2 −
∫

Ω2

f−(ω1, ·) dµ2.

Combining this with the linear property of integral and step (2), we finish

the proof. �

By applying Theorem 4.6 to f1A in place of f , we derive (4.1.1). More-

over, by induction, Fubini’s theorem can be extended to multi-product

measure spaces.

Let (Ωi,Ai, µi), 1 6 i 6 n be σ-finite measure spaces and f be a mea-

surable function having integral on the product measure space (Ω,A , µ) :=

(Ω1 × · · · × Ωn,A1 × · · · ×An, µ1 × · · · × µn). Then∫
Ω
f dµ =

∫
Ωi1

dµi1

∫
Ωi2

dµi2 · · ·
∫

Ωin

f dµin ,

where (i1, · · · , in) is any permutation of (1, · · · , n). This means that all

integrals in the right hand side exist, and the iterated integral equals to the

multiple integral in the left hand side.

2 Infinite Product Probability Space

Let {(Ωt,At,Pt)}t∈T be a family of a probability spaces, where T is an

infinite index set. Let

ΩT =
∏
t∈T

Ωt = {ω : ω = (ωt)t∈T , ωt ∈ Ωt, t ∈ T} .

We intend to define the produce σ-algebra AT =
∏
πt∈TAt and the product

probability measure PT =
∏
t∈T Pt.

Following the line in the finite product setting, one may define AT as

the σ-algebra generated by the class of rectangles{∏
t∈T

At : At ∈ At, t ∈ T

}
.
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However, this class is not a semi-algebra as required by the measure exten-

sion theorem, and for each rectangle
∏
t∈T

At, its probability
∏
t∈T
Pt(At) is

usually ill-defined. For this reason, we only allow the set {Pt(At) : t ∈ T}
to be finite, so a natural way is to restrict ourselves to the following class of

measurable cylindrical sets. This also explains why we only study infinite

product probability measures rather than infinite product measures.

Definition 4.7. A set like

BTN ×
∏
t/∈TN

Ωt

is called a measurable cylindrical set, where TN b T (i.e. finite subset), and

BTN ∈ ATN :=
∏
t∈TN

At.

In this case, BTN is called the base of the cylindrical set (it is not unique!).

Let A T be the total of measurable cylindrical sets, which is obviously an

algebra. Define infinite product σ-algebra by

AT =
∏
t∈T

At := σ(A T ).

Theorem 4.8. There exists a unique probability P on (ΩT ,AT ) such that

P
(
ATN × ΩT cN

)
=

∏
t∈TN

Pt

(ATN ) , (4.2.1)

where

TN b T, ΩT cN
=
∏
t/∈TN

Ωt, ATN ∈ ATN .

Proof. (1) Formula (4.2.1) defines a function on A T , so we need prove this

function of sets is independent of the choice of repressions of the cylindrical

set.

Let ATN × ΩT cN
= AT

′
N × Ω(T ′N )c with TN , T

′
N b T , ATN ∈ ATN , AT

′
N ∈

AT ′N
. Let T ′′N = TN ∩ T ′N . Then there exists AT

′′
N ∈

∏
t∈T ′′N

At such that

ATN = AT
′′
N ×

∏
t∈TN−T ′′N

Ωt, A
T ′N = AT

′′
N ×

∏
t∈T ′N−T

′′
N

Ωt.
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Hence ∏
t∈TN

Pt

 (ATN ) =

∏
t∈T ′′N

Pt

 (AT
′′
N ) =

∏
t∈T ′N

Pt

 (AT
′
N ).

(2) P is finitely additive.

Assume {Ak}nk=1 ⊂ A T are mutually disjoint. For 1 6 k 6 n, let Tk be

a finite subset of T and ATk ∈
∏
t∈Tk

At such that Ak = ATk × ΩT ck
. Then

n∑
k=1

Ak =: A0 ∈ A T .

Let T0 ⊂ T be a finite set and AT0 ∈
∏
t∈T0

At such that A0 = AT0 × ΩT c0
.

Set

TN =
n⋃
k=0

Tk, A
TN
k = ATk ×

∏
t∈TN−Tk

Ωt.

Then

Ak = ATNk × Ω(TN )c , n > k > 0.

Clearly {
ATNk

}n
k=1
⊂
∏
t∈TN

At

are mutually disjoint, and
n∑
k=1

ATNk = A0. For any finite T ′ ⊂ T ,

PT ′ :=
∏
t∈T ′

Pt

is a product measure on (ΩT ′ ,AT ′), but PT ′ is a finitely additive function

on A T\T ′ , defined by (4.2.1) with T \ T ′ as its total index set. Since

PTN :=
∏
t∈TN

Pt is a probability measure, it follows from the definition of P

and the finite additivity of measure that
n∑
k=1

P(Ak) = P(A0).

(3) Since A T is a set algebra and P is finitely additive, to get the σ-

additivity of P, we need only prove it is continuous at ∅. We use the

method of proof by contradiction.
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Let {An}n>1 ⊂ A T be decreasing and ∃ε > 0 such that P(An) > ε for

every n > 1. Now we prove
∞⋂
n=1

An 6= ∅. Note that for any n > 1, there

exist a finite set Tn ⊂ T and ATnn ∈
∏
t∈Tn

At such that An = ATnn ×
∏
t/∈Tn

Ωt.

Let T∞ =
∞⋃
n=1

Tn. Then T∞ is countable, denoted by T∞ = {t1, t2, · · · } .

To prove
∞⋂
n=1

An 6= ∅, we need only prove ∃(ω̄t1 , · · · , ω̄tn , · · · ) ∈
∏

t∈T∞
Ωt,

such that
∞⋂
j=1

Aj(ω̄t1 , · · · , ω̄tn , · · · ) 6= ∅, where Aj(ω̄t1 , · · · , ω̄tn , · · · ) is sec-

tion of Aj at (ω̄t1 , · · · , ω̄tn , · · · ).
Firstly we set B

(j)
1 =

{
ωt1 ∈ Ωt1 : P{t1}(Aj(ωt1)) > ε

2

}
. Since

P{t1}(Aj(ωt1)) = Pt∈Tj\{t1}
(
A
Tj
j (ωt1)

)
is At1-measurable, B

(j)
1 ∈ At1 . Fubini’s theorem gives

ε 6 P(Aj) =

∫
Ωt1

P{t1} (Aj(ωt1)) dPt1 6 Pt1
(
B

(j)
1

)
+
ε

2
,

which implies that Pt1
(
B

(j)
1

)
> ε

2 . Since
{
B

(j)
1

}∞
j=1

is decreasing, we have

Pt1

(
∞⋂
j=1

B
(j)
1

)
> ε

2 , so ∃ω̄t1 ∈
∞⋂
j=1

B
(j)
1 , that is, P{ti}(Aj(ω̃tj )) > ε

2 for every

j > 1.

In general, assume for some k > 1 we have (ω̄t1 , · · · , ω̄tk) ∈ Ωt1×· · ·Ωtk

such that

P{t1,··· ,tk}(Aj(ω̄t1 , · · · , ω̄tk)) >
ε

2k
, ∀j > 1.

Let

B
(j)
k+1 =

{
ωtk+1

∈ Ωtk+1
: P{t1,··· ,tk,tk+1}(Aj(ω̄t1 , · · · , ω̄tk , ωtk+1

)) >
ε

2k+1

}
.

Then it follows from Fubini’s theorem and induction that
ε

2k
6 P{t1,··· ,tk}(Aj(ω̄t1 , · · · , ω̄tk))

=

∫
Ωtk+1

P{t1,··· ,tk,tk+1}(Aj(ω̄t1 , · · · , ω̄tk , ωtk+1
)) dPtk+1

(ωtk+1
)

6 P
(
B

(j)
k+1

)
+

ε

2k+1
.
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Thus P
(
B

(j)
k+1

)
> ε

2k+1 for every j > 1. Hence ∃ω̄tk+1
∈
∞⋂
j=1

B
(j)
k+1, i.e.

P{t1,··· ,tk,tk+1}(Aj(ω̄t1 , · · · , ω̄tk , ω̄tk+1
)) >

ε

2k+1
, ∀j > 1.

By induction, it follows that ∃ {ω̄ti ∈ Ωti}i>1 such that
∞⋂
j=1

Aj(ω̄t1 , · · · , ω̄tn) 6=

∅ for every n > 1.

Take and fix ω̃ ∈
∏

t6∈T∞
Ωt and let ω ∈

∏
t∈T

Ωt such that

ωt =

{
ω̄t, for t ∈ T∞,
ω̃t, for t 6∈ T∞.

Then for any j > 1, there exists Nj such that Tj ⊂
{
t1, · · · , tNj

}
, but

Aj(ω̄t1 , · · · , ω̄tNj ) 6= ∅, so ω ∈ Aj for every j > 1. Hence ω ∈
⋂
j
Aj . �

Theorem 4.9. Let {Ft}t∈T be a family of probability distributions. Then

there exists a family of independent random variables {ξt}t∈T such that ξt has

distribution function Ft for each t ∈ T .

Proof. Assume Pt is probability measure induced by Ft on (R,B). Let

(Ωt,At,Pt) = (R,B,Pt), Ω = RT , A = BT , P =
∏
t∈T
Pt.

Then (ξt(ω) := ωt)t∈T are random variables on (Ω,A ,P), and

P(ξt < xt) = Pt((−∞, xt)) = Ft(xt).

Obviously they are independent. �

3 Transition Measure and Transition Probability

As shown in Theorem 4.9 that the joint distribution of independent random

variables is a product measure. In this section we aim to construct non-

product measures on a product measurable space. To this end, we introduce

the notion of transition measure, in particular transition probability, which

describes the conditional distribution of a random variable given the value

of another random variable, see Chapter 5 for details.
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Definition 4.10. Let (Ωi,Ai)(i = 1, 2) be two measurable spaces. A map

λ : Ω1×A2 → [0,∞] is called a transition measure from (Ω1,A1) to (Ω2,A2),

or simply a transition measure on Ω1×A2, if it has the following two properties:

(1) λ(ω1, ·) is a measure on (Ω2,A2) for any ω1 ∈ Ω1,

(2) λ(·, A) is a measurable function of A1 for any A ∈ A2.

If there exists a partition {Bn}n∈N ⊂ A2 of Ω2 such that λ(ω1, Bn) <∞ (n >

1, ω1 ∈ Ω1), then λ is called σ-finite. Furthermore, if sup
ω1∈Ω1

λ(ω1, Bn) <

∞ (∀n > 1), λ is called uniformly σ-finite. If λ(ω1, ·) is a probability for any

ω1 ∈ Ω1, then λ is called a transition probability.

To construct non-product measures on a product space by using transi-

tion measures, and to extend Fubini’s theorem for the integral with respect

to such a measure, we need the following theorem.

Theorem 4.11. Let λ be a σ-finite transition measure on Ω1 ×A2, and let

f be a nonnegative measurable function on A1 ×A2. Then∫
Ω2

f(·, ω2)λ(·, dω2)

is A1-measurable.

Proof. By Theorem 2.12 and Theorem 3.8, we need only to prove for f

being an indicator function. Moreover, by the monotone class theorem, it

suffices to consider f = 1A×B for some A ∈ A1, B ∈ A2. In this case,∫
Ω2

f(·, ω2)λ(·, dω2) = λ(·, B)1A,

which is obviously A1-measurable. �

Theorem 4.12. Let (Ωi,Ai)(i = 1, 2, · · · , n) be finite many measurable

spaces, and let

Ω(k) =

k∏
i=1

Ωi, A (k) =

k∏
i=1

Ai, k = 1, · · · , n.
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If λ1 is a σ-finite measure on A1 and λk is a σ-finite transition measure on

Ω(k−1) ×Ak for each k = 2, · · · , n, then

λ(n)(B) :=

∫
Ω1

· · ·
∫

Ωn

1B(ω1, · · · , ωn)λn(ω1, · · · , ωn−1, dωn) · · ·λ1( dω1)

for any B ∈ A (n) defines a measure on A (n). If {λi}i=2,···n are uniformly

σ-finite, then λ(n) is σ-finite.

Proof. By Theorem 4.11, λ(n) is a well-defined nonnegative function on

A (n). By applying Corollary 3.12 for n many times, we see that that λ(n)

is σ-additive. Hence, it is a measure on A (n).

Now, let {λi}i=2,···n be uniformly σ-finite, we intend to prove that λ(n)

is σ-finite. By induction, we only prove for n = 2.

Since λ1 is σ-finite and λ2 is uniformly σ-finite, we find measurable

partitions {An}n∈N for Ω1 and {Bn}n∈N for Ω2, such that λ1(An) < ∞
and sup

ω1∈Am
λ2(ω1, Bn) < ∞ for all m,n > 1. Then {Ai ×Bj}i,j>1 is a

measurable partition of Ω1 × Ω2 satisfying

λ(2)(Ai ×Bj) =

∫
Ai

λ1( dω1)

∫
Bj

λ2(ω1, dω2) =

∫
Ai

λ2(ω1, Bj)λ1( dω1)

6 sup
ω1∈Ai

λ2(ω1, Bj)λ1(Ai) <∞. �

Theorem 4.13 (Generalized Fubini’s theorem). Let Ω(n), A (n) and λ(n)

be in theorem 4.12, and let f be a measurable function on
(
Ω(n),A (n)

)
. Then

the integral λ(n)(f) exists if and only if at least one of I(f+) and I(f−) is

finite, where

I(f±) :=

∫
Ω1

...

∫
Ωn

f±(ω1, ..., ωn)λn(ω1, · · · , ωn−1, dωn) · · ·λ1( dω1),

and in this case we have

λ(n)(f) =

∫
Ω1

· · ·
∫

Ωn

f(ω1, ..., ωn)λn(ω1, · · · , ωn−1, dωn) · · ·λ1( dω1).

Proof. When f = 1B, B ∈ A (n), the formula follows from Theorem 4.12.

Combining this with Theorem 2.12 and Theorem 3.8, we prove the formula
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for all any nonnegative measurable function f . In general, by the definition

of integral, by the formula for nonnegative functions we have λ(n)(f±) =

I(f±), so that λ(n)(f) exists if and only if at least one of I(f+) and I(f−)

is finite, and in this case,∫
f dλ(n) =

∫
f+ dλ(n) −

∫
f− dλ(n) = I(f+)− I(f−)

=

∫
Ω1

dλ1

{∫
Ω2

· · ·
∫

Ωn

f+ dλn · · · dλ2 −
∫

Ω2

· · ·
∫

Ωn

f− dλn...dλ2

}
= · · · =

∫
Ω1

· · ·
∫

Ωn

(f+ − f−) dλn · · · dλ1 =

∫
Ω1

· · ·
∫

Ωn

f dλn · · · dλ1. �

Finally, we construct probability measures on an infinite product mea-

surable space by using a marginal distribution P1 and a sequence of tran-

sition probability measures {Pn}n>1.

Theorem 4.14 (Tulcea’s theorem). Let (Ωn,An)n∈N be a sequence of mea-

surable spaces, and let
(
Ω(n),A (n)

)
be defined in Theorem 4.12. Set

Ω =

∞∏
i=1

Ωi, A =

∞∏
i=1

Ai.

Let P1 be a probability measure on (Ω1,A1), and for each n > 2 let Pn be a

transition probability on Ω(n−1) ×An. Then there exists a unique probability

measure P on (Ω,A ) such that

P

(
B(n) ×

∏
k>n

Ωk

)
= P(n), n ∈ N, B(n) ∈ A (n),

where P(n)
(
B(n)

)
=
∫

Ω1
· · ·
∫

Ωn
1B(n) dPn · · · dP1.

Proof. Let C (∞) be class of all measurable cylindrical sets, which is an

algebra in Ω. As explained in the proof of Theorem 4.8 that P is a well-

defined finitely additive nonnegative function on C (∞) with P(Ω) = 1.

Moreover, by using Theorem 4.13 in place of Fubini’s theorem, the same

argument in the proof of Theorem 4.8 implies the continuity of P at ∅.

Hence P(∞) is a probability on C (∞), which is uniquely extended uniquely

to a probability on (Ω,A ). �
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4 Exercises

1. Prove Property 4.2.

2. Let (Ω,A , µ) be a measure space and let f be a nonnegative measur-

able function. Prove

µ(f) =

∫ ∞
0

µ(f > r) dr =

∫ ∞
0

µ(f > r) dr.

3. Let (Ωi,Ai, µi)(i = 1, 2) be measure spaces, and let A,B ∈ A1 ×A2.

If

µ2 {ω2 : (ω1, ω2) ∈ A} = µ2 {ω2 : (ω1, ω2) ∈ B}

holds for µ1-a.e. ω1, prove (µ1 × µ2)(A) = (µ1 × µ2)(B).

4. Let (Ωi,Ai)(i = 1, 2, 3) be measurable spaces, λ be a σ-finite transi-

tion measure on Ω2 ×A3, and f be a measurable function on (Ω1 ×
Ω3,A1 ×A3. If the integral

g(ω1, ω2) :=

∫
Ω3

f(ω1, ω3)λ(ω2, dω3)

exists for all (ω1, ω2) ∈ Ω1 × Ω2, prove g is A1 ×A2-measurable.

5. Let (Ωi,Ai, µi)(i = 1, 2) be σ-finite measure spaces. Prove that for

any A ∈ A1 ×A2, the following statements are equivalent:

(a) µ1 × µ2(A) = 0.

(b) µ1(Aω2) = 0, µ2-a.e.

(c) µ2(Aω1) = 0, µ1-a.e.

6. If an infinite matrix P = (pij)i,j∈N satisfies

pij > 0,
∑
j∈N

pij = 1, ∀i ∈ N,
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then P is called a transition probability matrix. Let

λ(i, A) =
∑
j∈A

pij , i ∈ N, A ⊂ N.

Prove that λ is a transition probability on N× 2N.

7. Let µ be the counting measure on N, i.e. µ({i}) = 1 for any i ∈ N.
Let

f(i, j) =


i, i = j,

−i, j = i+ 1,

0, other i, j.

Prove ∫
N

(∫
N
f(ω1, ω2)µ( dω2)

)
µ( dω1) = 0, but∫

N

(∫
N
f(ω1, ω2)µ( dω1)

)
µ( dω2) =∞.

Does this contradict Fubini’s theorem?

8. Construct a function f : [0, 1] × [0, 1] → [0, 1] fulfilling the following

conditions:

(a) ∀z ∈ [0, 1], the functions f(z, ·) and f(·, z) are Borel measurable

on [0, 1],

(b) f is not Borel measurable on [0, 1]× [0, 1],

(c) Both
∫ 1

0

(∫ 1
0 f(x, y) dy

)
dx and

∫ 1
0

(∫ 1
0 f(x, y) dx

)
dy exist but

do not equal.

9. Let µk, νk be σ-finite measures on (Ωk,Ak) respectively and νk �
µk (k = 1, 2). Prove that ν1 × ν2 � µ1 × µ2 and

d(ν1 × ν2)

d(µ1 × µ2)
(ω1, ω2) =

dν1

dµ1
(ω1)

dν2

dµ2
(ω2), µ1 × µ2-a.e.
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10. Let (Ωt,At)t∈T be a family of measurable spaces, where At = σ(Ct)

for t ∈ T . For each t ∈ T , let

πt :
∏
t∈T

Ωt 3 ω 7→ ωt ∈ Ωt

be the projection onto the t-th space. Prove

∏
t∈T

At = σ

(⋃
t∈T

π−1
t (Ct)

)
.

11. Let B∞ be the product Borel σ-algebra on R∞ :=
∏
i∈NR. Prove

that the following sets are B∞-measurable:

(a)

{
x ∈ R∞ : sup

n
xn < a

}
,

(b)

{
x ∈ R∞ :

∞∑
n=1
|xn| <∞

}
,

(c)
{
x ∈ R∞ : lim

n→∞
xn exists and is finite

}
,

(d)
{
x ∈ R∞ : lim

n
xn 6 a

}
.

12. Let F be a probability distribution function on R. Prove∫
R

(F (x+ c)− F (x)) dx = c

for any constant c ∈ R, and if F is continuous then∫
R
F (x) dF (x) =

1

2
.





Chapter 5

Conditional Expectation and

Conditional Probability

To describe the influence of a class of events (sub σ-algebra) C to a random

variable ξ, we introduce the conditional expectation (or more generally,

conditional distribution) of ξ given C . When the sub σ-algebra C is induced

by a family of random variables, the conditional expectation refers to the

influence of these random variables to ξ. When ξ runs over the indicator

functions for all measurable sets, the conditional expectation reduces to the

conditional probability.

To define the conditional expectation, we recall the simple case where

the condition is given by an event B. Throughout this chapter, (Ω,A ,P)

is a complete probability space. For any B ∈ A with P(B) > 0, the

conditional probability given B is defined as

P(·|B) :=
P(· ∩B)

P(B)
.

Moreover, for any random variable ξ having expectation, the conditional

expectation E(ξ|B) of a random variable ξ given B is defined as the integral

of ξ with respect to conditional probability. Similarly, if P(Bc) > 0, we

define in the same way the conditional expectation E(·|Bc) under event Bc.

Thus, the conditional expectation of ξ given C = {B,Bc,∅,Ω} is naturally

113
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defined as

E(ξ|C ) = 1BE(ξ|B) + 1BcE(ξ|Bc), (5.0.1)

which is a C -measurable random variable. This is P|C -a.s. well-defined

even if B or Bc is a P-null set.

The aim of this chapter is to define the conditional probability and con-

ditional expectation under an arbitrarily given sub σ-algebra C of A , and

make applications to the study of transition probabilities and probability

measures on product spaces.

1 Conditional Expectation Given σ-Algebra

We first extend the definition in (5.0.1) to a σ-algebra C generated by

countable many atoms. A set B ∈ C is called an atom of C , if ∀B′ ∈
C , B′ ⊂ B, we have B′ = B or B′ = ∅.

Definition 5.1. Let C = σ({Bn : n > 1}) for {Bn}n>1 ⊂ A being a parti-

tion of Ω, and let ξ be a random variable having expectation. Then

E(ξ|C ) :=

∞∑
n=1

E(ξ|Bn)1Bn

is called the conditional expectation of ξ with respect to P given σ-algebra C ,

where E(ξ|Bn)1Bn := 0 if P(Bn) = 0.

To further extend the definition to general sub σ-algebra C , we present

the following result which characterizes the conditional expectation without

using the expression of C .

Proposition 5.2. Let C =σ({Bn : n > 1}) for a partition {Bn}n>1 ⊂ A of

Ω. Then for any random variable ξ having expectation, E(ξ|C ) is C -measurable

and satisfies

E(1Bξ) = E
[
1BE(ξ|C )

]
, ∀B ∈ C .

On the other hand, if η is a C -measurable function such that E(ξ1B) =

E(η1B),∀B ∈ C , then η = E(ξ|C ), P|C -a.s.
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According to Proposition 5.2, we define the conditional expectation

given a general σ-algebra C as follows.

Definition 5.3. Let C ⊂ A be a sub σ-algebra of A , and let ξ be a random

variable having expectation. The conditional expectation E(ξ|C ) of ξ given C

(with respect to P) is defined as the C -measurable function satisfying∫
B
E(ξ|C ) dP =

∫
B
ξ dP, ∀B ∈ C .

To see that Definition 5.3 makes sense, we need to show the existence

and uniqueness of E(ξ|C ), when ξ has expectation. Without loss of gener-

ality, we may assume Eξ− <∞, so that

C 3 B 7→ ϕ(B) :=

∫
B
ξ dP

is a signed measure with ϕ� P|C . By Theorem 3.51, there exists P|C -a.s.

unique f ∈ C such that dϕ = f dP|C , i.e.

ϕ(B) =

∫
B
f dP =

∫
B
ξ dP

holds for B ∈ C .

Definition 5.4. Let C ⊂ A be a σ-algebra. For any A ∈ A ,

P(A|C ) := E(1A|C )

is called the conditional probability of A given C (with respect to P).

Since the conditional expectation is defined via integral, it inherits most

properties of integrals, but in the sense of P|C -a.s. We collect some of them

in the following result, where the convergence theorems can be proved by us-

ing the monotone convergence theorem (Exercise 3), as shown in the proofs

of the corresponding results for integrals. In the same spirit, some inequal-

ities for integrals and expectations (such as Jensen’s inequality, Hölder’s

inequality, Minkowski’s inequality) also hold for conditional expectations,

which are left as exercises as well.

Property 5.5. Assume that the following involved random variables have

expectations.
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(1) E(E(ξ|C )) = Eξ.

(2) If ξ ∈ C , then E(ξ|C ) = ξ.

(3) (Monotonicity) ξ 6 η ⇒ E(ξ|C ) 6 E(η|C ).

(4) (Linear property) E(aξ + bη|C ) = aE(ξ|C ) + bE(η|C ), a, b ∈ R.

(5) (Fatou-Lebesgue convergence theorem) Let η and ζ be integrable. If

η 6 ξn,P-a.e. for any n > 1, then E
(

lim
n→∞

ξn|C
)
6 lim

n→∞
E(ξn|C ).

If η > ξn,P-a.e. for any n > 1, then lim
n→∞

E(ξn|C ) 6 E
(

lim
n→∞

ξn|C
)

.

(6) (Dominated convergence theorem) Let η be integrable. If η 6 ξn ↑
ξ, or |ξn| 6 η for any n > 1 and ξn → ξ a.s., then E(ξn|C ) →
E(ξ|C ), a.s.

Property 5.6. Let ξ, η be random variables such that η ∈ C and Eξη,Eξ
exist. Then

E(ξη|C ) = ηE(ξ|C ).

Proof. Since both E(ξη|C ) and ηE(ξ|C ) is C -measurable, by the definition

of conditional expectation we need only to show∫
C
ξη dP =

∫
C
ηE(ξ|C ) dP, C ∈ C .

By Theorem 2.12 and Property 5.5-(4),(6), it sufficies to prove for ξ =

1A, η = 1B, A ∈ A , B ∈ C , then the proof is finished since in this case we

have ∫
C
ηE(ξ|C ) dP =

∫
C∩B

ξ dP = P(A ∩B ∩ C) =

∫
C
ξη dP. �

Property 5.7. Let r ∈ [1,∞). If ξn
Lr(P)−−−→ ξ, then

E(ξn|C )
Lr(P)−−−→ E(ξ|C ).

Proof. By Jensen’s inequality and the property of conditional expectation,

it follows

E|E(ξn|C )− E(ξ|C )|r = E|E(ξn − ξ|C )|r 6 E(E(|ξn − ξ|r|C ))

= E|ξn − ξ|r → 0 (n→∞). �
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The following result shows that the conditional expectation of ξ under

C can regarded as the average of ξ on each atom of C . This property is

called smoothness of conditional expectation.

Property 5.8. E(ξ|C ) takes constant value on each atom of C . If P(B) > 0

and B is an atom, then

E(ξ|C )(ω) =
1

P(B)

∫
B
ξ dP, ω ∈ B.

Proof. Let B be an atom of C . If ∃ω1, ω2 ∈ B such that

E(ξ|C )(ω1) 6= E(ξ|C )(ω2),

then

C 3 {ω ∈ B : E(ξ|C )(ω) = E(ξ|C )(ω1)}  B

is non-empty. This contradicts the fact that B is an atom.

Let B be an atom with P(B) > 0. Since E(ξ|C ) takes constant value

on B, we have

E(ξ|C )|BP(B) =

∫
B
E(ξ|C ) dP =

∫
B
ξ dP.

Hence E(ξ|C )|B = 1
P(B)

∫
B ξ dP. �

The following result shows that the general definition of conditional

expectation is consistent with that for C induced by countable many atoms.

Property 5.9. Let {Bn}n>1 ⊂ A be a partition of Ω and C = σ({Bn : n > 1}).

Then

E(ξ|C ) =
∞∑
n=1

E(ξ|Bn)1Bn .

In particular, E(ξ|C ) = Eξ for C = {φ,Ω}.

Property 5.10. If C and σ(ξ) are independent, then E(ξ|C ) = Eξ; if C ⊂
C ′, then

E(ξ|C ) = E(E(ξ|C ′)|C ).
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Proof. ∀B ∈ C , 1B and ξ are independent, so∫
B
E(ξ|C ) dP =

∫
B
ξ dP = E1Bξ = (E1B)Eξ = P(B)Eξ =

∫
B
Eξ dP.

Since B ∈ C is arbitrary, it follows E(ξ|C ) = Eξ.

Let C ⊂ C ′. Then ∀B ∈ C∫
B
E(ξ|C ′) dP = E[1BE(ξ|C ′)] = E(E(ξ1B|C ′)) = Eξ1B =

∫
B
ξ dP.

Hence E(ξ|C ) = E(E(ξ|C ′)|C ). �

Finally, we prove that E(ξ|C ) is the L2 optimal approximation of ξ

among C -measurable functions.

Property 5.11 (Optimal mean square approximation). Let ξ ∈ L2(P),C ⊂
A be a sub-σ-algebra. Then E(ξ|C ) ∈ L2(PC ), and E(ξ|C ) is the optimal

approximation of ξ in L2(PC ): ∀η ∈ L2(PC ),

E|ξ − E(ξ|C )|2 6 E|ξ − η|2, E(|ξ − E(ξ|C )|2|C ) 6 E(|ξ − η|2|C ),

and the equalities hold if and only if η = E(ξ|C ), P-a.s.

Proof. We only prove the latter. By Jensen’s inequality,

|E(ξ|C )|2 6 E(|ξ|2|C ),

so E(ξ|C ) ∈ L2(PC ). ∀η ∈ L2(PC ), we have

E(|ξ − η|2|C ) = E(|ξ − E(ξ|C )|2|C ) + E(|η − E(ξ|C )|2|C )

− 2E((η − E(ξ|C ))(ξ − E(ξ|C ))|C ).

Since η − E(ξ|C ) ∈ C , we have

E((η − E(ξ|C ))(ξ − E(ξ|C ))|C ) = (η − E(ξ|C ))E((ξ − E(ξ|C ))|C ) = 0.

Hence

E(|ξ − η|2|C ) > E(|ξ − E(ξ|C )|2|C ),

and the equality holds if and only if η = E(ξ|C ), P-a.s. �
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2 Conditional Expectation Given Function

In this section, we study conditional expectations given the σ-algebra

C = σ(f) = f−1(E )

induced by a measurable map f : (Ω,A ) → (E,E ), where (E,E ) is a

measurable space. In this case, we simply denote E(·|σ(f)) by E(·|f). In

particular, when f is a random variable, i.e. (E,E ) = (Rn,Bn) for some

n > 1, the conditional expectations reflect the influence of f to random

variables under study.

Theorem 5.12. Let ξ be a random variable having expectation, and let f :

(Ω,A )→ (E,E ) be measurable. Then

E(ξ|f) := E(ξ|σ(f)) = g ◦ f,

where g : E → R is a measurable function such that∫
B
g d(P ◦ f−1) =

∫
f−1(B)

ξ dP, B ∈ E .

Proof. Since E(ξ|σ(f)) is σ(f)-measurable, by Theorem 2.22 there exists

a measurable function g : (E,E ) → (R,B) such that E(ξ|σ(f)) = g ◦ f .

Combining this with the integral transform formula (Theorem 3.27) and

the definition of conditional expectation, we derive the desired formula.

�

By taking ξ = 1A(A ∈ A ) in Theorem 5.12, we obtain the following

result.

Corollary 5.13. For any A ∈ A we have P(A|σ(f)) = g ◦ f , where g :

(E,E )→ (R,B) is measurable satisfying∫
B
g d(P ◦ f−1) = P(A ∩ f−1(B)), ∀B ∈ E .

As explained in the beginning of this chapter that the conditional ex-

pectation given an event B can be formulated as the integral with respect
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to the conditional probability P(·|B). As we have already defined the con-

ditional expectation E(·|C ) and the conditional probability P(·|C ), we wish

to establish the same link of them, i.e. to formulate E(ξ|C ) as the integral

of ξ with respect to P(·|C ). However, for each event A, P(A|C ) is only P-

a.s. defined. So, to establish the desired formula, we need to fix a P-version

(i.e. a point-wisely defined function) in the class of of P(A|C ), denoted by

PC (·, A). If PC happens to be a transition probability on (Ω,C )× (Ω,A ),

then we will be able to verify the formula E(ξ|C ) =
∫

Ω ξ dPC . Such a tran-

sition probability is called the regular conditional probability given C .

3 Regular Conditional Probability

§ 5.3.1 Definition and properties

Definition 5.14 (Regular conditional probability). Let C ⊂ A be a sub

σ-algebra of A . A transition probability PC on (Ω,C )× (Ω,A ) is called the

regular conditional probability given C (with respect to P), if

PC (·, A) = E(1A|C ) = P(A|C ), ∀A ∈ A .

Obviously, the regular conditional expectation is P-a.s. unique. If it

exists, we may formulate the conditional expectation given C by the integral

with respect to PC .

Theorem 5.15. Let PC be the regular conditional probability given C . Then

for any random variable ξ having expectation,

E(ξ|C ) =

∫
Ω
ξPC (·, dω).

Proof. By definition, formula holds for ξ being an indicator function. Then

the proof is finished by Theorem 2.12, Theorem 3.5 and the linearity of

integrals. �

By the link of the regular conditional probability and the conditional

expectation, properties of conditional expectation can be formulated by
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using the regular conditional probability. Below we only reformulate one

property as example.

Theorem 5.16. Let C ⊂ C ′ ⊂ A be a sub σ-algebras, and let PC and

PC ′ be the associated regular conditional probabilities. Then for any random

variable ξ ∈ C and ξ′ ∈ C ′ such that Eξξ′ and Eξ exist, there holds∫
(ξ′ξ)(ω)PC (·, dω) =

∫
ξ′(ω′)

[∫
ξ(ω)PC ′(ω′, dω)

]
PC (·, dω′).

By the integral transformation theorem, the expectation of a random

variable ξ can be formulated as the integral of identity function with re-

spect to the distribution of ξ, which only depends the restricted probability

measure on the σ-algebra induced by ξ. Correspondingly, in the following

we introduce the regular conditional distribution and mixed conditional

distribution of ξ given C .

§ 5.3.2 Conditional distribution

Definition 5.17. Let ξT = {ξt : t ∈ T} be a family of random variables on

(Ω,A ,P), and let C ⊂ A be a sub σ-algebra of A .

(1) A transition probability on (Ω,C )× (Ω, σ(ξT )) is called the regular con-

ditional distribution of ξT under C , if

PC (·, A) = P(A|C ), A ∈ σ(ξT ).

(2) A transition probability PC
ξT

on (Ω,C ) × (RT ,BT ) is called a mixed

conditional distribution of ξT under C , if

PC
ξT

(·, B) = P(ξ−1
T (B)|C ), B ∈ BT .

Theorem 5.18. Let g : RT → R be Borel measurable such that Eg(ξT )

exists. Let PC and PC
ξT

be, respectively, the regular conditional distribution

and mixed conditional distribution of ξ given C exist, then

E(g(ξT )|C ) =

∫
Ω
g(ξT (ω))PC (·, dω) =

∫
RT
g(xT )PC

ξT
(·, dxT ).
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Proof. As explained many times that the desired formulae follow from those

with g = 1B, B ∈ BT . �

Theorem 5.19. If the conditional distribution of ξT given C exists, then its

mixed conditional distribution exists too. When ξT (Ω) ∈ BT , the converse

assertion also holds.

Proof. Let PC be the conditional distribution of ξT given C . Then

PC
ξT

(ω,B) = PC (ω, ξ−1
T (B)), B ∈ BT

gives the mixed conditional distribution. Conversely, if PC
ξT

exits and

ξT (Ω) ∈ BT , then for any A ∈ σ(ξT ) there exists B ∈ BT such that

A = ξ−1
T (B), so that ξT (A) = B ∩ ξT (Ω) ∈ BT . Hence we can define the

regular conditional distribution as PC (·, A) = PC
ξT

(·, ξT (A)). �

§ 5.3.3 Existence of regular conditional probability

We first prove the existence of mixed conditional distribution.

Theorem 5.20. Let ξ = (ξ1, ξ2, · · · , ξn) be an n-dimensional random vari-

able on (Ω,A ,P) and C be a sub σ-algebra of A . Then PC
ξ exists, hence

when ξ(Ω) ∈ Bn, the conditional distribution of ξ under C exists.

Proof. To construct PC
ξ (ω, ·), we need only to determine the corresponding

probability distribution function. By the left continuity, it suffices to fix

the distribution function on a countable dense subset of R̄n, say, on the

rational number space Qn. For any r ∈ (Q∪{∞})n, we fix a C -measurable

function F (·; r) in the class P(ξ < r|C ). Obviously, F has the following

properties: there exists a P-null set N such that

(1) ∀a, b ∈ Qn, a 6 b,

∆b,aF (ω; ·) = P(ξ ∈ [a, b)|C )(ω) > 0, F (ω; b) > F (ω; a), ω /∈ N ;

(2) lim
N3m→∞

F (ω;m, · · · ,m) = 1, ω /∈ N ;
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(3) For any 1 6 i 6 n, let r
(i)
m ∈ Q̄n such that the i-th component is

−m and others are ∞. Then

lim
N3m→∞

F (ω; rm) = 0, ω /∈ N ;

(4) ∀r0 ∈ Qn,

lim
N3m→∞

F (ω; r0 −
1

m
) = F (ω; r0), ω /∈ N.

Let

FC (ω; r) =

{
F (ω; r), ω ∈ N c;

1(0,∞)(r), ω ∈ N, r ∈ Qn.

Moreover, for each x ∈ Rn, let

FC (ω;x) = lim
r↑x

FC (ω; r),

which is well defined by the increasing property. Then ∀ω ∈ Ω, FC (ω; ·)
is a probability distribution function, so it induces a unique probability

measure PC
ξ (ω; ·) on (Rn,Bn) such that PC

ξ (ω; (−∞, x)) = FC (ω;x) for

ω ∈ Ω and x ∈ Rn.

Finally,

Π = {(−∞, r) : r ∈ Qn} , Λ =
{
B ∈ Bn : PC

ξ (·, B) = P(ξ ∈ B|C )
}
.

Then Π is a π-system, Λ ⊃ Π, and Λ is a λ-system. By the monotone

class theorem, we obtain Λ = Bn, so that PC
ξ is the mixed conditional

distribution of ξ given C . �

As a consequence of Theorem 5.20, we confirm the existence of regular

probability measure for (Ω,A ,P) = (Rn,Bn,P).

Theorem 5.21. Let (Ω,A ,P) = (Rn,Bn,P). Then for any sub σ-algebra

C of Bn, there exists the regular conditional probability PC .

Proof. Let ξ(x) = x for x ∈ Rn. Then σ(ξ) = Bn and PC
ξ is just the regular

conditional probability of P given C . �
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As an application of the regular conditional probability, any probability

measure on Rn can be induced by a marginal distribution together with

some transition probabilities as in Theorem 4.12.

Theorem 5.22. Let P be a probability on (Rn,Bn). Then there exist prob-

ability P1 on B and transition probabilities Pk(x1, x2, · · · , dxk) on Rk−1×B

for k = 2, · · · , n, such that

P(B)=

∫
R
· · ·
∫
R

1B(x1, · · · , xn)Pn(x1, · · · , xn−1, dxn) · · ·P1( dx1), B ∈ Rn.

Proof. By induction, we only prove for n = 2. In this case, let C = {A×R :

A ∈ B}, and for any B1, B2 ∈ B and B ∈ B2,

P1(B1) = P(B1 × R), P2(x1, B2) = PC ((x1, 0),R×B2),

P̃(B) =

∫
R

dP1(x1)

∫
R

1BP2(x1, dx2).

Noting that P2(x1, B2) = PC ((x1, x2),R×B2) for any x2 ∈ R since {(x1, x2) :

x1 ∈ R} is an atom of C on which the conditional probability is constant,

we obtain

P(B1 ×B1) =

∫
R

1B1(x1)P1( dx1)

∫
R

1B2(x2)P2(x1, dx2)

=

∫
R2

1B1×R(x1, x2)P2(x1, B2)P( dx1, dx2)

= E[E(1B1×B2 |C )] = E1B1×B2 = P(B1 ×B2).

This finishes the proof by the uniqueness in the measure extension theorem.

�

4 Kolmogorov’s Consistent Theorem

In this section, we construct probability measures on an infinite product

space by using a family of consistent probability measures on finite product

spaces. For this, we introduce the concept of consistency. Let T be an

infinite index set, and let (Ωt,At) be a measurable space for every t ∈ T .

Recall that ∀T ′ ⊂ T , ΩT ′ :=
∏
t∈T ′

Ωt, A T ′ :=
∏
t∈T ′

At. If S is a finite subset

of T , we write S b T .
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Definition 5.23. The family of probability measures
{
PS : S b T

}
is called

consistent, if each PS is a probability measure on A S , and

PS(AS) = PS
′
(
AS × ΩS′−S

)
, AS ∈ A S , S ⊂ S′ b T.

Theorem 5.24 (Kolmogorov’s consistent theorem). Let (Ωt,At) = (R,B)

for t ∈ T , and let
{
PS : S b T

}
be a family of consistent probability measures.

Then there exists a unique probability measure P on (RT ,BT ) such that

P(BS × RT−S) = PS(BS), S b T, BS ∈ BS .

Proof. (1) By the consistency, it is easy to see that P is a well defined

finite-additive measure on the class C T of measurable cylindrical sets, and

P(RT ) = 1. So, by the measure extension theorem, it suffices to verify the

σ-additivity of P.

(2) When T is countable, we may let T = N. By Theorem 5.22, there

exist probability P1 on R and transition probabilities Pn on Rn−1 ×B for

each n > 2 such that P{1,2,··· ,n} = Pn ·Pn−1 · · ·P1,∀n > 2. Then the desired

assertion follows from Tulcea’s theorem.

(3) In general, we need only to prove that P is continuous at ∅. Let

{An}n>1 ⊂ C T with An ↓ ∅. For any n > 1, there exists Tn b T such

that An = ATn × RT\Tn and ATn ∈ BTn . Set T∞ =
∞⋃
n=1

Tn. Then T∞ is

countable. By step (2), P is σ-additive on the algebra C T∞ × RT\T∞ , so

that Theorem 1.34 implies that P(An) ↓ 0 (n→∞). �

Remark 5.25. The proof of Theorem 5.24 mainly uses Theorem 5.22 and

Tulcea’s theorem, where the latter works for general (Ωt,At). Note that The-

orem 5.22 can be extended to a Polish space in place of Rn, see Exercise 20 in

this chapter. So, Theorem 5.24 can be extended to the case that each (Ωt,At)

is a Polish space.

5 Exercises

1. Prove Proposition 5.2.
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2. For a sequence of random variables 0 6 ξn ↑ ξ, prove E(ξn|C ) ↑
E(ξ|C ).

3. Prove Property 5.5.

4. Prove Hölder’s inequality

E(ξη|C ) 6 E(|ξ|p|C )1/pE(|η|q|C )1/q,

for constants p, q > 1 such that 1
p + 1

q = 1.

5. Formulate and prove Jensen’s and Minkowski’s inequalities for con-

ditional expectations.

6. Prove Corollary 5.9.

7. Construct a probability space (Ω,A ,P), sub σ-algebras C1 and C2 of

A , and an integrable random variable ξ such that

E(ξ|C1 ∩ C2) 6= E(E(ξ|C1)|C2).

8. Deonte total rational numbers by x1, x2, · · · and let

F (x) =

∞∑
n=1

2−n1(xn,∞)(x), x ∈ R.

Prove that F is a probability distribution function on R.

9. (Martingale) Let {An}n>1 be a sequence of increasing sub σ-algebras

of A . If a sequence of random variables {ξn}n>1 satisfies

E(ξn+1|An) = ξn, n > 1,

then it is called a martingale sequence. For an integrable random

variable ξ, prove that ξn = E(ξ|An) is a martingale sequence.



§5 Exercises 127

10. (Markov chain) Let {ξn}n>1 be a sequence of random variables. Set

An = σ({ξm : m 6 n}).

If

E(ξn+1|An) = E(ξn+1|ξn), n > 1,

then {ξn}n>1 is called a Markov chain. Let {Xn}n>1 be a sequence

of independent random variables. Prove that {ξn =
n∑

m=1
Xm} is a

Markov chain.

11. Let {ξn}n>1 be a sequence of random variables, and let

An = σ({ξm : m 6 n}), A n = σ({ξm : m > n}), n > 1.

Prove that {ξn}n>1 is a Markov chain if and only if one of the following

conditions holds.

(a) E(ξm|An) = E(ξm|ξn),m > n > 1.

(b) E(η|An) = E(η|ξn), η ∈ A n, n > 1.

(c) ∀η ∈ An, ζ ∈ A n such that η, ζ, ηζ are integrable, there holds

E[ηζ|ξn] = E[η|ξn]E[ζ|ξn], n > 1.

12. Let matrix P = (pij)
∞
i,j=0 satisfy pij > 0,

∞∑
j=0

pij = 1. Construct

a probability space (Ω,A ,P) and a sequence of random variables

{ξn}n>0 such that

P(ξn+1 = j|ξn = i) = pij , n, i, j > 0.

13. Let ξ ans η be random variables such that E(ξ|C ) = η and Eξ2 =

Eη2 <∞. Prove that ξ = η, a.s.

14. Let ξ ∈ L1(P). Prove that the family of random variables

{E(ξ|C ) : C is sub σ-algebra of A }

is uniformly integrable.
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15. Let ξ and η be independent identically distributed such that Eξ exists.

Prove

E(ξ|ξ + η) =
1

2
(ξ + η).

16. Let (Ω,A ,P) be a probability space, let (E,E ) be a measurable space,

and let T : Ω → E be a measurable map. Prove that for any sub σ-

algebra C of E , there holds

P
(
T−1(B)|T−1(C )

)
= (P ◦ T−1)(B|C ) ◦ T, B ∈ E .

17. For an event P(A) > 0, denote PA = P(·|A). Prove that for any

B ∈ A and sub σ-algebra C of A ,

PA(B|C ) =
P(A ∩B|C )

P(A|C )
.

18. (a) Let C1 ⊂ C2 be sub σ-algebras of A , and let ξ be a random

variable with Eξ2 <∞. Prove

E((ξ − E(ξ|C1))2) > E((ξ − E(ξ|C2))2).

(b) Let Var(ξ|C ) = E((ξ − E(ξ|C ))2|C ). Prove

Var(ξ) = E(Var(ξ|C )) + Var(E(ξ|C )).

19. Let Ci, i = 1, 2, 3 be sub σ-algebrasof A , and let Cij = σ(Ci∪Cj), 1 6

i, j 6 3. Prove that the following statements are equivalent each

other:

(a) P(A3|C12) = P(A3|C2), ∀A3 ∈ C3,

(b) P(A1 ∩A3|C2) = P(A1|C2)P(A3|C2), ∀A1 ∈ C1, A3 ∈ C3,

(c) P(A1|C23) = P(A1|C2), ∀A1 ∈ C1.

20. Let P be a probability on a Polish (i.e. complete separable metric)

space E. Then for any sub σ-algebra C of the Borel σ-algebra B(E),

the regular conditional probability PC exists.



Chapter 6

Characteristic Function and

Weak Convergence

We have learnt the characteristic function of a random variable, which is

determined by the distribution function according to the L-S representa-

tion of expectation, and has better analysis properties than the distribution

function. In this chapter, we study characteristic functions for general finite

measures on Rn, and establish an inverse formula to show that the char-

acteristic function of a random variable also determines the distribution

function. Therefore, we can use the convergence of characteristic functions

to define the convergence of finite measures or random variables, which is

called the weak convergence, and the associated topology on the space of

finite measures is called weak topology. More generally, we will introduce

several different type convergences for finite measures on a metric space,

and present some equivalent statements for the weak convergence. In par-

ticular, the weak convergence for the distributions of random variables is

equivalent to the convergence in distribution.

129
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1 Characteristic Function of Finite Measure

§ 6.1.1 Definition and properties

Definition 6.1. Let µ be a finite measure on (Rn,Bn). The characteristic

function (or Fourier-Stieltjes transform) of µ is defined as

fµ(t) =

∫
Rn

ei〈t,x〉µ( dx), t ∈ Rn.

Obviously, characteristic function has the following properties.

Property 6.2. Let ā be the conjugate number of a ∈ C.

(1) Let µ be a finite measure on Rn. Then for any t ∈ Rn, we have

|fµ(t)| 6 fµ(0) = µ(Rn), f̄µ(t) = fµ(−t)

and the increment inequality

|fµ(t)− fµ(t+ h)|2 6 2fµ(0)[fµ(0)− Refµ(h)], h ∈ Rn.

Consequently, fµ is uniformly continuous.

(2) Let µk be a finite measure on Rmk (k = 1, 2, · · · , n), and let µ :=∏n
k=1 µi. Then

fµ(t) =
n∏
k=1

fµk

(
t(mk)

)
, t =

(
t(m1), · · · , t(mn)

)
∈ Rm1+···+mn .

Proof. We only prove the the increment inequality, since other assertions

are obvious. Since fµ(0) = µ(Rn), by the Schwarz inequality, we have

|fµ(t)− fµ(t+ h)|2 6 fµ(0)

∫
Rn

∣∣∣ei 〈t,x〉 − ei 〈t+h,x〉
∣∣∣2 µ( dx)

6 fµ(0)

∫
Rn

∣∣∣ei 〈h,x〉 − 1
∣∣∣2 µ( dx)

= 2fµ(0)

∫
Rn

(1− cos〈h, x〉)µ( dx)

= 2fµ(0)(f(0)− Refµ(h)).

�
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Finally, we characterize the derivatives of fµ.

Proposition 6.3. Let µ be a finite measure on (R,B) and let n > 1. If∫
R |x|

nµ( dx) <∞, then fµ has derivatives up to n-th order, and ∀0 6 k 6 n,

f (k)(t) = ik
∫
R
xkeitxµ( dx), t ∈ R.

In particular, ∫
R
xkµ( dx) = i−kf (k)(0).

§ 6.1.2 Inverse formula

In this part, we aim to determine a finite measure by using its characteristic

function via the following inverse formula. An interval [a, b] in Rn is called

µ-continuous for a finite measure µ on Rn, if µ(∂[a, b]) = 0.

Theorem 6.4 (Inverse formula). Let µ be a finite measure on (Rn,Bn).

Then for any µ-continuous interval [a, b] in Rn, we have

µ([a, b))= lim
T→∞

1

(2π)n

∫
[−T,T ]n

n∏
k=1

e−itkak−e−itkbk

itk
f(t1,· · ·, tn) dt1· · · dtn.

Proof. Let I(T ) denote the integral in the right hand side over [−T, T ]n.

By the definition of fµ and Fubini’s theorem, we obtain

I(T ) =

∫
Rn
µ( dx)

∫ T

−T
· · ·
∫ T

−T

n∏
k=1

e−itkak − e−itkbk

itk
e

i
n∑
k=1

tkxk
dt1 · · · dtn

=

∫
Rn

(
n∏
k=1

∫ T

−T

e−itkak − e−itkbk

itk
eitkxk dtk

)
µ( dx)

= 2n
∫
Rn

(
n∏
k=1

∫ T

0

sin tk(xk − ak)− sin tk(xk − bk)
tk

dtk

)
µ( dx)

= 2n
∫
Rn

(
n∏
k=1

∫ T (xk−ak)

T (xk−bk)

sin t

t
dt

)
µ( dx).

Since
∫ r
s

sin t
t dt is bounded of in s 6 r ∈ R, and

∫∞
−∞

sin t
t dt = π, the

dominated convergence theorem implies

lim
T→∞

I(T ) = (2π)nµ((a, b)) = (2π)nµ([a, b)).
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�

To prove that µ is uniquely determined by fµ via Theorem 6.4, we

need to show that µ has plentiful enough continuous intervals, or only rare

intervals are not µ-continuous. To this end, we present the following result.

Lemma 6.5. Let µ be a finite measure on Rn . Then the set

D(µ) := {a ∈ R : ∃k ∈ {1, · · · , n} such that µ({x : xk = a}) > 0}

is at most countable.

Proof. Let

Dm,k(µ) =

{
a ∈ R : µ({x : xk = a}) > 1

m

}
, m > 1, 1 6 k 6 n.

Then D(µ) =
⋃
k,m

Dm,k(µ). As µ is finite, each Dm,k(µ) is a finite set, so

that D(µ) is at most countable. �

Lemma 6.6. If an interval [a, b] in Rn is such that all components of a and

b are in the set C(µ) := R\D(µ), then it is µ-continuous.

Proof. Let a = (ak)16k6n and b = (bk)16k6n such that

{ak, bk : 1 6 k 6 n} ⊂ C(µ).

Then

∂[a, b] ⊂
n⋃
k=1

{xk = ak or bk}

is a µ-null set. �

Proposition 6.7. Let µ1 and µ2 be finite measures on Rn. If µ1 and µ2 are

equal on their common continuous intervals, then µ1 = µ2. Consequently, a

finite measure on Rn is uniquely determined by its characteristic function.

Proof. By Theorem 6.4, we need only to prove the first assertion. As

D(µ1) ∪ D(µ2) is at most countable, C := C(µ1) ∩ C(µ2) is dense in R.
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∀[a, b) ⊂ Rn and 1 6 k 6 n, ∃{a(m)
k }, {b

(m′)
k } ⊂ C and a

(m)
k ↑ ak, b

(m′)
k ↑ bk.

From the continuity of finite measure and the definition of C, it follows

µ1([a, b)) = lim
m↑∞

µ1

(
[a(m), b)

)
= lim

m↑∞
lim
m′↑∞

µ1

([
a(m), b(m

′)
))

= lim
m↑∞

lim
m′↑∞

µ2

([
a(m), b(m

′)
))

= µ2([a, b)).

�

2 Weak Convergence of Finite Measures

§ 6.2.1 Definition and equivalent statements

Let (E, ρ) be a metric space and E be the Borel σ-algebra. Denote by M

the total of finite measures on (E,E ).

Lemma 6.8 (Regularity). Let µ ∈M. Then ∀A ∈ E ,

µ(A) = inf
G⊃A,G is open

µ(G) = sup
C⊂A,C is closed

µ(C).

Proof. Let C be the class of all sets A ∈ B satisfying the desired equations.

It suffices to prove (1) C contains all open sets, which is a π-system; (2) C

is a λ-system.

To prove (1), let A be an open set. Then the first equation holds, and

the second equation holds too if A = E. Now, let A 6= E so that Ac is a

nonempty closed set. By the triangle inequality, the distance function to

Ac defined by d(·, Ac) := inf
y∈Ac

ρ(·, y) is Lipschitz continuous. Let

Cn =

{
x ∈ E : d(x,Ac) >

1

n

}
.

Then Cn is closed and Cn ⊂ A. Since A is open, for any x ∈ A, there

exists n > 1 such that B(x, 1
n) ⊂ A. Thus, d(x,Ac) > 1

n , so that x ∈ Cn.

Therefore, Cn ↑ A(n→∞). By the continuity of µ, we obtain lim
n→∞

µ(Cn) =

µ(A). This proves the second equation, so that A ∈ C .
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To prove (2), it suffices to show that C is a monotone class and closed

under the proper difference. Let {An}n>1 ⊂ C , An ↑ A (n→∞). For every

An, there exists an open set Gn ⊃ An such that |µ(Gn) − µ(An)| 6 2−n;

there also exists a closed set Cn ⊂ An such that |µ(Cn) − µ(An)| 6 2−n.

Then G̃n =
∞⋃
m=n

Gm is an open set including A, while Cn is a closed set

included in A. Moreover,

lim
n→∞

|µ(G̃n)− µ(A)| = lim
n→∞

∣∣∣∣∣µ
( ∞⋃
m=n

Gm

)
− µ

( ∞⋃
m=n

Am

)∣∣∣∣∣
6 lim

n→∞
µ

( ∞⋃
m=n

(Gm −Am)

)

6 lim
n→∞

∞∑
m=n

2−m = 0,

and

lim
n→∞

|µ(Cn)− µ(A)| = lim
n→∞

|µ(Cn)− µ(An)|.

Therefore, A ∈ C . Finally, let A1, A2 ∈ C with A1 ⊃ A2. It remains to

prove that A1 − A2 ∈ C . For this, ∀n > 1 we take an open set Gn ⊃ A1

and a closed set Cn ⊂ A2 such that

|µ(Gn)− µ(A1)|+ |µ(Cn)− µ(A2)| 6 1

n
.

Then Gn \ Cn is open, including A1 −A2, and

|µ(A1 −A2)− µ(Gn \ Cn)| 6 |µ(Gn)− µ(A1)|+ |µ(Cn)− µ(A2)| 6 1

n
.

So A := A1 − A2 satisfies the first equation. Symmetrically, we can prove

the second equation for A := A1 −A2, so that A1 −A2 ∈ C . �

The above result shows that the class of open sets and that of closed

sets are measure determined classes, i.e. two finite measures are equal if

they coincide each other on any one of these two classes. In the following

we prove that Cb(E), the class of bounded continuous functions on E, is

also a measure determined class. By the way, for later use we also introduce

the class Bb(E) of bounded measurable functions on E, as well as C0(E)

of continuous functions on E with compact supports.



§2 Weak Convergence of Finite Measures 135

Lemma 6.9. Let µ1, µ2 ∈ M. If µ1(f) = µ2(f) for f ∈ Cb(E), then

µ1 = µ2.

Proof. By Lemma 6.8, it suffices to prove that µ1(G) = µ2(G) for any

open G. Let g(x) =d(x,Gc) for x ∈ E. Then g(x) > 0 for x ∈ G and g is

Lipschitz. Set hn(r) = (nr)∧1 . Then hn◦g is Lipschitz and hn◦g ↑ 1G (n ↑
∞). From the monotone convergence theorem and µ1(hn ◦ g) = µ2(hn ◦ g),

it follows µ1(G) = µ2(G). �

Definition 6.10. Let {µn} ⊂M and µ ∈M.

(1) We say that (µn)n>1 converges uniformly to µ, denoted by µn
u−→ µ, if

sup
A∈B
|µn(A)− µ(A)| → 0, n ↑ ∞,

equivalently,

sup
f∈B,|f |61

|µn(f)− µ(f)| → 0, n ↑ ∞.

(2) We say that (µn)n>1 converges strongly to µ, denoted by µn
s−→ µ, if

lim
n→∞

µn(A) = µ(A), ∀A ∈ B,

equivalently, µn(f)→ µ(f) for every f ∈ Bb.

(3) We call (µn)n>1 convergent weakly to µ, denoted by µn
w−→ µ, if

µn(f)→ µ(f) for every f ∈ Cb(E).

(4) (µn)n>1 is called convergent vaguely to µ, denoted by µn
v−→ µ, if

µn(f)→ µ(f) for every f ∈ C0(E).

Definition 6.11. A set A ∈ E is called µ-continuous, if µ(∂A) = 0.

Below are some equivalent characterizations on the weak convergence.

Theorem 6.12. Let µn, µ ∈ M (n > 1). The following statements are

equivalent.

(1) µn(f)→ µ(f) for every f ∈ Cb(E).

(2) µn(f)→ µ(f) for every bounded uniformly continuous function f .

(3) µn(f)→ µ(f) for every bounded Lipschitz continuous function f .
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(4) lim
n→∞

µn(G) > µ(G) for every open G ⊂ E, and µn(E)→ µ(E).

(5) lim
n→∞

µn(C) 6 µ(C) for every closed C ⊂ E, and µn(E)→ µ(E).

(6) µn(A)→ µ(A) for every µ-continuous set A.

Proof. (1) ⇒ (2) ⇒ (3) and (4) ⇔ (5) are obvious.

(3) ⇒ (5). Let C ⊂ E be a closed set, and define

fm(x) =
1

1 +md(x,C)
, x ∈ E,m > 1.

Then fm is Lipschitz and 1 > fm ↓ 1C as m ↑ ∞. By (3) and the dominated

convergence theorem, we obtain

µ(C) = lim
m→∞

∫
E
fm dµ = lim

m→∞
lim
n→∞

∫
E
fm dµn

> lim
n→∞

µn(C).

(4) and (5) ⇒ (6). Let A be a µ-continuous set. Then µ(A) = µ(Ā) =

µ(A◦), where Ā and A◦ are the closure and interior of A, respectively. This

together with (4) and (5) yields

µ(A) = µ(A◦) 6 lim
n→∞

µn(A◦) 6 lim
n→∞

µn(A),

µ(A) = µ(Ā) > lim
n→∞

µn(Ā) > lim
n→∞

µn(A).

So, (6) holds.

(6)⇒ (1). ∀f ∈ Cb(E), we intend to find a sequence of simple functions

{fn}n>1 generated by µ-continuous sets, such that fn → f uniformly as

n→∞. Since µ is finite, the set

D := {a ∈ R : µ({f = a}) > 0}

is at most countable. Thus, we may find a constant c > ||f ||∞ + 1 such

that ±c ∈ Dc, and a sequence of partitions

In := {−c = r0 < r1 < · · · < rn < rn+1 = c}, n > 2
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such that

{ri} ⊂ Dc, δ(In) := max
16k6n+1

(rk − rk−1)→ 0.

Let

fn =
n−1∑
i=1

ri1{ri6f<ri+1}.

Then

||fn − f ||∞ 6 δ(In)→ 0, n→∞,

so that

|µ(f)− µm(f)| 6 |µ(f)− µ(fn)|+ |µ(fn)− µm(fn)|+ |µm(fn)− µm(f)|

6 δ(In) (µ(E) + µm(E)) +
n−1∑
i=1

ri |µ(ri 6 f < ri+1)− µm(ri 6 f < ri+1)| .

Noting that {ri} ⊂ Dc implies that each set {ri 6 f < ri+1} is µ-

continuous, by (6) we may let first m ↑ ∞ then n ↑ ∞ to derive (1).

�

§ 6.2.2 Tightness and weak compactness

The topology induced by weak convergence on M is called the weak topol-

ogy. In this part we characterize the weak compactness (i.e. compactness in

the weak topology) for subsets of M. We first consider a simple case where

E is a compact metric space. In this case, the relatively weak compactness

is equivalent to the boundedness, which is well known for subsets in the Eu-

clidean space. Recall that M′ ⊂M is called bounded if supµ∈M′ µ(E) <∞.

Theorem 6.13. Let (E, ρ) a compact metric space. If {µn} ⊂M is bounded,

then there exists a subsequence {µnk} such that µnk
w−→ µ as k →∞ for some

µ ∈M.

Proof. Since E is compact, C(E) is a Polish space under uniform norm. Let

{fn}n>1 be a dense subset of C(E). Since {µn}n>1 is bounded, for each

m > 1, {µn(fm)}n>1 is bounded in R hence has a convergent subsequence.
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By the diagonal principle, we may find a subsequence nk ↑ ∞ as k ↑ ∞,

and a sequence {αm}m>1 ⊂ R, such that

lim
k→∞

µnk(fm) = αm, m > 1.

Since {fn}n>1 is dense in C(E), for any f ∈ C(E) and ε > 0, there exists

m0 > 1 such that ||fm0 − f ||∞ 6 ε. So,

|µnk(f)− µnl(f)|

6 |µnk(f − fm0)|+ |µnl(f − fm0)|+ |µnk(fm0)− µnl(fm0)|

6 2εC + |µnk(fm0)− µnl(fm0)|.

By letting first k, l→∞ then ε→ 0, we obtain

lim
l,k→∞

|µnk(f)− µnl(f)| = 0.

Then {µnk(f)} is a Cauchy sequence and there exists α(f) ∈ R such that

µnk(f)→ α(f). It is clear that α : C(E)→ R is a nonnegative bounded lin-

ear functional. By Riesz-Markov-Kakutani theorem ([19, Theorem IV.14]),

there exists unique µ ∈ M such that µ(f) = α(f). Therefore, µnk
w−→ µ.

�

When E is not-compact, the above results remains true if the bounded

sequence {µn}n>1 is supported on a compact set K ⊂ E, i.e. µn(Kc) =

0, n > 1. In general, we may extend the result to bounded {µn}n>1 asymp-

totically supported on compact sets. This leads to the notion of tightness.

Definition 6.14. A bounded subset M′ of M is called tight, if for any ε > 0,

there exists a compact set K ⊂ E such that

sup
µ∈M′

µ(Kc) < ε.

Theorem 6.15 (Prohorov’s theorem). Let (E, ρ) be a metric space and let

{µn}n>1 ⊂M be bounded.

(1) If there exists a sequence of compact sets {Km}m>1 such that Km ↑ E,
then {µn}n>1 has a vague convergent subsequence.
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(2) If {µn}n>1 is tight, then it has a weak convergent subsequence.

Proof. Let {Km}m>1 be a sequence of increasing compact subsets of E.

Given m, there exist a subsequence {µmk} and a finite measure µ(m) on

Km, such that

µmn |Km
w−→ µ(m) (n→∞),

where µmn |Km is the restriction of µmn on Km. By the diagonal principle,

there exists a subsequence {µnk} such that

µnk |Km
w−→ µ(m) (k →∞), m > 1.

Clearly,

µ(m+1)(A ∩Km+1) > µ(m)(A ∩Km), ∀A ∈ B.

Indeed, for any closed set A, let

hl =
1

1 + ld(x,A)
l > 1.

Then

µ(m+1)(A ∩Km+1) = lim
l→∞

µ(m+1)(hl1Km+1)

= lim
l→∞

lim
k→∞

µnk(hl1Km+1)

> lim
l→∞

lim
nk→∞

µnk(hl1Km)

= µ(m)(A ∩Km).

Thus, limit µ(A) = lim
m→∞

µ(m)(A∩Km) exists for any A ∈ B, so that µ ∈M

and µ(m)(f1Km)→ µ(f) for any f ∈ Cb(E).

(1) Since Km ↑ E, for any f ∈ C0(E), there exists m0 > 1 such that

suppf ⊂ Km for all m > m0. Thus,

lim
k→∞

µnk(f) = lim
m→∞

µ(m)(f) = µ(f).

(2) Up to a subsequence, we may assume that sup
n>1

µn(Kc
m) 6 1/m for

m > 1. Then ∀f ∈ Cb(E),

|µnk(f)− µ(f)|

6 |µnk(f1Km)− µ(m)(f1Km)|+ |µnk(f − f1Km)|+ |µ(f)− µ(m)(f1Km)|

6
1

m
||f ||∞ + |µnk(f1Km)− µ(m)(f1Km)|+ |µ(f)− µ(m)(f1Km)|.
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By letting first k ↑ ∞ then m ↑ ∞, we prove µnk
w−→ µ. �

Theorem 6.16. Let E be a Polish space. Then a subset of M is weak

relatively compact if and only if it is tight.

Proof. By Prohorov’s theorem, we need only prove the necessity. Let M′ ⊂
M be relatively compact, we intend to prove the tightness. To this end, we

first observe that

lim
n→∞

sup
µ∈M′

µ(Gcn) = 0 (6.2.1)

holds for any increasing open sets Gn ↑ E. To see this, for any n > 1 we

take µn ∈M′ such that

µn(Gcn) > sup
µ∈M′

µ(Gcn)− 1/n.

Since M′ is weak relatively compact, there exist µ0 ∈M and a subsequence

µnk
w−→ µ0. Combining this with the increasing property of Gn, we obtain

limn→∞ supµ∈M′ µ(Gcn) = limk→∞ supµ∈M′ µ(Gcnk) 6 limk→∞ µnk(Gcnk)

6 limm→∞ limk→∞ µnk(Gcm) 6 limm→∞ µ0(Gcm) = 0.

So, (6.2.1) holds.

Since E is separable, ∀m > 1,∃{xm,j} such that E =
∞⋃
j=1

B(xm,j , 2
−m).

Let G(n,m) =
n⋃
j=1

B(xm,j , 2
−m). Then Kε :=

∞⋂
m=1

G(N(ε,m),m) is com-

pletely bounded, so that by Hausdorff’s theorem, K̄ε is compact. Since

G(n,m) ↑ E (n ↑ ∞), by (6.2.1) with Gn = G(n,m), we conclude that

∀ε > 0,∃N(ε,m) > 1 such that

sup
µ∈M′

µ(G(n,m)c) 6
ε

2m
, n > N(ε,m),

and

µ(K̄c
ε) 6

∞∑
r=1

µ(G(N, r)c) 6
∞∑
r=1

ε

2r
= ε, µ ∈M′.

�
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When E = Rd, we have the following one more equivalent statement

for the weak convergence using continuous intervals in place of continuous

sets.

Proposition 6.17. Let E = Rd. Then µn
w−→ µ if and only if µn(Rd) →

µ(Rd) and µn([a, b))→ µ([a, b)) for any finite µ-continuous interval [a, b).

Proof. We need only prove sufficiency. If µn is not weakly convergent to µ,

then there exist δ > 0, f ∈ Cb(Rd) and subsequence nk →∞ such that

|µnk(f)− µ(f)| > δ, k > 1. (6.2.2)

By Lemma 6.5 and Lemma 6.6, there exists a sequence of µ-continuous

intervals Im ↑ Rd. Then ∀ε > 0, there exists m > 1 such that µ(Icm) 6

ε/2. Since µn(Im) → µ(Im) and µn(Rd) → µ(Rd) when n → ∞, we have

lim
n→∞

µn(Icm) 6 ε/2. Thus, there exists n0 > 1 such that ∀n > n0, µn(Icm) <

ε. Moreover, take compact set K1 such that µn(Kc
1) < ε for ∀n 6 n0. Then

K = K1 ∪ Īm is compact and satisfies µn(Kc) < ε, ∀n > 1. Thus, {µnk}
is tight, so there exist a subsequence n′k and a finite measure µ′ such that

µn′k
w−→ µ′. Combining this with the condition that µn([a, b)) → µ([a, b))

for µ-continuous intervals [a, b), we see that µ′ and µ are equal on their

common continuous intervals. By Proposition 6.7 we have µ′ = µ, which

contradicts to (6.2.2) since µn′k
w−→ µ′. �

3 Characteristic Function and Weak Convergence

In this section, we first identify the weak convergence for finite measures

on Rn by using the convergence of characteristic functions, then prove that

a complex function on Rn is a characteristic function if and only if it is

continuous and nonnegative definite.

Theorem 6.18. Let {µk, µ}k>1 be finite measures on Rn. Then µk
w−→ µ

(k →∞) if and only if fµk → fµ point-wisely.

By the dominated convergence theorem, the necessity is obvious. The

sufficiency follows from the following Theorem 6.22 on the convergence of

integral characteristic functions.
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Definition 6.19. Let fµ be the characteristic function of a finite measure µ.

The indefinite integral of fµ

f̃µ(u1, · · · , un) =

∫ u1

0
· · ·
∫ un

0
fµ(t1, · · · , tn) dt1 · · · dtn, u ∈ Rn

is called the integral characteristic function of µ, where
∫ ui

0 = −
∫ 0
ui

if ui < 0.

Since fµ is continuous, fµ and f̃µ determine each other.

Lemma 6.20. The integral characteristic function of µ satisfies

f̃µ(u1, · · · , un) =

∫
Rn

n∏
k=1

eiukxk − 1

ixk
µ( dx1, · · · , dxn), u1, · · · , un ∈ R.

Proof. By the definition and Fubini’s theorem, for u = (u1, · · · , un) ∈ Rn,

f̃µ(u) =

∫ u1

0
· · ·
∫ un

0

∫
Rn

ei〈t,x〉µ( dx) dt

=

∫
Rn
µ( dx)

∫
[0,u]

ei〈t,x〉 dt

=

∫
Rn

n∏
k=1

eiukxk − 1

ixk
µ( dx1, · · · , dxn).

�

Let

F (x, u) =

n∏
k=1

eiukxk − 1

ixk
, x, u ∈ Rn.

Then for given u, lim
|x|→∞

F (x, u) = 0. Thus F (·, u) can be uniformly ap-

proximated by continuous functions with compact supports.

Theorem 6.21. Let {µk}k>1 be bounded measures on Rn. If f̃µk → g̃ for

some function g̃, then there exists a finite measure µ such that µk
v−→ µ and

g̃ = f̃µ.

Proof. By Theorem 6.15, there exits a subsequence {µnk}k>1 of {µk}k>1

which converges vaguely to some finite measure µ. Since a finite measure

is determined by its integral characteristic function, we need only to prove
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f̃µ = g̃. Since f̃µ(u) = µ(F (u, ·)), and F (u, ·) can be uniformly approx-

imated by continuous functions with compact supports, it is clear that

µnk
v−→ µ and f̃µk → g̃ imply f̃µ = g̃. �

Theorem 6.22. Let {µk}k>1 be bounded measures on Rn such that fµk → g

for some function g continuous at 0. Then there exists a finite measure µ such

that µk
w−→ µ and fµ = g.

Proof. By the dominated convergence theorem, fµk → g implies f̃µk → g̃.

By Theorem 6.21, Proposition 6.17 and Exercise 9, it suffices to prove

µk(Rn) → µ(Rn). Since g̃ = f̃µ, g = fµ dx-a.e., and since both g and fµ

are continuous at 0,

µ(Rn) = fµ(0) = g(0) = lim
k→∞

fk(0) = lim
k→∞

µk(Rn).

�

In the following we introduce two important applications of Theorem

6.18.

Theorem 6.23 (Law of large numbers). Let {ξn} be i.i.d. random variables

with Eξn = a ∈ R. Then

1

n

n∑
k=1

ξk
P−→ a.

Proof. (1) It suffices to prove the characteristic functions fn of ηn :=

1
n

n∑
k=1

(ξk − a) satisfy fn(t) → 1. In fact, if fn(t) → 1, then by Theorem

6.18 we have Pηn
w−→ δ0 (probability with total mass at 0). Since (−ε, ε) is

δ0-continuous for any ε > 0, there holds

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
k=1

ξk − a

∣∣∣∣∣ < ε

)
= lim

n→∞
Pηn((−ε, ε)) = δ0((−ε, ε)) = 1,

which implies

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
k=1

ξk − a

∣∣∣∣∣ > ε
)

= 0.
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(2) Let ξ′n = ξn − a. Then ηn = 1
n

n∑
k=1

ξ′k, so

fn(t) =
n∏
k=1

fξ′k(t/n) = [f(t/n)]n ,

where f = fξ′k . Since Eξ′k = 0, Taylor’s expansion gives

fn(t) =
[
Eeitξ′k/n

]n
= (1 + o(1/n))n, t ∈ R.

Thus,

lim
n→∞

log fn(t) = lim
n→∞

log
[

(1 + o(1/n))n
]

= lim
n→∞

n log (1 + o(1/n)) = 0.

Therefore, lim
n→∞

fn(t) = 1. �

Theorem 6.24 (Central limit theorem). Let {ξ(k)}k>1 be a sequence of

n-dimensional i.i.d. random variables with invertible correlation matrix D and

Eξ(k) = m ∈ Rn. Then ∀x ∈ Rn,

lim
N→∞

P

(
1√
N

N∑
k=1

(ξ(k) −m) < x

)

=
1

(2π)n/2|D|1/2

∫
(−∞,x)

e−
1
2
〈t,D−1t〉 dt.

Proof. Let η(k) = ξ(k) − m. Then {η(k)} are i.i.d with zero mean. Let f

be the characteristic function of η(k). Then the characteristic function of

1√
N

N∑
k=1

η(k) is

fN (t) =
[
f(t/
√
N)
]N

, t ∈ Rn.

Since Eη(k) = 0, Taylor’s expansion shows

f(t/
√
N) = 1− 1

2N
〈t,Dt〉+ o(1/N), t ∈ Rn,

so that

log f(t/
√
N) = − 1

2N
〈t,Dt〉+ o(1/N).
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Thus,

lim
N→∞

log fN (t) = −1

2
〈t,Dt〉, t ∈ Rn,

so that

lim
N→∞

fN (t) = e−
1
2
〈t,Dt〉.

By Theorem 6.18, this implies that

{
1√
N

N∑
k=1

η(k)

}
converges in distribution

to N(0, D), the centered normal distribution with covariance D. �

4 Characteristic Function and Nonnegative Defi-

niteness

Let µ be a finite measure on Rn with characteristic function fµ. Clearly,

∀m > 1, α1, · · · , αm ∈ C, and t(1), · · · , t(m) ∈ Rn, we have

m∑
j,k=1

fµ

(
t(j) − t(k)

)
αjᾱk =

∫
Rn

∣∣∣∣∣
m∑
k=1

αke
i〈t(k),x〉

∣∣∣∣∣
2

µ( dx) > 0.

A function having this property is called a nonnegative definite function,

and this property is called the nonnegative definiteness. In this section, we

will prove that a function on Rn is the characteristic function of a finite

measure if and only if it is continuous and nonnegative definite. To this

end, we first observe that a nonnegative function has some properties of

characteristic functions.

Property 6.25. If f is a nonnegative definite function, then f(0) > 0, f(−t) =

f̄(t) and |f(t)| 6 f(0).

Proof. Let m = 2, t(1) = 0, t(2) = t, α1 = 1, α2 ∈ C. By the nonnegative

definiteness, we have

f(0)
[
1 + |α2|2

]
+ f(t)α2 + f(−t)ᾱ2 > 0.

(1) Let α2 = 0. Then f(0) > 0.
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(2) Let α2 = 1. Then 2f(0) + f(−t) + f(t) > 0, so that Imf(t) =

−Imf(−t). Moreover, taking α2 = i we obtain 2f(0)+i(f(t)−f(−t)) > 0,

so that Ref(t) = Ref(−t). In conclusion, f(−t) = f̄(t) .

(3) For f(t) 6= 0 and α2 := −f̄(t)/|f(t)|, we obtain 2f(0) > 2|f(t)|, so

that Thus f(0) > |f(t)|. �

Lemma 6.26. Let Tc = {kc : k ∈ Zn}, c > 0. If f is a nonnegative definite

function, then there exists a finite measure µ on Rn such that

µ(Rn) = µ([−π/c, π/c]n) = f(0), fµ(t) = f(t), ∀t ∈ Tc.

Proof. ∀m > 1, by the nonnegative definiteness of f , we obtain

0 6
1

mn

m−1∑
j1,··· ,jn,k1,··· ,kn=0

f(c(j − k))e−i c〈j−k,x〉

=

m∑
r1,··· ,rn=−m

[
n∏
`=1

(
1− |r`|

m

)]
f(cr)e−i c〈r,x〉 =: Gm(x).

Let

µm( dx) =
( c

2π

)n
Gm(x)1[−π

c
,π
c

]n(x) dx.

Then

µm(Rn) = µm

([
−π
c
,
π

c

]n)
=

m∑
r1,··· ,rn=−m

[
n∏
`=1

(
1− |r`|

m

)]
f(cr)

[
n∏
`=1

c

2π

∫ π
c

−π
c

ei cr`x` dx`

]
= f(0).

Let fm be the characteristic function of µm. Then

fm(ck) =
( c

2π

)n ∫
[−π

c
,π
c

]n
ei c〈k,x〉Gm(x) dx

=
m∑

r1,··· ,rn=−m

[
n∏
`=1

(
1− |r`|

m

)]
f(cr)

[
n∏
`=1

c

2π

∫ π
c

−π
c

ei c(k`−r`)x` dx`

]

= f(ck)

n∏
`=1

(
1− |r`|

m

)
→ f(ck) (m→∞).
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Since {µm}m>1 is tight, there exist µ and a subsequence µmk such that

µmk
w→ µ(k →∞). Then

µ(Rn) = µ
([
−π
c
,
π

c

]n)
= f(0)

and

fµ(ck) = lim
m→∞

fm(ck) = f(ck).

�

Theorem 6.27. If f is a continuous and nonnegative definite function on

Rn, then it is the characteristic function of a finite measure.

Proof. By Lemma 6.26, there exists a sequence of finite measures {µm}m>1

such that

µm(Rn) = µm ([−mπ,mπ]n) = f(0),

and their characteristic functions fm satisfy fm(t) = f(t), t ∈ 1
mZ

n. ∀t ∈
Rn, take

{
t(m)

}
m>1
⊂ T1/m such that |tk − t

(m)
k | 6 1/m, 1 6 k 6 n,m > 1.

Thus, by the continuity of f and f
(
t(m)

)
= fm

(
t(m)

)
, we have

f(t) = lim
m→∞

f
(
t(m)

)
= lim

m→∞
fm

(
t(m)

)
.

From this and Theorem 6.18, it suffices to prove

lim
m→∞

∣∣∣fm(t)− fm
(
t(m)

)∣∣∣ = 0. (6.4.1)

For this, we use the increment inequality (Property 6.2) to derive∣∣∣fm(t)− fm
(
t(m)

)∣∣∣
6

n−1∑
i=0

∣∣∣fm (t1, · · · , ti, t(m)
i+1, · · · , t

(m)
n

)
− fm

(
t1, · · · , ti+1, t

(m)
i+2, · · · , t

(m)
n

)∣∣∣
6

n−1∑
i=0

√
2f(0)(f(0)− Refm

(
ei

(
ti − t(m)

i

))
,

(6.4.2)
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where ei ∈ Rn is a unit vector with ith being 1. Since for xi ∈ [−mπ,mπ],

|(ti − t(m)
i )xi| 6 π, and cos θ is decreasing in |θ| on θ ∈ [−π, π], we have

0 6 f(0)− Refm

(
ei

(
ti − t(m)

i

))
=

∫
[−mπ,mπ]n

(
1− cos

[(
ti − t(m)

i

)
xi

])
µm( dx)

6
∫

[−mπ,mπ]n

(
1− cos

xi
m

)
µm( dx)

= f(0)− Refm

( ei
m

)
.

Combining this with (6.4.2) and the continuity of f , we prove (6.4.1). �

5 Exercises

1. Prove that the characteristic function fµ of a finite measure µ on Rn

has the following properties:

(1) fµ(0) = µ(Rn), (2) |fµ(t)| 6 f(0), (3) f̄µ(t) = f(−t).

2. Prove Property 6.2–(2).

3. A finite measure µ on (R,B) is called symmetric, if µ(−∞, x) =

µ(x,∞) for any x > 0. Prove:

(a) µ is symmetric if and only if µ(A) = µ(−A), A ∈ B, where

−A={x : −x ∈ A};

(b) µ is symmetric if and only if its characteristic function is a real

function.

4. Let µ be a finite measure on Rn such that
∫
R |fµ(t)|dt < ∞. Prove

that µ is absolutely continuous with respect to dx and

µ( dx)

dx
=

1

2π

∫
R

e−i txφ(t) dt.

5. Prove Proposition 6.3.
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6. Let {ξn, ξ}n>1 be centered normal random variables with variances

{σ2
n, σ

2}n>1. If ξn
d−→ ξ, prove σ2

n → σ.

7. Let {ξn}n>1 be i.i.d. random variables with P(ξi = 0) = P(ξi =

1) = 1/2. Calculate the distribution and characteristic function of

ξ = 2
∑∞

j=1 ξj/3
j .

8. Exemplify that vague convergence is not equivalent to weak conver-

gence.

9. Let {µn, µ}n>1 be finite measures on a metric space E. Prove:

(a) µn
w−→ µ if and only if µk(A) → µ(A) for any µ-continuous

compact A.

(b) µk
w−→ µ if and only if µk(A)→ µ(A) for any µ-continuous open

A.

(c) When E = Rn, µk
v−→ µ if and only if µk(I)→ µ(I) for any finite

µ-continuous interval I.

10. Let g > 0 be a continuous function on Rn and {ξk, ξ}k>1 are n-

dimensional random variables. If ξn
w−→ ξ, prove

lim
n→∞

Eg(ξn) > Eg(ξ).

11. Let {Fn, F}k>1 be probability distribution functions on Rn, such that

is continuous. Prove that Fn → F implies sup
x
|Fn(x)− F (x)| → 0.

12. Let {µn, µ}n>1 be finite measures on a measurable space (E,E ).

Prove

sup
A∈E
|µn(A)− µ(A)| → 0, n ↑ ∞

is equivalent to

sup
f∈E , |f |61

|µn(f)− µ(f)| → 0, n ↑ ∞.
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13. Prove that a family of probability measures {µt, t ∈ T} on Rn is tight,

if and only if there exists an increasing function φ : R+ → R+ with

lim
x→∞

φ(x) =∞ such that sup
t∈T

µt
(
φ(| · |)

)
<∞.

14. Let {ξk}k>1 be a sequence of random variables on Rn such that {P ◦
ξ−1
k }k>1 is tight. Prove that for any random variables ηn

P−→ 0, there

holds ξnηn
P−→ 0.

15. Let h : R → R be measurable, and let Dh be the class of discontin-

uous points of h. Prove that if Dh is measurable, then for any finite

measures {µn, µ}n>1 on R such that µn
w−→ µ and µ(Dh) = 0, then

µn ◦ h−1 w−→ µ ◦ h−1.

16. Let µ( dx) = p(x) dx be a finite measure on (R,B).

(a) Prove lim
|t|→∞

fµ(t) = 0. (Hint: lim
|t|→∞

∫ t
0 fµ(s)

t = 0.)

(b) If p has integrable derivative function p′, then lim
|t|→∞

tfµ(t) = 0.

(c) What happans if p has integrable derivatives p(k) for 1 6 k 6 n

for some n > 2?

17. Let µ be a finite measure on R. Prove that for any x ∈ R,

µ({x}) = lim
T→∞

1

2T

∫ T

−T
e−i txfµ(t) dt.



Chapter 7

Probability Distances

Let (E, ρ) be a metric space with Borel σ-algebra E , and let P(E) be class

of all probability measures on (E,E ). In this chapter we introduce some

distances on P(E), including the metrization of weak topology, the total

variation distance for the uniform convergence, and Wasserstein distance

arising from optimal transport.

1 Metrization of Weak Topology

Let (E, ρ) be a Polish space. Then space Cb(E) of bounded continuous

functions is also a Polish space under uniform norm ||f ||∞ = sup
E
|f | (Refer

to [26, 27, 28]). For a dense sequence {fn}n>1 in Cb(E), define

dw(µ, ν) :=

∞∑
n=1

2−n {|µ(fn)− ν(fn)| ∧ 1} , µ, ν ∈P(E).

Theorem 7.1. Let (E, ρ) be a Polish space. Then (P(E), dw) is a separable

metric space, and for any {µn}n>1 ⊂ P(E) and µ ∈ P(E), µn
w−→ µ if and

only if dw(µn, µ)→ 0. If E is compact, then (P(E), dw) is complete.

Proof. (a) dw is a distance.

Obviously, dw(µ, µ) = 0. If dw(µ, ν) = 0, then µ(fn) − ν(fn) = 0(∀n).

Since {fn}n>1 is dense in Cb(E), it follows that µ(f) = ν(f) for any f ∈

151
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Cb(E), thus µ = ν by Lemma 6.9. Finally, dw clearly satisfies the triangle

inequality.

(b) Equivalence to the weak topology.

Obviously, if µn
w−→ µ, then dw(µn, µ)→ 0. Conversely, let dw(µn, µ)→

0. We are going to prove µn(f) − µ(f) → 0 for any f ∈ Cb(E). Given

f ∈ Cb(E), since {fn} is dense in Cb(E), for any ε > 0 there exists n0 > 1

such that ||fn0 − f ||∞ < ε. So

lim
n→∞

|µn(f)− µ(f)| 6 2ε+ lim
n→∞

|µn(fn0)− µ(fn0)|

6 2ε+ 2n0+1 lim
n→∞

dw(µn, µ)

= 2ε.

As ε is arbitrary, we have µn(f)→ µ(f).

(c) Sepaprability.

∀m > 1, let

Um = {(µ(f1), · · · , µ(fm)) : µ ∈P(E)} ⊂ Rm.

Since Rm is separable, so is Um. Thus there exists a countable set Pm ⊂
P(E) such that

Ũm := {(µ(f1), · · · , µ(fm)) : µ ∈Pm}

is dense in Um. Thus, P∞ :=
∞⋃
m=1

Pm is a countable subset of P(E), so

that it suffices to prove that P∞ is dense in P(E) under distance dw.

In fact, for any µ ∈P(E), there exists µm ∈Pm such that

|µm(fi)− µ(fi)| 6
1

m
, ∀1 6 i 6 m.

Thus

dw(µm, µ) 6 2−m +
1

m
→ 0 (m→∞).

(d) Completeness of dw.

Assume E is locally compact. Note {µn}n>1 ⊂ P(E) is a Cauchy

sequence under dw. Then ∀m > 1, {µn(fm)}n>1 is a Cauchy sequence,
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so converge to some number, denoted by φ(fm). Moreover, given f ∈
Cb(E), ∀ε > 0, ∃m0 > 1 such that ||fm0 − f ||∞ < ε. Thus

lim
m,n→∞

|µm(f)− µn(f)| 6 2ε+ lim
m,n→∞

|µm(fm0)− µn(fm0)|

= 2ε.

As ε is arbitrary, we have {µn(f)}n>1 is also a Cauchy sequence, which

converge to some number, denoted by φ(f). By the properties of integral,

it follows

φ : Cb(E)→ R

is a linear map, φ(1) = 1, and φ(f) > 0 for f > 0. By Riesz’s representation

theorem, there exists unique µ ∈ P(E) such that µ(f) = φ(f) for every

f ∈ Cb(E). See [19, Theorem IV.14]. By the construction of φ it follows

µn
w−→ µ, hence dw(µn, µ)→ 0 from (b). �

2 Wasserstein Distance and Optimal Transport

In this section, we introduce the transportation problem initiated by G.

Monge in 1781 and characterized by L. V. Kantorovich in 1940s using cou-

plings, which leads to the notion of Wasserstein distance. In particular,

when E is a Polish space, P(E) is also a Polish space under the Wasser-

stein distance.

Definition 7.2. Let P(E) be the class of probability measures on a mea-

surable space (E,E ), and let µ, ν ∈ P(E). A probability measure π on the

product space (E × E,E × E ) is called a coupling of µ and ν, denoted by

π ∈ C (µ, ν), if its marginals are µ and ν, i.e.

π(A× E) = µ(A), π(E ×A) = ν(A), A ∈ E .

A simple coupling is the product measure µ × ν, which is called the

independent coupling of µ and ν. Therefore, C (µ, ν) 6= ∅.
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§ 7.2.1 Transport problem, coupling and Wasserstein dis-

tance

Before introduce the general theory, let us consider a simple example.

Let x1, · · · , xn be n many cities, each city produces and consumes cer-

tain product. Let µ and ν be the produced (initial) distribution and the

consumed (target) distribution, respectively. We intend to design a scheme

to transport the product from initial distribution µ to the target distribu-

tion ν.

Let

µ({xi}) = µi, ν({xi}) = νi, 1 6 i 6 n.

We have µi, νi > 0 and
n∑
i=1

µi =
n∑
i=1

νi = 1. So, µ and ν are probability

measures on space E := {x1, · · · , xn} . Let π = {πij : 1 6 i, j 6 n} be a

transport scheme, where πij > 0 denotes the amount of product transported

from xi to xj . Then, the scheme π transports µ into ν if and only if

µi =
n∑
j=1

πij , νi =
n∑
j=1

πji, 1 6 i 6 n.

Thus, π is a scheme π transporting µ into ν if and only if π ∈ C (µ, ν).

Let ρij > 0 be the cost to transport a unit product from xi to xj , which

is called the cost function. Then for any scheme π ∈ C (µ, ν), the total cost

is
n∑

i,j=1

ρijπij =

∫
E×E

ρ dπ.

Thus, the lowest cost to transport from µ to ν is

W ρ
1 (µ, ν) := inf

π∈C (µ,ν)

∫
E×E

ρdπ,

which is called L1-Wasserstein distance between µ and ν induced by ρ.

In general, we define the Lp-Wasserstein distance on P(E) over a metric

space (E,E ) as follows.
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Definition 7.3. Let (E, ρ) be a metric space. ∀p ∈ [1,∞), define the Lp-

Wasserstein distance induced by ρ as

Wp(µ, ν) := inf
π∈C (µ,ν)

{∫
E×E

ρp dπ

}1/p

, µ, ν ∈P(E).

A coupling π is called optimal, if it reaches the infimum.

In generally, ρ may be unbounded, so that Wp(µ, ν) may be infinite

for some µ, ν ∈ P(E). To make Wp finite, we restrict to the following

subspace of P(E) of finite p-moment:

Pp(E) = {µ ∈P(E) : µ(ρ(o, ·)) <∞} , p > 1,

where o ∈ E is any fixed point. By the triangle inequality, the definition of

Pp(E) is independent of the choice of o ∈ E.

§ 7.2.2 Optimal coupling and Kantorovich’s dual formula

We first consider the existence of optimal coupling.

Theorem 7.4. Let (E, ρ) be a Polish space. Then ∀µ, ν ∈ Pp(E) there

exists π ∈ C (µ, ν) such that Wp(µ, ν) = π(ρp).

Proof. Since µ, ν ∈Pp(E) and µ× ν ∈ C (µ, ν), we have

Wp(µ, ν)p 6
∫
E×E

ρp(x, y)µ( dx)ν( dy)

6 2p−1

∫
E×E

(ρp(x, o) + ρp(y, o))µ( dx)ν( dy)

<∞.

Thus for any n > 1, there exists πn ∈ C (µ, ν) such that

Wp(µ, ν)p > πn(ρp)− 1

n
. (7.2.1)

So, if πn converge weakly to some π0, then π0 should be an optimal coupling.

For this, we first prove that {πn}n>1 is tight. In fact, by Theorem 6.16, we

know that finite set {µ, ν} is tight, so for any ε > 0, there exists a compact
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set K ⊂ E such that µ(Kc)+ν(Kc) < ε. Thus ∀π ∈ C (µ, ν), π((K×K)c) 6

π(Kc × E) + π(E × Kc) = µ(Kc) + ν(Kc) < ε. Therefore C (µ, ν) is

tight. Hence there exist a subsequence {πnk}k>1 and π0 ∈P(E) such that

πnk
w−→ π0 (k →∞). Obviously, π0 ∈ C (µ, ν). Combining this with (7.2.1),

we obtain that for any N ∈ (0,∞),

π0(ρp ∧N) = lim
k→∞

πnk(ρp ∧N) 6Wp(µ, ν)p.

Letting N ↑ ∞ gives π0(ρp) 6Wp(µ, ν)p. �

From Definition 7.3 it is easy to derive an upper bound estimate on

the Wasserstein distance. To estimate it from below, we introduce the

Kantorovich dual formula by using the following classes of function pairs

for µ, ν ∈P(E):

Fµ,ν =
{

(f, g) : f ∈ L1(µ), g ∈ L1(ν), f(x) 6 g(y) + ρ(x, y)p, ∀x, y ∈ E
}
,

FLip = {(f, g) : f, g Lipschitz continuous f(x) 6 g(y) + ρ(x, y)p, x, y ∈ E} .

Theorem 7.5 (Kantorovich’s dual formula). Let (E, ρ) be a Polish space.

Then ∀µ, ν ∈Pp(E),

Wp(µ, ν)p = sup
(f,g)∈Fµ,ν

{µ(f)− ν(g)} = sup
(f,g)∈FLip

{µ(f)− ν(g)} . (7.2.2)

Proof. Since FLip ⊂ Fµ,ν , we need only prove

sup
(f,g)∈Fµ,ν

{µ(f)− ν(g)} 6Wp(µ, ν)p 6 sup
(f,g)∈FLip

{µ(f)− ν(g)} .

Below we only prove the first inequality, as the second is far from trivial,

see for instances [18, Section 3] or [7, Chapter 5] for details.

Let (f, g) ∈ Fµ,ν and π ∈ C (µ, ν). We have

µ(f)− ν(g) =

∫
E×E

(f(x)− g(y))π( dx, dy) 6
∫
E×E

ρ(x, y)pπ( dx, dy).

Thus, the first equation follows from the definition of Wp. �
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§ 7.2.3 The metric space (Pp(E),Wp)

Theorem 7.6. Let (E, ρ) be a Polish space. Then (Pp(E),Wp) is also a

Polish space.

Proof. (a) First we prove Wp is a metric. Obviously, Wp(µ, ν) = 0 if and

only if µ = ν, so we need only prove the triangle inequality.

∀µ1, µ2, µ3 ∈ Pp(E), let π12 and π23 be optimal couplings of (µ1, µ2)

and (µ2, µ3), respectively. We have

Wp(µ1, µ2) = π12(ρp)1/p, Wp(µ2, µ3) = π23(ρp)1/p.

To construct the optimal coupling of µ1 and µ3, let π12(x1, dx2) be the

regular conditional probability of π12 for given x1, and π23(x2, dx3) be the

regular conditional probability of π23 for given x2. Set

π13(A×B) = µ1(A)

∫
E
π23(x2, B)π12(x1, dx2).

It is clear that π13 ∈ C (µ1, µ3). Then

π( dx1, dx2, dx3) := µ1( dx1)π12(x1, dx2)π23(x2, dx3)

is a probability measure on E × E × E, and for

ρij(x1, x2, x3) := ρ(xi, xj), 1 6 i, j 6 3,

we have

π(ρpij) = πij(ρ
p), 1 6 i, j 6 3.

Thus by the triangle inequality in Lp(π),

Wp(µ1, µ3) 6 π(ρp13)1/p 6 π((ρ12 + ρ23)p)1/p

6 π(ρp12)1/p + π(ρp23)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3).

(b) Next we prove Wp is complete.

Let {µn}n>1 ⊂Pp(E) be a Cauchy sequence underWp. Then {µn}n>1 ⊂
Pp(E) is tight (see Lemma 6.14 in [21]). Without loss of generality, we



158 7 Probability Distances

assume that µn
w−→ µ for some µ ∈P(E). On the other hand, given o ∈ E,

we have

µn(ρ(o, ·)p) 6 2p−1µ1(ρ(o, ·)p) + 2p−1Wp(µ1, µn)p

which are bounded for n > 1, so ∃C > 0 such that ∀N > 1

µ(ρ(o, ·)p ∧N) = lim
n→∞

µn(ρ(o, ·)p ∧N) 6 C.

Thus µ ∈Pp(E) and

lim
n→∞

µn(ρ(o, ·)p) > µ(ρ(o, ·)p). (7.2.3)

Moreover, ∀ε > 0,∃n0 > 1 such that Wp(µn0 , µn)p 6 ε,∀n > n0. Then

µn((N − ρ(o, ·)p)+)

6 µn0((N − ρ(o, ·)p)+) + |µn((N − ρ(o, ·)p)+)− µn0((N − ρ(o, ·)p)+)|

6 µn0((N − ρ(o, ·)p)+) + 2p−1Wp(µn, µn0)p

6 µn0((N − ρ(o, ·)p)+) + 2p−1ε.

Hence

lim
n→∞

µn(ρ(o, ·)p) 6 lim
n→∞

µn(ρ(o, ·)p ∧N) + 2p−1ε.

As ε is arbitrary and µn
w−→ µ, we have

lim
n→∞

µn(ρ(o, ·)p) 6 lim
n→∞

µn(ρ(o, ·)p ∧N) = µ(ρ(o, ·)p ∧N) 6 µ(ρ(o, ·)p).

From this and (7.2.3) it follows that µ(ρ(o, ·)p) = lim
n→∞

µn(ρ(o, ·)p). Thus,

by Kantorovich’s dual formula, the dominated convergence theorem, and

Wp(µn, µm)→ 0 as n,m→∞, we obtain

lim
n→∞

Wp(µ, µn)p = lim
n→∞

sup
(f,g)∈FLip

|µ(f)− µn(g)|

= lim
n→∞

sup
(f,g)∈FLip

lim
m→∞

|µm(f)− µn(g)|Wp(µ, µn)p

6 lim
n→∞

lim
m→∞

Wp(µm, µn)p = 0.

(c) Finally we prove Wp is separable.
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∀N > 1, let

P(N)
p (E) =

{
µ ∈Pp(E) : suppµ ⊂ B̄(o,N)

}
,

where B̄(o,N) is a closed ball with radium N centered at o. As ∀µ ∈
Pp(E), it is easy to prove N →∞,

µN :=
µ(· ∩B(o,N))

µ(B(o,N))

Wp−−→ µ,

so we have
∞⋃
N=1

P
(N)
p (E) is dense in (Pp(E),Wp). Thus we need only to

prove that each P
(N)
p (E) is separable. Since ρ(o, ·) is bounded on B̄(o,N),

as shown in step (b) that the weak convergence is equivalent to the conver-

gence in Wp (see Exercise 6). Then the proof is finished by Theorem 7.1,

which says that P
(N)
p (E) is separable under weak topology. �

Theorem 7.7. Let M ⊂Pp(E). Then M is compact under Wp if and only

if it is weakly compact and

lim
N→∞

sup
µ∈M

µ
(
ρ(o, ·)p1{ρ(o,·)>N}

)
= 0. (7.2.4)

Proof. (a) Necessity. It is clear that Wp(µn, µ)→ 0 implies µn(f)→ µ(f)

for any Lipschitz continuous function f , so the topology induced by Wp is

stronger that weak topology. Thus, if M is compact under Wp, then M is

also compact under weak topology. It remains to prove (7.2.4).

Since M is compact underWp, for any ε > 0, there exist µ1, · · · , µn ∈M

such that

min
16i6n

Wp(µi, µ)p < ε, µ ∈M.

Thus,

µ
(
(ρ(o, ·)p −N)+) 6 max

16i6n
µi
(
(ρ(o, ·)p −N)+)+ 2p−1Wp(µi, µ)p

6
n∑
i=1

µi
(
(ρ(o, ·)p −N)+)+ 2p−1ε, µ ∈M.



160 7 Probability Distances

Hence

lim
N→∞

sup
µ∈M

µ
(
ρ(o, ·)p1{ρ(o,·)>N}

)
6 2 lim

N→∞
sup
µ∈M

µ

((
ρ(o, ·)p − N

2

)+
)

6 2pε.

As ε is arbitrary, we get (7.2.4) immediately.

(b) Sufficiency. Let M be weakly compact and (7.2.4) hold. We intend

to prove that M is compact underWp. For this, we need only prove that for

any sequence {µn}n>1 ⊂ M, there exists a convergent subsequence under

Wp. By the weak compactness of M, we may and do assume that µn
w−→ µ.

Let {x1, x2, · · · } be a dense subset of E. Then we have
∞⋃
i=1

B(xi, ε) ⊃ E

for any ε > 0, where B(xi, ε) is an open ball with radium ε centered at xi.

Since set {ε > 0 : ∃i > 1 such that µ(∂B(xi, ε)) > 0} is at most countable,

for m > 1, take εm ∈ (0, 1/m) such that B(xi, εm) are all µ continuous sets.

Let

U1 = B(x1, εm), Ui+1 = B(xi+1, εm) \
i⋃

j=1

B(xj , εm).

Then {Ui}i>1 is a sequence of mutually disjoint µ-continuous sets,
∞∑
i=1

Ui =

E and the radium of Ui is less than 1
m . Let rn =

∞∑
i=1

µn(Ui) ∧ µ(Ui). Then

rn ∈ [0, 1] with lim
n→∞

rn = 1. Let

Qn( dx) = µn( dx)−
∞∑
i=1

µn(Ui) ∧ µ(Ui)

µn(Ui)
1Ui(x)µn( dx),

Q( dx) = µ( dx)−
∞∑
i=1

µn(Ui) ∧ µ(Ui)

µ(Ui)
1Ui(x)µ( dx).

Then

πn( dx, dy) :=

∞∑
i=1

1Ui(x)1Ui(y)
µn(Ui) ∧ µ(Ui)

µn(Ui)µ(Ui)
µn( dx)µ( dy)+

1

1− rn
Qn( dx)Q( dy)
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is a coupling of µn and µ (if rn = 1, then the last term is set to 0 ), hence

Wp(µn, µ)p 6 πn(ρp) 6 m−p +
2p−1

1− rn
(Qn(ρ(o, ·)p) +Q(ρ(o, ·)p))

6 m−p + 2pNp(1− rn) + 2p−1 sup
k>1

µk
(
ρ(o, ·)p1{ρ(o,·)>N}

)
+

2p−1µ
(
ρ(o, ·)p1{ρ(o,·)>N}

)
.

By letting firstly n → ∞ then N → ∞ and finally m → ∞, we obtain

Wp(µn, µ)→ 0(n→∞). �

3 Total Variation Distance

Let P(E) be the class of probability measures on a measurable space

(E,E ). The total variation distance on P(E) is defined as

||µ− ν||Var := |µ− ν|(E) = 2(µ− ν)+(E) = 2(ν − µ)+(E). (7.3.1)

We will characterize this distance by using the Wasserstein coupling, we

define the wedge µ ∧ ν of µ and ν.

Proposition 7.8. For any µ, ν ∈P(E),

µ ∧ ν := µ− (µ− ν)+ = ν − (ν − µ)+

is a sub-probability measure, i.e. it is a measure with µ ∧ ν 6 1.

Proof. Since µ > (µ − ν)+ and ν > (ν − µ)+, both µ − (µ − ν)+ and

ν − (ν − µ)+ are sub-probability measures. It suffices to prove that they

are equal. By Hahn’s decomposition theorem, there exists D ∈ E such that

(µ− ν)(D) = inf
A∈E

(µ− ν)(A), and for any A ∈ E ,

(µ− ν)+(A) = (µ− ν)(Dc ∩A), (ν − µ)+(A) = (ν − µ)(A ∩D).

Thus,

(µ− (µ− ν)+)(A) = µ(A)− µ(Dc ∩A) + ν(Dc ∩A)

= µ(A ∩D) + ν(A)− ν(D ∩A)

= (ν − (ν − µ)+)(A).

�
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The Wasserstein coupling of µ and ν is defined as

π0( dx, dy) := (µ ∧ ν)( dx)δx( dy) +
(µ− ν)+( dx)(µ− ν)−( dy)

(µ− ν)−(E)
,

where for µ = ν we set (µ−ν)+( dx)(µ−ν)−( dy)
(µ−ν)−(E)

= 0.

Regarding a coupling as a scheme to transport µ into ν, the idea of this

coupling is that to keep the common part of µ and ν without transport,

and to transport (µ−ν)+ to (ν−µ)+ using the independent coupling. The

following result shows that Wasserstein coupling gives an optimal transport

under the cost function 1{x 6=y}.

Theorem 7.9. Let D0 = {(x, x) : x ∈ E} ∈ E × E . Then π0( dx, dy) ∈
C (µ, ν), and

‖µ− ν‖Var = 2 inf
π∈C (µ,ν)

π(Dc
0) = 2π0(Dc

0). (7.3.2)

Proof. (a) Obviously, π0 is a probability measure on the product space

(E×E,E ×E ). When µ = ν, we have π0( dx, dy) = µ( dx)δx( dy), so that

π0(A× E) = π0(E ×A) = µ(A), A ∈ E .

Hence, π0 ∈ C (µ, ν).

When µ 6= ν, we have (µ − ν)+(E) > 0. Since (µ − ν)− = (ν − µ)+

and µ(E) = ν(E) = 1, we have (µ− ν)−(E) = (µ− ν)+(E). Thus, for any

A ∈ E ,

π0(A× E) = (µ ∧ ν)(A) +
(µ− ν)+(A)(µ− ν)−(E)

(µ− ν)−(E)

= µ(A)− (µ− ν)+(A) + (µ− ν)+(A) = µ(A),

π0(E ×A) =

∫
E

1A(x)(µ ∧ ν)( dx) + (µ− ν)−(A)

= ν(A)− (µ− ν)−(A) + (µ− ν)−(A)

= ν(A).

Hence, π0 ∈ C (µ, ν).
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(b) ∀π ∈ C (µ, ν), we have

µ(A)− ν(A) = π(A× E)− π(E ×A)

6 π({(x, y) : x ∈ A, y 6∈ A})

6 π(Dc
0).

Thus ||µ− ν||Var 6 2π(Dc
0). To prove equation (7.3.2), we need only prove

||µ− ν||Var > 2π0(Dc
0). We prove in the case of µ 6= ν. By (7.3.1) and the

definition of π0, it follows

π0(Dc
0) =

1

(µ− ν)+(E)

∫
Dc0

(µ− ν)+( dx)(µ− ν)−( dy)

6
1

(µ− ν)+(E)

∫
E×E

(µ− ν)+( dx)(µ− ν)−( dy)

= (µ− ν)−(E) =
1

2
||µ− ν||Var.

�

4 Exercises

1. Let (E, ρ) be a Polish space. On P(E), construct a metric equivalent

to the vague convergence, and give a proof. Is this metric complete?

2. Let (E,E ) be a measurable space. Prove that ∀µ, ν ∈P(E),

||µ− ν||Var = 2 sup
A∈E
|µ(A)− ν(A)| = |µ− ν|(E).

3. Let V > 1 be a measurable function on a measurable space (E,E ).

Prove that ∀µ ∈P(E), define weighted variance

||µ||V =

∫
E
V (x)µ( dx).

Prove for measurable function f ,

sup
||µ||V 61

∫
E
|f | dµ = sup

x∈E

|f(x)|
V (x)

.
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4. Let (E, ρ) be a Polish space. Prove that under the total variation

distance the space P(E) is complete. Exemplify it may not be sep-

arable.

5. Let (E,E ) be a Polish space, and let µ, ν ∈P(E). Construct a prob-

ability space (Ω,A ,P) and measurable

ξ, η : Ω→ E,

which are called random variables on E, such that P ◦ ξ−1 = µ,P ◦
η−1 = ν and Wp(µ, ν)p = Eρ(ξ, η)p.

6. Let (E, ρ) be a Polish space and {µn, µ}n>1 ⊂ Pp(E). Prove that

Wp(µn, µ) → 0 if and only if µn
w−→ µ and lim

n→∞
µn(ρ(o, ·)p) =

µn(ρ(o, ·)p), where o ∈ E is a fixed point.

7. Let (E, ρ) be a compact metric space. Prove that for any p ∈ [1,∞),

(P(E),Wp) is also a compact metric space. Exemplify that (E, ρ) is

a locally compact space but (P(E),Wp) is not.

8. (Lévy distance) For any probability distribution functions F,G on R,

let

ρL(F,G) = inf {ε > 0 : F (x− ε)− ε 6G(x) 6F (x+ ε) + ε, x ∈ Rn} .

Prove that ρ is a distance, and ρ(Fn, F ) → 0 if and only if Fn(x) →
F (x) for any continuous point x of F .

9. For any one-dimensional random variables ξ, η, let Fξ and Fη be their

distribution functions. Define

α(ξ, η) = inf {ε > 0 : P(|ξ − η| > ε) 6 ε}

and

β(ξ, η) = E
(
|ξ − η|

1 + |ξ − η|

)
.

Prove

ρL(Fξ, Fη) 6 α(ξ, η)
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and

α(ξ, η)2

1 + α(ξ, η)
6 β(ξ, η) 6 α(ξ, η) +

(1− α(ξ, η))α(ξ, η)

1 + α(ξ, η)
.





Chapter 8

Calculus on the Space of

Finite Measures

In this part, we introduce the intrinsic and extrinsic derivatives for functions

of finite measures, and make corresponding calculus. For simplicity, we only

consider measures on Rd, but the related theory applies also to measures on

more general spaces such as Riemannian manifolds and separable Banach

spaces.

Recall that M is the set of all finite measures on Rd. For fixed k ∈ [1,∞),

let

Mk =
{
µ ∈M : µ(| · |k) <∞

}
be the set of all finite measures on Rd having finite k-th moment, and let

Pk =
{
µ ∈M : µ(Rd) = 1

}
be the set of probability measures on Rd having finite k-th moment. Both

are Polish space under the k-Wasserstein distance Wk, which is defined in

Definition 7.4 on Pk, and for µ, ν ∈M

Wk(µ, ν) :=


‖µ‖k :=

[
µ(| · |k)

] 1
k , if ν = 0,

‖ν‖k :=
[
µ(| · |k)

] 1
k , if µ = 0,

Wk

(
µ

µ(Rd)
, ν
ν(Rd)

)
+ |µ(Rd)− ν(Rd)|, otherwise.

167



168 8 Calculus on the Space of Finite Measures

We will define intrinsic and extrinsic derivatives on Pk and Mk, and make

calculus with these derivatives.

1 Intrinsic Derivative and Chain Rule

The intrinsic derivative for measures was introduced in [1] to construct

diffusion processes on configuration spaces over a Riemannian manifold, and

was used in [16] to study the geometry of dissipative evolution equations,

see [2] for analysis and geometry on the Wasserstein space over a metric

measure space.

In this part, we introduce the intrinsic derivative on Pk for k ∈ [1,∞),

and establish the chain rule for functions of the distributions of random

variables having k-th moment.

§ 8.1.1 Vector field and tangent space

To define the intrinsic derivative, let us first recall the directional derivative

along a vector v ∈ Rd of a differentiable function f on Rd:

∇vf(x) := lim
ε↓0

f(x+ εv)− f(x)

ε
, x ∈ Rd.

The directional derivative operator ∇v reflects the variance rate of a func-

tion along the line

[0, 1] 3 ε 7→ x+ εv,

which pushes forward a particle from point x along the direction v. More-

over, the gradient

∇f(x) :=
(
∂x1f(x), · · · , ∂xdf(x)

)
is the element in Rd such that

〈∇f(x), v〉 = ∇vf(x), v ∈ Rd. (8.1.1)

Now, let us characterize the variance rate of a function f on Pk. In

this case, we replace x ∈ Rd by a distribution µ ∈ Pk. To push forward
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the distribution µ, we need to push forward all points x in the support

of µ, so that instead of the line ε 7→ x + εv we need a family of lines

{ε 7→ x+ εv(x)}x∈Rd , which leads to the notion of vector field.

Definition 8.1. A vector field on Rd is a measurable map

v : Rd 3 x 7→ v(x) ∈ Rd.

Now, for each vector field v on Rd, we may push forward a measure

µ ∈M along v as

[0, 1] 3 ε 7→ µ ◦ (id + εv)−1,

where id : x 7→ x is the identity map, and for each ε ∈ [0, 1], µ ◦ (id + εv)−1

is a finite measure on Rd defined as

(µ ◦ (id + εv)−1)(A) := µ
(
(id + εv)−1(A)

)
for A ∈ B(Rd), the Borel σ-algebra on Rd.

Then we may define the directional derivative long v for a function f

of measures as follows:

lim
ε↓0

f(µ ◦ (id + εv)−1)− f(µ)

ε
,

provided the limit exists. When a function on Mk is concerned, we need

to assume that µ ◦ (id + εv)−1 ∈Mk for µ ∈Mk. It is easy to see that this

is equivalent to ∫
Rd
|v|k dµ <∞,

since by the integral transformation (Theorem 3.27),∫
Rd
|x|k(µ ◦ (id + εv)−1)( dx) =

∫
Rd
|v|k dµ.

This leads to the notion of tangent space at a point µ ∈Mk, which is the

class of all vector fields on Rd such that µ(|v|k) <∞.

Definition 8.2. Let k ∈ [1,∞) and µ ∈Mk. The tangent space at point µ

is defined as

Lk(Rd → Rd, µ) :=
{
v : Rd → Rd is measurable such that µ(|v|k) <∞

}
.

We denote this space by Tµ,k.
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The tangent space Tµ,k is a separable Banach space, and when k = 2,

it is a separable Hilbert space.

§ 8.1.2 Intrinsic derivative and C1 functions

We are now be able to define the directional derivative of a function on Pk

(or Mk) along vector fields in the tangent space. Moreover, similarly to

(8.1.1), we may define the intrinsic derivative as a linear functional on the

tangent space.

Definition 8.3. Let f be a continuous function on Pk (or Mk).

(1) Let µ ∈Pk (or Mk), and let v ∈ Tµ,k. If the limit

Dvf(µ) := lim
ε↓0

f(µ ◦ (id + εv)−1)− f(µ)

ε

exists, then it is called the directional derivative of f at µ along v.

(2) Let µ ∈Pk (or Mk). If Dvf(µ) exists for any v ∈ Tµ,k, and

Tµ,k 3 v 7→ Dvf(µ)

is a bounded linear functional, we call f intrinsically differentiable at µ.

In this case, the linear functional

Df(µ) : v 7→ Dvf(µ)

is called the intrinsic derivative of f at µ.

(3) If f is intrinsically differentiable at all elements in Pk (or Mk), we call

f intrinsically differentiable on Pk (or Mk).

According to the definition, for any intrinsically differentiable function

f and any µ ∈ Pk (or Mk), Df(µ) is the unique element in

Tµ,k∗ := Lk
∗
(Rd → Rd, µ),
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where k∗ := k
k−1 ∈ (1,∞], such that

Dvf(µ) =

∫
Rd
〈Df(µ)(x), v(x)〉µ( dx), v ∈ Tµ,k.

Intuitively, the intrinsic derivative describes the movement of distribu-

tions along the flows of particles induced by vector fields. As a random

particle can be regarded as a random variable on Rd, below we lift a func-

tion f on Pk to a function f̂ of random variables.

Let Rk be the class of all d-dimensional random variables ξ with E|ξ|k <
∞. Then a function f on Pk induces the following function on Rk:

Rk 3 ξ 7→ f̂(ξ) := f(Lξ),

where Lξ ∈Pk is the distribution of ξ. The directional derivative of f̂ at

ξ along η ∈ Rk is defined as

∇ηf̂(ξ) := lim
ε↓0

f̂(ξ + εη)− f̂(ξ)

ε
,

provided the limit exists. We aim to establish the chain rule

∇ηf̂(ξ) = E
[
〈Df(Lξ)(ξ), η〉

]
, ξ, η ∈ Rk (8.1.2)

for a class of intrinsically differentiable functions f on Pk. To this end, we

introduce the notion of L-derivative and the classes C1(Pk) and C1
b (Pk)

as follows.

Definition 8.4. Let f : Pk → R be intrinsically differentiable.

(1) If

lim
‖φ‖Tµ,k↓0

|f(µ ◦ (id + φ)−1)− f(µ)−DI
φf(µ)|

‖φ‖Tµ,k
= 0,

then f is called L-differentiable at µ. In this case, the intrinsic derivative

is also called the L-derivative.

(2) We write f ∈ C1(Pk), if f is L-differentiable at any µ ∈Pk, and the L-

derivative has a version Df(µ)(x) jointly continuous in (x, µ) ∈ Rd×Pk.

If moreover Df(µ)(x) is bounded, we denote f ∈ C1
b (Pk).
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To establish the chain rule (8.1.2), we need to assume that the under-

lying probability space is Polish.

Definition 8.5. A probability space (Ω,F ,P) is called Polish, if F is the

P-completeness of the a Borel σ-field induced by a Polish metric on Ω. P is

called atomless if P(A) = 0 holds for any atom A ∈ F .

When k = 2, the L-derivative is named after Lions due to his Lecture

Notes (see the corresponding reference in [6]), where Df(µ) is defined as

the unique element in Tµ,2 such that for any atomless probability space

(Ω,F ,P) and any random variables X,Y with LX = µ,

lim
‖Y−X‖L2(P)↓0

|f(LY )− f(LX)− E[〈Df(µ)(X), Y −X〉]|
‖Y −X‖L2(P)

= 0.

Since Df(µ) does not depend on the choice of probability space, when µ is

atomless we may choose (Ω,F ,P) = (Rd,Bd, µ) such that this definition

is equivalent to the one we introduced above. Since by approximations

one may drop the atomless condition, so that the above definition of L-

derivative coincides with, and more straightforward than, the one defined

by Lions.

§ 8.1.3 Chain rule

To establish the chain rule (8.1.2) for functions of distributions of random

variables, we need the following Proposition.

Proposition 8.6. Let {(Ωi,Fi,Pi)}i=1,2 be two atomless, Polish probability

spaces, and let Xi, i = 1, 2, be Rd-valued random variables on these two

probability spaces respectively such that LX1|P1 = LX2|P2 . Then for any

ε > 0, there exist measurable maps

τ : Ω1 → Ω2, τ−1 : Ω2 → Ω1

such that

P1(τ−1 ◦ τ = idΩ1) = P2(τ ◦ τ−1 = idΩ2) = 1,

P1 = P2 ◦ τ, P2 = P1 ◦ τ−1,

‖X1 −X2 ◦ τ‖L∞(P1) + ‖X2 −X1 ◦ τ−1‖L∞(P2) 6 ε,
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where idΩi stands for the identity map on Ωi, i = 1, 2.

Proof. Since Rd is separable, there is a measurable partition (An)n>1 of Rd

such that diam(An) < ε, n > 1. Let Ain = {Xi ∈ An}, n > 1, i = 1, 2. Then

(Ain)n>1 forms a measurable partition of Ωi so that
∑

n>1A
i
n = Ωi, i = 1, 2,

and, due to LX1 |P1 = LX2 |P2,

P1(A1
n) = P2(A2

n), n > 1.

Since the probabilities (Pi)i=1,2 are atomless, according to Theorem C in

Section 41 of [12], for any n > 1 there exist measurable sets Ãin ⊂ Ain with

Pi(Ain \ Ãin) = 0, i = 1, 2, and a measurable bijective map

τn : Ã1
n → Ã2

n

such that

P1|Ã1
n

= P2 ◦ τn|Ã1
n
, P2|Ã2

n
= P1 ◦ τ−1

n |Ã2
n
.

By diam(An) < ε and Pi(Ain \ Ãin) = 0, we have

‖(X1 −X2 ◦ τn)1Ã1
n
‖L∞(P1) ∨ ‖(X2 −X1 ◦ τ−1

n )1Ã2
n
‖L∞(P2) 6 ε.

Then the proof is finished by taking, for fixed points ω̂i ∈ Ωi, i = 1, 2,

τ(ω1) =

τn(ω1), if ω1 ∈ Ã1
n for some n > 1,

ω̂2, otherwise,

τ−1(ω2) =

τ−1
n (ω2), if ω2 ∈ Ã2

n for some n > 1,

ω̂1, otherwise.

�

The following chain rule is taken from Theorem 2.1 in [3], which extends

the corresponding formulas for functions on P2 presented in [6, 13] and

references within.
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Theorem 8.7. Let f : Pk → R be continuous for some k ∈ [1,∞), and let

(ξε)ε∈[0,1] be a family of Rd-valued random variables on a complete probability

space (Ω,F ,P) such that ξ̇0 := limε↓0
ξε−ξ0
ε exists in Lk(Ω → Rd,P). We

assume that either ξε is continuous in ε ∈ [0, 1], or the probability space is

Polish.

(1) Let µ0 = Lξ0 be atomless. If f is L-differentiable such that Df(µ0) has

a continuous version satisfying

‖Df(µ0)(x)‖Rd 6 C(1 + |x|k−1), x ∈ Rd (8.1.3)

for some constant C > 0, then

lim
ε↓0

f(Lξε)− f(Lξ0)

ε
= E[〈Df(µ0)(ξ0), ξ̇0〉]. (8.1.4)

(2) If f is L-differentiable in a neighborhood O of µ0 such that Df has a

version jointly continuous in (x, µ) ∈ Rd ×O satisfying

‖Df(µ)(x)‖Rd 6 C(1 + |x|k−1), (x, µ) ∈ Rd ×O (8.1.5)

for some constant C > 0, then (8.1.4) holds.

Proof. Without loss of generality, we may and do assume that P is atomless.

Otherwise, by taking

(Ω̃, F̃ , P̃) = (Ω× [0, 1],F ×B([0, 1]),P× ds),

(ξ̃ε)(ω, s) = ξε(ω) for (ω, s) ∈ Ω̃,

where B([0, 1]) is the completion of the Borel σ-algebra on [0, 1] w.r.t. the

Lebesgue measure ds, we have

Lξ̃ε|P̃ = Lξε|P, E[〈Df(µ0)(ξ0), ξ̇0〉] = Ẽ[〈Df(µ0)(ξ̃0),
˙̃
ξ0〉].

In this way, we go back to the atomless situation. Moreover, it suffices to

prove for the Polish probability space case. Indeed, when ξε is continuous

in ε, we may take Ω̄ = C([0, 1];Rd), let P̄ be the distribution of ξ·, let F̄
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be the P̄-complete Borel σ-field on Ω̄ induced by the uniform norm, and

consider the coordinate random variable ξ̄·(ω) := ω, ω ∈ Ω̄. Then

Lξ̄·|P̃ = Lξ·|P,

so that Lξ̄ε|P̄ = Lξε|P for any ε ∈ [0, 1] and Lξ̄′0|P̄
= Lξ′0|P, hence we have

reduced the situation to the Polish setting.

(1) Let Lξ0 = µ0 ∈ Pk be atomless. In this case, (Rd,B(Rd), µ0)

is an atomless Polish complete probability space, where B(Rd) is the µ0-

complete Borel σ-algebra of Rd. By Proposition 8.6, for any n > 1 we find

measurable maps

τn : Ω→ Rd, τ−1
n : Rd → Ω

such that

P(τ−1
n ◦ τn = idΩ) = µ0(τn ◦ τ−1

n = id) = 1,

P = µ0 ◦ τn, µ0 = P ◦ τ−1
n ,

‖ξ0 − τn‖L∞(P) + ‖id− ξ0 ◦ τ−1
n ‖L∞(µ0) 6

1

n
,

(8.1.6)

where idΩ is the identity map on Ω.

Since f is L-differentiable at µ0, there exists a decreasing function h :

[0, 1]→ [0,∞) with h(r) ↓ 0 as r ↓ 0 such that

sup
‖φ‖

Lk(µ0)
6r

∣∣f(µ0 ◦ (id + φ)−1)− f(µ0)−Dφf(µ0)
∣∣

6 rh(r), r ∈ [0, 1].

(8.1.7)

By Lξε−ξ0 ∈Pk and (8.1.6), we have

φn,ε := (ξε − ξ0) ◦ τ−1
n ∈ Tµ,k, ‖φn,ε‖Tµ,k = ‖ξε − ξ0‖Lk(P). (8.1.8)

Next, (8.1.6) implies

Lτn+ξε−ξ0 = P ◦ (τn + ξε − ξ0)−1

= (µ0 ◦ τn) ◦ (τn + ξε − ξ0)−1 = µ0 ◦ (id + φn,ε)
−1.

(8.1.9)

Moreover, by ξε−ξ0
ε → ξ̇0 in Lk(P) as ε ↓ 0, we find a constant c > 1 such

that

‖ξε − ξ0‖Lk(P) 6 cε, ε ∈ [0, 1]. (8.1.10)



176 8 Calculus on the Space of Finite Measures

Combining (8.1.6)-(8.1.10) leads to∣∣f(Lτn+ξε−ξ0)− f(Lξ0)− E[< (Df)(µ0)(τn), (ξε − ξ0)〉]
∣∣

=
∣∣f(µ0 ◦ (id + φn,ε)

−1)− f(µ0)−Dφn,εf(µ0)
∣∣

6 ‖φn,ε‖Tµ,kh(‖φn,ε‖Tµ,k)

= ‖ξε − ξ0‖Lk(P)h(‖ξε − ξ0‖Lk(P)), ε ∈ [0, c−1].

(8.1.11)

Since f(µ) is continuous in µ and Df(µ0)(x) is continuous in x, by (8.1.3)

and (8.1.6), we may apply the dominated convergence theorem to deduce

from (8.1.11) with n→∞ that∣∣f(Lξε)− f(Lξ0)− E[〈(Df)(µ0)(ξ0), (ξε − ξ0)〉]
∣∣

6 ‖ξε − ξ0‖Lk(P)h(‖ξε − ξ0‖Lk(P)), ε ∈ [0, c−1].

Combining this with (8.1.10) and h(r)→ 0 as r → 0, we derive (8.1.4).

(2) When µ0 has an atom, we take a Rd-valued bounded random variable

X which is independent of (ξε)ε∈[0,1] and LX does not have any atom. Then

Lξ0+sX+r(ξε−ξ0) ∈Pk

does not have atom for any s > 0, ε ∈ [0, 1]. By conditions in Theorem

8.7(2), there exists a small constant s0 ∈ (0, 1) such that for any s, ε ∈
(0, s0], we may apply (8.1.4) to the random variables

ξ0 + sX + (r + δ)(ξε − ξ0), δ > 0

to conclude

f(Lξε+sX)− f(Lξ0+sX)

=

∫ 1

0

d

dδ
f(Lξ0+sX+(r+δ)(ξε−ξ0))

∣∣
δ=0

dr

=

∫ 1

0
E[〈Df(Lξ0+sX+r(ξε−ξ0))(ξ0 + sX + r(ξε − ξ0)), ξε − ξ0〉] dr.

By conditions in Theorem 8.7(2), we may let s ↓ 0 to derive

f(Lξε)− f(Lξ0)

=

∫ 1

0
E[〈Df(Lξ0+r(ξε−ξ0))(ξ0 + r(ξε − ξ0)), ξε − ξ0〉] dr, ε ∈ (0, s0).

Multiplying both sides by ε−1 and letting ε ↓ 0, we finish the proof. �
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As a consequence of the chain rule, we have the following Lipschitz

estimate for L-differentiable functions on Pk.

Corollary 8.8. Let f be L-differentiable on Pk such that for any µ ∈Pk,

Df(µ)(·) has a continuous version satisfying

|Df(µ)(x)| 6 c(µ)(1 + |x|k−1), x ∈ Rd (8.1.12)

for come constant c(µ) > 0, and

K0 := sup
µ∈Pk

‖Df(µ)‖Lk(µ) <∞. (8.1.13)

Then

|f(µ1)− f(µ2)| 6 K0Wk(µ1, µ2), µ1, µ2 ∈Pk. (8.1.14)

Proof. By Theorem 7.4, there exists π ∈ C (µ1, µ2) such that

Wk(µ1, µ2) =

(∫
Rd×Rd

|x− y|kπ( dx, dy)

) 1
k

.

Now, consider the probability space

(Ω,F ,P) =
(
Rd × Rd × Rd, B̄(Rd × Rd × Rd), π ×G

)
,

where G is the standard Gaussian measure on Rd, and B̄(Rd × Rd × Rd)
is the completion of the Borel σ-field B(Rd × Rd × Rd) with respect to P.

Obviously, this probability space is atomless and Polish, and the random

variables

ξ1(ω) := ω1, ξ2(ω) := ω2, ω = (ω1, ω2, ω3) ∈ Ω := Rd × Rd × Rd

satisfy

Lξ1 = µ1, Lξ2 = µ2, Wk(µ1, µ2) = (E[|ξ1 − ξ2|k])
1
k .

Moreover, the random variable

η(ω) := ω3, ω = (ω1, ω2, ω3) ∈ Ω
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is independent of (ξ1, ξ2) with distribution Lµ = G, so that the random

variables

γε(r) := εη + rξ1 + (1− r)ξ2, r ∈ [0, 1], ε ∈ (0, 1]

are absolutely continuous with respect to the Lebesgue measure. By The-

orem 8.7, (8.1.12) and the continuity of Df(µ)(·), we obtain

|f(Lγε(1))− f(Lγε(0))| =
∣∣∣∣ ∫ 1

0
E
[
〈Df(Lγε(r))(γε(r)), ξ1 − ξ2〉

]
dr

∣∣∣∣
6
(
E[|ξ1 − ξ2|k]

) 1
k

∫ 1

0
‖Df(Lγε(r))‖Lk(Lγε(r))

dr

6 KWk(µ1, µ2), ε ∈ (0, 1].

Letting ε→ 0 we derive (8.1.14). �

2 Extrinsic Derivative and Convexity Extrinsic

Derivative

Regarding a measure as the distribution of particle systems, the intrinsic

derivative describes the movement of particles. In this part, we consider the

(convexity) extrinsic derivative, which refers to the birth and death rates

of particles.

We first recall the extrinsic derivative defined as partial derivative in

the direction of Dirac measures, see [17, Definition 1.2].

Definition 8.9 (Extrinsic derivative). Let f be a real function on Mk. For

any x ∈ Rd, let δx be the Dirac measure at x, i.e. δx ∈P with δx({x}) = 1.

(1) f is called extrinsically differentiable on Mk with derivative DEf , if

DEf(µ)(x) := lim
ε↓0

f(µ+ εδx)− f(µ)

ε
∈ R

exists for all (x, µ) ∈ Rd ×Mk.

(2) If DEf(µ)(x) exists and is continuous in (x, µ) ∈ Rd ×Mk, we denote

f ∈ CE,1(Mk).
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(3) We denote f ∈ CE,1K (Mk), if f ∈ CE,1(Mk) and for any compact set

K ⊂Mk, there exists a constant C > 0 such that

sup
µ∈K

|DEf(µ)(x)| 6 C
(
1 + |x|k

)
, x ∈ Rd.

(4) We denote f ∈ CE,1,1(Mk), if f ∈ CE,1(Mk) such that DEf(µ)(x) is

differentiable in x, ∇{DEf(µ)(·)}(x) is continuous in (x, µ) ∈ Rd×Mk,

and |∇{DEf(µ)}| ∈ L
k
k−1 (µ) for any µ ∈Mk.

(5) We write f ∈ CE,1,1B (Mk), if f ∈ CE,1,1(Mk) and for any constant

L > 0 there exists CL > 0 such that

sup
‖µ‖k6L

|∇{DEf(µ)}|(x) 6 CL(1 + |x|k), x ∈ Rd.

Since for a probability measure µ and s > 0, µ + sδx is no longer a

probability measure, for functions of probability measures we modify the

definition of the extrinsic derivative with the convex combination

(1− s)µ+ sδx

replacing µ+sδx. This leads to the notion of convexity extrinsic derivative.

Definition 8.10 (Convexity extrinsic derivative). Let f be a real function

on Pk.

(1) f is called extrinsically differentiable on Pk, if the centered extrinsic

derivative

D̃Ef(µ)(x) := lim
s↓0

f((1− s)µ+ sδx)− f(µ)

s
∈ R

exists for all (x, µ) ∈ Rd ×Pk.

(2) We write f ∈ CE,1(Pk), if D̃Ef(µ)(x) exists and is continuous in

(x, µ) ∈ Rd ×Pk.

(3) We denote f ∈ CE,1K (Pk), if f ∈ CE,1(Pk) and for any compact set

K ⊂Pk, there exists a constant C > 0 such that

sup
µ∈K

|D̃Ef(µ)(x)| 6 C
(
1 + |x|k

)
, x ∈ Rd.
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(4) We write f ∈ CE,1,1(Pk), if f ∈ CE,1(Pk) such that D̃Ef(µ)(x)

is differentiable in x ∈ Rd, ∇{D̃Ef(µ)}(x) is continuous in (x, µ) ∈
Rd ×Pk, and |∇{D̃Ef(µ)}| ∈ L

k
k−1 (µ) for any µ ∈Pk.

(5) We write f ∈ CE,1,1B (Pk), if f ∈ CE,1,1(Pk) and for any constant

L > 0 there exists C > 0 such that

sup
µ(|·|k)6L

|∇{D̃Ef(µ)}|(x) 6 C(1 + |x|k), x ∈ Rd.

By Proposition 8.13 below with γ = δx and r = 0, we have

lim
s↓0

f((1− s)µ+ sδx)− f(µ)

s

= DEf(µ)(x)− µ
(
DEf(µ)

)
, f ∈ CE,1K (Mk), x ∈ Rd.

So, the convexity extrinsic derivative is indeed the centralised extrinsic

derivative.

For µ ∈M and a density function 0 6 h ∈ L1(µ), hµ is a finite measure

on Rd defined as

(hµ)(A) =

∫
A
hdµ, A ∈ B(Rd).

Then a function f on M induces the following function of density h:

h 7→ f(hµ).

To characterize this function by using the extrinsic derivative, we introduce

the following class of density functions.

Definition 8.11. We denote h ∈ Hε0 for a constant ε0 > 0, if h satisfies

the following conditions:

(1) 0 6 h ∈ C([0, ε0]× Rd);

(2) h0 ≡ 0, supε∈[0,ε0] ‖hε‖∞ <∞, and there exists a compact set K ⊂ Rd

such that hε|Kc = 0 for all ε ∈ [0, ε0];

(3) ḣε := lims↓0
hε+s−hε

s ∈ Cb(Rd) exists and is uniformly bounded for ε ∈
[0, ε0).
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The following Proposition links f((1 + hε)µ) − f(µ) to the extrinsic

derivative, which will be used to characterize the relation of Df and DEf

in the next subsection.

Proposition 8.12. Let k ∈ [1,∞). For any h ∈Hε0 and any f ∈ CE,1,1(Mk),

f((1 + hε)µ)− f(µ) =

∫ ε

0
dr

∫
Rd
DEf((1 + hr)µ)(x)ḣr(x)µ( dx) (8.2.1)

holds for all µ ∈Mk and ε ∈ [0, ε0].

Proof. (1) We first consider

µ ∈Mdisc :=
{ n∑
i=1

aiδxi : n > 1, ai > 0, xi ∈ Rd, 1 6 i 6 n
}
.

In this case, for any ε ∈ [0, ε0) and s ∈ (0, ε0 − ε), by the definition of DE

we have

f((1 + hε+s)µ)− f((1 + hε)µ)

= f
(

(1 + hε)µ+
n∑
i=1

{hε+s − hε}(xi)aiδxi
)
− f((1 + hε)µ)

=
n∑
k=1

{
f
(

(1 + hε)µ+
k∑
i=1

{hε+s − hε}(xi)aiδxi
)

− f
(

(1 + hε)µ+
k−1∑
i=1

{hε+s − hε}(xi)aiδxi
)}

=
n∑
k=1

∫ ak{hε+s−hε}(xk)

0{
DEf

(
(1 + hε)µ+

k−1∑
i=1

{hε+s − hε}(xi)aiδxi + rδxk

)}
(xk) dr.

Multiplying by s−1 and letting s ↓ 0, we deduce from this and the continuity
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of DEf that

lim
s↓0

f((1 + hε+s)µ)− f((1 + hε)µ)

s

=
n∑
k=1

akḣε(xk)D
Ef((1 + hε)µ)(xk)

=

∫
Rd
DEf((1 + hε)µ)(x)ḣε(x)µ( dx), ε ∈ [0, ε0), µ ∈Mdisc.

(8.2.2)

(2) In general, for any µ ∈Mk, let {µn}n>1 ⊂Mdisc such that µn → µ

in Mk. By (8.2.2), for any ε ∈ (0, ε0) and s ∈ (0, ε0 − ε), we have

f((1 + hε)µn)− f(µn)

=

∫ ε

0
dr

∫
Rd
DEf((1 + hr)µn)(x)ḣr(x)µn( dx), n > 1.

(8.2.3)

Next, since DEf ∈ C(Rd ×Mk) and hr, ḣr ∈ Cb(Rd) for r ∈ [0, ε0] with

compact support ⊂ K, and µn → µ in Mk, we obtain

lim
n→∞

∫
Rd
DEf((1 + hr)µ)(x)ḣr(x)µn( dx)

=

∫
Rd
DEf((1 + hr)µ)(x)ḣr(x)µ( dx).

(8.2.4)

Moreover, µn → µ in Mk and h ∈Hε0 imply that the set

Kr := {(1 + hr)µ, (1 + hr)µn : n > 1}

is compact in Mk for any r ∈ [0, ε0]. Combining this with DEf ∈ C(Rd ×
Mk), we see that the function

Kr × Rd 3 (γ, x) 7→ DEf(γ)(x)ḣr(x)

is uniformly continuous and has compact support ⊂ Kr×K, so that (8.2.4)
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implies

lim sup
n→∞

∣∣∣∣ ∫
Rd
DEf((1 + hr)µn)(x)ḣr(x)µn( dx)

−
∫
Rd
DEf((1 + hr)µ)(x)ḣr(x)µ( dx)

∣∣∣∣
= lim sup

n→∞

∣∣∣∣ ∫
Rd
DEf((1 + hr)µn)(x)ḣr(x)µn( dx)

−
∫
Rd
DEf((1 + hr)µ)(x)ḣr(x)µn( dx)

∣∣∣∣
6 lim sup

n→∞

{
µn(K) sup

x∈K
|DEf((1 + hr)µn)(x)ḣr(x)

−DEf((1 + hr)µ)(x)ḣr(x)|
}

= 0.

Combining this with

sup
(γ,x)∈Kr×K,r∈[0,ε0]

|DEf(γ)(x)ḣr(x)| <∞,

we deduce from the dominated convergence theorem that

lim
n→∞

∫ ε

0
dr

∫
Rd

{
DEf

}
((1 + hε)µn)(x)ḣr(x)µn( dx)

=

∫ ε

0
dr

∫
Rd

{
DEf

}
((1 + hr)µ)(x)ḣr(x)µ( dx).

(8.2.5)

Therefore, by letting n → ∞ in (8.2.3) and using the continuity of f , we

prove (8.2.1). �

To calculate the convexity extrinsic derivative, we present the following

result.

Proposition 8.13. Let k ∈ [1,∞). Then for any f ∈ CE,1K (Mk) and µ, γ ∈
Mk,

d

dr
f((1− r)µ+ rγ)

:= lim
ε↓0

f((1− r − ε)µ+ (r + ε)γ)− f((1− r)µ+ rγ)

ε

=

∫
Rd

{
DEf((1− r)µ+ rγ)(x)

}
(γ − µ)( dx), r ∈ [0, 1).
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Consequently, for any f ∈ CE,1K (Mk),

D̃Ef(µ)(x)

:= lim
s↓0

f((1− s)µ+ sδx)− f(µ)

s

= DEf(µ)(x)− µ
(
DEf(µ)

)
, (x, µ) ∈ Rd ×Mk.

The assertions also hold for Pk replacing Mk.

Proof. As in the proof of Proposition 8.12, we take

µn =
n∑
i=1

αn,iδxn,i , γn =
n∑
i=1

βn,iδxn,i

for some xn,i ∈ Rd and αn,i, βn,i > 0, such that

µn → µ, γn → γ in Mk as n→∞.

For any r ∈ [0, 1) and ε ∈ (0, 1− r), let

Λεn,i := (1− r)µn + rγn +
i−1∑
k=1

ε(βk − αk)δxn,k ∈Mk, 1 6 i 6 n,

where by convention
∑0

i=1 := 0. Then by the definition of DEf , we have

f((1− r − ε)µn + (r + ε)γn)− f((1− r)µn + rγn)

=
n∑
i=1

{
f(Λεn,i + ε(βn,i − αn,i)δxn,i)− f(Λεn,i)

}
=

n∑
i=1

∫ ε(βn,i−αn,i)

0
DEf(Λεn,i + sδxn,i)(xn,i) ds, ε ∈ (0, 1− r).

Multiplying by ε−1 and letting ε ↓ 0, due to the continuity of DEf we

derive

d

dr
f((1− r)µn + rγn)

=
n∑
i=1

(βn,i − αn,i)DEf((1− r)µn + rγn)(xn,i)

=

∫
Rd

{
DEf((1− r)µn + rγn)(x)

}
(γn − µn)( dx), r ∈ [0, 1), n > 1.
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Consequently, for any r ∈ [0, 1),

f((1− r − ε)µn + (r + ε)γn)− f((1− r)µn + rγn)

=

∫ r+ε

r
ds

∫
Rd

{
DEf((1− s)µn + sγn)(x)

}
(γn − µn)( dx),

ε ∈ (0, 1− r), n > 1.

Noting that the set {µn, γn : n > 1} is relatively compact in Mk, by this

and the condition on f , we may let n→∞ to derive

f((1− r − ε)µ+ (r + ε)γ)− f((1− r)µ+ rγ)

=

∫ r+ε

r
ds

∫
Rd

{
DEf((1− s)µ+ sγ)(x)

}
(γ − µ)( dx), ε ∈ (0, 1− r).

Multiplying by ε−1 and letting ε ↓ 0, we finish the proof. �

The following is a consequence of Proposition 8.13 for functions on Pk.

Proposition 8.14. Let k ∈ [1,∞). Then for any f ∈ CE,1K (Pk) and µ, ν ∈
Pk,

lim
s↓0

f((1− s)µ+ sν)− f(µ)

s
=

∫
Rd

{
D̃Ef((µ)(x)

}
(ν − µ)( dx).

Proof. To apply Proposition 8.13, we extend a function f on Pk to f̃ on

Mk by letting

f̃(µ) = h(µ(Rd))f(µ/µ(Rd)), µ ∈Mk,

where h ∈ C∞0 (R) with support contained by [1
4 , 2] and h(r) = 1 for r ∈

[1
2 ,

3
2 ]. It is easy to see that

f((1− s)µ+ sν) = f̃((1− s)µ+ sν), s ∈ [0, 1], µ, ν ∈Pk,

and f ∈ CE,1K (Pk) implies that f̃ ∈ CE,1K (Mk) and

DE f̃(µ) = D̃Ef(µ), µ ∈P.

Then the desired formula is implied by Proposition 8.13 with r = 0. �
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3 Links of Intrinsic and Extrinsic Derivatives

Theorem 8.15. Let k ∈ [1,∞).

(1) Let f ∈ CE,1,1(Mk). Then f is intrinsically differentiable and

Df(µ)(x) = ∇{DEf(µ)(·)}(x), (x, µ) ∈ Rd ×Mk. (8.3.1)

When k ∈ [1, 2] and f ∈ CE,1,1B (Mk), we have f ∈ C1(Mk).

(2) If f ∈ C1(Mk), then for any s > 0, f(µ+ sδ·) ∈ C1(Rd) with

∇f(µ+ sδ·)(x) = sDf(µ+ sδx)(x), x ∈ Rd, s > 0. (8.3.2)

Consequently,

Df(µ)(x) = lim
s↓0

1

s
∇f(µ+ sδ·)(x), (x, µ) ∈ Rd ×Mk. (8.3.3)

Proof. Below we prove assertions (1) and (2) respectively.

(a) Proof of assertion (1). We first prove (8.3.1) for f ∈ CE,1,1(Mk).

Let v ∈ Tµ,k, and simply denote

φεv := id + εv, ε > 0.

Since any µ ∈Mk can be approximated by those having smooth and strictly

positive density functions with respect to the volume measure dx, by the

argument leading to (8.2.5), it suffices to show that for any µ ∈Mk satis-

fying

µ( dx) = ρ(x) dx for some ρ ∈ C∞b (Rd), inf ρ > 0, (8.3.4)

there exists a constant ε0 > 0 such that

f(µ ◦ φ−1
εv )− f(µ)

=

∫ ε

0
dr

∫
Rd
〈∇{DEf(µ ◦ φ−1

rv )}, v〉 d(µ ◦ φ−1
rv ), ε ∈ (0, ε0).

(8.3.5)

Firstly, there exists a constant ε0 > 0 such that

ρvε :=
d(µ ◦ φ−1

εv )

dµ
, ρ̇vε := lim

s↓0

ρvε+s − ρvε
s
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exist in Cb(Rd) and are uniformly bounded and continuous in ε ∈ [0, ε0].

Next, by Proposition 8.12, we have

f(µ ◦ φ−1
εv )− f(µ)

=

∫ ε

0
dr

∫
Rd

{
DEf(µ ◦ φ−1

rv )
}
ρ̇vr dµ, ε ∈ [0, ε0].

(8.3.6)

To calculate ρ̇vr , we note that for any g ∈ C∞0 (Rd),
d

dr

{
g ◦ φrv

}
= 〈∇g(φrv), v(φrv)〉

= 〈∇g, v〉(φrv), r > 0,

which is smooth and bounded in (r, x) ∈ [0, ε0]× Rd. So,∫
Rd
gρ̇vr dµ =

∫
Rd
g lim
s↓0

ρvr+s − ρvr
s

dµ

= lim
s↓0

1

s

∫
Rd
g d
{
µ ◦ φ−1

(r+s)v − µ ◦ φ
−1
rv

}
= lim

s↓0

1

s

∫
Rd

{
g ◦ φ(r+s)v − g ◦ φrv

}
dµ =

∫
Rd

d

dr
(g ◦ φrv) dµ

=

∫
Rd
〈∇g, v〉 ◦ φrv dµ =

∫
Rd
〈∇g, v〉 d(µ ◦ φ−1

εc )

= −
∫
Rd

{
g divµ◦φ−1

rv
(v)
}

d(µ ◦ φ−1
rv )

= −
∫
Rd
g
{

divµ◦φ−1
rv

(v)ρvr
}

dµ, g ∈ C∞0 (Rd),

where divµ◦φ−1
rv

(v) = div(v) + 〈v,∇ log(ρvrρ)〉. This implies

ρ̇vr = −divµ◦φ−1
rv

(v)ρr,

so that the integration by parts formula and

ρvrµ = µ ◦ φ−1
rv

lead to ∫
Rd

{
DEf(µ ◦ φ−1

rv )
}
ρ̇vr dµ

= −
∫
Rd

{
DEf(µ ◦ φ−1

rv )
}

divµ◦(φ−1
rv

(v) d(µ ◦ φ−1
rv )

=

∫
Rd

〈
∇{DEf(µ ◦ φ−1

rv )}, v
〉

d(µ ◦ φ−1
rv ).
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Combining this with (8.3.6) we prove (8.3.5).

Now, let k ∈ [1, 2], we intend to verify the L-differentiability of f . For

any µ ∈Mk and v ∈ Tµ,2 with µ(|v|2) 6 1, we have

sup
s∈[0,1]

(µ ◦ φ−1
sv )(| · |k) = µ(|φsv|k) 6 2µ(| · |k + |v|k) <∞.

Then there exists a constant K > 0 such that

sup
s∈[0,1],µ(|v|2)61

(µ ◦ (φsv)
−1 + µ)(| · |k) 6 K. (8.3.7)

So, by Proposition 8.13, we obtain

f(µ ◦ (id + v)−1)− f(µ)

=

∫ 1

0

{ d

dr
f(rµ ◦ (φrv)

−1 + (1− r)µ)
}

dr

=

∫ 1

0
dr

∫
Rd

(DEf)(rµ ◦ φ−1
rv + (1− r)µ) d(µ ◦ φ−1

v − µ)

=

∫ 1

0
dr

∫
Rd

{
(DEf)(rµ ◦ φ−1

rv + (1− r)µ)(φv(x))

− (DEf)(rµ ◦ φ−1
rv + (1− r)µ)(x)

}
µ( dx)

=

∫ 1

0
dr

∫
Rd
µ( dx)

∫ 1

0

〈
∇
{

(DEf)(rµ ◦ φ−1
rv + (1− r)µ)

}
(φsv(x)), v(x)

〉
ds.

Thus,

Iv :=
|f(µ ◦ φ−1

v )− f(µ)−
∫
Rd〈∇{D

Ef(µ)}, v〉dµ|2

µ(|v|2)

6
∫

[0,1]2×Rd

∣∣∇{(DEf)(rµ ◦ φ−1
rv + (1− r)µ)

}
(φsv(x))

−∇
{
DEf(µ)

}
(x)
∣∣2 dr dsµ( dx).

By (8.3.7), as ‖v‖L2(µ) → 0 we have φsv(x)→ x µ-a.e. and µ ◦ φ−1
sv → µ in

Mk for any s > 0. Combining these with (8.3.7) we may apply the domi-

nated convergence theorem to derive Iv → 0 as ‖v‖L2(µ) → 0. Therefore, f

is L-differentiable.
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(b) Proof of assertion (2). It suffices to prove (8.3.2). Let f ∈ C1(Mk).

We first prove the formula for µ ∈ Mk and x ∈ Rd with µ({x}) = 0, then

extend to the general situation.

Let µ({x}) = 0. In this case, for any v0 ∈ TxM , let v = 1{x}v0. Then

φrv(z) =

z, if z 6= x,

x+ rv0, if z = x.

By µ({x}) = 0, we have

(µ+ sδx) ◦ φ−1
rv = µ+ sδx+rv0 . (8.3.8)

Since v can be approximated in L2(µ + sδx) by smooth vector fields with

compact support, the L-differentiability of f and µ({x}) = 0 imply

lim
r↓0

f((µ+ sδx) ◦ φ−1
rv )− f(µ+ sδx)

r

=

∫
Rd
〈Df(µ+ sδx), v〉d(µ+ sδx))

= s〈Df(µ+ sδx)(x), v0〉.

Combining this with (8.3.8), we obtain

lim
r↓0

f(µ+ sδx+rv0)− f(µ+ sδx)

r

= s〈Df(µ+ sδx)(x), v0〉.

This implies that f(µ+ sδ·) is differentiable at point x and (8.3.2) holds.

In general, for any v0 ∈ TxM , there exists r0 > 0 such that v0 extends

to a smooth vector field v on B(x, r0) by parallel displacement; i.e. v(x)

is the parallel displacement along the minimal geodesic from x to z. Since

µ({x + θv0}) = 0 for a.e. θ > 0, by the continuity of f and the formula
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(8.3.2) for µ({x}) = 0 proved above, we obtain

f(µ+ sδx+rv0)− f(µ+ sδx)

r

=
1

r

∫ r

0

d

dθ
f(µ+ sδx+θv0) dθ

=
1

r

∫ r

0

〈
∇f(µ+ sδ·)(x+ θv0), v(x+ θv0)

〉
dθ

=
s

r

∫ r

0

〈
Df(µ+ sδ·)(x+ θv0), v(x+ θv0)

〉
dθ, r ∈ (0, r0).

By the continuity of Df , with r ↓ 0 this implies (8.3.2). �

Theorem 8.15 implies CE,1,1B (Mk) ⊂ C1(Mk) for k ∈ [1, 2]. However,

a function f ∈ C1(Mk) is not necessarily extrinsically differentiable. For

instance, let ψ ∈ C([0,∞)) but not differentiable, and let f(µ) = ψ(µ(Rd)).
Then f(µ+sδx) = ψ(µ(Rd)+s) which is not differentiable in s, so that f is

not extrinsically differentiable. But it is easy to see that f ∈ C1(Mk) with

Df(µ) = 0. Of course, this counter-example does not work for functions

on Pk.

By extending a function on Pk to Mk, we may apply Theorem 8.15 to

establish the corresponding link for functions on Pk. As an application, we

will present derivative formula for the distributions of random variables.

For s0 > 0 and a family of Rd-valued random variables {ξs}s∈[0,s0) on a

probability space (Ω,F ,P), we say that ξ̇0 := d
dsξs

∣∣
s=0

exists in Lq(P) for

some q > 1, if ξ̇0 ∈ Rk and

lim
s↓0
E
∣∣∣ξs − ξ0

s
− ξ̇0

∣∣∣q = 0. (8.3.9)

Corollary 8.16. Let k ∈ [1,∞).

(1) Let f ∈ CE,1,1(Pk). Then f is intrinsically differentiable and

Df(µ)(x) = ∇{D̃Ef(µ)(·)}(x), (x, µ) ∈ Rd ×Pk. (8.3.10)

When k 6 2 and f ∈ CE,1,1B (Pk), we have f ∈ C1(Pk).
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(2) If f ∈ CL,1(Pk), then f((1− s)µ+ sδ·) ∈ C1(Rd) with

∇f((1− s)µ+ sδ·)(x) = sDf((1− s)µ+ sδx)(x), x ∈ Rd. (8.3.11)

Consequently,

Df(µ)(x) = lim
s↓0

1

s
∇f((1− s)µ+ sδ·)(x),

f ∈ CL,1(Pk), (x, µ) ∈ Rd ×M.

(8.3.12)

(3) Let {ξs}s∈[0,s0) be random variables on M with Lξs ∈Pk continuous in

s, such that ξ̇0 := d
dsξs

∣∣
s=0

exists in Lq(Ω → TM ;P) for some q > 1.

Then

lim
s↓0

f(Lξs)− f(Lξ0)

s
= E

〈
Df(Lξ0)}(ξ0), ξ̇0

〉
(8.3.13)

holds for any f ∈ CE,1,1(Pk) such that for any compact set K ⊂Pk,

sup
µ∈K

|∇{D̃Ef(µ)}|(x) 6 C(1 + |x|)
p(q−1)
q , x ∈ Rd (8.3.14)

holds for some constant C > 0.

Proof. To apply Theorem 8.15, we extend a function f on Pk to f̃ on Mk

as in the proof of Proposition 8.14, i.e. by letting

f̃(µ) = h(µ(Rd))f
(

µ

µ(Rd)

)
, µ ∈Mk,

where h ∈ C∞0 (R) with support contained in [1
4 , 2] and

h(r) = 1 for r ∈
[1

2
,
3

2

]
.

It is easy to see that

f((1− s)µ+ sν) = f̃((1− s)µ+ sν), s ∈ [0, 1], µ, ν ∈Pk,

and f ∈ CE,1,1(Pk) implies that f̃ ∈ CE,1,1(Mk) and

DE f̃(µ) = D̃Ef(µ), Df(µ) = Df̃(µ), µ ∈P.
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Then Corollary 8.16(1)-(4) follow from the corresponding assertions in The-

orem 8.15 with f̃ replacing f .

Finally, since f ∈ CE,1,1(Pk) and

∇{D̃Ef(µ)} = ∇{DE f̃}(µ) = Df(µ), µ ∈Pk,

(8.3.13) follows from Theorem 8.7. �

4 Gaussian measures on P2 and M

The Gaussian measure, also called normal distribution, plays a key role

in probability theory and related analysis. For instance, by the central of

limit theorem, the renormalization partial sum of i.i.d. random variables

converges weakly to the standard Gaussian measure. In this section, we

introduce Gaussian measures on P2 and M as images of Gaussian distri-

butions on Hilbert spaces.

§ 8.4.1 Gaussian measure on Hilbert space

Let H be a separable Hilbert space, with orthonormal basis (ONB for short)

{ei}i>1. Let (L,D(L)) be a positive definite self-adjoint operator on H with

Lei = αiei, i > 1

for positive constants {αi}i>1 satisfying αi ↓ 0 as i ↑ ∞ and

∞∑
i=1

αi <∞.

Definition 8.17. Let {ξi}i>1 be i.i.d. random variables with standard normal

distribution N(0, 1). Then

ξ =
∞∑
i=1

α
1
2
i ξiei

is called a Gaussian random variable on H, whose distribution

GL(A) := P(ξ ∈ A), A ∈ B(H)
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is called Gaussian measure on H with covariance operator L, denoted by GL =

N(0, L).

Below we introduce the integration by parts formula for GL. To this

end, we introduce the class C1
b (H) of functions on H.

Definition 8.18. A function f on H is called Gâdeaux differentiable, if for

any x ∈ H,

H 3 v 7→ ∇vf(x) := lim
ε↓0

f(x+ εv)− f(x)

ε
∈ R

is a well-defined linear functional. In this case, the unique element ∇f(x) ∈ H
such that

〈∇f(x), v〉H = ∇vf(x), v ∈ H

is called the Gâdeaux derivative of f at point x.

If f has Gâdaeux derivative and

lim
‖v‖H↓0

f(x+ v)− f(x)−∇vf(x)

‖v‖H
= 0, x ∈ H,

then f is called Fréchet differentiable.

If f is Fréchet differentiable and ∇f : H → H is continuous, we denote

f ∈ C1(H). If moreover ‖∇f‖H+ |f | is bounded on H, we denote f ∈ C1
b (H).

Next, we introduce the divergence of vector fields on H .

Definition 8.19. A vector field is a measurable map

v : H →H .

We denote v ∈ C1
b (H ; H ) for each i > 1 we have

vi := 〈v, ei〉H ∈ C1
b (H ),

and there exists a constant c > 0 such that

|v|+
∞∑
i=1

∣∣∇eivi∣∣ 6 c.
In this case,

∇∗v :=
∞∑
i=1

∇eivi ∈ C(H )

is called the divergence of v.
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Theorem 8.20. Let f ∈ C1
b (H) and v ∈ C1

b (H;H) such that
∑∞

i=1 |vi|α
− 1

2
i

is bounded. Then∫
H
〈v,∇f〉H dGL =

∫
H

( ∞∑
i=1

rivi
αi
−∇∗v

)
f dGL.

Proof. We first formulate GL by using the coordinates

Φ : H 3 x 7→ (〈x, ei〉H)i>1 ∈ `2,

where

`2 :=
{
r = (ri)i>1 ∈ RN :

∞∑
i=1

r2
i <∞

}
is a Hilbert space. Let

Λi( dri) =
1√

2αiπ
e
− r2i

2αi dri, i > 1

be the centered normal distribution with variance αi. Then the product

measure

Λ :=

∞∏
i=1

Λi

is supported on `2, since∫
RN

( ∞∑
i=1

r2
i

)
Λ( dr) =

∞∑
i=1

α2
i <∞.

It is easy to see that

GL = Λ ◦ Φ−1.

By combining this with the integral transformation theorem (Theorem 3.27)

and the integration by parts formula∫
R
h(ri)g

′(ri) dΛi =

∫
R

(rih(ri)

αi
− h′(ri)

)
Λi( dri), h, g ∈ C1

b (R),

we finish the proof. �



§4 Gaussian measures on P2 and M 195

§ 8.4.2 Gaussian measures on P2

Let µ0 ∈P2 such that the tangent space H := Tµ0,2 is a separable Hilbert

space. Let GL be the Gaussian measure on H . This measure induces a

Gaussian measure on P2 under the map

Φ1 : H 3 φ 7→ µ0 ◦ φ−1 ∈P2.

Definition 8.21. We call

Nµ0,L := GL ◦ Φ−1
1

the Gaussian measure on P2 with parameter (µ0, L).

By the chain rule Theorem 8.7, we have the following result.

Theorem 8.22. Let u, v ∈ C1
b (P2). Then

f := u ◦ Φ1, g := v ◦ Φ1 ∈ C1
b (Tµ0,2)

and ∫
P2

〈Du(µ), Dv(µ)〉Tµ,2 Nµ0,L( dµ) =

∫
Tµ0,2

〈∇f,∇g〉Tµ0,2 dGL.

§ 8.4.3 Gaussian measures on M

In this part we construct Gaussian measures on M supported on the sub-

space of absolutely continuous measures

Mac :=
{
µ ∈M : ρµ :=

dµ

dx
exists

}
.

In this case, we choose

H = L2(Rd, dx) :=

{
h : Rd → R is measurable,

∫
Rd
h(x)2 dx <∞

}
.

We then consider the image of the Gaussian measure GL on H under the

map

Φ2 : H = L2( dx) 3 h 7→ h(x)2 dx ∈Mac.
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Definition 8.23. We call

NL := GL ◦ Φ−1
2

the Gaussian measure on M (or Mac) with parameter L.

By Proposition 8.12 for k = 0 (see Exercise 5 below), we may prove the

following result.

Theorem 8.24. Let u, v ∈ CE,1,1b (M), and let H = L2(Rd, dx). Then

f := u ◦ Φ2, g := v ◦ Φ2 ∈ C1
b (H)

and ∫
P2

〈DEu(µ), DEv(µ)〉L2(µ)NL( dµ) =

∫
H
〈∇f,∇g〉H dGL.
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5 Exercises

1. Prove that Mk is a Polish space.

2. Let

f(µ) = g(µ(h1), · · · , µ(hn))

for some n > 1, g ∈ C1(Rn) and hi ∈ C1
b (Rd), 1 6 i 6 n. Prove that

f ∈ C1
b (Pk) and

Df(µ) =

d∑
i=1

(∂ig)(µ(h1), · · · , µ(hn))∇hi.

This type functions are called C1
b -cylindrical functions on Pk.

3. Let µ0 ∈ Pk be absolutely continuous with respect to the Lebesgue

measure. By [2, Theorem 6.2.10], for any µ ∈ Pk there exists a

unique φµ ∈ Tµ0,k such that

µ = µ0 ◦ (id + φµ)−1, Wk(µ0, µ) =
(
µ0(|φµ|k)

) 1
k .

Please use this assertion and the chain rule to prove: if f ∈ C1(Pk)

satisfies (8.1.12) for all µ ∈ Pk with some constant c(µ) > 0, then

for any µ ∈Pk,

f(µ)− f(µ0) =

∫ 1

0

〈
(Df)(µ0 ◦ (id + rφµ)−1), φµ

〉
L2(µ0)

dr.

4. Let k ∈ [1,∞). For two probability measures µ, ν ∈ Pk, define the

k-variational distance

‖µ− ν‖k,var := sup
|f |61+|·|k

|µ(f)− ν(f)|.

For any f ∈ CE,1,1K (Pk) such that

|D̃f(µ)(x)| 6 1 + |x|k, µ ∈Pk, x ∈ Rd,

prove

|f(µ)− f(ν)| 6 ‖µ− ν‖k,var.
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5. For k ∈ [0, 1], let Pk, Mk, D
E , D̃E , CE,1,1(Mk), C

E,1,1
K (Pk) and

CE,1,1K (Mk) be defined as before. Prove that Propositions 8.12-8.14

still hold. Can we also define the directional intrinsic derivative and

intrinsic derivative on Pk and Mk for k ∈ [0, 1]?

6. Let k ∈ [0,∞). Prove that there exists a constant c > 0 such that

‖µ− ν‖var +Wk(µ, ν)1∨k 6 c‖µ− ν‖k,var, µ, ν ∈Pk.

Moreover, when k > 1, find counter example such that for any con-

stant c > 0, the inequality

Wk(µ, ν) 6 c‖µ− ν‖k,var, µ, ν ∈Pk

does not hold.

7. Prove Theorem 8.22.

8. Prove Theorem 8.24.
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Borel σ-algebra, 6

Borel field, 6

central limit theorem, 144

characteristic function, 71

of finite measure, 130

complete measure space, 24

conditional expectation, 114

conditional probability, 115

convergence in distribution, 54

convergence in r-th mean, 76

convergence in measure, 51

convexity extrinsic derivative, 178

coupling, 153

covariance, 71

covariance coefficient, 71

covariance matrix, 71

Cr inequality, 77, 78

decomposition

of distribution function, 90

directional derivative, 170

distribution function, 33, 44

probability, 46

distribution law, 46

dominated convergence theorem, 65

elementary function, 37

L -system, 41

essential supremum, 94

existence of integral , 62
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extrinsic derivative, 178

family of consistent probability mea-
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Fatou-Lebesgue Theorem, 64

Fourier-Stieltjes transform, 130

Fubini’s theorem, 100

generalized, 107

function of sets, 12
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continuous, 15

finite, 12

finite additivity, 12
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Gauss measure on Hilbert space, 192

Gaussian measure on M, 195

Gaussian measure on P2, 194

geometric probability medel, 18

Hölder’s inequality, 76

Hahn’s decomposition theorem, 85

indefinite integral, 67

independent, 47

indicator function, 37

infinite product σ-algebra, 102

integrable, 62

integral, 60

integral characteristic function, 142

integral transformation theorem, 74

intrinsic derivative, 170

inverse formula, 131

inverse image, 34

Jensen’s inequality, 77

Kantorovich dula formula, 156

Kolmogorov’s consistent theorem, 125

λ-system, 9

law of large numbers, 143

Lebesgue’s decomposition theorem,
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Lebesgue-Stieljes (L-S) integral, 74

Lebesgue-Stieltjes (L-S) measure, 44

Lr space, 76

mathematical expectation, 70

measurable cover, 25

measurable cylindrical set, 102

measurable function, 34

measurable map, 34

measurable space, 5

measure, 12

measure extension theorem, 20

measure space, 17

metrization of weak topology, 151

Minkowski’s inequality, 78

mixed conditional distribution, 121

monotone class, 7

monotone class theorem

for functions, 41

for set classes, 10

monotone convergence theorem, 61

µ∗-measurable, 21

mutually singular, 85

nonnegative definite function, 145

null set, 24

optimal mean square approximation,
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optimal transport, 154

outer measure, 20

π-system, 9

positive part and negative part of

function, 39

probability measure, 12

probability space, 17

product σ-algebra, 11

Prohorov’s theorem, 138

r-th central moment, 71

r-th moment, 71



204 INDEX

Radon-Nikodym derivative, 90

Radon-Nikodym theorem, 89

random variable, 33

continuous type, 75

discrete type, 75

rectangle, 11

regular conditional distribution, 121

regular conditional probability, 120

restriction of measure, 18

section of a function, 99

section of a set, 98

semi-algebra, 2

semi-algebra , 2

σ-algebra, 5

signed measure, 12

simple function, 37

strong convergence, 135

tangent space, 169

tight, 138

total variance distance, 161

transition measures, 106

transition probability, 106

Tulcea’s theorem, 108

uniform continuity in integral, 80

uniform convergence, 135

uniform integrability, 80

vague convergence, 135

variance, 71

vector field, 169

Wasserstein coupling, 162

Wasserstein distance, 155

weak convergence, 135


