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Abstract

The Ward numbers W (n, k) combinatorially enumerate set partitions with block
sizes ≥ 2 and phylogenetic trees (total partition trees). We prove that W (n, k) also
counts increasing Schröder trees by verifying they satisfy Ward’s recurrence. We con-
struct a direct type-preserving bijection between total partition trees and increasing
Schröder trees, complementing known type-preserving bijections to set partitions (in-
cluding Chen’s decomposition for increasing Schröder trees). Weighted generalizations
extend these bijections to enriched increasing Schröder trees and Schröder trees, yield-
ing new links to labeled rooted trees. Finally, we deduce a functional equation for
weighted increasing Schröder trees, whose solution using Chen’s decomposition leads
to a combinatorial interpretation of a Lagrange inversion variant.

AMS subject classification: 05A15, 05A18, 05C05.
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1 Introduction

The Ward numbers W (n, k), introduced by Ward [15] in his study of Stirling number rep-
resentations as factorial sums (see OEIS sequences A134991, A181996, and A269939 [9]),
satisfy the recurrence for n ≥ 1, k ≥ 0:

W (n, k) = kW (n− 1, k) + (n+ k − 1)W (n− 1, k − 1) (1.1)
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with initial condition W (0, k) = δ0,k, where δi,j is the Kronecker delta. Direct verifica-
tion shows W (n, n) = (2n − 1)!!, and for n ≥ 1 we have W (n, 0) = 0, W (n, 1) = 1,
and W (n, 2) = 2n+1 − n − 3. The row sums W (n) :=

∑
k≥0W (n, k) yield sequence

A000311 [9], enumerating total partitions. The term “total partition” originates from Schröder’s
fourth problem [12] on parenthesis arrangements with associativity and commutativity con-
straints [8, 11]. As formalized by Stanley [13], a total partition recursively decomposes a set
into singletons through successive nontrivial partitions (each with ≥ 2 blocks); for example,
the set [3] = {1, 2, 3} admits four total partitions.

Combinatorial interpretations of W (n, k) include:

(i) Set partitions with block sizes ≥ 2 [1];

(ii) Phylogenetic trees (total partition trees) [10, 12, 14].

We provide a new interpretation via increasing Schröder trees. See Proposition 3.1.

Schröder trees, introduced by Chen [2], are labeled rooted trees where for each vertex,
the set of its children (termed subtrees in Chen’s original work) is endowed with an ordered
partition. An ordered partition of a set is a sequence of pairwise disjoint, nonempty subsets
whose union is the entire set. For example, in the Schröder tree shown on the right in Figure
2, the vertex with children labeled 2, 3, 4 has ordered partition [{3, 4}, {2}], where each
block corresponds to the circled groups of children in the figure.

Chen established a decomposition of these trees into meadows, providing a unified frame-
work for tree enumeration and Lagrange inversion, as they generalize both rooted trees and
plane trees. Motivated by a problem of Gessel, Sagan, and Yeh [6], Chen [3] later defined
increasing Schröder trees with a more intricate decomposition algorithm. Both algorithms
preserve the type of a Schröder tree, defined as the partition type of its non-root vertices.

This paper is organized as follows. Section 2 introduces weighted increasing Schröder
trees, as they provide the combinatorial framework for our new interpretation ofW (n, k). We
review Chen’s decomposition algorithms and interpret Schröder trees as enriched increasing
Schröder trees. Using Chen’s bijections, we establish a type-preserving bijection between
them and connect enriched increasing Schröder trees to labeled rooted trees. Section 3 de-
tails three combinatorial interpretations of Ward numbers. We prove combinatorially that
(iii) satisfies recurrence (1.1). While bijections between (i) and (ii) are given by Erdős–
Székely [4] and Haiman–Schmitt [7], and Chen’s algorithm links (i) and (iii), we construct a
direct type-preserving bijection between (ii) and (iii). Weighted Ward numbers are also con-
sidered. Finally, Section 4 links Chen’s decomposition to a variant of Lagrange inversion:
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the tree structure induces a functional equation whose solution via Chen’s decomposition al-
gorithm yields the combinatorial interpretation of Ward numbers, thus bridging enumerative
tree theory with analytic inversion identities.

2 Weighted increasing Schröder trees

This section reviews Chen’s two decomposition algorithms: one for Schröder trees and an-
other for increasing Schröder trees. The weighted version of the latter structure plays a
fundamental role. We establish bijections between enriched increasing Schröder trees and
Schröder trees, and between signed enriched increasing Schröder trees and labeled rooted
trees.

2.1 Chen’s two decomposition algorithms

We begin by recalling essential terminology. An increasing tree is a labeled rooted tree where
labels increase along every path from the root. A Schröder tree is a labeled rooted tree in
which the subtrees of each vertex are endowed with an ordered partition structure. It is called
an increasing Schröder tree if it is also an increasing tree. The height of a rooted tree is the
number of edges on the longest path from the root to a leaf. A small tree is a rooted tree
of height one. A meadow is a forest of small trees; it is increasing if all its small trees are
increasing.

In what follows, the weight of an object is always defined as the product of individual
weights, and the weight of a set of objects is defined as the sum of the weights of its elements,
unless specified otherwise. For a Schröder tree T (increasing or not), we assign a weight gi
to each block of size i for all i. If the weight of T is w(T ) = gm1

1 gm2
2 · · · , then we say T

has type 1m12m2 · · · , meaning T contains mi blocks of size i for each i. For a meadow, we
assign the weight gi to each small tree on i+ 1 vertices, and its type is defined analogously.

Chen [2] first introduced Schröder trees to provide a combinatorial interpretation via
a sign-reversing involution for cancellations occurring in the Lagrange inversion formula.
Chen’s first decomposition algorithm is given by the following bijection.

Theorem 2.1 (Chen). There exists a type-preserving bijection ϕ from Schröder trees with n
vertices and k blocks to meadows with n+ k − 1 vertices and k small trees.

For example, Figure 1 shows a Schröder tree of type (2, 1) (left) and its image under ϕ, a
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meadow of the same type (2, 1) (right). This bijection is remarkably general, specializing to
known bijections for specific assignments of the weights gi.

1

2

3 4

−→
2

3 4

1

5

Figure 1: A Schröder tree and its meadow decomposition.

Motivated by questions from Gessel, Sagan, and Yeh [6] concerning tree enumeration by
net inversion number, Chen [3] developed his second algorithm involving increasing struc-
tures. He introduced increasing Schröder trees and established this decomposition.

Theorem 2.2 (Chen). There is a type-preserving bijection ϕ from the set of increasing
Schröder trees with n vertices and k blocks to the set of increasing meadows with n+ k − 1

vertices and k small trees.

Importantly, ϕ is not merely a restriction of ϕ to increasing trees. Its construction is
significantly more intricate and technical.

A direct consequence of the two bijections is the following result.

Proposition 2.3. The total weight under {gi}i≥1 of Schröder trees with n vertices and k

blocks equals the total weight of increasing Schröder trees under {(i + 1)gi}i≥1 with n

vertices and k blocks.

Proof. The proposition follows from the meadow perspective using Chen’s two bijections.
Consider a set partition P of [n+k−1] without singleton blocks. It suffices to show that the
total weight for meadows over P equals that of the unique increasing meadow over P . This
holds because for each block of size i+ 1 (i ≥ 1), there are i+ 1 ways to form a small tree,
each contributing weight gi, yielding a total weight of (i + 1)gi per block; This matches the
weight (i+ 1)gi of the unique increasing small tree for that block.

We now consider specific choices of the weight sequence gi. The total weights of increas-
ing Schröder trees for different choices of i exhibit many interesting properties, as illustrated
in Section 3.2 on weighted Ward numbers.

In the next subsection, we study weighted increasing Schröder trees under {i+1}i≥1 and
its signed version {(−1)i+1(i+ 1)}i≥1.
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2.2 Enriched increasing Schröder trees

An enriched increasing Schröder tree is an increasing Schröder tree where each block is
marked with a ∗ at one of i+ 1 possible positions for a block of size i: either before the first
vertex or to the right of any vertex in the block.

Theorem 2.4. There is a type-preserving bijection between the set of enriched increasing
Schröder trees with n vertices and k blocks and Schröder trees with n vertices and k blocks.

Proof. Given a Schröder tree T , apply Chen’s first bijection to obtain a meadow M = ϕ(T ).
For each small tree S in M , convert it to an increasing small tree and mark it with a ∗ as
follows: (i) if S is increasing, place a ∗ before the first leaf; (ii) if the jth leaf is the smallest,
swap it with the root and place a ∗ to the right of the original root (now a leaf).

Now we obtain an increasing meadow M , where each small tree is endowed with a ∗
structure on its leaves. Apply Chen’s second bijection ϕ−1 to M and carry the ∗ structure (by
[3, Theorem 3.5], ϕ carries combinatorial structures). The result is an increasing Schröder
tree with each block marked by a ∗, giving the enriched tree.

This is a type-preserving bijection as each step is invertible and preserves the block struc-
ture.

A signed Schröder tree corresponds to a Schröder tree with weight gi = (−1)i+1. Thus
a block of size i has weight (−1)i+1, and a Schröder tree T on n vertices with blocks
B1, . . . , Bk has sign

∏k
j=1(−1)|Bj |+1 = (−1)n+k−1. The sign of an (enriched) increasing

Schröder tree is defined analogously.

Theorem 2.5. There is a sign-reversing involution ψn on signed Schröder trees on n vertices
with the following properties:

1. ψn preserves the underlying rooted tree structure, hence applies to signed increasing
Schröder trees.

2. The fixed points of ψn are Schröder trees where all blocks are singletons, and the
children of each internal vertex have increasing labels.

Consequently, the signed count of Schröder trees on n vertices is nn−1, and the signed count
of increasing Schröder trees on n vertices is (n− 1)!.

Proof. We construct ψn recursively. The base case ψ1 is trivial. Assume ψm is defined for
all m < n. Given a Schröder tree T on n vertices, let the root have children v1, . . . , vs with
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subtrees Ti on mi vertices rooted at vi. Then mi < n for each i. Apply ψm1 to T1: if T1 is
not a fixed point, define ψn(T ) by replacing T1 with ψm1(T1); otherwise, if T1, . . . , Ti−1 are
fixed points but Ti is not, define ψn(T ) by replacing Ti with ψmi

(Ti).

For the case where all T1, . . . , Ts are fixed points, define an auxiliary map ψ′ acting on
the ordered partition of the set of children {v1, . . . , vs} as in Lemma 2.7 below. Then ψn(T )

preserves each subtree but applies ψ′ to the partition of {v1, . . . , vs}.

The properties of ψn follow from the construction. The consequences hold since: fixed-
point Schröder trees correspond to rooted trees (counted by nn−1); fixed-point increasing
Schröder trees correspond to increasing rooted trees (counted by (n− 1)!).

Combining Theorem 2.5 and Proposition 2.3 yields:

Corollary 2.6. The signed count of enriched increasing Schröder trees on n vertices is nn−1.

Let [n] = {1, 2, . . . , n} and OP(n) be the set of ordered partitions of [n], i.e., sequences
[B1, . . . , Bk] whereBi are nonempty, disjoint, and

⋃
iBi = [n]. The sign ofBi is sign(Bi) =

(−1)|Bi|+1, and the sign of op = [B1, . . . , Bk] is

sign(op) =
k∏

i=1

sign(Bi) = (−1)n+k.

Lemma 2.7. For all integers n ≥ 1, there is a sign-reversing involution ψ′ on OP(n) with
the unique fixed point [{1}, {2}, . . . , {n}].

This lemma is due to Grigory, as we will explain. Here we present a direct construction
of the involution.

Proof. Let ÕP (n) denote the setOP (n)\{[{1}, {2}, . . . , {n}]}, that is, all ordered partitions
of [n] except the one consisting of n singleton blocks in natural order. It suffices to define
a sign-reversing involution ψ′ : ÕP (n) → ÕP (n) that pairs each ordered partition with
another of opposite sign.

Given op ∈ ÕP (n), let i be the largest index such that Bℓ = {ℓ} for ℓ = 1, 2, . . . , i; if no
such index exists, set i = 0. Note that i ≤ n − 2 because op ̸= [{1}, {2}, . . . , {n}]. Then
the element i + 1 lies in some block Bs with s ≥ i + 1. We distinguish two cases based on
whether Bs = {i+ 1}.

Case 1. If Bs = {i+1}, define ψ′(op) by merging blocks Bs−1 and Bs into a single block. Note
that s > i+ 1 by the maximality of i.
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Case 2. If Bs ̸= {i+1}, define ψ′(op) by splitting Bs into two blocks Bs \ {i+1} and {i+1}.

Clearly, ψ′ maps Case 1 elements to Case 2 elements, and vice versa. Moreover, ψ′2

is the identity map and sign(ψ′(op)) = −sign(op). Thus ψ′ is the desired sign-reversing
involution.

For example, given n = 3, there are 12 elements in ÕP (3).

Table 1: An example of the involution ψ′.

op ψ′(op) sign(op) sign(ψ′(op))

[{1}, {3}, {2}] [{1}, {2, 3}] + −

[{2}, {1}, {3}] [{1, 2}, {3}] + −

[{2}, {3}, {1}] [{2}, {1, 3}] + −

[{3}, {1}, {2}] [{1, 3}, {2}] + −

[{3}, {2}, {1}] [{3}, {1, 2}] + −

[{1, 2, 3}] [{2, 3}, {1}] + −

The involution in Lemma 2.7 yields a combinatorial proof of the identity
n∑

k=0

(−1)kk!S(n, k) = (−1)n, (2.1)

where S(n, k) denotes the Stirling numbers of the second kind.

A related question on how to give a combinatorial proof of this identity was raised on
Math StackExchange.1 In that discussion, M. Grigory gave a bijective proof of the identity
using the interpretation of k!S(n, k) as the number of ordered set partitions of an n-element
set into k blocks. Indeed, he recursively defined an involution, which is equivalent to our
non-recursive version.

3 Ward numbers

In this section, we discuss three combinatorial interpretations of the Ward numbers: the first
interpretation counts set partitions where each block has at least two elements; the second
is expressed in terms of total partitions; and the third involves increasing Schröder trees. To
the best of our knowledge, the third interpretation is new.

1See https://math.stackexchange.com/questions/395139
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3.1 Combinatorial interpretations of Ward numbers

Ward numbers, recursively defined by (1.1), admit various combinatorial interpretations.
Here we introduce three of them and consider their weighted versions.

Let S2(n, k) denote the number of partitions of an n-element set into k nonempty subsets,
each of size at least two. We assign the weight gi to each block of size i+ 1.

A total partition of the set [n] is a process that recursively partitions non-singleton blocks
into at least two nonempty subsets until only singletons remain. This process has a natural
representation by a semi-labeled rooted tree, which is a rooted tree with labeled leaves and
unlabeled internal vertices. A semi-labeled rooted tree with each internal vertex having
degree at least 2 is referred to as a total partition tree. For a direct correspondence between
total partitions and total partition trees, see [13]. To recover the total partition from its tree
representation, we associate each internal vertex with the set of its leaf descendants. We
assign the weight gi to each internal vertex of degree i + 1. Similar to the case for Schröder
trees, for the objects considered here, if the weight is gm1

1 gm2
2 · · · , then the type is defined to

be 1m12m2 · · · .

Proposition 3.1. The following quantities are all equal to the Ward number W (n, k).

1. S2(n+ k, k);

2. The number of total partition trees on [n+ 1] with k internal vertices;

3. The number of increasing Schröder trees with n+ 1 vertices and k blocks.

The first item is due to Carlitz [1], who establishedW (n, k) = S2(n+k, k) by comparing
expressions for Stirling numbers of the second kind involving sums over either W (n, k) or
S2(n, k). The second item is well-known; see [10].

Here we provide a combinatorial argument for items 1 and 3 from the recurrence per-
spective.

Recurrence proof of items 1 and 3. For item 1, it suffices to show that for n ≥ 2, k ≥ 1,

S2(n, k) = k S2(n− 1, k) + (n− 1)S2(n− 2, k − 1),

with initial conditions S2(n, 0) = δn,0 for n ≥ 0, S2(0, k) = δk,0, and S2(1, k) = 0 for k ≥ 0.

Consider a partition of [n] into k subsets. We examine the position of element n.
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Case 1: n lies in a block of size at least three. Removing n yields a partition of [n − 1]

into k subsets. Since n can be reinserted into any of the k blocks, this case contributes
kS2(n− 1, k) partitions.

Case 2: n lies in a block of size two. Removing the block containing n leaves a partition
of an (n− 2)-element set into k − 1 subsets. The n− 1 choices for the element paired with
n yield (n− 1)S2(n− 2, k − 1) partitions.

The cases are disjoint and exhaustive. Verification of initial conditions is straightforward.
This completes the proof for item 1.

For item 3, denote by T (n, k) the number of increasing Schröder trees with n+1 vertices
and k blocks. We show that W (n, k) and T (n, k) satisfy the same recurrence relations and
initial conditions. By definition, T (0, k) = δk,0 and T (n, 0) = 0 for n ≥ 1. For n ≥ 1 and
k ≥ 1, we establish

T (n, k) = kT (n− 1, k) + (n+ k − 1)T (n− 1, k − 1).

Consider the block containing the leaf n+1 in an increasing Schröder tree with k blocks.
The case where this block is not a singleton is counted in kT (n− 1, k) ways, with the factor
k corresponding to the choices for the block into which n+1 is inserted. The case where the
block is a singleton is counted in (n+k−1)T (n−1, k−1) ways. The factor (n+k−1) arises
from two alternatives: either the block containing n+1 is the leftmost child of its parent node
(giving n choices for the parent node), or it is immediately to the right of another block of
the parent node (giving k − 1 choices for the adjacent block).

Additionally, Price and Sokal [10] interpreted Ward numbers using augmented perfect
matchings. Their work develops the recurrence relation for augmented perfect matchings
and establishes a bijection between augmented perfect matchings and phylogenetic trees,
which is a well-known interpretation for Ward numbers.

Chen’s second decomposition ϕ explains the equality between items 1 and 3. Moreover,
ϕ is type-preserving.

We observe that the equality between items 1 and 2 follows from the following bijection,
which was independently found by Erdős and Székely [4] and by Haiman and Schmitt [7].

Theorem 3.2 (Erdos-Székely, Haiman-Schmitt). There is a type-preserving bijection be-
tween the set of semi-labeled rooted trees with k unlabeled internal vertices and n+1 labeled
leaves and the set of partitions of k blocks on n+ k elements.
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Note that an internal vertex of degree 1 corresponds to a singleton block. Next we present
a type-preserving bijection for items 2 and 3.

Theorem 3.3. For n ≥ 1, there is a type-preserving bijection between the set of total parti-
tions of [n] whose total partition tree has k internal vertices (including the root) and the set
of increasing Schröder trees on [n] with k blocks.

Proof. We establish the bijection through the following explicit construction:

(⇒) From a total partition to an increasing Schröder tree:

Let P be a total partition of [n]. We construct an increasing Schröder tree T recursively as
follows. For the base case of a trivial total partition on a single element, the corresponding
increasing tree is uniquely defined. For non-trivial partitions, let π = {B1, B2, . . . , Bk}
be the first partition of P , with blocks ordered increasingly by their minimal elements
m1,m2, . . . ,mk.

• Let T1, T2, . . . , Tk denote the increasing Schröder trees corresponding to the total par-
titions induced by P on each block B1, B2, . . . , Bk.

• Construct an increasing Schröder tree T ′ with rootm1 and left-most block {m2, . . . ,mk},
where each mi represents the tree Ti for i = 2, . . . , k.

• Merge T1 with T ′ by identifying their roots and attaching T1 as the rightmost subtree
of T ′.

(⇐) From an increasing Schröder tree to a total partition:

Let T be an increasing Schröder tree with n vertices. The correspondence is straightfor-
ward for n = 1. For n > 1, we proceed recursively:

• Let the left-most block of the root of T be {m2,m3, . . . ,mk}, where each mi is the
root of a subtree Ti. Let T1 be the subtree obtained by removing the left-most block of
the root (along with its descendants). Note that each Ti is an increasing Schröder tree.

• The first partition is recovered as {T1, T2, . . . , Tk}, with the internal order structure
within each Ti being disregarded.

• Repeat this procedure for each subtree Ti containing more than one vertex.

This bijection demonstrates that each internal vertex in a total partition tree corresponds
to a block in the increasing Schröder tree. Consequently, the number of total partition
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trees with n + k vertices and k internal vertices equals the number T (n − 1, k) of increas-
ing Schröder trees with n vertices and k blocks. This confirms that the bijection is type-
preserving. The proof is complete.

We illustrate this bijection with the following example. Figure 2 provides a total par-
tition of [6] whose total partition tree has 4 internal vertices (including the root) and the
corresponding increasing Schröder trees on [6] with 4 blocks, both of type (2, 13).

123456

125

1 25

2 5

3 46

4 6

−→

1

3 4

6

2

5

Figure 2: Illustration of the bijection between total partitions and increasing Schröder trees.

3.2 Weighted version

Let us define the weighted Ward number W g(n, k) for non-negative integers n and k as the
total weight of partitions of the set [n+ k] into k blocks, each of size at least two. The initial
condition is given by W g(n, 0) = δn,0 for all n ≥ 0. Recall that the weight of a block of size
i+ 1 is assigned gi. This concept can also be interpreted in terms of total partition trees and
increasing Schröder trees.

The following generating function expression can be derived directly:

W g(n, k) =

[
xn+k

(n+ k)!

]
1

k!

(
g1
x2

2!
+ g2

x3

3!
+ · · ·

)k
, (3.1)

where [xn+k] denotes the coefficient extraction operator.

To conclude this section, we summarize specializations of the sequence {gi} and their
combinatorial interpretations. Here, W g(n) represents the sum of W g(n, k) over all k, while
W̃ g(n) denotes the alternating sum

∑
k(−1)n+kW g(n, k). The key results are presented in

Table 2, with detailed formulas and references provided below.

Detailed descriptions:
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Table 2: Specializations of gi and combinatorial interpretations

gi Sequence name ofW g(n, k) OEIS W g(n) W̃ g(n)

1 Ward set numbers A269939 A000311 n!

i+ 1 Enriched Ward numbers A368584 A053492 (n+ 1)n

i! Ward cycle numbers A269940 A032188 1

(i+ 1)! Weighted Ward numbers A357367 A032037 (n+ 1)!

(i− 1)! — A239098 A000312,nn A074059

gi = δi,1 — — A001147, (2n− 1)!! W g(n)

gi = 2δi,1 — — A001813, (2n)!/n! W g(n)

gi = gjδi,j Partition coefficients —
(i(j + 1))!

i! ((j + 1)!)i
g i
j δn,ij (−1)n+iW g(n)

1. For gi = 1, the ordinary Ward numbers (or Ward set numbers) are given by W (n, k) =∑k
m=0(−1)m+k

(
n+k
n+m

)
S(n + m,m). The sum W (n) is the number of total partitions

of n+ 1 (A000311). Theorem 2.5 proves combinatorially:

W̃ (n) =
∑
k

(−1)n+kW (n, k) = n!.

2. When gi = i+1, the enriched Ward numbers isW (n, k) = k!
(
n+k
k

)
S(n, k) (A368584).

The sum W (n) is A053492, counting Schröder trees with n+1 vertices. Theorem 2.5
proves combinatorially:

W̃ (n) =
∑
k

(−1)n+kW (n, k) =
∑
k

(−1)n+kk!

(
n+ k

k

)
S(n, k) = (n+ 1)n,

which enumerates labeled rooted trees (A000169).

3. Setting gi = i! yields the Ward cycle numbersW g(n, k) =
∑k

m=0(−1)m+k
(
n+k
n+m

)
|s(n+

m,m)|, where s(n, k) are the signed Stirling numbers of the first kind. This is A269940.
The total sum W g(n) is A032188, counting plane increasing trees on n + 1 vertices
where each vertex of degree k ≥ 1 admits 2k−1 colorings. Additionally, the alternating
sum is 1.

4. If gi = (i+1)!, thenW g(n, k) is A357367, which can be written as
∑k

m=0(−1)m+k
(
n+k
n+m

)
L(n+

m,m), with L(n +m,m) the unsigned Lah numbers (A271703). The sum W g(n) is
A032037 and equals (n+1)! times the n-th little Schröder number (A001003). More-
over, the alternating sum is (n+ 1)!.
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5. For gi = (i − 1)!, the numbers W g(n, k) are A239098, representing constant terms
of polynomials related to Ramanujan’s ψ polynomials. The sum W g(n) = nn is
A000312. The alternating sum W̃ g(n) is A074059, giving the dimension of the coho-
mology ring of the moduli space of genus 0 curves with n + 1 marked points, subject
to associativity equations in physics.

6. When g1 = 1 and gk = 0 for k > 1, W g(n) = (2n − 1)!! (A001147). This counts
labeled plane increasing trees on n+ 1 vertices and solves Schröder’s third problem.

7. When g1 = 2 and gk = 0 for k > 1, W g(n) = (2n)!/n! (A001813), counting labeled
plane trees on n+ 1 vertices.

8. In general, for fixed j ≥ 1 with gi = 0 for i ̸= j, W g(n) = 0 unless n = ij for some
integer i ≥ 0. Then

W g(ij) =
(i(j + 1))!

i! ((j + 1)!)i
gij.

The coefficient counts partitions of i(j + 1) labeled items into i unlabeled boxes of
size j + 1 (A060540).

We remark that in the last three cases, W g(n, k) is nonzero only for a particular k, therefore,
the nonzero term of W g(n, k) is of the same value as W g(n).

4 A variation of the Lagrange inversion formula

There exists a less familiar reformulation of the Lagrange inversion formula, which is equiv-
alent to the classical version. In this section, we establish a connection between this variation
and the decomposition algorithm for increasing Schröder trees.

Let f(x) =
∑

n≥1 an
xn

n!
be a formal power series with a1 ̸= 0, and let g(x) =

∑
n≥1 bn

xn

n!

denote its compositional inverse, satisfying f(g(x)) = g(f(x)) = x. The compositional
inverse is also denoted by f<−1>(x). The classical Lagrange inversion formula expresses:

bn =

[
xn−1

(n− 1)!

] (
x

f(x)

)n
.

We now discuss the following equivalent formulation of the Lagrange inversion formula. See
Theorem 2.6.1 in the nice survey by Gessel [5] about the Lagrange inversion formula.

Theorem 4.1. Let h(x) be a formal power series with h(0) = 0, h′(0) = 1. Then we have

h<−1>(x) = x+
∑
k≥1

1

k!

(
(x− h(x))k

)(k−1)
. (4.1)
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Proof. Following the notations in Section 3.2, let g1, g2, . . . be a sequence of indeterminates.
The weight of a block with i vertices in a Schröder tree is assigned gi. Denote byWn the total
weight of all increasing Schröder trees on n vertices, and by Vn the weight for all increasing
Schröder trees on n vertices such that the root has only one block.

We aim to establish a functional equation for

W (x) =
∑
n≥1

1

n!
Wnx

n.

A combinatorial formula for Wn will lead to a solution of this functional equation.

Consider an increasing Schröder tree T on n+ 1 vertices such that the root has k blocks.
LetBi be the set of vertices in the i-th block of the root of T along with all their descendants.
Then B1, B2, . . . , Bk form a partition of {2, 3, . . . , n + 1}. By adding the element 1 as the
root to the subtree restricted to Bi, we obtain an increasing Schröder tree where the root has
only one block. This leads to the recurrence relation:

Wn+1 =
∑

(B1,B2,...,Bk)

Vb1+1Vb2+1 · · ·Vbk+1, (4.2)

where (B1, B2, . . . , Bk) ranges over all ordered partitions of {2, . . . , n+ 1}, and bi = |Bi|.

For an increasing Schröder tree Q where the root has only one block with n+ 1 vertices,
removing the root of Q gives the recurrence relation:

Vn+1 =
∑

{C1,C2,...,Ck}

gkWc1Wc2 · · ·Wck , (4.3)

where {C1, C2, . . . , Ck} ranges over all unordered partitions of {2, . . . , n+1}, and cj = |Cj|.

Using generating function theory, equations (4.2) and (4.3) lead to:

∑
n≥1

1

n!
Wn+1x

n =
∑
k≥1

(∑
n≥1

1

n!
Vn+1x

n

)k
, (4.4)

∑
n≥1

1

n!
Vn+1x

n = g

(∑
n≥1

1

n!
Wnx

n

)
, (4.5)

where
g(x) =

∑
n≥0

1

n!
gnx

n
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with the convention g0 = 0. Define

f(x) =
∑
n≥1

1

n!
gn−1x

n.

From equations (4.4) and (4.5), we derive the differential equation:

W ′(x) =
1

1− f ′(W (x))
,

which can be rewritten as:

W ′(x)− f ′(W (x))W ′(x) = 1.

This leads to the equation:
W (x)− f(W (x)) = x.

Let h(x) = x− f(x). Then h(0) = 0, h′(0) = 1, and importantly, W (x) = (h(x))<−1>.

We now compute W (x) in an alternative manner. By applying the type-preserving bi-
jection established in Theorem 2.2, we observe that Wn can be expressed as the sum of
Wn,k = W g(n − 1, k), as defined in (3.1). For k ≥ 1, we have the generating function
relation:

∑
n≥2

1

(n+ k − 1)!
Wn,kx

n+k−1 =
1

k!

(∑
n≥1

1

n!
gn−1x

n

)k
=

1

k!
fk. (4.6)

By differentiating both sides of (4.6) (k − 1) times, we obtain the relation:

∑
n≥2

1

n!
Wn,kx

n =

(
1

k!
fk

)(k−1)

.

Summing over all k, we arrive at the expression:

W (x) = x+
∑
k≥1

(∑
n≥2

1

n!
Wn,kx

n

)
= x+

∑
k≥1

1

k!
(fk)(k−1). (4.7)

This completes the derivation of the desired formula for the inverse of h(x).

It is worth noting that the restriction on the coefficient of x in h(x) from the previous the-
orem can be removed by utilizing the relation [ah(x)]<−1> = h<−1>(x/a) for any nonzero
constant a. In the context of Theorem 4.1, setting gi = 1 for all i reduces Wn to the number
of increasing Schröder trees with n vertices. Consequently, the generating function for Wn
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becomes W (x) = (1+ 2x− ex)<−1>, which coincides with the generating function for total
partitions. As a consequence of Theorem 4.1, we have the formula

Wn =
∑

1≤i≤k≤n

(−1)k−iS(n+ i− 1, i)

(
n+ k − 1

n+ i− 1

)
. (4.8)

The classical Lagrange inversion formula also gives the following infinite sum formula:

Wn =
∑
k≥0

1

2n+k
S(n+ k − 1, k), (4.9)

where recall that S(0, 0) = 1 and S(n, 0) = 0 for n ≥ 1.

5 Concluding Remarks

We have provided an interpretation of the Ward numbers W (n, k) using increasing Schröder
trees and considered their weighted counterparts. The formulas for weighted Ward numbers
presented in Section 3.2 can be derived through generating functions, specifically as the
compositional inverse of an explicit generating function within the framework of Theorem
4.1. Observing the results in Table 2, it appears that W̃ g(n) admits a particularly elegant
formula. We have established combinatorial proofs for both the ordinary and enriched cases.
Exploring combinatorial proofs for the remaining cases might be an interesting direction for
further research.

We propose the following open problem: Find a direct bijective proof of Theorem 2.4.
That is, construct a direct bijection between enriched increasing Schröder trees and Schröder
trees. While these two structures share similarities, they exhibit significant differences. Our
current proof heavily relies on Chen’s second decomposition, which is elegant but technical.
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