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1. Introduction

Stochastic processes with regime-switching have been widely applied to model the system living in a random environment
characterized by a continuous-time Markov chain. See, for instance, applications in mathematical finance [1-4], in biology [5], in
biochemistry [6]. See the manuscripts [7,8] for more introduction on various applications of such models. Compared with stochastic
processes without regime-switching, the recurrent property of the processes with regime-switching is much more complicated.
Especially, Pinsky and Scheutzow [9] have constructed examples in half line such that the process in each fixed environment is
recurrent(or transient), but the process in the random environment could be transient(recurrent respectively). Moreover, there are
many works to reveal the impact of the stationary distribution of the Markov chain on the recurrence on the stochastic processes
with regime-switching, such as, [10,11] on Ornstein-Uhlenbeck process with regime-switching; [12] on geometric Brownian motion
with regime-switching; [8, Chapter 3] on linearizable processes with regime-switching. The recurrence of these processes is usually
dependent on the stationary distribution of the Markov chain.

From the viewpoint of applications, it is also of great meaning to find suitable criteria to ensure the recurrence of the studied
system with regime-switching under arbitrary switching rates. This is relevant when the switching of the random environment is
either unknown or too complicated to be useful. In the study of hybrid dynamical system, such problem has been widely studied
to design suitable feedback control to make the system stable under arbitrary switching. see, e.g. [13, Chapter 2] and references
therein. However, there is very limited investigation on this topic for diffusion processes with regime-switching. In the 1-dimensional
setting, [14] provided a way to realize this purpose. Namely, when the corresponding 1-dimensional diffusion process at each fixed
environment is strongly ergodic. Then the diffusion with regime-switching must be recurrent regardless of the switching rates.

In addition, if one wants to use the averaging type criteria established in [15] to realize this purpose, the challenge lies in
the construction of a common Lyapunov function V' (x) to characterize the recurrent property of the studied system at each fixed
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environment. However, this is not an easy task for diffusion processes with regime-switching, especially when the recurrent behavior
of this system varies acutely at different environment states. This can be seen from the study of linear dynamical systems with
regime-switching, for which the problem of finding a quadratic common Lyapunov function amounts to solving a system of linear
matrix inequalities (cf. [16]).

In this work we shall provide explicit criteria based on the coefficients of the studied system to justify the recurrence for arbitrary
switching rate. We present two forms of criteria. For the first type, the constructed explicit conditions are independent of states of
the switching process. For the second type, the constructed explicit conditions depend on the coefficients of the diffusion processes
at each fixed switching state. The criteria of first type are easier to be verified than the second one, but they are usually less accurate
than the second. Furthermore, these results are generalized to deal with diffusion processes with state-dependent regime-switching.
Besides owning the characteristic of not relying on switching rate, it is worth pointing out that our criteria are also useful to study
the recurrence of regime-switching processes with coefficients vibrating periodically. The existing criteria in the averaging form
based on a common Lyapunov function cannot deal with these processes. See Example 4.2 and Example 4.3 in Section 4 for more
details. For the criteria of second type, the basic idea of our method is to overcome the difficulty caused by the generator of Markov
chain via the generator of the diffusion process.

This work is organized as follows. Section 2 is devoted to dealing with diffusion processes with Markovian regime-switching. The
first part of Section 2 presents the results which are uniform in the jumping component, and the second part of Section 2 shows the
criteria which are non-uniform in the jumping component. In Section 3, we deal with the diffusion processes with state-dependent
regime-switching. Examples are constructed in Section 4 to illustrate the application of these criteria. In Section 5, we summarize
briefly this work and point out a problem on the null recurrence in the non-uniform type still left by us.

2. Criteria for Markovian regime-switching processes

The diffusion processes with regime-switching are used to model a system living in a random environment, which is characterized
by a jumping process in a finite state space. Let us consider the following diffusion process (X, A,) satisfying

dX, = b(X,, A)dt + 6(X,, A)dB,, X,=xo€R?, Ay=i€S, 2.1

where (B,) is d-dimensional Brownian motion, (4,) is a continuous-time Markov chain on a finite state space S = {1,2,..., N} with
irreducible, conservative Q-matrix (g;,); jes, b : R? xS - R?, ¢ : RY x S — R™?. (X, A,) is a diffusion process with Markovian
regime-switching. In this situation, it is assumed that (B,) and (A,) are mutually independent as usual. As we are focused on the
recurrent property of (X,, A,), we always assume the existence and uniqueness of strong solution (X,, A,),5o to SDE (2.1) for every
initial value (X, Ag) = (xg,i) € RY x S. We refer the monographs [7,8] on the study of the wellposedness of (X, 4,).

The infinitesimal generator of (X,, A,) is given by

dfxi) =20 f(x, 1) +Qf (x,i)
d d
N 1 L 02 _ , ) (2.2)
= Zbk(x,z)a—f(x,z) +5 D ak,(x,z)ﬁ(x,z) + )4, (F0x, ) = f(x.0)
k=1 Xk Ki=1 Xk0X jes
for f € C*(R? x S), where (a;(x,)) = (66*)(x, ) and ¢* denotes the transpose matrix of c. Here £ is an infinitesimal generator
corresponding to the diffusion process (X;"”) satisfying

dx” = bx, ndt + o(x".)dB,. X = x,. (2:3)

which describes the behavior of the studied process (X,) in the fixed environment i € S.
In this work we shall use the following assumption.

(H1) There is a ¢, > 0 such that

d
N auxEg 2 clél?, xeRi€S E=(, ... &) R
Ki=1
Before introducing our results, let us first introduce some notations. Let
d o x d
. XX
A(x,i) = Z ak,(x,z)—z, where |x|2:2xi for x=(x, ... ,xd)eRd, x#0,
k=1 x| k=1
d

d
A(x,i) = Z ag(x. i), B(x,i) = Z by (x, i)x,.
k=1

k=1

Let y(r,i) and ¥(r,i) be continuous function on (0, c0) X S satisfying

A(x, i) — A(x, i) + 2B(x, i)

7(r,i) > sup “ for r > 0,
o A(x,
|x|= o (x -1) - @4
AxD = A D +2BOGD g,

. < inf
i< inf, A(x, D)
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Let a(r,i) and a(r,i) be continuous functions on (0, ) X S such that

a(r,i) > sup A(x,i), a(r,i) < |i1|1f A(x, i), (2.5)
lxl=r xl=r
and
y(r) = maxy(r,i), y(r) = miny(r,i); (2.6)
ieS - ieS —
a(r) = max a(r, i), a(r) = rrél;] a(r,i). 2.7)

For ry > 0, define

- " Y, i ry(u,i)
I(r,i)=/ Mdu, {(r,i)=/ —du, (2.8)
ro u ro u
= §70) r 7
I(r)=/ —du, I(r)= —du. 2.9
I‘O u I‘O u

After these preparations, we can present our criteria on the recurrence of (X, A,).

2.1. Criteria uniformly in the switching component

We begin with the criteria uniformly in the switching component, which means that these criteria do not depend on the state
i € S. The construction of these sufficient conditions uses the idea of the remarkable works of Bhattacharya [17] and Friedman [18]
among others for the multidimensional diffusion processes.

Theorem 2.1. Assume (H1) holds.

o If fr;” exp(—f(r))dr = oo for some ry > 0, then (X,, A,) is recurrent.
(i) If fr:’ exp(—1(r))dr < oo for some ry > 0, then (X,, A,) is transient.

Proof. The basic idea of the proof is to construct suitable Lyapunov functions associated with the generator </ of (X,, A,). For
F € C2([ry, o)) for ry, > 0, consider the function f(x,i) := F(|x|) for |x| > ry, and we calculate directly to deduce that

!
2o f(x,i) = A(x, )F"(|x]) + (ACx, i) — A(x, i) + 2B(x, i) r ﬂfl)’ |x| = rg.i €S. (2.10)
Define
F(r) = / exp(—1(s))ds, F(r)= / exp(—1(s))ds.
ro ro
Then, it holds
Floy+ L0F ) =
y( )
F'n+=—F@)=
Replacing F in (2.10) with F and F respectively, we can obtain that
26 F(x) < A0 (F )+ LELF ) =0 211)
7/(| |
240 F() 2 A D E"(xD + = F(lxD) ) =0 2.12)

Let ¢, = inf{t > 0; | X,| = m} for m € N, and
7 =inf{r > 0;]|X,| = B} for some B > r.

Since (4,) is recurrent in a finite state space S, the process (X,,A,) is recurrent (or transient) if and only if the process (X,) is
recurrent (or transient, respectively). For i € S, x, € R? with |xo| > g, if

Py,.i(r < ) 1=P(7 < o0[(Xy, Ag) = (x0,1) = 1,
then the process (X,) and hence (X,, A,) is recurrent; if
PXO’I-(T = oo) >0,

then (X,) and hence (X,, A,) is transient.



J. Li and J. Shao Nonlinear Analysis: Hybrid Systems 59 (2026) 101655

(i) For ¢ > 0, by Dynkin’s formula and (2.11), it holds

NG AT

B F (X el) = FlD + By [ aF1X, s < Filso.
Letting 7 — oo, this yields that

Fm)P, (x> &) + F(BP, i(r <&,) < Fllxo)),
and further that
o Fom) = F(lxo))

Poi(t<8) 2 ——o—. (2.13)
F(m)— F(p)

Therefore, letting m — oo, as ¢,, - o a.s. and F(m) — oo due to /r :’ e 1dr = 0o, we obtain from (2.13) that

Pt <o) =1,
and hence (X, 4,) is recurrent.

(ii) By virtue of Dynkin’s formula, due to (2.12), we have
N AT
Exo,[f(legm,\zl) = F(|xo|) + Exo,i/ A F(|X)ds > F(|Xy)). (2.14)
0

Letting 7 — oo, we have

EmP, (x> )+ FBP, i(z <) = F(Ixol),
F(lxol) = E(B)

F(m) - F(p)
Passing the limit as m — oo, we get

Elxh-F®
]P)X[)J(T =00) > m >0

by the condition F(c0) = |, :’ e LMdr < 0. Thus, (X,, A,) is transient. The proof of this theorem is completed. []

Pxo,i(f > Cm) >

Theorem 2.2. Assume (H1) holds.
s
() If/ % exp(I(s))ds < oo for some ry > 0, then (X,, A,) is positive recurrent.
o 26
(i) If there exists some r( > 0 such that

N o=T(s) ( frZ exp(T(u)) Ja@)du)ds

"o

im
N—oo /,(1]\1 exp(—1(s))ds

B

then (X,, A,) is null recurrent.

Proof. Similar to the argument of Theorem 2.1, we can find the desired Lyapunov function f(x,i) using a similar construction of
Lyapunov functions F € C2(R) as in [17, Theorem 3.5]. Precisely, to prove (i), let

"Ie( [T L Tw
F(r)=—/es / —e ' Wdu)ds, r=>r,
" ( s aw) ) 0
and f(x,i) = F(|x|) for |x| > ry and i € S. Then, it holds 2¢/ f(x,i) > 1 for |x| > ry, i € S. To prove (ii), let us take
r — N 1 —_
G(r):/ e_m)(/ _—e“‘”du)ds, r>rg,
ro ro a(u)
and f(x,i) = G(|x|) for |x| > ry and i € S. Then, 24/ f(x,i) < 1 for |x| > ry, i € S. Moreover, we have assumed the non-explosive

of (X,, A,) throughout this work, so condition (3.25) in [17] is not needed in current setting. Then, one can follow the argument
of [17, Theorem 3.5] to derive the desired results. More details are omitted. []

2.2. Criteria non-uniformly in the switching component

In this subsection we shall construct the desired Lyapunov function for each state of the switching process (A,). The construction
method will be different to that used in Section 2.1 or [17,18] in order to remove the impact of operator Q in the infinitesimal
generator o of (X,, A,). A little more precisely, here we need to construct a solution to the differential equation in the form

F'(x,i)+ h(x,)F'(x) = ¢;F(x,i)+¢;, x€ER,i€S,
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instead of a differential equation in the form
F'x)+gx)F'(x) =0, x€R,

which is needed in Section 2.1 and [17,18].

Theorem 2.3. Assume (H1) holds. If there is a constant r, > 0 such that for each i € S

© . s I(u,i
/ e_i(x")</ exp(_Ll))du)ds < o0, (2.15)

o A
then (X;, A,) is transient.
Proof. To show this theorem, we shall construct a Lyapunov function f(x, i) satisfying the following conditions, which implies the
transience of (X, A,):

f(x,i)=0, for |x| =ry, i € S;
0< f(x,i)< M, for|x|>ryi€S,someM >0 (2.16)
4 f(x,i) 20, for |x| > ry, i € S.

Indeed, if such a function f exists, then it follows from Dynkin’s formula that
IATAL )y,
i/ Kineniy ) = G0 = By [ o106, A)ds 20
where 7 = inf{r > 0; |X;| = ry} and ¢,, = inf{r > 0;|X,| = m} for m € N. Letting t - 0, as f(X,,A,) =0, we obtain that
M]P’XO’,-(T > () > f(xg,i)> 0.

Letting m — oo yields that P, ;(r = 00) > 0, which means that (X;, 4,) is transient.

Define
r ) k) _el(u,i)
g(r,i)= / e_i(“)(/ q’—,du)ds, r>ry i €8,
"  ad)
where ¢; = ¥, e 4i;- Put gO(r, i) = 1, and define iteratively, for r > ry, i € S,
r ) K 2q_e£(u,i)
g0, i) = / e—£<5~')( / e a— i)du)ds, n>1. (2.17)
A )
Let
or.iy= Y g"(ri),  rx2ryi€S. (2.18)
n=1

Note that r — g(r,i) is a nonnegative, increasing function, then by (2.17),

r ) 52g. I(u,i)
8(2)(r,i)S/ e’i(”)(/ Ldu)g(s,i)ds

"0 o @0

r N2
< / ¢(s. gl ds = EC

A 2

One can deduce similarly g (r,i) < (g(r,i))" /n! by induction. Thus, ¢(r,i) is well-defined. Moreover, it satisfies
@(rg:) =0, @' (r,1)> 0, @(r,i) <8 =1, r>ry i €S,

and

y(r.i) 2g;

20,
@' (r, i)+ ——¢'(r,i) = + i(p(r, i), r>ry, i €S. (2.19)
r

a(r,i)  a(r,i)

Due to (2.15), for each i € S,

o sog el
g(ri) < / e—!@')( / Ldu)als =1 f < oo. (2.20)

o ry @, i)
After these preparations, let
f(x,i) = @(|x],i) for |x| > ry, i €S. (2.21)
Then, f(x,i) =0 for |x| =ry, i € S;

0< fx,i)<et) 1 <efi <0, |x|> re, i €S.
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This yields that f is bounded as S is a finite state space. Moreover, by (2.19),

24 f(x,i)
e ol g ACD=ACE DH2BCx D) @/(x]. D)
= AGe (9" (Il )+ s =)
+2 )" a;(e(1x], H=w(x], 1)
j#i

N A ) B _ _

> A (¢ (1x1.0) + ¢/(1x1.0)) = 2q,00x1.0+2 Y q;,0(1x1.))
[x] J#i

= A A 20 ) - 2q001xl.) +2 Y g 0(0x].)

S \alxl ) allxl T - T
226, +2 ) 4;;0(Ix].j) > 0.

J#i

Consequently, the constructed function f(x,i) in (2.21) satisfies all conditions in (2.16). Thus, (X,, A,) is transient.

Theorem 2.4. Assume (H1) holds. If for some ry > 0,

/ e_7<“’f)</ Mdu)ds < o0, i€eS,
o s a(u, i)

then (X,, A,) is positive recurrent.

Proof. As S is finite and Q is conservative,
(] :=r}éasxq,~ =rirg¥42q,-j <oo, 0 :=r‘_1é1§1q,- > 0.
J#i
Introduce the auxiliary functions as follows. For K € N, put
Ko K20 exp(T(u, i)
gx(r,i)= / e_l(“)</ #du)ds, 0<r<Kk.
r s a(u, i)

Let g;?)(r, i) = 1, and define inductively that

L K20 exp(I(u, i)
gzl)(r, )= / e_'(’”)(/ #gzﬁl)(u, i)du)ds, 0<r<K,i€esS.
r s

a(u, i)
Let
(s
Wi (ri)=— Zggg)(r,i), 0<r<K,i€S.
n=0
Due to (2.22), as
n

. 1 .
0 < - (gx (D) n2 1,

we get yg (r, i) is well-defined. Furthermore, y admits the following properties:
— ek <y (i) < —(1+ gx (D), wi(r i) >0, yg(ri) < -1,
20y (r, i) = a(r, i)(u/%(r, i)+ @u/;{(r, i)).

For x € RY with |x| > ry, i € S, we have

2wy (|x]. )

S Alx, ")(V/Z(le,m rxl.H

[x]

Wix1.0) ) =2qwk (11, )+2 Y 4w (1x1.)
J#i
<20 - gy (Ix], ) +2 Z a;;wk (Ix1,))
J#i
<-20<0,

O

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

where in the second inequality we used (2.26), and in the third inequality we used the fact wg(r,i) < —1 and © > g;. Thus, by

Dynkin’s formula, this yields
Exo.iWK(lxmr/\{m [, At/\r/\gm) = wi(Ixol, )

tIATAL )y,
:IEXOJ-/O (Xl A)ds < 0B, ;(rATAE,).

(2.27)
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Passing the limit 1 —» oo,
O (T Aw) Swirllxols i) =By i[wi (ros Al icg, | + Py i (G < 7)
< wig(xol, 1) + 1 —minyg (rg, j)
JES
< -—mi i
< —mig wi(ro.J)
< ;
< max exp(gx (r».J)),

where in the last inequality we have used (2.25). Letting m — oo, by condition (2.22), we obtain that
® Ten( = 20exp(I 1, )
E, .(7) < 1(s.J) - 7 . 2.2
OE r/T'leaiz“(exp</ro ¢ ( s a(u, j) du>ds) <o (2.28)

Consequently, we conclude that (X,, A,) is positive recurrent. []

Remark 2.5. Condition (2.22) in Theorem 2.4 is in the similar form as the condition (2.15). They are used to construct the desired
Lyapunov functions based on the Egs. (2.19) and (2.26), which play a crucial role to remove the impact of the operator

Of e,y =Y 4y (f(x, ) = F(x,0).
J#i
It is this difficulty that prevents us to construct a Lyapunov function to justify the null recurrence of (X,, 4,) in the current stage.

3. Criteria for state-dependent regime-switching processes

In this section we shall consider the state-dependent regime-switching diffusion processes, and want to provide criteria of
recurrence and transience independent of the switching rates.
Consider

dX, = b(X,, A)dt + 06(X,, A)dB,, Xo=x9€R% Ag=i€S, 3.1
where (B,) is a Brownian motion in R?, (4,) is jumping process on S = {1,2, ..., N} satisfying

q;;(x)6 + 0(3), i#J,
1+ g;(x)6 +0(6), i=],

P(A s =jlA =i, X, =x) = { (3.2)

for 6 > 0. We also assume the existence and uniqueness of a nonexplosive solution (X,, A,),»o to SDEs (3.1) and (3.2). The process
(X,, A,) is still a Markov process with infinitesimal generator given by

o f(x =LV f(x,i)+ Q(x)f(x, i)

l)
—Zbk( Lol 2k;::lak,(x Ppaics l)+Zq,,(X)(f(x P 1)

(3.3)

for f € C*(R? x S). The recurrent property of state-dependent regime-switching processes is more complicated than the Markovian
regime-switching processes. The monograph [8] focuses on the study of various properties of state-dependent regime-switching
processes. Besides, based on the common Lyapunov function, [15] provided several recurrent criteria using nonsingular M-matrix
theory and the Fredholm alternative theorem. However, the criteria given in Section 2 are independent of the switching rate matrix,
and hence are easier to be extended to deal with state-dependent regime-switching diffusion processes.
Firstly, it is easy to check that Theorems 2.1 and 2.2 are still valid for the process (X, A,) satisfying SDEs (3.1), (3.2).
Secondly, let us extend Theorems 2.3 and 2.4 to the state-dependent situation.

Proposition 3.1. Assume (H1) holds, and further that

q' 1= sup g;(x) <o, i€ES. (3.4)
xeRd

If there exists ry, > 0 such that for each i € S

© . s I(u,i
/ e—L(s,:)(/ Mdu)ds < 00,
a(u, i)

o o

then the process (X, A,) satisfying (3.1), (3.2) is transient.

Proof. The argument follows the same line as that of Theorem 2.3 with the following modifications:

+ Change the definitions of g(r,i) and g(r, ) into

r X N 21[* I (ui)
g(r,i)= / e_l(s”)</ —du)ds, r>ry, i €8S,
A @)
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and

r ) s 2gFe L)
g7, i)=/ e’i(s")</ — gDy, i)du)ds, n>1.
a(u, i)

o o

Then, still for f(x,i) = ¢(|x|, ), it holds
2 f(x,i)

(I, )

¢ 0x0) = 20900510 +2 3, 400011 )
J#i

> 2q7 + 247 o(|x], 1) = 2,()e(|x], D) + 2 )" q;;)e(1x], j)

J#i

4
> A9 (110 + 5

>2g7 +2 ) gq,;,()e(Ix]. /) > 0.
J#i
We can get the desired conclusion by (2.16). []

Proposition 3.2. Assume (H1) holds, and

O := sup maxg;(x) < oo, 6 := inf ming;(x) > 0. (3.5)
<eRd €S xeRd i€S

If for some ry > 0,

o _ o reexp(T(u,i
/ e_’(‘”)(/ Mdu)ds < o0, i€ S, (3.6)
ro s

a(u,i)
then (X,, A,) satisfying (3.1), (3.2) is positive recurrent.

This proposition can be proved in the same way as Theorem 2.4 using © and 6 given by (3.5) to define the Lyapunov function
vk (|x|,i). Note that when coping with Markovian regime-switching process in a finite state space, condition (3.5) holds naturally.
But, for the state-dependent regime-switching diffusion processes, we need to assume that (3.5) holds. This is a limitation of our
result, Proposition 3.2, to the processes with arbitrary switching.

4. Examples
We shall provide three examples to show the application of our results obtained in Section 2 and Section 3.
Example 4.1. Consider the process (X,, 4,) satisfying
dX, = b(X)dt + /By 0(X)AB,, Xg=x)ER, Ag=i€S, 4.1)
where b : R—> R, 0 : R—> (0,00), S ={1,2}, # : S = (0,). (4,) is a continuous-time Markov chain on S. Suppose that there is a

unique nonexplosive solution (X, A,) satisfying SDE (4.1). Suppose that 5 is an odd function and ¢ is an even function.
Without loss of generality, suppose g, > ;. According to (2.6)—(2.9), direct calculation yields that

— = N _ b(rn)r
r(r )=y =y )=y = 2
_ _ " y(u)
I =1(r,)=1(r)=Lr,H)= 1) = / =—du,
7‘0 u
a(r, i) = p;6*(r), a(r,i) = B,6*(r),
a(r) = pro%(r), a(r) = B> ().

By virtue of Theorem 2.1, (X,, A,) is recurrent if fr * exp(—I(r))dr = oo for some ro > 0; is transient if fr ;X’ exp(—1I(r))dr < co for some

ro > 0. This simple example tells us that the criteria obtained in Theorem 2.1 are sharp in certain sense.

Example 4.2. Let us consider the Ornstein-Uhlenbeck process with Markovian regime-switching (4,) on a finite state space S:
dX, =0, X,dt+dB,, X,=x€R, Ay=i€ES. (4.2)

Let (r;) denote the invariant probability measure of (4,). According to [19], (X,, A,) is ergodic if and only if } . 7,6, < 0.
By (2.6), (2.9),

IGE (maxe)(r -, I = (mme)(r )

Hence, if max;cg 6; < 0, we have f e 1dr = o0, which implies that (X,, A,) is recurrent according to Theorem 2.1. Similarly, if
min;cg 0; > 0, (X,, A,) is transient by “Theorem 2.1. This result also tells us an interesting conclusion. For the regime-switching process
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Expectation and Variance of x; with xo=1,Ao =1

— Hx¢] (red)
{ = Var(x;) (blue)

£

Q
=
S 5

14

0

0 5 10 15 20 25 30
Time t
Fig. 1. OU process with 6, =1/3, 0, = —1/2.
Expectation and Variance of x; with xo=1,A\p =1
1.0 — Ex] (red)
—— Var(x;) (blue)

0.8

0.6 4
[
=
)

0.4

0.2 1

0.0

0.‘0 2:5 5.‘0 7.‘5 10‘.0 12‘.5 15‘.0 17‘.5 20‘.0

Time t

Fig. 2. OU process with 6, = -1, 6, = —1/2.

(X;, A,) satisfying (4.2), max,cg 6; < 0 means that the corresponding diffusion process at each fixed environment i € S is recurrent,
then (X, A,) is recurrent regardless of Q. This result is meaningful by recalling the interesting examples constructed in [9], where
there is an example of regime-switching diffusion process on the half line such that it is recurrent at each fixed environment i € S,
but (X,, A,) could be transient by choosing suitable transition rate matrix Q of (A,). Our example also indicates that the result on
the strong ergodicity of regime-switching processes established in [14] has the room for improvement as the Ornstein—Uhlenbeck
process is not strongly ergodic, but only exponentially ergodic.

Below, we illustrate the recurrent property of OU process (X;) with regime-switching via numerical approximation. As the
distribution of X, is Gaussian, which is determined by its mean and variance, we plot the evolution of E[X,] and Var(X,) =
E[(X? - EX,)*] to see its convergence or divergence.

First, let us take S = {1,2} with Q = <_12 ?) and 0, = 1/3, 6, = —1/2. Then, (X, A,) is recurrent, which is also illustrated by
Fig. 1.

Second, let us take S = {1,2} with Q = (_12 ?) and 6, = -1, 6, = —1/2. Then, (X,, A,) is recurrent, which is also illustrated
by Fig. 2.
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le17 Expectation and Variance of x; with xo=1,Ap =1
E[x¢] (red)
— Var(x) (blue
i'6'] (x:) (blue)
0.8 -
o 0.6
=
B
0.4
0.2 -
0.0
0.0 25 5.0 75 10.0 125 15.0 15 20.0
Time t

Fig. 3. OU process with 6, =1, 6, = 2.

. - -1 1 . . . . .
Third, let us take S = {1,2} with Q = < 1 1> and 0, =1, 6, = 2. Then, (X,, A,) is transient, which can be seen in certain sense
via Fig. 3.
Example 4.3. Let us consider a diffusion process with Markovian regime-switching (X, A,) satisfying:
dX, = b(X,, A)dt +o(X,)dB,, X,=x€R, Ag=i€S, (4.3)

where S = {1,2}, (4,) is a continuous-time Markov chain on S. b is an odd function, and

2, ifxe2n2n+1),
bx. i) = pin if xe[2n,2n+1) (4.4)
—B;/n, if x€[2n+1,2n+2),
where g, §, are positive constants. ¢ is an even function, and
o(x) = \/; if xe2n,2n+2)forn>1, o(x)= \/5 if x € [0,2]. (4.5)

The vibration of the sign of b(x, i) makes it hard to find a common Lyapunov function to apply the criteria given in [15] or [8].
Indeed, according to [15, Theorem 2.1], if we can find a common Lyapunov function V such that

V(x)>0, ZOV(x)<nVX), |x|>r (4.6)

for some ry > 0, 7; € R, i € S. Assume that ), ¢ 7;#; < 0, where (r;) denotes the unique invariant probability measure of (A,).
Then, (X, A,) is transient if lim o V' (x) =0, and is exponentially ergodic if limj |, V' (x) = co. We can see from this criterion that
the limit behavior of the common Lyapunov function V(x) as |x| — oo in (4.6) has been determined by the aim to establish the
transience or ergodicity of (X,, A,). To be more precise, to prove the ergodicity of (X,, A,) with X, € R via [15, Theorem 2.1], one
needs to find a V' (x) such that lim),|_,, V' (x) = oo satisfying condition (4.6), which leads to

b, DV'(x) | 10 (x, )V (x)
TV T2 v

, xl=rg>0. 4.7)

The vibration of b(x,i) and o(x, i) means that it is possible that on some intervals x € A,, " satisfies the dissipative condition
(this means that one can get 7; < 0 for x € A, satisfying (4.7)), but on other intervals x € B, ¥ does not satisfy the dissipative
condition (this means that #; satisfying (4.7) for x € B, must be positive). In all, we can only find a positive #; so that (4.7) holds
for all |x| > ry. Thus, the condition Y. 7;#; < 0 cannot be satisfied due to the vibration of b and o.

Now, we use the criteria established in this work to study the recurrent property of (X,, A,) given in this example. By (2.4)—(2.7),
we have, for r > 2,

a(ry=a(r,i)=a(r) =a(r,i)=n, ifxe2n2n+2),

2p;nr, if re2n,2n+1),

for n > 1.
—2p;r/n?, ifre2n+1,2n+2),

7(r.0) = y(r.i) = {

10
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Then, choosing r, =2,

T(s,i) = I(s,i) = I(s,0)
n—1

intn—1)-25; Y

— k=1

L

2 +2p,(s — 2n), if s € 2n,2n+ 1),

(4.8)
n—1
Bin(n+1) - Zﬂi; é —2p(s—=2n—1)/n?, ifse2n+1,2n+2),

for n € N. This yields

pin(n—1)+2p; > I(s,i) > fin(n — 1) = 2pxy, s €[2n,2n+1),
Bin(n+1) > I(s,i) > fin(n+ 1) = 2f;ky — 26;/n°, s € 2n+1,2n+2),

where kg = X737, 1/k*. Then, I(s,i) ~ ¢;s? + & with some constants ¢; > 0 and ¢. Invoking

S cu? oo
. —os2 eqitt 1 1
lim sz(e €S du) = —, and —ds < o0,
s—00 P u 2c.: 5 52

it holds

o NI (%)
/ e_l(s“)(/ — du)ds < co.
2 2 au,i)

By virtue of Theorem 2.3, the process (X, A,) is transient.

Example 4.4. Consider the state-dependent regime-switching process (X, 4,) satisfying
dX, = b(X,,A)dt + o(X,)dB,, X,=x,€R, Ay=i€S, (4.9)
where S ={1,2}, b : RxS > R, 6 : R - (0, ). (4A,) satisfies

4;;(x)6 + 0(5), i#j,

(4.10)
14 g;;(x)6 +0(8), i=],

PAs=JlA, =i, X, =x)= {
provided 6 > 0, where g;(x) = g5(x), ¢,(x) = ¢5;(x) are given by

413 = 4 2 Lpaaneny (XD + 4 Y Apusi (. 1€ S =(1.2) 4.11)
n=0 n=0
with Ay, 45, 4;,4, > 0. Such kind of diffusion processes with piecewise constant type state-dependent switching has been studied
in [20]. One can use the method in [20] to establish the wellposedness of SDEs (4.9), (4.10). However, since x — g¢; (%) vibrates
infinite times in this example, the recurrence criteria given in [20] are not applicable in current setting.
Let us consider the following drift and diffusion coefficients: 4 is an odd function, and

—pn?, if 2n,2n + 1
bx. i) = pin°, if x € [2n,2n+ 1), 4.12)
pi/n, ifxe2n+1,2n+2),
where g, §, are positive constants. ¢(x) = o(—x) for x € R and
o(x)=+n ifxen2n+2)forn>1, o(x)=V2 ifxe[0.2]. (4.13)
Then, choosing r(, =2, for r > 2,
a(ry=a(r,i)=a(r) =a(r,i)=n, ifxe2n2n+2),
—2p:nr, if 2n,2 1),
i) = yro iy = 4 “2hmr Areln2nd 1) for n> 1.
= 2p,r/n?, ifre2n+1,2n+2),
Also,
T(s,i) = I(s,i) = I(s,i)
n—1
-ﬂ.n(n-1)+2ﬂ.2i—2p.(s-2n) if se2n2n+1)
' L ’ ’ ’ (4.14)

n—1

—pin(n+1)+2p; 2 % +2p;(s —2n— 1)/n2, ifse2n+1,2n+2)
k=1

for n € N. This yields

—pin(n—1)+2f;xg > I(s,i) > =fin(n — 1) = 2Ky, s € [2n,2n+1),

11
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—pin(n+ 1)+ 2p,x, +2ﬂ,~/n2 > I(s,i)>—pin(n+1), se€2n+1,2n+2),

where x, = Y77 | 1/k?. Based on these estimates, we obtain that

/ e—[(s,i)(/ Mdu)ds <o, [ES,
) R a(u,i)

and hence (X, A,) is positive recurrent due to Theorem 2.4.
5. Conclusion

In this work we provide two types of criteria to justify the transience and recurrence of regime-switching diffusion processes
with the aim of making these criteria independent of the switching rates. Two types of criteria are provided in this work: (i) uniform
in the switching component; (ii) non-uniform in the switching component.

This work leaves an open problem: how to justify the null recurrence of the regime-switching processes in the non-uniform type
similar to Theorem 2.3 for transience and Theorem 2.4 for positive recurrence. Heuristically, we construct the explicit solution to
the differential equation

ZOf D) = 4 (x.),

and use 4; f(x,i) to remove the impact of Qf(x,i) =, i 9ij S (65 0) — qi f (x, 1) in the construction of desired Lyapunov function
Af(x,i)=LDf(x,0)+0f (x,i) < -1

However, to the null transience, we can only construct a Lyapunov function such that
ZOfxi) <1,

which is not enough to offset the impact of the operator Q.
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