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 A B S T R A C T

The recurrent property of diffusion processes with regime-switching is quite complicated, 
which could be transient even when it is recurrent at every fixed environment. This work 
provides explicit criteria in terms of the coefficients of diffusion processes such that the studied 
processes are recurrent or transient under arbitrary switching rates. The obtained criteria are 
in the integral form, which are particularly effective for the regime-switching processes with 
coefficients vibrating periodically. Examples are constructed to illustrate the applications of 
these criteria.

. Introduction

Stochastic processes with regime-switching have been widely applied to model the system living in a random environment 
haracterized by a continuous-time Markov chain. See, for instance, applications in mathematical finance [1–4], in biology [5], in 
iochemistry [6]. See the manuscripts [7,8] for more introduction on various applications of such models. Compared with stochastic 
rocesses without regime-switching, the recurrent property of the processes with regime-switching is much more complicated. 
specially, Pinsky and Scheutzow [9] have constructed examples in half line such that the process in each fixed environment is 
ecurrent(or transient), but the process in the random environment could be transient(recurrent respectively). Moreover, there are 
any works to reveal the impact of the stationary distribution of the Markov chain on the recurrence on the stochastic processes 
ith regime-switching, such as, [10,11] on Ornstein–Uhlenbeck process with regime-switching; [12] on geometric Brownian motion 
ith regime-switching; [8, Chapter 3] on linearizable processes with regime-switching. The recurrence of these processes is usually 
ependent on the stationary distribution of the Markov chain.
From the viewpoint of applications, it is also of great meaning to find suitable criteria to ensure the recurrence of the studied 

ystem with regime-switching under arbitrary switching rates. This is relevant when the switching of the random environment is 
ither unknown or too complicated to be useful. In the study of hybrid dynamical system, such problem has been widely studied 
o design suitable feedback control to make the system stable under arbitrary switching. see, e.g. [13, Chapter 2] and references 
herein. However, there is very limited investigation on this topic for diffusion processes with regime-switching. In the 1-dimensional 
etting, [14] provided a way to realize this purpose. Namely, when the corresponding 1-dimensional diffusion process at each fixed 
nvironment is strongly ergodic. Then the diffusion with regime-switching must be recurrent regardless of the switching rates.
In addition, if one wants to use the averaging type criteria established in [15] to realize this purpose, the challenge lies in 

he construction of a common Lyapunov function 𝑉 (𝑥) to characterize the recurrent property of the studied system at each fixed 
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environment. However, this is not an easy task for diffusion processes with regime-switching, especially when the recurrent behavior 
of this system varies acutely at different environment states. This can be seen from the study of linear dynamical systems with 
regime-switching, for which the problem of finding a quadratic common Lyapunov function amounts to solving a system of linear 
matrix inequalities (cf. [16]).

In this work we shall provide explicit criteria based on the coefficients of the studied system to justify the recurrence for arbitrary 
switching rate. We present two forms of criteria. For the first type, the constructed explicit conditions are independent of states of 
the switching process. For the second type, the constructed explicit conditions depend on the coefficients of the diffusion processes 
at each fixed switching state. The criteria of first type are easier to be verified than the second one, but they are usually less accurate 
than the second. Furthermore, these results are generalized to deal with diffusion processes with state-dependent regime-switching. 
Besides owning the characteristic of not relying on switching rate, it is worth pointing out that our criteria are also useful to study 
the recurrence of regime-switching processes with coefficients vibrating periodically. The existing criteria in the averaging form 
based on a common Lyapunov function cannot deal with these processes. See Example  4.2 and Example  4.3 in Section 4 for more 
details. For the criteria of second type, the basic idea of our method is to overcome the difficulty caused by the generator of Markov 
chain via the generator of the diffusion process.

This work is organized as follows. Section 2 is devoted to dealing with diffusion processes with Markovian regime-switching. The 
first part of Section 2 presents the results which are uniform in the jumping component, and the second part of Section 2 shows the 
criteria which are non-uniform in the jumping component. In Section 3, we deal with the diffusion processes with state-dependent 
regime-switching. Examples are constructed in Section 4 to illustrate the application of these criteria. In Section 5, we summarize 
briefly this work and point out a problem on the null recurrence in the non-uniform type still left by us.

2. Criteria for Markovian regime-switching processes

The diffusion processes with regime-switching are used to model a system living in a random environment, which is characterized 
by a jumping process in a finite state space. Let us consider the following diffusion process (𝑋𝑡, 𝛬𝑡) satisfying 

d𝑋𝑡 = 𝑏(𝑋𝑡, 𝛬𝑡)d𝑡 + 𝜎(𝑋𝑡, 𝛬𝑡)d𝐵𝑡, 𝑋0 = 𝑥0 ∈ R𝑑 , 𝛬0 = 𝑖 ∈  , (2.1)

where (𝐵𝑡) is d-dimensional Brownian motion, (𝛬𝑡) is a continuous-time Markov chain on a finite state space  = {1, 2,… , 𝑁} with 
irreducible, conservative 𝑄-matrix (𝑞𝑖𝑗 )𝑖,𝑗∈ , 𝑏 ∶ R𝑑 ×  → R𝑑 , 𝜎 ∶ R𝑑 ×  → R𝑑×𝑑 . (𝑋𝑡, 𝛬𝑡) is a diffusion process with Markovian 
regime-switching. In this situation, it is assumed that (𝐵𝑡) and (𝛬𝑡) are mutually independent as usual. As we are focused on the 
recurrent property of (𝑋𝑡, 𝛬𝑡), we always assume the existence and uniqueness of strong solution (𝑋𝑡, 𝛬𝑡)𝑡≥0 to SDE (2.1) for every 
initial value (𝑋0, 𝛬0) = (𝑥0, 𝑖) ∈ R𝑑 × . We refer the monographs [7,8] on the study of the wellposedness of (𝑋𝑡, 𝛬𝑡).

The infinitesimal generator of (𝑋𝑡, 𝛬𝑡) is given by 
𝒜𝑓 (𝑥, 𝑖) = ℒ (𝑖)𝑓 (𝑥, 𝑖) +𝑄𝑓 (𝑥, 𝑖)

=
𝑑
∑

𝑘=1
𝑏𝑘(𝑥, 𝑖)

𝜕𝑓
𝜕𝑥𝑘

(𝑥, 𝑖) + 1
2

𝑑
∑

𝑘,𝑙=1
𝑎𝑘𝑙(𝑥, 𝑖)

𝜕2𝑓
𝜕𝑥𝑘𝜕𝑥𝑙

(𝑥, 𝑖) +
∑

𝑗∈
𝑞𝑖𝑗 (𝑓 (𝑥, 𝑗) − 𝑓 (𝑥, 𝑖))

(2.2)

for 𝑓 ∈ 𝐶2(R𝑑 × ), where (𝑎𝑘𝑙(𝑥, 𝑖)) = (𝜎𝜎∗)(𝑥, 𝑖) and 𝜎∗ denotes the transpose matrix of 𝜎. Here ℒ (𝑖) is an infinitesimal generator 
corresponding to the diffusion process (𝑋(𝑖)

𝑡 ) satisfying 

d𝑋(𝑖)
𝑡 = 𝑏(𝑋(𝑖)

𝑡 , 𝑖)d𝑡 + 𝜎(𝑋
(𝑖)
𝑡 , 𝑖)d𝐵𝑡, 𝑋(𝑖)

0 = 𝑥0, (2.3)

which describes the behavior of the studied process (𝑋𝑡) in the fixed environment 𝑖 ∈ .
In this work we shall use the following assumption.

H1) There is a 𝑐0 > 0 such that
𝑑
∑

𝑘,𝑙=1
𝑎𝑘𝑙(𝑥, 𝑖)𝜉𝑘𝜉𝑙 ≥ 𝑐0|𝜉|

2, 𝑥 ∈ R𝑑 , 𝑖 ∈  , 𝜉 = (𝜉1,… , 𝜉𝑑 ) ∈ R𝑑 .

Before introducing our results, let us first introduce some notations. Let

𝐴(𝑥, 𝑖) =
𝑑
∑

𝑘,𝑙=1
𝑎𝑘𝑙(𝑥, 𝑖)

𝑥𝑘𝑥𝑙
|𝑥|2

, where |𝑥|2=
𝑑
∑

𝑘=1
𝑥2𝑘 for 𝑥=(𝑥1,… , 𝑥𝑑 )∈R𝑑 , 𝑥 ≠ 0,

𝐴̃(𝑥, 𝑖) =
𝑑
∑

𝑘=1
𝑎𝑘𝑘(𝑥, 𝑖), 𝐵(𝑥, 𝑖) =

𝑑
∑

𝑘=1
𝑏𝑘(𝑥, 𝑖)𝑥𝑘.

Let 𝛾(𝑟, 𝑖) and 𝛾(𝑟, 𝑖) be continuous function on (0,∞) ×  satisfying 

𝛾(𝑟, 𝑖) ≥ sup
|𝑥|=𝑟

𝐴̃(𝑥, 𝑖) − 𝐴(𝑥, 𝑖) + 2𝐵(𝑥, 𝑖)
𝐴(𝑥, 𝑖)

for 𝑟 > 0,

𝛾(𝑟, 𝑖) ≤ inf
𝐴̃(𝑥, 𝑖) − 𝐴(𝑥, 𝑖) + 2𝐵(𝑥, 𝑖) for 𝑟 > 0.

(2.4)
|𝑥|=𝑟 𝐴(𝑥, 𝑖)

2 
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Let 𝛼(𝑟, 𝑖) and 𝛼(𝑟, 𝑖) be continuous functions on (0,∞) ×  such that 

𝛼(𝑟, 𝑖) ≥ sup
|𝑥|=𝑟

𝐴(𝑥, 𝑖), 𝛼(𝑟, 𝑖) ≤ inf
|𝑥|=𝑟

𝐴(𝑥, 𝑖), (2.5)

and

𝛾(𝑟) = max
𝑖∈

𝛾(𝑟, 𝑖), 𝛾(𝑟) = min
𝑖∈

𝛾(𝑟, 𝑖); (2.6)

𝛼(𝑟) = max
𝑖∈

𝛼(𝑟, 𝑖), 𝛼(𝑟) = min
𝑖∈

𝛼(𝑟, 𝑖). (2.7)

For 𝑟0 > 0, define

𝐼(𝑟, 𝑖) = ∫

𝑟

𝑟0

𝛾(𝑢, 𝑖)
𝑢

d𝑢, 𝐼(𝑟, 𝑖) = ∫

𝑟

𝑟0

𝛾(𝑢, 𝑖)

𝑢
d𝑢, (2.8)

𝐼(𝑟) = ∫

𝑟

𝑟0

𝛾(𝑢)
𝑢
d𝑢, 𝐼(𝑟) = ∫

𝑟

𝑟0

𝛾(𝑢)

𝑢
d𝑢. (2.9)

After these preparations, we can present our criteria on the recurrence of (𝑋𝑡, 𝛬𝑡).

2.1. Criteria uniformly in the switching component

We begin with the criteria uniformly in the switching component, which means that these criteria do not depend on the state 
𝑖 ∈ . The construction of these sufficient conditions uses the idea of the remarkable works of Bhattacharya [17] and Friedman [18] 
among others for the multidimensional diffusion processes. 

Theorem 2.1.  Assume (H1) holds.
(i) If ∫ ∞

𝑟0
exp

(

−𝐼(𝑟)
)

d𝑟 = ∞ for some 𝑟0 > 0, then (𝑋𝑡, 𝛬𝑡) is recurrent.
(ii) If ∫ ∞

𝑟0
exp

(

−𝐼(𝑟)
)

d𝑟 < ∞ for some 𝑟0 > 0, then (𝑋𝑡, 𝛬𝑡) is transient.

Proof.  The basic idea of the proof is to construct suitable Lyapunov functions associated with the generator 𝒜  of (𝑋𝑡, 𝛬𝑡). For 
𝐹 ∈ 𝐶2([𝑟0,∞)) for 𝑟0 > 0, consider the function 𝑓 (𝑥, 𝑖) ∶= 𝐹 (|𝑥|) for |𝑥| ≥ 𝑟0, and we calculate directly to deduce that 

2𝒜𝑓 (𝑥, 𝑖) = 𝐴(𝑥, 𝑖)𝐹 ′′(|𝑥|) +
(

𝐴̃(𝑥, 𝑖) − 𝐴(𝑥, 𝑖) + 2𝐵(𝑥, 𝑖)
)𝐹 ′(|𝑥|)

|𝑥|
, |𝑥| ≥ 𝑟0, 𝑖 ∈  . (2.10)

Define

𝐹 (𝑟) = ∫

𝑟

𝑟0
exp(−𝐼(𝑠))d𝑠, 𝐹 (𝑟) = ∫

𝑟

𝑟0
exp(−𝐼(𝑠))d𝑠.

Then, it holds

𝐹
′′
(𝑟) +

𝛾(𝑟)
𝑟
𝐹

′
(𝑟) = 0,

𝐹 ′′(𝑟) +
𝛾(𝑟)

𝑟
𝐹 ′(𝑟) = 0.

Replacing 𝐹  in (2.10) with 𝐹  and 𝐹  respectively, we can obtain that

2𝒜𝐹 (|𝑥|) ≤ 𝐴(𝑥, 𝑖)
(

𝐹
′′
(|𝑥|) +

𝛾(|𝑥|)
|𝑥|

𝐹
′
(|𝑥|)

)

= 0, (2.11)

2𝒜𝐹 (|𝑥|) ≥ 𝐴(𝑥, 𝑖)
(

𝐹 ′′(|𝑥|) +
𝛾(|𝑥|)

|𝑥|
𝐹 ′(|𝑥|)

)

= 0. (2.12)

Let 𝜁𝑚 = inf{𝑡 > 0; |𝑋𝑡| = 𝑚} for 𝑚 ∈ N, and

𝜏 = inf{𝑡 > 0; |𝑋𝑡| = 𝛽} for some 𝛽 > 𝑟0.

Since (𝛬𝑡) is recurrent in a finite state space , the process (𝑋𝑡, 𝛬𝑡) is recurrent (or transient) if and only if the process (𝑋𝑡) is 
recurrent (or transient, respectively). For 𝑖 ∈ , 𝑥0 ∈ R𝑑 with |𝑥0| > 𝛽, if

P𝑥0 ,𝑖(𝜏 < ∞) ∶= P
(

𝜏 < ∞|(𝑋0, 𝛬0) = (𝑥0, 𝑖)
)

= 1,

then the process (𝑋𝑡) and hence (𝑋𝑡, 𝛬𝑡) is recurrent; if

P𝑥0 ,𝑖
(

𝜏 = ∞
)

> 0,

then (𝑋 ) and hence (𝑋 ,𝛬 ) is transient.
𝑡 𝑡 𝑡

3 
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(i) For 𝑡 > 0, by Dynkin’s formula and (2.11), it holds

E𝑥0 ,𝑖𝐹
(

|𝑋𝑡∧𝜁𝑚∧𝜏 |
)

= 𝐹 (|𝑥0|) + E𝑥0 ,𝑖∫

𝑡∧𝜁𝑚∧𝜏

0
𝒜𝐹 (|𝑋𝑠|)d𝑠 ≤ 𝐹 (|𝑥0|).

Letting 𝑡 → ∞, this yields that
𝐹 (𝑚)P𝑥0 ,𝑖(𝜏 > 𝜁𝑚) + 𝐹 (𝛽)P𝑥0 ,𝑖(𝜏 ≤ 𝜁𝑚) ≤ 𝐹 (|𝑥0|),

and further that 

P𝑥0 ,𝑖
(

𝜏 ≤ 𝜁𝑚
)

≥
𝐹 (𝑚) − 𝐹 (|𝑥0|)

𝐹 (𝑚) − 𝐹 (𝛽)
. (2.13)

Therefore, letting 𝑚→ ∞, as 𝜁𝑚 → ∞ a.s. and 𝐹 (𝑚) → ∞ due to ∫ ∞
𝑟0

e−𝐼(𝑟)d𝑟 = ∞, we obtain from (2.13) that
P𝑥0 ,𝑖(𝜏 < ∞) = 1,

and hence (𝑋𝑡, 𝛬𝑡) is recurrent.
(ii) By virtue of Dynkin’s formula, due to (2.12), we have 

E𝑥0 ,𝑖𝐹
(

|𝑋𝑡∧𝜁𝑚∧𝜏 |
)

= 𝐹 (|𝑥0|) + E𝑥0 ,𝑖∫

𝑡∧𝜁𝑚∧𝜏

0
𝒜𝐹 (|𝑋𝑠|)d𝑠 ≥ 𝐹 (|𝑋0|). (2.14)

Letting 𝑡 → ∞, we have
𝐹 (𝑚)P𝑥0 ,𝑖(𝜏 > 𝜁𝑚) + 𝐹 (𝛽)P𝑥0 ,𝑖(𝜏 ≤ 𝜁𝑚) ≥ 𝐹 (|𝑥0|),

P𝑥0 ,𝑖(𝜏 > 𝜁𝑚) ≥
𝐹 (|𝑥0|) − 𝐹 (𝛽)
𝐹 (𝑚) − 𝐹 (𝛽)

.

Passing the limit as 𝑚→ ∞, we get

P𝑥0 ,𝑖(𝜏 = ∞) ≥
𝐹 (|𝑥0|) − 𝐹 (𝛽)
𝐹 (∞) − 𝐹 (𝛽)

> 0

by the condition 𝐹 (∞) = ∫ ∞
𝑟0

e−𝐼(𝑟)d𝑟 < ∞. Thus, (𝑋𝑡, 𝛬𝑡) is transient. The proof of this theorem is completed. □

Theorem 2.2.  Assume (H1) holds.

(i) If ∫
∞

𝑟0

1
𝛼(𝑠)

exp
(

𝐼(𝑠)
)

d𝑠 < ∞ for some 𝑟0 > 0, then (𝑋𝑡, 𝛬𝑡) is positive recurrent.

(ii) If there exists some 𝑟0 > 0 such that

lim
𝑁→∞

∫ 𝑁𝑟0 e−𝐼(𝑠)
(

∫ 𝑠𝑟0 exp
(

𝐼(𝑢)
)

∕𝛼(𝑢)d𝑢
)

d𝑠

∫ 𝑁𝑟0 exp
(

−𝐼(𝑠)
)

d𝑠
= ∞,

then (𝑋𝑡, 𝛬𝑡) is null recurrent.

Proof.  Similar to the argument of Theorem  2.1, we can find the desired Lyapunov function 𝑓 (𝑥, 𝑖) using a similar construction of 
Lyapunov functions 𝐹 ∈ 𝐶2(R) as in [17, Theorem 3.5]. Precisely, to prove (i), let

𝐹 (𝑟) = −∫

𝑟

𝑟0
e𝐼(𝑠)

(

∫

∞

𝑠

1
𝛼(𝑢)

e 𝐼(𝑢)d𝑢
)

d𝑠, 𝑟 ≥ 𝑟0,

and 𝑓 (𝑥, 𝑖) = 𝐹 (|𝑥|) for |𝑥| ≥ 𝑟0 and 𝑖 ∈ . Then, it holds 2𝒜𝑓 (𝑥, 𝑖) ≥ 1 for |𝑥| ≥ 𝑟0, 𝑖 ∈ . To prove (ii), let us take

𝐺(𝑟) = ∫

𝑟

𝑟0
e−𝐼(𝑠)

(

∫

𝑠

𝑟0

1
𝛼(𝑢)

e 𝐼(𝑢)d𝑢
)

d𝑠, 𝑟 ≥ 𝑟0,

and 𝑓 (𝑥, 𝑖) = 𝐺(|𝑥|) for |𝑥| ≥ 𝑟0 and 𝑖 ∈ . Then, 2𝒜𝑓 (𝑥, 𝑖) ≤ 1 for |𝑥| ≥ 𝑟0, 𝑖 ∈ . Moreover, we have assumed the non-explosive 
of (𝑋𝑡, 𝛬𝑡) throughout this work, so condition (3.25) in [17] is not needed in current setting. Then, one can follow the argument 
of [17, Theorem 3.5] to derive the desired results. More details are omitted. □

2.2. Criteria non-uniformly in the switching component

In this subsection we shall construct the desired Lyapunov function for each state of the switching process (𝛬𝑡). The construction 
method will be different to that used in Section 2.1 or [17,18] in order to remove the impact of operator 𝑄 in the infinitesimal 
generator 𝒜  of (𝑋𝑡, 𝛬𝑡). A little more precisely, here we need to construct a solution to the differential equation in the form

𝐹 ′′(𝑥, 𝑖) + ℎ(𝑥, 𝑖)𝐹 ′(𝑥) = 𝑞 𝐹 (𝑥, 𝑖) + 𝑐 , 𝑥 ∈ R, 𝑖 ∈  ,
𝑖 𝑖

4 
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instead of a differential equation in the form
𝐹 ′′(𝑥) + 𝑔(𝑥)𝐹 ′(𝑥) = 0, 𝑥 ∈ R,

which is needed in Section 2.1 and [17,18].

Theorem 2.3.  Assume (H1) holds. If there is a constant 𝑟0 > 0 such that for each 𝑖 ∈ 

∫

∞

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

exp
(

𝐼(𝑢, 𝑖)
)

𝛼(𝑢, 𝑖)
d𝑢
)

d𝑠 < ∞, (2.15)

then (𝑋𝑡, 𝛬𝑡) is transient.

Proof.  To show this theorem, we shall construct a Lyapunov function 𝑓 (𝑥, 𝑖) satisfying the following conditions, which implies the 
transience of (𝑋𝑡, 𝛬𝑡): 

⎧

⎪

⎨

⎪

⎩

𝑓 (𝑥, 𝑖) = 0, for |𝑥| = 𝑟0, 𝑖 ∈ ;
0 < 𝑓 (𝑥, 𝑖) < 𝑀, for |𝑥| > 𝑟0, 𝑖 ∈ , some 𝑀 > 0;
𝒜𝑓 (𝑥, 𝑖) ≥ 0, for |𝑥| ≥ 𝑟0, 𝑖 ∈ .

(2.16)

Indeed, if such a function 𝑓 exists, then it follows from Dynkin’s formula that

E𝑥0 ,𝑖𝑓 (𝑋𝑡∧𝜏∧𝜁𝑚 , 𝛬𝑡∧𝜏∧𝜁𝑚 ) − 𝑓 (𝑥0, 𝑖) = E𝑥0 ,𝑖 ∫

𝑡∧𝜏∧𝜁𝑚

0
𝒜𝑓 (𝑋𝑠, 𝛬𝑠)d𝑠 ≥ 0,

where 𝜏 = inf{𝑡 > 0; |𝑋𝑡| = 𝑟0} and 𝜁𝑚 = inf{𝑡 > 0; |𝑋𝑡| = 𝑚} for 𝑚 ∈ N. Letting 𝑡 → ∞, as 𝑓 (𝑋𝜏 , 𝛬𝜏 ) = 0, we obtain that
𝑀P𝑥0 ,𝑖(𝜏 > 𝜁𝑚) ≥ 𝑓 (𝑥0, 𝑖) > 0.

Letting 𝑚 → ∞ yields that P𝑥0 ,𝑖(𝜏 = ∞) > 0, which means that (𝑋𝑡, 𝛬𝑡) is transient.
Define

𝑔(𝑟, 𝑖) = ∫

𝑟

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

2𝑞𝑖e 𝐼(𝑢,𝑖)

𝛼(𝑢, 𝑖)
d𝑢

)

d𝑠, 𝑟 ≥ 𝑟0, 𝑖 ∈  ,

where 𝑞𝑖 =
∑

𝑗≠𝑖,𝑗∈ 𝑞𝑖𝑗 . Put 𝑔(0)(𝑟, 𝑖) = 1, and define iteratively, for 𝑟 ≥ 𝑟0, 𝑖 ∈ , 

𝑔(𝑛)(𝑟, 𝑖) = ∫

𝑟

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

2𝑞𝑖e 𝐼(𝑢,𝑖)

𝛼(𝑢, 𝑖)
𝑔(𝑛−1)(𝑢, 𝑖)d𝑢

)

d𝑠, 𝑛 ≥ 1. (2.17)

Let 

𝜑(𝑟, 𝑖) =
∞
∑

𝑛=1
𝑔(𝑛)(𝑟, 𝑖), 𝑟 ≥ 𝑟0, 𝑖 ∈  . (2.18)

Note that 𝑟 ↦ 𝑔(𝑟, 𝑖) is a nonnegative, increasing function, then by (2.17),

𝑔(2)(𝑟, 𝑖) ≤ ∫

𝑟

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

2𝑞𝑖e 𝐼(𝑢,𝑖)

𝛼(𝑢, 𝑖)
d𝑢

)

𝑔(𝑠, 𝑖)d𝑠

≤ ∫

𝑟

𝑟0
𝑔′(𝑠, 𝑖)𝑔(𝑠, 𝑖)d𝑠 = 𝑔(𝑟, 𝑖)2

2
.

One can deduce similarly 𝑔(𝑛)(𝑟, 𝑖)≤(

𝑔(𝑟, 𝑖)
)𝑛∕𝑛! by induction. Thus, 𝜑(𝑟, 𝑖) is well-defined. Moreover, it satisfies

𝜑(𝑟0, 𝑖) = 0, 𝜑′(𝑟, 𝑖) > 0, 𝜑(𝑟, 𝑖) ≤ e𝑔(𝑟,𝑖) − 1, 𝑟 > 𝑟0, 𝑖 ∈  ,

and 

𝜑′′(𝑟, 𝑖) +
𝛾(𝑟, 𝑖)

𝑟
𝜑′(𝑟, 𝑖) =

2𝑞𝑖
𝛼(𝑟, 𝑖)

+
2𝑞𝑖
𝛼(𝑟, 𝑖)

𝜑(𝑟, 𝑖), 𝑟 > 𝑟0, 𝑖 ∈  . (2.19)

Due to (2.15), for each 𝑖 ∈ , 

𝑔(𝑟, 𝑖) ≤ ∫

∞

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

2𝑞𝑖e 𝐼(𝑢,𝑖)

𝛼(𝑢, 𝑖)
d𝑢

)

d𝑠 =∶ 𝛽𝑖 <∞. (2.20)

After these preparations, let 
𝑓 (𝑥, 𝑖) = 𝜑(|𝑥|, 𝑖) for |𝑥| ≥ 𝑟0, 𝑖 ∈  . (2.21)

Then, 𝑓 (𝑥, 𝑖) = 0 for |𝑥| = 𝑟0, 𝑖 ∈ ;

0 < 𝑓 (𝑥, 𝑖) ≤ e𝑔(|𝑥|,𝑖) − 1 < e𝛽𝑖 <∞, |𝑥| > 𝑟 , 𝑖 ∈  .
0
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This yields that 𝑓 is bounded as  is a finite state space. Moreover, by (2.19),
2𝒜𝑓 (𝑥, 𝑖)

= 𝐴(𝑥, 𝑖)
(

𝜑′′(|𝑥|, 𝑖)+
𝐴̃(𝑥, 𝑖)−𝐴(𝑥, 𝑖)+2𝐵(𝑥, 𝑖)

𝐴(𝑥, 𝑖)
⋅
𝜑′(|𝑥|, 𝑖)

|𝑥|

)

+2
∑

𝑗≠𝑖
𝑞𝑖𝑗

(

𝜑(|𝑥|, 𝑗)−𝜑(|𝑥|, 𝑖)
)

≥ 𝐴(𝑥, 𝑖)
(

𝜑′′(|𝑥|, 𝑖) +
𝛾(|𝑥|, 𝑖)

|𝑥|
𝜑′(|𝑥|, 𝑖)

)

− 2𝑞𝑖𝜑(|𝑥|, 𝑖) + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗𝜑(|𝑥|, 𝑗)

= 𝐴(𝑥, 𝑖)
( 2𝑞𝑖
𝛼(|𝑥|, 𝑖)

+
2𝑞𝑖

𝛼(|𝑥|, 𝑖)
𝜑(|𝑥|, 𝑖)

)

− 2𝑞𝑖𝜑(|𝑥|, 𝑖) + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗𝜑(|𝑥|, 𝑗)

≥ 2𝑞𝑖 + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗𝜑(|𝑥|, 𝑗) > 0.

Consequently, the constructed function 𝑓 (𝑥, 𝑖) in (2.21) satisfies all conditions in (2.16). Thus, (𝑋𝑡, 𝛬𝑡) is transient. □

Theorem 2.4.  Assume (H1) holds. If for some 𝑟0 > 0, 

∫

∞

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

∞

𝑠

exp(𝐼(𝑢, 𝑖))
𝛼(𝑢, 𝑖)

d𝑢
)

d𝑠 < ∞, 𝑖 ∈  , (2.22)

then (𝑋𝑡, 𝛬𝑡) is positive recurrent.

Proof.  As  is finite and 𝑄 is conservative,
𝛩 ∶= max

𝑖∈
𝑞𝑖 = max

𝑖∈

∑

𝑗≠𝑖
𝑞𝑖𝑗 < ∞, 𝜃 ∶= min

𝑖∈
𝑞𝑖 > 0.

Introduce the auxiliary functions as follows. For 𝐾 ∈ N, put 

𝑔𝐾 (𝑟, 𝑖) = ∫

𝐾

𝑟
e−𝐼(𝑠,𝑖)

(

∫

𝐾

𝑠

2𝛩 exp
(

𝐼(𝑢, 𝑖)
)

𝛼(𝑢, 𝑖)
d𝑢

)

d𝑠, 0 < 𝑟 ≤ 𝐾. (2.23)

Let 𝑔(0)𝐾 (𝑟, 𝑖) ≡ 1, and define inductively that

𝑔(𝑛)𝐾 (𝑟, 𝑖) = ∫

𝐾

𝑟
e−𝐼(𝑠,𝑖)

(

∫

𝐾

𝑠

2𝛩 exp
(

𝐼(𝑢, 𝑖)
)

𝛼(𝑢, 𝑖)
𝑔(𝑛−1)𝐾 (𝑢, 𝑖)d𝑢

)

d𝑠, 0 < 𝑟 ≤ 𝐾, 𝑖 ∈  .

Let 

𝜓𝐾 (𝑟, 𝑖) = −
∞
∑

𝑛=0
𝑔(𝑛)𝐾 (𝑟, 𝑖), 0 < 𝑟 ≤ 𝐾, 𝑖 ∈  . (2.24)

Due to (2.22), as

𝑔(𝑛)𝐾 (𝑟, 𝑖) ≤ 1
𝑛!
(

𝑔𝐾 (𝑟, 𝑖)
)𝑛, 𝑛 ≥ 1,

we get 𝜓𝐾 (𝑟, 𝑖) is well-defined. Furthermore, 𝜓𝐾 admits the following properties:
− e𝑔𝐾 (𝑟,𝑖) ≤ 𝜓𝐾 (𝑟, 𝑖) ≤ −

(

1 + 𝑔𝐾 (𝑟, 𝑖)
)

, 𝜓 ′
𝐾 (𝑟, 𝑖) ≥ 0, 𝜓𝐾 (𝑟, 𝑖) ≤ −1, (2.25)

2𝛩𝜓𝐾 (𝑟, 𝑖) = 𝛼(𝑟, 𝑖)
(

𝜓 ′′
𝐾 (𝑟, 𝑖) +

𝛾(𝑟, 𝑖)
𝑟

𝜓 ′
𝐾 (𝑟, 𝑖)

)

. (2.26)

For 𝑥 ∈ R𝑑 with |𝑥| > 𝑟0, 𝑖 ∈ , we have
2𝒜𝜓𝐾 (|𝑥|, 𝑖)

≤ 𝐴(𝑥, 𝑖)
(

𝜓 ′′
𝐾 (|𝑥|, 𝑖)+

𝛾(|𝑥|, 𝑖)
|𝑥|

𝜓 ′
𝐾 (|𝑥|, 𝑖)

)

−2𝑞𝑖𝜓𝐾 (|𝑥|, 𝑖)+2
∑

𝑗≠𝑖
𝑞𝑖𝑗𝜓𝐾 (|𝑥|, 𝑗)

≤ 2(𝛩 − 𝑞𝑖)𝜓𝐾 (|𝑥|, 𝑖) + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗𝜓𝐾 (|𝑥|, 𝑗)

≤ −2𝜃 < 0,

where in the second inequality we used (2.26), and in the third inequality we used the fact 𝜓𝐾 (𝑟, 𝑖) ≤ −1 and 𝛩 ≥ 𝑞𝑖. Thus, by 
Dynkin’s formula, this yields 

E𝑥0 ,𝑖𝜓𝐾 (|𝑋𝑡∧𝜏∧𝜁𝑚 |, 𝛬𝑡∧𝜏∧𝜁𝑚 ) − 𝜓𝐾 (|𝑥0|, 𝑖)

= E𝑥 ,𝑖

𝑡∧𝜏∧𝜁𝑚
𝒜𝜓𝐾 (|𝑋𝑠|, 𝛬𝑠)d𝑠 ≤ −𝜃 E𝑥 ,𝑖

(

𝑡 ∧ 𝜏 ∧ 𝜁𝑚
)

.
(2.27)
0 ∫0 0
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Passing the limit 𝑡 → ∞,

𝜃 E𝑥0 ,𝑖
(

𝜏 ∧ 𝜁𝑚
)

≤ 𝜓𝐾 (|𝑥0|, 𝑖) − E𝑥0 ,𝑖
[

𝜓𝐾 (𝑟0, 𝛬𝜏 )𝟏𝜏<𝜁𝑚
]

+ P𝑥0 ,𝑖(𝜁𝑚 < 𝜏)

≤ 𝜓𝐾 (|𝑥0|, 𝑖) + 1 − min
𝑗∈

𝜓𝐾 (𝑟0, 𝑗)

≤ −min
𝑗∈

𝜓𝐾 (𝑟0, 𝑗)

≤ max
𝑗∈

exp
(

𝑔𝐾 (𝑟0, 𝑗)
)

,

where in the last inequality we have used (2.25). Letting 𝑚→ ∞, by condition (2.22), we obtain that 

𝜃 E𝑥0 ,𝑖
(

𝜏
)

≤ max
𝑗∈

exp
(

∫

∞

𝑟0
e−𝐼(𝑠,𝑗)

(

∫

∞

𝑠

2𝛩 exp(𝐼(𝑢, 𝑗))
𝛼(𝑢, 𝑗)

d𝑢
)

d𝑠
)

<∞. (2.28)

Consequently, we conclude that (𝑋𝑡, 𝛬𝑡) is positive recurrent. □

Remark 2.5.  Condition (2.22) in Theorem  2.4 is in the similar form as the condition (2.15). They are used to construct the desired 
Lyapunov functions based on the Eqs. (2.19) and (2.26), which play a crucial role to remove the impact of the operator

𝑄𝑓 (𝑥, 𝑖) =
∑

𝑗≠𝑖
𝑞𝑖𝑗 (𝑓 (𝑥, 𝑗) − 𝑓 (𝑥, 𝑖)).

It is this difficulty that prevents us to construct a Lyapunov function to justify the null recurrence of (𝑋𝑡, 𝛬𝑡) in the current stage.

3. Criteria for state-dependent regime-switching processes

In this section we shall consider the state-dependent regime-switching diffusion processes, and want to provide criteria of 
recurrence and transience independent of the switching rates.

Consider 
d𝑋𝑡 = 𝑏(𝑋𝑡, 𝛬𝑡)d𝑡 + 𝜎(𝑋𝑡, 𝛬𝑡)d𝐵𝑡, 𝑋0 = 𝑥0 ∈ R𝑑 , 𝛬0 = 𝑖 ∈  , (3.1)

where (𝐵𝑡) is a Brownian motion in R𝑑 , (𝛬𝑡) is jumping process on  = {1, 2,… , 𝑁} satisfying 

P(𝛬𝑡+𝛿 = 𝑗|𝛬𝑡 = 𝑖, 𝑋𝑡 = 𝑥) =

{

𝑞𝑖𝑗 (𝑥)𝛿 + 𝑜(𝛿), 𝑖 ≠ 𝑗,
1 + 𝑞𝑖𝑖(𝑥)𝛿 + 𝑜(𝛿), 𝑖 = 𝑗,

(3.2)

for 𝛿 > 0. We also assume the existence and uniqueness of a nonexplosive solution (𝑋𝑡, 𝛬𝑡)𝑡≥0 to SDEs (3.1) and (3.2). The process 
(𝑋𝑡, 𝛬𝑡) is still a Markov process with infinitesimal generator given by 

𝒜𝑓 (𝑥, 𝑖) = ℒ (𝑖)𝑓 (𝑥, 𝑖) +𝑄(𝑥)𝑓 (𝑥, 𝑖)

=
𝑑
∑

𝑘=1
𝑏𝑘(𝑥, 𝑖)

𝜕𝑓 (𝑥, 𝑖)
𝜕𝑥𝑘

+ 1
2

𝑑
∑

𝑘,𝑙=1
𝑎𝑘𝑙(𝑥, 𝑖)

𝜕2𝑓 (𝑥, 𝑖)
𝜕𝑥𝑘𝜕𝑥𝑙

+
∑

𝑗≠𝑖
𝑞𝑖𝑗 (𝑥)(𝑓 (𝑥, 𝑗) − 𝑓 (𝑥, 𝑖))

(3.3)

for 𝑓 ∈ 𝐶2(R𝑑 × ). The recurrent property of state-dependent regime-switching processes is more complicated than the Markovian 
regime-switching processes. The monograph [8] focuses on the study of various properties of state-dependent regime-switching 
processes. Besides, based on the common Lyapunov function, [15] provided several recurrent criteria using nonsingular M-matrix 
theory and the Fredholm alternative theorem. However, the criteria given in Section 2 are independent of the switching rate matrix, 
and hence are easier to be extended to deal with state-dependent regime-switching diffusion processes.

Firstly, it is easy to check that Theorems  2.1 and 2.2 are still valid for the process (𝑋𝑡, 𝛬𝑡) satisfying SDEs (3.1), (3.2).
Secondly, let us extend Theorems  2.3 and 2.4 to the state-dependent situation.

Proposition 3.1.  Assume (H1) holds, and further that 
𝑞∗𝑖 ∶= sup

𝑥∈R𝑑
𝑞𝑖(𝑥) <∞, 𝑖 ∈  . (3.4)

If there exists 𝑟0 > 0 such that for each 𝑖 ∈ 

∫

∞

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

exp
(

𝐼(𝑢, 𝑖)
)

𝛼(𝑢, 𝑖)
d𝑢
)

d𝑠 < ∞,

then the process (𝑋𝑡, 𝛬𝑡) satisfying (3.1), (3.2) is transient.

Proof.  The argument follows the same line as that of Theorem  2.3 with the following modifications:
• Change the definitions of 𝑔(𝑟, 𝑖) and 𝑔(𝑛)(𝑟, 𝑖) into

𝑔(𝑟, 𝑖) =
𝑟
e−𝐼(𝑠,𝑖)

( 𝑠 2𝑞∗𝑖 e
𝐼(𝑢,𝑖)

d𝑢
)

d𝑠, 𝑟 ≥ 𝑟0, 𝑖 ∈  ,
∫𝑟0 ∫𝑟0 𝛼(𝑢, 𝑖)
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and

𝑔(𝑛)(𝑟, 𝑖) = ∫

𝑟

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

𝑠

𝑟0

2𝑞∗𝑖 e
𝐼(𝑢,𝑖)

𝛼(𝑢, 𝑖)
𝑔(𝑛−1)(𝑢, 𝑖)d𝑢

)

d𝑠, 𝑛 ≥ 1.

Then, still for 𝑓 (𝑥, 𝑖) = 𝜑(|𝑥|, 𝑖), it holds
2𝒜𝑓 (𝑥, 𝑖)

≥ 𝐴(𝑥, 𝑖)
(

𝜑′′(|𝑥|, 𝑖) +
𝛾(|𝑥|, 𝑖)

|𝑥|
𝜑′(|𝑥|, 𝑖)

)

− 2𝑞𝑖(𝑥)𝜑(|𝑥|, 𝑖) + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗 (𝑥)𝜑(|𝑥|, 𝑗)

≥ 2𝑞∗𝑖 + 2𝑞∗𝑖 𝜑(|𝑥|, 𝑖) − 2𝑞𝑖(𝑥)𝜑(|𝑥|, 𝑖) + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗 (𝑥)𝜑(|𝑥|, 𝑗)

≥ 2𝑞∗𝑖 + 2
∑

𝑗≠𝑖
𝑞𝑖𝑗 (𝑥)𝜑(|𝑥|, 𝑗) > 0.

We can get the desired conclusion by (2.16). □

Proposition 3.2.  Assume (H1) holds, and 
𝛩 ∶= sup

𝑥∈R𝑑
max
𝑖∈

𝑞𝑖(𝑥) <∞, 𝜃 ∶= inf
𝑥∈R𝑑

min
𝑖∈

𝑞𝑖(𝑥) > 0. (3.5)

If for some 𝑟0 > 0, 

∫

∞

𝑟0
e−𝐼(𝑠,𝑖)

(

∫

∞

𝑠

exp
(

𝐼(𝑢, 𝑖)
)

𝛼(𝑢, 𝑖)
d𝑢
)

d𝑠 < ∞, 𝑖 ∈  , (3.6)

then (𝑋𝑡, 𝛬𝑡) satisfying (3.1), (3.2) is positive recurrent.
This proposition can be proved in the same way as Theorem  2.4 using 𝛩 and 𝜃 given by (3.5) to define the Lyapunov function 

𝜓𝐾 (|𝑥|, 𝑖). Note that when coping with Markovian regime-switching process in a finite state space, condition (3.5) holds naturally. 
But, for the state-dependent regime-switching diffusion processes, we need to assume that (3.5) holds. This is a limitation of our 
result, Proposition  3.2, to the processes with arbitrary switching.

4. Examples

We shall provide three examples to show the application of our results obtained in Section 2 and Section 3.

Example 4.1.  Consider the process (𝑋𝑡, 𝛬𝑡) satisfying 

d𝑋𝑡 = 𝛽𝛬𝑡𝑏(𝑋𝑡)d𝑡 +
√

𝛽𝛬𝑡𝜎(𝑋𝑡)d𝐵𝑡, 𝑋0 = 𝑥0 ∈ R, 𝛬0 = 𝑖 ∈  , (4.1)

where 𝑏 ∶ R → R, 𝜎 ∶ R → (0,∞),  = {1, 2}, 𝛽 ∶  → (0,∞). (𝛬𝑡) is a continuous-time Markov chain on . Suppose that there is a 
unique nonexplosive solution (𝑋𝑡, 𝛬𝑡) satisfying SDE (4.1). Suppose that 𝑏 is an odd function and 𝜎 is an even function.

Without loss of generality, suppose 𝛽2 > 𝛽1. According to (2.6)–(2.9), direct calculation yields that

𝛾(𝑟, 𝑖) = 𝛾(𝑟) = 𝛾(𝑟, 𝑖) = 𝛾(𝑟) =
𝑏(𝑟)𝑟
𝜎2(𝑟)

,

𝐼(𝑟) = 𝐼(𝑟, 𝑖) = 𝐼(𝑟) = 𝐼(𝑟, 𝑖) = 𝐼(𝑟) = ∫

𝑟

𝑟0

𝛾(𝑢)

𝑢
d𝑢,

𝛼(𝑟, 𝑖) = 𝛽𝑖𝜎
2(𝑟), 𝛼(𝑟, 𝑖) = 𝛽𝑖𝜎

2(𝑟),

𝛼(𝑟) = 𝛽2𝜎
2(𝑟), 𝛼(𝑟) = 𝛽1𝜎

2(𝑟).

By virtue of Theorem  2.1, (𝑋𝑡, 𝛬𝑡) is recurrent if ∫ ∞
𝑟0

exp(−𝐼(𝑟))d𝑟 = ∞ for some 𝑟0 > 0; is transient if ∫ ∞
𝑟0

exp(−𝐼(𝑟))d𝑟 < ∞ for some 
𝑟0 > 0. This simple example tells us that the criteria obtained in Theorem  2.1 are sharp in certain sense.

Example 4.2.  Let us consider the Ornstein–Uhlenbeck process with Markovian regime-switching (𝛬𝑡) on a finite state space : 
d𝑋𝑡 = 𝜃𝛬𝑡𝑋𝑡d𝑡 + d𝐵𝑡, 𝑋0 = 𝑥 ∈ R, 𝛬0 = 𝑖 ∈  . (4.2)

Let (𝜋𝑖) denote the invariant probability measure of (𝛬𝑡). According to [19], (𝑋𝑡, 𝛬𝑡) is ergodic if and only if 
∑

𝑖∈ 𝜋𝑖𝜃𝑖 < 0.
By (2.6), (2.9),

𝐼(𝑟) = 1
2
(

max
𝑖∈

𝜃𝑖
)

(𝑟2 − 𝑟20), 𝐼(𝑟) = 1
2
(

min
𝑖∈

𝜃𝑖
)

(𝑟2 − 𝑟20)

Hence, if max𝑖∈ 𝜃𝑖 < 0, we have ∫ ∞
𝑟0

e−𝐼(𝑟)d𝑟 = ∞, which implies that (𝑋𝑡, 𝛬𝑡) is recurrent according to Theorem  2.1. Similarly, if 
min 𝜃 > 0, (𝑋 ,𝛬 ) is transient by Theorem  2.1. This result also tells us an interesting conclusion. For the regime-switching process 
𝑖∈ 𝑖 𝑡 𝑡

8 
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Fig. 1. OU process with 𝜃1 = 1∕3, 𝜃2 = −1∕2.

Fig. 2. OU process with 𝜃1 = −1, 𝜃2 = −1∕2.

(𝑋𝑡, 𝛬𝑡) satisfying (4.2), max𝑖∈ 𝜃𝑖 < 0 means that the corresponding diffusion process at each fixed environment 𝑖 ∈  is recurrent, 
then (𝑋𝑡, 𝛬𝑡) is recurrent regardless of 𝑄. This result is meaningful by recalling the interesting examples constructed in [9], where 
there is an example of regime-switching diffusion process on the half line such that it is recurrent at each fixed environment 𝑖 ∈ , 
but (𝑋𝑡, 𝛬𝑡) could be transient by choosing suitable transition rate matrix 𝑄 of (𝛬𝑡). Our example also indicates that the result on 
the strong ergodicity of regime-switching processes established in [14] has the room for improvement as the Ornstein–Uhlenbeck 
process is not strongly ergodic, but only exponentially ergodic.

Below, we illustrate the recurrent property of OU process (𝑋𝑡) with regime-switching via numerical approximation. As the 
distribution of 𝑋𝑡 is Gaussian, which is determined by its mean and variance, we plot the evolution of E[𝑋𝑡] and Var(𝑋𝑡) =
E[(𝑋2

𝑡 − E𝑋𝑡)2] to see its convergence or divergence.
First, let us take  = {1, 2} with 𝑄 =

(

−2 2
1 1

)

 and 𝜃1 = 1∕3, 𝜃2 = −1∕2. Then, (𝑋𝑡, 𝛬𝑡) is recurrent, which is also illustrated by 
Fig.  1.

Second, let us take  = {1, 2} with 𝑄 =
(

−2 2
1 1

)

 and 𝜃1 = −1, 𝜃2 = −1∕2. Then, (𝑋𝑡, 𝛬𝑡) is recurrent, which is also illustrated 
by Fig.  2.
9 
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Fig. 3. OU process with 𝜃1 = 1, 𝜃2 = 2.

Third, let us take  = {1, 2} with 𝑄 =
(

−1 1
1 1

)

 and 𝜃1 = 1, 𝜃2 = 2. Then, (𝑋𝑡, 𝛬𝑡) is transient, which can be seen in certain sense 
via Fig.  3.

Example 4.3.  Let us consider a diffusion process with Markovian regime-switching (𝑋𝑡, 𝛬𝑡) satisfying: 

d𝑋𝑡 = 𝑏(𝑋𝑡, 𝛬𝑡)d𝑡 + 𝜎(𝑋𝑡)d𝐵𝑡, 𝑋0 = 𝑥 ∈ R, 𝛬0 = 𝑖 ∈  , (4.3)

where  = {1, 2}, (𝛬𝑡) is a continuous-time Markov chain on . 𝑏 is an odd function, and 

𝑏(𝑥, 𝑖) =

{

𝛽𝑖𝑛2, if 𝑥 ∈ [2𝑛, 2𝑛 + 1),
−𝛽𝑖∕𝑛, if 𝑥 ∈ [2𝑛 + 1, 2𝑛 + 2),

(4.4)

where 𝛽1, 𝛽2 are positive constants. 𝜎 is an even function, and 

𝜎(𝑥) =
√

𝑛 if 𝑥 ∈ [2𝑛, 2𝑛 + 2) for 𝑛 ≥ 1, 𝜎(𝑥) =
√

2 if 𝑥 ∈ [0, 2]. (4.5)

The vibration of the sign of 𝑏(𝑥, 𝑖) makes it hard to find a common Lyapunov function to apply the criteria given in [15] or [8].
Indeed, according to [15, Theorem 2.1], if we can find a common Lyapunov function 𝑉  such that 

𝑉 (𝑥) > 0, ℒ (𝑖)𝑉 (𝑥) ≤ 𝜂𝑖𝑉 (𝑥), |𝑥| > 𝑟0 (4.6)

for some 𝑟0 > 0, 𝜂𝑖 ∈ R, 𝑖 ∈ . Assume that ∑𝑖∈ 𝜋𝑖𝜂𝑖 < 0, where (𝜋𝑖) denotes the unique invariant probability measure of (𝛬𝑡). 
Then, (𝑋𝑡, 𝛬𝑡) is transient if lim|𝑥|→∞ 𝑉 (𝑥) = 0, and is exponentially ergodic if lim

|𝑥|→∞ 𝑉 (𝑥) = ∞. We can see from this criterion that 
the limit behavior of the common Lyapunov function 𝑉 (𝑥) as |𝑥| → ∞ in (4.6) has been determined by the aim to establish the 
transience or ergodicity of (𝑋𝑡, 𝛬𝑡). To be more precise, to prove the ergodicity of (𝑋𝑡, 𝛬𝑡) with 𝑋𝑡 ∈ R via [15, Theorem 2.1], one 
needs to find a 𝑉 (𝑥) such that lim

|𝑥|→∞ 𝑉 (𝑥) = ∞ satisfying condition (4.6), which leads to 

𝜂𝑖 ≥
𝑏(𝑥, 𝑖)𝑉 ′(𝑥)

𝑉 (𝑥)
+ 1

2
𝜎2(𝑥, 𝑖)𝑉 ′′(𝑥)

𝑉 (𝑥)
, |𝑥| ≥ 𝑟0 > 0. (4.7)

The vibration of 𝑏(𝑥, 𝑖) and 𝜎(𝑥, 𝑖) means that it is possible that on some intervals 𝑥 ∈ 𝐴𝑘, ℒ (𝑖) satisfies the dissipative condition 
(this means that one can get 𝜂𝑖 < 0 for 𝑥 ∈ 𝐴𝑘 satisfying (4.7)), but on other intervals 𝑥 ∈ 𝐵𝑘, ℒ (𝑖) does not satisfy the dissipative 
condition (this means that 𝜂𝑖 satisfying (4.7) for 𝑥 ∈ 𝐵𝑘 must be positive). In all, we can only find a positive 𝜂𝑖 so that (4.7) holds 
for all |𝑥| ≥ 𝑟0. Thus, the condition 

∑

𝑖∈ 𝜋𝑖𝜂𝑖 < 0 cannot be satisfied due to the vibration of 𝑏 and 𝜎.
Now, we use the criteria established in this work to study the recurrent property of (𝑋𝑡, 𝛬𝑡) given in this example. By (2.4)–(2.7), 

we have, for 𝑟 ≥ 2,

𝛼(𝑟) = 𝛼(𝑟, 𝑖) = 𝛼(𝑟) = 𝛼(𝑟, 𝑖) = 𝑛, if 𝑥 ∈ [2𝑛, 2𝑛 + 2),

𝛾(𝑟, 𝑖) = 𝛾(𝑟, 𝑖) =

{

2𝛽𝑖𝑛𝑟, if 𝑟 ∈ [2𝑛, 2𝑛 + 1),
−2𝛽𝑖𝑟∕𝑛2, if 𝑟 ∈ [2𝑛 + 1, 2𝑛 + 2),

for 𝑛 ≥ 1.
10 
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Then, choosing 𝑟0 = 2, 
𝐼(𝑠, 𝑖) = 𝐼(𝑠, 𝑖) = 𝐼(𝑠, 𝑖)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛽𝑖𝑛(𝑛 − 1) − 2𝛽𝑖
𝑛−1
∑

𝑘=1

1
𝑘2

+ 2𝛽𝑖(𝑠 − 2𝑛), if 𝑠 ∈ [2𝑛, 2𝑛 + 1),

𝛽𝑖𝑛(𝑛 + 1) − 2𝛽𝑖
𝑛−1
∑

𝑘=1

1
𝑘2

− 2𝛽𝑖(𝑠 − 2𝑛 − 1)∕𝑛2, if 𝑠 ∈ [2𝑛 + 1, 2𝑛 + 2),

(4.8)

for 𝑛 ∈ N. This yields
𝛽𝑖𝑛(𝑛 − 1) + 2𝛽𝑖 ≥ 𝐼(𝑠, 𝑖) ≥ 𝛽𝑖𝑛(𝑛 − 1) − 2𝛽𝜅0, 𝑠 ∈ [2𝑛, 2𝑛 + 1),

𝛽𝑖𝑛(𝑛 + 1) ≥ 𝐼(𝑠, 𝑖) ≥ 𝛽𝑖𝑛(𝑛 + 1) − 2𝛽𝑖𝜅0 − 2𝛽𝑖∕𝑛2, 𝑠 ∈ [2𝑛 + 1, 2𝑛 + 2),

where 𝜅0 =
∑∞
𝑘=1 1∕𝑘

2. Then, 𝐼(𝑠, 𝑖) ∼ 𝑐𝑖𝑠2 + 𝑐 with some constants 𝑐𝑖 > 0 and 𝑐. Invoking

lim
𝑠→∞

𝑠2
(

e−𝑐𝑖𝑠
2

∫

𝑠

2

e𝑐𝑖𝑢2

𝑢
d𝑢

)

= 1
2𝑐𝑖

, and ∫

∞

2

1
𝑠2
d𝑠 < ∞,

it holds

∫

∞

2
e−𝐼(𝑠,𝑖)

(

∫

𝑠

2

e 𝐼(𝑢,𝑖)
𝛼(𝑢, 𝑖)

d𝑢
)

d𝑠 < ∞.

By virtue of Theorem  2.3, the process (𝑋𝑡, 𝛬𝑡) is transient.

Example 4.4.  Consider the state-dependent regime-switching process (𝑋𝑡, 𝛬𝑡) satisfying 

d𝑋𝑡 = 𝑏(𝑋𝑡, 𝛬𝑡)d𝑡 + 𝜎(𝑋𝑡)d𝐵𝑡, 𝑋0 = 𝑥0 ∈ R, 𝛬0 = 𝑖 ∈  , (4.9)

where  = {1, 2}, 𝑏 ∶ R ×  → R, 𝜎 ∶ R → (0,∞). (𝛬𝑡) satisfies 

P(𝛬𝑡+𝛿 = 𝑗|𝛬𝑡 = 𝑖, 𝑋𝑡 = 𝑥) =

{

𝑞𝑖𝑗 (𝑥)𝛿 + 𝑜(𝛿), 𝑖 ≠ 𝑗,
1 + 𝑞𝑖𝑖(𝑥)𝛿 + 𝑜(𝛿), 𝑖 = 𝑗,

(4.10)

provided 𝛿 > 0, where 𝑞1(𝑥) = 𝑞12(𝑥), 𝑞2(𝑥) = 𝑞21(𝑥) are given by 

𝑞𝑖(3−𝑖)(𝑥) = 𝜆𝑖
∞
∑

𝑛=0
𝟏[2𝑛,2𝑛+1)(|𝑥|) + 𝜆̃𝑖

∞
∑

𝑛=0
𝟏[2𝑛+1,2𝑛+2)(|𝑥|), 𝑖 ∈  = {1, 2} (4.11)

with 𝜆1, 𝜆2, 𝜆̃1, 𝜆̃2 > 0. Such kind of diffusion processes with piecewise constant type state-dependent switching has been studied 
in [20]. One can use the method in [20] to establish the wellposedness of SDEs (4.9), (4.10). However, since 𝑥 ↦ 𝑞𝑖𝑗 (𝑥) vibrates 
infinite times in this example, the recurrence criteria given in [20] are not applicable in current setting.

Let us consider the following drift and diffusion coefficients: 𝑏 is an odd function, and 

𝑏(𝑥, 𝑖) =

{

−𝛽𝑖𝑛2, if 𝑥 ∈ [2𝑛, 2𝑛 + 1),
𝛽𝑖∕𝑛, if 𝑥 ∈ [2𝑛 + 1, 2𝑛 + 2),

(4.12)

where 𝛽1, 𝛽2 are positive constants. 𝜎(𝑥) = 𝜎(−𝑥) for 𝑥 ∈ R and 

𝜎(𝑥) =
√

𝑛 if 𝑥 ∈ [2𝑛, 2𝑛 + 2) for 𝑛 ≥ 1, 𝜎(𝑥) =
√

2 if 𝑥 ∈ [0, 2]. (4.13)

Then, choosing 𝑟0 = 2, for 𝑟 ≥ 2,

𝛼(𝑟) = 𝛼(𝑟, 𝑖) = 𝛼(𝑟) = 𝛼(𝑟, 𝑖) = 𝑛, if 𝑥 ∈ [2𝑛, 2𝑛 + 2),

𝛾(𝑟, 𝑖) = 𝛾(𝑟, 𝑖) =

{

−2𝛽𝑖𝑛𝑟, if 𝑟 ∈ [2𝑛, 2𝑛 + 1),
2𝛽𝑖𝑟∕𝑛2, if 𝑟 ∈ [2𝑛 + 1, 2𝑛 + 2),

for 𝑛 ≥ 1.

Also, 
𝐼(𝑠, 𝑖) = 𝐼(𝑠, 𝑖) = 𝐼(𝑠, 𝑖)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛽𝑖𝑛(𝑛 − 1) + 2𝛽𝑖
𝑛−1
∑

𝑘=1

1
𝑘2

− 2𝛽𝑖(𝑠 − 2𝑛), if 𝑠 ∈ [2𝑛, 2𝑛 + 1),

−𝛽𝑖𝑛(𝑛 + 1) + 2𝛽𝑖
𝑛−1
∑

𝑘=1

1
𝑘2

+ 2𝛽𝑖(𝑠 − 2𝑛 − 1)∕𝑛2, if 𝑠 ∈ [2𝑛 + 1, 2𝑛 + 2)

(4.14)

for 𝑛 ∈ N. This yields
−𝛽 𝑛(𝑛 − 1) + 2𝛽 𝜅 ≥ 𝐼(𝑠, 𝑖) ≥ −𝛽 𝑛(𝑛 − 1) − 2𝛽𝜅 , 𝑠 ∈ [2𝑛, 2𝑛 + 1),
𝑖 𝑖 0 𝑖 0

11 



J. Li and J. Shao Nonlinear Analysis: Hybrid Systems 59 (2026) 101655 
−𝛽𝑖𝑛(𝑛 + 1) + 2𝛽𝑖𝜅0 + 2𝛽𝑖∕𝑛2 ≥ 𝐼(𝑠, 𝑖) ≥ −𝛽𝑖𝑛(𝑛 + 1), 𝑠 ∈ [2𝑛 + 1, 2𝑛 + 2),

where 𝜅0 =
∑∞
𝑘=1 1∕𝑘

2. Based on these estimates, we obtain that

∫

∞

2
e−𝐼(𝑠,𝑖)

(

∫

∞

𝑠

exp(𝐼(𝑢, 𝑖))
𝛼(𝑢, 𝑖)

d𝑢
)

d𝑠 < ∞, 𝑖 ∈  ,

and hence (𝑋𝑡, 𝛬𝑡) is positive recurrent due to Theorem  2.4.

5. Conclusion

In this work we provide two types of criteria to justify the transience and recurrence of regime-switching diffusion processes 
with the aim of making these criteria independent of the switching rates. Two types of criteria are provided in this work: (i) uniform 
in the switching component; (ii) non-uniform in the switching component.

This work leaves an open problem: how to justify the null recurrence of the regime-switching processes in the non-uniform type 
similar to Theorem  2.3 for transience and Theorem  2.4 for positive recurrence. Heuristically, we construct the explicit solution to 
the differential equation

ℒ (𝑖)𝑓 (𝑥, 𝑖) = 𝜆𝑖𝑓 (𝑥, 𝑖),

and use 𝜆𝑖𝑓 (𝑥, 𝑖) to remove the impact of 𝑄𝑓 (𝑥, 𝑖) =
∑

𝑗≠𝑖 𝑞𝑖𝑗𝑓 (𝑥, 𝑗) − 𝑞𝑖𝑓 (𝑥, 𝑖) in the construction of desired Lyapunov function
𝒜𝑓 (𝑥, 𝑖) = ℒ (𝑖)𝑓 (𝑥, 𝑖) +𝑄𝑓 (𝑥, 𝑖) ≤ −1.

However, to the null transience, we can only construct a Lyapunov function such that
ℒ (𝑖)𝑓 (𝑥, 𝑖) ≤ 1,

which is not enough to offset the impact of the operator 𝑄.
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