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Preface

Why shall we learn the course “Foundation of Probability Theory” after the
elementary course “Probability Theory”? The reason is that the elemen-
tary probability theory describes specific distributions induced by random
trials, which is intuitively clear but mathematically less rigorous, while the
foundation of probability established by Kolmogorov is an axiomatization
theory, which makes probability theory as a rigorous branch of mathemat-
ics.

For example, in the elementary probability theory the sample space is
the total of the possible results appearing in a random trial, and each subset
of this space is called an event, whose probability is defined as the limit of
its appearing frequency as the number of the trials goes to infinity. These
concepts are intuitively clear but not mathematically rigorous: Why the
trial can be repeated infinite times? Why the frequency must converges?
And how to fix the limit if it dose converge? One may argue that this limit
exists due to the law of large numbers. However, the law of large numbers
itself is established based on the definition of probability, which leads to a

circular argument.

Now the motivation to learn the course becomes clear, it enables us to
grasp a serious foundation of probability theory in the mathematical ax-
iomatic system. Contrast to the elementary probability theory which deals
with random events in specific examples of random trials, Foundation of
Probability Theoryis a general mathematical theory which provides rigorous
descriptions of these examples. Therefore, this course has all characters of

mathematical theories: abstract contents, extensive applications, complete
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structures, and clear conclusions. Due to abstract contents, we will face
many difficulties during learning. To overcome these difficulties, a crucial
trick is to keep in mind those concrete examples when try to understand
an abstract context, and compare the abstract theory with related courses
learned before, especially with the Lebesgue measure theory. In the follow-
ing, we give a brief chapterwise summary of main contents of this textbook,

chapter by chapter.

To define events without random trials, we first fix a global set 2, then
construct a class &/ of subsets of ), which is equipped with an algebra
structure so that each element in .o/ is measurable in a reasonable way.
We then call the couple (£2,.27) a measurable space, where Q) refers to the
sample space of a random trial, and & stands for the set of events. In
general, &/ is strictly smaller than the class of all subsets of (), i.e. not
all subsets of ) are measurable. For instance, there exist non-measurable
sets in the Lebesgue measure theory. Following the line of the Lebesgue
measure theory, we assume that o contains 2 and is closed under countable
set operations, which leads to the concept of o-algebra. Furthermore, the
probability of an event can be thought as the nonnegative survey results
for sets in 7, which is this a function P : &/ — [0,00). According to the
requirement of probability measure in the probability theory, we postulate
that P(2) = 1 and P has o-additivity, i.e. P ( Ej An> = % P(A,) for a
sequence of mutually disjoint sets {A,},; C 5%_.1Withoutnar11e restriction
P(Q2) = 1 the map P is called a measure, and is denoted by p rather than P
to emphasize the difference. In this way, we construct a triple (2, <7, P) or
more generally (£2,.e7, 1), which is called a probability space or a measure

space.

So, how can we construct a probability measure on a o-algebra? Ac-
cording to the Lebesgue measure theory, we first define the measure value
for simple sets, for instance the intervals, then extend it to all measurable
sets by an extension argument. To abstract this method in the general
framework, we first introduce the semi-algebra for subsets of €2 in terms of

the property of right semi-closed intervals in the Euclidean space. From
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this semi-algebra of sets, we generate the o-algebra o/ by establishing the
monotone class theorem. Moreover, by the monotone class theorem and
the construction ideas of Lebesgue measure, a measure defined on a semi-
algebra . can be (under a o-finite condition, uniquely) extended to the
minimal o-algebra generated by .. This is known as the Measure Exten-

ston Theorem, the core result of Chapter One.

Having the measure space (2, <7, 1) in hands, the tasks in Chapter Two
and Chapter Three are to survey a measurable function, and the value is
called the integral of the function with respect to p. The definition and
properties of integrals are inhered from the theory of Lebesgue integrals,
hence are easy to understand with a basis of Lebesgue measure theory.
In particular, on a probability space (2, .27, P), a measurable function is
called a random variable, whose expectation is defined as the integral with
respect to the probability measure. By the integral transformation formula
(Lebesgue-Stieltjes integral expression), the expectation can be formulated
as integral of the identity function with respect to the distribution of the
random variable, where the distribution is a probability measure on the real
line. In order to classify the distributions of random variables, we consider
the decomposition of measures in Chapter Three.

To study several or infinite many random variables together, we intro-
duce product probability spaces, and consider the conditional properties of
some random variables given other ones. These are treated in Chapter Four
and Chapter Five, where the main difficulty is to clarify the definition of
conditional expectation given a sub o-algebra, and to introduce the regular
conditional probability which enables one to construct measures on product
spaces which is fundamental for the further study of stochastic processes.

Chapter Six presents several equivalent definitions of the weak conver-
gence for finite measures, which are also equivalent to the convergence of
the characteristic functions for finite measures in the multidimensional Eu-
clidean space. Chapter Seven introduces some probability distances on the
space of probability measures. Both chapters are important to develop the

limit theory of random variables and stochastic processes.

Finally, Chapter 8 introduces derivatives for functions of finite mea-
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sures, establishes the chain rule and derivative formulas. These provide a
quick way for readers to enter the frontier of analysis and geometry on the

space of measures.

In conclusion, this course is an abstract rigorization of the elementary
probability theory. Key points include the monotone class theorem, mea-
sure extension theorem, conditional expectation and regular conditional
probability, and the weak convergence. To make the whole book easy to
follow, in the beginning of each part, we briefly introduce the main purpose
of study based on previous contents, figure out the main structure, and ex-
plain the key idea of study. If one understands clearly the backgrounds
and basic ideas for the study of each part, it is not hard to grasp the whole
contents of this textbook. There are many books containing these contents,

see an incomplete list of references in the end of this book.

The first seven chapters of the textbook are translated and modified
from the Chinese version published in 2010 by Beijing Normal University
Press. We would like to thank the executive editor Ms Fengjuan Liu for
encouragement and efficient work. We gratefully acknowledge the sup-
port from the National Key R&D Program of China (2022YFA1006000,
2020YFA0712900) and the National Nature Science Foundation of China
(11921001).

WANG Feng-Yu,
MAO Yong-Hua
April, 2024
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Chapter 1

Class of Sets and Measure

What is a measure? It is a tool to determine the weights of “measurable
sets” which satisfy the countable additivity property, i.e. the sum of weights
for countable many disjoint sets coincides with the weight of the union of
these sets. For example, under the Lebesgue measure, the weight of an
interval [a,b) for real numbers b > a is its length b — a, which uniquely
determines a measure on the class of “Lebesgue measurable sets” on R.
The aim of this chapter is to choose a reasonable class of subsets (i.e.
measurable sets) for a given global set €2, and to construct a measure on
this class. To this end, we first generate a class of subsets sharing the

following features of Lebesgue measurable sets:

(1) it contains the empty set and the total set;

(2) it is closed under the countably infinite set operations (set union,

intersection and difference).

A class of sets with these properties is called a o-algebra or o-field, which
is our ideal class of “measurable subsets” of the abstract global set €. To
define a measure on the o-algebra, let us again go back to the Lebesgue

measure on R.

As mentioned above that the Lebesgue measure of an interval is defined

as the length. By a natural extension procedure, this measure can be

1



2 1 Class of Sets and Measure

extended to the smallest o-algebra containing intervals, which is nothing
but the Borel o-algebra whose completion is class of Lebesgue measurable
sets. To realize the same procedure for the present abstract setting with 2
in place of R, we consider the “semi-algebra” which is a class of sets sharing

the following features of intervals:

(1) it contains the empty set and the total set;
(2) it is closed under the set intersection; and

(3) the difference of any two sets can be expressed by the union of finite

disjoint sets in the class.

We first induce the smallest o-algebra from the semi-algebra, where the
main tool is called the monotone class theorem; then extend a measure
from the semi-algebra to the induced o-algebra, where the key step is to
establish the measure extension theorem. These two theorems are key

results of this chapter.

1 Class of Sets and Monotone Class Theorem

§1.1.1 Semi-algebra

We first introduce operations for subsets of the global set 2. Let U and N
denote the union and intersection respectively, let A¢ be the complement
of the set A, and let A — B := AN B¢ be the difference of A and B, which
is called a proper difference if B C A. For simplicity, we will use AB to
stand for AUB, A+ B for AU B with AB =@, and ), A,, for the union

of finite or countable many disjoint sets {A,}.

Then the semi-algebra of sets is defined in terms of the above mentioned

features of intervals.
Definition 1.1. A class . of subsets of 2 is called a semi-algebra (of sets)
in Q, if

(1) Q,@e.7,
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(2) AnBe . for A,Be .7,
(3) for A1, A €. with A} C A, there exist n > 1 and Ay, Ag,--- , A, €

n
. disjoint mutually, such that A =) A4,.
i=1

Property 1.2. Under items (1) and (2) in Definition 1.1, item (3) is equiv-
alent to
(3) if Ae .7, then 3n > 1 and Ay, A, -+ , A, € . mutually disjoint,
such that A° = il A;.
Proof. (3) = (3): Since A C Q, it follows from (3) that 3n > 1 and
Ay, Ag, - A, € disjoint n}lutually which are all disjoint with A, such

that Q = A+ > A;, s0 A=) A,.
i=1 i=1

(3") = (3): It follows from (3’) that In > 2 and As,--- , A, € ¥

mutually disjoint, such that A = >~ A;, 80 A= A; + >, A;iNA. O
i=2 i=2

Example 1.3. Let Q = [0,400), ¥ = {[a,b) : 0 < a < b< +o0}. Then .7

is a semi-algebra in Q.

To induce the o-algebra from a semi-algebra, we introduce a relay notion

“algebra”, which is closed under finite many operations.

§1.1.2 Algebra

Definition 1.4. A class .# of subsets of 2 is called an algebra (of sets) in
2, or Boolean algebra in €2, if

(1) Qe .Z,

(2) A,B € % implies A— B e 7.
Property 1.5. Under item (1) in Definition 1.4, item (2) is equivalent to any
one of

(2') A,Be€.Z implies AUB,A°, B € .7,

(2") A,B € .Z implies AN B, A¢, B¢ € #.

Proof. We will prove (2") = (2') = (2) = (2").
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(2") = (2): Tt follows from (2”) that .Z is closed under complement
and intersection, so that A, B € .% implies AUB = (A°N B°)¢ € .Z.

(2") = (2): Assume A, B € Z. It follows from (2') that .7 is closed
under complement and union, so that A — B = (A°UB)¢ € .Z.

(2) = (2"): Assume A,B € %. It follows from (2) that A° = Q —
AB°=Q—-Be Z,sothat ANB=A-B°c.%. O

Proposition 1.6. If % is an algebra in 2, then VA, B € % we have
A¢. B ANB,AUB,A— Be %.

Obviously, an algebra is a semi-algebra. The following theorem provides

an explicit formulation of the induced algebra from a semi-algebra.

Theorem 1.7. If % is a semi-algebra, then
= {Z Ap:n>2 1, A € (1 <k < n) are mutually disjoint}
k=1

is the smallest algebra containing .%, which is called the algebra induced (or
generated) by ., and is denoted by .7 (.¥).

Proof. Firstly we prove that .# is an algebra. Obviously item (1) in Def-
inition 1.4 is fulfilled. Moreover VA, B € %, dAy, As,--- , A, € & and

n
B1, By, -, By, € ., mutually disjoint respectively, such that A = >~ A;,
i=1

m
B =) B;. Then ANB = ) A;N Bj. It follows from Definition 1.1-(2)
i=1 ,J
that AN B € %, so that .% is closed under finite intersections.
Next, by Property 1.5, to prove that .# is an algebra in €2, we need only

verify A° € F for any A € %. Let
n
A:ZAiey, Aje S,
i=1

n

Then A = () AY. By Property 1.2, we see that A§ can be expressed by
i=1
the union of mutually disjoint sets in ., so Af € .#. Since .# is closed

under finite many intersections, we obtain A€ € ..

Finally, for any algebra .#' D ., Property 1.5 implies .%’ > .#. O
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Example 1.8. . in Example 1.3 is not an algebra, and by Theorem 1.7, its

induced algebra is

n
g(y):{Z[aiabi):n>1aO<al<b1<a2<b2<"'<an<bn}-
i—1

§1.1.3 o-algebra

According to the property of Lebesgue measurable sets, a o-algebra should
be closed under the countable many operations of sets. Since the union and
the intersection of sets are dual to each other by complement, it suffices to
have the closedness by complement and countable many unions.
Definition 1.9. A class < of subsets of Q) is called a o-algebra (or o-field)
in Q, if
(1) Qe o,
(2) A€ € o holds for A € o7,
oo
(3) U A, € .« holds for any {A,}n>1 C 7.
n=1

In this case, we call (£2,.47) a measurable space, and each element in < is
called an @/-measurable set, or simply a measurable set.

Property 1.10. A o-algebra is an algebra.
Property 1.11. Under items (1) and (2) in Definition 1.9, (3) is equivalent
to
o0
3) NA,ed for A, e ,n=12---.

n=1

00 00 ¢
Proof. Note that (] A, = (U A%) . O
n=1 n=1

Property 1.12. The intersection of a family of o-algebras in € is also a

o-algebra.

Proof. Let {4 : r € I'} be a family of o-algebras in Q. Then & = (|
rel’
is a o-algebra in 2 as well, because:

(1) For any r € I', we have @,Q € o, so that &,Q € &
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(2) If A€ o/, then A € o7, for any r € I, so that A° € & (r € I), i.e.
A e o

(3) If Ay, Ag,--- € o, then Ay, Ag,--- € o, for any r € T', so that
GAnE%forallref,henceGAHG%. O

n=1 n=1

Example 1.13. & = {&,Q} is the smallest o-algebra in 2, while
o =22 .={A:ACQ}

is the largest o-algebra in ©, where the notation 2% comes from the fact that
a subset A of 2 is identified with the element in {0,1}: Q 3> w — 14(w),

where 14 is the indicator function of A.

Theorem 1.14. Let ¥ be a class of subsets of 2. Then there exist a unique
o-algebra o in € such that

(1) ¢ cC o,

(2) if o/ isacof Qand & D F, then &/ D .
We denote o by 0(%), and call it the o-algebra induced (or generated) from
.

Proof. Since the largest o-algebra includes %, there exists at least one o-
algebra including ¥. Let & be the intersection of all g-algebras including
€. By Property 1.12, & is the smallest o-algebra including % . O

The following theorem shows that the induced procedure from a semi-
algebra to o-algebra can be decomposed into two steps, i.e. induce first the

algebra then the o-algebra.
Theorem 1.15. If .7 is a semi-algebra of €2, then o(.) = o(.F(.¥)).

Proof. Since o(F (7)) D &, we have o(F(¥)) D o(). Conversely,
since o(.) is an algebra including ., we have o(.%) D .#(.¥), and hence
o(S) Do(ZF(S)).

g

Example 1.16. Let (2,.7) be a topology space where .7 is the class of all
open subsets of 2. The o-algebra # := o(.7) is called Borel field (or Borel
o-algebra).
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§1.1.4 Monotone class theorem

By Theorem 1.7, the algebra is easily induced from a semi-algebra. Com-
bining this with Theorem 1.15, to induce the o-algebra from a semi-algebra,
one only needs to generate it from the induced algebra. Noting that the
difference between the algebra and the o-algebra is that, the former is
only closed under finite many operations, while the latter is closed under
countably infinite many operations. Intuitively, countably infinite many
operations can be characterized as the limit of finite many operations. So,

it is reasonable to consider the limit for sequences of sets.

Note that the limit for a sequence of sets is defined only in the monotone
case, by the union (respectively, intersection) for an increasing (respectively,

decreasing) sequence. This leads to the notion of monotone class.

Definition 1.17. A class .# of subsets of Q2 is called a monotone class, if it

is closed for the limits of monotone sequences; that is,

(1) fA, e #,n=1,2,---,and Ay C Ay C --- , then | A, € 4,

n=1

(2) fA, e #,n=1,2,---,and Ay D Ay D -+, then (| A, € #.
n=1

Theorem 1.18. A class of subsets of €2 is a o-algebra if and only if it is both

an algebra and a monotone class.

Proof. Tt suffices to prove the sufficiency. Let &7 be both an algebra and a

monotone class. We only need to show that .o/ is closed under countably
n

many unions. Since & is an algebra, VA, Ay,--- € ¥, B, = |J A €
i=1

is increasing in n. Since &/ is a monotone class, this implies

Jai=Biew
i=1 n=1
Then the proof is finished. O

Theorem 1.19. Let ¥ be an algebra in 2. Then there exists a unique

monotone class .Zj in Q fulfilling

(1) o>,
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(2) A > My holds for any monotone class .# including €.

We call .} the monotone class induced (or generated) from &, and denote it
by A (€).
Theorem 1.20. Let .# be an algebra. Then Z (%) = o(F).

Proof. By Theorem 1.18, it suffices to prove that .Z (%) is an algebra.
).

(a) We first show that A € #(F) = A° € M (F). Let

My ={A: A€ H(F)).

For any decreasing sequence {A,} C .#), we have {Al} C .#(.%), which
9]

is increasing. Since .Z (%) is a monotone class, we have |J AS € 4 (F),

n=1
() An = <UA;>CGJ//1.
n=1 n=1

Similarly, we see that .#) is closed under the limits of increasing sequences.
Thus .#, is a monotone class including .#, so it includes #(.%). Thus
A e M (F) for any A € M (F).

(b) Next, we prove that for any A € .#, A(\B € .# (%) holds for
B e #(%). To this end, let

SO

My ={BeMZF):ANB e .H(F)}.

Then A4 D F. It {B,} C M4 isincreasing, thensois {A( B} C 4 (.F).
Since . (¥ ) is a monotone class, we obtain AN < U Bn> € (%), which

n=1

implies |J B, € #4(%#). Similar argument shows that .#4 is a monotone
n=1
class. Thus A4 D M (F);ie. ANB € #(F) holds for any B € .4 (F).

(c) Finally, we prove ANB € #(F) for A,B € #(%). By (b), #a4 is
a monotone class including .%, so that .#4 D # (% ). Thus ANB € (7).
U

The trick behind the proof can be summarized as follows. To prove that

a class €1 of sets has certain property, we define a new class %> consisting
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of all sets having this property, then it suffices to show that €1 C %5. To
realize this procedure, we sometimes need to split it into several steps, as

we have done above with two steps. This technique will be used frequently.

The monotonicity is easier to check than the closedness under countable
unions (or intersections). In the spirit of Theorem 1.18 that the monotone
class and algebra give rise to o-algebra, in the following we introduce an-

other pair of classes to form o-algebra.
Definition 1.21. (1) A class € of subsets of € is called a 7-system, if it is
closed under intersections.

(2) A class € of subsets of 2 is called a A-system, if it fulfills

(1) Qe

(ii) B— A€ % holdsfor A,Be€ %,AC B,

(7i7) fj A,, € € holds for any increasing {4,,} C %.

n=1

Property 1.22. If % is a A-system, then it is a monotone class.

Proof. 1f {A,} C € is decreasing, then {AS} C %€ is increasing. By the
o0
definition of \-system, we obtain |J A¢ € ¥, so that

n=1
e8] oo
A, =0-]4Aew.
n=1 n=1

O

Property 1.23. If € is both a m-system and a A-system, then % is a o-

algebra.

Proof. By Theorem 1.18 and Property 1.22, it suffices to prove that € is
an algebra, which follows easily from Definition 1.21 of 7-system and (ii)
in Definition 1.21 of A-system. O

In the same spirit of Theorems 1.14 and 1.19 for the induced o-algebra
and monotone class, any class of sets ¢ induces a unique A-system A(%),

which is the smallest A-system including % .
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Theorem 1.24. Let € be m-system. Then A\(%) = o(%).

Proof. Since \(¢') C 0(¢') and A(¥) is a monotone class, by Theorem 1.18
it suffices to prove A(%) is an algebra. By the definition of A-system, A(%)
is closed under complement, so it remains to verify the closedness under

intersections. We split the proof into two steps.

(1) Let A€ \(¥),B € €. We intend to prove that AN B € A\(%). By

the trick explained above, let
¢p={A: ANBeX%)}.

Since € is a w-system, we have €5 D €. By the definition of ¥ and the
fact A(%) is a A-system, it is easy to verify that € is also a A-system, so
B D AN(€), that is AN B € A\(¥¢) for any A € A\(¥).

(2) Let B € A\(¥). From (1) we see that ¥ D % and it is a A-system,
so that € D A(¢). Thus AN B € A\(¥) for A,Be \(%¢). O

Having the above preparations, we obtain the following important the-

orem.

Theorem 1.25 (Monotone class theorem). Let € and .7 be two classes of
subsets of 2 with ¢ C 7.

(1) If &7 is a A-system and € is m-system, then o (%) C /.

(2) If o/ a monotone class and € is an algebra, then (%) C «.

This is the main result for classes of sets. In the following we explain
the main idea to apply the monotone class theorem. Let % be a class of
sets having certain property S, one wants to verify the same property for
sets in o(%). For this, let

o/ :={B : B has property S},

so that &/ D %. By the monotone class theorem, it suffices to show that
% is a w-system or an algebra, and accordingly, 7 is a A-system or a

monotone class.
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Remark 1.26. The following diagram summarizes the relations of various

classes of sets:

— =[] — [i] — [rosen)
- -

O’_
— —

a|gebra — — a|gebra

where alg.= algebra, mon.cl.=monotone class, s.-alg.=semi-algebra.

o-

§1.1.5 Product measurable space
Let (9;,.9%),i =1,--- ,n be finite many measurable spaces. Let
C={A1 x - xA,: A €, 1<i<n},
where each element in % is called a rectangle in the product space
Q=0 x---xQ,.

It is easy to check that € is a semi-algebra in 2. We call o/ := o(%) the
product o-algebra of @, - - - , ,, and denote it by &/ X - - - X o,. Moreover,
(Q, ) is called the product measurable space of (€;, %%),i =1, -+ ,n.

Theorem 1.27 (Associative law). ¥n > 3,1 < k < n, we have

G X Gy X oo Xy = (G X X ) X (L1 X -0 X ).

Theorem 1.27 can be derived by the definition of product o-algebra and

the monotone class theorem, whose proof is left as an exercise.

2 Measure

After constructing a measurable space (2, 47), we intend to define a real
function on .o/, which is called a measure if it is nonnegative and satisfies
the countable additivity. In general, we consider a real function defined on

a class of sets, which is called a function of sets.
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§1.2.1 Function of sets
Definition 1.28. A function on a class of sets % in {2 is a map

o ¢ — (—o0, 4]

such that ®(A) < oo for some A € ¢

We allow a function of sets taking value 400, such that the Lebesgue
measure is included. On the other hand, we do not allow it taking value
—o0 to avoid the the sum of +00 and —oo when the additivity property
is considered. In general, we study functions of sets with the following
properties.

(1) (Additivity) A function ® of sets is called additive, if ®(A 4+ B) =

®(A) + ®(B) holds for any disjoint A, B € ¢ such that A+ B € €.

(2) (Flinite additivity) A function ® of sets is called finitely additive,

if
o(3a) - Yo
i=1 i=1
holds for any n > 2, and Ay, -+, A, € ¥ mutually disjoint with
Z A, €F.

i=1
(3) (o-additivity, or countable additivity) A function ® of sets is called

o-additive, if
® (Z AZ-> = Z(I)(Az)

holds for any {Ay},>1 C € mutually disjoint with Z A, €€.

(4) (Finiteness) A function ® of sets is called finite, 1f @(A) € R holds
forall A e @.

(5) (o-finiteness) A function ® of sets is called o-finite, if for any A € €,
there exists a sequence {A,}, -, C ¢ such that ®(A,) € R (Vn > 1)

o
and A= {J A,.

n=1
Definition 1.29. A signed measure is a function of sets with o-additivity. A
measure is a signed measure taking non-negative values. A probability measure
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is a measure with ®(Q2) = 1. If a function ® of sets takes non-negative values

and is finitely additive, then it is call a finitely additive measure.

Notice that a signed measure or a finitely additive measure may not be
a measure. The following propositions for functions of sets are obvious, so
the proofs are omitted.
Proposition 1.30. Let ® be a function on %.

(1) Finite additivity = additivity.

(2) If @ € €, then g-additivity = finite additivity.

(3) If € is an algebra, then finite additivity < additivity.

(4) If @ is additive and @ € ¢, then (@) = 0.

The next result characterizes properties of functions on different classes
of sets.
Property 1.31.

(1) (Subtractivity) Let ® be an additive function on an algebra .%, and
let A, B € .% with A C B. We have

O(B) = B(A) + B(B — A).

If ®(A) < oo, then ®(B — A) = &(B) — ®(A).

(2) (Monotonicity) Let u be a finitely additive measure on a semi-algebra
. Then u(A) < u(B) holds for A, B € . with A C B.

(3) (Finiteness) Let ® be a finitely additive function on a semi-algebra
. If ®(B) < oo and A C B, then ®(A) < oco. In addition, if
O () < o0, then @ is finite.

(4) (o-finiteness) Let ® be a finitely additive function on a semi-algebra

L. Q= U A, with A, € ¥ and ®(A,) < oo (Vn > 1), then for
n=1
VA € #,3{A]} C ¥ mutually disjoint, such that

A=A} and ®(A},) < oo (Vn > 1).

n=1

Proof. We only prove (2) and (4), the rest is obvious.
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(2) By the property of semi-algebra, there exist Aj,---, A, € ¥ mu-
tually disjoint such that B = A+ A; + --- + A,. By the finite additivity

and non-negativeness of 1, we have
u(B) = p(A) + Y u(A) > u(A),
i=1

(4) We prove first that Q can be expressed as the union of countable

many disjoint sets whose ®-values are finite. Let

n—1
By=Ay, By=A,—|]J A& Vn>1
k=1
By the definition of semi-algebra, there exists 38,1, - - , Bpk, € - mutu-

kn
ally disjoint and B, = ) By, so that
i=1

oo kn 00
renumber
Q=>"N"B,—Y B, {Bi}C.” mutually disjoint.
=1i=1 k=1
From (3) it follows that ®(A4,) < oo (Vn > 1), which implies ®(By) <
o0 (Vk > 1). Then the desired assertion follows by letting A/, = A,, N B},
O

3

Proposition 1.32.
(1) (Finite subadditivity) Let u be a finite additive measure on an al-

gebra .Z#. Forany A, Ay, -+ A, € % with A C |J Ak, there holds
k=1

p(A) < kzlu(flk)-
(2) (o-subadditivity) Let p be a measure on an algebra .#. If A € .% and

{Ap}n>1 C F such that A C |J Ay, then p(A) < >0 u(Ay).
n=1

n=1
Proof. (1) By induction, we need only to prove for n = 2. By the mono-
tonicity and additivity,
p(A) < (A1 U Ag) = p(Ar + (A2 — Ar))
= p(A1) + p(Az — A1) < p(Ar) + p(Az).
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(2) Let Ay = @. By the monotonicity and o-additivity,

(UA mA)—#(ZAm<A _ZQIA))

Sy

i<n—1

O

Definition 1.33. A function ® on a class % is called lower continuous at
A€ €, if lim ®(A,) = ®(A) for any sequence € > A, T A; while it is
called uppe:zgatinuous at A € ¢, if nh—>Holo ®(A,) = ®(A) for any sequence
¢ > A, | A with ®(4,) < oo holds for some n. Moreover, ® is called
continuous at A € ¥, if it is both lower and upper continuous at A. @ is

called continuous if it is continuous at every A € ¥.

Note that we require the condition In such that ®(A,) < oo for the
upper continuity. Otherwise, the classical Lebesgue measure is excluded.
More precisely, for 2 = R and ® being the Lebesgue measure, 4,, := (n, 00)
is decreasing to @, but ®(@) =0 # oo = nh_)rgo D(A,).

Theorem 1.34. Let ® be a signed measure on an algebra .%. Then ® is

continuous.

Proof. Let # 5 Ay, T A€ #. We have A = UAn—Al—FZ(A —An_1).

If there exists n such that ®(A,) = oo, then <I>(A) o0 = hm D(A,). If
®(A,) < oo for every n, then by the o-additivity and subtractlve property,

D(A) = D(A1) + Y D(Ap — Ap1)
n=2

= ®(4)) + i[cb(An) — ®(Ap-1)]
n=2
= ®(A1) + nh_)rrolo Z[@(Ak) — ©(Aj-1)]

= lim ®(4,).

n—oo
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So, @ is lower continuous.

On the other hand, let . > A, | A € .F with ®(4,,) < oo for some
nog. Then A,, — A, T Ay, — A, so that

O(Ap, — An) = (A, — A) asn — o0

by the lower continuity. This and the subtractive property imply ®(A,) —
D(A). O

Corollary 1.35. A measure on an algebra is continuous.

The next theorem shows that when @ is finitely additive, the continuity
also implies the o-additivity. This together with Theorem 1.34 implies
the equivalence of the o-additivity and the continuity of finitely additive

functions on an algebra.

Theorem 1.36. Let ® be a finitely additive function on an algebra %. If ®
satisfies one of the following conditions, then ® is o-additive.
(a) @ is lower continuous;

(b) @ is finite, and is continuous at &.

[e.e]
Proof. Let (a) hold. If {A,}, ., C % mutually disjoint and A = }_ A, €

n=1
n
F, then B, := > A T A. It follows from the lower continuity and the
k=1
finite additivity that

®(4) = lim ®(B,) = lim @ (Z Ak>

k=1
= nan;OZ D(Ap) =) B(Ay).
k=1 k=1

Let (b) hold, and let {An},.,; and {By},-; as in above. We have
% 5 A— B, | . By the continuity at @ and the subtractive property, we

obtain
0= lim ®(A— B,) = ®(A4) — lim ®(B,).

n—oo n—oo

Thus ®(A) — Iicp(Ak). 0
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§1.2.2 Measure space

Definition 1.37. Let &/ be a o-algebra in Q and p be a measure on 7.
Then (2,97, 1) is called a measure space. If u is a probability measure, then
(Q, 7, ) is called a probability space, and in this case p is often denoted by

P, and a measurable set is called an event.

Let (£2,.27,P) be a probability space. By properties of a finite measure,
we have the following assertions for the probability measure P.

(1) (Nonnegativity) P(A) >0, VA € «.

(2) (Normality) P(Q) = 1.

(3) (o-additivity, hence finite additivity) If A, € o/,n = 1,2,--- are

mutually disjoint, then

() Srao
n=1 n=1

(4) (Subtractive property, hence monotonicity) If A C B,A,B € &,
then

P(B — A) = P(B) — P(A) = P(B) > P(A).

(5) (Additive formula) P(AUB) =P(A)+P(B)—P(ANB). In general,
V{A,},2, C &, we have

= ]P)(Ak) - Z P(AiﬂAj)—k..._l_(_l)nfl]P)(Al ﬂ"'ﬁAn)

k=1 1<i<j<n
n
=) (-1 > P(A;, - Aj,).
/=1 1< <io <<ty <n.

(6) (Continuity) For A, A, € o, n>1,

Ant A=P(A) TPA); Ay L A= P(A,) L P(A).
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Example 1.38 (Geometric probability medel). Let 2 C R be a Lebesgue
measurable set and 0 < |2] < oo, where | - | denotes the Lebesgue measure.
Assume 7 is a class of Lebesgue measurable subsets of 2, P(A) = % Aecd.
Then (€2, .o/, P) is a probability space.

3 Extension and Completion of Measure

As explained in the beginning of this chapter, a measure is often easily
defined on a semi-algebra. So, to built up a measure space, it is crucial to
extend a measure from a semi-algebra to the induced o-algebra. In this sec-
tion, we first extend a measure from a semi-algebra to its generated algebra,
which is easy to do according to the formula of the induced algebra, then
further extend to the generated o-algebra, and finally, make completion of

the resulting measure space.

§1.3.1 Extension from semi-algebra to the induced algebra

Definition 1.39. Let 41 C % be two classes of sets in €0, and let u; be
measures (or finitely additive measures) defined on %; (i = 1,2) respectively.
If 11(A) = pu2(A) holds for any A € %1, then we call o an extension of p
from %) to %, and call p the restriction of us on %1 which is denoted by
= p2lg -

Theorem 1.40. Let u be a measure (or finitely additive measure) on a semi-
algebra .. Then pu can be uniquely extended to a measure (or finitely additive
measure) i on .Z (.Y).

Proof. By Theorem 1.7, for any A € 7 (), there exist Bl, +,B, €%
mutually disjoint such that A = Z B;. Define i(A) = E w(B;). First we

prove that 11(A) is independent of the ch01ces of {B;}. Let B B, e

be mutually disjoint such that A = E B!. Then B} = Z B! N Bj. Since
i=1
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n
BN Bj € ., by the finite additivity, we have p(Bj) = > u(B; N Bj). So

Jj=1

S uBY=> > wBiNB;)=> > u(BiNB)
=1

i=1 j=1 j=1i=1

= u(Bj) = fi(A).
j=1

Thus i(A) is independent of the choice of {B;}.

Next, we prove that i is a measure (or finitely additive measure). It is
obvious for nonnegativeness and uniqueness, as well as finitely additivity.
We are going to prove the o-additivity. Let {A,}n>1 C % (&) be mutually

disjoint such that A = > A, € F# (). Take By,---, By € . mutually

n=1

kn [e'e)
mutually disjoint, satisfying 4, = > Cp;. ThenVi < k,B; = Y A,NB; =
i=1 n=1

oo kn
>> > B; N Cyy is the union of mutually disjoint subsets in .. By the o-
n=1[=1

oo kj
additivity of p, we have u(B;) = > ZJ pu(B; N Cyp). From this and the
j=11=1

7j=1
finite additivity, it follows that

k k oo kn
fi(A) =i (Z Bz) =) > > wBiNCy)
=1

i=1 n=1 [=1
oo kn 0o
= Z Z :U(Bz N Cnl) = /](An)
n=1[=1 i=1 n=1

O

By applying Proposition 1.32 to i on .# (%), we obtain the following

result.

Corollary 1.41. Let p ba a finite additive measure on a semi-algebra .,
and let A, A,--- A, € 7.
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(a) If Ay,---, A, are mutually disjoint and ZA C A, then Zu( i) <

M(A) =1 =1
) 1f U Ai > A, then S u(A:) > u(A).
i=1 i=1

If u is o-additive, the above assertions hold for n = oo.

§1.3.2 Extension from semi-algebra to the generated
o-algebra

Theorem 1.42 (Measure extension theorem). Let pu be a measure on a
semi-algebra . in Q. Then it can be extended to a measure on o(.%). If

furthermore p is o-finite, then the extension is unique.

Following the line of the Lebesgue measure theory, we first define an
outer measure for every subsets of €2 by the covering procedure, then prove
that the restriction of the outer measure is o-additive on the generated

o-algebra.

Definition 1.43. Let p be a measure on a semi-algebra . in €. For any
ACQ,
oo oo
= inf {ZM(AR) tAC | A An e y}
n=1 n=1
is called the outer measure of A, and the function u* defined on the largest
o-algebra 22 is called the outer measure generated by .

Property 1.44.

(1) wly=mp
(2) w*(A)<p*(B),VACB.

(3) w* < U An) < Y pw(Ap), VA, CQn>1
n=1

Proof. (1) As A C A, by letting A; = A, A, = &,n > 2, we have u*(A4) <
1(A). On the other hand, by the sub o-additivity of M, it follows that

u(A) < io: w(Ay) for any sequence {4,} C . with U A, D A. So
n—1 n=1
1 (A) = u(A).
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(2) Obvious.

(3) Forany e > 0and n > 1, take A,1, Apo, - € . such that |J Ani D
i=1

A, and p*(A4y) = > p(Ap) —e/2™ Thus | U A O U An, and by
i=1

n=11:=1 n=1

the definition of u*

p (U An) Y ua <3 (1 + )

n=1

Let € | 0 to derive the assertion. O

If p* were a measure on 2, then the restriction ,u*]g(y) would be an
extended measure as desired. However, this is in general not true, as the
Lebesgue measure is already a counterexample. So, we need to find a class
o/* of “regular” sets such that &/* D o() and p* is o-additive on &7*.
An intuition to select a “regular” set is that it does not leads to any loss of
outer measures when using the set to cut others. In this spirit we introduce

the notion of u*-measurable set as follows.

Definition 1.45. A set A C Q0 is called p*-measurable, if
p (D) =p* (AND)+ p*(A°N D), VD CQ.

Let &* ={A C Q: Ais p*-measurable}.

We shall prove that «7* is a o-algebra including .% and p* is a measure
on o/*. For this, we first study the properties of ;* and 7*. The following
is a consequence of Property 1.44-(3).

Property 1.46. A is a u* measurable set if and only if
(D)= p (AND)+pu*(A°ND), ¥DCQ.

Property 1.47. &* O ..
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Proof. Let A € ., D C Q. For any € > 0, take {A,} C . such that

> A, DD, pf(D) =) (A
n=1 n=1

Then by o-subadditivity of ©* and finite additivity of u on % (.¥), it follows

e}

(AN D) + u* (AN D) Z 2 NA) + p(A°N AL

Z (D) +e.
=1
Let ¢ | 0 to derive
p (D) z p (AND) + p*(A°N D).
Thus A € &/* by Property 1.46. O

Theorem 1.48.
(1) o/* is a o-algebra, so that &7* D o(.Y).
o
(2) If {A,} C &* are mutually disjoint and A = ) A, then VD C Q,

n=1

*(DNA) = Z“ (DN A)

(3) The restriction of u* on o/* is a measure on &7*.

Proof. (1) We first prove that &/* is an algebra. Since &* D ., @,Q €
&/*. It is obvious that A € &/* implies A¢ € &/*. So, it suffices to prove
that A, B € &* = AN B € &*. By subadditivity,

p*(D) = p* (AN D) + p*(A° N D)
=u"(ANBND)+ u* (ANB°ND)+ u*(A°N D)
> (ANBND)+ p* ((A°UB°) N D).

Thus AN B € &/* by Property 1.46.
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Next we prove that «/* is a montone class. Let A, € &/* such that
Ay, T A. By Property 1.44-(2) and letting Ag = @, we have
§*(D) = p* (A1 N D) + * (A5 1 D)
=u (A1ND)+ p* (A2 N AN D)+ p* (DN AS)

o= p*((Ai = Ais) N D) + (DN AS) (1.3.1)
i=1

>3 1 (A = Aiy) N D) + (D0 A°).
=1

Letting n — oo we derive

(D) 2 W (DAY + 3 W (DA (A - A7)
i=1

> (DNAS)+p* (DN A).
Thus, A € &™*.
Therefore, o/ is a o-algebra by the monotone class theorem.

(2) Let A= Z A, with A,, € &/* mutually disjoint. Then A € o/*.
=1
By Property 1. 44—(2) it suffices to prove

*(DNA) Z“ (DN A,)

Replacing D by AN D and A, by > A; in (1.3.1), we obtain
i=1

*(DNA) Z“ (DN A;)

Then the proof is finished by letting n 1 oco.
(3) The o-additivity of u* on o/* is obtained by letting D = €2 in (2).
O

Proof of Theorem 1.42 Since &/* D o(.¥), the restriction of p* on
o(7) is obviously a measure, and p*(A) = u(A) for A € .. Thus there

exists an extension of y on o(.%).
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Now, let i be o-finite on .. By Property 1.31-(4), there exist mutually
o0
disjoint {A,} C .¥ such that Q@ = > A, and p(A4,) < co,n > 1. If both

n=1
w1 and po are measures on o() extended from p, it suffices to prove

pi(ANA,) =p(AnA,) for A€ o() and n > 1. For this, let
My ={A:Aco(S), mM(ANA,) =pm(ANA,)}.

Then .#,, D .. By the unique extension of p on .% (), we have ., D
Z (<), thus by the monotone class theorem, it is sufficient to show that .#

is a monotone class, which can be derived by the continuity of measures.
OJ

Corollary 1.49. If ./ is a semi-algebra in €2, and PP is a probability measure
on ., then P can be uniquely extended to a probability measure on o(.%).

§1.3.3 Completion of measures

Definition 1.50. Let (2,7, ) be a measure space. A subset B of Q is
called a p-null set, if there exists A € .o/ such that B C A and p(A) = 0. If
all p-null sets are contained in o7, then (2, %7, 1) is called a complete measure

space.

Theorem 1.51. For a measure space (2, .97, 1), let
o ={AUN:A€c o, N isa pnull set},

and define i(AUN) := pu(A) for A € o7 and N a p-null set. Then (Q, <7, i)
is a complete measure space, which is called the completion of (€2, .27, ).

Proof. We first prove that &/ is a o-algebra. By the o-subadditivity of
@, the union of countable many p-null sets is still p-null, so that .o/ is
closed under countable union. It remains to prove that 7 is closed under
complement. Let AUN € o with A € & and N a p-null set. Assume
B € o/ such that B D N and p(B) = 0. Then

(AUN) = A°NN°=A°NB°+ A°N (N - B°).
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As A°N(N¢— B°) C Q— B° = B, and u(B) = 0, A°N (N°¢ — B°) is p-null.
Moreover, A°N B¢ € &7, so that (AU N)¢ € &/ by definition.

Next, it is easy to check that fi is o-additive on 7. It suffices to prove
that (Q,.e7, i) is complete. Let N be a fi-null set. Then 3B € &7 such that
fi(B)=0and B> N. By B € &/, we have B = AU N for some A € o/
and a p-null set N. Then 0 = ji(B) = u(A). Take B € «/,B D N such
that pu(B) = 0. We have N C B C AU B, and u(AU B) = 0. So N is
p-null, and hence N € o7 by the definition of 7. g

Theorem 1.52. Let 1 be a measure on a semi-algebra ., and let u* be the
induced outer measure. The for any A C Q with pu*(A) < oo, 3B € o(¥)
such that:

(i) AcCB,
(i) p*(A) = p(B),
(791) p*(C)=0,VvC CB—-Aand C € o(Y).

The above B is called a measurable cover of A.

Proof. Vn > 1, take {F},, },.; C % such that A C U F,, and
oo
Z p(F, (A)+1/n.
k=1

Let B, = U F,. Then p*(A) < p*(By). By setting B = ﬂ B,,, we have

BEU(&”)WlthBDAand,u( ) = u*(A). IfC’EU(&”)&ndC’CB A,
then A C B — C. Thus,

W (A) < (B = C) = ju(B) — u(C).
From this and p*(B) = p*(A4) < oo, it follows that p*(C) = 0. O

Theorem 1.53. Let i be a o-finite measure on a semi-algebra ., and let
w1 be the induced outer measure. Then (,.o7* u*) is the completion of
(€, 0(), 1)



26 1 Class of Sets and Measure

Proof. By Theorem 1.51, we only need to prove &/* = &/

Let A € o/. Then 3A € 0(.) and a p-null set N such that A = AUN.
It is clear .&7* contains all p null sets, so that A € &7*.

Conversely, for A € &7* with p*(A) < oo, let B be a measurable cover of
A, and C be a measurable cover of B—A. Then A = (B—-C)U(C—(B—-A)),
where B — C € o(),C — (B — A) are p-null. Thus A € /. When
p*(A) = oo, by the o-finiteness of u we have 3{A,},.; C 7 such that

o0
> A, = Qand p(A,) < co,n = 1. From the previous proofs, it follows

n=1

ANAp,e o forn>1. Thus A= > A,NAca. O

n=1

Theorem 1.54. Let y be a o-finite measure on a semi-algebra .. Then p

has a unique measure extension on &7*.

Proof. By Theorem 1.42, p is uniquely extended to a measure on o(.%),
and the extension is the restriction of p* on o(#). Let u; be another
measure on o/* which extends p. Then for any AU N € o/* = o/, where
A€ o() and N is p-null, we have

P (AUN) = p*(A) = pa(A) < i (AUN) < (A) + m(N)
= ' (A) + m(N) = p* (AU N) + pu (N).

Let B € () such that B D N and u(B) = 0. We obtain

So, p*(AUN) = 1 (AU N). O

Theorem 1.55. Let i be a measure on a semi-algebra . in 2. Then
VA € &/* with p*(A) < oo and Ve > 0, there exists A, € # () such
that p*(AAA,) < e, where AAA,) :=(A— A.)+ (A: — A).

(o)
Proof. Ve > 0, there exists a sequence {B,},»,; C - such that |J B, D A

n=1

and p*(A) < > p*(Bn) < p*(A) + 5. Since p*(A) < oo, > p*(Bn) <
n=1 n=1
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ng
oo. Take ng > 1 such that > p*(Bn) < §. Let A. = > B, and
n>ng n=1
B. = > Bj. Then A, € .Z (). By the o-subadditivity of u*, it follows
n>ngo

p*(Be) < §. So p*((A: UB:) — A) < § by monotone property. As A—A. C
B; and A. — A C (A: UB;) — A, we obtain p*(AAA;) = p*((A— A:) +
(A.—A)) <e. O
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1 Class of Sets and Measure

4 Exercises

10.

. Prove Proposition 1.6
. Prove Property 1.10.

. Let € be a class of subsets of . Then VA € o(%), there exists a

countable sub-class €4 of ¢ such that A € o(%}).

(Countable generation) A o-algebra 47 is called countably generated,
if there exists a countable sub-class € such that o(%¢) = </. Prove
that the Borel o-algebra %% in R? is countably generated.

. Let {%,}n>1 be an increasing sequence for classes of sets in 2.

o0
(a) If {%,}n>1 are algebras, prove that |J %, is an algebra.

n=1

(b) Exemplify that (J %, is not a o-algebra, but {%,},>1 are o-
n=1
algebras.

. Prove Theorem 1.19.
. Prove that a o-algebra is either finite or uncountable.

. Let (©;, A;),1 < i < n, be measure spaces. Prove that

C ={A1 x - X A, : A; € I}

is a semi-algebra in Q := Q1 X -+ X Q.

. Prove Theorem 1.27.

Exemplify that an additive measure on a class of sets may not be
finitely additive.
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11.

12.

13.

14.

15.

16.

17.

Exemplify that the o-algebra generated by a semi-algebra . can not

be expressed as:

oo
o(S) = {ZA” :Vn > 1,4, € Y},
n=1
and prove this formula when € is finite or countable.

Let (Qy,, 9, in),n = 1, be a sequence of measure spaces with {£,}
mutually disjoint. Set

Q:ZQn, o ={ACQ:Vn>1,ANQ, € &},
n=1

WA =S (ANQ,), Ae .
n=1
Prove that (€2, <7, u) is a measure space.

Let Q be infinite, and let .% be the class of finite subsets of 2 and
their complements. Define P(A) = 0 if A is finite and = 1 if A is
finite.

(a) Prove that .# is an algebra and P is finitely additive.
(b) When Q is countable, prove that P is not o-additive.

(¢) When Q is uncountable, prove that P is o-additive.

Prove Proposition 1.30.

Let (92, o7,P) be a probability measure space without atom, i.e. for
any A € o with P(A) > 0, there exists B € & such that B C A
and 0 < P(B) < P(A). For any A € & with P(A) > 0, prove that
{P(B): Be«/,BC A} =[0,P(A)].

Prove Corollary 1.35.

Let ([0, 1], #([0,1]), ) be a finite measure space with p({z}) = 0,Vz €
[0,1]. Ve > 0, prove:
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18.

19.

20.

21.

22.

23.

24.

25.

26.

1 Class of Sets and Measure

(a) Vx € [0, 1], there exists an interval I 5 x such that u(I) < ¢;
(b) there exists a dense subset A of [0, 1] such that u(A) < e.

Prove Corollary 1.41.
Prove Property 1.46.

Construct an example of a measure p on a semi-algebra % such that

it has more than one extended measures on o(%).

Prove that a measure space (2,27, ) is complete if and only if &7 D
{ACQ:u*(A) =0}

Let i be a finite measure on a semi-algebra .. Let

px(A) = sup {Z w(Ay) : A, € .7 mutually disjoint, ZA” - A} ,

e ={ACQ:p"(A) = p(A)}.
Prove o&7* D «,

Let (2, 97, ;1) be a measure space. Prove that N C Q is p-null if and
only if u*(N) = 0.

For a measure space (2,97, 1), let A;, B; C Q satisfy p*(A;AB;) =

0,7 > 1. Prove that
oo (o]
e (a) - (L),
=1 =1

Let € = {Cup =[-b,—a)U(a,b] : 0 < a < b} and define pu(C,p) =
b — a. Prove that p can be extended to a measure on o(%). Ask

whether [1,2] is p*-measurable?

Let f : [0,00) — [0,00) be strictly increasing, strictly convex and
f(0) = 0. YA C (0,1], define pu*(A) = f(A*(A)), where \* is the
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27.

28.

Lebesgue outer measure. Prove that p* satisfies p*(@) = 0, non-

negativeness, monotonicity and o-subadditivity.

Let (€2, .27, P) be a probability space, and let 2 D A ¢ 7. Prove that
[P can be extended to a probability measure on @7 = o(o/ U {A}).

Let f: R > 2+ 5 € Rand A9 = [0,1]. Prove that A, =
f(An) U (34 f(Ap)) (n = 0) is decreasing in n > 0, where f(A,) 1=
{f(z):x € An}. The limit of A,, is denoted by C, which is called the

Cantor set. Prove that the Lebesgue measure of C' is 0.






Chapter 2

Random Variable and

Measurable Function

Given a probability space (£2,.o7,P), we define random variables and their
distribution functions as follows.
Definition 2.1.
(1) A real function £ :  — R is called a random variable on (0, &7, P), if
{w:&w) <z} € o foreveryz € R. Leti = /—1. Wecall £ =n+i(

a complex random variable on (2, <7, P) provided 7 and ¢ are random

variables.
(2) If &, ,&, are real (complex) random variables on (€2, 27, P), then
vector-valued function & := (&1, -+ , &) is called an n-dimensional real

(complex) random variable on (2, .27, P). A multi-dimensional random

variable is also called random vector.

(3) The distribution function of a random variable £ := (&1, -+ ,&,) is
defined as
F:R" 3 (z1,29,  ,2) = P(§ <25 : 1 <i < n).

(4) Let &:= (&, -+ ,&) and n:= (n1,--- ,m,) be two random variables
on (Q, o ,P). If

P(& #m) =0,1<1i<n,

33
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then these two random variable is called identical almost surely, denoted
by & = na.s. If they have the same distribution function, we call they
identically distributed.

In this chapter, we first extend the concept of random variables to
measurable functions on a measurable space, then study the construction of
measurable functions and convergence theorems. These provide a basis for
the next chapter to define and study the integral (in particular, expectation)

of measurable functions (random variables).

1 Measurable Function

§2.1.1 Definition and properties

Let % be the Borel o-algebra of R, and let

R :=[~00,0¢], % :=0(%U{oo}U{—0c0}).
Let R” be the n-dimensional product space of R and %" be the product
o-algebra. Similarly, we can define n-dimensional product space C" of the
generalized complex plane C, and the product o-algebra 7.
Definition 2.2. Let (Q2,.9/) and (E, &) be two measurable spaces.

(1) Amap f:Q — Eis called measurable from (£, .2/) to (E, &), if

fAB)={we: flweB}ecw

for every B € &, where f~!(B) is called the inverse image of B under
f.

(2) A measurable map f from (Q,.%7) to (R, %) is called a measurable
function, denoted by f € /. A measurable map from (2, %) to
(R"™, ") is called an n-dimensional measurable function. If f; and fo
are (n-dimensional) measurable functions, then f := f; +1 f3 is called

an (n-dimensional) complex measurable function.

In the following, we only consider real valued measurable functions,
unless otherwise specified. Let € be a class of subsets of E. Then {f~1(B) :
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B € €} is called inverse image of ¥ under f, denoted by f~(%) or o(f).
Obviously, the map
Q) = (E, &)

is measurable if and only if f~1(&) C &.

It is easy to see that the inverse is interchange with any set operations.

Property 2.3. Let f be a map from  to E, and let {B,},cr be a family
of subsets of 2. Then:

1) fFHE)=9, fi(9)=2.

(2) fYB¢) =[f"YB)]° forany B C E.

(3) fYBi— Ba) = f~Y(B1) — f~Y(By) for any By, By C E.
4) [ (U B, =U - i(By.

yel’ yel

(5) 1 (ﬂ Bv) =N f4(B,).
yel ~yel
Property 2.4. Let (F,&) be a measurable space. Then for any map f :
Q — E, f~4&) is the smallest g-algebra in © such that f is measurable.

Property 2.5. Let ¥ be a class of subsets of ¥ and let f : 2 — FE be a
map. Then o(f) := f~'(0(%)) = o(f~(¥)).

Proof. Since f~(o(%)) is a o-algebra including f~1(%), we have f~1(a(%¢)) D
o(f~1(%)). So it suffices to prove

o ={CCE:f0)ea(f1(¥))}Da(?).
In fact, we have (1) & D €; (2) fY(E) = Q € o(f"4¥)) = E €
A (3) C e o = [7HC) = (JTHO) € o(fU%)) = C° € o

WGl =r (0 6) = Ureneds @)= U e
/. Thus « is a o-algebra including %, hence &« D o(%¢). O

Theorem 2.6.

(1) fis a real measurable function on (€, <) if and only if {f <z} € &
for every x € R.



36 2 Random Variable and Measurable Function

(2) f = (f1, -, fn) is an n-dimensional function on (2, .27) if and only
if fr is a real measurable function on (€2, %) for 1 <k < n.

Proof. (1) The necessary part is obvious. To prove the sufficiency, let .77 =
{[~o00,x) : x € R}. Then () = %, so by Property 2.5 we have

FHB) = o) =o(fTH(F) Col) = .

Thus, f is a measurable function on (2, .27).

(2) Let f be measurable. Then for any 1 < k < n and A}, € %, we have
{fr€ A} ={fERX - x Ay x--- xR} € . So, f; is measurable for
any 1 < k < n. On the other hand, let f; be measurable for any 1 < k < n.

To prove the measurability of f, we take
S ={{fr<r}:1<k<n,reR}L

Since

B =c({{z:zr<r}:1<k<n,reR},

by Property 2.5, we have f~1(%") = o(#). Combining this with the
fact that the measurability of fi (1 < k& < n) implies .¥ C &7, we obtain
f~Y#") C o, which means that f is measurable. [

Theorem 2.7. Let (€, .o%),i = 1,2, 3, be measurable spaces, and let (21, .9%)
EN (Qo, o) EN (Qs3, 973) be measurable maps. Then go f is a measurable map
from (Qq,.9) to (Q3, o73).

Proof. Tt follows from (go f)~1(B) = f~!(¢~1(B)) immediately. O

By Theorem 2.6-(1) and Definition 2.1, a random variable is nothing
but a finite measurable function on the probability space, while Theorem
2.6-(2) shows that a vector valued function is measurable if and only if
each component is measurable. Theorem 2.7 says that the composition of

measurable maps remains measurable.

Corollary 2.8.
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(1) Let g be a real (complex) measurable function on (R™, %") and f1,--- , fn
be real measurable functions on (€2, .%7). Then g(f1,---, fn) is a real
(complex) measurable function on (€2, 7).

(2) Let g be a real (complex) measurable function on (C", %.") and
fi,-++, fn be complex measurable functions on (2, <7). Then g(f1,--- , fn)
real (complex) measurable function on (2, <7).

Corollary 2.9.

(1) Let g be a real (complex) measurable function on (R”, ") and f1, - - -, fx
be real ramdom variables on (2, <7, P). If P(|g(f1,--- , fn)| = 00) =0,
then g(f1,---, fn) is a real (complex) random variable on (2, <7, P).

(2) Let g be a real (complex) measurable function on (C"*, 27) and f1, - - , fn
be complex ramdom variables on (2,27, P). If |g(f1,- -, fn)| < o0,
then g(f1,---, fn) is a complex ramdom variable on (€2, o/, P).

§2.1.2 Construction of measurable function

We first recall the measurable indicator functions which one-to-one corre-
spond to measurable sets, then use their combinations and limits to con-
struct all measurable functions. This construction is fundamental for the
definition of integrals, where the integral of a measurable function is re-
garded as the measure of the function, so that it is natural to identify the

integral of an indicator function with the measure of the corresponding set.
Definition 2.10.
(1) VA C €, its indicator function is defined by

1, if weA;
1a(w) = {

0, else.

(2) Let {Ax}i<k<n be a finite measurable partition of (2, i.e. they are

n
mutually disjoint sets in o/ such that Q@ = >  Aj. Then for any

k=1
n

ai, -+ ,an €ER, f:= > agly, is called a simple function.
k=1
(3) If we take n = oo in (2) above, then f is called an elementary function.
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Property 2.11.
(1) 14 is a measurable function on (€2,.27) if and only if A € &7.

(2) Simple functions and elementary functions are all measurable functions

on (Q, ).
Proof. Let f = > agla, be a simple (or elementary if n = oo) function.
k=1
Then VB € £ we have f~}(B)= | Ar€ <. O

k:ap,€B
Theorem 2.12.
(1) A measurable function is the point-wise limit of a sequence of simple
functions.

(2) A measurable function is the uniform limit of a sequence of elementary

functions.

(3) A bounded measurable function is the uniform limit of a sequence of
simple functions.

(4) A non-negative measurable function is the (uniform) limit of a sequence

of increasing simple (elementary) functions.

Proof. (1) Forn > 1 and w € Q, let

n2"—1 k

f@) = D ik cpy<tiy @ — M fw)<n)
k=—n2"

Then f,, are simple functions and [f,, — f|1{_p<fen) < 2%; when f = oo,
fn = n; when f = —o0, f,, = —n. Thus the sequence {f,},>1 converges

point-wisely to f.
(2) For any n € N, let

— k
fn= 2 on L <p<tgity 001 =00} — 001 {f=—oc}-

k=—o0

Then {f,}n>1 are elementary functions such that for any n > 1,

1
| frn — f|1{|f\<oo} < 273 fo=f when |f| = occ.
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Thus, f,, converges uniformly to f as n — oo.

(3) If f is bounded, then by (1), the sequence {f,}n>1 of simple func-

tions converges uniformly to f.

(4) If f is non-negative, then the sequences { f,}n>1 constructed in (1)

and (2) are increasing. O

Let f be a real function on Q. Define f* = max{f,0} and f~ =
max{—f,0}, which are called the positive part and the negative part of f,
respectively. Then

fl=7

\fl+ f
’ 2

f=r=f fl=fr+f, = 5 =

Theorem 2.13. The positive part and the negative part of a measurable
function are measurable. So, any measurable function can be expressed as the

difference of two non-negative measurable functions.

§2.1.3 Operations of measurable functions

Proposition 2.14. Let {f,},>1 be a sequence of real functions on €.

(1) Super-limit, lower-limit, supremum and infimum of {f,},>1 all exist,

and

lim f,, = lim inf f; = bup 1nf frs

N—00 n—oo k>n
hm frn= lim sup fr = mf Sup fr-
n=00 k>n k>

(2) Limit of {fn}n>1, ILm fn exists if and only if

Vw e Q, lim f,(w) = lim fn(w).

n—o00 n—00
In this case, we denote f,, — f as n — oo.

A sequence of complex functions f, := g, + hni,n > 1, is called con-

vergent to f := g+ hi, if g, = g and h, — h as n — oco.
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Theorem 2.15. Let ({2, %7) be a measurable space.
(1) Let {fn}n>1 be a sequence of real measurable functions on (2, 7).
Then

sup fn, inf f,, Lm f, mfn
n>1 n=1 N—00 n—00

are measurable as well.
(2) Let {fn}n>1 be asequence of complex measurable functions on (£2, 7).

If lim f, exists, then it is measurable.
n—o0

Proof. Note that Vx € R,

{Tlgflfn<l‘} =J{fa<atead.

n>1

So inf f,, is measurable. Since sup f,, = — inf (—f,,), sup f, is measurable.
n>1 n>1 n=1 n>1

Finally, for x € R,
{limf}:[j[j fo<z— 2L
n—o00 " m

Thus lim f, is measurable. As lim f, = — lim (—f,), lim f, is measur-
n—eo n—00 n—0o N—00
able. O

Theorem 2.16. Let ¢ be a continuous function on D C R™. Then g is a
measurable function on (D, D N ™). The assertion remains true for C" in

place of R™.

Proof. For simplicity, assume ¢ is real. Vm > 1, R™ is divided into countable
many disjoint cubes with side length 1/2™:

Ay = [ﬂ731+1) e x {Jn’t?nJrl
o 2m 2m 2m 2m

)7j1)"' 7.]TL€ZU{:l:OO}7

For j = —o0 or +o00, by convention we set [2%,“32%1) = {—oc} or {+oc}.

Rearranging these cubes, we denote them by {A" : i,m € N}.

Given x;p, € A}, define

gn(®) = D Lamnp(@)g(@im)-
i—1
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Then g, is measurable, and the continuity of ¢ implies that g,, mee, g,

S0 g is measurable. O

Theorem 2.17. Let D C C" and fi,---, f, be measurable functions on
(Q, ), such that

(fr,-+, fa)(Q) C D.

If g is a measurable function on D, then g(fi,---, fn) is measurable.

Proof. Simply note that the composition of measurable functions is mea-
surable. ([l

Corollary 2.18. The sum, difference, product and quotient of measurable

functions are measurable (if the operations make sense).

Corollary 2.19. Let &, -+, &, be (complex) random variables on (2, <7, P)
and let g be a finite continuous function on R™ (C"). Then g(&1,- -+ ,&n)
is a (complex) random variable. Specially, the sum, difference, product and
quotient of (complex) random variables are (complex) random variables (if the

operations make sense).

§2.1.4 Monotone class theorem for functions

Definition 2.20. Let .Z be a family of functions on 2 such that f € .¥ =

fr, f~ € %. Afamily L of functions on € is called an .Z-system, if
(1) 1eL;
(2) L is closed under linear combinations;
(3) for any non-negative and increasing sequence {f,}n>1 C L such that
fn 1 f, if either f is bounded or f € &, then f € L.

Theorem 2.21 (Monotone class theorem for functions). Let L be an Z-
system. If L contains the indicator functions of all elements in a 7-system %,

then L contains all real o(%")-measurable functions in .Z.

Proof. Let A = {A:14 € L}. Then Q € A and A is closed under the
proper difference and the union of increasing sets. So A is a A-system.

Since A D € and ¥ is a w-system, by the monotone class theorem we have
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A D o(%). From this and Definition 2.20-(2), it follows that L contains

all 0(%¢)-measurable simple functions. Let f € £ be o(%)-measurable.

Then fT, f~ € £ are o(%)-measurable, so that there exists a sequence of

simple functions f, T f*. From this and Definition 2.20—(3) it follows that

f* € L. Similarly, f~ € L. Thus f = f* — f~ € L by Definition 2.20-(2).
O

The monotone class theorem for functions is used to prove that a family
F of functions having certain property Ag. To this end, we first choose a
class of functions . D F, such that L := {f : f have property Ap} is an
ZL-system, then introduce a w-system % such that indicator functions of
all subsets of € are contained in L, and finally verify that the family of all
0 (¢ )-measurable functions includes F. Thus, by Theorem 2.21 we conclude

that functions of F' have property Ayp.

The following theorem is an example to illustrate this procedure.
Theorem 2.22. Let (E,&) be a measurable space, and let o(f) = f~1(&)
for a map f : Q@ — E. Then ¢ : Q — R is o(f)-measurable if and only if
there exists an (E, &)-measurable function g such that ¢ = go f. If ¢ is finite

(bounded), then one can take finite (bounded) g as well.

Proof. The sufficiency follows the fact that the composition of measurable

functions is measurable.

To prove the necessity, we choose .Z to be the class of all o( f)-measurable
functions on Q, and let L = {go f: g € &}. Then L is an Z-systems such
that the following items hold.

(1) 1g=1go f e L.

(2) Vg1 0 f,gao f € L and a1,a2 € R such that a1(g1 o f) + aa(g2 o f)

makes sense, we have

argi o [ +azgz o f = [(a191 + azg2)1a] o f,

where A = {z € E : a191(x) + a292(x) exists}. Thus a1gio f+aggeof € L.

(3) If ¢, € Lypy, T ¢, then Vn > 1,3g, € &, such that ¢, = g, o f.
Let g =supg,. Thenge & and p =go f, so ¢ € L.

n>1
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If C € o(f), then there exists B € & such that C = f~(B), so that
1c = 1p o f. Thus, L contains indicator functions of all subsets of o(f).
By Theorem 2.21, L includes .Z. This proves the first assertion.

If ¢ is finite (bounded), and ¢ = g o f, then we can replace g by
91 1g1<llello} (91{|g|<o0} ) SO that the second assertion holds true. O

Corollary 2.23. Let f be an n-dimensional real function on €. Then ¢ is
f~Y(#")-measurable if and only if there exists a measurable function g on
(R™, %") such that ¢ = go f.

Theorem 2.24. Let .Z be the total of real functions on R” and L be an .Z-
system on R™ containing all bounded continuous functions. Then L contains

all Borel measurable real functions.

Proof. Let . = {A: A is open interval in R"}. Then .7 is a 7-system and
(L) =R" For A€ .7, set d(x, A°) =inf {|z —y|: y & A}. ¥Ym > 1, let

0, x & A,

>
md(xz, A°), =€ A, d(z, A°) <

Then f,, is continuous and f,,, T 14, so 14 € L. Now the assertion follows
from Theorem 2.21. O

2 Distribution Function and Law

For a real function F' on R" and a,b € R" with a < b, the difference Ay ,F'
of F' on interval [a,b) is defined by Ay ,F = F(b) — F(a) when n = 1,
and Ap o F := Ap, 0, Dbyay - Db,a, whenn > 2 and a = (a1, ,ay),b =
(b1, ,by), where Ay, o,(1 < i < n) is difference in the i-th component.
We have the following characterization on the distribution function of

a random variable.

Theorem 2.25. Let F' be an n-dimensional real function. It is the distribution
function of an n-dimensional random variable if and only if the following four

items hold:
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(a) F'isincreasing and Ay, F' > 0 for a < b,
(b)
(¢) F(x)— 0if 31 < i < n such that z; — —o0,
(d) F(oco0,00,---,00):= lim F(n,---,n)=1.

n—o0

F' is left-continuous,

The necessity is obvious. So, for a function F satisfying the above (a)—
(d), we only need to construct an n-dimensional random variable £ on a
probability space (2,47, P) such that F' is its distribution function. In the
following, we prove a more general result for F' not necessarily having prop-
erties (c) and (d). For this, we introduce a general notion of distribution

functions.

Definition 2.26. A left-continuous finite real function F on R" is called a
distribution function, if it is has non-negative differences, i.e. Ay ,F > 0 for
any a,b € R™ with a < b. In particular, F is called a probability distribution
function, if it satisfies (a)-(d) in Theorem 2.25.

Theorem 2.27. Let F' be a distribution function on R™. Then there exists
a unique measure i, on A" such that pp([a,b)) = ApoF, a < b. The
completion of 1, denoted again by fiy, is called the Lebesgue-Stieltjes (L-S)
measure generated by F.

n
Proof. Write [a,b) = ][] [ak,bx) for a = (a1, -+ ,a,) < b = (b1, - ,by),

k=1
where [ag, by) is understood as (—oo, b)) when ar = —oco. Let

¢ = {la,b) : ar < b, a € [—00,+00),b; € (—o0,+00],1 <k < n}.

It is clear that € is a semi-algebra in R" and o(%) = £".

Define a function on ¢ by pp([a,b)) = Ay oF,a < b. When a component
of b or a is 00, pip([a, b)) is understood as the limit when this component
tends to £oo, respectively. It is easy to check pp is finitely additive. Since

pp takes finite values in finite intervals, it is o-finite. To prove that puy is

o-additive, let A € €, {Ag},>; C ¢ mutually disjoint and ) Ay = A. It
k=1

suffices to verify that > pp(Ag) = pp(A).
k=1
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Let p5 be uniquely extended to a finitely additive measure on (%),
which is denoted again by . Then

ZHF(Ak) = kp (Z Ak) < pp(A).
k=1 k=1

Letting n — oo we obtain ) pup(Ar) = pp <Z Ak> < pp(A).
k=1 k=1

It remains to prove that i pp(Ag) = pp(A). By an approximation
argument, we may assume t}’;;tl A is a finite interval; i.e. by first using
AN) = AN [-N,N)" and A,(CN) = Ap N [-N,N)" replacing A and Ay
respectively for N € N, then letting N 1 oo.

Now, let A = [a,b) and Ay, = [a®),b®)) with a,b,a®,b*) € R such
that a < b,a® < b®) (k> 1) and f Ay, = A. By the left-continuity of F,
Ve > 0,30 > 0, such that =

—

pr(A) —e < pp(la,b—9)),

where § = (6,---,0). Moreover, for each k > 1, there exists 6% > 0 such
that
- €
pp([a® = 6™ b)) < pp(Ar) + ok

Since

(a®) — 5) p(k)y.

C8

[a,b— 6] C G“M

k=1

by the finite cover theorem we find a natural number N > 1 such that

U — 50 pk)y,

k=1
Thus



46 2 Random Variable and Measurable Function

Letting € | 0 we obtain Y pup(Ag) = pp(A).
k=1

So far, we have proved that i, is a o-finite measure on the semi-algebra
% . The the proof is finished by the measure extension theorem (Theorem
1.42). O

It is clear that the L-S measure induced by a distribution function is
finite on compact sets. Such a measure is called Radon measure. Indeed,
the inverse of Theorem 2.27 also holds, i.e. a Radom measure must be the
L-S measure induced by a distribution function, see exercise 6 in the end

of this chapter.

Proof of Theorem 2.25. Let up be the induced measure of F' on #". By
(c) and (d), 5 is a probability measure. On probability space (2, &7, P) =
(R™, %", up), define the random variable {(x) := z. Then & is an n-

dimensional random variable such that P(§ < z) := pp((—o00,z)) = F(z).
0

Example 2.28. Let F(z1, - ,x,) = x1x9- -2y for (zq1,--- ,2,) € R™
Then F is a distribution function on R™ and pij. is the Lebesgue measure on
R™.

Definition 2.29. Let £ be an n-dimensional random variable. The probability

measure
Poé¢ (A :=PEcA), AcRB"

is called the distribution (or law, or distribution law) of &.

3 Independent Random Variables

Let T be a non-empty set. We write S € T if S is a non-empty finite subset
of T.

Definition 2.30. Let {f(t) = (&1, &m) it € T} be a family of random
variables on (9,27, P). We call {§<t) :t € T'} independent, if for any [ € N,
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{t1,--- .4} C T and 24) € R™% 4 =1,--- |1, there holds

Pe®) < z(t) ... et) < gty = HP( (t) < 4t )).

The following properties are obvious.
Property 2.31.
(1) {€® .t € T} are independent if and only if {¢®) : ¢t € T'} are
independent for VI" € T.

(2) Let U T» = T and T, mutually disjoint with |T;,| < co. Set £ =
rel
(€Wt eT,). If {€®) ¢t € T are independent, then {£) : 7 € I} are

independent as well.
Because of Proposition 2.31, we only need to study the independence
of finite many random variables.

Theorem 2.32. Random variables {¢()},.,, are independent if and only
if VB™k) ¢ g8

(ﬂ{g eBmk) HIP’( k>eBmk>).

Proof. The sufficiency is obvious. By induction, we only need prove the
necessity for n = 2. Indeed, by Proposition 2.31-(2) and the necessity for
n = 2, we obtain that forn =k +1

P (H {f(i) € B(mi)}> =P (ﬁ {g(i) c B(W)}) P <£(k+1) c B(mkﬂ)) '

=1 1=
This implies the desired assertion for n = k + 1 by using that for n = k.

Now, let n = 2. We prove the necessity by using the monotone class

theorem in two steps.

(1) Let ., = {(—o00,b%) : V¥ € R™} for k = 1,2. Then .%} is a
m-system of R™* and o (%) = Z™*. Given (—oo,b) € ™2, let

@ = {A1 cB™ P (§<1> €A, e® < b) —P (g“) e A1> P (g@) < b)} .
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Then %1 D .#1. Now we prove %] is a )\—sytem

Obvious Q € €. If A € € and A™ 4 A, then {¢) € A} ¢
{¢ ONS A1}. By the continuity of probability, we have 4; € €. Moreover,
if A; D A} and Ay, A} € €}, then

P (§<1> e A — Al €D < b)

—Pp <g<1> €A, e® < b) P (50) e AlLe® < b)

_p <§(1> c Al) P (5(2> < b) _p (§<1> c A’1> P <§<2> < b)
—Pp <g<1> €A — A’1> P (§<2> < b) .

Thus A; — A} € €1, so 6 is a A\-system. It follows form the monotone class
theorem that ¢ O #™1.

(2) VA, € B™, let
Gy — {Ag c B2 . P (g<1> € A, e? ¢ AQ) _P (g“) c A1> P (g@) c A2>} .

Then %2 D # by (1). Similar proof shows that %5 is a A-system. Therefore,

the proof is competed by the monotone class theorem. O

As a consequence of Theorem 2.33, the following result says that the

functions of independent random variables are also independent.

Corollary 2.33. Assume {¢®) : 1 < k < n} areindependent. Let f; : R™ —
R™k be finite Borel measurable functions. Then {f, (¢®):1 <k < n} are

independent.

Proof. YAy, € %), we have f, ' (Ay) € (). Then

]P’(ﬂ{fk (f(k)>€Ak}> = P(ﬂ{ﬁ’“)ef )}>
k=1 k=1

= TIP(eV <o)
(

- [Te(s () <a)

=1

o

ol
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Corollary 2.34. {f(k) 1<k < n} are independent if and only if the dis-

tribution functions of (5(1), e ,f(")) can be expressed as
FaW,-. 2" =[] s (xw)) ,
k=1

for some real function Fj, on R™*, where m;, is the dimension of §(k), 1<k <

n.

Proof. The necessity is obvious. To prove the sufficiency, we may assume
that {F}; }1<k<n are nonnegative, otherwise simply replace Fj by |F)|. Since
P (goc) < m(k)) — P <§<k> <2® 0 < o0 i+ k)

- F(oo,--o 2 oo, ,oo)
= I (x(k)) HFz‘(OO%
i#k
by letting z(*) — oo we derive ] Fj(oo) = 1 and hence distribution of £*)
i=1
is given by Fj (l'(k)) /Fy(c0). Thus,
F( ... <n>) ~TIF ( (k)) —Jr

which implies the independence of {£1),... £} by definition. O

4 Convergence of Measurable Functions

Let (Q,47,u) be a complete measure space. If some relationship holds
outsides a p-null set, we call it holds p-almost everywhere, and denote
by p-a.e. or simply a.e. if there is no confusion. A null set is called an

exception set. In this section, all measurable functions are a.e. finite.

§2.4.1 Almost everywhere convergence

Definition 2.35. Let {f,} be a sequence of measurable functions and f be

a measurable function. We say that {f,,} converges almost everywhere to f,
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and denote by f, =% f, if there exists N € o7 with pu(N) = 0, such that
fn(w) = f(w),n — oo for every w & N.

The sequence {f,} is called mutually convergent almost everywhere, de-
noted by fn — fin == 0, if Yw & N, fn(w) — fm(w) — 0 when n,m — co.

Obviously, fr, — fm —= 0 if and only if fr4m — fn — 0 (n — 00) holds

uniformly in m > 1.
Property 2.36.

(1) If f, 2% f, then any sub-sequence {f,, } satisfies f,,, > f.

(2) If fo == fand fo == f', then f = f a.e.
(3) If f &% f and g, = foae., f = gae., then g, == g.
4) K f7(lk) 2% f®) k= 1,--- ;m, and g is a continuous function on
R™, then

GUFD L plm)y Bey o p() L pm)),

Theorem 2.37. Let {f,} be a sequence of finite measurable functions. Then
there exists a finite measurable function f such that f, == f if and only if

{fn} mutually converges almost everywhere.

Proof. If f,, 2% f, then exists a null set N such that f,,(w) = f(w),w & N,
so Vw & N, {fn(w)},>; is a Cauchy sequence, that is f,(w) — fin(w) — 0

when n,m — oo. Thus { fn}n>1mutually converges almost everywhere.

Conversely, if { fn}n21mutually converges almost everywhere, then there
exists a null set N such that Vw ¢ N, {fn(w)},>, is a Cauchy sequence,
so it has a limit, denoted by f(w). When w € N, set f(w) = 0. Since
N is measurable due to the completion of measure space, and since the
limit function of measurable functions is measurable, we conclude that f is

measurable and  f,, == f. O

The next theorem follows from Definition 2.35 immediately.

Theorem 2.38. Let f, f,,n > 1 ba finite measurable functions.
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(1) fn&fifandonlyifV5>O,u<ﬁ G{|fm—f|>s}>:().

n=1m=n

In particular, when 1 is finite, f, == f if and only if

V€>O,M<U{\fm—f\>€}>—>O(n—>oo).

m=n

(2) fn—"Im 225 0 if and only if Ve > 0, u ( F% 6 {|fn+v - fn‘ 2 5}> =
n=1v=1
0.

In particular, when 1 is finite, f, — fn — 0 if and only if

Ve >0, p (G{’fn—}—v_fn‘ 25}) — 0 (n — o0).
v=1

§2.4.2 Convergence in measure

Definition 2.39. A sequence {fy,},>1 of finite measurable functions is said
to converges in measure i to a measurable function f, denoted by f, LN f,if
Ve > 0,u(|fn — f| =€) = 0(n — o).

We call {f,}n>1 mutually convergent in measure p, and denote f4+, —
fn &0, if Ve > 0,

sugu(lfnﬂ —fal =€) = 0,n — oo,
V=

Clearly, if f, LN f, then f is finite a.e. The following properties are

obvious.
Property 2.40.
(1) If fn £ £, then any subsequence I LNy
(2) If fu s fand f, & ' then f = f ae.
(3) If fu &5 fand g, = fn ae.,g = f a.e., then g, 2 g.
Theorem 2.41. Let f, f,, : @ — R be measurable and let D D f(£2),D D
fjl fu(Q). If g+ D — R is uniformly continuous and f,, £ f, then g(fn) &

g(f)-
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Proof. Ve > 0,36 > 0, we have |g(x) — g(y)| < € when z,y € D and
|z —y[ <. Then {|g(fn) —g(f)l Z e} C{lfu—FlZ0}. DO

Corollary 2.42. If f, & f and g, 2 g, then fu+gn = f +g.
Theorem 2.43. In Theorem 2.41, if 1 is a finite measure on (2, &) and D

is an open set, then g can be replaced by a continuous function.

Proof. Let

1
Dy = {a: eR": |z| < N,d(z, D) > N}’ d(z, o) =

Then Dy is a bounded closed set (as d(-, D) is continuous), and d(Dy, D§, ) >
m. When N + oo, Dy 1 D, so that u(f~'(D\Dy)) | 0. Since g is
uniformly continuous on Dy41, Ve € (0,1), there exists oy > 0 such that
whenever Va,y € Dyy1, |z —y| < 0N, |9(z) — g(y)| < e. Thus

= Ug(fn) = 9(N = e} C (A {fn, [ € Dny1})

ots ¢ omo{if - 11> 5o |

C{lfn—flZenyU{Sf ¢ Dn},

where ¢y = min{on, yxo N+1 }. But hm 1(Ay) <0+p (f~H(D\Dy)). Let
N 1 oo to derive

lim (lg(fn) —9(f)| =€) =0.

n—oo

g

Finally, we illustrate the relationship between the a.e. convergence and

the convergence in measure.
Theorem 2.44. Let {f,},>1 be a sequence of finite measurable functions.
(1) If fo & £, then there exists a subsequence { f,,, } such that f,,, = f.

(2) If foso — fn £ 0, then there exist a subsequence {fn,} and finite
measurable function f such that f,, 225 fand f, LN I

(3) If uis a finite measure, then f,, =<5 f implies f, & f.
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Proof. (1) Vk > 1,3ny, 1 oo such that p (| f, — f| = 27F) < 27%k > 1. Let
fi = fap. Then p(|fi — f| >27%) <27% k > 1. Thus Ve > 0 and ¥’ > 1

with 27F < €, we have

. (m st - >e}) S (e 15 )
k=1v=1 v=1

<Y 2 = 97k,
v=1

Let k' 1 0o to derive that f,, ~=+ f by Theorem 2.38-(1).
(2) As in (1), we take ng 1 oo such that

Sull)u (|fnk+v - fnk| > 27]?) < 27]67 k> 1.
vz

For Ve > 0 and k¥ > 1 with 2!7% < ¢, we have P ey 2= < ¢, so that
U {| f g — ol = €} CURLAIf 1 — £l = 27"} Thus,

1 (ﬂ U — f1l = €}> <> (!fz’+1 —fl| = 2*1)

k=1v=1 =K'
o
< Z 9=l _ g—K+1
=K'
By letting k&’ 1 oo, it follows from Theorem 2.38-(2) that f,, converges

mutually almost surely, so that it converges almost surely to some finite

measurable function f.

Next we prove f}, & f. By fi =% f, there exists a null set N such that

filw) = f(w),Yw & N. Then

{Ifi—flzetc N (Uﬂflzﬂ- — frgioal = 2—1'5}) :
=1

which implies that when e > 217,
p(lfi = fl = 28) <p (1fr = fl =€) + | fo — fal =€)
< (ks = Fimal 2 27 9D) o = il > )
=1

< PR +N(‘fnk - fk| P 5)'
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Hence f,, 2 f.

(3) Let i be a finite meaaure and f, == f. Then

o
m=n
Combining this with f, == f and the upper continuity of measure, we

obtain

Tim p(lfn — f1 > ) < n (ﬂ U {lfm = £l >s}> = 0.

n=1m=n

0

Theorem 2.45. There exists a finite measurable function f such that f, -
f if and only if friy — frn - 0.

Proof. The necessity follows from the triangle inequality. Below is a proof

of the sufficiency.
Let froiw — fn — 0. By Theorem 2.44-(2), there exists a subsequence

such that f,, £ f for some measurable function f. Then

klimu(|fk—f|>€)
—00
e g
< 1i _ > = 1 — > -] =0.
\klggONOfk fnk’/ 2>+klggoﬂ(|fnk f|/ 2) 0

O

§2.4.3 Convergence in distribution

Definition 2.46. Let {&,},>1 be a sequence of random variables of same
dimension with the corresponding distribution functions {F,}. Let £ have
distribution F'. We call &, convergent in distribution (or law) to £, and denote
F, = Foré&, 4, &, if F(zo) = F(x0) holds for every continuous point xq of
F.

Theorem 2.47. If &, 5 ¢, then &, % ¢.
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Proof. By |[P(A) —P(B)| < P(AAB), where AAB=(A—B)U (B —A4) is
symmetric difference of A and B, for any unit vector e € R", we have
[Fo(z) — F(2)| = [P(&n < 2) —P(€ < )
— P(g, < 2,6 ¢ (~00,3 +e€)) + B(€ € (—00, + £6) \ (—00, )
+P(&, & (—00,2),{ <x—ee) +P(£ € (—o0,x) \ (—o0,x — €e))
< P(§ — €| > ) + P(€ € (—00,2 +2€) \ (—00, 7 — ce)).

If = is a continuous point of F', then we derive F,,(x) — F(x) by letting
first n T oo thene | 0. O

Corollary 2.48. Let a be a constant. Then &, L aif and only if &, 9 a.

Proof. We need only prove the sufficiency. For simpicity, we only consider
the one dimensional case. Since the distribution for ransom variable £ = a

is F'(x) = 1(4,), both a — € and a + € are continuous points of F' for any

e>0. By &, N a, it follows for any € > 0,
P(|&, —a| >e) =P, <a—¢e) +P(&, >a+¢e) = 0(n — o0).
O

Similarly, it is easy to check the following two assertions.
Theorem 2.49. If &, — & 5 0and & % ¢, then &, 5 ¢.

Theorem 2.50. If &, i> &and n, i a, where a is a constant, then &, +7, ﬁ)
E+a.
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5 Exercises

10.

11.

. Prove Property 2.3.
. Prove Corollary 2.8.
. Prove Corollary 2.9.
. Prove Theorem 2.13.

. Is a distribution function increasing? Prove or disprove with a coun-

terexample.

. Prove that a Radon measure must be the L-S measure generated by

some distribution function.

. Prove that if F(z) = P(§ < z) is continuous, then n = F(§) has the

uniform distribution on [0, 1].

. Prove Property 2.31.

. Let {&}n>1 be independent with identical distribution p. Given

A € # with p(A) > 0, define 7 = inf {k : § € A}. Prove that the
distribution of &; is u(- N A)/u(A).

Let € and € be independent and identically distributed. Let n=§&-¢

(which is called the symmetrization of £). Prove

P(ln| > t) < 2P(¢] > t/2).

Let (2, o7, P) be a probability space. Subclasses €1, - , %, of & are
called independent, if

n n
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Prove that if €1, - - - , %, are independent 7-systems, then o(%}),-- ,0(%},)

are independent.

12. Prove the following 0-1 laws.

(a) Let {A,},; be a sequence of independent events and 7 =
oo

N o{A,, Ans1,---}. Then P(A) =0or 1 for any A € 7.

n=1
(b) Let {&n},,>; be a sequence of independent random variables, and

let

oo

(7 - ﬂ U{€n7£n+l,"'},

n=1
where 0 {&,,&nt1, - } is the smallest o-algebra in Q such that
{& : k > n} are measurable. Then P(A) = 0 or 1 for any
AeT.

13. Prove Property 2.36.
14. Prove Theorem 2.38.

15. Let &1,&2,--- € {1,2,--- ,r} be independent with identical distribu-

tion
P& =Fk)=p(k) >0, 1<k<r
Set
Tn(w) = p(&1(w)) -+ p(&n(w))-
Prove

T
—n Mogm, & H = — Zp(k) log p(k).
k=1
Here H is called Shannon’s information entropy.
16. Let &, = 14,. Then &, 5 0if and only if P(4,) — 0.

17. Let % be a class of sets in €2, and let f be a function on Q. If f is
o (%’ )-measurable, then there exists a countable subclass €y of ¢ such
that f € €.
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18.

19.

20.

21.

22.

23.

24.

25.
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If the sequence of random variables {,,} n>1 18 increasing and &, LN &,
then &, == €.

(a) TIf &, 255 €, then

1 & o
Sy = 5§ & 2 ¢
k=1

(b) When &, - ¢, does it hold that S, — £?

(Q, o7, P) is called a pure atom probability space if {2 has a partition
{An}, >, such that

o =0c({A,:1<n<o0}),

each A, (# @) is called an atom. Prove that for a sequence of ran-
dom variables on a pure atom probability space, the convergence in

probability is equivalent to the a.s. convergence.

(Egorov’s theorem) Let (2,47, 1) be a finite measure space, and let
fn, f are fine measurable functions such that f,, == f. Then Ve >
0,3N € o with pu(N) < e such that f, uniformly converge to f on
Ne€.

For any sequence of random variables {,,}, there exists a sequence of

positive numbers {a,} such that a,&, 5o.

Exemplify that Theorem 2.41 may fail when ¢ is only a continuous

function.
Prove Theorems 2.49 and 2.50.

Let F, and F be distribution functions of &, and &, respectively. If
&n LN £, then for every continuous point x of F', as n — oo,

P(én <) = P(E < w),

P&, > z) = P(€ > x).



Chapter 3

Integral and Expectation

In the elementary probability theory, the expectation (also called math-
ematical expectation) has been defined for two typical types of random
variables, i.e. by using the weighted sum with respect to the distribution
sequence for a discrete random variable, and the Lebesgue integral of the
product of the identity function and the distribution density function for a
continuous random variable. In this chapter, we aim to define and study the
expectation for general random variables on an abstract probability space
(Q, o7, P). More generally, we define the integral of a measurable function
on a complete measure space (,.2, ), and when p = P is a probabil-
ity measure, a measurable function reduces to a random variable, and the

integral is called mathematical expectation, or expectation for simplicity.

Intuitively, the integral of a measurable function f with respect to u
can be regraded as the measurement result of f under u, so the integral
of a measurable indicator function 14 is naturally defined as p(A). Com-
bining this with the the construction of a measurable functions based on
simple functions (Theorem 2.12), and equipping the integral with the linear

property, we may define the integral for general measurable functions.

59
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1 Definition and Properties for Integral

§3.1.1 Definition of integral

Let (2,97, u) be a complete measure space and f be a real measurable
function on Q. As explained above, for any o € &7, we call pu(A) the
integral of 14 with respect to u. By equipping with the linear property,
we define integral for nonnegative simple functions as follows. In case an

infinite function is concerned, we use the convention 0 x co = 0.

Definition 3.1. Let f be a nonnegative simple function, i.e.

n
=Y ala,
k=1

where n € N, {ax} C [0,00], and {A} C &7 is a partition of 2. We call

/ Fdu =" app(A)
Q k=1

the integral of f with respect to . For any A € &/, we call [, fdu =
Jo f1adp the integral of f on A with respect to .

Clearly, the value of fQ fdp is independent of the expression of the
simple function f, and hence is well-defined. As the integral is the mea-
surement result of f under p, we also denote u(f) = fQ fdu. The following

properties are obvious.

Property 3.2. Let f and g be nonnegative simple functions.

(1) (Monotonicity) f < g= u(f) < p(g).

(2) (Linearity) p(f +g) = p(f) +p(g) and p(cf) = cu(f), Ve = 0.
(3) Let p,(A) = J4 fdp. Then /s is a measure on ./, and

/gd po f /fgdu

By the monotonicity and the fact that a nonnegative measurable func-
tion can be approximated from below by non-negative simple functions, we

define the integrals of nonnegative measurable functions as follows.
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Definition 3.3. Let f be a nonnegative measurable function. Then

w(f) :/fd,u = sup{/ gdu:0<g< f,g is asimple function}
Q Q

is called the integral of f with respect to u. VA € o7,

[ an=ntan)
A

is called the integral of f on A with respect to p.

By the definition, the monotonicity is kept by the integral of nonnega-
tive measurable functions.
Property 3.4. If 0 < f < g are measurable, then u(f) < p(g).

The following result is fundamental in the study of limit theorem for
integrals.

Theorem 3.5 (Monotone convergence theorem). Let {f,},>1 be nonneg-

ative measurable functions on Q. If f, 1 f as n T oo, then

lim :u(fn) = N(f)

n—oo

Proof. By the monotonicity, u(f,) is increasing, hence its limit exists, and
frn < f implies
lim p(fn) < p(f).

n—oo

We need only to prove the converse inequality, i.e. For any simple function
m
9= ajla; + 00l

j=1
such that 0 < g < f, we have

n(g) < lim p(fn).

n—oo

To see this, for any

€€ (0, min a;)



62 3 Integral and Expectation

and N > 1, let
m
In = Z(aj =) la;nf|fa—fl<e} T Nlp=co|falzny 72> 1.
j=1
It is clear that f,, > g,. By fn — f and the monotonicity of integral, we

obtain

lim pi(fn) 2 lim_ pu(gn)

n—oo

[
NE

(05— ) Jim (A3 0 {1 = J1 < 1)+ ({7 = o0, 11l > V)

<.
I
—

(aj —e)u(4;) + Nu(f = o0).

[
NE

<.
Il
-

Since € and N are arbitrary, this implies the desired inequality

lim u(fn) = p(g)-

n—oo

Hence, the proof is finished. O

Finally, we define the integral of a measurable function f by the linearity
and the formula f = f*—f~, where f* and f~ are the positive and negative
parts of f, respectively.

Definition 3.6.

(1) Let f be a measurable function on €. If either u(f™) or u(f™) is
finite, then

u(f) = /Q fdpe= u(ft) - ulf)

is called the integral of f with respect to . For any A € o7 such that
the integral p(14f) exists,

[ ran=nttan)
A

is called the integral of f on A with respect to p. When pu(f) exists
and is finite, f is called integrable (with respect to p). To emphasize

the dependence of f on x, we also denote

u(f) = /Q f@)u(da), p(1af) = /A f(@)u dz).
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(2) Let f = f1+1 f2 be a complex measurable function. If both p(f1) and
wu( f2) exist, we say that f has integral, which is defined as

u(f)z/gfdutz/gfldwri/ﬂfzdu-

we call f integrable if both fi and f5 are integrable.

Proposition 3.7. If f = g and their integrals exist, then pu(f) = p(g).

§3.1.2 Properties of integral

It is easy to see from Property 3.2 and Definition 3.6 that the integral has

the following properties.
Theorem 3.8. Let f and g be real measurable functions.

(1) Linear property

(a) |If the sum u(f) + u(g) exists, then integral of f + g exists and

p(f +9) = ulf) + 1(g)-
(b) If u(f) exists and A, B € o are disjoint, then

/A+deu=/Afdu+/deu-

(c) If c € R and u(f) exists, then pu(cf) exists, and p(cf) = cu(f).
(2) Monotonicity
(a) If u(f) and p(g) exist and f > g,a.e. then [, fdu > [, gdp,
Acd.

(b) 1f u(f) exists, then ()] < su(f]).
(c) When f >0, u(f) =0if and only if f =0 a.e.

(d) Let N be a p-null set. Then [ fdu =0.
(3) Integrability

(a) f is integrable if and only if u(|f|) < oo; when f is integrable, f

is finite a.e.
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(b) If |f] < g and g is integrable, so is f.
(c) If f,g are integrable, sois f + g.
(d) If u(fg) exists, then (u(fg))* < p(f2)u(g?).

Corollary 3.9 (Markov’s inequality). If f is measurable and nonnegative
on A € o/, then Vc > 0,

1
ptr=ana < [ s
CJA
Proof. Let g = clan{ssey- Then g < 1af and [, gdp < [, fdpu, so

wa?@ﬂm=u@%§Afw-

2 Convergence Theorems

As application of the monotone convergence theorem, we have the following

convergence theorems.

Theorem 3.10 (Fatou-Lebesgue theorem, or Fatou’s lemma). Let g and
h be real integrable functions, and {f..},-, be a sequence of real measurable

functions.

(1) IfVYn>1,9 < fn, then
/ lim fodu < lim | foda.
) n—oo n—oo JN
(2) IfVn >1,f, <g, then
I < EE
B [ < [T gan
(3) fg< fut for¥n>1,g< f,<hae. and f, =5 f, then

n—oo

lim fndp = / fdu.
Q Q
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Proof. If g < fn, then g~ > f, 7, s0 [ fn~ dp < 0o, hence [q f, dpu exists.
A similar argument shows that [, f, du exists in (2) and (3).

(1) Let g, = I<I;I>1f (fkx —g). Then g, > 0 and
>n
gn T lim (fn —g) = lim f, —g.
n—oo n—oo
By the monotone convergence theorem,

/ lim fndu—/gduz lim [ inf(fi — g)du
Q Q

n—00 n—o0 Jo k2n

< lim | (fn —g)dp = lim fndu—/gdu-
Q

n—oo JQ n—oo JQ

(2) Replacing f,, by —f, in the above proof, (2) follows from (1) im-
mediately.

(3) Wheng < f, T f,0< fr, —g T f— g, so the assertion follows by
the monotone convergence theorem. When g < f, < ha.e. and f, =5 f,
let N be a null set such that ¢ < f,, < h and f, — f hold on N¢. Then
91lne < fnlye < hlye. By Theorem 3.10-(1)(2), we have

im pu(fulne) = o Jim falye) = p(f1ne).

Combining this with Theorem 3.8-(1)(a) and (2)(d), we finish the proof.
O

Theorem 3.11 (Dominated convergence theorem). Let g be an integrable
function and let {f,} be measurable functions such that |f,| < ga.e. for all
n > 1. If either f, =% f or f, 25 f, then Jo fndp = [o fdp.

Proof. By theorem 3.10—(3), we need only prove for f, LN f. By Theorem

3.8-(2)(b), it suffices to show that lim [ [fn — f|dp = 0. If this does
n—oo

not hold, then there exist ng T oo and € > 0 such that [, |fn, — f]dp >

g, Vk > 1. Since f,, LN f, there exists a subsequence f"L 225 f, so that

by Theorem 3.10-(3) we derive

fim [ 1, = 1= 0.

n—oo

which is a contradiction. O
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Corollary 3.12. Let {fn}n>1 be a sequence of measurable functions. If f,

is nonnegative or Z Jo | faldp < 0o, then the integral of Z fn exists, and

n=1
/gifndﬂ:,il/gf"dﬂ'

[o¢]
Proof. Let g, = E fr- If f, is nonnegative, then g, 1 >  fn, so the

n=1
assertion follows from the monotone convergence theorem. Assume

> [ 1fuldu<oc.
n=1 Q

Let
o n
g = Z fuls gl = Z | fl-

Then 0 < ¢/, 1 ¢'. Tt follows from the monotone convergence theorem
oo oo
|fuldp = lim /g’ dﬂz/g’dMZ/ | ful dpe,

(o]
so ¢’ is integrable and [g,| < ¢’. Since > [, |fuldp < 0o and g is a.e.
n=1

o0

finite Hence g, —— > fn. Then the assertion follows from dominated
n=1

convergence theorem. O

Corollary 3.13. If ,u(f) exists, for A € & and {A }ooy C &/ mutually
disjoint such that A = Z Ap, we have [, fdu= Z J4 fdp.
n=1 n=1 "

oo
Proof. As ff14 = " f*14,, we have

n=1

[ Ean- Z 7+ dn.

A'IL

Since the integral of f exists, at least one of the previous series is finite, so

we can make subtraction term by term, which gives the assertion. O
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The following result provides the definition of product measures.

Corollary 3.14. Let (;, %%, 1;),1 < i < n, be finite many o-finite mea-
sure spaces. Then there exists a unique o-finite measure p on the product

measurable space (21 X -+ X Q, .94 X -+ X 4,) such that
M(Al X oo X An) = MI(AI) .- ‘,un(An), A€ o1 <i<n. (3.2.1)

The measure p is called the product measure of u;, 1 < i < n, and is denoted

by f11 X -+ X pip.
Proof. 1t is easy to see that
%::{Alx---xAn: AiEM,léiSn}

is a semi-algebra in 2y X - -+ x ,,. By Theorem 1.42, it suffices to show that
p defined by (3.2.1) is a o-finite measure on %. Since each p; is o-finite,
so is p. It remains to prove the o-additivity of u. By induction, we only
prove for n = 2.

Let {AXB,AZ XBi > 1} C % such that A x B = 221141 XBZ'.

Then for any wy € {29, we have
oo
1alp(wa) = 1axp(we) = Y 1a,1p,(ws).
i=1

By Corollary 3.12 for integrals with respect to p; we obtain pui(A)lp =
o2, wi(Ai)lp,. Applying Corollary 3.12 again for integrals with respect
to po we finish the proof. (|

Definition 3.15. Let f be a measurable function such that p(f) exists. We
call py(A) := [, fdu(A € o) the indefinite integral of f.

It is clear that when p(f~) < oo, the indefinite integral py is a signed
measure on .

Proposition 3.16. Let (2,97, ) be a measure space, and p > 0 be a
measurable function on (£2,.e7). If a measurable function f on (2,47) f has

integral with respect to ), then u(pf) exists and p(pf) = py(f).
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Proof. By definition, the assertion is true for f being a simple function.
Combining this with the linearity of integral, Theorem 2.12-(4), and The-
orem 3.5, we derive the formula first for f being a simple function, then
a nonnegative measurable function, and finally a measurable function such
that p,(f) exists. O

Corollary 3.17. If f is integrable, then [, fdu — 0 as p(4,) — 0.

Proof. Assume [, fdu - 0. Since

’Anfdu‘</|f|du<w,

there exists ng T oo such that fA fdu — € # 0. Take a subsequence {n} }
Nk

oo
of {ng}, such that p (An;) < 2% Let By, = |J Ap. Then p(By) < %%1,
i=k

o
so By | B = () By is a null set. It follows that 14 , f < |1p,f| — 0,a.e.
k=1 "k
By the dominated convergence theorem, we have [ 4, fdp — 0, which
"k

contradicts that [, fdu —e#0asn; —oo. O
N

As applications of the dominated or monotone convergence theorem, we
have the following results concerning the commutable calculations with the

integral.

Corollary 3.18 (Interchange of derivative and integral). Let ' C R be an
open set. If Vt € T, f; is integrable and Yw € Q, f;(w) is differential at to, then
%ft(w)\to is measurable. If there exists an integrable function g and € > 0
such that

< g, for |t—to| <e,

d dfi
— d = du.
<dt /th N) ‘to /Q dt |t0 H

then

Corollary 3.19. Let {ft}te(a,b) be a family of real integrable functions and

% exists. If there exist an integrable function g such that % < g, then

there exists & [ fodpu = [ L fiduon (a,b).
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Proof. By applying the mean value theorem of differentiation, we have

f;:{;o < g,t € (a,b) for Viyg € (a,b). The assertion follows from Corollary

3.18 immediately. t

Corollary 3.20 (Interchange of integrals).

(1) Let {fi};c(qp) be a family of real integrable functions such that Vw €
Q, fr(w) is continuous in t, and there exists an integrable function g
such that |f| < g for Vt € (a,b). Then

/;(/thdu> dt:/9</abftdt> du.

(2) If the above equation holds on finite intervals, and [*_|f;|dt < h
with h integrable, then

/_Z(/thdu> dt=/ﬂ</_iftdt> du.

Proof. (1) Let a=1ty <t; <---<t, =D be a partition of [a,b]. Then

b n
/ fedt = Tim > (i —ti1) fr,-
a i=1

n

;(ti —ti1)fu

gence theorem that [, f;dp is continuous in ¢. Thus by the dominated

Since < (b —a)g, it follows from the dominated conver-

convergence theorem and the linear property of integral, we have

/Q </ab Ji dt) du = nll—{go i;(ti —ti—1) /Q ft, du
:/: </thdu> dt.

(2) Since [T |fildt < h, we have g, = [" fydt satisfies g, —
ffooo fidt and |gn| < h. Hence the assertion follows from the dominated

convergence theorem. U
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Corollary 3.21 (Interchange of summations). Let {fnm}, ,>1 be a family

of real numbers. Assume f,,,, = 0 or there exists a sequence of numbers {g,}

[e.e] oo
such that > |fum| < gn (Yn) and > g, < co. Then
m=1 n=1
oo oo oo o0
D2 Jam =223 fom:
m=1n=1 n=1m=1
Proof. Let = N, u be the counting measure on 2 and g(n) = g,. Then
o0
g is integrable. Let f,,(n) = fum. Then > |fin| < g. From the monotone
m=1
convergence theorem or dominated convergence theorem, it follows

}E:z{:fﬁwz::;égtl;fm(hi::j£72;%f%1dﬂzzz§::§£:fﬁm-

n=1m=1

Corollary 3.22. Let {fum}
0 < fam T fn (m T 00) or there exists a sequence of real numbers {gn}, -,

nm>1 be a family of real numbers such that

oo
such that | fom| < gn, Y gn < o0, and lim f, = fn. Then
n=1 m—o0
oo oo
AE&OE:jhmzzjz:ﬁr
n=1 n=1

3 Expectation

In the following we introduce the definition of the expectation and some
characters of a random variable, then establish the integral transformation

formula which implies the L-S representation of expectation.

§ 3.3.1 Numerical characters and characteristic function

Definition 3.23. Let £ be a random variable on probability space (2, &7, P).
If the integral of £ with respect to PP exists, then the integral is called the
expectation of £, denoted by E¢ = fgdeP. If E|¢| < oo, we say that £ has
finite expectation.



§3 Expectation 71

As in the elementary probability theory, by using expectation we define
the characteristic function and numerical characters of random variables
are as follows.

Definition 3.24.

(1) Let &= (&, ,&,) be an n-diemnsional random variable. We call
R™ 3 (t1, b)) = @elts, - o tn) 1= Fol (66

the characteristic function of ¢, wherei := /=1 and (¢,¢) := Z?Zl ti&;.

(2) Let& be arandom variable such that E€ exists. Then D := E|€ — IE,§|2
is called the variance of &.

(3) Let & be a random variable and r > 0. E|£|" is called the r-th moment
of & When E¢ exists, E|¢ — E£|" is called the r-th central moment of
£

(4) Let & and n be two random variables such that E£ and En are finite,
and

bey = E(§ —EE)(n — En)

exists. Then b¢, is called the covariance of { and 1. If D{Dn # 0

o o bey ) ..
and is finite, then 7¢, = \/T})n is called the covariance coefficient of
& and 7.

(5) Let & = (&1, ,&n) be an n-dimensional random variable such that

E¢ = (B¢, ..., E&,) and (bij = be, ¢,)1<ij<n exist. Then

is called the covariance matrix of £. If (ri; = 7¢, ¢ )1<i,j<n €Xist, then

M - Tin

™1 *°° Tnn

is called the correlation matrix of &.
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Besides properties listed in Theorem 3.8, the expectations for indepen-

dent random variables also satisfy the following product formula.

Theorem 3.25 (Multiplication theorem). If random variables &;,&a, -,
&, on probability space (£2,.27,P) are independent, all either nonnegative or
having finite expectations, then

E(&182 -+ &n) = EGES - - - EE,.

Proof. By induction, we only prove the formula for n = 2.

n
(1) Let & and n be nonnegative simple functions with &€ = Y a;14, (a; #
i=1

aj,i %+ j) and n = z bi]-Bi (bz #* bj,i =+ j) Then P(Ai N Bj) = P(Ai)P(Bj)
i=1
holds for all 4, j, so that

n m
n=> > abjlans,,

i=1 j=1
n m
En =Y abP(A)P(B;) = E¢En.
i=1 j=1
This implies the desired formula for nonnegative £ and n by applying The-
orem 2.12-(4) and Theorem 3.5.

(2) Let & and 7 have finite expectations. By Corollary 2.34, (£7,£7)
and (n*,n~) are independent nonnegative random variables. Combining
this with € = €7 — ¢7,n = n* — n~, and the formula for nonnegative

independent random variables proved in step (1), we finish the proof. ]

The characteristic function and numerical characters have the following

properties.

Proposition 3.26.

(1) Random variables &, - - - , &, are mutually independent if and only if
80(517"' 7£n)(t1’ o ’tn) = Spél (tl) o Spfn (tn)7 tl? U 7tn € R.
(2) If &, -+, &, are independent variables having finite variances, then

D(&++-+ &) = D& + -+ + D&y
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(3) If&andn areindependent and having finite expectations, then b¢ , = 0.

(4) Let & be an n-dimensional random vector such that B(¢) is finite. Then
B(&) > 0 (nonnegative definite).

(5) IfE[§]" < oo for some r > 0, then E[¢]® < oo holds for s € (0,7).

Proof. We only prove (1), (4), and (5), the rest are obvious.
(1) By Theorem 3.25, we only need prove the sufficiency. According

to Theorem 4.9 which will be proved in Chapter 4, we may construct in-
dependent random variables §~1, e ,§~n such that their characteristic func-
tions are ¢ (t1), -, ¢ (tn), respectively. Then £ = (le, ,§Nn) and
& = (&, -+, &) have the same characteristic function, so that by Theo-
rem 6.4 which will be proved in Chapter 6, we know £ and 5 are identically
distributed. From this and the mutual independence of 51, cee é;, it follows

that &, -+, &, are mutually independent.
(4) Vti,--- ,t, € C, we have

n
Z bijti?j =K

ij=1

2
= 0.

n

D (& — )

=1

(5) Notice that [{]* <1+ (¢ " forO<s<r. O

§3.3.2 Integral transformation and L-S representation of

expectation

The expectation of a random variable £ is defined as its integral with re-
spect to the probability measure P. Since in general the probability space
(Q, o/, P) is abstract, the expectation is not easy to calculate. Since E¢ is
a distribution property of £, we aim to express it by using the integral of
the identity function with respect to the distribution P o ¢! of £, which is
a probability measure on the Euclidean space, see Definition 2.29. This is

called the L-S representation of expectation.

In general, let f: (Q, /) — (E,&) be a measurable map, and let u be

a measure on (£2,.7). Then f maps p into the following measure o f~1
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on (E,&):
(wo f7H)(B)==u(f~'(B), Beé,
which is called the image of u under f. We have the following integral

transformation theorem.

Theorem 3.27 (Integral transformation theorem). Let f : (Q, o) —
(E, &) be measurable, let 1 be a measure on o7, and let g be a measurable
function on (E, &) such that its integral with respect to p o f~! exists. Then
the integral of g o f with respect to u exists and

/ QOfdu=/gd(u0fl), Beé.
f=1(B) B
Proof. (1) Let g be an indicator function and g =15, B’ € &. Then

/B gd(uo fY) = (uo F)BNB) = u(f (BB

= /f_l(B) 1f—1(B/) d/.L = /f_l(B) 1B/ (e} fd,u

(2) By step (1), the linear property of integral, and the monotone con-
vergence theorem, we derive the formula first for f being a simple function,
then for f being a nonnegative function f, and finally for f being a mea-

surable function such that p(g o f) exists. |

In references the L-S measure p induced by a distribution function F' is

also denoted by dp = dF', and the associated integral is called L-S integral.

Definition 3.28. Let p be the Lebesgue-Stieljes (L-S, in short) measure on
(R™, ™) induced by a distribution function F'. Let f be a measurable function
on (R™, A™) such that u(f) exists. Then the integral of f with respect to i
is called an L-S integral, denoted by

w(f)=[ fdu= [ fdF.
R~ R~

Let £ = (&1, ,&n) be an n-dimensional random variable on (€2, <7, P),

having distribution function F. Then the distribution of £ is expressed as

(Poé 1 (A) ::P(geA):/AdF:/nlAdF, Ae B
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More generally, let g :== (g1, - , gm) be a finite m-dimensional measurable
function on R™. Then by Theorem 3.27, the distribution of 1 := g(§) is

(}P’on_l)(A):/ dF, AeZB™.
g7 '(4)

This implies the following L-S representation of expectation.

Corollary 3.29. Let £ = (&1, -+ ,&,) be an n-dimensional random variable
on (€, o7, P), having distribution function F. Let g = (g1, , gm) be a finite
m-dimensional measurable function on R™ such that Eg(§) exists. Then

Bg(¢) = [ gdPo¢) = [ gaF.
In particular,

Ee = x(pog—l)(dx):/ 2dP(z). (3.3.1)

RTL n
To conclude this section, we present the following two examples to show
that the general definition of expectation covers that for discrete type and
continuous type random variables presented in the elementary probability

theory.

Example 3.30. Let £ be a discrete random variable, i.e. it takes values on
a countable set {a; : i > 1} with distribution sequence P(§ = a;) = p; >
0, p; =1. Then (Po&71)(A) = > p; holds for any A € %. By (3.3.1)

=1 a; €A
and noting that the identity function satisfies

T = Zail{ai}(x), (Poé Y-as.,
i=1
we obtain -
B¢ = [ w(Pog& h)(dz) =) aipi.
J >

Example 3.31. Let £ be a continuous type random variable with distribution
density function p such that E{ exists. Then its distribution is the indefinite
integral of p with respect to the Lebesgue measure dz, so that by Proposition
3.16 and (3.3.1), we obtain

Eg:/Rx (Po& 1) (da) :/Rxp(x)dx.



76 3 Integral and Expectation

4 L"-space
Definition 3.32. Let (2,.27, ;) be a measure space and let r € (0, 00).

L™(u) :={f : f is a measurable function on Q, u(|f|") < oo}

is called the L"-space of u. A sequence {f,} C L"(u) is said to converge in
L" (1) to some measurable function f, if u(|fn, — f|") = 0(n — oo), which is

denoted by f, = 1.

To ensure the uniqueness of limit, an element in L"(u) is regarded as
an equivalent class in the sense of u-a.e. equal; that is, we identify two
functions f and g in L"(u), if f = g p-a.e.

Let || f|l» = p(|f]")Y ). We will prove when r € (0,1), (L™ (), || - ||») is
a complete metric space with distance d,.(f,g) := ||f — g||r; when r > 1, it
is a Banach space. In particular, L?(u) is a Hilbert space with inner prod-
uct (f,g) := u(fg). To prove this assertion, we first recall some classical
inequalities, then extend them to integrals of functions, and finally com-
pare the convergence in L" with the convergences in a.e. and in measure.
Moreover, the space (L"(u), || - ||») is separable if o is generated by an at

most countable sub-class of o7, which we will not prove in this text book.

§ 3.4.1 Some classical inequalities

Proposition 3.33. If ¢ > 0,b > 0,0 < a < 1,a+ 3 = 1, then a®b® <
aa 4 bS8 and the equality holds if and only if a = b.

Proof. Since log is a concave function, we have

log(aa + bB) > aloga + Blogh = log(a®b?),
and it is easy to see that the equality holds if and only if a =b. O
Proposition 3.34 (Holder’s inequality). Let r > 1,2 +1 =1, Then

1
s

u(1F gl) < ()7 (ulgl)) - (3.4.1)
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The equality holds if and only if 3¢i, 2 € R with |c1] + |e2] > 0 such that

alfl" +eolgl =0, pae. (3.4.2)

Proof. The inequality is obvious when f = 0 or ¢ = 0 or the R.H.S. is
infinite, the inequality holds obviously. So, we may and do assume 0 <
w(1£17)s m(lgl®?) < oo. In this case, let

s S 1 1
o Tt 11

p(F)T gl r s

From Proposition 3.33 it follows

|f gl |fI" lg|°
£l llglls S ru(lf]") " sp(lgl®)’

where the equality hods if and only if (‘| fl‘ y = él |‘ 5y Combining this with

Theorem 3.8, we may take integrals with respect to p in both sides to derive

(3.4.1), and the equality holds if and only if él}l = M(|\gg‘| 5 holds p-a.e.,
which implies (3.4.2) for ¢; = H(hr) c2 = (|g‘ j- Finally, it is clear that

f
(3.4.2) implies the equality in (3.4.1). O

1
4

Corollary 3.35 (Jensen’s inequality). Vr > 1,E[¢] < (E[¢]")
equality hold if and only if [£]" is a.s. constant.

, and the

Proposition 3.36 (C,-inequality).
Vai, - ,an €R, Jar + -+ an" <0V (ag|" + -+ |an|).

When r > 1, the equality holds if and only if a1 = --- = a,; when r = 1, the
equality holds if and only if a; have same signs; when r < 1, the equality holds

if and only if at most one of {a;} is not zero.

Proof. (1) Case r > 1. Let Q = {1,---,n}, & = 29 equipped with
probability measure P(A) = 1|A|, where |A| is the number of points in A.

Consider the random variable £(i) := a;,1 < ¢ < n. Then

1< I
El¢l=—D lail, Bl =—3 lal"
1=1 i=1
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By Jensen’s inequality,
n r 1 n
" (Z “”‘) Sulel
i _

hence the inequality hold, and the equality holds if and only if || are

constant, i.e. |a;| = |a;|,Vi,j. But

>

=1

Z|az|

if and only if a; have same signs, so a; = a;, Vi, j.

(2) Case r < 1. We only prove a; are not all null. Note

okl _ lax|"

n ~N n T
5" lai] <z |air>
i=1 i=1

r<1.

Make summation in k& on both sides to derive the inequality. When r =1,

the equality holds if and only if az have same signs. And when r < 1, the
equality if and only if Vk, |ax|/ Z la;| = 1 or 0, i.e. only one of a; is not
null. g

Proposition 3.37 (C,-inequality). Let fi,---, f, be measurable functions.
Then

p(lfr+ - +fn < Tl Zﬂ‘fz )

and the equality hold if and only if
(1) whenr>1,Vi#j, fi = fj,ae,;
(2) when r < 1, at most one of p(|f;|) is not null;

(3) when r =1, f; a.e. have same sign.

Proposition 3.38 (Minkowski’s inequality). Letr > 1, f,g € L"(u). Then

(ulf +gI")* < (ulfI)F + (ulgl")7,

and the equality hold if and only if
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(1) when r > 1, there exist ¢1,c2 € R not all null and having same signs

such that c1 f — cog =0, a.e,;

(2) when r =1, f, g have same sign a.e.

Proof. Since the assertion for » = 1 is trivial, we only consider r > 1. By

Holder’s inequality we obtain

w1 + o) < p(FINS + 9™ + ullgllf + 9 ")
r=1 r=1
<Al edlf +917) = + llglle (ulf +917))
and the equality holds if and only if there exist ¢1, c2, c3,c4 € R with |c1] +
lca| > 0 and |es| + |ca| > 0, such that p-a.e |f|"c1 + |f + g ca = cslg]” +
calf+ 9" =0 and f, g have same sign. This implies the desired assertion.
O

§3.4.2 Topology property of L"(u)

Theorem 3.39. Let r € (0,00). Then L"(x) is a complete metric space
under the distance d,(f, g) := ||f — gl|». Moreover, it is a Banach space when
r > 1, and a Hilbert space when r = 2.

Proof. (a) Clearly, ||f], = 0 if and only if f = 0,u-a.e. Thus Vf €
L™ (w), || fll» = 0 if and only if f = 0. Obviously, L"(u) is obviously a
linear space and d, satisfies the triangle inequality by C,-inequality (for
r < 1) or Minkowski’s inequality (for r > 1). Moreover, when r > 1, || - ||,

is a norm.

(b) It remains to prove the completeness. Let {f,} be a Cauchy se-
quence in (L"(u),d,). Then Ve > 0, by Khinchin’s inequality we derive

that when n, m — oo,

(| fn = fm| =€) < &_%mfn — fml|") = 0.

Thus {f,} converges mutually in measure. By Theorem 2.45, there exists a

subsequence ny, 1 0o such that f,, ~% f(say). It follows that for Vm > 1,
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fn = frr =5 fu — f (ng, — o0). Then Fatou’s lemma (Theorem 3.10)

implies

mmf¢m=u<mlmrmmj<1m;mm—nw»

N —r 00 N —0Q0

Since {f,} is a Cauchy sequence in L"(u), by letting m — oo we obtain
Jim p((fu - 7)) =0, O

Proposition 3.40.

(1) Let u be a finite measure. If f, M f, then f, M f,r e (0,r).

@) I fo 2 £ then p(|fal”) = (| f]7)-

Proof. (1) and (2) follow from Hélder’s inequality and the triangle inequal-
ity of d,., respectively. O

§ 3.4.3 Links of different convergences

Definition 3.41. Let (€2, <7, 1) be a finite measure space, and let {f;,t € T'}

be a family of real measurable functions on §2.
(1) {fi,t € T} is called uniformly continuous in integral, if

lim sup 14)=0.
m(A)=0 teT #lfelta)

(2) {ft,t € T} is called uniformly integrable, if

lim sup pu(| fe| 11, )2n}) = O

n—oo teT

Theorem 3.42. Let p be a finite measure and {f,},>1 C L"(n). The
following statements are equivalent.
L"(n)
(1) fo—f.
(2) fu B fand {|f, — f1I"} =1 is uniformly continuous in integral.
(3) fn & f and {|fnl"},151 is uniformly continuous in integral.
(4)

4) fu 5 fand {|fn]"Yns1 is uniformly integrable.
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Proof. (a) First we prove (1) < (2).

(1) = (2) Since u(|fu — f1 > &) <e"p(lfa — fI), (1) implies fo = f.
To prove {|fn — f|"},>; is uniformly continuous in integral, for Ve > 0,
take n. > 1 such that u(|f, — f|") < € for Vn > n.. Then we have

n=>1

sup [ 1f = I ap <o+ Y ulLalfu— 11
n=1
As for given n, lim pu(1alfn — f]") =0, so
n(A)—0
lim supp(lalfn — f|") <e.
I swu(talf — 11

Since ¢ is arbitrary, {[fn, — f|"},>; is uniformly continuous in integral.

(2) = (1) Let A, ={|fn — f|l = €}. Then u(Ay,) — 0 and the uniform

continuity in integral implies
p(a,lfn = f1") < TSnu;iM(lAnUm = f1") =0 (n = o).
Hence
Tim pi((fo = 1) < Tm gl fo = I L p,—pimep) + €7 u(Q) = €"u(Q).

. . . L"
Since ¢ is arbitrary, we have f, ﬂ f.

(b) Again by Theorem 2.44, f, 2 f implies that there exists a subse-

quence {f,,} such that f, == f. Thus by Fatou’s lemma,
VA€ o, p(fla) < lim p(fn,1a) <supp(frla).
k—o0 n
Since
N1afnlly = Lalfo = Hllel < 12af]lr,

the uniform continuity in integral of {|f, — f["}, >, is equivalent to that of
{\fnlr}n%. That is (2) < (3).

(c) From the equivalence of (2) and (3), it follows that {u([fn])}, 5,
is bounded, so that the uniformly continuity of integrals of {|fn|"},; is

equivalent to the uniform integrability of {|fy|"},>,(cf. Exercise 25 in this
chapter). Hence (3) < (4). O
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Noting that
\u(fn) — () < pllfn = f1)

and f, <% f implies f, < f for finite 1, we have the following consequence
of Theorem 3.42.

Corollary 3.43 (Dominated convergence). Let (£2,.27, u) be a finite mea-

sure space, and let {f,, f : n > 1} be uniformly integrable measurable func-
tions. If f,, & f, then u(fn) — p(f).

5 Decompositions of Signed Measure

Basing on the decomposition f = f* — f~ for a function, we aim to formu-
late a signed measure ¢ as the differences of two measures ¢ and ¢~. This
is called Hahn’s decomposition, from which we will we introduce Lebesgue’s
decomposition which uniquely expresses a signed measure as the sum of an
indefinite integral part and a singular part. The uniqueness of Lebesgue’s
decomposition leads to the Radon-Nikodym derivative between measures,
which is crucial to develop analysis on the space of measures. By apply-
ing Lebesgue’s decomposition to L-S measure we decompose a distribution
function into the discrete part, the absolutely continuous part, and the sin-
gular part, which classifies random variables into three types: the discrete
type, the continuous type and the singular type, where the first two types
have been studied in the elementary probability theory.

§3.5.1 Hahn’s decomposition theorem

To decompose a signed measure as the difference of two measures, we con-
sider the indefinite integral p f for a measurable function f with p(f~) < oo,
for which the natural decomposition is p F= Mg = Mo To define ' and

¢~ for a general signed measure o, we reformulate p ¢+ and py- as follows:
i (A) = (AN D), pp(A) = p(ANDS), A€o, Di={f <0}

It is clear that puy(D) = infacy pif(A). This indicates that for a signed
measure ¢, if we could find a set D € & reaching inf 4¢ . ¢(A), we could
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define ¢ (A) and ¢~ (A) as p(AN D) and (A N D) respectively. So, we
first prove the existence of D.

Theorem 3.44. Let ¢ be a signed measure on (2, .%7). Then 3D € &/ such
that

p(D) = inf p(A).

Proof. Take {A,} such that ¢(A,) | inf p(A). Since inf p(A) <0, we
Aed Aed
may assume that p(A4,) are finite. Let A = |J A,,. For any k > 1, we have
n=1

A=A, + (A — Ak) =: Ak71 + Ak72.

Vn > 2, we can write

2
A= Z Al,il N AQ’Z'Q Nn...N An—l,in—l N An,in-
11,02,...,in=1
As n is increasing, the partitions become finer and finer. For each partition,
we take out the subsets with negative p-values. Intuitively, the union of
such subsets approaches the desired set D when n — oco. To confirm this

observation, for each n > 1 let

kn,

/

B, = E Al,il N Agﬂ‘z n---N An,in = E An,i'

1<i1 i, rin <2 i—1
(A1) NA2,35NNAR 3, ) <O

By the o-additivity of ¢, we have p(B,) < ¢(A4,). Let

o oo o0
D= UBk:YLanOloUBk.
n=1k=n k=n
As (n + 1)-th partition is finer than that of n-th, a subset A, ; of By11

is either included by B, or disjoint with B,,. Then for any m > n, we have

B,U--UByn=By+ > A+ > Ao

/ /
Al 41 NBr=0 A, 49 N(BrUBny1)=92
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Thus, by the o-additivity of ¢ and p(A4; ;) < 0, it follows p(B,U- - -UBy,) <

[e.e]

©(Bp) < ¢(Ay,). Letting m 1 oo, we obtain —oo < ¢ ( U Bk> < o(An),
k=n

by the lower continuity of signed measures (notice ¢(A4,,) is finite). Finally,

the upper continuity of signed measure implies that

e(D) = lim ¢ (U Bk> < lim p(A,) = inf @(A).

n—00 n—00 Aedl
k=n

g

Corollary 3.45. Let ¢ be a signed measure on a measurable space (£, .«7).
Then there exists D € 7 such that o(AND) = inf ¢(B)and p(AND°) =
BeAna

sup @(B) for any A € .
BeAnd

Proof. Let D € o such that (D) = inf p(A), (D) = sup p(A). Then
Aed Aed
VA€ of and B € AN/, we have

P(AND) +¢(D - A) = (D)
Sp(BU(D = A4)) = ¢(B) + ¢(D — A).
Since both ¢(D) < 0, o(AN D) and p(D — A) are finite, (AN D) < p(B).

Thus,

inf B)< o(AND) < inf B),
pauf  P(B)<e(AnD) < inf o(B)

ie. o (AND)= inf B).
Le. o( )= duf o(B)
On the other hand, VB € AN .7, we have

P(AN DY) + (AN D) = p(A) = p(B) + p(B° N A).

Since p(AN D) = 5 ig#ﬂcp(B) is finite, there holds
€ /

C > 3 —
PANBY) > nf o(B)=¢(AND),

so that

(AN D) =¢(B) +¢(B°NA) - p(AND) = ¢(B).
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Hence
sup p(B) < p(AND%) < sup ¢(B),
BeAna BeAna
ie. p(AND®) = sup ¢(B). O

BeAngd/
By Corollary 3.45, we have the following theorem.
Theorem 3.46 (Hahn’s decomposition theorem). Let ¢ be a o-additive
function on (£, .27), and let

pT(A)= sup @(B), ¢ (A) =~ inf ¢(B), Aeo.
ASBCA ASBCA

Then both ¢+ and ¢~ are measures on .27, and p = T — .

The formula ¢ = ¢ — ¢~ is called Hahn’s decomposition of ¢, where
ot and ¢~ are called the positive and negative parts of ¢, respectively.
Moreover, the measure |¢| := ¢ + ¢~ is called the total variation measure
of ¢. Notice that in general |p(A)| # |¢|(A) for A € .

By Corollary 3.45 and Theorem 3.46, if ¢ = py for some measurable
function f with p(f~) < oo, then ¢ = ps+ and ¢~ = py- as suggested in
the beginning of this part.

§3.5.2 Lebesgue’s decomposition theorem

Let (€2,.97, u) be a measure space. If ¢ = p s is the indefinite integral of a
measurable function f with p(f™) < oo, then |p|(IN) = 0 holds for any pu-
null set N. We will prove the converse result, i.e. a signed measure having
this property must be the indefinite integral of a measurable function with
respect to p. To this end, we introduce the following notions and establish
Lebesgue’s decomposition theorem.
Definition 3.47. Let (2,97, 1) be a measure space, and let ¢ be a signed
measure on o7 .
(1) ¢ is called absolutely continuous with respect to u, denoted by ¢ < p,
if (V) = 0 holds for all y-null set N € <7,
(2) We call ¢ and p (mutually) singular, if there exists N € &7 such that
u(N) = 0 and [|(N%) = 0.
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Theorem 3.48. Let (2,7, 1) be a o-finite measure space, and let ¢ be a
o-finite signed measure. Then ¢ < p if and only if there exists a measurable

function f such that p(f~) < oo and ¢ = piy.
The sufficient part is obvious, and the necessary part is implied by the
following Lebesgue’s decomposition theorem.

Theorem 3.49 (Lebesgue’s decomposition theorem). Let 1 and ¢ be as in
Theorem 3.48. Then ¢ is uniquely decomposed as ¢ = ¢, + @5, where @,
is the indefinite integral of a measurable function with respect to u, @5 is a
signed measure singular to p. The composition is unique.

Proof. (1) Uniqueness of decomposition.

Consider such two decompositions: ¢ = p.+ s = ¢l + .. Then there
are p-null sets Nq, Ny such that |ps|(NY) = |¢L|(NS) = 0. Let N = N;UNa.
We have u(N) =0 and |ps| (V) = |@L|(N¢) = 0. So, VA € &,

ps(ANN) = (pc + ) (ANN) = (¢, + ¢ )(ANN) = ¢ (ANN),

and ps(AN NS = @L(AN N = 0. Thus ¢s = ¢). Similarly, we have
0 (ANN) =¢L.(ANN) =0 and

P(ANN®) = (pc+ ps)(ANN®) = (g + PL)(ANNC) = g (AN N°),

so that ¢. = L. Then the decomposition is unique.
(2) Existence of decomposition.
(i) Assume that p and ¢ are finite measures. Let
¢ = {f:f>0,/ fduésﬂ(A),VAEM}, a = sup pu(f).
A fed

Clearly @ is not empty and « € [0, p(f2)]. Take {fn}n>1 C ® such that

an = p(fn) Ta < p() < oo

Set g, = sup fr. Then
k<n

0<gn T [f:=supf.
k>1
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For given n > 1, put

Ay ={w: gulw) = fil@)} (1 <k <n).

n

k—1
Then |J Ar = Q. Moreover, let By, = Ay — |J Ar. Then { By} are mutually
k=1 i=1

disjoint and |J Br = Q. Thus VA € &7,
k=1

n

/gnd,u:Z/ fedp < ) p(BrNA) =p(A).
A k=1 ANBy

k=1
Hence [, fdu < ¢(A). By this and definition of «, it follows that x(f) = cv.

Let
pe(A) = /A f i, pa(A) = p(A) - /A .

For any n > 1, let ¢, = s — £. From the proof of Hahn’s decomposition
theorem, it follows that there exists D,, € & such that

n(Du N A) <0, pu(D5NA) 20, VA€ o

oo
Let D = () D,. Then Vn,

n=1

D C Dy,ps(DNA)< —u(DNA).

1
n
Thus @s(DNA) =0 for any A € &
To prove u(D€) = 0, it suffices to show u(DS) = 0 for any n. In fact,
1 1 .
f+=1ps ) dp=pc(A) + —pu(ANDy)
A n n

= ¢(4) ~ pa(4) + (AN D)
= QD(A) - ‘pn(A N D;?L) - ‘PS(A N Dn)
< @(A) — (AN Dy) < @(A).

It follows that f + %ID% € ®. Thus,

1 1
oz [+ i) du= [ fdut uDp) = o
Q n Q n
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This together with p(f) = a implies 24(DS) = 0, hence p(DS) = 0.
(ii) Let p and ¢ be o-finite measures. There exists { Ay, },>1 mutually
o0
disjoint such that |J A, = Q and u(4,),p(4,) < oo (Vn). From (i) it

n=1
follows that there exists cpﬁn) and @2”) such that

P(A,Ne) =™ (A, Ne) + oM (A,Ne),

P (Ap o) = / Fdp.

ApNe
Let N, be a p-null set, such that (pgn) (NSNANA,) =0 for any A € .
Set

F= S 1a ™, o) = [ Fau pu(4) = 32 P (4,0 4)
n=1

n=1

o0
Again let N = |J N,,. Then VA € &/, we have

n=1
PN N AN Ap) < oM (NENANA,) =0.
It follows that

ps(N°NA) =D o, M(N“NANA,) =0.

Hence @5 and p are singular.

(iii) General case. From Hahn’s decomposition theorem, we have ¢ =
ot — ™. But by (ii) we have T and ¢~ have decompositions
et =0 ot T =T s
Then
= (" =)+ (o5 —0s).
Il

As a direct consequence of Lebesgue’s decomposition theorem, we have

the following result.
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Theorem 3.50 (Radon-Nikodym theorem). Let (2,7, ) be a o-finite
measure space, and let ¢ be a o-finite signed measure on 7. If ¢ is absolutely
continuous with respect to u, then there exists a p-a.e. unique measurable
function f such that ¢ = puy.

This result can be extended to not o-finite signed measures.

Theorem 3.51 (Generalization of Radon-Nikodym theorem). Let (€, .o, u)
be a o-finite measure space, and ¢ be a signed measure on o7 If @ is absolutely
continuous with respect to i, Then there exits a p-a.e. unique measurable

function f such that ¢ = puy.

Proof. By the o-finiteness of p and Hahn’s decomposition of ¢, we may

assume that p is a finite measure and ¢ is a measure. In this case, we apply

Theorem 3.50 with €2 replaced by the largest measurable set on which the

restriction of ¢ is o-finite, then the function f is defined as oo outside this

set.
Let
¢ ={A € o :yp is o-finite on A}.

Set s = sup u(B) and then take {B,},>1 C % such that u(B,) T s.
Be?
oo

Let B = |J By. Then B € € and s = pu(B). Since ¢ is o-finite on
1

BN, Theorem 3.50 implies that there exists f; such that ¢(A N B) =
Jang frdp, A€ o/ Let

) filw), we B,
flw) = { 00, w ¢ B.

Then for any A € &/ with u(AN B€) > 0, we have [, fdu = co. On the
other hand, if u(ANB€) > 0, then p(ANB°) = oco. If not, then ¢ is o-finite
on BUA and u(BUA) = u(B°NA)+ u(B) > s, which contradicts the fact

s = sup pu(B). Thus VA € o7,
Be#

/fdu—/ fdu+/ fdu=@(ANB)+o0-pu(ANB°) = p(A).
A ANB ANBe°

O
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The above theorem leads to the notion of Radon-Nikodym derivative.

Definition 3.52. Let (2,97, ) be a o-finite measure space and let ¢ be a
signed measure which is absolutely continuous with respect to p. Then there
exists a pi-a.e. unique measurable function f such that ¢ = us (equivalently,
de = fdu). The function f is called the Radon-Nikodym derivative of ¢ with
respect to u, and is denoted by ﬁ—i.

The following result follows is reformulated from Proposition 3.16.

Corollary 3.53. Let v and p be o-finite measures on .o/ such that v < p.
If fis a measurable function, then the integral of f with respect to v exists if
and only if the integral of fg—z with respect to u exists, and

/fdl/:/fdydu, Ae .
A 4" dp

§3.5.3 Decomposition theorem of distribution function

By applying Lebesgue’s decomposition theorem to the L-S measure induced
by a distribution function with respect to the Lebesgue measure dx, we

derive the following decomposition theorem for distribution function.

Theorem 3.54. Any distribution function F' on R™ can be decomposed as

the sum of three distribution functions:
F=F.+F;+ Fsa

where the L-S measure induced by F. is absolutely continuous with respect to
dx, the L-S measure induced by Fj; is supported on a finite or countable set,
and the L-S measure induced by Fj is singular with dz and having null measure
on singletons. This decomposition is unique in sense of induced L-S measures.
The functions F,, Fy and Fj are called the absolute part, the discrete part and
the singular part of F', respectively.

Proof. Let p be the L-S measure induced by F. By the Lebesgue’s decom-
position theorem, we have u = p. + pl,, where p. < dx, pl is singular with
dz. Let

A={z eR": p({z}) > 0}.
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Then A is at most countable. Define pg(B) = . pl{z} and let F,; be
rEBNA
distribution function of pg. Finally, let ps = u’ — pg. Then pg is singular

with dz, and pus({z}) = 0 for every x € R", which has distribution function
Fo=F—-F.—Fy.

Uniqueness of decomposition follows from that of Lebesgue decomposi-

tion and properties of Fs and Fy. O

6 Exercises

1. For a nonnegative measurable function f on a measure space (2, .27, i),
let

/ fdu = inf {/ gdu : g > f,gis a simple function} .
Q Q

Exemplify that f_Q fdp and [, fdp may not identical.
2. Prove Theorem 3.8.

3. Exemplify that when f is a complex measurable function whose inte-
gral exists and c is a complex, the integral of ¢f may not exist. What

happens when f is integrable?

4. Let f be a complex measurable function such that u(f) exists. Prove

| fo fdul < [o | f] dpe

5. Exemplify that we can not get rid of dominated condition g < f;, in
Theorem 3.10—(1).

6. Let {fum}, m>1 be a family of nonnegative numbers. Prove
o0

lim anm>§j Hm o
n=1

m—0o m—00
n=1
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7. Exemplify that for a sequence of random variables, the convergence

in L"(P) does not imply the a.s. convergence, and vice verse.

8. Let (92,97, u) be a measure space, and let ¢ be a finite signed measure
such that ¢ < p. Then p(A4,) — 0 for any {A,} C o with u(A,) —
0. Exemplify that this assertion does not hold when ¢ is o-finite.
(Hint: Let Q= (0,1),p = dz, o = py, f(2)1, 4, = (0, 1).)

)

9. If {£,} converges in distribution to £, then E|¢| < lim E|&,|.

n—oo

10. Prove Corollary 3.35.

11. Prove Proposition 3.37.

12. Let £ > 0 such that E£? < co. Prove P(¢ > 0) > (%Ef.

n
13. Let Aj,---, A, be events and A = J A;. Prove
i=1

1
(b) P(A) > 32 P(A;) — X P(4; N 4y).

i=1 i<y
(€) P(A) S SP(A) — SP(AiNA) + 3 P4 NA;NA).

i=1 1<j i<j<k

14. Apply Jensen’s inequality to prove (geometric mean is dominated

by algebraic mean): aj,---,a, > 0 and «y, - ,a, = 0 such that

n n
ai + -+ ap =1, we have [] af" < 3 oya;.
i=1 i=1

1=

15. Let £ > 0. Prove

1 1
limt/ —dP =0, limt/ —-dP = 0.
t—o0 [§>t] 5 t—0 [£>t] f
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16.

17.

18.

19.

20.

21.

22,

23.

Let £ and 70 be independent random variables with distribution func-
tions F' and G, respectively. Formulate the distribution function of
&+ nusing F and G.

Random variables £ and 7 are independent if and only if for any f, g,

Ef(€)g(n) =Ef(&Eg(n).

(a) Ifevents Ay, Ag, - - satisfy > P(A,) < oo, thenP( () U Ax) =
n=1 n=1k=n
0.

(b) If events Aj, Aa,--- are independent and ) P(A4,) = oo, then

n=1
PO U 4 =1.

n=1k=n

o0
Let p,, € [0,1). Apply the previous exercise to prove [[ (1 —p,) =0

n=1
o0
if and only if > p, = oco.

n=1

Let £ a random variable taking values of nonnegative integers. Prove
E¢ = > P(£ = n). What happens when ¢ takes values of integers?

n=1

Let € be a nonnegative random variable. Prove B¢ = [ P(¢ > z) d.

What happens for a general real random variable?

Prove &, 35 if and only if
E{—————— ] —0.
(1+!€n—§|

Let ¢ > 0 such that li_>m ¢(z)/r — oo and T be an index set. If
E¢(|&]) < C < oo for any t € T, then {&,t € T} is uniformly inte-
grable.
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24.

25.

26.

27.

28.

29.

30.

31.

32.
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Let {f,} be a sequence of real measurable functions on (2, o7, u). If

sup (| fn|") < oo for some r > 0, then Vs € (0,7), {|f»|*} is uniformly
n=1

continuous in integral.

Let (Q,47, ) be a finite measure space, and let {f; : ¢ € T'} be a
family of random variables such that {u(|f¢]) : t € T} is bounded.
Then {f;},cp is uniformly continuous in integral if and only if it is

uniformly integrable.

Let r € (0,00) and let (£2,.27, ;1) be a measure space. Prove that the

class of integrable simple functions is dense in L" ().

Let 1/p+1/q =1,p,q > 1. Prove ||f|l, = {u(fg) : llgllq < 1}

If a sequence of random variables {£,},,, is uniformly bounded, then
&, converges in probability if and only if it converges in L"(P), where
r € (0,00).

For a measurable function f, define the essential supremum by
[flloo = inf {M : p({w: [f(w)] > M}) =0},
(a) Prove that || - || satisfies the triangle inequality.

(b) If u(€2) < oo, then || fllo = lim || f]..

Assume E¢2 < co. Prove that E¢ attains the minimum of E(¢ — ¢)?
over ¢ € R.

If £ and 7 are independent random variables having finite expecta-
tions, and E|¢ 4 n|? < co. Prove E(|¢]? + |n]?) < oc.

Let & be a random variable with m := E¢ € R and 02 = D¢ € (0, 00).

(a) Prove
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(b) Prove
202

P(l§¢ =m| > 1) < o212

t>0.
33. Let f be a convex function on R, and let £ be a random variable with
finite expectation. Prove that Ef(&) exists and f(E¢) < Ef(§).

34. Let £ be a random variable with finite expectation. If there is a
strictly convex function ¢ on R such that E¢(¢) = ¢(EE), then ¢ is

an a.s. constant.

35. If independent random variables £ and n have distributions p and v
respectively, then for A € % and B € %2,

P((¢.n) € B) = /R P((z,1) € B)( dx) = /R P((£,y) € B)u(dy)

and

P(¢ € A, (€.n) € B) = /A P((z,7) € B)u(da).

36. (Uniform distribution on Cantor sets) Let C' be the Cantor set defined
in Chapter 2, Exercise 31. We call

0, z=<0,

1, z =1,
F( ) _ %’ 336 [%’%]’
T)=9y 1 12
4 S [979]7
8, zelf8),

\

the uniform distribution function on C. Prove

(a) F is continuous;

(b) F is singular with Lebesgue measure.

37. Let pup and po be finite signed measures. Set pg V pe = p1 + (ue —
p1) T, A pe = p1 — (1 — p2)™. Then pq V pg is the minimal signed
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38.

39.

3 Integral and Expectation

measure such that v > p;(i = 1,2); p1 A po is the maximal signed
1

>
measure such that v < u;(i = 1,2).

Let u be a o-finite measure on (£2,.27) such that o/ contains all sin-

gletons. Then the set

{r e Q:p({z}) >0}

is at most countable.

Let {<,} be an increasing sequence of o-algebras in ), and let & =
o (U «%) Assume that p is a finite measure and v is a probabil-
n

ity measure on (2,.47). Let up,v, be the restrictions of u,v on <,

respectively. If u, < vy, f =lim ?l‘lf“, prove
n n

M(A):/Afdu+u(Aﬁ{f:oo}), Aed.



Chapter 4
Product Measure Space

Why should we study multi-dimensional spaces and even infinite dimen-
sional spaces? Let’s consider a system of m many random particles in
the 3-dimensional real world, where the location of each particle is a 3-
dimensional random variable, and the joint distribution of these particles
is a probability measure on the 3n-dimensional Euclidean space. Another
example is to consider a particle randomly moving on the real line, at each
time its location is a one-dimensional random variable. If we want to de-
scribe the movement of the particle, we have to clarify its path when time
varies, which is an infinite-dimensional random variable (stochastic pro-
cess), whose distribution is a probability measure on an infinite product
space. Note that the finite product measure space has been introduced in
§1.1.5 and Corollary 3.14. We will extend the notion to the infinite product

case.

In this chapter, we first establish Fubini’s theorem, which reduces the
integral with respect to a product measure to the iterated integrals with
respect to the marginal measures, as we have already studied in Lebesgue’s
measure theory. We then extend this theorem to non-product measures
induced by a marginal measure and transition measures. In particular, the
construction of probability measures on infinite product measurable spaces,

is fundamental in the study of stochastic processes.

97
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1 Fubini’s Theorem

Let us recall how to reduce a multiple integral on R? to iterated integrals,
as we learnt in calculus or Lebesgue’s integral theory. Let A be mea-
surable subset of R? and f be an integrable function with respect to the

2-dimensional Lebesgue measure. To compute the integral

/ f(l'l, .%'2) dxl d.l’g,
A

we first determine x; and fix the range of x9, i.e.
Az, ={z2 €R: (21,22) € A}.

Then the multiple integral can be calculated as

/ dxl/ f(x1, o) dao.
R Ay

The aim of this section is to realize this procedure for integrals on a general

product measure space.

Let (21,9, pu1) and (g, 9%, u2) be o-finite measure spaces. By Corol-
lary 3.14, the product measure space (21 x Qo, @A X o, 1 X p2) is o-finite
as well. Given A € @7 X @7 and a measurable function f which is integrable

with respect to u; x uo, we will prove
[ = [ () [ feonwn(dn),  @1)
A Q1 Awq

where A, is the section of A at w;. This formula is called Fubini’s theorem.

For this, we first introduce the section of a set.

Definition 4.1. Let A C Q1 X Q5. Ywy € Qq,
Awl = {CUQ S Qg : (wl,WQ) S A} C QQ

is called the section of set A at w;. Similarly, we can define A, C €21,Vw; €
Q.

Clearly, sections of sets have the following properties.
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Property 4.2.
(1) AnB=@= A,,NB,, =2.
(2) A>DB= A, DB,,.

@ (yam) —yap
(4) <ﬂ Am)); — QASZ)'

n

(5) (A - B)M‘ = Aw, — Bu,;.

To prove (4.1.1), we need to clarify that the right hand side of this
formula makes sense by verifying that Vw; € Q, we have A,, € 94,
i) Au, f(w1,w2)uo(dws) is a o -measurable in w; and has integral with re-

spect to 1.

Theorem 4.3. Let A € &/ X o. Then for any w; € ;,7 = 1,2, we have
Ay, € 9/ and A, € .

Proof. Let
M ={A € ) X oy :Vw €, Ay, € do;Vwy € Qo, Ay, € A}

Clearly .# includes the semi-algebra {A; x Ay : A) € @A, Ay € @b}, By
Property 4.2, we see that .# is a o-algebra, so it includes @4 x o%. a

Recall that for a function f and a o-algebra 7, f € &/ means that f is

of -measurable.

Theorem 4.4. For any &7 X «/-measurable function f and any Vw; € Q;,1 =
1,2, we have f,(+) := f(w1,-) € 2% and f,,(-) = f(-,w2) € 4.

Proof. For any B € %, we have

Jo(B) ={w2 € Qa: fu, (wz) € B}

={ws € Dyt (wr,w2) € FTH(B)} = [f~ (B)],,
which is in % by Theorem 4.3. So, f,, is @%-measurable. Similarly, f,, is
of1-measurable. O

The functions f,,, and f,, are called the section functions f at w; and

wa, respectively.
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Theorem 4.5. Let f be a nonnegative measurable function on (21 Xy, @7 X
/). Then

fwr,wo)pn (dwr) € o, flwr,w2)pa(dws) € .
Ql QQ
Proof. By the construction of measurable functions and the properties of
integrals, we only need prove for f = 14 with A € @4 x %, and by the
monotone class theorem, it suffices to consider A = A; x Ay, A; € i =

1,2. In this case, we have

J(wi,wo)pr(dwr) = p1(A1)1a, € b,
1971

flwi,w2)po(dws) = pa(A2)1a, € &4. O
Qo

Theorem 4.6 (Fubini’s theorem). Let f be an @/ X af-measurable function

having integral with respect to p; X po. Then

/QlXQ2 fdug x pg = /Q1 ( o, f(wl,W2)u2(dw2)> pi1( dewr)
N /92 < o f(wl’w2)”1(dwl)) pr2( dws).

Proof. By symmetry, we only prove the first equation.

(1) The equation holds obviously for f = 14,x4, (A;i € “,i = 1,2).
From this, the monotone class theorem implies the equation holds for f =
14 (A€ o x oh).

(2) By the linear property of integral and step (1) in the proof, we
obtain the equation for a simple function f. Combining this with Theo-
rem 2.12-(4) and Theorem 3.5, we prove the equation for a nonnegative

measurable function f.

(3) For a general measurable function f such that (u; x u2)(f) exists,
assume for instance (u1 X p2)(f~) < oo. By step (2) we have

> /Q1><Qz f_ d('ul g M2) N /Q1 Ml(dwl) Qo f_(wla ) dps.
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Thus pi-a.e.wi, fQ2 (w1, ) dug < 0o, so that

; flwr, ) dpe = [ fH(wr,)dus — A (w1, ) dpa.

Q2

Combining this with the linear property of integral and step (2), we finish
the proof. O

By applying Theorem 4.6 to f14 in place of f, we derive (4.1.1). More-
over, by induction, Fubini’s theorem can be extended to multi-product
measure spaces.

Let (94, %, i), 1 < i < n be o-finite measure spaces and f be a mea-

surable function having integral on the product measure space (2, 7, 1) :=
(Q X X Q@) X - X Ay, i X -+ X ). Then

/fduz/ dun/ dum---/ Jdpi,,
Q Qil QiQ Qi'n

where (i1, ,i,) is any permutation of (1,---,n). This means that all
integrals in the right hand side exist, and the iterated integral equals to the
multiple integral in the left hand side.

2 Infinite Product Probability Space

Let {(Q, %,P;)er be a family of a probability spaces, where T is an

infinite index set. Let
Qr = HQt ={w:w = (w)ter,wt € Q,t € T}.
teT

We intend to define the produce o-algebra @7 = [[ mer % and the product
probability measure Pr = [,cp Pt

Following the line in the finite product setting, one may define o/ as

the o-algebra generated by the class of rectangles

{HAt:Atem,teT}.

teT
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However, this class is not a semi-algebra as required by the measure exten-

sion theorem, and for each rectangle [] A, its probability [] P¢(A:) is
teT teT
usually ill-defined. For this reason, we only allow the set {P;(A;) : t € T'}

to be finite, so a natural way is to restrict ourselves to the following class of
measurable cylindrical sets. This also explains why we only study infinite

product probability measures rather than infinite product measures.

Definition 4.7. A set like
BTN X H Qt
t%TN
is called a measurable cylindrical set, where Ty € T (i.e. finite subset), and
B™ € oy =[]
teTn
In this case, BTN is called the base of the cylindrical set (it is not unique!).
Let <77 be the total of measurable cylindrical sets, which is obviously an
algebra. Define infinite product o-algebra by
dp =] o =a(a7).
teT

Theorem 4.8. There exists a unique probability P on (7, o77) such that

P(A™ xQpe) = T Pe | (A™), (4.2.1)
teTN
where
Ty €T, QTI‘\}: H Qy, ATN S JZ{TN.
téTN

Proof. (1) Formula (4.2.1) defines a function on /7, so we need prove this
function of sets is independent of the choice of repressions of the cylindrical
set.

Let AT~ x QTKr = ATv x Q(TI/V)C with TN,TJ/V eT, ATN ¢ Ty, ATv €
ayy . Let T{ = Ty NTy. Then there exists A’~ € [] . such that

teTy
AT = AT% < [ @A™ =4 x ][]
teTn—TY teT)—T
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Hence

[Te )@ ={]]®|@=|I]&|@.
teTn teTy; teT),
(2) P is finitely additive.
Assume {A;}}_; C /T are mutually disjoint. For 1 < k < n, let T}, be

a finite subset of T and A™* € [] % such that Ay = ATk x Qre. Then
teTy,

ZAk =: Ay e 7.
k=1

Let Ty C T be a finite set and AT0 e [1 # such that Ay = ATo Qre.

teTo
Set .
Ty =T A¥ =A< ][
k=0 teTn =T
Then
Ak = AZN X Q(TN)c,n = k = 0.
Clearly

(g, et

teTn
n
are mutually disjoint, and AgN = Ap. For any finite 7" C T,
k=1
PT’ = H Pt
teT’

is a product measure on (77, %7), but PT" is a finitely additive function
on &/T\T' defined by (4.2.1) with T\ 7" as its total index set. Since

Pr, := ][ P:is a probability measure, it follows from the definition of P
teTn
n
and the finite additivity of measure that > P(Ay) = P(Ap).
k=1

(3) Since <77 is a set algebra and PP is finitely additive, to get the o-
additivity of P, we need only prove it is continuous at &. We use the

method of proof by contradiction.
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Let {An}, > C T be decreasing and Je > 0 such that P(4,,) > ¢ for
oo
every n > 1. Now we prove [ A, # &. Note that for any n > 1, there

n=1
exist a finite set 7, C T and A" € [] 4 such that 4, = AT» x ] Q.
teTy, t¢Tn

[o.¢]
Let Too = U Ty Then T is countable, denoted by Too = {t1,t9, - }.

n=1

oo
To prove (| A, # &, we need only prove 3(@wy,, -+, &, ) € [ Q,

n=1 teTon
[o¢]

such that () A;(@p, - @, ) # D, where Aj(@y,, - ,@y,, ) is sec-
j=1

tion of A; at (@, -+ ,@g,, -+ ).

Firstly we set ng) = {wy, € Qy, : IP’{tl}(Aj (wi;)) = 5} Since

=
Z 2
Pitit (A, =P Al
(Aj(wiy)) = Prery\ iy (457 (wry)
is o7, -measurable, By ) e <7, . Fubini’s theorem gives

i 15
€< P(Aj) = /Q P{tl} (Aj<wt1)) dPtl < ]P)tl <B§])) + 57

t1

. . o0
which implies that Py, (ng )> > 5. Since {By )} - is decreasing, we have
j:

[e.e] . oo .
Py, (ﬂ Bg“) > 5,80 iy, € N B%J), that is, PU3 (A;(@y,)) > § for every

j=1 j=1
j=1
In general, assume for some k£ > 1 we have (W, -+, w0, ) € Qyy X -+ - Qyy
such that
B (A @y, @0)) 2 o VI 2 1
Let
BE), = {wn, € Quppy s POt (A @y ooy ) 2 2,%} .

Then it follows from Fubini’s theorem and induction that

3 _ _
27 < P{tl’ ’tk}(Aj(wtla T ?wtk))

= /Q ]P){tl’m ’thtkﬂ}(Aj (a}tl7 e 7(’Dtk7wtk+1)) d]P)tk+1 (wtk+1)

tht1

() ¢
<P (Bk:]-i-l) T gEr



§3 Transition Measure and Iransition Probability 105

. o .
Thus P <BI(CJ+)1> > sigy for every j > 1. Hence Juy, ., € () B,(CJJRI, ie.
j=1

T, bkt ) N o c ]
Pt te k+1}(Aj(wt17... 7wtkth1@+1))>ﬁ’ Vi>1.

oo

By induction, it follows that 3 {&;, € Q4 },;-, such that () A;(@t,, -+ ,@,) #
j=1

@ for every n > 1.

Take and fix @ € [] @ and let w € ] €4 such that

t@Too teT
we, fort e Ty,
Wt = ~
Wy, fort & Tee.

Then for any j > 1, there exists N; such that T; C {tl,"- ,th}, but

Aj(@py, - ,@th) # &, s0 w € Aj for every j > 1. Hence w € [ 4;. O
J

Theorem 4.9. Let {F}}, . be a family of probability distributions. Then
there exists a family of independent random variables {¢;},., such that & has
distribution function F}; for each t € T.

Proof. Assume P, is probability measure induced by F; on (R, %). Let
(Qt"’(z{h]P)t) = (R, ’%7]P)t)7 Q= RT7 F = %T7 P= H]Pt
teT

Then (§;(w) := wy)ter are random variables on (2, o7, P), and
P& < z¢) = Py((—00, 2¢)) = Fi(zy).

Obviously they are independent. O

3 'Transition Measure and Transition Probability

As shown in Theorem 4.9 that the joint distribution of independent random
variables is a product measure. In this section we aim to construct non-
product measures on a product measurable space. To this end, we introduce
the notion of transition measure, in particular transition probability, which
describes the conditional distribution of a random variable given the value

of another random variable, see Chapter 5 for details.
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Definition 4.10. Let (€;,%)(i = 1,2) be two measurable spaces. A map
Ay x ey — [0, 00] is called a transition measure from (Qy,.97) to (Qq, <),
or simply a transition measure on € X @5, if it has the following two properties:
(1) A(wi,-) is a measure on (g, 9%) for any wy € Qy,
(2) A(-, A) is a measurable function of < for any A € .

If there exists a partition { B}, C @4 of Q3 such that A(w1, B,,) < oo (n >

1, wy € 1), then X is called o-finite. Furthermore, if sup A wi, By,) <
w1 €0

oo (Yn = 1), A is called uniformly o-finite. If A(w1,-) is a probability for any
wy € €1y, then X is called a transition probability.

To construct non-product measures on a product space by using transi-
tion measures, and to extend Fubini’s theorem for the integral with respect

to such a measure, we need the following theorem.

Theorem 4.11. Let A be a o-finite transition measure on 1 x 2%, and let

f be a nonnegative measurable function on @ x @%. Then
f('7w2))\('7 de)
Qo

is .271-measurable.

Proof. By Theorem 2.12 and Theorem 3.8, we need only to prove for f
being an indicator function. Moreover, by the monotone class theorem, it

suffices to consider f = 14« p for some A € @7, B € of. In this case,
f(‘,b.)g))\(', dw?) = )‘(7 B)]-Aa
Qo
which is obviously 7 -measurable. (I

Theorem 4.12. Let (Q;,.9%)(i = 1,2,--- ,n) be finite many measurable

spaces, and let

k k
Q(k):HQi’ d(k):H%,k:L...’n_
i=1 i=1
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If A1 is a o-finite measure on .« and \j is a o-finite transition measure on
QF=1) « o7, for each k =2,--- ,n, then

A)(B) :=/ / (@ ) Aa(@1, -+ oty dun) - Ay ()
Ql n

for any B € /(™ defines a measure on /(™). If {Ai}i=2,..n are uniformly

o-finite, then A\ is o-finite.

Proof. By Theorem 4.11, A(™ is a well-defined nonnegative function on
/™. By applying Corollary 3.12 for n many times, we see that that A(")

is o-additive. Hence, it is a measure on o7 (™).

Now, let {\;}i=2,..., be uniformly o-finite, we intend to prove that ()

is o-finite. By induction, we only prove for n = 2.

Since A; is o-finite and Ay is uniformly o-finite, we find measurable
partitions {4y}, cy for Q1 and {B,}, oy for Q, such that A\;(4,) < oo

and sup Az(wi,B,) < oo for all m,n > 1. Then {A; x B;}
W1 EAm
measurable partition of 0 x €y satisfying

AP (A; x B)) = /

ij>1 18 a

.Al(dWI)/B /\Q(wl, dLUQ) = /A /\Q(wl,Bj))\l(dwl)

A; i
< sup Ag(wi, Bj)Ai(4;) <oo. O
w1€A;

Theorem 4.13 (Generalized Fubini’s theorem). Let QM) o7 (M) and AW
be in theorem 4.12, and let f be a measurable function on (Q(™), 7). Then
the integral A(W(f) exists if and only if at least one of I(f*) and I(f~) is

finite, where

I(fi) ::/S; Q fi(wla"')wn))‘n(wb'” yWn—1, dwn)"’)\l(dW1),

and in this case we have

A(”)(f):/Q [ Fr ) A, e, don) Ao d).

Proof. When f = 1p,B € &/ the formula follows from Theorem 4.12.

Combining this with Theorem 2.12 and Theorem 3.8, we prove the formula
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for all any nonnegative measurable function f. In general, by the definition
of integral, by the formula for nonnegative functions we have A ( ) =
I(f*), so that A" (f) exists if and only if at least one of I(f*) and I(f~)

is finite, and in this case,

Jraxe = [rraxe - [raxe =i - 1)

:/Ql d/\l{/m.../ f+d)\n~--d)\2—/92~'/ f_d)\n...d)\z}
/Q1 / A = /Q1 /fd)\ 0

Finally, we construct probability measures on an infinite product mea-
surable space by using a marginal distribution P; and a sequence of tran-

sition probability measures {Py, },>1.

Theorem 4.14 (Tulcea’s theorem). Let (€2, 9, )nen be a sequence of mea-
surable spaces, and let (Q(”),ﬂi(”)) be defined in Theorem 4.12. Set

0= ﬁQ o = ﬁm.
=1 =1

Let P; be a probability measure on (21,94 ), and for each n > 2 let P,, be a
transition probability on Q"1 x 7,. Then there exists a unique probability
measure P on (£2,.o/) such that

P (B(") < 1 Qk> =P™, neN, B e g™,

k>n

where P (BM) = [ - [ 1pe) dPy--- dPy.

Proof. Let €(®) be class of all measurable cylindrical sets, which is an
algebra in 2. As explained in the proof of Theorem 4.8 that P is a well-
defined finitely additive nonnegative function on %(°°) with P(Q) = 1.
Moreover, by using Theorem 4.13 in place of Fubini’s theorem, the same
argument in the proof of Theorem 4.8 implies the continuity of P at &.
Hence P(*) is a probability on & () which is uniquely extended uniquely
to a probability on (£, «). O
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4 Exercises

1. Prove Property 4.2.

2. Let (2,97, 1) be a measure space and let f be a nonnegative measur-

able function. Prove

u(f)=/Ooou(f>r)d7":/ooou(f>r)dr-

3. Let (4, 9%, ;) (i = 1,2) be measure spaces, and let A, B € o) x .
If

2 {CUQ : (wl,WQ) € A} = U2 {wg : (wl,WQ) € B}
holds for pi-a.e. wy, prove (u1 X p2)(A) = (p1 X p2)(B).
4. Let (Q;,9%)(i = 1,2,3) be measurable spaces, A be a o-finite transi-

tion measure on 29 X o3, and f be a measurable function on (£; x
Q3,9 x 3. If the integral

g(wi,ws) 1= ; f (w1, ws) A (we, dws)

exists for all (wy,ws) € Q1 X Qg, prove g is & X h-measurable.

5. Let (Q, %%, u;)(i = 1,2) be o-finite measure spaces. Prove that for
any A € @) x o, the following statements are equivalent:

(a) p1 x p2(A) = 0.
(b) Ml(Awg) =0, po-a.e.

(¢) pa(Awy) =0, pi-a.e.

6. If an infinite matrix P = (p;;); jen satisfies

JEN
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then P is called a transition probability matrix. Let

i, A) = sz-j, ieN,ACN.
jeEA

Prove that \ is a transition probability on N x 2N,

7. Let u be the counting measure on N, i.e. p({i}) =1 for any ¢ € N.

Let

ia 1= ja

0, other1,j.
Prove

/N (/N f(wlvwz)u(dw2)> p(dwr) =0, but

[ ([ stermmtan) ) = .

Does this contradict Fubini’s theorem?

8. Construct a function f : [0, 1] x [0,1] — [0, 1] fulfilling the following

conditions:

(a) Vz € [0, 1], the functions f(z,-) and f(-, z) are Borel measurable
on [0,1],

(b) f is not Borel measurable on [0, 1] x [0, 1],

(c) Both fol (fol f(z,y) dy) dz and fol (fol f(z,y) dx) dy exist but

do not equal.
9. Let py, v, be o-finite measures on ({2, 9% ) respectively and v, <
pr (k=1,2). Prove that 17 X v9 < g X po and

o x v2) = D )22 (), prae
A 1d#2 2)s H1 X ft2-a.e.
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10. Let (4, 9 )ier be a family of measurable spaces, where <7, = o(%;)
fort € T. Foreacht € T, let

TI't:HQtEWF—)UJtEQt
teT

be the projection onto the ¢-th space. Prove

[[«=0 (U wf(%)) :

teT teT

11. Let %> be the product Borel o-algebra on R* := [[,.yR. Prove

that the following sets are %°°-measurable:
(a) {a: € R®:supx, < a},
n

o) {o e £ ol <oof.

n=1

(c) {x € R*®: lim x, exists and is ﬁnite},

n—oo

(d) {:z: € R*® : limx, < a}.
n
12. Let F be a probability distribution function on R. Prove

/(F(m+c)—F(w))dx:c
R

for any constant ¢ € R, and if F' is continuous then

1
/R P(a)dP(x) = .






Chapter 5

Conditional Expectation and
Conditional Probability

To describe the influence of a class of events (sub o-algebra) € to a random
variable &, we introduce the conditional expectation (or more generally,
conditional distribution) of £ given 4. When the sub o-algebra % is induced
by a family of random variables, the conditional expectation refers to the
influence of these random variables to £&. When £ runs over the indicator
functions for all measurable sets, the conditional expectation reduces to the

conditional probability.

To define the conditional expectation, we recall the simple case where
the condition is given by an event B. Throughout this chapter, (2, o7, P)
is a complete probability space. For any B € & with P(B) > 0, the
conditional probability given B is defined as
P(-N B)

PUIB) = g

Moreover, for any random variable £ having expectation, the conditional
expectation E({|B) of a random variable £ given B is defined as the integral
of £ with respect to conditional probability. Similarly, if P(B¢) > 0, we
define in the same way the conditional expectation E(-|B¢) under event B€.

Thus, the conditional expectation of £ given ¢ = {B, B¢, @, Q} is naturally

113
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defined as
E(&|?) = 15E(£|B) + 15-E({| B°), (5.0.1)

which is a %-measurable random variable. This is P|y-a.s. well-defined

even if B or B¢ is a P-null set.

The aim of this chapter is to define the conditional probability and con-
ditional expectation under an arbitrarily given sub o-algebra € of &7, and
make applications to the study of transition probabilities and probability

measures on product spaces.

1 Conditional Expectation Given o-Algebra

We first extend the definition in (5.0.1) to a o-algebra ¢ generated by
countable many atoms. A set B € ¢ is called an atom of ¥, if VB’ €
¢,B' C B, we have B' = Bor B' = @.

Definition 5.1. Let € = o({By : n > 1}) for {By},, C & being a parti-

tion of 2, and let £ be a random variable having expectation. Then
E(¢[¢) = ) E(|Bn)ls,
n=1

is called the conditional expectation of & with respect to P given o-algebra ¢,
where E(¢|By,)1p, =0 if P(B,) = 0.

To further extend the definition to general sub o-algebra %, we present
the following result which characterizes the conditional expectation without

using the expression of %.
Proposition 5.2. Let ¥=0({B, : n > 1}) for a partition {B,}, ., C & of
Q). Then for any random variable £ having expectation, E(£|%’) is ©-measurable

and satisfies

E(15¢) = E[1E(¢|€)], VB € €.

On the other hand, if 7 is a €-measurable function such that E({1p) =
E(nlp),VB € €, then n = E(¢|¥), P

¥-a.s.
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According to Proposition 5.2, we define the conditional expectation

given a general o-algebra % as follows.

Definition 5.3. Let ¥ C &7 be a sub o-algebra of <7, and let £ be a random
variable having expectation. The conditional expectation E(£|%) of £ given €
(with respect to P) is defined as the ©-measurable function satisfying

/BE(§|<5) dP = /de]P’, VBe¥.

To see that Definition 5.3 makes sense, we need to show the existence
and uniqueness of E(£|%’), when & has expectation. Without loss of gener-

ality, we may assume E£~ < oo, so that
% > B+— ¢(B) ::/ngP’
B

is a signed measure with ¢ < P|s. By Theorem 3.51, there exists P|4-a.s.
unique f € € such that dp = fdP

oB) = [ yap= [ eap

¢, 1.e.

holds for B € €.
Definition 5.4. Let 4 C o/ be a g-algebra. For any A € &7,

P(A[€) = E(14[%)
is called the conditional probability of A given € (with respect to P).

Since the conditional expectation is defined via integral, it inherits most
properties of integrals, but in the sense of P|4-a.s. We collect some of them
in the following result, where the convergence theorems can be proved by us-
ing the monotone convergence theorem (Exercise 3), as shown in the proofs
of the corresponding results for integrals. In the same spirit, some inequal-
ities for integrals and expectations (such as Jensen’s inequality, Holder’s
inequality, Minkowski’s inequality) also hold for conditional expectations,

which are left as exercises as well.

Property 5.5. Assume that the following involved random variables have

expectations.



116 5 Conditional Expectation and Conditional Probability

1
2

(1)  E(E(|?)) = E¢.
(2)
3)
(4)
(5)

If € € €, then E(£|7) = €.
(Monotonicity) £ <n=E(|¥€) <En|?).
(Linear property) E(a& + bn|€) = aE(£|F) + bE(n|€),a,b € R.
(

Fatou-Lebesgue convergence theorem) Let n and ¢ be integrable. If

4
)

N < &, P-a.e. for any n > 1, then E | lim §n|<5> < lim E(£,|9).

n—o0 n—oo
If n > &,,P-a.e. for any n > 1, then lim E(¢,|%) < E ( lim §n|%>
n—o0 n—o0
(6) (Dominated convergence theorem) Let n be integrable. If n <&, 1
g or || < nforany n > 1 and &, — & as., then E(§,|%) —
E(£]F), a.s.

Property 5.6. Let £,n be random variables such that n € ¥ and Eén, E£
exist. Then

E(§n|€) = nE(E[E).

Proof. Since both E(&n|%) and nE(£|€) is €-measurable, by the definition

of conditional expectation we need only to show

/fnsz / nE(€|F)dP, C € F.
C C

By Theorem 2.12 and Property 5.5-(4),(6), it sufficies to prove for & =
1a,m=1p,A € &/, B € €, then the proof is finished since in this case we

have

/nE(ﬂ%)dP:/ gdP:P(AmBmC):/gndP 0
C CNnB C

Property 5.7. Let r € [1,00). If &, L@P% &, then
L"(P)
E(&n|?) — E(]7).

Proof. By Jensen’s inequality and the property of conditional expectation,

it follows
E[E(¢n|%) — E(§|9)]" = E|E(&n — €16)|" < E(E(|&n — £]71%))
=El& —&"—0(n—>o00). O
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The following result shows that the conditional expectation of £ under
% can regarded as the average of £ on each atom of 4. This property is

called smoothness of conditional expectation.

Property 5.8. E({|%) takes constant value on each atom of . If P(B) > 0
and B is an atom, then

1
E(|?)(w :/ﬁdP, w € B.
Proof. Let B be an atom of €. If Jw;,ws € B such that

E(€|E)(w1) # E(E]€)(w2),

then
% 3 {we B:E(¢?)(w) =E(¢[?)(w1)} & B
is non-empty. This contradicts the fact that B is an atom.

Let B be an atom with P(B) > 0. Since E(£|%) takes constant value

on B, we have
E(|6)|5P(B) = | E|€)dP = dP.
€%)1sP(B) = [ Bele)ap= | ¢
Hence E(£|€)|5 = ﬁfBgdP O

The following result shows that the general definition of conditional

expectation is consistent with that for 4 induced by countable many atoms.

Property 5.9. Let {B,},.; C & bea partitionof Qand ¢’ = o({B,, : n > 1}).
Then

E(¢|€) =) E({|Bn)ls,.
n=1

In particular, E(§{|€) = E¢ for € = {¢,Q2}.
Property 5.10. If ¢ and o(§) are independent, then E({|%) = E¢; if € C
%', then

E(£|%) = E(E(¢]€")[%).
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Proof. VB € ¥, 1 and £ are independent, so
/ E(¢]€) dP = / ¢dP = E15¢ = (E1p)E€ = P(B)ES = / Eé dP.
B B B

Since B € ¥ is arbitrary, it follows E({|€) = E£.
Let € C ¢'. Then VB € ¢

/ E(¢[¢") dP = E[1 5E(]%")] = E(E(E15/%")) = E€1p = / £ dP.
B B
Hence E(¢|%) = E(E(£|€")|%). O

Finally, we prove that E(£|%) is the L? optimal approximation of &

among % -measurable functions.

Property 5.11 (Optimal mean square approximation). Let ¢ € L?(P), ¢ C
o/ be a sub-c-algebra. Then E(¢|%¢) € L?(Py), and E(£|¥) is the optimal
approximation of ¢ in L?(PPy): Vn € L?(Py),

El¢ —E(E) <EE—nl*, E(I€ - E(E?)]*|€) <E(€ - nl*9),
and the equalities hold if and only if n = E({|€), P-a.s.
Proof. We only prove the latter. By Jensen’s inequality,
E(E]6)|* <E(EP[9),
so E(&|€) € L3(Py). Vn € L?(Py), we have

E(I¢ —nl*|%) = E(I — E(]€)*1€) + E(ln — E(|9)[*|€)
— 2E((n — E(£]%))(§ — E(£]€))[F).
Since n — E({|€) € €, we have

E((n — E(£[#))(€ - E(E|9))|E) = (n — E(¢])E((§ — E(£]9))[€) = 0.

Hence

E(|¢ - nl*|€) = E(|€ — E(]4)*|€),
and the equality holds if and only if n = E({|%), P-a.s. O
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2 Conditional Expectation Given Function

In this section, we study conditional expectations given the o-algebra

induced by a measurable map f : (,o/) — (E,&), where (E,&) is a
measurable space. In this case, we simply denote E(:|o(f)) by E(:|f). In
particular, when f is a random variable, i.e. (E,&) = (R", #") for some
n > 1, the conditional expectations reflect the influence of f to random

variables under study.

Theorem 5.12. Let £ be a random variable having expectation, and let f :
(Q, ) — (E,&) be measurable. Then

E@lf) :==EElo(f) =go f,

where g : E — R is a measurable function such that

/gd(Pofl):/ £dP, Beé&.
B 1B

Proof. Since E(¢|o(f)) is o(f)-measurable, by Theorem 2.22 there exists
a measurable function g : (E,&) — (R, %) such that E({|o(f)) = go f.
Combining this with the integral transform formula (Theorem 3.27) and

the definition of conditional expectation, we derive the desired formula.
O

By taking £ = 14(A € &) in Theorem 5.12, we obtain the following

result.

Corollary 5.13. For any A € &/ we have P(Alo(f)) = go f, where g :
(E,8) — (R, A) is measurable satisfying

/gd(IPof_l) =P(ANf~Y(B)), VB€&.
B

As explained in the beginning of this chapter that the conditional ex-

pectation given an event B can be formulated as the integral with respect
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to the conditional probability P(-|B). As we have already defined the con-
ditional expectation E(:|%¢) and the conditional probability P(-|¢), we wish
to establish the same link of them, i.e. to formulate E({|%) as the integral
of £ with respect to P(-|¢"). However, for each event A, P(A|%) is only P-
a.s. defined. So, to establish the desired formula, we need to fix a P-version
(i.e. a point-wisely defined function) in the class of of P(A|%’), denoted by
P? (-, A). If P happens to be a transition probability on (€2,%) x (Q, &),
then we will be able to verify the formula E(¢|%€) = [, £ dP?. Such a tran-
sition probability is called the regular conditional probability given % .

3 Regular Conditional Probability

§5.3.1 Definition and properties

Definition 5.14 (Regular conditional probability). Let € C o/ be a sub
o-algebra of .&7. A transition probability P% on (Q,%) x (Q, /) is called the
regular conditional probability given € (with respect to P), if

PO (-, A) =E(14]%) = P(A|€), VAe o.

Obviously, the regular conditional expectation is P-a.s. unique. If it
exists, we may formulate the conditional expectation given € by the integral

with respect to P?.

Theorem 5.15. Let P? be the regular conditional probability given €. Then

for any random variable £ having expectation,
B(El€) = [ e, ).

Proof. By definition, formula holds for £ being an indicator function. Then
the proof is finished by Theorem 2.12, Theorem 3.5 and the linearity of
integrals. O

By the link of the regular conditional probability and the conditional

expectation, properties of conditional expectation can be formulated by
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using the regular conditional probability. Below we only reformulate one

property as example.

Theorem 5.16. Let ¥ C ¢’ C &/ be a sub o-algebras, and let P? and
P?" be the associated regular conditional probabilities. Then for any random
variable £ € € and &’ € €’ such that E£E and E€ exist, there holds

Jeowpe,an = [ew)| [ er e, w)| e an.

By the integral transformation theorem, the expectation of a random
variable £ can be formulated as the integral of identity function with re-
spect to the distribution of &, which only depends the restricted probability
measure on the o-algebra induced by £. Correspondingly, in the following
we introduce the regular conditional distribution and mixed conditional

distribution of £ given %.

§5.3.2 Conditional distribution

Definition 5.17. Let (& = {& : t € T'} be a family of random variables on
(Q,/,P), and let € C .7 be a sub o-algebra of <.

(1) A transition probability on (2, %) x (Q2,0(&r)) is called the regular con-
ditional distribution of &7 under %, if

BY(, A) = B(A[%), A€ o(er).

2) A transition probability P on (Q,%) x (RT, ") is called a mixed
&r
conditional distribution of {7 under €, if

P{ (-, B) =P (B)|6), Be A"

Theorem 5.18. Let g : RT — R be Borel measurable such that Eg(¢7)
exists. Let P? and IF’%’”T be, respectively, the regular conditional distribution
and mixed conditional distribution of & given & exist, then

E(g(¢r)|%) = /Q 9(Er(@))P? (-, dw) = /R g(er)PE, (-, dar),

T
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Proof. As explained many times that the desired formulae follow from those
with g=15,Bc %7. 0O

Theorem 5.19. If the conditional distribution of &7 given € exists, then its
mixed conditional distribution exists too. When £7(Q) € %7, the converse

assertion also holds.

Proof. Let P? be the conditional distribution of &7 given €. Then
IP)(bﬂT(va) = P%(w7§;1(3))7 B e %T

gives the mixed conditional distribution. Conversely, if IP’(gf exits and
&r(Q) € A7, then for any A € o(ér) there exists B € %7 such that
A = ¢1(B), so that &r(A) = BN &p(Q) € BT, Hence we can define the
regular conditional distribution as P% (-, A) = IP’?;(-, ér(A)). O

§5.3.3 Existence of regular conditional probability

We first prove the existence of mixed conditional distribution.

Theorem 5.20. Let £ = (£1,&2,- -+ ,&,) be an n-dimensional random vari-
able on (Q,7,P) and € be a sub o-algebra of «7. Then IP’Z”” exists, hence
when £(Q2) € A", the conditional distribution of £ under € exists.

Proof. To construct Pf(w, -), we need only to determine the corresponding
probability distribution function. By the left continuity, it suffices to fix
the distribution function on a countable dense subset of R", say, on the
rational number space Q™. For any r € (QU {o0})", we fix a ¥-measurable
function F'(-;7) in the class P(§ < r|%). Obviously, F' has the following

properties: there exists a P-null set IV such that

(1) Va,b€Q"a<b,
Ap o F(w;-) =P(€ € [a,b)|F)(w) 20, F(w;b) > F(w;a), w ¢ N;

(2) lim F(wym,---,m)=1, w¢ N;

N>m—oo
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(3) For any 1 < ¢ < n, let r) e Q" such that the i-th component is

—m and others are co. Then

lim F(w;ry,) =0, wé¢&N;

N>m—o0
(4) Vro€Q",
lim F(w;rg— i) = F(w;rg), w ¢ N.
N>m—o0 m
Let

F(g( ) F(w;r), weN¢%
w;r) =
10,5)(r), we€ N,r Q™

Moreover, for each x € R", let

F%(w;z) =lim F%(w;r),
rix

which is well defined by the increasing property. Then Vw € Q, F%(w;)
is a probability distribution function, so it induces a unique probability
measure }P’f(w;-) on (R",%") such that ]P’(f(w;(—oo,a:)) = F%(w;z) for
we Qand z € R™.

Finally,
I ={(—co,r): 7 €Q"}, A = {B € B":PL(,B)=P(¢ € B|<g)},

Then IT is a w-system, A D II, and A is a A-system. By the monotone
class theorem, we obtain A = %", so that IP’? is the mixed conditional
distribution of £ given %. O

As a consequence of Theorem 5.20, we confirm the existence of regular
probability measure for (0, 7, P) = (R", ™, P).

Theorem 5.21. Let (2, o7,P) = (R", A", P). Then for any sub c-algebra
€ of "™, there exists the regular conditional probability P?.

Proof. Let {(x) = x for x € R"™. Then o(§) = %" and IP’? is just the regular
conditional probability of P given %. U
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As an application of the regular conditional probability, any probability
measure on R™ can be induced by a marginal distribution together with

some transition probabilities as in Theorem 4.12.

Theorem 5.22. Let P be a probability on (R™, %™). Then there exist prob-
ability P; on % and transition probabilities Py (1, 29, - - - , day) on RF1 x &
for k =2,--- ,n, such that

IP’(B):/R"-/RlB(m,--' ) P2y, yxp—, day) - - - Pi(day), B € R™.

Proof. By induction, we only prove for n = 2. In this case, let ¥ = {AxR:
A € %}, and for any By, By € % and B € %2,

P (B;) = P(B; x R), Py(x1,Bs) =P?((21,0),R x By),
P(B) = /R dIP’l(m)/RlBIP)g(a:l, dxzo).

Noting that Py(zy, By) = P? ((x1, 22), Rx By) for any x5 € Rsince {(x1, 29) :
x1 € R} is an atom of 4" on which the conditional probability is constant,
we obtain

P(By x By) :/

]-Bl(xl)Pl(dxl)/ 132($2)P2($1, dxg)
R

R
_ / Lyn (o1, 22)Pa(er, Bo)B(dr, dr)
R

= E[E(lleB2’%)] = ElleB2 = P(Bl X BQ)

This finishes the proof by the uniqueness in the measure extension theorem.
O

4 Kolmogorov’s Consistent Theorem

In this section, we construct probability measures on an infinite product
space by using a family of consistent probability measures on finite product
spaces. For this, we introduce the concept of consistency. Let T be an
infinite index set, and let (€, .27 ) be a measurable space for every t € T.

Recall that VT' ¢ T, QT := [[ Q, &7 := ] @. If S is a finite subset
teT! teT
of T', we write S € T.
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Definition 5.23. The family of probability measures {IP’S S e T} is called

consistent, if each P is a probability measure on S, and
PS(AS5) = P¥ (AS X QS/‘S> , ASeaS ScS el

Theorem 5.24 (Kolmogorov’s consistent theorem). Let (2, %) = (R, A)
fort €T, and let {IP’S 'S e T} be a family of consistent probability measures.
Then there exists a unique probability measure P on (RT, 7) such that

P(B® x RT=%) =P5(B®), SeT, B°c %"

Proof. (1) By the consistency, it is easy to see that P is a well defined
finite-additive measure on the class €7 of measurable cylindrical sets, and
P(RT) = 1. So, by the measure extension theorem, it suffices to verify the
o-additivity of P.

(2) When T is countable, we may let 7= N. By Theorem 5.22, there
exist probability P; on R and transition probabilities P, on R”~! x % for
each n > 2 such that P{L2 1} = P, -P,_1---P1,¥n > 2. Then the desired

assertion follows from Tulcea’s theorem.

(3) In general, we need only to prove that P is continuous at &. Let
{An},s C €T with A, | @. For any n > 1, there exists 7, € T such

o)
that A, = AT» x RT\Tn and AT» € #™. Set Too = |J T, Then T, is
n=1

countable. By step (2), P is o-additive on the algebra €7> x RT\T> so
that Theorem 1.34 implies that P(4,) } 0 (n — o0). O

Remark 5.25. The proof of Theorem 5.24 mainly uses Theorem 5.22 and
Tulcea's theorem, where the latter works for general (€2, o7 ). Note that The-
orem 5.22 can be extended to a Polish space in place of R", see Exercise 20 in
this chapter. So, Theorem 5.24 can be extended to the case that each (£, <%)

is a Polish space.

5 Exercises

1. Prove Proposition 5.2.
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. For a sequence of random variables 0 < &, T &, prove E(§,|%) 1

E(|7).

. Prove Property 5.5.

. Prove Holder’s inequality

E(&n|%) < E(I€P%)/PE(1n|*|€)"/",

for constants p,q > 1 such that 1% + % =1

. Formulate and prove Jensen’s and Minkowski’s inequalities for con-

ditional expectations.

. Prove Corollary 5.9.

Construct a probability space (2, .27, P), sub o-algebras % and %5 of

&/, and an integrable random variable £ such that

E(¢|61 N 62) # E(E(£]%1)|%2).

. Deonte total rational numbers by x1,x9,--- and let

F(z) =Y 2", o)), z €R.
n=1

Prove that F' is a probability distribution function on R.

. (Martingale) Let {7, },>1 be a sequence of increasing sub o-algebras

of o/. If a sequence of random variables {, },>1 satisfies

E(§n+l|£{n) = gnan 2 ]-7

then it is called a martingale sequence. For an integrable random

variable &, prove that &, = E(£|.<%,) is a martingale sequence.
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10.

11.

12.

13.

14.

(Markov chain) Let {£,}n>1 be a sequence of random variables. Set
Ay = 0({&m : m < n}).

If
E(é.n-‘rl"jz{n) == ]E(gn—i-l’{n); n > 17
then {{,}n>1 is called a Markov chain. Let {X,}, ., be a sequence
of independent random variables. Prove that {§, = > X,,} is a
m=1

Markov chain.
Let {&,}n>1 be a sequence of random variables, and let
Ay =0{&mn:m<n}), Fd"=0c{&n m=n}),n>1.

Prove that {&, }n>1 is a Markov chain if and only if one of the following

conditions holds.

(a) E(§mln) = E(&mlén),m =2n > 1.
(b) E(n|#p) = E(0lén),n € & n > 1.
(c) Vn € o, ¢ € &/™ such that n,(,n¢ are integrable, there holds

o0

Let matrix P = (p;;)75-o satisfy p;; > 0, > p;; = 1. Construct
P ]:0

a probability space (£2,.27,P) and a sequence of random variables

{1} >0 such that

Let ¢ ans 1 be random variables such that E(£]€) = n and E£? =
En? < co. Prove that £ =7, a.s.

Let ¢ € L'(P). Prove that the family of random variables
{E(&|€) : € 1is sub o-algebra of </}

is uniformly integrable.
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15.

16.

17.

18.

19.

20.
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Let £ and n be independent identically distributed such that E¢ exists.

Prove )
B(E]€ +1) = 5(6+ 7).

Let (2, o7, P) be a probability space, let (E, &) be a measurable space,
and let T': 2 — E be a measurable map. Prove that for any sub o-
algebra & of &, there holds

P(T'B)T Y%)) = (PoT ') (B|¢)oT, Be&.

For an event P(A) > 0, denote P4 = P(-|A). Prove that for any
B € o/ and sub o-algebra € of o7,

P(AN B|%)

PABI) = piarg)

(a) Let €1 C % be sub o-algebras of o7, and let £ be a random
variable with E&? < co. Prove
E((¢ — E(¢]%1))%) = E((¢ — E(¢]62))%).
(b) Let Var(¢|¢) = E((¢ — E(£]9))?|€). Prove
Var(§) = E(Var(£]€)) + Var(E(£]7)).

Let i, = 1,2, 3 be sub o-algebrasof o7, and let €;; = 0(%6;U%}),1 <
i,j < 3. Prove that the following statements are equivalent each

other:

(a) P(A3|C€12) = P(Ag’cgz), VAj € ng,
(b) P(A; N A3|62) = P(A1]|%2)P(A3|63), VA, € 61, A3 € 65,
(C) P(Allcggg) = ]P’(Allcgg), VAl S cgl'

Let P be a probability on a Polish (i.e. complete separable metric)
space E. Then for any sub o-algebra € of the Borel o-algebra #(E),
the regular conditional probability P? exists.



Chapter 6

Characteristic Function and

Weak Convergence

We have learnt the characteristic function of a random variable, which is
determined by the distribution function according to the L-S representa-
tion of expectation, and has better analysis properties than the distribution
function. In this chapter, we study characteristic functions for general finite
measures on R"”, and establish an inverse formula to show that the char-
acteristic function of a random variable also determines the distribution
function. Therefore, we can use the convergence of characteristic functions
to define the convergence of finite measures or random variables, which is
called the weak convergence, and the associated topology on the space of
finite measures is called weak topology. More generally, we will introduce
several different type convergences for finite measures on a metric space,
and present some equivalent statements for the weak convergence. In par-
ticular, the weak convergence for the distributions of random variables is

equivalent to the convergence in distribution.

129
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1 Characteristic Function of Finite Measure

§6.1.1 Definition and properties

Definition 6.1. Let p be a finite measure on (R™, %™). The characteristic

function (or Fourier-Stieltjes transform) of p is defined as
fu(t) :/ Ty (dr), teR™

Obviously, characteristic function has the following properties.

Property 6.2. Let a be the conjugate number of a € C.
(1) Let u be a finite measure on R™. Then for any ¢ € R™, we have
‘fu(t)‘ < fu(o) = p(R™), fu(t) = fu(_t)
and the increment inequality
() = Fu(t+ PP < 2£,(0)[£(0) — Refu(R)], heR™
Consequently, f,, is uniformly continuous.
(2) Let py be a finite measure on R™t (k= 1,2,---,n), and let p :=

[T5_y i Then

fu(t) = klﬁllf“k (t(mk)> , t= (t(m1)7 .. 7t(mn)> c RmMttmn

Proof. We only prove the the increment inequality, since other assertions
are obvious. Since f,,(0) = u(R™), by the Schwarz inequality, we have

2

ei (t,z) ei (t+h,x) 'u( dZL‘)

£u(0) = Fult + WP < £,00) [
< ful0) / i
=2£,(0) | (1= cos(h,z))u(da)
= 2£,(0)(f(0) ~ Refu(h).

. 2
et (o) _ 1‘ w(dx)
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Finally, we characterize the derivatives of f,.

Proposition 6.3. Let p be a finite measure on (R, %) and let n > 1. If
Jg |z|"pu(dz) < oo, then f,, has derivatives up to n-th order, and V0 < k < n,

B @) = /ZC u(dr), teR.
R

In particular,

/x p(da) = 7% ) (0).
R

§6.1.2 Inverse formula

In this part, we aim to determine a finite measure by using its characteristic
function via the following inverse formula. An interval [a, b] in R™ is called

p-continuous for a finite measure g on R™, if (9a,b]) =0

Theorem 6.4 (Inverse formula). Let p be a finite measure on (R™, B").

Then for any p-continuous interval [a,b] in R™, we have

n

1 efltkak —e ity by
b)) = lim —— T F(tyy ity dbye - - diy
//J([av )) TH;I;O (271')" /[ 7] H ltk f( 1, ) ) 1

Proof. Let I(T) denote the integral in the right hand side over [T, T]".
By the definition of f,, and Fubini’s theorem, we obtain

e~ ltkar _ o—itpby | i tyx
I(T):/ d:z:/ / = R TR 1
R™ it

T

7ltk(lk _ ltkb
/ H/ el dty | p(dx)
Rn
sin tk T — ak) —sin tk(ﬂjk — bk)
_on / / dtg | p( da
R" (,}_[1 0 Uk (d)

" rT(zp—ar)
/ Sl—nt dt | p(dx).
T (w1 —bx)

:2”/ (H
Since fSTSiTntdt is bounded of in s < r € R, and ffooo¥dt = m, the

k=1
dominated convergence theorem implies

lim I(T) = (27)"u((a,5)) = (27)"a([a, ).

T—o00
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g

To prove that g is uniquely determined by f,, via Theorem 6.4, we
need to show that p has plentiful enough continuous intervals, or only rare

intervals are not u-continuous. To this end, we present the following result.

Lemma 6.5. Let u be a finite measure on R™ . Then the set
D(p) :=={aeR:3k e {1, ---,n} such that u({z : zx, = a}) > 0}
is at most countable.

Proof. Let

1
Dm,k(,u):{aeR:,u({x:a:k:a})Z}, m>1,1<k<n.
m

Then D(p) = J Dmi(p). As p is finite, each Dy, (1) is a finite set, so
k,m

that D(u) is at most countable. O

Lemma 6.6. If an interval [a,b] in R™ is such that all components of a and
b are in the set C(u) := R\D(u), then it is p-continuous.

Proof. Let a = (ag)1<k<n and b = (bx)1<k<n such that
{ag, by, : 1 <k <n} C C(u).
Then
n
Jla,b] C U{xk = ay or by}
k=1
is a p-null set. ([

Proposition 6.7. Let 1 and po be finite measures on R™. If p1 and uso are
equal on their common continuous intervals, then 3 = po. Consequently, a

finite measure on R"™ is uniquely determined by its characteristic function.

Proof. By Theorem 6.4, we need only to prove the first assertion. As
D(p1) U D(p2) is at most countable, C' := C(u1) N C(u2) is dense in R.
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V[a,b) € R" and 1 < k < n,3{a(™}, (0"} € € and o™ 1 ag, ™) 1 by.
From the continuity of finite measure and the definition of C, it follows

(o)) = lim 1 ([a®),8)) = Tim Tim g ([a™,507)))

mToo mToo m/too

= lim lim po ([a(m),b(m/))) = p2([a,b)).

mToo m/tToo

2 Weak Convergence of Finite Measures

§6.2.1 Definition and equivalent statements

Let (E,p) be a metric space and & be the Borel o-algebra. Denote by It

the total of finite measures on (E,&).

Lemma 6.8 (Regularity). Let € 9. Then VA € &,

u(A) = inf  u(G)= sup w(C).
GDA,G is open CccA,cC is closed

Proof. Let % be the class of all sets A € £ satisfying the desired equations.
It suffices to prove (1) € contains all open sets, which is a m-system; (2) €

is a A-system.

To prove (1), let A be an open set. Then the first equation holds, and
the second equation holds too if A = E. Now, let A # F so that A°is a
nonempty closed set. By the triangle inequality, the distance function to

A€ defined by d(-, A°) := inj p(+,y) is Lipschitz continuous. Let
yeds

1
Cp= {a:GE:d(x,AC) > }
n
Then C,, is closed and C,, C A. Since A is open, for any = € A, there
exists n > 1 such that B(z, 1) C A. Thus, d(z, A°) > 1, so that 2 € C,,.
Therefore, C), T A(n — 00). By the continuity of u, we obtain lim p(C,) =
n—roo
p(A). This proves the second equation, so that A € €.
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To prove (2), it suffices to show that € is a monotone class and closed
under the proper difference. Let {A,},.; C €, A, T A(n — 00). For every
Ay, there exists an open set G,, D A, such that |u(G,) — u(An)| < 277
there also exists a closed set C,, C A, such that |u(Cy) — u(A,)| < 27"

~ 00
Then G, = |J Gy, is an open set including A, while C), is a closed set

(0)+(2)

included in f?ln B oreover,
Tim g ( U G - Am))

m=n

i |(G) — p(A)| = Tim

n—oo n—oo

N

N

Jm, 2 2 =0,
and
Tim [(Cp) = p(A)] = Tim [u(Cp) — p(An)].
Therefore, A € €. Finally, let Ay, Ay € € with A1 D As. It remains to

prove that A; — Ay € ¥. For this, Vn > 1 we take an open set G,, D Ay
and a closed set C,, C As such that

[1(Gn) — (A1) + |u(Cn) — p(A2)| <

Then G, \ C), is open, including A; — Ay, and

S

1
(A1 = A2) = p(Gn \ Cn)| < [(G) = p(A1)| + |1(Cn) — p(A2)] < .
So A := A} — A, satisfies the first equation. Symmetrically, we can prove
the second equation for A := A; — Ay, so that A1 — Ay € F. O

The above result shows that the class of open sets and that of closed
sets are measure determined classes, i.e. two finite measures are equal if
they coincide each other on any one of these two classes. In the following
we prove that Cy(FE), the class of bounded continuous functions on FE, is
also a measure determined class. By the way, for later use we also introduce
the class %, (F) of bounded measurable functions on E, as well as Cy(E)

of continuous functions on F with compact supports.
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Lemma 6.9. Let pu,ua € M. If w1 (f) = pa(f) for f € Cy(E), then
H1 = p2.

Proof. By Lemma 6.8, it suffices to prove that ui(G) = p2(G) for any
open G. Let g(x)=d(z,G) for x € E. Then g(z) > 0 for x € G and ¢ is
Lipschitz. Set hy,(r) = (nr)Al. Then h,og is Lipschitz and h,og T 1¢ (n 1
o0). From the monotone convergence theorem and 1 (hy, 0 g) = pa(hy 0 g),
it follows u1(G) = p2(G). O

Definition 6.10. Let {u,} C 9 and p € M.
(1) We say that (i,)n>1 converges uniformly to u, denoted by 1, — p, if

sup |pn(A) — u(A)] =0, nToo,
AeHh
equivalently,

sup |pn(f) = pu(f)] =0, nToo.
nS!

(2) We say that (un)n>1 converges strongly to y, denoted by p, = p, if

lim p,(A) = p(A), VA € B,

n—o0

equivalently, u,(f) — p(f) for every f € .

(3) We call (ftn)n>1 convergent weakly to u, denoted by p, — pu, if
pn(f) = u(f) for every f € Cyp(E).

(4) (ptn)n>1 is called convergent vaguely to p, denoted by s, — p, if
() = () for every f € Co(E).

Definition 6.11. A set A € & is called p-continuous, if u(90A) = 0.

Below are some equivalent characterizations on the weak convergence.

Theorem 6.12. Let up,u € M (n > 1). The following statements are
equivalent.

(1) pn(f) = u(f) for every f € Cp(E).
(2) wn(f) = p(f) for every bounded uniformly continuous function f.
(3) wn(f) — u(f) for every bounded Lipschitz continuous function f.
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(4) lm pn(G) = pu(G) for every open G C E, and p,(E) — p(E).

n—oo

(5) h?n pn(C) < p(C) for every closed C' C E, and p,(E) — p(E).
(6) pn(A) — u(A) for every p-continuous set A.

Proof. (1) = (2) = (3) and (4) < (5) are obvious.
(3) = (5). Let C C E be a closed set, and define

1
= E.m>1.
fm ) 1+ md(z,C)’ refm
Then fy, is Lipschitz and 1 > f,,, | 1¢ as m T co. By (3) and the dominated
convergence theorem, we obtain
w(C) = hm / fmdp = lim lim / fm dpiy,
m—ro0 N—r00 E
> lim i (C).
n—oo
(4) and (5) = (6). Let A be a p-continuous set. Then p(A) = pu(A) =
1(A°), where A and A° are the closure and interior of A, respectively. This
together with (4) and (5) yields

H(A) = p(A°) < lim i (A4°) < L pia(A),

n—o0 n—o0

u(A) = p(A) > T pa(A) > Tm p(A).

n—00 n—oo

So, (6) holds.

(6) = (1). Vf € Cp(F), we intend to find a sequence of simple functions
{fn}n>1 generated by p-continuous sets, such that f, — f uniformly as

n — 0o0. Since p is finite, the set

D:={acR:u{f=a}) >0}

is at most countable. Thus, we may find a constant ¢ > ||f||o + 1 such

that £c € D¢, and a sequence of partitions

Ii={—c=rp<r < <rp<rpy1=c}, n=2
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such that
. c — —
{r;} € D¢ 6(1,) : K%lgécﬂ(rk rp—1) — 0.
Let
n—1
fn = Zril{T¢<f<Ti+1}'
i=1
Then
[[fr = flloo <6(In) =0, n— o0,
so that

1(f) = ()] < () = ()l =+ [ fn) = pan (Fo) | + [ (fr) = prn ()]

n—1
<L) (W(E) + pm(E)) + Y i lp(ri < f < rig1) = pn(ri < f <riga)]-
=1

Noting that {r;} C D¢ implies that each set {r; < f < riy1} is p-
continuous, by (6) we may let first m 1 oo then n 1 oo to derive (1).
[l

§6.2.2 Tightness and weak compactness

The topology induced by weak convergence on I is called the weak topol-
ogy. In this part we characterize the weak compactness (i.e. compactness in
the weak topology) for subsets of 9t. We first consider a simple case where
F is a compact metric space. In this case, the relatively weak compactness
is equivalent to the boundedness, which is well known for subsets in the Eu-
clidean space. Recall that 9’ C M is called bounded if sup ,con p1(E) < 00.

Theorem 6.13. Let (E, p) a compact metric space. If {y,,} C 9 is bounded,
then there exists a subsequence {yy, } such that p,, = 1w as k — oo for some
we M.

Proof. Since E is compact, C'(FE) is a Polish space under uniform norm. Let
{fn}n>1 be a dense subset of C(E). Since {pn}n>1 is bounded, for each

m = 1, {tn(fm)}n>1 is bounded in R hence has a convergent subsequence.
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By the diagonal principle, we may find a subsequence n; 1 co as k 1 oo,

and a sequence {, }m>1 C R, such that
Hm i, (fm) = @m, m > 1.
k—oo

Since {fn},> is dense in C(E), for any f € C(E) and ¢ > 0, there exists
mo = 1 such that || frm, — f||leo < €. So,

b (F) = pamy ()]
< |:unk(f - fmo)’ + |Mm(f - fmo)‘ + ‘/‘nk(fmo) - :unz(fmo)|
< 26C + [y (fmo) — by (fimo)|-

By letting first k,l — oo then £ — 0, we obtain

i, (f) = pmy ()] = 0

l,k—o0

Then {un, (f)} is a Cauchy sequence and there exists a(f) € R such that

n,, (f) = a(f). It is clear that a : C(E) — R is a nonnegative bounded lin-

ear functional. By Riesz-Markov-Kakutani theorem ([19, Theorem IV.14]),

there exists unique p € M such that u(f) = a(f). Therefore, un, ~— p.
O

When F is not-compact, the above results remains true if the bounded
sequence {fi,}n>1 is supported on a compact set K C E, i.e. p,(K¢) =
0,n > 1. In general, we may extend the result to bounded { i, }n>1 asymp-

totically supported on compact sets. This leads to the notion of tightness.

Definition 6.14. A bounded subset 9’ of 91 is called tight, if for any € > 0,
there exists a compact set K C F such that

sup p(K°) <e.
pneM’

Theorem 6.15 (Prohorov’s theorem). Let (E, p) be a metric space and let
{ttn}n=1 C M be bounded.

(1) If there exists a sequence of compact sets { K.}, such that K, 1 E,
then {un}n>1 has a vague convergent subsequence.
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(2) If {pn}, > is tight, then it has a weak convergent subsequence.

Proof. Let {K,,}m>1 be a sequence of increasing compact subsets of E.
Given m, there exist a subsequence {f,, } and a finite measure 1™ on
K,,, such that

Hane | i, = N(m) (n — o00),
where pm, |k, is the restriction of p,,, on K,,. By the diagonal principle,

there exists a subsequence {i,, } such that
Mnk’Km N ,u(m) (k — 00), m>1.

Clearly,
AN K = pf™(ANK,,), VYAe B

Indeed, for any closed set A, let
1

- - 1.
=7 +1d(z, A)
Then
p AN Kps) = lim g™ (g, )
l—o0

= fm him g, (L)

> lim lim pup, (Mlk,,)
l—00 N —00

= u"MANK,).
Thus, limit u(A) = Tr}gnoo ™ (ANK,,) exists for any A € 4, so that n € M
and pl™(flg,,) — p(f) for any f € Cy(E),
(1) Since K, T E, for any f € Cy(E), there exists mg > 1 such that
suppf C K, for all m > mg. Thus,

khargo pin (f) = lim :u(m)(f) = pu(f)-

m— 00

(2) Up to a subsequence, we may assume that sup u,(KS,) < 1/m for

n=>1
m > 1. Then Vf € Cy(E),

|y, (f) — 11 (f)]
< e (FLi) = 1™ (FLg )|+ g (F = FLic)| + [(f) — 1™ (f1k,,)]

< Ll + Dt (1) = 1 (FLic, )|+ D) = ™ (71, )]
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By letting first k 1 oo then m 1 oo, we prove fip, = . O

Theorem 6.16. Let E be a Polish space. Then a subset of 9 is weak
relatively compact if and only if it is tight.

Proof. By Prohorov’s theorem, we need only prove the necessity. Let 9V C
N be relatively compact, we intend to prove the tightness. To this end, we
first observe that

lim sup p(Gy) =0 (6.2.1)

n—oo Meml

holds for any increasing open sets GG, T E. To see this, for any n > 1 we
take p, € M’ such that

1n(G7) = sup u(Gy) —1/n.
peMm’

Since MM’ is weak relatively compact, there exist pg € 9 and a subsequence

g = 1p. Combining this with the increasing property of G,,, we obtain

limy, 00 SUP gy 1(G) = iMoo SUP,cons (GG, ) < Mg o0 fin, (GS,)

< hnhn—ﬂwiﬁ£%4$ajﬂnk((%%) < hﬂhn—+a>uoﬁgﬁﬂ =0.

So, (6.2.1) holds.

Since F is separable, Vm > 1,3{z,, ;} such that E = U B(zm,j,27™).
Ji

n
Let G(n,m) = J B(xm,;,27"™). Then K, := ﬂ G(N(e,m),m) is com-
j=1 m=1 _
pletely bounded, so that by Hausdorff’s theorem, K. is compact. Since
G(n,m) T E (n 1 o0), by (6.2.1) with G,, = G(n,m), we conclude that

Ve > 0,3N(e,m) > 1 such that

€
sup p(G(n,m)) < g 1 > N(e,m),
pneMm’
and
o0 ¢] c
w(KY) Zu (N,r)° Zy—s e M.
r=1 r=1
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When E = R%, we have the following one more equivalent statement
for the weak convergence using continuous intervals in place of continuous

sets.

Proposition 6.17. Let E = R%. Then pu, = pu if and only if u,(R?) —
(R and 1, ([a, b)) — p([a, b)) for any finite y-continuous interval [a, b).

Proof. We need only prove sufficiency. If p, is not weakly convergent to p,
then there exist § > 0, f € Cy(R?%) and subsequence ny — oo such that

b, (f) = (f) =26, k=>1. (6.2.2)

By Lemma 6.5 and Lemma 6.6, there exists a sequence of p-continuous
intervals I,, T R%. Then Ve > 0, there exists m > 1 such that u(IS,) <
/2. Since pn (L) — u(In) and p,(RY) — p(RY) when n — oo, we have
n@o tn(IS) < €/2. Thus, there exists ng > 1 such that Vn > ng, un(I5,) <
. Moreover, take compact set K7 such that p,(KY{) < € for Vn < ng. Then
K = Ky U1, is compact and satisfies y,(K¢) < &,¥n > 1. Thus, {u,, }
is tight, so there exist a subsequence nj, and a finite measure p’ such that
[y, 2, /. Combining this with the condition that p,([a,b)) — u([a,b))
for p-continuous intervals [a,b), we see that p' and p are equal on their
common continuous intervals. By Proposition 6.7 we have u’ = u, which
contradicts to (6.2.2) since i, S, O

3 Characteristic Function and Weak Convergence

In this section, we first identify the weak convergence for finite measures
on R™ by using the convergence of characteristic functions, then prove that
a complex function on R"™ is a characteristic function if and only if it is

continuous and nonnegative definite.

Theorem 6.18. Let {u, }r>1 be finite measures on R™. Then up — p
(k — o0) if and only if f,, — fu point-wisely.

By the dominated convergence theorem, the necessity is obvious. The
sufficiency follows from the following Theorem 6.22 on the convergence of

integral characteristic functions.
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Definition 6.19. Let f, be the characteristic function of a finite measure .

The indefinite integral of f,
~ U1 Un
fﬂ(uh...7un):/ / fp(tlv"'ytn)dtl"'dtn, u € R
0 0

is called the integral characteristic function of u, where foui = — fl? if u; < 0.

Since f, is continuous, f, and f, determine each other.

Lemma 6.20. The integral characteristic function of p satisfies

n

N eiukxk -1
fp,(ulv"' ,Un) — / H 7”((11:1) ) dl‘n)a U, - ,Unp S R.
R k=1 lxk
Proof. By the definition and Fubini’s theorem, for u = (ug,--- ,u,) € R™,

_ u1 Un .
fu(w) = / e / / el(t@)M( dz) dt
0 0 n
= / w(dx) / et gy
n [O,u]

n eiuk:ck -1

= / H.iu(dxh“-,dxn)-
R 1y

n
k=1

Let

IU,kxk _ 1

n
H , T,u € R™.
- 1wk

Then for given w, lim F(x,u) = 0. Thus F(-,u) can be uniformly ap-

|x|—o00
proximated by continuous functions with compact supports.
Theorem 6.21. Let {u}r>1 be bounded measures on R™. If fﬂk — g for
some function §, then there exists a finite measure  such that p, — p and

ngu-

Proof. By Theorem 6.15, there exits a subsequence {jin, }r>1 of {pg}r=1
which converges vaguely to some finite measure p. Since a finite measure

is determined by its integral characteristic function, we need only to prove
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fu = ¢. Since fu(u) = pu(F(u,-)), and F(u,-) can be uniformly approx-
imated by continuous functions with compact supports, it is clear that

Lny N w and f#k — g imply fu =g. O

Theorem 6.22. Let {11 }1>1 be bounded measures on R" such that f,, — ¢
for some function g continuous at 0. Then there exists a finite measure p such
that p;, — p and fu=ag.

Proof. By the dominated convergence theorem, f,, — ¢ implies fuk = g.
By Theorem 6.21, Proposition 6.17 and Exercise 9, it suffices to prove
pr(R™) — p(R™). Since g = fu, g = fu dz-a.e., and since both g and f,

are continuous at 0,
p(R™) = f,(0) = g(0) = klim fx(0) = lim pp(R™).
—00 k—o0
([

In the following we introduce two important applications of Theorem
6.18.

Theorem 6.23 (Law of large numbers). Let {&,} be i.i.d. random variables
with E¢, = a € R. Then

1 n
— E ﬁk ia.
n

k=1

Proof. (1) It suffices to prove the characteristic functions f,, of n, :=
n

> (& — a) satisfy f,(t) — 1. In fact, if f,(t) — 1, then by Theorem

k=1

6.18 we have P,,, = do (probability with total mass at 0). Since (—¢,e) is

1
n
dg-continuous for any € > 0, there holds

1 n
lim P| |- —
lim <|n;§k a

n—oo

< E) = lim Pnn((—€7€)) = 50((_575)) =1,

n—oo
which implies
> 5) =0.

n

%Zﬁk—a

k=1

lim P <
n—oo
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n
(2) Let &, =& —a. Thenm, = £ 3" &, so
k=1

f®) = 1] fe (t/n) = [F(¢/m)]"
k=1
where f = fg;g . Since E¢;, = 0, Taylor’s expansion gives
Fult) = [Eeitfé/"]” — (1+o0(1/n)" teR.
Thus,

lim log fo(t) = lim log [(1+o(1/n)"] = lim nlog(1+o(1/n)) = 0.

n—oo

Therefore, 1i_>m fa(t) =1. O

Theorem 6.24 (Central limit theorem). Let {¢)},-; be a sequence of
n-dimensional i.i.d. random variables with invertible correlation matrix D and
E¢®) = m € R"™. Then Vz € R,

b (LS et
(g 2 <

k=1
1 —1@,D7¢

Proof. Let n*) = ¢®) —m. Then {n®} are i.i.d with zero mean. Let f
be the characteristic function of n(¥). Then the characteristic function of
N
B S
k=1
N
fn() = [t/ V)| teR

Since ]En(k) = 0, Taylor’s expansion shows

flt/VN)=1-— %(t,Dw +0o(1/N), teR",
so that )
log f(t/VN) = — 5 (t: Dt) + o(1/N).
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Thus,
1
lim log fn(t) = —=(t,Dt), te€R",
N—o0 2
so that

lim fn(t) = e~ 2(LD1)
N—o0

N
By Theorem 6.18, this implies that {\;N = W(k)} converges in distribution
k=1

to N (0, D), the centered normal distribution with covariance D. O
4 Characteristic Function and Nonnegative Defi-
niteness

Let p be a finite measure on R"™ with characteristic function f,. Clearly,
Vm =1, a1, -, am€C,and tH), ... (M c R" we have

m m 2
D (19 = 1) ez = / S a9 | p(da) > o.

A function having this property is called a nonnegative definite function,
and this property is called the nonnegative definiteness. In this section, we
will prove that a function on R" is the characteristic function of a finite
measure if and only if it is continuous and nonnegative definite. To this
end, we first observe that a nonnegative function has some properties of

characteristic functions.

Property 6.25. If f is a nonnegative definite function, then f(0) > 0, f(—t) =

f(t) and [f(#)] < f(0).

Proof. Let m = 2,t1) = 0,t® =t a; = 1,as € C. By the nonnegative

definiteness, we have
F0) [1+ |ag|?] + f(t)az + f(—t)az > 0.

(1) Let ag = 0. Then f(0) > 0.
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(2) Let ag = 1. Then 2f(0) + f(—t) + f(t) > 0, so that Imf(t) =
—Imf(—t). Moreover, taking as =i we obtain 2f(0)+i(f(¢t)— f(-t)) >0,
so that Ref(t) = Ref(—t). In conclusion, f(—t) = f(t) .

(3) For f(t) #0 and as := —f(t)/|f(t)|, we obtain 2f(0) > 2|f(t)], so
that Thus f(0) > |f(¢)]. O

Lemma 6.26. Let T, = {kc: k € Z"},c > 0. If f is a nonnegative definite
function, then there exists a finite measure . on R™ such that

pR™) = p([=n/c,m/c]") = f(0), fu(t) = f(t), VteT.

Proof. ¥m > 1, by the nonnegative definiteness of f, we obtain

1 m—1

0<— 3 flelg— ek

JusJnska,e kn=0

Z:m Lgl <1 B ’ﬂi‘)] fler)e™ 0 =2 G (@).

Let

5 R o e

Let f, be the characteristic function of t,,,. Then

c\" ic(k,x)
Flck) = (%) /[ﬂ’w]ne G(z) d

m

£ 10D Lo

_
=1 c
n

f(ck HnilW) — f(ck) (m — o0).

/=1
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Since {fm},,>; is tight, there exist y and a subsequence fi,, such that

fim,, — p(k — o0). Then

u®") = u([-2.2]") = 10

cC C

and

fu(ck) = lim fp,(ck) = f(ck).

m—0o0

O

Theorem 6.27. If f is a continuous and nonnegative definite function on
R™, then it is the characteristic function of a finite measure.

Proof. By Lemma 6.26, there exists a sequence of finite measures {um}m>1
such that

pm(R") = pn ([=mm, ma]*) = f(0),

and their characteristic functions f,, satisfy f,,(t) = f(t),t € TZ". Vt €

m

R", take {t™} _ Ty, such that [ty — ™| < 1/m,1 <k <n,m > 1.
Thus, by the continuity of f and f (t(m)) = fm (t(m)), we have

F(t) = lim f(t(m)) = lim_fp, <t<m>>.

m— 00

From this and Theorem 6.18, it suffices to prove

lim ’fm(t) — fm (t(m))’ ~0. (6.4.1)

m— 00

For this, we use the increment inequality (Property 6.2) to derive

-3 6

<:Z§‘fm <t1,... ,ti,t,('fl),--- ,t%m)) — fm (th"' 7ti+1atETQ)7“' 7t£lm)))
< nil \/Qf(o)(f(o) —Refn (ei (ti - tl(m)»’
=0

(6.4.2)
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where e; € R” is a unit vector with ith being 1. Since for x; € [—mm, mn],

ti — t(m) x;| < 7, and cos 6 is decreasing in |#| on 6 € |[—m, 7|, we have
|( 7 Y g ) Y
0 < f(O) — Refm (61‘ (ti — tgm)))

= /[_m7r e <1 — cos {(tZ — tgm)) l‘l]) o (da)

€;

= f(0) — Refm <E> .

Combining this with (6.4.2) and the continuity of f, we prove (6.4.1). O

5 Exercises

1. Prove that the characteristic function f, of a finite measure 4 on R"

has the following properties:

(1) fu(0) = u(R™),  (2) [fu(®)] < £(0),  (3) fult) = f(=1).
2. Prove Property 6.2-(2).

3. A finite measure p on (R, %) is called symmetric, if p(—oo,z) =

p(x,00) for any x > 0. Prove:
(a) p is symmetric if and only if u(A) = pu(—A4), A € A, where
—A={z:—x € A};

(b) p is symmetric if and only if its characteristic function is a real

function.

4. Let p be a finite measure on R™ such that [ |f.(t)|dt < co. Prove

that p is absolutely continuous with respect to dx and

M( dl’) _ i —itx
e 27T/Re o(t) dt.

5. Prove Proposition 6.3.
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6.

10.

11.

12.

Let {&n,&}n>1 be centered normal random variables with variances

d
{02,0%}p>1. If &, = €, prove 02 — 0.

. Let {&,}n>1 be ii.d. random variables with P(§; = 0) = P(¢ =

1) = 1/2. Calculate the distribution and characteristic function of

§= 22;11 fj/3j-

Exemplify that vague convergence is not equivalent to weak conver-

gence.

. Let {n, pt}n>1 be finite measures on a metric space E. Prove:

(a) pn — p if and only if ug(A) — w(A) for any p-continuous
compact A.

(b) pr — p if and only if 1, (A) — p(A) for any u-continuous open
A.

(¢) When E = R™, iy = p if and only if py(I) — p(I) for any finite

p-continuous interval I.

Let ¢ > 0 be a continuous function on R"™ and {{,&}k>1 are n-

dimensional random variables. If &, — &, prove

lim Eg(&,) > Eg(&).

n—oo

Let {F},, F'}r>1 be probability distribution functions on R", such that
is continuous. Prove that F,, — F implies sup |F,,(z) — F(x)| — 0.
xX

Let {pin,pu}n>1 be finite measures on a measurable space (F,&).

Prove

sup |n(A4) = p(A)] = 0, 0T o0
Aeé&
is equivalent to

sup  |pn(f) — u(f) =0, n1oo.
feé, |fIL1
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13.

14.

15.

16.

17.

6 Characteristic Function and Weak Convergence

Prove that a family of probability measures {y,t € T'} on R is tight,
if and only if there exists an increasing function ¢ : RT™ — R™ with
xli)rglo ¢(x) = oo such that ilelg pe(o(] - 1)) < oo.

Let {&}r>1 be a sequence of random variables on R™ such that {P o
fk_l}k?l is tight. Prove that for any random variables 7, LN 0, there
holds &.np = 0.

Let A : R — R be measurable, and let D} be the class of discontin-
uous points of h. Prove that if D} is measurable, then for any finite
measures {iin, t}n>1 on R such that u, — p and p(Dy) = 0, then
pnoh 1S poh L.

Let p(dx) = p(x) dx be a finite measure on (R, £).
t
(a) Prove lim f,(t) =0. (Hint: lim M =0.)

[t]—o0 [t| =00

(b) If p has integrable derivative function p/, then lim tf,(t) = 0.

[t| =00
(¢) What happans if p has integrable derivatives p* for 1 < k < n

for some n > 27

Let p be a finite measure on R. Prove that for any = € R,



Chapter 7
Probability Distances

Let (E, p) be a metric space with Borel o-algebra &, and let &(FE) be class
of all probability measures on (E,&’). In this chapter we introduce some
distances on Z(F), including the metrization of weak topology, the total
variation distance for the uniform convergence, and Wasserstein distance

arising from optimal transport.

1 Metrization of Weak Topology

Let (E,p) be a Polish space. Then space Cy(F) of bounded continuous

functions is also a Polish space under uniform norm || f||oc = sup|f| (Refer
E

to [26, 27, 28]). For a dense sequence {f,},~, in Cy(E), define

dw(/*‘a l/) = ZQ_n{“L(fn) - l/(fn)‘ N 1}7 IRRAS e@(E‘)

n=1
Theorem 7.1. Let (E, p) be a Polish space. Then (Z(FE),d,) is a separable
metric space, and for any {j,},», C Z(F) and p € Z(E), un 2 if and
only if dy(pn, ) — 0. If E is compact, then (Z(E),d,,) is complete.

Proof. (a) d, is a distance.

Obviously, dy(p, 1) = 0. If dy(p,v) = 0, then p(f) — v(fn) = 0(Vn).
Since {fn},; is dense in Cy(E), it follows that u(f) = v(f) for any f €

151
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Cy(E), thus p = v by Lemma 6.9. Finally, d,, clearly satisfies the triangle
inequality.
(b) Equivalence to the weak topology.

Obviously, if ft, — pt, then dy(pin, ) — 0. Conversely, let dy(pin, i) —
0. We are going to prove p,(f) — u(f) — 0 for any f € Cp(F). Given
f € Cy(E), since {f,} is dense in Cy(E), for any € > 0 there exists ng > 1
such that || fn, — flleo < €. So

[0 (f) = ()] < 26+ T {pn(fay) = 1(fno)]

n—oo

28+2”O+1 hm T
= 2e.

As ¢ is arbitrary, we have p,(f) — u(f).
(¢) Sepaprability.
vm = 1, let

Un ={(u(f1),-- p1(fm)) : p € Z(E)} CR™.

Since R™ is separable, so is Uy,. Thus there exists a countable set &, C
P(F) such that

Um = {(u(f1), -l fm)) - 10 € P}

is dense in U,,. Thus, P, := U P, is a countable subset of Z(F), so
=1
that it suffices to prove that @ is dense in Z(F) under distance d,.
In fact, for any u € Z(FE), there exists p, € &, such that

1

| (fi) — p(fi)] < —, VI<i<m.

Thus 1
duw(pom, ) 27"+ — —= 0 (m — o).
m

(d) Completeness of d,,.

Assume FE is locally compact. Note {un},.; C Z(E) is a Cauchy
sequence under dy,. Then Ym > 1,{pn(fm)},>; is a Cauchy sequence,
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so converge to some number, denoted by ¢(f,,). Moreover, given f €
Cy(E),Ve > 0,3mg > 1 such that || frm, — fllec < . Thus

lim lm () — pn(f)] < 26 + lim |1 (fimo) = #n(fmo)

m,n—00 m,n—00

= 2e¢.

As ¢ is arbitrary, we have {un(f)},; is also a Cauchy sequence, which
converge to some number, denoted by ¢(f). By the properties of integral,

it follows

¢:Cb(E) —-R

is a linear map, ¢(1) = 1, and ¢(f) > 0 for f > 0. By Riesz’s representation
theorem, there exists unique p € Z(FE) such that u(f) = ¢(f) for every
f € Cp(E). See [19, Theorem IV.14]. By the construction of ¢ it follows
fin > 1, hence dy(fin, 1) — 0 from (b). O

2 Wasserstein Distance and Optimal Transport

In this section, we introduce the transportation problem initiated by G.
Monge in 1781 and characterized by L. V. Kantorovich in 1940s using cou-
plings, which leads to the notion of Wasserstein distance. In particular,
when F is a Polish space, Z(F) is also a Polish space under the Wasser-

stein distance.

Definition 7.2. Let &?(F) be the class of probability measures on a mea-
surable space (E, &), and let u,v € Z(E). A probability measure 7 on the
product space (E x E,& x &) is called a coupling of  and v, denoted by
m € € (u,v), if its marginals are  and v, i.e.

T(AXx E)=p(A), m(ExA) =v(A), Acé.

A simple coupling is the product measure p X v, which is called the

independent coupling of y and v. Therefore, €' (u,v) # .
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§7.2.1 Transport problem, coupling and Wasserstein dis-
tance

Before introduce the general theory, let us consider a simple example.

Let x1,--- ,x, be n many cities, each city produces and consumes cer-
tain product. Let g and v be the produced (initial) distribution and the
consumed (target) distribution, respectively. We intend to design a scheme
to transport the product from initial distribution u to the target distribu-

tion v.
Let
p{zi}) = pi, v({zi}) =vi, 1<i<n.

n n
We have p;,v; > 0and >, p; = >, v; = 1. So, p and v are probability
i=1

= =1
measures on space E := {x1,--- ,x,}. Let 7 = {m; : 1 <4,j <n} be a
transport scheme, where 7;; > 0 denotes the amount of product transported

from z; to x;. Then, the scheme 7 transports u into v if and only if

n n
,uz‘:g Tijs Vz‘:g Tji, 1< i< n.
Jj=1 Jj=1

Thus, 7 is a scheme 7 transporting p into v if and only if 7 € €' (u, v).

Let p;; = 0 be the cost to transport a unit product from z; to x;, which
is called the cost function. Then for any scheme m € € (u, v), the total cost

is

n
> pigmij :/ pdr.

ij=1 ExE

Thus, the lowest cost to transport from p to v is

W{(p,v) = inf / pdm,
€l (pv) JEXE

which is called L!-Wasserstein distance between y and v induced by p.

In general, we define the LP-Wasserstein distance on &?(E) over a metric

space (E, &) as follows.
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Definition 7.3. Let (E, p) be a metric space. Vp € [1,00), define the LP-

Wasserstein distance induced by p as

1/p
W, (p,v) == inf PP dm , v € ZP(E).
7€ (wv) \JExE

A coupling 7 is called optimal, if it reaches the infimum.

In generally, p may be unbounded, so that W,(x, ) may be infinite
for some p,v € Z(E). To make W, finite, we restrict to the following
subspace of Z(E) of finite p-moment:

Pp(E) ={n e P(E): u(plo,-)) <oo}, p>1,

where o € F is any fixed point. By the triangle inequality, the definition of
Pp(F) is independent of the choice of 0 € E.

§7.2.2 Optimal coupling and Kantorovich’s dual formula

We first consider the existence of optimal coupling.

Theorem 7.4. Let (E,p) be a Polish space. Then Yu,v € Z2,(E) there
exists m € €(u,v) such that W, (u,v) = m(pP).

Proof. Since p,v € Z,(E) and p x v € €(u,v), we have

Wy (p, v)P < PP (z,y)p(dz)v(dy)
ExFE

<ol / (PP (2, 0) + PP (y, o))l da)( dy)
ExE
< 00.

Thus for any n > 1, there exists m, € € (u,v) such that

1
Wy (e, v)?P = mp(pP) — o (7.2.1)
So, if m, converge weakly to some mg, then 7y should be an optimal coupling.
For this, we first prove that {m,},., is tight. In fact, by Theorem 6.16, we

know that finite set {u, v} is tight, so for any € > 0, there exists a compact
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set K C E such that u(K°)+v(K¢) <e. ThusVr € € (u,v), n((K xK)°) <
(K¢ x E) + m(E x K°) = p(K°¢ + v(K°) < e. Therefore €(u,v) is
tight. Hence there exist a subsequence {my, },-, and mo € &(E) such that
Tn, — o (k — 00). Obviously, 9 € €(u, ). Combining this with (7.2.1),
we obtain that for any N € (0, c0),

mo(pP AN) = lim i, (07 A N) < W (n, ).

Letting N 1 oo gives mo(pP) < Wp(p, v)P. O

From Definition 7.3 it is easy to derive an upper bound estimate on
the Wasserstein distance. To estimate it from below, we introduce the
Kantorovich dual formula by using the following classes of function pairs
for p,v € Z(E):

Fuw ={(F,9) : [ € L' (1), 9 € L'(v), f(x) < g(y) + p(2,y)", Va,y € B},
Frip = {(f,9) : f,g Lipschitz continuous f(z) < g(y) + p(z,y)?,z,y € E}.

Theorem 7.5 (Kantorovich’s dual formula). Let (E, p) be a Polish space.
Then Vu,v € Z,(F),

Wy(u,v)? = sup  {u(f) —vig)} = sup {u(f)—-v(g)}. (7.2.2)

(f?g)egl’\llwl’ (fvg)eg:Lip

Proof. Since F14, C %, we need only prove

sup  {u(f) —v(g)} S Wp(u,v)P < sup  {u(f) —v(g)}.
(f,9)€ Fuw (f,9)EPLip

Below we only prove the first inequality, as the second is far from trivial,
see for instances [18, Section 3| or [7, Chapter 5] for details.
Let (f,g9) € #u., and 7 € € (p,v). We have

u(f) - vlg) = [E (@) = gl e, dy) < / p(z,y)Pr(dz, dy).

ExXE

Thus, the first equation follows from the definition of W, O
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§7.2.3 The metric space (Z,(E),W,)

Theorem 7.6. Let (E,p) be a Polish space. Then (Z,(E),W,) is also a

Polish space.

Proof. (a) First we prove Wy, is a metric. Obviously, W, (p,v) = 0 if and

only if 4 = v, so we need only prove the triangle inequality.

Y, po, i3 € Pp(E), let w2 and me3 be optimal couplings of (g1, p2)
and (ua, 13), respectively. We have

Wy (1, p2) = m12(pP) /P, Wi (pia, p13) = mas(pP)'/P.

To construct the optimal coupling of u; and us, let ma(z1, daxa) be the
regular conditional probability of 719 for given z1, and me3(x2, dzs) be the

regular conditional probability of mo3 for given xs. Set

m3(A X B) = NI(A)/EW23(x2aB)7T12(331, dxg).

It is clear that m3 € € (u1, u3). Then
m(dzy, dxg, dzs) := p1(dzy)mie(x1, dzg)mes(xe, dzs)
is a probability measure on E x E x E, and for
pij(T1, 22, w3) := p(24,75), 1 < 0,5 < 3,

we have
W(pf) = ﬂ-ij(pp)v 1<e,5<3.
Thus by the triangle inequality in LP(7),
m(ps) P < w((prz + pas)?) /P

(Pl P + m(phy) /P
= Wp (1, p2) + Wp(puz, p3)-

WP(/J'la ,u3) <
<

(b) Next we prove W, is complete.

Let {n},>1 C Zp(E) be a Cauchy sequence under Wy,. Then {p,},,-, C
Z,(E) is tight (see Lemma 6.14 in [21]). Without loss of generality, we
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assume that p,, — p for some p € Z(E). On the other hand, given o € E,

we have
pn(p(0,-)P) < 207 i (p(o,)P) + 287 Wiy (a1, pan )P

which are bounded for n > 1, so 3C > 0 such that VN > 1

p(p(o, )P AN) = lim pn(p(o,)” ANN) < C.

n—oo

Thus p € Zp(E) and

lim pn(p(0,-)?) = p(p(0,-)"). (7.2.3)

n—oo

Moreover, Ve > 0,3ng > 1 such that W, (pn,, pin)? < €,Vn = ng. Then

pn((N = p(o,-))™)

< g (N = p(0,)P)T) + [ (N = p(0,)P)F) = ping (N = p(o,-)P) 1)
< Hno((N - p(O, ')p)+) + 2p71Wp(Mna Mno)p
< tng (N = p(o,)P)F) + 2P L.

Hence

T fin(p(0,)7) < T pin(p(0, )7 A N) + 27 e.

n—o0 n—o0

As ¢ is arbitrary and p, — p, we have

T pa(plo,)?) < T pa(plo, )7 A N) = p(p(o, A N) < (plo,)P):

n—oo n—o0

N

From this and (7.2.3) it follows that p(p(o,-)P?) = lm p,(p(o,-)P). Thus,
n—oo
by Kantorovich’s dual formula, the dominated convergence theorem, and

Wy, (ten, ftm) — 0 as n,m — 0o, we obtain
lim Wy, (g, pp)” = lim  sup  |u(f) = pa(9)]
oo N0 (£,9)E€EFLip

= lim sup T (f) = pa(9) [ Wp(p, n)”

nmroo (fvg)eg/:Lip m

< lim  lm W, (g, pn)? = 0.

n—o0 m—o0

(c) Finally we prove W, is separable.
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VN > 1, let

PINE) = {p € Py(E) : suppu C B(o,N)},

where B(o, N) is a closed ball with radium N centered at o. As Vu €
Pp(E), it is easy to prove N — oo,

so we have J L@ISN)(E) is dense in (Zp(F),W,). Thus we need only to
N=1

prove that each %SN) (E) is separable. Since p(o, ) is bounded on B(o, N),
as shown in step (b) that the weak convergence is equivalent to the conver-
gence in W, (see Exercise 6). Then the proof is finished by Theorem 7.1,
which says that WéN)(E) is separable under weak topology. O

Theorem 7.7. Let M C Z,(E). Then M is compact under W, if and only
if it is weakly compact and

li Lo NS =0. 7.2.4

Al sup p (p(0, )P 1p(0y=N}) (7.2.4)

Proof. (a) Necessity. It is clear that W (uy, ) — 0 implies g, (f) = n(f)
for any Lipschitz continuous function f, so the topology induced by W, is
stronger that weak topology. Thus, if 91 is compact under W,,, then 9 is

also compact under weak topology. It remains to prove (7.2.4).
Since M is compact under W, for any ¢ > 0, there exist p1,- -, up, € M
such that
min Wy (i, p)? <e, peM.

1<i<n

Thus,
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Hence

— N\ T
lim sup 41 (p(0, )P 1{p(0,)>n3) < 2 lim sup pu ((,;( )P = 2) )

N—oo e N—oo eam

< 2P¢.

As ¢ is arbitrary, we get (7.2.4) immediately.
(b) Sufficiency. Let 9t be weakly compact and (7.2.4) hold. We intend

to prove that 91 is compact under W,,. For this, we need only prove that for
any sequence {,un}n>1 C 9N, there exists a convergent subsequence under

W,,. By the weak compactness of 91, we may and do assume that g, — p.

Let {x1,z2,---} be a dense subset of E. Then we have U B(zi,e) D E
=1
for any € > 0, where B(x;,¢) is an open ball with radium ¢ centered at ;.

Since set {¢ > 0: 3i > 1 such that p(90B(x;,e)) > 0} is at most countable,
for m > 1, take e, € (0,1/m) such that B(x;,e,,) are all u continuous sets.
Let

Ur = B(z1,6m), Uit1 = B(xir1,em) \ | B(xj, em).
j=1

Then {U;};-, is a sequence of mutually disjoint p-continuous sets, ) U; =
i=1

E and the radium of U is less than L. Let r, = Z pn(Us) A w(U;). Then
1=1
€ [0,1] with lim r, = 1. Let

n—o0

(Ui)

Qn(dx) = pp(dx) Z'un 1y, (z) pn (da),
=1

Q(dz) = Z n (U ’) 1, (2)p( dz).
Then
pn(Ui) A pu(U;)
n(dz, dy) : ZlU, z)1y, (y Wﬂn(dx)ﬂ(dy)—i_
L Qu(dn)Q(dy)

1—
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is a coupling of p, and p (if 7, = 1, then the last term is set to 0 ), hence

2p—1

Wi (i, )P < mn(pP) <7 + (Qn(p(0,-)") + Q(p(0,-)"))

<m P+ 2PNP(1 —rp) + 2r~! ?{up 225 (P(O, ')pl{p(o,~)2N}) +
>1

1—r,

2771 (p(0, )" L (o2 ) ) -
By letting firstly n — oo then N — oo and finally m — oo, we obtain
Wp(tn, ) = 0(n = 00). O

3 Total Variation Distance

Let Z(E) be the class of probability measures on a measurable space
(E,&). The total variation distance on Z(E) is defined as

b= Vllvar = [ = v|(E) = 2(u — )" (B) =2(v — )" (E).  (7.3.1)
We will characterize this distance by using the Wasserstein coupling, we
define the wedge p A v of 4 and v.
Proposition 7.8. For any u,v € Z(F),

+ _

pAvi=p—(p—v)" =v—(v—p"

is a sub-probability measure, i.e. it is a measure with u A v < 1.

Proof. Since p > (p —v)t and v > (v — )™, both u — (u — v)* and
v — (v — p)T are sub-probability measures. It suffices to prove that they

are equal. By Hahn’s decomposition theorem, there exists D € & such that
(u—v)(D) = filn(fg(u —v)(A), and for any A € &,
€

(n=v)"(A) = (p—v)(D°NA), (v—u(4)={-p(AnD).

Thus,
(1 — (= v))(A) = u(A) — (D N A) + (DN A)
=pu(AND)+v(A)—v(DNA)

= (v—(v—p)")(A).
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The Wasserstein coupling of ¢ and v is defined as

" (dz)(p—v)~(dy)
(n—v)~(E) ’

mo(dz, dy) := (p Av)(dz)d,(dy) + (n—v)

where for p = v we set (“_”)tii?)(f&;))_(dy) _

Regarding a coupling as a scheme to transport p into v, the idea of this
coupling is that to keep the common part of ; and v without transport,
and to transport (4 —v)" to (v — )t using the independent coupling. The
following result shows that Wasserstein coupling gives an optimal transport

under the cost function 1,,y.

Theorem 7.9. Let Dy = {(z,z):x € E} € & x &. Then my(dz, dy) €
% (p,v), and

It —v|var =2 inf 7(Dg) = 2mo(D5). (7.3.2)
TEEC (V)

Proof. (a) Obviously, m is a probability measure on the product space
(EXE,&x&). When p = v, we have mo(dz, dy) = p(dx)o,(dy), so that

WO(AXE):W()(EXA):M(A), Aeé.

Hence, mp € € (1, v).

When p # v, we have (u — v)"(E) > 0. Since (u—v)” = (v — p)*
and p(E) =v(E) =1, we have (u—v) (E) = (u—v)"(E). Thus, for any
Aeé,

m0(A X E) = (nAv)(A) + (=) (A)(u—v) (E)

(n—v)(B)
= p(A) = (n=v)"(A) + (= )" (4) = p(A),
mo(E % A) = [ 1)) () + u =) ()
=v(A) = (p=v) (A +(p-r)"(4)
=v(A).

Hence, my € € (p,v).
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(b) Vm € €(p,v), we have

wlA) —v(A) =n(AX E)—n(E x A)
<t({(z,y) w € Ay & A})
< w(Dg).

Thus ||p — v||var < 27(D§). To prove equation (7.3.2), we need only prove
|t — v||var = 2mo(Dg). We prove in the case of  # v. By (7.3.1) and the

definition of mg, it follows

70(D§) = w1>+(15> / =V (@)= (a)

1 —
< m—wm/m(“ )t (de) (- ) (dy)
= (=) (B) = 5l = vllvar.

4 Exercises

1. Let (E, p) be a Polish space. On &(FE), construct a metric equivalent

to the vague convergence, and give a proof. Is this metric complete?

2. Let (F, &) be a measurable space. Prove that Yu,v € Z(E),
i = vllvar = 2sup [u(A) — v(A)] = |p = v[(E).
Ae&

3. Let V > 1 be a measurable function on a measurable space (E,&).
Prove that VYu € Z(FE), define weighted variance

lally = /E V(@) dz).

Prove for measurable function f,

sup /EIfIdMZ Supw

llally <1 zee V(z)
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7 Probability Distances

. Let (E,p) be a Polish space. Prove that under the total variation

distance the space Z(F) is complete. Exemplify it may not be sep-

arable.

. Let (E, &) be a Polish space, and let p, v € Z(FE). Construct a prob-

ability space (92, o7, P) and measurable
En:Q— k|

which are called random variables on E, such that Po ¢! = p,Po
n~t = v and W, (u, )P = Ep(&,n)P.

. Let (E,p) be a Polish space and {un, pt},~; C Zp(E). Prove that

Wy (i, 1) — 0 if and only if p, — p and ILm tn(p(o,-)P) =
tn(p(o,-)P), where o € E is a fixed point.

. Let (E, p) be a compact metric space. Prove that for any p € [1, 00),

(Z(E),W,) is also a compact metric space. Exemplify that (E, p) is
a locally compact space but (Z(F), W)) is not.

. (Lévy distance) For any probability distribution functions F, G on R,

let
pr(F,G)=inf{e¢ >20: F(z —¢) —e <G(x) <F(z+¢)+¢e, z € R"}.

Prove that p is a distance, and p(F,,, F) — 0 if and only if F,(z) —

F(x) for any continuous point x of F'.

. For any one-dimensional random variables &, 7, let F¢ and F;, be their

distribution functions. Define

a(gn) =inf{e 2 0:P(| —n[ >¢) <&}

B(&m) —E(M)-

and

Prove
pr(Fe, Fy) < a(é,n)
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and

a(§,n)?
m < 5(§7U) < 04(5,77) +

(1 — Oé(f, n

a(€,n)
1+ af '

I —
S ~—






Chapter 8

Calculus on the Space of

Finite Measures

In this part, we introduce the intrinsic and extrinsic derivatives for functions
of finite measures, and make corresponding calculus. For simplicity, we only
consider measures on R, but the related theory applies also to measures on
more general spaces such as Riemannian manifolds and separable Banach
spaces.

Recall that 90 is the set of all finite measures on R?. For fixed k € [1, o0),

let
My = {peM: ull-*) < oo}

be the set of all finite measures on R¢ having finite k-th moment, and let
Pe={pemm: ,u(Rd)zl}

be the set of probability measures on R? having finite k-th moment. Both
are Polish space under the k-Wasserstein distance W, which is defined in
Definition 7.4 on &, and for pu,v € M

El

Il == [p(] - 19)] if v =0,
= [u(] - [%)] if =0,

W’“(u(ﬂéd)’ u(uléd)) + [u(RY) — v(RY)],  otherwise.

)
i

167
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We will define intrinsic and extrinsic derivatives on &2, and M, and make

calculus with these derivatives.

1 Intrinsic Derivative and Chain Rule

The intrinsic derivative for measures was introduced in [1] to construct
diffusion processes on configuration spaces over a Riemannian manifold, and
was used in [16] to study the geometry of dissipative evolution equations,
see [2] for analysis and geometry on the Wasserstein space over a metric

measure space.
In this part, we introduce the intrinsic derivative on & for k € [1, 00),

and establish the chain rule for functions of the distributions of random

variables having k-th moment.

§8.1.1 Vector field and tangent space

To define the intrinsic derivative, let us first recall the directional derivative

along a vector v € R? of a differentiable function f on R%:

i S+ ev) = f(z) d
va(x).—lslig . , v €R%

The directional derivative operator V, reflects the variance rate of a func-
tion along the line
[0,1] 5 e x + ¢v,

which pushes forward a particle from point x along the direction v. More-

over, the gradient
Vf(l') = (82;1](.(.’1}), T 78xdf(x))
is the element in R? such that

(Vf(z),v) =V,f(z), veRL (8.1.1)

Now, let us characterize the variance rate of a function f on &. In

this case, we replace z € R? by a distribution y € 22;. To push forward
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the distribution p, we need to push forward all points x in the support
of u, so that instead of the line € — x + ev we need a family of lines

{e = x + ev(x)},cpa, which leads to the notion of vector field.

Definition 8.1. A vector field on R? is a measurable map
v:R¥3 2 —v(z) e RL

Now, for each vector field v on R?, we may push forward a measure
p € M along v as
[0,1] & — po (id + ev) ™,
where id : 2 + x is the identity map, and for each ¢ € [0, 1], o (id +ev)~!

is a finite measure on R? defined as
(po (id+ 61})_1)(A) = ,u((id + 51})_1(A))

for A € #(R%), the Borel o-algebra on R?.

Then we may define the directional derivative long v for a function f

of measures as follows:
. -1\ _
iy (o (id +ev)™) f(u)7
el0 IS

provided the limit exists. When a function on 91 is concerned, we need
to assume that po (id +ev)~! € My, for u € My,. Tt is easy to see that this

/Rd o] du < oo,

since by the integral transformation (Theorem 3.27),

Fluo (i v) N (dz) = v|* du.
[t G+ coy o) = [ jof e

This leads to the notion of tangent space at a point u € 9, which is the

is equivalent to

class of all vector fields on R? such that u(|v|¥) < occ.

Definition 8.2. Let k € [1,00) and € M. The tangent space at point
is defined as

LFRY — R, ) := {v: R? — R? is measurable such that pu(|v|F) < 00}

We denote this space by T}, .
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The tangent space T}, is a separable Banach space, and when k = 2,

it is a separable Hilbert space.

§8.1.2 Intrinsic derivative and C' functions

We are now be able to define the directional derivative of a function on &?,
(or 9My) along vector fields in the tangent space. Moreover, similarly to
(8.1.1), we may define the intrinsic derivative as a linear functional on the

tangent space.

Definition 8.3. Let f be a continuous function on & (or My).

(1) Let p € P (or M), and let v € T), 1. If the limit

o Jpo(id+ev)™h) = f(w)
va(ﬂ) T leli(r)l c

exists, then it is called the directional derivative of f at u along v.
(2) Let p € Py (or My). If Dy, f(p) exists for any v € T), ;,, and
T,u,k 2V va(u)

is a bounded linear functional, we call f intrinsically differentiable at .

In this case, the linear functional

Df(p): v Dyf(p)

is called the intrinsic derivative of f at pu.

(3) If f is intrinsically differentiable at all elements in & (or M), we call
f intrinsically differentiable on &2 (or My).

According to the definition, for any intrinsically differentiable function

f and any p € Py (or 9My), Df(u) is the unique element in

Tppe = L (RY — R ),
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where k* := ﬁ € (1, 00], such that

D) = | (DFG@)v@i(de), v e T,

Intuitively, the intrinsic derivative describes the movement of distribu-
tions along the flows of particles induced by vector fields. As a random
particle can be regarded as a random variable on R¢, below we lift a func-
tion f on & to a function f of random variables.

Let %}, be the class of all d-dimensional random variables ¢ with E|¢[F <

00. Then a function f on &2, induces the following function on %y:

Ky, > & (&) = (L),

where Z: € &, is the distribution of . The directional derivative of f at
£ along n € %y, is defined as

provided the limit exists. We aim to establish the chain rule

Vo f(&) =E[(DF(L)E),m)], &nE % (8.1.2)

for a class of intrinsically differentiable functions f on &7,. To this end, we
introduce the notion of L-derivative and the classes C'(Z) and C} (%)

as follows.
Definition 8.4. Let f: &, — R be intrinsically differentiable.
(1) If

i [f(wo (id+ @) 1) — f(u) — DL ()]
11m
I9llz, , 40 8lz;, .

=0,

then f is called L-differentiable at . In this case, the intrinsic derivative

is also called the L-derivative.

(2) We write f € C1(2},), if f is L-differentiable at any u € &, and the L-
derivative has a version D f(j1)(x) jointly continuous in (z, u) € Réx 2.
If moreover D f(u)(z) is bounded, we denote f € C}(Z).
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To establish the chain rule (8.1.2), we need to assume that the under-
lying probability space is Polish.
Definition 8.5. A probability space (€2,.%,P) is called Polish, if .% is the

P-completeness of the a Borel o-field induced by a Polish metric on €2. P is
called atomless if P(A) = 0 holds for any atom A € .Z.

When k = 2, the L-derivative is named after Lions due to his Lecture
Notes (see the corresponding reference in [6]), where D f(u) is defined as
the unique element in 7}, 5 such that for any atomless probability space
(Q,.#,P) and any random variables X,Y with Zx = pu,

|f(Zy) — [(Zx) —E[(Df(r)(X),Y — X}
Y =X 2540 1Y = X[ 12(p)

=0.

Since D f(u) does not depend on the choice of probability space, when p is
atomless we may choose (£2,.%,P) = (R? %% 1) such that this definition
is equivalent to the one we introduced above. Since by approximations
one may drop the atomless condition, so that the above definition of L-
derivative coincides with, and more straightforward than, the one defined

by Lions.

§8.1.3 Chain rule

To establish the chain rule (8.1.2) for functions of distributions of random

variables, we need the following Proposition.

Proposition 8.6. Let {(£2;,.%;,P;)}i=1,2 be two atomless, Polish probability
spaces, and let X;,i = 1,2, be R%valued random variables on these two
probability spaces respectively such that Ly p, = Zx,p,- Then for any
€ > 0, there exist measurable maps

T Oy, T Q=
such that
Pi(r'or =idg,) =Pa(ror ' =idg,) =1,
Py =Pyor, Po=Pior

IX1 = Xo 07| oo (py) + | X2 — X1 0 77| poo(py) <6,
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where idg, stands for the identity map on €2;,7 =1, 2.

Proof. Since R? is separable, there is a measurable partition (A, ),>1 of R?
such that diam(4,) <&, n > 1. Let AL, = {X; € A,},n > 1,i = 1,2. Then

(A?),>1 forms a measurable partition of ; so that Y ons1 Al = Q0 =1,2,
and, due to Zx,|P1 = Zx, |P2,

Since the probabilities (IP;);—1 2 are atomless, according to Theorem C in
Section 41 of [12], for any n > 1 there exist measurable sets A%, C A’ with
P; (AL \ flﬁl) = 0,7 = 1,2, and a measurable bijective map

Tt AL — A2

such that

—1
Pl’ﬁ}l:]P2oTn‘A}L7 PQ’A%:PloTn A%

By diam(A,) < € and P;(A% \ A%) = 0, we have
||(X1 — X2 e} Tn)l,&}tHLO"(]P’l) vV ||(X2 — X1 e} 7-71_1)1A%||L°°(]P’2) < g.
Then the proof is finished by taking, for fixed points w; € ;,71 =1, 2,

To(wr), ifwy € fl,ll for some n > 1,

wa, otherwise,

77 wo), if wy € A2 for some n > 1,

w1, otherwise.

The following chain rule is taken from Theorem 2.1 in [3], which extends
the corresponding formulas for functions on 42, presented in [6, 13] and

references within.
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Theorem 8.7. Let f: Z; — R be continuous for some k € [1,00), and let
(<)ee[o,1) be a family of R?-valued random variables on a complete probability
space (Q,.7,P) such that & := lim_ g @ exists in L*(Q — R4 P). We
assume that either & is continuous in € € [0,1], or the probability space is
Polish.

(1) Let po = %, be atomless. If f is L-differentiable such that D f (1) has

a continuous version satisfying
1D f (10} (@) llpa < C(1+ J2[*71), w e R? (8.1.3)

for some constant C' > 0, then

o H( ) = 1)
el0 S

= E[(Df(10)(%0)- o). (8.1.4)

(2) If f is L-differentiable in a neighborhood O of pg such that Df has a
version jointly continuous in (x, 1) € R? x O satisfying

IDf () (@)l|ge < C(1+ |21, (2,1) €R? % O (8.1.5)
for some constant C' > 0, then (8.1.4) holds.

Proof. Without loss of generality, we may and do assume that PP is atomless.

Otherwise, by taking

(Q, Z,P) = (Q x[0,1],.7 x A([0,1]),P x ds),
(E)(w, 5) = &(w) for (w,5) € O,

where ([0, 1]) is the completion of the Borel o-algebra on [0, 1] w.r.t. the

Lebesgue measure ds, we have

L5 = Zeqps EUDf(10) (), €0)] = E[(Df (10) (€0), &0)].

In this way, we go back to the atomless situation. Moreover, it suffices to
prove for the Polish probability space case. Indeed, when &, is continuous
in £, we may take Q = C([0,1];R?), let P be the distribution of &, let .%#
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be the P-complete Borel o-field on Q induced by the uniform norm, and

consider the coordinate random variable £.(w) 1= w,w € . Then

fg\ﬁ» = Zep,

so that .2z p = Z p for any ¢ € [0,1] and ,,2”5-6@ = Z p, hence we have
reduced the situation to the Polish setting.

(1) Let %%, = po € P be atomless. In this case, (R% Z(R?), uo)
is an atomless Polish complete probability space, where Z(R?) is the p-
complete Borel o-algebra of R, By Proposition 8.6, for any n > 1 we find
measurable maps

Tm: Q=R RS Q

n
such that
P(T_l o1y, = idq) = uo(m o Tn_l =id) =1,

n

P = ooy, po=Por,", (8.1.6)

1€0 = Tl oo () + [lid = &0 0 Ty M| oo () <

)

S|

where idg is the identity map on (2.

Since f is L-differentiable at pg, there exists a decreasing function A :
[0,1] — [0, 00) with A(r) | 0 as r | 0 such that

sup | f(uoo (id+ )" — f(uo) — Dy f(o)]
161l g < (8.1.7)

< rh(r), rel0,1].
By L. —¢, € P and (8.1.6), we have
One = (Ec— &) oty € Ty, el = 16 — Collpre).  (8.1.8)
Next, (8.1.6) implies

Lrivto—to =Po (Tn+ & — &)

8.1.9
= (MOOTn)O(Tn"i'gs_fO)_l :ﬂoo(id"i'qbn,s)_l' ( )

Moreover, by 55250 — & in L*(P) as € | 0, we find a constant ¢ > 1 such
that
€ — &oll rpy < ce, € €0,1]. (8.1.10)
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Combining (8.1.6)-(8.1.10) leads to

[ (Lrivec—e0) — [(Le,) — E[< (D) (p0) (), (6 — &)
= |f(po o (id + éne) ™) = fluo) = Dy, . f(10)|
< 10nell,  hllénellz,,.)
= 1€ — &ollpr@h(l€ — Soll Lepy), € € [0,¢7'.
Since f(u) is continuous in p and D f(pg)(z) is continuous in z, by (8.1.3)

(8.1.11)

and (8.1.6), we may apply the dominated convergence theorem to deduce
from (8.1.11) with n — oo that

|F(Ze.) — (L) — EL(DS) (o) (o), (& — &0))]|
< [I1& = Soll pr@yh(I€ — ol ), € €[0,¢71.
Combining this with (8.1.10) and h(r) — 0 as r — 0, we derive (8.1.4).

(2) When g has an atom, we take a R%-valued bounded random variable

X which is independent of (£:).¢[o,1] and ZLx does not have any atom. Then

Legrsxtrie—t0) € Tk

does not have atom for any s > 0, € [0,1]. By conditions in Theorem
8.7(2), there exists a small constant so € (0,1) such that for any s,e €
(0, s0], we may apply (8.1.4) to the random variables

o+ sX +(r+0)(& — &), 6>0

to conclude

J(Zeeqsx) = [(Legrsx)
1
d
:/ Ef(fﬁwsxﬂr%)(ﬁf@))}5=0 @
0

1
= /O E(Df(Leyrsxtr(e—g0) (o + 58X + (& — &), & — &o)] dr-
By conditions in Theorem 8.7(2), we may let s | 0 to derive

f(Ze) — ()
1
= /0 E[(D f(Leotr(cc—0)) (€0 +7(& — &0)), & — &o)] dr, & € (0, 50).

Multiplying both sides by e~! and letting € | 0, we finish the proof. O
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As a consequence of the chain rule, we have the following Lipschitz

estimate for L-differentiable functions on 7.

Corollary 8.8. Let f be L-differentiable on &y such that for any u € %,
Df(u)(+) has a continuous version satisfying

IDF(p)(@)| < c(u)(1 + [2]*), @ e BY (8.1.12)

for come constant ¢(u) > 0, and

Ko = sup [|Df(p)llpr < oo (8.1.13)
HE Py,
Then
|f(p1) — flp2)| < KoWi(pr, p2), pa,pe € Pi. (8.1.14)

Proof. By Theorem 7.4, there exists m € € (u1, p2) such that

Wi, o) = </ |z — y|*r(da, dy))
R4 xR4
Now, consider the probability space
(@, Z,P) = (R x R? x RY, B(R? x RY x RY), 7 x G),

where G is the standard Gaussian measure on R, and Z(R? x R? x R9)
is the completion of the Borel o-field Z(R? x R? x R%) with respect to P.
Obviously, this probability space is atomless and Polish, and the random

variables
f(w) i=wi, &W) =ws, w=(w,wsws) € Q:=RI xR xR
satisfy
Loy = 1, Loy =y, Wilpn, p2) = (El& — &fF)F
Moreover, the random variable

nw) :=ws, w=(wi,ws,ws) €N
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is independent of (&1,&>) with distribution %), = G, so that the random

variables
Ye(r) :=en+r& + (1 —1r)&, re(0,1],e € (0,1]

are absolutely continuous with respect to the Lebesgue measure. By The-
orem 8.7, (8.1.12) and the continuity of D f(u)(-), we obtain

1
H(Z) — (L) = \ | ELDA(#, ) e) 6 - 2] ar

, gl
< (Bl - &) [ IDA L)z, dr
< Kwk(ﬂl7ﬂ2)7 €€ (07 ”

Letting € — 0 we derive (8.1.14). O

2 Extrinsic Derivative and Convexity Extrinsic

Derivative

Regarding a measure as the distribution of particle systems, the intrinsic
derivative describes the movement of particles. In this part, we consider the
(convexity) extrinsic derivative, which refers to the birth and death rates

of particles.

We first recall the extrinsic derivative defined as partial derivative in

the direction of Dirac measures, see [17, Definition 1.2].
Definition 8.9 (Extrinsic derivative). Let f be a real function on 9. For

any v € R?, let §, be the Dirac measure at z, i.e. 6, € & with 6,({z}) = 1.

(1) f is called extrinsically differentiable on 90t with derivative D f, if

L f(utedy) — flp)
D f(p)(x) == lim .

eR

exists for all (z, ) € RY x 9M,.

(2) If DE f(u)(x) exists and is continuous in (x, ) € R? x 90, we denote
fe CE’l(SInk)
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(3) We denote f € Cf;’l(imk), if f € CPL(9M) and for any compact set
K C My, there exists a constant C > 0 such that
sup [DZ f(p)(z)] < C(1+ |z|F), = eR%
HeX
(4) We denote f € CELLOM), if f e CPLOMy) such that DF f(u)(z) is
differentiable in z, V{DF¥ f(11)(:)}(x) is continuous in (x, 1) € R x My,
k
and |V{DE f(n)}| € L¥1(u) for any pu € My.

(5) We write f € Cp"' (M), if f € CPLY(IMy) and for any constant
L > 0 there exists C;, > 0 such that

sup |V{DEf(u)}|(z) < Cp(1+ |z[F), z e R
lpllk<L

Since for a probability measure p and s > 0, u + sd, is no longer a
probability measure, for functions of probability measures we modify the

definition of the extrinsic derivative with the convex combination

(I —s)p+ sé,
replacing 4+ sd,. This leads to the notion of convexity extrinsic derivative.
Definition 8.10 (Convexity extrinsic derivative). Let f be a real function

on &.

(1) f is called extrinsically differentiable on &7, if the centered extrinsic
derivative

= e S = s)p+ s0s) — f(p)
DY f(p)(x) := lim ;

eR

exists for all (z, ;1) € R? x 2.

(2) We write f € CEY (), if DPf(u)(x) exists and is continuous in
(7, 1) € RY x Py

3) We denote f € cEN ), if f e CE1(2,) and for any compact set
K
K C P, there exists a constant C > 0 such that

sup [DF f(u)(z)| < C(1 + |2|F), = eR%
nex
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(4) We write f € CELY(22), if f € CBYP) such that DEf(u)(x)
is differentiable in = € RY, V{D¥ f(u)}(z) is continuous in (z,u) €
R x Py, and |[V{DPf(u)}| € L%(u) for any p € Zy.

(5) We write f € Cg’l’l(ﬂk), if f e CPLL(2,) and for any constant
L > 0 there exists C' > 0 such that

sup [V{DZf(u)}(z) < C(L+ [2[*), = eR%
p(l-F)<L

By Proposition 8.13 below with v = §, and r = 0, we have
T )t sb) — ()
s0 S
= DPf()(@) = p(DFf (), fe€C (M), x € R

So, the convexity extrinsic derivative is indeed the centralised extrinsic

derivative.

For ;1 € M and a density function 0 < h € L'(u), hyu is a finite measure
on R? defined as

(hu)(A)—/Ahdu, A c BRY.

Then a function f on 91 induces the following function of density h:

h— f(hpu).

To characterize this function by using the extrinsic derivative, we introduce

the following class of density functions.

Definition 8.11. We denote h € J#, for a constant ¢g > 0, if h satisfies

the following conditions:
(1) 0 < h € C([0,20] x RY);

(2) ho =0, sup.¢jo ] [lhelloo < 00, and there exists a compact set K C R
such that he|xe = 0 for all € € [0, g¢];

(3) he := limyg @ € Cp(RY) exists and is uniformly bounded for ¢ €
[0760)'
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The following Proposition links f((1 + h:)u) — f(u) to the extrinsic
derivative, which will be used to characterize the relation of Df and DF f

in the next subsection.

Proposition 8.12. Letk € [1,00). Forany h € J#, and any f € CE-LY(ONy,),

P+ o) — f() = /0 Car L PP+ b )i (@) (521

holds for all 1 € My, and € € [0, ).

Proof. (1) We first consider
n
B € Maige 1= {Z@iém n=>1l,a; >0, ERd,l <1 < n}
i=1

In this case, for any ¢ € [0,£0) and s € (0,9 — €), by the definition of D¥

we have
f((l + h€+s),u) - f((l + hs),u)
= £ et Yo hews = he}aaids, ) = F((1+ b))
n - k
= {f((l Fhe)ut Y (hers = he}(ai)aids, )
k=1 i=1

k—1
(0 b+ Y (e — heY(ai)asds,) }
=1
n /‘ak{h€+sh6}(5’3k)

0

o

=1
k—1

{DE f ((1 Fh > {hers — he} (i) aibs, + raxk) }(xk) dr.

=1

Multiplying by s~! and letting s | 0, we deduce from this and the continuity
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of DF f that

o £+ ) = (L4 b))
50 S

= > ahe(wi) D" f((1+ he)u) (xx) (8.2.2)
k=1

= oo DFf((1+ he)p)(@)he(x)u(dz), € € [0,20), p € Mase.

(2) In general, for any p € My, let {pntn>1 C Maise such that w, — p
in M. By (8.2.2), for any € € (0,e9) and s € (0,9 — €), we have

JU+ he)pn) — fpn)
. (8.2.3)

_ /0 r [ DE R+ o)) @b @) (). > 1.

Next, since DPf € C(R% x 9y,) and Ay, b, € Cy(R?) for r € [0, g0] with
compact support C K, and p, — p in M, we obtain

lim [ DPf((1 4 he)p) (@) e () pn ( dz)

el e (8.2.4)

= [ PP+ b)) @) (@) ).
Moreover, p, — p in My and h € 7, imply that the set
K =L+ he)p, (L+ hy)pn :n > 1}

is compact in 9y for any r € [0,£0]. Combining this with D¥ f € O(R? x
M), we see that the function

Ky xRS (3,2) = DPf(7) (@) ()

is uniformly continuous and has compact support C %, x K, so that (8.2.4)
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implies
hgl—ilip e DEf((l + hr)l‘n)(x)hr(z).un( dz)
= |, PEI( A+ o)) @) () )
=limsup| | DP (14 hy)pin) () hr () i ()
= |, DEI( o)) @) () )
< limsup {1 () U [DF (1 o)) () ()
= DP F((1+ hy)pr) () ()|}
=0.
Combining this with
sup IDE f(3)(2)hn ()] < o0,

(7)€ x K,re0,g0]

we deduce from the dominated convergence theorem that

im [ dr [ {DEAH+ hodpa) (@) ()
0 R4

n—o0

- /O Car [ DAY+ b)) () ).

Therefore, by letting n — oo in (8.2.3) and using the continuity of f, we
prove (8.2.1). O

(8.2.5)

To calculate the convexity extrinsic derivative, we present the following

result.
Proposition 8.13. Let k € [1,00). Then for any f € C}?l(smk) and p,y €
M,

S H( =t )

dr K Y

i LA =T =)t (r+e)y) = (A —r)p+77)
el0 £

= [ AP =t ) @)} (= )(da), 7€ 0,1
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Consequently, for any f € Cf;’l(fmk),

DF f(u)(x)
iy T(A = 8)+ 802) — f(p)
sJ0 S

= D f(u)(z) — u(DPf(w)), (z, 1) € RY x My,

The assertions also hold for &, replacing 9.

Proof. As in the proof of Proposition 8.12, we take

n n
Hn = E an,i(sxn,ia Yn = § /Bn,iéwn,i
=1 i=1

for some x,; € R and Oni, Bni = 0, such that
n = [y Yn — 7y in My as n — 0.

For any r € [0,1) and € € (0,1 —7), let

i—1
AS o= (L= )n + 19 + > €(Br — k)0, € My, 1< i<,
k=1

where by convention Z?:1 := 0. Then by the definition of D¥ f, we have
F(A=r =)+ (r+€)ym) = f((1 = r)pn +rym)

= Z {F(AS; + (B — ni)dn, ) — F(AS)}

577,,7, an,z
- Z/ DEf(AfM- + 35xn,i)(xn,z’) ds, e€(0,1—r).
i=1"0

Multiplying by e~! and letting € | 0, due to the continuity of DFf we

derive

—~

3 (=) + )

(671 ) an,z)DEf((l - T)Mn + T’Yn)(mn,i)

I
NE

1

{DEf 1_7"):un+7"'7n)( )}(Vn_ﬂn)(dx% 7“6[0,1), n>1'

1
\Ti
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Consequently, for any r € [0, 1),

f((l -r-= 5):“% + (T + 5)771) - f((l - T)Mn + T’Yn)
r+e
= [ ds [ {DPH( = s+ 90)@)} (0 = o)),
r R4
e€(0,1—=7), n>1.

Noting that the set {un,vn : n = 1} is relatively compact in 9, by this

and the condition on f, we may let n — oo to derive
f(A=r=eu+(r+e)y) = f(L=r)p+ry)
= [ s [ ADPHA = s - w(an), <€ 0.1-7)
Multiplying by e~! and letting € | 0, we finish the proof. U

The following is a consequence of Proposition 8.13 for functions on &7;.

Proposition 8.14. Let k € [1,00). Then for any f € Cg’l(@k) and p,v €
P,

o A= 9t sv) — f(w) _ / {DFF((m) (@)} (v = p)(da).
Rd

sJ0 S

Proof. To apply Proposition 8.13, we extend a function f on 2 to f on
My by letting

F(u) = R(uRY) f(p/uRY), 1e My,

where h € C§°(R) with support contained by [1,2] and h(r) = 1 for r €
[1 3

5, 5)- It is easy to see that

f(A=s)u+sv)=f(1—s)u+sv), sel0,1],pve P,
and f € C[E;’l(@k) implies that f € Cﬁ’l(i)ﬁk) and
D¥f(u) =D"f(p), ne 2.

Then the desired formula is implied by Proposition 8.13 with r =0. O
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3 Links of Intrinsic and Extrinsic Derivatives

Theorem 8.15. Let k € [1,00).
(1) Let f € CELL(9MN,). Then f is intrinsically differentiable and
Df(u)(x) = VIDEF()()}@), (o.0) R x My (8.3.1)
When k € [1,2] and f € C5"' (9,), we have f € C1(Dy).
(2) If f € CY(My,), then for any s > 0, f(u + s6.) € C1(RY) with
Vi(u+s6)(x) = sDf(u+ s6,)(z), v€R:s>0. (8.3.2)
Consequently,

Df(u)(z) = %iw(u +s0)(x), (x.) €REx My (8.3.3)

Proof. Below we prove assertions (1) and (2) respectively.

(a) Proof of assertion (1). We first prove (8.3.1) for f € CF®L1(0m,).
Let v € T}, ., and simply denote

Gey :=1id +ev, €= 0.

Since any p € My, can be approximated by those having smooth and strictly
positive density functions with respect to the volume measure dz, by the

argument leading to (8.2.5), it suffices to show that for any pu € 9y, satis-
fying

p(dz) = p(x) dz for some p € C°(RY), inf p > 0, (8.3.4)
there exists a constant g > 0 such that
flwooz) = flu)
€ = . . (8.3.5)
= [ ar [ 90F s s} o dno ). < € (0200

Firstly, there exists a constant g > 0 such that

d(po¢s') . . Plis—pE
(- v U] et+s €
pei= T g o Peimlime—
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exist in Cy(R?) and are uniformly bounded and continuous in ¢ € [0, &o).

Next, by Proposition 8.12, we have
Fpooz) = fu)
=
[ /R ADP o 6uh} i dn, e € [0,20]
0

To calculate p¥, we note that for any g € C§°(R9),

(8.3.6)

%{9 S ¢rv} = (Vg(Prv), v(Prv))
= (Vg,v>(¢m), r =0,

which is smooth and bounded in (r,z) € [0, 0] x R%. So,

v v
/gbﬁduz/ glim Zrts —Pr g,
R4 Rd  si0 S

1 —1 -1
- lslf(} s Jpa gd{pod g, = 1o by

o1 d
= Islg)lg /Rd {g o ¢(r+s)v —gc° QZ)TU}d# = /R;d E(go Qbrv) du
~ [ (o) oondn= [ (Vgupdwe o)

R4 R4
—— [ Agdiv, )} dluo i)
=— [ g{div -1 (v)p¥} du, g€ CFRY),

Rd /‘L TV
where div ;-1 (v) = div(v) + (v, Vlog(p;p)). This implies

pr = —divuo¢;v1 (v)pr,

so that the integration by parts formula and
poi = po ¢y,
lead to

/Rd {DF f(podp))}ordp
== [ ADF 100 6} 0) o 67
- /]Rd <V{DEf(M o ¢;U1)}’U> d(po o).
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Combining this with (8.3.6) we prove (8.3.5).

Now, let k € [1,2], we intend to verify the L-differentiability of f. For
any pu € Mg and v € T), o with u(|v]?) < 1, we have

sup (10 ¢3,)(| - 1°) = ullgsl®) < 2u(] - 1F +Jof*) < o0

s€[0,1]

Then there exists a constant K > 0 such that

sup  (po(¢s) T+ (- F) S K. (8.3.7)
sl u(ol?)<1

So, by Proposition 8.13, we obtain
flpo (id+v)™1) = f(u)
_ [ 14 d
- /0 {5 rmo (8p)™ + (1= ) dr
1
= [ ar [ (0F Do ol + (= rm o 67 =
01 E —1
= [ ar [ {0 e ol + 1= 6@
— (DEf)(rpo g} + (1= 1)) (@) fu( d)
1 1
= [ ar [ utdo) [ (V{OEHEn0 0 + (1= )} (0 (@)), v(a) d.
0 R4 0
Thus,

|f(o oyt — Joa(V{DE f (1)}, v) dpl?
p([o]?)

< / IV{(DEF)(rpo 7 + (1= 1)) Hobso())
[0,1]2 x R4

I, =

— V{DF (1) }(z)|* dr dsp(dz).

By (8.3.7), as [[v]|12(,) — 0 we have ¢gy(x) = 2 p-a.e. and po ¢y} — pin
My, for any s > 0. Combining these with (8.3.7) we may apply the domi-
nated convergence theorem to derive I, — 0 as [|v[|z2(,) — 0. Therefore, f
is L-differentiable.
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(b) Proof of assertion (2). It suffices to prove (8.3.2). Let f € C1(9My).
We first prove the formula for y € My and z € R? with u({x}) = 0, then

extend to the general situation.

Let p({z}) = 0. In this case, for any vg € T, M, let v = 1,3v9. Then

brolz) = z, if z # =,

T+ rvg, if z=ux.
By p({z}) = 0, we have

(1t + 862) 0 Ot = i+ 5041 vy - (8.3.8)

Since v can be approximated in L?(u + sd,) by smooth vector fields with
compact support, the L-differentiability of f and p({z}) = 0 imply

i £t 802) 0 67)) = f (1 + 50)
rl0 r

- /Rd<Df(M + 865),v) d(p + $6;))

= s(Df(p+ s6z)(x),v0).

Combining this with (8.3.8), we obtain

lim f(/vL + 86I+TUO) B f(l’l’ + 3530)
rl0 r

— s(Df (s + 58,)(x), vo).

This implies that f(u + sd.) is differentiable at point z and (8.3.2) holds.

In general, for any vg € T, M, there exists rqg > 0 such that vg extends
to a smooth vector field v on B(z,ry) by parallel displacement; i.e. v(z)
is the parallel displacement along the minimal geodesic from x to z. Since
p({x + Ovg}) = 0 for a.e. 6 > 0, by the continuity of f and the formula
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(8.3.2) for u({z}) = 0 proved above, we obtain

S+ 55x+rvo) — f(p+ sdz)

r

1

" d
_7’/0 @f(ﬂ"'_serrOvo)de

1 T
= / (Vf(u+ s6.)(z+ 0vg), v(x + Ouvg) ) dO
0
= ; / (Df (1 +s0.)(x + Ovo), v(x + Ovg)) db, 1 € (0,70).
0
By the continuity of D f, with r | 0 this implies (8.3.2). O

Theorem 8.15 implies Cg’l7l(i)ﬁk) C CYMy) for k € [1,2]. However,
a function f € C1(9My) is not necessarily extrinsically differentiable. For
instance, let ¢ € C([0,00)) but not differentiable, and let f(u) = 1 (u(R?)).
Then f(p+55,) = ¥(u(R?) +s) which is not differentiable in s, so that f is
not extrinsically differentiable. But it is easy to see that f € C1(91;) with

Df(u) = 0. Of course, this counter-example does not work for functions
on Zy,.
By extending a function on &) to My, we may apply Theorem 8.15 to

establish the corresponding link for functions on &2;. As an application, we

will present derivative formula for the distributions of random variables.

For so > 0 and a family of R%valued random variables {£,} s€[0,50) ON @
probability space (Q2,.%#,P), we say that §o = %55’520 exists in LI(IP) for
some g > 1, if fg € %), and

és_g()_

S

limE &l' =0 (8.3.9)
SIJI,TOI 0‘ = U. ..

Corollary 8.16. Let k € [1,00).
(1) Let f € CELL(2,). Then f is intrinsically differentiable and

Df(p)(z) = V{D" f(n)()}(x), (x,p) eR*x Py (8.3.10)

When k < 2 and f € C5™' (P), we have f € CY(Py).
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(2) If fe Cbl (), then f((1 — s)p+ s6.) € CH(R?) with
V(1 —=s)u+s8)(x) =sDf((1—s)u+sd.)(z), =R (8.3.11)

Consequently,

1
Df(p)(z) = lirn S VA = s)u+s0)(2), (83.12)

feCh (), (w,p) € R x M.

(3) Let {&s}sefo,s0) be random variables on M with %, € & continuous in
s, such that & = %@!820 exists in L4(Q2 — TM;P) for some ¢ > 1.
Then

T~ (%)
540 S

=E(D (L)} (&) &) (8.3.13)

holds for any f € CE11(27;) such that for any compact set % C &y,
- p(g—1)
sup [V{DFf(u)}(z) <C(L+|al) v+, zeRY (8.3.14)
nex

holds for some constant C' > 0.

Proof. To apply Theorem 8.15, we extend a function f on & to f on 9y,
as in the proof of Proposition 8.14, i.e. by letting

) = ) (). e o

where h € C§°(R) with support contained in [7,2] and
13
h(r) =1 forr < |:§, §i|
It is easy to see that
F(L=s)pu+sv)=Ff((1—s)u+sv), s€l0,1],uve P,
and f € CPL1(2,) implies that f € CPL1(0N,) and

D¥f(u)=DPf(n), Df(u)=Df(p), pe2.



192 8 Calculus on the Space of Finite Measures

Then Corollary 8.16(1)-(4) follow from the corresponding assertions in The-
orem 8.15 with f replacing f.

Finally, since f € CFb1(22,) and

V{D" f(u)} = V{DP f}(u) = Df(n), n€ Py,

(8.3.13) follows from Theorem 8.7. O

4 (Gaussian measures on %, and M

The Gaussian measure, also called normal distribution, plays a key role
in probability theory and related analysis. For instance, by the central of
limit theorem, the renormalization partial sum of i.i.d. random variables
converges weakly to the standard Gaussian measure. In this section, we
introduce Gaussian measures on &, and 91 as images of Gaussian distri-

butions on Hilbert spaces.

§8.4.1 Gaussian measure on Hilbert space

Let H be a separable Hilbert space, with orthonormal basis (ONB for short)
{ei}i>1. Let (L, Z(L)) be a positive definite self-adjoint operator on H with

Lei = (;€4, ) 2 1

for positive constants {«;};>1 satisfying «; | 0 as i T oo and

[ee)
g oy < 00.
i=1

Definition 8.17. Let {};>1 bei.i.d. random variables with standard normal
distribution N(0,1). Then

O 1
=) ai&e
i=1

is called a Gaussian random variable on H, whose distribution

Gr(A) =P e ), AcHBH)
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is called Gaussian measure on H with covariance operator L, denoted by G =
N(0,L).
Below we introduce the integration by parts formula for Gy. To this

end, we introduce the class C} (H) of functions on H.

Definition 8.18. A function f on H is called Gadeaux differentiable, if for
any x € H,

H > v Vof(z) :=lim flx+ev) — f(x)
€l0 I3

eR

is a well-defined linear functional. In this case, the unique element V f(z) € H
such that
(Vf(@),v)m = Vof(z), veH
is called the Gadeaux derivative of f at point z.
If f has Gadaeux derivative and
fl+v) - fz) = Vof(2)
ollizs0 [0l&

then f is called Fréchet differentiable.

=0, ze€H,

If f is Fréchet differentiable and Vf : HH — H is continuous, we denote
f € CY(H). If moreover ||V f||m+|f| is bounded on H, we denote f € C}}(H).

Next, we introduce the divergence of vector fields on 7.

Definition 8.19. A vector field is a measurable map
v — .
We denote v € C (#; ) for each i > 1 we have
vi := (v, &) € CL(H),
and there exists a constant ¢ > 0 such that
o0
|| + Z |Vevi| < e
i=1
In this case,
o0
Vv = Zveiv,‘ e C()
i=1

is called the divergence of v.
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N

Theorem 8.20. Let f € C}(H) and v € C}(H; H) such that > 2%, |v;a;
is bounded. Then

/H@,medGL — /%J (i 7’;721' _ V*v)fdGL.

=1

Proof. We first formulate G, by using the coordinates
O :H>z— ((z,e)m)is1 € £,

where
o0
2= {7" = (ri)z}l S RY . ZTZZ < OO}
i=1
is a Hilbert space. Let

r2

1 _ i
Al(dn) = 20(‘71_6 20 dTZ', 1>1
i

be the centered normal distribution with variance «;. Then the product

measure
o0
A:Ilm
=1

is supported on #2, since
o o
/ (Zr?)]\(dr) = Za? < 0.
RN M i=1

It is easy to see that
G =Aod™!.

By combining this with the integral transformation theorem (Theorem 3.27)

and the integration by parts formula

[ gy an; = [ (FEE ) asan), b < CH)

Q;

we finish the proof. O
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§8.4.2 Gaussian measures on &,

Let p1p € &5 such that the tangent space 7 := T, 2 is a separable Hilbert
space. Let G, be the Gaussian measure on 5. This measure induces a

Gaussian measure on &, under the map
O H S P ppod L€ Py
Definition 8.21. We call
Nz :=Grod*

the Gaussian measure on &3 with parameter (uo, L).

By the chain rule Theorem 8.7, we have the following result.

Theorem 8.22. Let u,v € C}(Z). Then
fi=uod, g:=vod; € C,}(TMO,Q)
and

/ " (Du(u), Do()7, » Nyo 1(dp) = / (V1,Vg)r,, , dGy.
Py T,

©Q,2

§ 8.4.3 Gaussian measures on 91

In this part we construct Gaussian measures on 9 supported on the sub-

space of absolutely continuous measures

M. = {,u EM: p, = % exists}.

In this case, we choose

H = L*(R?, dz) := {h : RY = R is measurable, h(x)? dz < oo}.

Rd
We then consider the image of the Gaussian measure Gy, on H under the
map

Oy : H = L?(dx) > h— h(z)?dz € Mye.
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Definition 8.23. We call
NL = GL ©) (I)Q_l

the Gaussian measure on 9t (or M) with parameter L.

By Proposition 8.12 for k = 0 (see Exercise 5 below), we may prove the

following result.

Theorem 8.24. Let u,v € Cf’l’l(fm), and let H = L?(R%, dzx). Then
fi=uody, g:=wvodyc CL(H)

and
| 0P DPo@)ago Neldi) = [ (V4.¥g)m a6
P H
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5 Exercises
1. Prove that 9 is a Polish space.

2. Let
f) = g(u(ha), -, p(ha))
for some n > 1,9 € CY(R") and h; € CL(R?),1 < i < n. Prove that
f € CHP) and

d

Df(u) = (3ig)(u(ha), -+, p(hn))Vhi.

i=1
This type functions are called C;—cylindrical functions on &.
3. Let pg € &, be absolutely continuous with respect to the Lebesgue

measure. By [2, Theorem 6.2.10], for any p € 2 there exists a
unique ¢, € T}, x such that

el

= poo (id+¢u)"", Welpo, i) = (to(|opul*))

Please use this assertion and the chain rule to prove: if f € C1(%)
satisfies (8.1.12) for all u € &, with some constant ¢(p) > 0, then
for any u € %y,

1
F) — Fuo) = /0 (D) (0 Gd+ 16,07 6) 1y -

4. Let k € [1,00). For two probability measures pu,v € P, define the

k-variational distance

It = Vkyar = sup  |u(f) —v(f)].
[fI<1+]-|F

For any f € Cg’l’l(ﬁk) such that
IDf (@) <1+ Jzf*, pe Py, zeRY,

prove
() = FW) < Nl = ik, var-
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. For k € [0,1], let &, My, D, DF, CELL (M), CRM (2) and

C’IE(’l’l(E)ﬁk) be defined as before. Prove that Propositions 8.12-8.14
still hold. Can we also define the directional intrinsic derivative and
intrinsic derivative on & and My, for k € [0,1]7

. Let k € [0,00). Prove that there exists a constant ¢ > 0 such that

H,UJ - V”var + Wk(,u7 V)l\/k < CHM - VHk,vara p,v € Py.

Moreover, when k£ > 1, find counter example such that for any con-

stant ¢ > 0, the inequality

Wk(:ua V) < CHM - V"k,vara w V€ gzk

does not hold.

. Prove Theorem 8.22.

. Prove Theorem &.24.
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almost sure (a.s.), 49

Boolean algebra, 3
Borel o-algebra, 6
Borel field, 6

central limit theorem, 144
characteristic function, 71

of finite measure, 130
complete measure space, 24
conditional expectation, 114
conditional probability, 115
convergence in distribution, 54
convergence in r-th mean, 76
convergence in measure, 51
convexity extrinsic derivative, 178
coupling, 153
covariance, 71
covariance coefficient, 71
covariance matrix, 71
C, inequality, 77, 78

decomposition
of distribution function, 90
directional derivative, 170
distribution function, 33, 44
probability, 46
distribution law, 46

dominated convergence theorem, 65

elementary function, 37

ZL-system, 41

essential supremum, 94

existence of integral , 62
extension of measure, 18

extrinsic derivative, 178

family of consistent probability mea-
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Fatou-Lebesgue Theorem, 64
Fourier-Stieltjes transform, 130
Fubini’s theorem, 100
generalized, 107
function of sets, 12
o-finite, 12
o-additivity, 12
continuous, 15
finite, 12
finite additivity, 12
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Gauss measure on Hilbert space, 192
Gaussian measure on 91, 195
Gaussian measure on s, 194

geometric probability medel, 18

Holder’s inequality, 76

Hahn’s decomposition theorem, 85

indefinite integral, 67

independent, 47

indicator function, 37

infinite product o-algebra, 102
integrable, 62

integral, 60

integral characteristic function, 142
integral transformation theorem, 74
intrinsic derivative, 170

inverse formula, 131

inverse image, 34
Jensen’s inequality, 77

Kantorovich dula formula, 156

Kolmogorov’s consistent theorem, 125

A-system, 9

law of large numbers, 143

Lebesgue’s decomposition theorem,
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Lebesgue-Stieljes (L-S) integral, 74

Lebesgue-Stieltjes (L-S) measure, 44

L" space, 76

mathematical expectation, 70
measurable cover, 25

measurable cylindrical set, 102
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measurable function, 34
measurable map, 34
measurable space, 5
measure, 12
measure extension theorem, 20
measure space, 17
metrization of weak topology, 151
Minkowski’s inequality, 78
mixed conditional distribution, 121
monotone class, 7
monotone class theorem

for functions, 41

for set classes, 10
monotone convergence theorem, 61
w¥-measurable, 21

mutually singular, 85

nonnegative definite function, 145
null set, 24

optimal mean square approximation,
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optimal transport, 154

outer measure, 20

m-system, 9

positive part and negative part of
function, 39

probability measure, 12

probability space, 17

product o-algebra, 11

Prohorov’s theorem, 138

r-th central moment, 71

r-th moment, 71
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Radon-Nikodym derivative, 90 Wasserstein distance, 155
Radon-Nikodym theorem, 89 weak convergence, 135

random variable, 33
continuous type, 75
discrete type, 75
rectangle, 11
regular conditional distribution, 121
regular conditional probability, 120

restriction of measure, 18

section of a function, 99
section of a set, 98
semi-algebra, 2
semi-algebra , 2
o-algebra, 5

signed measure, 12
simple function, 37

strong convergence, 135

tangent space, 169

tight, 138

total variance distance, 161
transition measures, 106
transition probability, 106

Tulcea’s theorem, 108

uniform continuity in integral, 80
uniform convergence, 135

uniform integrability, 80

vague convergence, 135
variance, 71
vector field, 169

Wasserstein coupling, 162
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