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ABSTRACT. In this paper we develop via Girsanov’s transformation a perturba-
tion argument to investigate the weak convergence of Euler-Maruyama (EM)
schemes for path-dependent SDEs with Holder continuous drifts. This ap-
proach is available to other scenarios, e.g., truncated EM schemes for non-
degenerate SDEs with finite memory or infinite memory. Also, such a trick
can be applied to study the weak convergence of truncated EM schemes for a
range of stochastic Hamiltonian systems with irregular coefficients and mem-
ory. Moreover, the weak convergence of path-dependent SDEs under integra-
bility condition is investigated by establishing, via the dimension-free Harnack
inequality, exponential integrability of irregular drifts w.r.t. the invariant prob-
ability measure constructed explicitly in advance.

1. Introduction. The strong/weak convergence of numerical schemes for SDEs
with regular coefficients has been investigated extensively; see e.g. [3, 10, 11, 16, 30]
and references therein. Meanwhile, strong approximations of solutions to SDEs
with irregular coefficients have received much attention in the past few years; see
e.g. [8, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28] and references within. Also, there is
considerable literature on the strong convergence of various numerical schemes (e.g.,
truncated /tamed EM scheme) for path-dependent SDEs (which, in terminology, are
also named as functional SDEs or SDEs with delays) under regular conditions; see,
for instance, [7, 18] and references within. So far, the weak convergence for SDEs
with irregular terms has also gained much attention; see e.g. [11, 20] with the
smooth payoff function.

In contrast to the strong convergence of numerical algorithms for path-dependent
SDEs, the analysis of weak convergence is scarce. As far as path-dependent SDEs
are concerned, the weak convergence of numerical methods was initiated in [11],
whereas the rigorous justification of their statements was unavailable. With regard
to the weak convergence of the EM scheme and its variants, we refer to [5] for a
class of semi-linear path-dependent SDEs via the so-called “lift-up” approach, [6] for
path-dependent SDEs with distributed delays by means of the duality trick, and [4]
for path-dependent SDEs with point delays with the help of Malliavin calculus and
the tamed Ito6 formula. In references [4, 6], as for the drift term b and the diffusion
term o, the assumptions that b,o € CP°(R%) and the payoff function f € CP(R?)
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were imposed. Subsequently, by the aid of Malliavin calculus, [38] extended [4, 6] in
a certain sense that the payoff function f € %,(R?), while b,0 € C°(R?) therein.
It is worthy to point out that the approaches adopted in [4, 6, 38] are applicable
merely for path-dependent SDEs with regular coefficients. In the literature [4, 38],
the tamed It formula plays a crucial role in investigating the weak convergence of
EM schemes. Nevertheless, the tamed Ito formula barely works for path-dependent
SDEs with distributed delays or point delays so that it seems hard to extend [4, 38]
to path-dependent SDEs with general delays. To study the weak convergence of
numerical schemes for path-independent SDEs with regular coefficients, the ap-
proach on the Kolmogorov backward equation is one of the more powerful methods.
However, concerning path-dependent SDEs, the Kolmogrov backward equation is
in general unavailable so that it cannot be adopted to handle the weak convergence
of numerical schemes. As we stated above, concerning path-dependent SDEs, the
Malliavin calculus is an effective tool to cope with the weak convergence; see, for
example, [4, 6, 38]. Furthermore, slightly strong assumptions are imposed therein
and the proof is not succinct in a certain sense. Moreover, Zvonkin’s transformation
[40] is one of the more powerful tools for investigating the strong convergence of
EM schemes for path-independent SDEs with singular coefficients; see e.g. [28].
Nevertheless, such a trick no longer works provided the delay terms are irregular.
On account of the motivations above, in this work we aim to develop a perturba-
tion approach (see e.g. [12, 34]) to study the weak convergence of an EM scheme
for path-dependent SDEs with additive noise, which allows for the drift terms to
be irregular (e.g., Holder continuous drifts and integrability drifts) and even the
diffusion coefficients to be degenerate.

We point out that the dimension-free Harnack inequality plays an important role
in investigating the weak error analysis for path-dependent SDEs under integrability
conditions.

The content of this paper is arranged as follows. In Section 2, we investigate the
weak convergence of EM schemes for a class of non-degenerate SDEs with memory
and reveal the weak convergence rate. In Section 3, we apply the approach adopted
in Section 2 to other scenarios, e.g., truncated EM schemes for non-degenerate
SDEs with finite memory or infinite memory. In Section 4, we focus on the weak
convergence order of truncated EM schemes for a range of stochastic Hamiltonian
systems with singular drifts and memory. In the last section, we are interested in
the weak convergence of EM schemes for path-dependent SDEs under integrability
conditions, which allow the drift terms to have super-linear growth and be singular
at some points.

Before proceeding further, a few words about the notation are in order. Through-
out this paper, ¢ > 0 stands for a generic constant which might change from occur-
rence to occurrence, and depends on the time parameters.

2. Weak convergence: Non-degenerate case. Let (R? (.,-),|-|) be the d-
dimensional Euclidean space with the inner product (-,-) which induces the Eu-
clidean norm |- |. Let M, be the set of all non-singular d x d-matrices with real
entries. A* means the transpose of the matrix A. For a sub-interval U C R, denote
by C(U;R?) the family of all continuous functions f : U — R Let 7 > 0 be a
fixed number, and ¥ = C([—7,0];R?), which is endowed with the uniform norm
[l flloo := SUP_,<p<q |f()|. For f € C([—7,00);R?) and fixed t > 0, let f; € € be
defined by f;(0) = f(t +0),0 € [~7,0]. In our terminology, (f:);>o is called the
segment (or window) process corresponding to (f(t))i>—-. For a > 0, |a]| stipulates
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the integer part of a. Let %,(R?) be the collection of all bounded measurable func-
tions f : R — R endowed with the uniform norm || f[|ec = Supgega |f(2)|. Let
0 € R? be the zero vector and &y(6) = 0 for any 6 € [—,0].

In this section, we are interested in the following path-dependent SDE

dX(t) = {b(X(t) + Z(Xy) }dt + o dW(t), t >0, Xg=£ € F, (1)

where b : R — RY Z : € — R, 0 € My, and (W(t));>0 is a d-dimensional
Brownian motion on the filtered probability space (2, %, (Z%:)i>0,P). We assume
that:

(A1) b is Lipschitz with the Lipschitz constant Lq, i.e., |b(z) — b(y)| < Li|z —
y|, =,y € R, and there exist constants C' > 0 and 3 € R such that

2z, b(x)) < C + Blof?, = € RY; (2)

(A2) Z is Holder continuous with the Hélder exponent o € (0,1] and the Holder
constant Lo, i.e., |Z(£) — Z(n)| < Lzl = nllS, §n € €

(A3) The initial value £ € € is Lipschitz continuous with the Lipschitz constant
L3 >0, ie., [£(t) —&(s)| < Ls|t — s], s,t € [—T,0].

Under (A1) and (A2), (1) enjoys a unique weak solution (X¢(¢));>o with the initial

datum Xg = ¢ € €; see Lemma 2.3 below for more details. Evidently, (2) holds with

£ > 0 whenever b obeys the global Lipschitz condition. It is worthy to emphasize

that £ in (2) need not to be positive, which may allow the time horizon T to be

much bigger as Lemma 2.4 below manifests. Moreover, (A3) is just imposed for the

sake of continuity of the displacement of the segment process. For further details,

please refer to Lemma 2.7 below.

For existence and uniqueness of strong solutions to path-dependent SDEs with
regular coefficients, we refer to e.g. [17, 21, 31] and references therein. Recently,
path-dependent SDEs with irregular coefficients have also received much attention;
see e.g. [1] on existence and uniqueness of strong solutions, [2] for the strong Feller
property of the semigroup generated by the functional solution (i.e., the segment
process associated with the solution process), and [34] for regularity estimates on
the density of invariant probability measures.

To treat the weak convergence of the EM scheme (5) with the singular coefficient
Z, in this work we shall exploit a perturbation approach; see e.g. [33, 34] on
regularity estimates of the density for invariant probability measures for SDEs under
integrability conditions. To achieve this goal, we introduce the following reference
SDE on R

dY (t) = b(Y (t))dt + o dW (t), t > 0, Y(0) =z € R (3)

Under (A1), (3) has a unique strong solution (Y*(t));>o with the initial value
Y (0) = z; see, for example, [21, Theorem 2.1, p.34]. Now, we extend Y?(¢) from
[0,00) into [—7,00) in the manner below:

V() = ()L 1_r0)(t) + YO (1) 1g,00) (1), t € [-T,00), £E€C. (4)

We write (Y);>0 as the segment process corresponding to (Y4(£))i>_r.

Our main result in this section is stated as follows, which particularly reveals
the weak convergence rate of the EM algorithm (5) associated with (1), which
nevertheless allows the drift term to be path-dependent and Holder continuous.

Let § € (0,1) be the step size given by § = 7/M for some M € N sufficiently
large. Given the step size 6 € (0,1), the continuous-time EM scheme associated
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with (1) is defined as below
AXO () = {b(XO(ts5)) + Z(X)}dt + o dW (1), t >0 (5)

with the initial value X ) () = X(0) = £(0),0 € [, 0]. Herein, t5 := [t/ and,
for any k € N, X\ € € is defined by

0+ (1+1i) 0+
1)

(5 ) )
Xi5(0) = XO((k = i)d) = ==X O((k—i=1)8)  (6)
whenever 0 € [—(i + 1)d, —id] for i € S := {0,1,--- , M — 1}, that is, the €-valued
process (X ,5?) ken is constructed by the linear interpolations between the points on
the gridpoints.

Theorem 2.1. Let (A1), (A2), and (A3) hold. Then, for any k € (0, a/2) with
€ (0,1] given in (A2) and T > 0 such that

2 |lollfsllo ™ It { (4LT + L3) a1y + Lil{ac(01)1 } < e~ AT /72, (7)

there exists a constant C1r > 0 (dependent on ||| f|lleo) such that

Ef(X(1) —EF(XO ()] < Cir 6", | e B(RY), te0,T]. (8)

Remark 2.2. For the path-independent SDE (1) with Hélder continuous drift, [27,
Theorem 2.6] revealed the weak convergence order is A §, where o € (0,1) is the
Holder exponent. In Theorem 2.1, we demonstrate that the weak convergence rate
is a/2. So, Theorem 2.1 is new even for path-independent SDEs with irregular drifts.
For path-dependent SDEs with point delays or distributed delays, [4, 6] investigated
the weak convergence under the regular assumption Z € Cy° and with the payoff
function f € C?. Nevertheless, in the present work, we might allow the drift Z to be
unbounded and even Hoélder continuous, and most importantly the payoff function
f to be non-smooth. Hence, Theorem 2.1 improves e.g. [4, 6, 27] in a certain sense.
Last but not least, the approach employed to prove Theorem 2.1 is universal in a
sense that it is applicable to the other scenarios as shown in Sections 3 and 4.

Before we move forward to complete the proof of Theorem 2.1, we first prepare
some warm-up lemmas. The following lemma addresses the existence and unique-
ness of weak solutions to (1).

Lemma 2.3. Under (A1) and (A2), (1) admits a unique weak solution.

Proof. First of all, we show the existence of a weak solution to (1). Set

RS(t) := exp (/O (o671 Z(YE),aW (s)) — %/0 ya—lz(yf)fds>, t>0,

and d@§ := R$(T)dP, where T' > 0 satisfies ||o]|2 Dllo M2 L3 < e (1+5T) /T2 for the
setup of the Holder exponent « =1 and T > 0 is arbltrary for @ € (0,1). Moreover,
let

t
WE(t) = W (t) 7/ o 1 Z(YE)ds, t > 0. (9)
0
According to Lemma 2.4 below, we infer that

T —1 £y12
Ee% fo o™ Z(Y; )|“dt < 00,
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that is, the Novikov condition holds true. Whence, the Girsanov theorem implies
that (Wf (t))tefo,m) is a Brownian motion under the weighted probability measure
Q8. Note that (3) can be reformulated as

AYE(t) = {b(YS(t) + Z(Y5) }dt + adWE(t), t € [0,T], Y§ =¢.

So, (Yg(t),Wf(t))te[QT] is a weak solution to (1) w.r.t. the probability space
(Q, 7, (F)i>0, Q%). Analogously, we can show inductively that (1) admits a weak
solution on [T, 271, [2T,3T],- - -. Hence, (1) admits a global weak solution.

Now we proceed to justify uniqueness of weak solutions to (1). In the following,
it is sufficient to show the weak uniqueness on the time interval [0, 7] since it can
be done analogously on [T, 2T}, [2T,3T],---. Let (X®:¢(t), W@ (t)),e0,77 be the
weak solution to (1) w.r.t. the probability space (Q®),.Z @, (L%(i))tzo,]?f),i =1,2.
In terms of [9, Proposition 2.1, p169, & Corollary, p206], it remains to show that

Epe f(XW4([0,70), WD([0,T])) = Epe f(X@4([0,70), WP([0,7]))  (10)

for any f € Cy(C([0,T];R?) x C([0,T]; R?); R), where E,c means the expectation
W.I.t. ]P’f. However, (10) can be done exactly by following the argument of [34,
Theorem 2.1 (2)]. We therefore omit the corresponding proof. O

The lemma below examines the exponential integrability of functionals for seg-
ment processes.
Lemma 2.4. Assume that (A1) holds. Then, for any T > 0,
e_(1+BT)

EeMo VIRt < oo N <«
’ 2||o 13,1

(11)

Proof. Applying Jensen’s inequality and using the fact that ||V o < [I€]les V
SUPg<s<s [VE€©) (s)|, we have for all T > 0,

T
EeM T IV I12de o %/ ET IYEI% g
0

AT|ElZ, T
< eHI/ E( sup e’\T‘YE(O)(S)P)dt.
T 0

0<s<t

(12)

Next, by 1t6’s formula, it follows from (A1) that there exists a constant ¢ > 0 such
that for any v > 0,

d(e " YEO1)]*) = e — A|YEO @) * + 2(YEO (1), b(YEO (1)) + o |[g Lt
+2e7 YO (1), dW (1))
<e e~ (v = B)|YEO 1) Yar

+ 207 YO (1), dW (¢)).
(13)

Once more, via Itd’s formula, we deduce from (13) that for any ¢ > 0,
deee*’Yt‘Yﬁ(O)(t)F S _g(fy _ B . QHUngE)e_ﬂ/teee*‘rt‘Yﬁ(o)(t)P |Y£(O) (t)’2dt
+ cee ez IVEOMP gy (14)
+2ee e VO Gy €0 1y aw (1)),
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which implies that, for any v > 3 + 2||o||}ge, by Gronwall’s inequality,
Rese YOO < gele/r+EOF) (15)
so that
t
E(’Y _ B _ 2”0—”%{85) / e—’ysE(eae*Vslyﬁ(O)(s)F |Y§(0)(s)|2)ds
0
< (1 + Ee%)eawom
N v

Making use of BDG’s inequality and Jensen’s inequality, in the case of v > 5 +
2||o||2,e, we derive from (14) and (15) that

0<s<t
< (1 n Ee%)ea &)
B gl

(16)

t
+ 8\/§EE </ e—2vse2ee*’75‘y§(0)(s)‘2

1/2
YO (S)Fds) (17)
0

< (14 2205 ot 4 Lo aup )
- vy 2\ o<s<t

t
+ 6402, / e R IOy 0 (6)) ds.
0

So, plugging (16) back into (17) yields that

E( sup eseﬁly&(m(t)lz) < 00 (18)
0<t<T
as long as v > B+ 2||0||gp6. Note that

sup (Eef(BJrzHaHip e)T) g = %ef(uw).

e>0 2||o|13,T

Consequently, from (18), we arrive at

E( sup MV ) < 00, Ag € (0, A7) (19)
0<t<T
In the end, (11) follows from (12) and (19) in case of AT < Ar. O

Remark 2.5. In terms of Lemma 2.4, (11) holds for small T' > 0 provided that (3)
is non-dissipative (i.e., in (2), 8 > 0). Also, (11) is satisfied with large 7' > 0 in the
case that (3) is dissipative (i.e., in (2), 8 < 0).

For notation brevity, we set
WS (1) = o7 {B(YE(1) = b(YE(ts) — Z(V5)}, £ 20, £ €%, (20)

where Y is defined exactly as in (6) with X replaced by Y¢.
The lemma below plays an important role in checking the Novikov condition so
that the Girsanov theorem is applicable and in investigating the weak error analysis.

Lemma 2.6. Suppose that (A1) and (A2) hold. Then,

Eer o 107 2Ot o o (21)
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whenever \,T > 0, such that
< o~ (14+8T)
2loll3pllo M IZ{ L3 {a=1} + 01{ac(o,1)} } T2

A

where we set & = co. Moreover,
Eer o IR0t o o (22)
provided that X\, T > 0, such that
o~ (14BT)
= 40 o L + DL am) + oL aco) 17
Proof. From (AZ2), it is obvious to see that
1Z(&) < 12(%)| + Lalél%, €€, (23)

which, in addition to Young’s inequality, implies that

0 2V < e+ [lo 12 {1+ €)L31 0ty + el qaconn VY

A

2

oo’

e>0 (24)

for some constant ¢, > 0. As a consequence, (21) holds true from (24) and by taking
advantage of (11) followed by choosing e € (0, 1) sufficiently small.

By the definition of ¥:* (see (6) with X(®) being replaced by Y¢ for more details),
a straightforward calculation shows that

[Vl = _sup [%56)]

1
< max sup (wa(té —k9)|
KES _(k+1)6<0<—ks g (25)
0+ ko
_ T‘Y'E(t(; — (k+ 1)5))

< Ve VIR £z 0

due to the fact that (04 (1+k)5)/6 — (0 +k5)/6 = 1, where we set Y(t) := £5(—7)
whenever ¢t € [—27,—7). Subsequently, (25), together with (A1) as well as (23),
yields that

2

oo

(150 < pe +ve (V)2 VY|
for some p. > 0 and
ve =2l {(4L} + (1 + ) L3) L amr) + L3 + €)1 {aco1)) }
Thereby, (22) follows from (19) and (26) and by noting that

T T
/ AYEILVIVE 12 g < rellél 4 2/ AMYEIRdr, A > 0.
0 0

), €>0,t>0 (26)

O
Next we intend to show that the displacement of segment process is continuous

in the LP-norm sense.

Lemma 2.7. Under (Al) and (A3), for any p > 2 and T > 0, there exists a
constant Cp 1 > 0 such that

sup IEHY; - }/}fé HZO < CprdP=2/2, (27)
0<t<T
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Proof. By invoking [17, Theorem 4.4, p61], for any p > 0 and T > 0, there exists a
constant Cp, 7 > 0 such that
B(_sw [YOF) < Gur(1-+l€l2). (28)
—7<t<T
By utilizing Holder’s inequality and BDG’s inequality, it follows from (A1) and (28)
that

E< sup |Y£(t) — Yg(k:6)|p)
ko <t<(k+2)d

Sc{gp1/k:k+2)6]E|b(Yf(t))|pdt+E( sup W(t)|p>}

0<t<28 (29)

(k+2)8
< cfor / (14 EYE(@)P)de + 777
ko
<co?? p>2 kel
Trivially, there exists an integer ky > 0 such that ¢t € [kod, (ko + 1)d]. So, for any
p>2
E[YS - V|2,
ngaxE< sup |Y§(t+¢9)f/,§5(9)|p>
kes —(k4+1)§<6<—ks 0
< eMmaxE[Y*((ko — k)9) = Y*((ko — k — 1)) "
+ cMmaxE( sup ’YE(S) —Y((ko — k — 1)5)‘:0).
keS (ko—k—1)6<s< (ko—k+1)8

In the case of k < kg — 1, we find from (29) that (27) holds. On the other hand, if
k = ko, from (A3), (29), and Mé = 7, then one gets that (27) holds. Moreover, for
k> 1+ ko, (27) is still true due to (A3). The proof is therefore complete. O

With the previous lemmas in hand, we are now in the position to complete the
following proof.

Proof of Theorem 2.1. Let

t
WE(t) = W(t) + / B (s)ds, t >0, (30)
0
where h§ was introduced in (20). Define

Rg(t)zexp<—/0t <h§(s),dW(s)>—;/Ot|h§(s)]2ds), £>0

and dQS = R§(T)dP, where T > 0 satisfies (7). Due to (7) and (22), the Girsanov
theorem implies that (W§ (t))tefo,r) is a Brownian motion under the probability
measure Q5. Thus, (3) can be rewritten in the form

AYE(t) = {b(YE(ts)) + Z(V) }dt + o dW5(t), t >0 (31)
with the initial value Y¢(0) = £(6),0 € [-7,0] so that (YE(t),Wzg(t))te[mT] is a

weak solution to (5) under Q5. Obviously, (5) has a unique strong solution so that
the weak solution is unique. Since, by (7) and (21), (Y¢(¢t), Wf(t))te[o,T] is a weak
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solution to (1) under Q% and (Yf(t),Wf(t))te[o’T] is a weak solution to (5) under

Qg, we deduce from the weak uniqueness due to Lemma 2.3 and Holder’s inequality
that

[Ef(X(T)) —Ef(X(T))]

= [Ege F(Y4(T)) — Ege f(Y4(T))|
= |[E((RS(T) - RY(T)) £(YE(T))]
< (I lloo E|RS(T) — RS(T)]

T
<11 Mo E((Rim +R§<T>)( [ etz h§<s>,dw<s>>\
T
w5 [ IR -l zHPlas) ) 62
<N lloe (RS + (E(R%T))q)”q)

«{(e( /OT< LZ(YE) + b () ))

1 T
+ f/ (E|[RS(s)) — o~  Z(YE)? ””ds}
0

2
=t I lloc T(T){©1(T) + ©2(T)}, t € [0,T]

for 1/p+1/q = 1,p,q > 1, where in the second inequality we utilized the funda-
mental inequality

le® —eY| < (e +eY)|z —y|, z,y €R,

and, in the last two inequalities, employed the Holder inequality followed by the
Minkowski inequality. For notation brevity, let

t t
Mi(t) = / (071 Z(YE),dW (s)) and My(t) = —/ (hS(s),dW (s)), ¢ > 0.
0 0
For any ¢ > 1, using Holder’s inequality and the fact that e2aM:()=2¢*(M)®) j = 1 2,
is an exponential martingale leads to
E(R?(T))q + ]E(RS(T))q = Ee?M1(T)=3(M)(T) 4 ReaM2(T)—5{M2)(T)
< (Ee<2q%q><M1><T>)1/2 4 (]Ee<2q27q><Mz><T>)1/2

~ (Bew (e -0 | ' o-lsz)Pdt))l/Q
+(Bow (@20 [ ' |h§<t>|2dt))1/2.

Whence, by taking ¢ | 1 and exploiting (7), (21), and (22), one has for some
Cq’T > 07

I(T) < Cyrp. (33)

In view of (A1) and (A2), in addition to [Y(t) — Y(ts)| < ||V} — ﬁi loo, it holds
that
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07 Z(YE) + 15 (0)] < [lo ™ op{ [BYE(E)) — b(YE(ts))| + |Z(YS) — Z(YE)]}
< o Hlop{L1[YE(t) = YE(t5)| + La||YE = V5|2 (34)
<o Map{ Ve = Vil + 1V = VSIS )

This, with BDG’s inequality followed by Hélder’s inequality, yields that for p > 2/«
T 1/p
6:(T) < c(/ Elc~'Z(Y]) + hﬁ(t)]”dt)
0

T N N 1/p
<ol [ (Bl = T2 + v - TN e
0

<277,

(35)

Ns)
S =

where we utilized (27) in the last line. On the other hand, applying Hoélder’s in-
equality and combining (A1) with (A2) and (34) enables us to obtain that, for any
p>1/a,
Lt ¢ -1 &\ (2P| —1 3 €20 1/2p
02(T) < 5 ), 2{E|RS(t) — o Z(YVO)|TElo T Z(YE) + Ry (4)[ T} e

<c [ {arEl BT

X (]EHYf — ﬁi“iﬁ _|_E||Yt5 _ 2§‘}za)}l/2pdt
< c/OT {IEHYE - fxé”il; +EHYt§ _ ﬁsziia}l/zpdt
<5,

where we used (25) and (28) in the penultimate procedure and exploited (27) in
the last step. Consequently, substituting (33), (35), and (36) into (32) and taking
p > 2/« sufficiently large (so that ¢ | 1), yields the assertions in (8). O

3. Extensions to other scenarios. In this section, we intend to extend the ap-
proach to derive Theorem 2.1 and investigate the weak convergence of the other
kinds of numerical schemes for path-dependent SDEs with irregular coefficients.

3.1. Extension to truncated EM scheme. In this subsection we are still inter-
ested in (1). Rather than the EM scheme (5), we introduce the following truncated
EM scheme (see e.g. [32]) associated with (1)

axO@) = (X)) + 2(X0)Jat + o aW (D), 150 (37

with the initial value X(®)(0) = X () = £(6), 6 € [—, 0], where )?t(é) € ¢ is defined
in the following way:

X2(0) := XO((t +6) Ats),0 € [-7,0].

As for the truncated EM scheme (37), the main result in this subsection is stated
as below.

Theorem 3.1. Let (A1) and (A2) hold. Then, for any T > 0 such that
2[lollzp o HIZp (LT + L)L (amry + Lil{ac(ony} <~ HP/T2,
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there exists a constant Ca > 0 (dependent on ||| f|lleo) such that
|Ef(X(t) —Ef(XO(t)] < Cor 6°/2, f € B(RY), t €[0,T). (38)

Proof. Herein, we just outline some dissimilarities since the argument of Theorem
3.1 parallels that of Theorem 2.1. Set

h5() = o {B(YE(8) —b(Y(ts) - Z(Y)}, £ 20, £€€
with

~

YE(0) :=YE((t+0) Ats), 0 € [-7,0].
It is easy to see that

780 =, s e nes)] < 7.

so that Lemma 2.6 still holds with h% being replaced by hg by virtue of Lemma 2.4.
On the other hand, by (A1) and (28), we infer from Holder’s inequality and BDG’s
inequality that

EHx@ﬁzﬁH;—E( sup |y€(s)y€(sAt5)\p)

t—17<s<t

= ]E< sup |Y£(S) - Yg(t5)|p1{82t5})

t—1<s<t
p

/ bV (u)du + / odiW () (39)

ts ts

:]E< sup

t—17<s<t

1{szt5}>

/S odW (u)

ts

t
<c{5p_1/ E|b(Y5(u)}pdu+E( sup
ts

ts<s<t

)

Having Lemma 2.6, writing hg in lieu of hﬁ, and (39) in hand, the proof of Theorem
3.1 is therefore complete by inspecting the argument of Theorem 2.1. O

<ed?? p>1.

Remark 3.2. In terms of Theorems 2.1 and 3.1, we conclude that the truncated EM
scheme (37) enjoys a better weak convergence rate than the EM scheme (5). On the
other hand, with regard to the truncated EM scheme, we drop the assumption (A3)
in Theorem 3.1. Furthermore, we point out that the EM scheme (5) established
via interpolation works merely for path-dependent SDEs with finite memory since
the linear interpolation therein relies on the length of memory. The truncated EM
scheme (37) is still available for path-dependent SDEs with infinite memory as the
following subsection demonstrates.

3.2. Extension to path-dependent SDEs with infinite memory. As we de-
picted in Remark 3.2, one of the advantages of the truncated EM scheme (37) is
that it is applicable to path-dependent SDEs with infinite memory. To proceed, we
first introduce some additional notations. For a fixed number r € (0, c0), let

€ = {6 € C(=o0, 05 RY) : [oll, == sup_(7°]6(0)]) < oo},
—00<0<0

which is a Polish space under the metric induced by || - ||
In this subsection, we focus on the path-dependent SDE with infinite memory
dX(t) = {b(X(t)) + Z(Xy) }dt + odW (), t >0, Xo=£ € 6, (40)

in which
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(A2') Z: %6, — R%is Holder continuous, i.e., there exist o € (0,1] and Ly > 0 such
that

|Z(€) - Z(’?)| < L4||§ - 77”7(:“’ 5777 € (gm

and the other quantities are stipulated exactly as in (1). Similar to (37), we define
the truncated EM scheme associated with (40) by

dXO(t) = {b(XD(t5)) + Z2(XV) Yt + o dW (L), t >0 (41)

with the initial datum X (©)(0) = X () = £(),60 € (—o0,0], in which )/(\'t(é) € €, is
designed by
X(0) = XO((t +0) A t5),0 € (—00,0].
The main result in this subsection is presented as follows.

Theorem 3.3. Assume the assumptions of Theorem 3.1 hold with (A2) replaced
by (A2'). Then, there exists a constant Csr > 0 (dependent on ||| flllco) such that

[EF(X (1) —Ef(XO(1)] < C5.06%, f € B(RY), t€[0,T] (42)
provided that the step size § € (0,1) is sufficiently small.

Proof. Since
VAl < gl + sup [YE(s)],
0<s<t

Lemma 2.4 still holds with || - || replaced by || - ||. Also, (21) holds under as-
sumptions (A1) and (A2') so that (40) has a unique weak solution by following the
argument of Lemma 2.3. Let
h5(t) = o H{b(YE(1)) —b(YE(ts)) — Z(YE)}, t >0, € €%,
where
YEO) = YE((t+0) Ats), 8 € (—00,0].
Clearly, we have

||}A/5HT =e "™ sup (e”|Y5(s/\t5)|) < et sup (e”|Y§(s)|) = e”sHYfHT.
—oo<s<t —oo<s<t

So, (22), writing hg () instead of h§(£), remains true whenever the step size § € (0,1)
is sufficiently small. Moreover, by virtue of (A1), (28) and Hoélder’s inequality as
well as BDG’s inequality, it follows that

Bl FEly = e e (s @A) Y tal)

<IE( sup (
ts<s<t

<ot p>2.

/ TBYEO) (5))ds + o (W(s) — W(ts)

ts

))

Afterwards, carrying out a similar argument to derive Theorem 2.1, we obtain the
desired assertion (42). O

Remark 3.4. To the best of our knowledge, Theorem 3.3 is the first result upon
the weak convergence for path-dependent SDEs with infinite memory and irreg-
ular drifts. For path-dependent SDEs with finite memory, Theorems 2.1 and 3.1
show that the weak convergence order can be achieved for any ¢ € (0,1). However,
concerning path-dependent SDEs with infinite memory, the weak convergence rate
can only be available whenever the step size § € (0,1) is sufficiently small. This
illustrates one of the essential features between SDEs with finite memory and SDEs
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infinite memory. Moreover, Theorem 3.3 further shows the superiority of the trun-
cated EM scheme (37) with contrast to the EM scheme established by interpolations
at discrete-time points.

4. Weak convergence: Degenerate case. In the previous sections, we inves-
tigated the weak convergence of EM schemes and its variants for non-degenerate
path-dependent SDEs with Holder continuous drifts. In this section, we are still
interested in the same topic, but concerned with a class of degenerate SDEs on
R%4 .= R? x R?

dX () ={X(t)+Y(t)}dt

AY (1) = {b(X (1), Y (1)) + Z(X, Yi) bt + odW (2), ¢ >0
with the initial datum (Xo,Yy) = (£,7) € €2, where b : R?? — R? 7 : 2 — R,
o € M{opn, and (W (t))i>0 is a d-dimensional Brownian motion on the probability
space (2, F, (Z1)i>0,P). (43) is the so-called stochastic Hamiltonian system which

has been investigated considerably in [19, 29, 35, 37, 39], to name a few.
Throughout this section, we assume that:

(43)

(H1) b is Lipschitz continuous, that is, there exists a constant K7 > 0 such that
[b(z1,91) = b, y2)| < Ku(Jon = yi] + lyr — v2l), (21,910), (w2, 40) € R?T (44)
and there exist constants a, 8, A,C > 0 and v € (—af3, af) such that
(ax +7y, @ +y) + (By +72,b(w,y)) < C = M|z + [y[*), (z,y) eR*. (45)

(H2) Z is Holder continuous, i.e., there exist constants e € (0, 1] and K5 > 0 such
that

1Z(&,m) — Z(&,m2)| < K2(l6 — &% + [Im — n20l%)s (E1,m), (§o,m2) € 62

By carrying out a similar argument to derive Lemma 2.3 and taking advantage
of Lemma 4.3 below, (43) has a unique weak solution under (H1) and (H2). Under
(44), the following reference SDE

dU(t) = {U(t) + V(t)}dt
AV (t) = b(U(t), V(1))dt + odW (), t >0

with the initial data (U(0),V(0)) = (u,v) € R?? is well-posed. To emphasize the
initial value (u,v) € R?¢ we shall write (U%?(t), V%?(t)) instead of (U(t),V(t)).
Analogous to (4), we can respectively extend U(t) and V() in the following ways:

U&ﬂ?(t) = g(t)l[—‘r,O) (t) + Uf(O),n(()) (t)]-[O,oo) (t)v te [_Tv OO), (5777) € %2

(46)

and
VE(t) = n(t)11_r0)(t) + VOO ()1 (1), t € [-T,00), (&) € €

Let US" and V" be the segment process associated with US7(t) and VE&7(t),
respectively. Next, the truncated EM scheme corresponding to (43) is given by

dXO(t) = {XO(t) + YO (¢)}dt
AYO (1) = {b(XD(ts), Y O(ts)) + Z(XV, YY) }dt + 0dW (1)

with the initial value (X(®)(6),Y©®)(9)) = (X(0),Y(0)) = (£(0),n(0)) € R?,
0 € [—,0], where

X20) := XD ((t+6) Ats) and Y, (0) := YO ((t+6) Ats), 0 € [-7,0].
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Observe that
X () = {XO (1) + YO(0) + b(XD(0), YD (0))t + A(t) + oW (t) }dt, ¢ € [0,4]
where, for any 6 € [—7,0],

A(t) = /0 t Z(XD,¥)ds with X (0) := X ((s+0)A0), Y2 (8) := Y ((s+6)A0).

Thus, (X (6)(t))t€[0’5] can be obtained explicitly via the variation-of-constants for-
mula. Inductively, X(®)(¢) enjoys an explicit formula.

In the following, for «, 8,~ such that we have (45), consider the following Lya-
punov function:

a B
W(ﬂ?,y) = §|£L"2 + §|y|2 +’}/<(E,y>, T,y € Rd'
For v € (—af, af3), it is easy to see that
ra(|z]* + [y1?) < W(z,y) < k(|2 + [y[*), =,y € RY, (47)
in which 1 := (1 + a)(1+ £)/2 and

= ;{ (a ~ S(a/hl+ |v|/ﬂ>> N6~ ) } w

The main result in this section is presented as follows.
Theorem 4.1. Assume (H1) and (H2) hold. Then, for any T > 0 such that
2 15 12, 1o 12 { (452 + K21 acr) + 2K acqo) JT2 < iz T~
there exists Cyp > 0 (dependent on ||| fllleo) such that
[Ef(X (1), Y (1) —Ef(XD@), YO )| < Cord®/?, fe B(R™), t €[0,T]. (49)

Remark 4.2. The dissipative condition (45) is imposed to guarantee that the
time horizon T' > 0 in Theorem 4.1 is large in certain situations. Nevertheless,
in case of A < 0, (49) remains true, but for a small time horizon. Moreover, we
can also investigate the weak convergence of the EM scheme via interpolation for
(43), but with an additional assumption put on the initial value. Also, we point
out that whenever the numerical scheme of the second component is established by
interpolation, the algorithm for the first component is much more explicit compared
to the truncated EM scheme.

The proof of Theorem 4.1 is based on several lemmas below. The following lemma
shows exponential integrability of the segment process.

Lemma 4.3. Assume (H1) and (H2) hold. Then, for any T' > 0,

T
£m2 &n2 L
o (3 [ (0 + i) < e < 22T

)\H/QT_ 1
(50)

where k3 := 7%V B2

Proof. For notation simplicity, in what follows we write U(t) and V(¢) in lieu of
USn(t) and VEN(t), respectively. By a close inspection of the proof for Lemma 2.4,
to verify (50) it is sufficient to show that, for any e > 0 and v > —Xka + k3 [|o[|2, €,

E( sup eenzevT(|U<t>|2+V(t>|2>> <. (51)

0<t<T



WEAK CONVERGENCE OF PATH-DEPENDENT SDES 15

where kg was given in (48) and k3 := 72V 32. By Itd’s formula, it follows from (45)
and (47) that

d(e”"W(U(1), V(1)) = e”t{ —YWU®),V(#) + (aU(t) + 7V (1), U(t) + V(1))
+ (YU(t) + BV (1), b(U (), V(1)) + (C + HUHHS/2)}
+e o (YUt )+BV( ), dW(t))
< e—vt{ — (v + M) W(U(2), V(1) + (C + IIUII?IS/Q)}C“
+e (o (YU (1) + BV (1)), AW (1))

This implies via 1t6’s formula that
dese*“W(U(t)y(t))
< —e(y + Az — kgllof|Zpe)e e OOV O (1), V(¢))dt

4 ee e WUV O) (0 (U (1) + BV (), AW (1)),
ce 7Vt W(U(t),V(t))dt’

(52)

+ cee e>0

for some constant ¢ > 0. For any v > —Ako + /13||a||(2)p5, Gronwall’s inequality, in
addition to (47), yields that

Eece "WUMBVO) < o5 ¢ema (€O +nO)) (53)
which, together with (52), further leads to
¢
e(v+ Akg — /Q3H0'ngg) / eV Eete WU VEDW(U(s), V(s))ds
0

(54)
(1 n jeCf) er1(1€0)+n(0)[*)
v

Subsequently, by means of BDG’s inequality, we derive from (47) and (54) that

E( up [ e IOV o (U + BV (), dW(u»)
0

0<s<t

. » 1/2
< 4\/§E(/ e—Q'YSeQEe %W(U(s),V(s))la*(,yU(s) —|—,8V(S))|2d8>

0

< 1E< sup eee“wwu),vu))) (55)

2\ o<s<t

t
+c / eV Ee* TWUEVEIW(U(s), V(s))ds
0

1E< sup eee“W(U(t),V(t))> +c(1+ecgt)eem(|£(0)\2+|TI(O)\2).
T2 \o<s<t

With (52)-(55) in hand, we arrive at
E( sup eeevTW(U(t)’V(t))> < 0.
0<t<T
This, combined with (47), yields (51). O
For notation brevity, we set

hEM(t) = o Hb(US(2), VET (1)) — b(US(ts), VET(t5)) — Z(US™, VEM) ).
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Lemma 4.4. Assume (H1) and (H2). Then,
EeMo o7 20" ViEMPdE - (56)

for any \, T > 0, such that

K/Q eANzT—l

263|013, llo ™ 123 { K3 1ia=1} + 01{ac (0,1} }T7

A<

Furthermore,

/4:2 e)\H/QTf 1

drslo|3, llo I3, (4KT + K3)T?

EerJo 7Pt o o0\ < (57)

for any A\, T > 0, such that

K/Q e)\l{gT*l

A< .
drgllolZ, o~ HIZ{(AKT + K3)1ia=1y + 2K7{ac(0.1)) } T2

Proof. From (A2), it holds that there exists some constant ¢. > 0 such that, for
any € > 0,

o=z (U, Vtgm)|2 < e {2K3 o7 12,(1 + &) 1am1} + €1l{ac0)} }

(58)
< (IUF13 + 1VE"13)-
Thus, (56) follows from (58) and Lemma 4.3.
Next, with the aid of (44), and (H2) and due to the facts that [|U5"]e <

U "lloo and [V oo < IV loss it follows that

[En(0) < e 4l o (KT + KR+ ) (JUFI, + IVE"IS) (59)

2
op
for some ¢, > 0 and
ve = |0 hgl(AK? + K31+ ) Lacry + 2K 1 {ac(0y }

Therefore, by virtue of (59) and Lemma 4.3, (57) holds true. O
Now, we proceed to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. Under Assumption (H1), it is standard to show that

E(Sw WWWW+W“®W>§%AM&+U&)

—r<t<T
This, combined Hélder’s inequality with BDG’s inequality, leads to

s B0 - DI 4RIV T, <o o)

Thus, mimicking the argument of Theorem 2.1, we obtain the desired assertion from
(60) and Lemma 4.4. O
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5. Weak convergence: Integrability conditions. In the previous sections, we
investigated the weak convergence of EM schemes for path-dependent SDEs, where
the irregular drifts are at most of linear growth. In this section, we still focus on
the topic of the weak convergence but for path-dependent SDEs under integrability
conditions, which might allow the irregular drifts to be non-globally Lipschitz.

We start with some additional notations. Denote by C?(R%) the set of all con-
tinuously twice differentiable functions f : RY — R and C§°(R?) the family of
arbitrarily often differentiable functions f : R* — R with compact support. Let V
and V2 represent the gradient operator and the Hessian operator, respectively. Let
P(R%) stand for the collection of all probability measures on R%. For o € Mg,
and V € C?(R?%) with e™V € L'(dz) and po(dz) := Cye™V®dz € 2(R?), where
CYy is the normalization, set Z : R? — R? by

Zo(x) := —(00*)VV(z), x € RY (61)
Thus, by the integration by parts formula, the operator

£5(@) 1= 5tx((00") 1) (&) + (Zol). VI(2), = € RY, [ € O (R

is symmetric on L2(up), i.e., for any f,g € C5°(RY),

@@O(fa g) = <f, jOg>L2(u0) = <ga $0f>L2(uo) = *<O'*Vf, U*VQ>L2(HO)'
Let H!? be the completion of C§°(R?) under the Sobolev norm

1f e o= (uo(1£1% + o™ F17)) 2.

Then, (&, H}?) is a symmetric Dirichlet form on L?(ug), and the associated Markov
process can be constructed as the solution to the reference SDE

dY (t) = Zy(Y (t))dt + odW (), t > 0, Y(0) = =z, (62)
where W(t) is a d-dimensional Brownian motion defined on the probability space
(Q, Z,P) with the filtration (%;);>0. Assume that
(C1) Zy:R% — R? is Lipschitz continuous, i.e., there exists an Lo > 0 such that

| Zo(x) = Zo(y)| < Lolz — y| 2,y € RY,
and there exist constants C' > 0 and 8 € R such that
2(x, Zo(x)) < C + Blz|?, =z € RL

Under (C1), (62) has a unique solution (Y*(t));>o with initial value Y*(0) = =.
Observe that pg is the invariant probability measure of the Markov semigroup
Puf(z) = EF(Y*(2), f € Zy(RY).

In this section, we consider the following path-dependent SDE

0

dX(t) = {ZO(X(t))+/ Z(X(t+0))p(d0)}dt+adW(t), £>0, Xo=¢, (63)

where p(+) is a probability measure on [—7,0]. Under assumption (65) below, (63)

admits a unique weak solution by following exactly the argument of Lemma 2.3.
The EM scheme associated with (63) is given by

Z(X () p(d&)}dt +odW(t)  (64)

—T

dx@ ) = {ZO(X<5>(t5)) + /O
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with initial value X () = X (0) = £(6), 0 € [—, 0], where
X(0) = XO((t+0) Ats), 6 € [-7,0].
Analogously, we define
YE(0) = YS((t+0) Ats), 0 € [-7,0],
where Y& was extended as in (4). Moreover, we set

0
B (1) = a-l{zoafﬁ(t)) - 2o(v¥a)) - [

-7

Z(TEO)olat) .

Our main result in this section is as follows, which reveals the weak convergence
order of the EM scheme for path-dependent SDEs under an integrability condition.

Theorem 5.1. Assume (C1) holds, and suppose further that there exists a constant
Kk > 0 such that

,uo(e”lz(‘)lz) < 0o (65)
and that there exist constants m > 1, € (0,1], and C > 0 such that
|Z(x) = Z(y)l < C(L+|a]™ + [y|™) |z — y|* 2,y €RY. (66)

Then, there exists Cs > 0 (dependent on ||| f|||leo) such that
IEf(XS(t) —Ef(XO1)| < Crré®, €€, feBy(RY), te[0,T], (67
where T > 0 satisfies
P e—(1+8T) K

A A :
@Vd)lo=H3,T2 " 32|oll3lo~ 3,1 (1v )T

1< 68
: (63)
Proof. From & € € and (66), we infer from Lemma 5.3 below that (65) is available
so that

Ee(1H) Jo 1 /2, Z(YE(t4+0)p(a0)*dt | p(1+e) [T [R5(0)[Pdt o (69)
for some ¢ € (0, 1) sufficiently small and T > 0 such that (68) is satisfied. Next,
exploiting Holder’s inequality and taking advantage of (28), (39), and (66) enables
us to obtain that

[ Bz o) - 2550 a0

—T

0
</ E(p t\z<yf<s>>—Z(Yf(m))\Pl{t+9>t5})p<do> )

< cE( sup (1+ ‘Z(yé(s))’pm+ |Y5(t5)]pm)\yf(5) —Yf(té)‘pa>

ts<s<t
< coP/2,

With (71) and (79) in hand, the proof of Theorem 5.1 can be done by following the
reasoning of Theorem 2.1. O

Remark 5.2. The integrability condition (65) is explicit and verifiable since the
density of p is given in advance. If pg is a Gaussian measure (e.g., V(z) = c|z|?
for some constant ¢ > 0) and Z : R? — R? is Hélder continuous with the Hélder
exponent a € (0,1), then (65) holds definitely for any x« > 0. Moreover, the
linear growth of Z imposed in Lemma 2.4 is an essential ingredient, whereas the
integrability condition (65) might allow Z to be non-globally Lipschitz. Last but
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not least, Z might be singular at a certain setup, e.g., Z(z) = (log ﬁ)l{\xlﬁl} +
r1z>1}, = € R, for some a € (0,1).
Via the dimension-free Harnack inequality (see e.g. [36]), we can establish the

following exponential integrability under an integrability condition, which is an
essential ingredient in analyzing weak convergence.

Lemma 5.3. Assume that (C1) and (65) hold. Then,
E T 1I2, ZOrS o plao)Par _ (1)
and
Eet o BOPt o o (72)
whenever \,T > 0 such that
K e~ (1+8T)

A< A :
22V d)|le 5, T2 32013, llo~ 13, LT

Proof. By Hélder’s inequality and Jensen’s inequality, it follows that
REer o 12, Z(YE(t+0))p(d0)|dt

< B I 12O (t40) P p(a0)dt

7// EATIZ(YE(t+0))]2 p(d6)dt (73)

- {/ ATIZ(E(6))] d9+/ RATIZ(Y SO (1) d}
— T/, 0

If for any v > 0 and p > (1 V d/2) with py < k there exists a continuous positive
function x — A, (x) such that

E 12X (1)) <A e )( e—LOt)*d/2p(en\Z(.)|2)1/Z” (74)
then (71) holds true due to the facts that 1 — e L0t ~ Lyt as t — 0 and

| N

t
/ 574?45 < 0o for p>é.
O 2

In what follows, it remains to verify that (74) holds. According to [36, Theorem
1.1], the following dimension-free Harnack inequality

(Ps@)r < P e (5o 200 )

holds for any z,y € R?, f € %,(R%), and p > 1. For any n,y > 0, and p > (1Vv d/2)
with py < &, applying the Harnack inequality (75) to the function R¢ > x
NZ@P Ap e By(R?) yields that

pLolz — yI? VZ(Y ()2 b 1Z(y¥ (1)
_ < Py P\
exp( 30p— 1)1 = Lot (E(e /\n)) E(e An )

Thereby, integrating w.r.t. uo(dy) on both sides and taking the invariance of pg
and (65) into consideration leads to

pLo 2005 p )Y
exp ( — 7) / to(dy (IEe7 A n)
2(p - 1) |lz—y|2<1—e— Lot 0( )

< /Rd E(em\zm(tm? A n”)uo(dy)

(75)
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< o (eple(-)\2 /\np) < 1o (" 7OP) < 00, z € RY, py < k.

So, by the dominated convergence theorem, we arrive at

1/p
</ Mo(dy)) E 2 O)
lz—y|?<1—e~To?

< (uo(e“'z(')'2)> - (ﬁ)

Next, from po(dy) = Cye™V®dy and Taylor’s expansion, we deduce that

/ po(dy) = CV/ eV Wdy
lz—y[2<1—e~To? lz—y|?<1—e~To?

> Cye V(@) / o= Jo |9V (a+62)||21d6 4,

|2[2<1—e~ Lot

>Cpe V@ inf e IVVIW) / e Flaz  (77)
ly|<1+4|z| |z]2<1—e—Fot

Oy v
T(1+d/2)

x inf e*‘vvl(y)(lfe*Lot)d/Z,
ly| <14

>

where T'(+) is the Gamma function. Whence, inserting (77) back into (76) gives
(74).
A direct calculation shows from (C1) and Holder’s inequality that

0 A~
S0 < 20 s {2E8 (IO + [YE(ts) ) + / Z(TE )] plan) }.

—T
Thus, Holder’s inequality implies that

B i 0P < (oIl s uquiodt)” ?
x (B s I 1 \z@E(e))Pp(de)dt)” :

= \/Il(T) X \/IQ(T).
On the one hand, in view of (11), it holds that
e7(1+[3T)
32|lo 2, llo= 13, LET>
On the other hand, Holder’s inequality and Jensen’s inequality show that, for any
A >0,
Mo S22V 0) P p(do)dt

<1 /0 /T]E NTIZTEO) 41(dp)
- T —7J0 ¢ p

1 0 T ¢ , . .
=7 / / ]E{e/\T\Z(Y (t+6))| Lio<ts) L ATIZ(YE ()] 1{t+6>t5}}dtp(d0)
—7J0
1

0
! {/_T STIZEO g

L(T)<oo if A< (78)
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T T
+eAT|Z<s<0>>|2+/ Eemzw&(t»FdH/ EeATZ(Yﬁ(tg))th}
0 §

so that, by virtue of (74),

K

L(T)<oo if A< .
AT) oo 22V d)||o|, 7

Thus, (72) follows immediately from (78) and (79). O

Acknowledgments. The research of Jianhai Bao is supported by the National Key
R&D Program of China (2022YFA1006004) and NSF of China (No. 12071340). The
research of Jinghai Shao is supported by the National Key R&D Program of China
(2022YFA1006004) and NSF of China (No. 12271397).

REFERENCES

(1] S. Bachmann, Well-posedness and stability for a class of stochastic delay differential equations
with singular drift, Stoch. Dyn., 18 (2018), 1850019, 27 pp.

[2] S. Bachmann, On the strong Feller property of stochastic delay differential equations with
singular drift, Stoch. Process. Appl., 130 (2020), 4563-4592.

(3] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I.
Convergence rate of the distribution function, Probab. Theory Relat. Fields., 104 (1996),
43-60.

[4] E. Buckwar, R. Kuske, S.-E. Mohammed and T. Shardlow, Weak convergence of the Euler
scheme for stochastic differential delay equations, LMS J. Comput. Math., 11 (2008), 60-99.

[5] E. Buckwar and T. Shardlow, Weak approximation of stochastic differential delay equations,
IMA J. Numer. Anal., 25 (2005), 57-86.

[6] E. Clément, A. Kohatsu-Higa and D. Lamberton, A duality approach for the weak approxi-
mation of stochastic differential equations, Ann. Appl. Probab., 16 (2006), 1124-1154.

[7] K. Dareiotis, C. Kumar and S. Sabanis, On tamed Euler approximations of SDEs driven by

Lévy noise with applications to delay equations, SIAM J. Numer. Anal., 54 (2016), 1840-

1872.

I. Gyongy and M. Résonyi, A note on Euler approximations for SDEs with Holder continuous

diffusion coefficients, Stoch. Process. Appl., 121 (2011), 2189-2200.

[9] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-
Holland, 1989.

[10] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,
Springer, 1995.

[11] U. Kiichler and E. Platen, Weak discrete time approximation of stochastic differential equa-
tions with time delay, Math. Comput. Simulation, 59 (2002), 497-507.

[12] S. Kusuoka, Continuity and Gaussian two-sided bounds of the density functions of the solu-
tions to path-dependent stochastic differential equations via perturbation, Stochastic Process.
Appl., 1277 (2017), 359-384.

[13] G. Leobacher and M. Szdlgyenyi, A numerical method for SDEs with discontinuous drift,
BIT, 56 (2016), 151-162.

[14] G. Leobacher and M. Szdlgyenyi, A strong order 1/2 method for multidimensional SDEs with
discontinuous drift, Ann. Appl. Probab., 27 (2017), 2383-2418.

[15] G. Leobacher and M. Szdlgyenyi, Convergence of the Euler-Maruyama method for multidi-
mensional SDEs with discontinuous drift and degenerate diffusion coefficient, Numer. Math.,
138 (2018), 219-239.

[16] V. Mackevicius, On the convergence rate of Euler scheme for SDE with Lipschitz drift and
constant diffusion, Acta Appl. Math., 78 (2003), 301-310.

[17] X. Mao, Stochastic Differential Equations and Applications, Horwood, England, Second Edi-
tion, 2008.

[18] X. Mao, The truncated Euler-Maruyama method for stochastic differential equations, J.
Comput. Appl. Math., 290 (2015), 370-384.

B


http://mathscinet.ams.org/mathscinet-getitem?mr=3735415&return=pdf
http://dx.doi.org/10.1142/S0219493718500193
http://dx.doi.org/10.1142/S0219493718500193
http://dx.doi.org/10.1016/j.spa.2020.01.008
http://dx.doi.org/10.1016/j.spa.2020.01.008
http://mathscinet.ams.org/mathscinet-getitem?mr=1367666&return=pdf
http://dx.doi.org/10.1007/BF01303802
http://dx.doi.org/10.1007/BF01303802
http://mathscinet.ams.org/mathscinet-getitem?mr=2410916&return=pdf
http://dx.doi.org/10.1112/S146115700000053X
http://dx.doi.org/10.1112/S146115700000053X
http://mathscinet.ams.org/mathscinet-getitem?mr=2110235&return=pdf
http://dx.doi.org/10.1093/imanum/drh012
http://mathscinet.ams.org/mathscinet-getitem?mr=2260059&return=pdf
http://dx.doi.org/10.1214/105051606000000060
http://dx.doi.org/10.1214/105051606000000060
http://mathscinet.ams.org/mathscinet-getitem?mr=3513865&return=pdf
http://dx.doi.org/10.1137/151004872
http://dx.doi.org/10.1137/151004872
http://mathscinet.ams.org/mathscinet-getitem?mr=2822773&return=pdf
http://dx.doi.org/10.1016/j.spa.2011.06.008
http://dx.doi.org/10.1016/j.spa.2011.06.008
http://mathscinet.ams.org/mathscinet-getitem?mr=1011252&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=1214374&return=pdf
http://dx.doi.org/10.1007/978-3-662-12616-5
http://mathscinet.ams.org/mathscinet-getitem?mr=1917820&return=pdf
http://dx.doi.org/10.1016/S0378-4754(01)00431-1
http://dx.doi.org/10.1016/S0378-4754(01)00431-1
http://mathscinet.ams.org/mathscinet-getitem?mr=3583756&return=pdf
http://dx.doi.org/10.1016/j.spa.2016.06.011
http://dx.doi.org/10.1016/j.spa.2016.06.011
http://mathscinet.ams.org/mathscinet-getitem?mr=3486457&return=pdf
http://dx.doi.org/10.1007/s10543-015-0549-x
http://mathscinet.ams.org/mathscinet-getitem?mr=3693529&return=pdf
http://dx.doi.org/10.1214/16-AAP1262
http://dx.doi.org/10.1214/16-AAP1262
http://mathscinet.ams.org/mathscinet-getitem?mr=3745015&return=pdf
http://dx.doi.org/10.1007/s00211-017-0903-9
http://dx.doi.org/10.1007/s00211-017-0903-9
http://mathscinet.ams.org/mathscinet-getitem?mr=2024033&return=pdf
http://dx.doi.org/10.1023/A:1025754020469
http://dx.doi.org/10.1023/A:1025754020469
http://dx.doi.org/10.1533/9780857099402
http://dx.doi.org/10.1016/j.cam.2015.06.002

22

19]

20]
(21]
(22]
23]

24]

[25]

[26]

27)

(28]

29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
37)
(38]
(39]

[40]

JIANHAI BAO AND JINGHAI SHAO

J. C. Mattingly, A. M. Stuart and D. J. Higham, Ergodicity for SDEs and approximations:
Locally Lipschitz vector fields and degenerate noise, Stoch. Process. Appl., 101 (2002), 185-
232.

R. Mikulevicius and E. Platen, Rate of convergence of the Euler approximation for diffusion
processes, Math. Nachr., 151 (1991), 233-239.

S.-E. A. Mohammed, Stochastic Functional Differential Equations, Pitman, Boston, 1984.
T. Miiller-Gronbach and L. Yaroslavtseva, On the performance of the Euler-Maruyama scheme
for SDEs with discontinuous drift coefficients, Ann. Inst. Henri Poincaré Probab. Stat., 56
(2020), 1162-1178.

T. Miiller-Gronbach and L. Yaroslavtseva, A strong order 3/4 method for SDEs with discon-
tinuous drift coefficient, IMA J. Numer. Anal., 42 (2022), 229-259, arXiv:1904.09178.

A. Neuenkirch, M. Szolgyenyi and L. Szpruch, An adaptive Euler-Maruyama scheme for
stochastic differential equations with discontinuous drift and its convergence analysis, SIAM
J. Numer. Anal., 57 (2019), 378-403, arXiv:1802.04521.

H.-L. Ngo and D. Taguchi, Strong rate of convergence for the Euler-Maruyama approximation
of stochastic differential equations with irregular coefficients, Math. Comp., 85 (2016), 1793-
1819.

H.-L. Ngo and D. Taguchi, On the Euler-Maruyama approximation for one-dimensional sto-
chastic differential equations with irregular coefficients, IMA J. Numer. Anal., 37 (2017),
1864-1883.

H.-L. Ngo and D. Taguchi, Approximation for non-smooth functionals of stochastic differential
equations with irregular drift, J. Math. Anal. Appl., 457 (2018), 361-388.

O. M. Pamen and D. Taguchi, Strong rate of convergence for the Euler-Maruyama approxi-
mation of SDEs with Holder continuous drift coefficient, Stoch. Process. Appl., 127 (2017),
2542-2559.

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit
Steady State Solutions, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic
differential equations, Stoch. Anal. Appl., 8 (1990), 483-509.

M.-K. von Renesse and M. Scheutzow, Existence and uniqueness of solutions of stochastic
functional differential equations, Random Oper. Stoch. Equ., 18 (2010), 267-284.

M.-K. von Renesse and M. Scheutzow, Existence and uniqueness of solutions of stochastic
functional differential equations, Random Oper. Stoch. Equ., 18 (2010), 267-284.

F.-Y. Wang, Integrability conditions for SDEs and semilinear SPDEs, Ann. Probab., 45
(2017), 3233-3265.

F.-Y. Wang, Estimates for invariant probability measures of degenerate SPDEs with sigular
and path-dependent drifts, Probab. Theory Relat. Fields, 172 (2018), 1181-1214.

F.-Y. Wang, Hypercontractivity for stochastic Hamiltonian systems, J. Funct. Anal., 272
(2017), 5360-5383.

F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann
semigroup on nonconvex manifolds, Ann. Probab., 39 (2011), 1449-1467.

F.-Y. Wang and X. Zhang, Degenerate SDE with Holder-dini drift and non-Lipschitz noise
coefficient, STAM J. Math. Anal., 48 (2016), 2189-2226.

H. Zhang, Weak approximation of stochastic differential delay equations for bounded mea-
surable function, LMS J. Comput. Math., 16 (2013), 319-343.

X. Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch.
Proc. Appl., 120 (2010), 1929-1949.

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the
drift, Math. Sb., 93 (1974), 129-149.

Received January 2024; revised May 2024; early access July 2024.


http://mathscinet.ams.org/mathscinet-getitem?mr=1931266&return=pdf
http://dx.doi.org/10.1016/S0304-4149(02)00150-3
http://dx.doi.org/10.1016/S0304-4149(02)00150-3
http://mathscinet.ams.org/mathscinet-getitem?mr=1121206&return=pdf
http://dx.doi.org/10.1002/mana.19911510114
http://dx.doi.org/10.1002/mana.19911510114
http://mathscinet.ams.org/mathscinet-getitem?mr=4076779&return=pdf
http://dx.doi.org/10.1214/19-AIHP997
http://dx.doi.org/10.1214/19-AIHP997
http://mathscinet.ams.org/mathscinet-getitem?mr=4367654&return=pdf
http://dx.doi.org/10.1093/imanum/draa078
http://dx.doi.org/10.1093/imanum/draa078
http://arxiv.org/pdf/1904.09178
http://mathscinet.ams.org/mathscinet-getitem?mr=3914573&return=pdf
http://dx.doi.org/10.1137/18M1170017
http://dx.doi.org/10.1137/18M1170017
http://arxiv.org/pdf/1802.04521
http://mathscinet.ams.org/mathscinet-getitem?mr=3471108&return=pdf
http://dx.doi.org/10.1090/mcom3042
http://dx.doi.org/10.1090/mcom3042
http://mathscinet.ams.org/mathscinet-getitem?mr=3712177&return=pdf
http://dx.doi.org/10.1093/imanum/drw058
http://dx.doi.org/10.1093/imanum/drw058
http://mathscinet.ams.org/mathscinet-getitem?mr=3702711&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2017.08.006
http://dx.doi.org/10.1016/j.jmaa.2017.08.006
http://mathscinet.ams.org/mathscinet-getitem?mr=3660882&return=pdf
http://dx.doi.org/10.1016/j.spa.2016.11.008
http://dx.doi.org/10.1016/j.spa.2016.11.008
http://mathscinet.ams.org/mathscinet-getitem?mr=1287386&return=pdf
http://dx.doi.org/10.1142/9789814354110
http://dx.doi.org/10.1142/9789814354110
http://mathscinet.ams.org/mathscinet-getitem?mr=1091544&return=pdf
http://dx.doi.org/10.1080/07362999008809220
http://dx.doi.org/10.1080/07362999008809220
http://mathscinet.ams.org/mathscinet-getitem?mr=2718125&return=pdf
http://dx.doi.org/10.1515/rose.2010.015
http://dx.doi.org/10.1515/rose.2010.015
http://mathscinet.ams.org/mathscinet-getitem?mr=2718125&return=pdf
http://dx.doi.org/10.1515/rose.2010.015
http://dx.doi.org/10.1515/rose.2010.015
http://mathscinet.ams.org/mathscinet-getitem?mr=3706742&return=pdf
http://dx.doi.org/10.1214/16-AOP1135
http://mathscinet.ams.org/mathscinet-getitem?mr=3877554&return=pdf
http://dx.doi.org/10.1007/s00440-017-0827-4
http://dx.doi.org/10.1007/s00440-017-0827-4
http://mathscinet.ams.org/mathscinet-getitem?mr=3639531&return=pdf
http://dx.doi.org/10.1016/j.jfa.2017.03.015
http://mathscinet.ams.org/mathscinet-getitem?mr=2857246&return=pdf
http://dx.doi.org/10.1214/10-AOP600
http://dx.doi.org/10.1214/10-AOP600
http://mathscinet.ams.org/mathscinet-getitem?mr=3511355&return=pdf
http://dx.doi.org/10.1137/15M1023671
http://dx.doi.org/10.1137/15M1023671
http://mathscinet.ams.org/mathscinet-getitem?mr=3104942&return=pdf
http://dx.doi.org/10.1112/S1461157013000120
http://dx.doi.org/10.1112/S1461157013000120
http://mathscinet.ams.org/mathscinet-getitem?mr=2673982&return=pdf
http://dx.doi.org/10.1016/j.spa.2010.05.015
http://mathscinet.ams.org/mathscinet-getitem?mr=0336813&return=pdf
http://dx.doi.org/10.1070/SM1974v022n01ABEH001689
http://dx.doi.org/10.1070/SM1974v022n01ABEH001689

	1. Introduction
	2. Weak convergence: Non-degenerate case 
	3. Extensions to other scenarios
	3.1. Extension to truncated EM scheme
	3.2. Extension to path-dependent SDEs with infinite memory

	4. Weak convergence: Degenerate case
	5. Weak convergence: Integrability conditions
	Acknowledgments
	REFERENCES

