On Ward Numbers and Increasing Schroder Trees

Elena L. Wang! and Guoce Xin?

! Center for Applied Mathematics, Tianjin University, Tianjin, 300072, P.R. China
2 School of Mathematical Sciences, Capital Normal University, Beijing, 100048, PR. China
! Email address: ling_wang2000@tju.edu.cn
2 Email address: guoce xin@163.com

December 31, 2025

Abstract

The Ward numbers W (n, k) combinatorially enumerate set partitions with block
sizes > 2 and phylogenetic trees (total partition trees). We prove that W (n, k) also
counts increasing Schrader trees by verifying they satisfy Ward’s recurrence. We con-
struct a direct type-preserving bijection between total partition trees and increasing
Schroder trees, complementing known type-preserving bijections to set partitions (in-
cluding Chen’s decomposition for increasing Schroder trees). Weighted generalizations
extend these bijections to enriched increasing Schroder trees and Schroder trees, yield-
ing new links to labeled rooted trees. Finally, we deduce a functional equation for
weighted increasing Schroder trees, whose solution using Chen’s decomposition leads

to a combinatorial interpretation of a Lagrange inversion variant.

AMS subject classification: 05A15, 05A18, 05C05.
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1 Introduction

The Ward numbers W (n, k), introduced by Ward [[15] in his study of Stirling number rep-
resentations as factorial sums (see OEIS sequences A134991, A181996, and A269939 [9]),

satisfy the recurrence forn > 1, k > O:

W(n, k) =kWn-1k)+n+k-1)W(n-1,k-1) (1.1)
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with initial condition W (0, k) = do, where ¢, ; is the Kronecker delta. Direct verifica-
tion shows W (n,n) = (2n — 1)!l, and for n > 1 we have W(n,0) = 0, W(n,1) = 1,
and W(n,2) = 2" —n — 3. The row sums W (n) := >, ., W(n, k) yield sequence
A000311 [9]], enumerating total partitions. The term “total partitic;n” originates from Schroder’s
fourth problem [12] on parenthesis arrangements with associativity and commutativity con-
straints [8, [11]. As formalized by Stanley [13]], a total partition recursively decomposes a set
into singletons through successive nontrivial partitions (each with > 2 blocks); for example,
the set [3] = {1, 2, 3} admits four total partitions.

Combinatorial interpretations of W (n, k) include:

(1) Set partitions with block sizes > 2 [[1];

(i) Phylogenetic trees (total partition trees) [[10} 12, [14]].

We provide a new interpretation via increasing Schrider trees. See Proposition [3.1]

Schroder trees, introduced by Chen [2], are labeled rooted trees where for each vertex,
the set of its children (termed subtrees in Chen’s original work) is endowed with an ordered
partition. An ordered partition of a set is a sequence of pairwise disjoint, nonempty subsets
whose union is the entire set. For example, in the Schroder tree shown on the right in Figure
the vertex with children labeled 2, 3, 4 has ordered partition [{3,4},{2}], where each
block corresponds to the circled groups of children in the figure.

Chen established a decomposition of these trees into meadows, providing a unified frame-
work for tree enumeration and Lagrange inversion, as they generalize both rooted trees and
plane trees. Motivated by a problem of Gessel, Sagan, and Yeh [6], Chen [3] later defined
increasing Schroder trees with a more intricate decomposition algorithm. Both algorithms

preserve the type of a Schroder tree, defined as the partition type of its non-root vertices.

This paper is organized as follows. Section [2] introduces weighted increasing Schroder
trees, as they provide the combinatorial framework for our new interpretation of W (n, k). We
review Chen’s decomposition algorithms and interpret Schroder trees as enriched increasing
Schroder trees. Using Chen’s bijections, we establish a type-preserving bijection between
them and connect enriched increasing Schroder trees to labeled rooted trees. Section [3] de-
tails three combinatorial interpretations of Ward numbers. We prove combinatorially that
(iii) satisfies recurrence (I.I). While bijections between (i) and (ii) are given by ErdGs—
Székely [4] and Haiman—Schmitt [7], and Chen’s algorithm links (i) and (ii1), we construct a
direct type-preserving bijection between (ii) and (iii). Weighted Ward numbers are also con-
sidered. Finally, Section {4 links Chen’s decomposition to a variant of Lagrange inversion:
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the tree structure induces a functional equation whose solution via Chen’s decomposition al-
gorithm yields the combinatorial interpretation of Ward numbers, thus bridging enumerative

tree theory with analytic inversion identities.

2 Weighted increasing Schroder trees

This section reviews Chen’s two decomposition algorithms: one for Schroder trees and an-
other for increasing Schroder trees. The weighted version of the latter structure plays a
fundamental role. We establish bijections between enriched increasing Schroder trees and
Schroder trees, and between signed enriched increasing Schroder trees and labeled rooted

trees.

2.1 Chen’s two decomposition algorithms

We begin by recalling essential terminology. An increasing tree is a labeled rooted tree where
labels increase along every path from the root. A Schroder tree is a labeled rooted tree in
which the subtrees of each vertex are endowed with an ordered partition structure. It is called
an increasing Schroder tree if it is also an increasing tree. The height of a rooted tree is the
number of edges on the longest path from the root to a leaf. A small tree is a rooted tree
of height one. A meadow is a forest of small trees; it is increasing if all its small trees are

increasing.

In what follows, the weight of an object is always defined as the product of individual
weights, and the weight of a set of objects is defined as the sum of the weights of its elements,
unless specified otherwise. For a Schroder tree 7' (increasing or not), we assign a weight g;
to each block of size 7 for all i. If the weight of 7" is w(T") = ¢{" g5 - - -, then we say T'
has type 1™12™2 ... meaning 7T contains m; blocks of size i for each i. For a meadow, we

assign the weight g; to each small tree on ¢ 4 1 vertices, and its type is defined analogously.

Chen [2] first introduced Schroder trees to provide a combinatorial interpretation via
a sign-reversing involution for cancellations occurring in the Lagrange inversion formula.

Chen’s first decomposition algorithm is given by the following bijection.

Theorem 2.1 (Chen). There exists a type-preserving bijection ¢ from Schrider trees with n

vertices and k blocks to meadows with n + k — 1 vertices and k small trees.

For example, Figure shows a Schroder tree of type (2, 1) (left) and its image under ¢, a



meadow of the same type (2, 1) (right). This bijection is remarkably general, specializing to

known bijections for specific assignments of the weights g;.

VAN

Figure 1: A Schroder tree and its meadow decomposition.
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Motivated by questions from Gessel, Sagan, and Yeh [6]] concerning tree enumeration by
net inversion number, Chen [3] developed his second algorithm involving increasing struc-

tures. He introduced increasing Schroder trees and established this decomposition.

Theorem 2.2 (Chen). There is a type-preserving bijection ¢ from the set of increasing
Schroder trees with n vertices and k blocks to the set of increasing meadows withn + k — 1

vertices and k small trees.

Importantly, ¢ is not merely a restriction of ¢ to increasing trees. Its construction is

significantly more intricate and technical.

A direct consequence of the two bijections is the following result.

Proposition 2.3. The total weight under {g;}i>1 of Schrider trees with n vertices and k
blocks equals the total weight of increasing Schrider trees under {(i + 1)g;}i>1 with n

vertices and k blocks.

Proof. The proposition follows from the meadow perspective using Chen’s two bijections.
Consider a set partition P of [n + k — 1] without singleton blocks. It suffices to show that the
total weight for meadows over P equals that of the unique increasing meadow over P. This
holds because for each block of size 7 + 1 (« > 1), there are 7 + 1 ways to form a small tree,
each contributing weight g;, yielding a total weight of (¢ + 1)g; per block; This matches the
weight (i + 1)g; of the unique increasing small tree for that block. O

We now consider specific choices of the weight sequence g;. The total weights of increas-
ing Schroder trees for different choices of ; exhibit many interesting properties, as illustrated
in Section [3.2]on weighted Ward numbers.

In the next subsection, we study weighted increasing Schroder trees under {i + 1}, and
its signed version {(—1)"" (i 4+ 1) };>1.



2.2 Enriched increasing Schroder trees

An enriched increasing Schroder tree is an increasing Schroder tree where each block is
marked with a * at one of 7 + 1 possible positions for a block of size i: either before the first

vertex or to the right of any vertex in the block.

Theorem 2.4. There is a type-preserving bijection between the set of enriched increasing

Schroder trees with n vertices and k blocks and Schréder trees with n vertices and k blocks.

Proof. Given a Schroder tree T', apply Chen’s first bijection to obtain a meadow M = ¢(T).
For each small tree S in M, convert it to an increasing small tree and mark it with a * as
follows: (i) if S is increasing, place a * before the first leaf; (ii) if the jth leaf is the smallest,

swap it with the root and place a * to the right of the original root (now a leaf).

Now we obtain an increasing meadow )M, where each small tree is endowed with a x
structure on its leaves. Apply Chen’s second bijection ¢! to M and carry the * structure (by
[3, Theorem 3.5], ¢ carries combinatorial structures). The result is an increasing Schroder
tree with each block marked by a %, giving the enriched tree.

This is a type-preserving bijection as each step is invertible and preserves the block struc-
ture. ]

A signed Schroder tree corresponds to a Schroder tree with weight g; = (—1)"*!. Thus
a block of size 7 has weight (—1)"*!, and a Schroder tree T on n vertices with blocks
By, ..., By has sign ]_[?:1(—1)“51“rl = (—=1)"**=L1 The sign of an (enriched) increasing

Schroder tree is defined analogously.

Theorem 2.5. There is a sign-reversing involution 1, on signed Schroder trees on n vertices

with the following properties:

1. 1, preserves the underlying rooted tree structure, hence applies to signed increasing

Schroder trees.

2. The fixed points of 1, are Schroder trees where all blocks are singletons, and the

children of each internal vertex have increasing labels.

Consequently, the signed count of Schréder trees on n vertices is n" 1, and the signed count

of increasing Schréder trees on n vertices is (n — 1)\.

Proof. We construct v,, recursively. The base case v; is trivial. Assume ), is defined for

all m < n. Given a Schroder tree 7' on n vertices, let the root have children vy, . .., v, with



subtrees 7; on m; vertices rooted at v;. Then m; < n for each 7. Apply ¥,,,, to Ty: if T3 is
not a fixed point, define v,,(T") by replacing T} with v,,,, (T7); otherwise, if 71, ..., T;_; are
fixed points but 7; is not, define v,,(T") by replacing T; with ,,,, (7).

For the case where all 71, ..., Ty are fixed points, define an auxiliary map ¢/’ acting on
the ordered partition of the set of children {v1, ..., v,} as in Lemma[2.7below. Then v, (T)

preserves each subtree but applies ¢/’ to the partition of {vy, ..., v,}.

The properties of 1), follow from the construction. The consequences hold since: fixed-
point Schrider trees correspond to rooted trees (counted by n"~!); fixed-point increasing

Schrider trees correspond to increasing rooted trees (counted by (n — 1)!). 0

Combining Theorem [2.5]and Proposition [2.3] yields:
Corollary 2.6. The signed count of enriched increasing Schroder trees on n vertices is n™ ',
Let [n] = {1,2,...,n} and OP(n) be the set of ordered partitions of [n], i.e., sequences
[Bi, ..., By] where B; are nonempty, disjoint, and | J, B; = [n]. The sign of B, is sign(B;) =
(—1)/Bil+1 and the sign of op = [By, . .., By] is

sign(op) = Hsign(Bi) = (=1)"**

Lemma 2.7. For all integers n > 1, there is a sign-reversing involution 1" on OP(n) with
the unique fixed point [{1},{2},...,{n}].

This lemma is due to Grigory, as we will explain. Here we present a direct construction

of the involution.

Proof. Let OP(n) denote the set OP(n)\{[{1}, {2}, ..., {n}]}, thatis, all ordered partitions
of [n] except the one consisting of n singleton blocks in natural order. It suffices to define
a sign-reversing involution ¢’ : OP(n) — OP(n) that pairs each ordered partition with

another of opposite sign.

Given op € 5]5(71), let i be the largest index such that B, = {¢} for { = 1,2,... 4;if no
such index exists, set @ = 0. Note that ¢ < n — 2 because op # [{1},{2},...,{n}]|. Then
the element ¢ + 1 lies in some block By with s > ¢ 4+ 1. We distinguish two cases based on
whether B, = {i + 1}.

Case 1. If B, = {i+ 1}, define ¢/(op) by merging blocks B, ; and B, into a single block. Note
that s > ¢ + 1 by the maximality of 7.



Case 2. If B, # {i+ 1}, define ¢//(op) by splitting B; into two blocks B \ {i + 1} and {i + 1}.
Clearly, ¢/" maps Case 1 elements to Case 2 elements, and vice versa. Moreover, '

is the identity map and sign(¢’(op)) = —sign(op). Thus ¢ is the desired sign-reversing
involution. O]

For example, given n = 3, there are 12 elements in 515(3)

Table 1: An example of the involution ¢/

op ¥’ (op) sign(op)  sign(¢’(op))
{15 8542 ({1, {2,3]] + -
{25 {133 ({12}, {3}] + -
{25 35 {1 ({23, {1, 3}] + -
(351542 ({13}, {2]] + -
(3% 21 {13]  [{3){1,2}] + -
[{1,2,3}] {23} {1}] + -

The involution in Lemma 2.7 yields a combinatorial proof of the identity

n

> (—1)FRIS(n k) = (-1)", 2.1)

k=0

where S(n, k) denotes the Stirling numbers of the second kind.

A related question on how to give a combinatorial proof of this identity was raised on
Math StackExchange In that discussion, M. Grigory gave a bijective proof of the identity
using the interpretation of k!S(n, k) as the number of ordered set partitions of an n-element
set into k& blocks. Indeed, he recursively defined an involution, which is equivalent to our

non-recursive version.

3 Ward numbers

In this section, we discuss three combinatorial interpretations of the Ward numbers: the first
interpretation counts set partitions where each block has at least two elements; the second
is expressed in terms of total partitions; and the third involves increasing Schroder trees. To

the best of our knowledge, the third interpretation is new.

ISee https://math.stackexchange.com/questions/395139
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3.1 Combinatorial interpretations of Ward numbers

Ward numbers, recursively defined by (1.1]), admit various combinatorial interpretations.

Here we introduce three of them and consider their weighted versions.

Let S5(n, k) denote the number of partitions of an n-element set into & nonempty subsets,

each of size at least two. We assign the weight g; to each block of size 7 + 1.

A total partition of the set [n] is a process that recursively partitions non-singleton blocks
into at least two nonempty subsets until only singletons remain. This process has a natural
representation by a semi-labeled rooted tree, which is a rooted tree with labeled leaves and
unlabeled internal vertices. A semi-labeled rooted tree with each internal vertex having
degree at least 2 is referred to as a fotal partition tree. For a direct correspondence between
total partitions and total partition trees, see [13]. To recover the total partition from its tree
representation, we associate each internal vertex with the set of its leaf descendants. We
assign the weight g; to each internal vertex of degree ¢ 4+ 1. Similar to the case for Schroder
trees, for the objects considered here, if the weight is g;"' g5'* - - -, then the type is defined to
be 112m2 . ..

Proposition 3.1. The following quantities are all equal to the Ward number W (n, k).

1. Sg(n + /{3, /{3),
2. The number of total partition trees on [n + 1| with k internal vertices;

3. The number of increasing Schroder trees with n + 1 vertices and k blocks.

The first item is due to Carlitz [1], who established W (n, k) = Sy(n+k, k) by comparing
expressions for Stirling numbers of the second kind involving sums over either W (n, k) or

Sa(n, k). The second item is well-known; see [10].

Here we provide a combinatorial argument for items 1 and 3 from the recurrence per-

spective.

Recurrence proof of items 1 and 3. For item 1, it suffices to show that forn > 2, k > 1,
SQ(TL, k) = kSg(n - 1, k) + (n — 1) SQ(?”L - 2, k— 1),
with initial conditions Sy(n,0) = d,,0 forn > 0, S2(0, k) = dx 0, and Sz(1, k) = 0 for k > 0.

Consider a partition of [n] into &k subsets. We examine the position of element 7.



Case 1: n lies in a block of size at least three. Removing n yields a partition of [n — 1]
into k subsets. Since n can be reinserted into any of the %k blocks, this case contributes
kSs(n — 1, k) partitions.

Case 2: n lies in a block of size two. Removing the block containing n leaves a partition
of an (n — 2)-element set into & — 1 subsets. The n — 1 choices for the element paired with
nyield (n — 1)Sy(n — 2, k — 1) partitions.

The cases are disjoint and exhaustive. Verification of initial conditions is straightforward.

This completes the proof for item 1.

For item 3, denote by 7'(n, k) the number of increasing Schroder trees with n+ 1 vertices
and k blocks. We show that W (n, k) and T'(n, k) satisfy the same recurrence relations and
initial conditions. By definition, 7'(0, k) = dx0 and T'(n,0) = 0 forn > 1. Forn > 1 and
k > 1, we establish

T(n,k)=kT'(n—1,k)+(n+k—-1)T(n—-1,k—1).

Consider the block containing the leaf n+ 1 in an increasing Schroder tree with & blocks.
The case where this block is not a singleton is counted in k7'(n — 1, k) ways, with the factor
k corresponding to the choices for the block into which n + 1 is inserted. The case where the
block is a singleton is counted in (n+k—1)7'(n—1, k—1) ways. The factor (n+k—1) arises
from two alternatives: either the block containing n+1 is the leftmost child of its parent node
(giving n choices for the parent node), or it is immediately to the right of another block of

the parent node (giving & — 1 choices for the adjacent block). 0

Additionally, Price and Sokal [10] interpreted Ward numbers using augmented perfect
matchings. Their work develops the recurrence relation for augmented perfect matchings
and establishes a bijection between augmented perfect matchings and phylogenetic trees,
which is a well-known interpretation for Ward numbers.

Chen’s second decomposition ¢ explains the equality between items 1 and 3. Moreover,
¢ is type-preserving.

We observe that the equality between items 1 and 2 follows from the following bijection,

which was independently found by Erdds and Székely [4]] and by Haiman and Schmitt [[7].

Theorem 3.2 (Erdos-Székely, Haiman-Schmitt). There is a type-preserving bijection be-
tween the set of semi-labeled rooted trees with k unlabeled internal vertices and n+1 labeled

leaves and the set of partitions of k blocks on n + k elements.



Note that an internal vertex of degree 1 corresponds to a singleton block. Next we present

a type-preserving bijection for items 2 and 3.

Theorem 3.3. For n > 1, there is a type-preserving bijection between the set of total parti-
tions of [n] whose total partition tree has k internal vertices (including the root) and the set

of increasing Schrider trees on [n] with k blocks.
Proof. We establish the bijection through the following explicit construction:

(=) From a total partition to an increasing Schroder tree:

Let P be a total partition of [n]. We construct an increasing Schroder tree 7" recursively as
follows. For the base case of a trivial total partition on a single element, the corresponding
increasing tree is uniquely defined. For non-trivial partitions, let 7 = {By, Bs, ..., By}
be the first partition of P, with blocks ordered increasingly by their minimal elements

my, Mo, ..., M.
e LetT},T5,...,1) denote the increasing Schroder trees corresponding to the total par-
titions induced by P on each block By, Bs, . . ., B.

¢ Construct an increasing Schroder tree 7" with root m; and left-most block {mo, ..., my},

where each m; represents the tree 7; for: = 2, ... k.
* Merge 17 with 7" by identifying their roots and attaching 7} as the rightmost subtree
of T".
(<) From an increasing Schroder tree to a total partition:
Let T' be an increasing Schroder tree with n vertices. The correspondence is straightfor-

ward for n = 1. For n > 1, we proceed recursively:

* Let the left-most block of the root of 7" be {ms, ms, ..., my}, where each m; is the
root of a subtree 7;. Let T} be the subtree obtained by removing the left-most block of
the root (along with its descendants). Note that each 7} is an increasing Schroder tree.

* The first partition is recovered as {7}, 75, ..., T}, with the internal order structure
within each 7; being disregarded.

* Repeat this procedure for each subtree 7; containing more than one vertex.

This bijection demonstrates that each internal vertex in a total partition tree corresponds

to a block in the increasing Schroder tree. Consequently, the number of total partition
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trees with n + k vertices and k internal vertices equals the number 7'(n — 1, k) of increas-
ing Schroder trees with n vertices and k& blocks. This confirms that the bijection is type-

preserving. The proof is complete. 0

We illustrate this bijection with the following example. Figure 2] provides a total par-
tition of [6] whose total partition tree has 4 internal vertices (including the root) and the

corresponding increasing Schroder trees on [6] with 4 blocks, both of type (2,13).

123456

Figure 2: Illustration of the bijection between total partitions and increasing Schroder trees.

3.2 Weighted version

Let us define the weighted Ward number W9 (n, k) for non-negative integers n and k as the
total weight of partitions of the set [n + k] into & blocks, each of size at least two. The initial
condition is given by W9 (n, 0) = d,,o for all n > 0. Recall that the weight of a block of size
1+ 1 is assigned g;. This concept can also be interpreted in terms of total partition trees and

increasing Schroder trees.

The following generating function expression can be derived directly:

tk 1 x? a3 g
Wo(n, k) = {m} il (915 tgagy t+- ) ; (3.1

where [2"*] denotes the coefficient extraction operator.

To conclude this section, we summarize specializations of the sequence {g;} and their
combinatorial interpretations. Here, 1W9(n) represents the sum of W9 (n, k) over all k, while
W9(n) denotes the alternating sum Y, (—1)"™*W9(n, k). The key results are presented in

Table [2] with detailed formulas and references provided below.

Detailed descriptions:
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Table 2: Specializations of g; and combinatorial interpretations

gi Sequence name of W9 (n, k) OEIS Wi (n) W9 (n)
1 Ward set numbers A269939 A000311 n!
1+ 1 Enriched Ward numbers A368584 A053492 (n+1)"
il Ward cycle numbers A269940 A032188 1
(t+1)! Weighted Ward numbers A357367 A032037 (n+1)!
(1 —1)! — A239098 A000312,n™ A074059
gi =01 — — A001147, (2n — 1! W9(n)
gi =201 — — A001813, (2n)!/n! W9(n)
. . W+ ,
9i = 9;0i; Partition coefficients — M 9;0n,ij (=) " W9(n)
1. For g; = 1, the ordinary Ward numbers (or Ward set numbers) are given by W (n, k) =

Sk (=1 (" HEYS(n 4 m,m). The sum W (n) is the number of total partitions

m=0 n+m

of n + 1 (A000311). Theorem [2.5|proves combinatorially:

W(n) =Y (=1)""*W(n, k) = nl.

. When g; = i+1, the enriched Ward numbers is W (n, k) = k!("1*)S(n, k) (A368584).

k
The sum W (n) is A053492, counting Schrider trees with 1 + 1 vertices. Theorem[2.3]

proves combinatorially:

W(n) = S (1) W (n, k) =) (—1)" k! (” Z ’“) S(n, k) = (n+1)",

k k

which enumerates labeled rooted trees (A000169).

. Setting g; = 4! yields the Ward cycle numbers W9(n, k) = S°F _ (—1)™+F (") |s(n+

m=0 n—+m

m,m)|, where s(n, k) are the signed Stirling numbers of the first kind. This is A269940.
The total sum W9(n) is A032188, counting plane increasing trees on n + 1 vertices
where each vertex of degree k > 1 admits 28! colorings. Additionally, the alternating

sum is 1.

. If g; = (i+1)!, then W9(n, k) is A357367, which can be written as anzo(—l)"”k ("+k )L(n+

n-+m

m,m), with L(n + m,m) the unsigned Lah numbers (A271703). The sum W9(n) is
A032037 and equals (n + 1)! times the n-th little Schréder number (A001003). More-
over, the alternating sum is (n + 1)!.
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5. For g; = (i — 1), the numbers W¥(n, k) are A239098, representing constant terms
of polynomials related to Ramanujan’s ) polynomials. The sum W9(n) = n" is
A000312. The alternating sum we (n) is A074059, giving the dimension of the coho-
mology ring of the moduli space of genus 0 curves with n + 1 marked points, subject
to associativity equations in physics.

6. When g; = 1 and g = 0 for & > 1, W9(n) = (2n — 1)!! (A0O01147). This counts
labeled plane increasing trees on n + 1 vertices and solves Schroder’s third problem.

7. When g; = 2 and g, = 0 for k > 1, W9(n) = (2n)!/n! (A001813), counting labeled
plane trees on n + 1 vertices.

8. In general, for fixed j > 1 with g; = 0 for i # j, W9(n) = 0 unless n = ij for some
integer ¢ > 0. Then
GG +1)
G+
The coefficient counts partitions of i(j + 1) labeled items into ¢ unlabeled boxes of
size j + 1 (A060540).

Wo(ij) =

We remark that in the last three cases, W9(n, k) is nonzero only for a particular k, therefore,
the nonzero term of W9 (n, k) is of the same value as W9(n).

4 A variation of the Lagrange inversion formula

There exists a less familiar reformulation of the Lagrange inversion formula, which is equiv-
alent to the classical version. In this section, we establish a connection between this variation

and the decomposition algorithm for increasing Schroder trees.

Let f(z) = > 5, a, %7 be a formal power series with a; # 0, and let g(z) = Y o>l bt
denote its compositional inverse, satisfying f(g(x)) = g(f(x)) = x. The compositional

inverse is also denoted by f<~!>(x). The classical Lagrange inversion formula expresses:

w=lamnl (i)
o ln=1)! fl@))
We now discuss the following equivalent formulation of the Lagrange inversion formula. See

Theorem 2.6.1 in the nice survey by Gessel [5] about the Lagrange inversion formula.

Theorem 4.1. Let h(z) be a formal power series with h(0) = 0, h'(0) = 1. Then we have

(@) =2+ ) % ((z - h(x))k)(k_l) : (4.1)

k>1
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Proof. Following the notations in Section 3.2, let g1, go, . . . be a sequence of indeterminates.
The weight of a block with 7 vertices in a Schroder tree is assigned g;. Denote by W, the total
weight of all increasing Schroder trees on n vertices, and by V,, the weight for all increasing

Schroder trees on n vertices such that the root has only one block.
We aim to establish a functional equation for
1 n
n>1
A combinatorial formula for WW,, will lead to a solution of this functional equation.

Consider an increasing Schroder tree 7' on n + 1 vertices such that the root has & blocks.
Let B; be the set of vertices in the ¢-th block of the root of 7" along with all their descendants.
Then By, Bs, ..., By, form a partition of {2,3,...,n + 1}. By adding the element 1 as the
root to the subtree restricted to 5;, we obtain an increasing Schroder tree where the root has

only one block. This leads to the recurrence relation:

Wn+1 = Z V51+1Vb2+1 T %ﬁb (4~2)

(B1,Bz,...,By)
where (By, Bs, . .., By) ranges over all ordered partitions of {2,...,n + 1}, and b; = | B;|.

For an increasing Schroder tree () where the root has only one block with n + 1 vertices,
removing the root of () gives the recurrence relation:

Vigr = Y giWe, W, -+ W, (4.3)
{C1,Ca,...,.Cr}

where {C4, Cs, . . ., C } ranges over all unordered partitions of {2, ...,n+1},and ¢; = |C}|.

Using generating function theory, equations (4.2)) and (#.3)) lead to:

k
> %Wnﬂxn => <Z %Vnﬂg;") , (4.4)

n>1 E>1 \n>1

1 n 1 n
Z Hv’n-‘rlx =g Z ﬁWniU ) 4.5)
n>1 n>1

where

1 n
g(x) =) —9n



with the convention gy = 0. Define
1 n
f(z) = Z mgn—lx .
n>1
From equations (#.4)) and (.5)), we derive the differential equation:

1

W)= vy

which can be rewritten as:
W) — f/(W(z))W'(x) = 1.
This leads to the equation:
W(z) = f(W(z)) = .
Let h(z) = x — f(z). Then h(0) = 0, #'(0) = 1, and importantly, W (z) = (h(z))<"'>.

We now compute W (z) in an alternative manner. By applying the type-preserving bi-
jection established in Theorem we observe that IV, can be expressed as the sum of
Wik = W9n — 1,k), as defined in (3.I). For £ > 1, we have the generating function

relation:

k
1 1 1 1
—Wn ntk—1 _ — S n — k. 4.6
Z(n+k—1)! AT i | 2 o w! (4.6)
n>2 n>1
By differentiating both sides of {.6) (k — 1) times, we obtain the relation:
1, (k=1)
S e = ()
n>2

Summing over all %k, we arrive at the expression:
_g;+z<z _Wnkx>_x+zk‘ k=1 (4.7)
k>1 n>2 k>1

This completes the derivation of the desired formula for the inverse of h(x). O

It is worth noting that the restriction on the coefficient of x in h(z) from the previous the-
orem can be removed by utilizing the relation [ah(z)]<~'> = h<"1>(z/a) for any nonzero
constant a. In the context of Theorem .1}, setting g; = 1 for all ¢ reduces W, to the number
of increasing Schroder trees with n vertices. Consequently, the generating function for W,
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becomes W (z) = (1 + 2z — e®)<~!>, which coincides with the generating function for total

partitions. As a consequence of Theorem[.1] we have the formula

Wo= Y (~D*S(n+i—1,i) (” Tk 1). (4.8)

n+1—1
1<i<k<n -

The classical Lagrange inversion formula also gives the following infinite sum formula:

1
Wn:ZWS(nJrk—l,k), (4.9)

k>0

where recall that S(0,0) = 1 and S(n,0) = 0 forn > 1.

5 Concluding Remarks

We have provided an interpretation of the Ward numbers W (n, k) using increasing Schroder
trees and considered their weighted counterparts. The formulas for weighted Ward numbers
presented in Section [3.2] can be derived through generating functions, specifically as the
compositional inverse of an explicit generating function within the framework of Theorem
Observing the results in Table [2| it appears that W (n) admits a particularly elegant
formula. We have established combinatorial proofs for both the ordinary and enriched cases.
Exploring combinatorial proofs for the remaining cases might be an interesting direction for
further research.

We propose the following open problem: Find a direct bijective proof of Theorem [2.4
That is, construct a direct bijection between enriched increasing Schroder trees and Schroder
trees. While these two structures share similarities, they exhibit significant differences. Our

current proof heavily relies on Chen’s second decomposition, which is elegant but technical.
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