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Abstract. In this paper we develop via Girsanov’s transformation a perturba-

tion argument to investigate the weak convergence of Euler-Maruyama (EM)
schemes for path-dependent SDEs with Hölder continuous drifts. This ap-

proach is available to other scenarios, e.g., truncated EM schemes for non-

degenerate SDEs with finite memory or infinite memory. Also, such a trick
can be applied to study the weak convergence of truncated EM schemes for a

range of stochastic Hamiltonian systems with irregular coefficients and mem-

ory. Moreover, the weak convergence of path-dependent SDEs under integra-
bility condition is investigated by establishing, via the dimension-free Harnack

inequality, exponential integrability of irregular drifts w.r.t. the invariant prob-

ability measure constructed explicitly in advance.

1. Introduction. The strong/weak convergence of numerical schemes for SDEs
with regular coefficients has been investigated extensively; see e.g. [3, 10, 11, 16, 30]
and references therein. Meanwhile, strong approximations of solutions to SDEs
with irregular coefficients have received much attention in the past few years; see
e.g. [8, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28] and references within. Also, there is
considerable literature on the strong convergence of various numerical schemes (e.g.,
truncated/tamed EM scheme) for path-dependent SDEs (which, in terminology, are
also named as functional SDEs or SDEs with delays) under regular conditions; see,
for instance, [7, 18] and references within. So far, the weak convergence for SDEs
with irregular terms has also gained much attention; see e.g. [11, 20] with the
smooth payoff function.

In contrast to the strong convergence of numerical algorithms for path-dependent
SDEs, the analysis of weak convergence is scarce. As far as path-dependent SDEs
are concerned, the weak convergence of numerical methods was initiated in [11],
whereas the rigorous justification of their statements was unavailable. With regard
to the weak convergence of the EM scheme and its variants, we refer to [5] for a
class of semi-linear path-dependent SDEs via the so-called “lift-up” approach, [6] for
path-dependent SDEs with distributed delays by means of the duality trick, and [4]
for path-dependent SDEs with point delays with the help of Malliavin calculus and
the tamed Itô formula. In references [4, 6], as for the drift term b and the diffusion
term σ, the assumptions that b, σ ∈ C∞

b (Rd) and the payoff function f ∈ C3
b (Rd)
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were imposed. Subsequently, by the aid of Malliavin calculus, [38] extended [4, 6] in
a certain sense that the payoff function f ∈ Bb(Rd), while b, σ ∈ C∞

b (Rd) therein.
It is worthy to point out that the approaches adopted in [4, 6, 38] are applicable
merely for path-dependent SDEs with regular coefficients. In the literature [4, 38],
the tamed Itô formula plays a crucial role in investigating the weak convergence of
EM schemes. Nevertheless, the tamed Itô formula barely works for path-dependent
SDEs with distributed delays or point delays so that it seems hard to extend [4, 38]
to path-dependent SDEs with general delays. To study the weak convergence of
numerical schemes for path-independent SDEs with regular coefficients, the ap-
proach on the Kolmogorov backward equation is one of the more powerful methods.
However, concerning path-dependent SDEs, the Kolmogrov backward equation is
in general unavailable so that it cannot be adopted to handle the weak convergence
of numerical schemes. As we stated above, concerning path-dependent SDEs, the
Malliavin calculus is an effective tool to cope with the weak convergence; see, for
example, [4, 6, 38]. Furthermore, slightly strong assumptions are imposed therein
and the proof is not succinct in a certain sense. Moreover, Zvonkin’s transformation
[40] is one of the more powerful tools for investigating the strong convergence of
EM schemes for path-independent SDEs with singular coefficients; see e.g. [28].
Nevertheless, such a trick no longer works provided the delay terms are irregular.
On account of the motivations above, in this work we aim to develop a perturba-
tion approach (see e.g. [12, 34]) to study the weak convergence of an EM scheme
for path-dependent SDEs with additive noise, which allows for the drift terms to
be irregular (e.g., Hölder continuous drifts and integrability drifts) and even the
diffusion coefficients to be degenerate.

We point out that the dimension-free Harnack inequality plays an important role
in investigating the weak error analysis for path-dependent SDEs under integrability
conditions.

The content of this paper is arranged as follows. In Section 2, we investigate the
weak convergence of EM schemes for a class of non-degenerate SDEs with memory
and reveal the weak convergence rate. In Section 3, we apply the approach adopted
in Section 2 to other scenarios, e.g., truncated EM schemes for non-degenerate
SDEs with finite memory or infinite memory. In Section 4, we focus on the weak
convergence order of truncated EM schemes for a range of stochastic Hamiltonian
systems with singular drifts and memory. In the last section, we are interested in
the weak convergence of EM schemes for path-dependent SDEs under integrability
conditions, which allow the drift terms to have super-linear growth and be singular
at some points.

Before proceeding further, a few words about the notation are in order. Through-
out this paper, c > 0 stands for a generic constant which might change from occur-
rence to occurrence, and depends on the time parameters.

2. Weak convergence: Non-degenerate case. Let (Rd, ⟨·, ·⟩, | · |) be the d-
dimensional Euclidean space with the inner product ⟨·, ·⟩ which induces the Eu-
clidean norm | · |. Let Md

non be the set of all non-singular d× d-matrices with real
entries. A∗ means the transpose of the matrix A. For a sub-interval U ⊆ R, denote
by C(U;Rd) the family of all continuous functions f : U → Rd. Let τ > 0 be a
fixed number, and C = C([−τ, 0];Rd), which is endowed with the uniform norm
∥f∥∞ := sup−τ≤θ≤0 |f(θ)|. For f ∈ C([−τ,∞);Rd) and fixed t ≥ 0, let ft ∈ C be
defined by ft(θ) = f(t + θ), θ ∈ [−τ, 0]. In our terminology, (ft)t≥0 is called the
segment (or window) process corresponding to (f(t))t≥−τ . For a ≥ 0, ⌊a⌋ stipulates



WEAK CONVERGENCE OF PATH-DEPENDENT SDES 3

the integer part of a. Let Bb(Rd) be the collection of all bounded measurable func-
tions f : Rd → R endowed with the uniform norm 9f9∞ := supx∈Rd |f(x)|. Let
0 ∈ Rd be the zero vector and ξ0(θ) ≡ 0 for any θ ∈ [−τ, 0].

In this section, we are interested in the following path-dependent SDE

dX(t) =
{
b (X(t)) + Z(Xt)

}
dt+ σ dW (t), t > 0, X0 = ξ ∈ C , (1)

where b : Rd → Rd, Z : C → Rd, σ ∈ Md
non, and (W (t))t≥0 is a d-dimensional

Brownian motion on the filtered probability space (Ω,F , (Ft)t≥0,P). We assume
that:

(A1) b is Lipschitz with the Lipschitz constant L1, i.e., |b(x) − b(y)| ≤ L1|x −
y|, x, y ∈ Rd, and there exist constants C > 0 and β ∈ R such that

2⟨x, b(x)⟩ ≤ C + β|x|2, x ∈ Rd; (2)

(A2) Z is Hölder continuous with the Hölder exponent α ∈ (0, 1] and the Hölder
constant L2, i.e., |Z(ξ)− Z(η)| ≤ L2∥ξ − η∥α∞, ξ, η ∈ C ;

(A3) The initial value ξ ∈ C is Lipschitz continuous with the Lipschitz constant
L3 > 0, i.e., |ξ(t)− ξ(s)| ≤ L3|t− s|, s, t ∈ [−τ, 0].

Under (A1) and (A2), (1) enjoys a unique weak solution (Xξ(t))t≥0 with the initial

datumXξ
0 = ξ ∈ C ; see Lemma 2.3 below for more details. Evidently, (2) holds with

β > 0 whenever b obeys the global Lipschitz condition. It is worthy to emphasize
that β in (2) need not to be positive, which may allow the time horizon T to be
much bigger as Lemma 2.4 below manifests. Moreover, (A3) is just imposed for the
sake of continuity of the displacement of the segment process. For further details,
please refer to Lemma 2.7 below.

For existence and uniqueness of strong solutions to path-dependent SDEs with
regular coefficients, we refer to e.g. [17, 21, 31] and references therein. Recently,
path-dependent SDEs with irregular coefficients have also received much attention;
see e.g. [1] on existence and uniqueness of strong solutions, [2] for the strong Feller
property of the semigroup generated by the functional solution (i.e., the segment
process associated with the solution process), and [34] for regularity estimates on
the density of invariant probability measures.

To treat the weak convergence of the EM scheme (5) with the singular coefficient
Z, in this work we shall exploit a perturbation approach; see e.g. [33, 34] on
regularity estimates of the density for invariant probability measures for SDEs under
integrability conditions. To achieve this goal, we introduce the following reference
SDE on Rd

dY (t) = b(Y (t))dt+ σ dW (t), t > 0, Y (0) = x ∈ Rd. (3)

Under (A1), (3) has a unique strong solution (Y x(t))t≥0 with the initial value
Y (0) = x; see, for example, [21, Theorem 2.1, p.34]. Now, we extend Y x(t) from
[0,∞) into [−τ,∞) in the manner below:

Y ξ(t) := ξ(t)1[−τ,0)(t) + Y ξ(0)(t)1[0,∞)(t), t ∈ [−τ,∞), ξ ∈ C . (4)

We write (Y ξ
t )t≥0 as the segment process corresponding to (Y ξ(t))t≥−τ .

Our main result in this section is stated as follows, which particularly reveals
the weak convergence rate of the EM algorithm (5) associated with (1), which
nevertheless allows the drift term to be path-dependent and Hölder continuous.

Let δ ∈ (0, 1) be the step size given by δ = τ/M for some M ∈ N sufficiently
large. Given the step size δ ∈ (0, 1), the continuous-time EM scheme associated
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with (1) is defined as below

dX(δ)(t) =
{
b(X(δ)(tδ)) + Z(X̂

(δ)
tδ

)
}
dt+ σ dW (t), t > 0 (5)

with the initial value X(δ)(θ) = X(θ) = ξ(θ), θ ∈ [−τ, 0]. Herein, tδ := ⌊t/δ⌋δ and,

for any k ∈ N, X̂(δ)
kδ ∈ C is defined by

X̂
(δ)
kδ (θ) =

θ + (1 + i)δ

δ
X(δ)((k − i)δ)− θ + iδ

δ
X(δ)((k − i− 1)δ) (6)

whenever θ ∈ [−(i+ 1)δ,−iδ] for i ∈ S := {0, 1, · · · ,M − 1}, that is, the C -valued

process (X̂
(δ)
kδ )k∈N is constructed by the linear interpolations between the points on

the gridpoints.

Theorem 2.1. Let (A1), (A2), and (A3) hold. Then, for any κ ∈ (0, α/2) with
α ∈ (0, 1] given in (A2) and T > 0 such that

2 ∥σ∥2HS∥σ−1∥2HS

{
(4L2

1 + L2
2)1{α=1} + L2

11{α∈(0,1)}
}
< e−(1+βT )/T 2, (7)

there exists a constant C1,T > 0 (dependent on 9f9∞) such that

|Ef(X(t))− Ef(X(δ)(t))| ≤ C1,T δκ, f ∈ Bb(Rd), t ∈ [0, T ]. (8)

Remark 2.2. For the path-independent SDE (1) with Hölder continuous drift, [27,
Theorem 2.6] revealed the weak convergence order is α

2 ∧ 1
4 , where α ∈ (0, 1) is the

Hölder exponent. In Theorem 2.1, we demonstrate that the weak convergence rate
is α/2. So, Theorem 2.1 is new even for path-independent SDEs with irregular drifts.
For path-dependent SDEs with point delays or distributed delays, [4, 6] investigated
the weak convergence under the regular assumption Z ∈ C∞

b and with the payoff
function f ∈ C3

b . Nevertheless, in the present work, we might allow the drift Z to be
unbounded and even Hölder continuous, and most importantly the payoff function
f to be non-smooth. Hence, Theorem 2.1 improves e.g. [4, 6, 27] in a certain sense.
Last but not least, the approach employed to prove Theorem 2.1 is universal in a
sense that it is applicable to the other scenarios as shown in Sections 3 and 4.

Before we move forward to complete the proof of Theorem 2.1, we first prepare
some warm-up lemmas. The following lemma addresses the existence and unique-
ness of weak solutions to (1).

Lemma 2.3. Under (A1) and (A2), (1) admits a unique weak solution.

Proof. First of all, we show the existence of a weak solution to (1). Set

Rξ
1(t) := exp

(∫ t

0

〈
σ−1Z(Y ξ

s ),dW (s)
〉
− 1

2

∫ t

0

∣∣σ−1Z(Y ξ
s )

∣∣2ds), t ≥ 0,

and dQξ
1 := Rξ

1(T )dP, where T > 0 satisfies ∥σ∥2op∥σ−1∥2opL2
2 < e−(1+βT )/T 2 for the

setup of the Hölder exponent α = 1 and T > 0 is arbitrary for α ∈ (0, 1). Moreover,
let

W ξ
1 (t) = W (t)−

∫ t

0

σ−1Z(Y ξ
s )ds, t ≥ 0. (9)

According to Lemma 2.4 below, we infer that

Ee
1
2

∫ T
0

|σ−1Z(Y ξ
t )|2dt < ∞,
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that is, the Novikov condition holds true. Whence, the Girsanov theorem implies

that (W ξ
1 (t))t∈[0,T ] is a Brownian motion under the weighted probability measure

Qξ
1. Note that (3) can be reformulated as

dY ξ(t) =
{
b(Y ξ(t)) + Z(Y ξ

t )
}
dt+ σdW ξ

1 (t), t ∈ [0, T ], Y ξ
0 = ξ.

So, (Y ξ(t),W ξ
1 (t))t∈[0,T ] is a weak solution to (1) w.r.t. the probability space

(Ω,F , (Ft)t≥0,Qξ
1). Analogously, we can show inductively that (1) admits a weak

solution on [T, 2T ], [2T, 3T ], · · · . Hence, (1) admits a global weak solution.
Now we proceed to justify uniqueness of weak solutions to (1). In the following,

it is sufficient to show the weak uniqueness on the time interval [0, T ] since it can
be done analogously on [T, 2T ], [2T, 3T ], · · · . Let (X(i),ξ(t),W (i)(t))t∈[0,T ] be the

weak solution to (1) w.r.t. the probability space (Ω(i),F (i), (F
(i)
t )t≥0,Pξ

i ), i = 1, 2.
In terms of [9, Proposition 2.1, p169, & Corollary, p206], it remains to show that

EPξ
1
f
(
X(1),ξ([0, T ]),W (1)([0, T ])

)
= EPξ

2
f
(
X(2),ξ([0, T ]),W (2)([0, T ])

)
(10)

for any f ∈ Cb(C([0, T ];Rd) × C([0, T ];Rd);R), where EPξ
i
means the expectation

w.r.t. Pξ
i . However, (10) can be done exactly by following the argument of [34,

Theorem 2.1 (2)]. We therefore omit the corresponding proof.

The lemma below examines the exponential integrability of functionals for seg-
ment processes.

Lemma 2.4. Assume that (A1) holds. Then, for any T > 0,

Eeλ
∫ T
0

∥Y ξ
t ∥2

∞dt < ∞, λ <
e−(1+βT )

2∥σ∥2opT 2
. (11)

Proof. Applying Jensen’s inequality and using the fact that ∥Y ξ
t ∥∞ ≤ ∥ξ∥∞ ∨

sup0≤s≤t |Y ξ(0)(s)|, we have for all T > 0,

Eeλ
∫ T
0

∥Y ξ
t ∥2

∞dt ≤ 1

T

∫ T

0

EeλT ∥Y ξ
t ∥2

∞dt

≤ eλT∥ξ∥2
∞

T

∫ T

0

E
(

sup
0≤s≤t

eλT |Y ξ(0)(s)|2
)
dt.

(12)

Next, by Itô’s formula, it follows from (A1) that there exists a constant c > 0 such
that for any γ > 0,

d
(
e−γt

∣∣Y ξ(0)(t)
∣∣2) = e−γt

{
− γ

∣∣Y ξ(0)(t)
∣∣2 + 2

〈
Y ξ(0)(t), b(Y ξ(0)(t))

〉
+ ∥σ∥2HS

}
dt

+ 2e−γt
〈
σ∗Y ξ(0)(t),dW (t)

〉
≤ e−γt

{
c− (γ − β)

∣∣Y ξ(0)(t)
∣∣2}dt

+ 2e−γt
〈
σ∗Y ξ(0)(t),dW (t)

〉
.

(13)

Once more, via Itô’s formula, we deduce from (13) that for any ε > 0,

deε e
−γt|Y ξ(0)(t)|2 ≤ −ε

(
γ − β − 2∥σ∥2opε

)
e−γteεe

−γt|Y ξ(0)(t)|2∣∣Y ξ(0)(t)
∣∣2dt

+ cεe−γteεe
−γt|Y ξ(0)(t)|2dt

+ 2εe−γteεe
−γt|Y ξ(0)(t)|2〈σ∗Y ξ(0)(t),dW (t)

〉
,

(14)
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which implies that, for any γ > β + 2∥σ∥2HSε, by Gronwall’s inequality,

Eeεe
−γt|Y ξ(0)(t)|2 ≤ eε(c/γ+|ξ(0)|2). (15)

so that

ε
(
γ − β − 2∥σ∥2HSε

) ∫ t

0

e−γsE
(
eεe

−γs|Y ξ(0)(s)|2 |Y ξ(0)(s)|2
)
ds

≤
(
1 +

c ε

γ
e

cε
γ

)
eε|ξ(0)|

2

.

(16)

Making use of BDG’s inequality and Jensen’s inequality, in the case of γ > β +
2∥σ∥2opε, we derive from (14) and (15) that

E
(

sup
0≤s≤t

eεe
−γs|Y ξ(0)(s)|2

)
≤

(
1 +

c ε

γ
e

c ε
γ

)
eε |ξ(0)|

2

+ 8
√
2 εE

(∫ t

0

e−2γse2ε e
−γ s|Y ξ(0)(s)|2∣∣σ∗Y ξ(0)(s)

∣∣2ds)1/2

≤
(
1 +

c ε

γ
e

cε
γ

)
eε|ξ(0)|

2

+
1

2
E
(

sup
0≤s≤t

eεe
−γs|Y ξ(0)(s)|2

)
+ 64∥σ∥2opε2

∫ t

0

e−γsE
(
eεe

−γs|Y ξ(0)(s)|2∣∣Y ξ(0)(s)
∣∣2)ds.

(17)

So, plugging (16) back into (17) yields that

E
(

sup
0≤t≤T

eεe
−γT |Y ξ(0)(t)|2

)
< ∞ (18)

as long as γ > β + 2∥σ∥2opε. Note that

sup
ε>0

(
εe−(β+2∥σ∥2

op ε)T
)
= λT :=

1

2∥σ∥2opT
e−(1+βT ).

Consequently, from (18), we arrive at

E
(

sup
0≤t≤T

eλ0|Y ξ(0)(t)|2
)

< ∞, λ0 ∈ (0, λT ) (19)

In the end, (11) follows from (12) and (19) in case of λT < λT .

Remark 2.5. In terms of Lemma 2.4, (11) holds for small T > 0 provided that (3)
is non-dissipative (i.e., in (2), β ≥ 0). Also, (11) is satisfied with large T > 0 in the
case that (3) is dissipative (i.e., in (2), β < 0).

For notation brevity, we set

hξ
1(t) := σ−1

{
b(Y ξ(t))− b(Y ξ(tδ))− Z(Ŷ ξ

tδ
)
}
, t ≥ 0, ξ ∈ C , (20)

where Ŷ ξ
· is defined exactly as in (6) with X(δ) replaced by Y ξ.

The lemma below plays an important role in checking the Novikov condition so
that the Girsanov theorem is applicable and in investigating the weak error analysis.

Lemma 2.6. Suppose that (A1) and (A2) hold. Then,

Eeλ
∫ T
0

|σ−1Z(Y ξ
t )|2dt < ∞ (21)
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whenever λ, T > 0, such that

λ <
e−(1+βT )

2 ∥σ∥2op∥σ−1∥2op{L2
21{α=1} + 01{α∈(0,1)}}T 2

,

where we set 1
0 = ∞. Moreover,

Eeλ
∫ T
0

|hξ
1(t)|

2dt < ∞ (22)

provided that λ, T > 0, such that

λ <
e−(1+βT )

4 ∥σ∥2op∥σ−1∥2op{(4L2
1 + L2

2)1{α=1} + L2
11{α∈(0,1)}}T 2

.

Proof. From (A2), it is obvious to see that

|Z(ξ)| ≤ |Z(ξ0)|+ L2∥ξ∥α∞, ξ ∈ C , (23)

which, in addition to Young’s inequality, implies that∣∣σ−1Z(Y ξ
t )

∣∣2 ≤ cε +
∥∥σ−1

∥∥2
op

{
(1 + ε)L2

21{α=1} + ε1{α∈(0,1)}
}∥∥Y ξ

t

∥∥2
∞, ε > 0 (24)

for some constant cε > 0. As a consequence, (21) holds true from (24) and by taking
advantage of (11) followed by choosing ε ∈ (0, 1) sufficiently small.

By the definition of Ŷ ξ
· (see (6) with X(δ) being replaced by Y ξ for more details),

a straightforward calculation shows that∥∥Ŷ ξ
tδ

∥∥
∞ = sup

−τ≤θ≤0

∣∣Ŷ ξ
tδ
(θ)

∣∣
≤ max

k∈S
sup

−(k+1)δ≤θ≤−kδ

(
θ + (1 + k)δ

δ
|Y ξ(tδ − kδ)|

− θ + kδ

δ
|Y ξ(tδ − (k + 1)δ)|

)
≤

∥∥Y ξ
t

∥∥
∞ ∨

∥∥Y ξ
t−τ

∥∥
∞, t ≥ 0

(25)

due to the fact that (θ+(1+k)δ)/δ− (θ+kδ)/δ = 1, where we set Y ξ(t) := ξξ(−τ)
whenever t ∈ [−2τ,−τ). Subsequently, (25), together with (A1) as well as (23),
yields that ∣∣hξ

1(t)
∣∣2 ≤ µε + νε

(∥∥Y ξ
t

∥∥2
∞ ∨

∥∥Y ξ
t−τ

∥∥2
∞

)
, ε > 0, t ≥ 0 (26)

for some µε > 0 and

νε := 2
∥∥σ−1

∥∥2
op

{(
4L2

1 + (1 + ε)L2
2

)
1{α=1} + L2

1(1 + ε)1{α∈(0,1)}
}

Thereby, (22) follows from (19) and (26) and by noting that∫ T

0

eλ(∥Y
ξ
t ∥2

∞∨∥Y ξ
t−τ∥

2
∞)dt ≤ τe∥ξ∥

2
∞ + 2

∫ T

0

eλ∥Y
ξ
t ∥2

∞dt, λ > 0.

Next we intend to show that the displacement of segment process is continuous
in the Lp-norm sense.

Lemma 2.7. Under (A1) and (A3), for any p > 2 and T > 0, there exists a
constant Cp,T > 0 such that

sup
0≤t≤T

E
∥∥Y ξ

t − Ŷ ξ
tδ

∥∥p
∞ ≤ Cp,T δ

(p−2)/2. (27)
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Proof. By invoking [17, Theorem 4.4, p61], for any p > 0 and T > 0, there exists a

constant Ĉp,T > 0 such that

E
(

sup
−τ≤t≤T

∣∣Y ξ(t)
∣∣p) ≤ Ĉp,T

(
1 + ∥ξ∥p∞

)
. (28)

By utilizing Hölder’s inequality and BDG’s inequality, it follows from (A1) and (28)
that

E
(

sup
kδ≤t≤(k+2)δ

∣∣Y ξ(t)− Y ξ(kδ)
∣∣p)

≤ c

{
δp−1

∫ (k+2)δ

kδ

E
∣∣b(Y ξ(t))

∣∣pdt+ E
(

sup
0≤t≤2δ

|W (t)|p
)}

≤ c
{
δp−1

∫ (k+2)δ

kδ

(
1 + E|Y ξ(t)|p

)
dt+ δp/2

}
≤ cδp/2, p > 2, k ∈ N.

(29)

Trivially, there exists an integer k0 ≥ 0 such that t ∈ [k0δ, (k0 + 1)δ]. So, for any
p > 2,

E
∥∥Y ξ

t − Ŷ ξ
tδ

∥∥p
∞

≤ M max
k∈S

E
(

sup
−(k+1)δ≤θ≤−kδ

∣∣Y ξ(t+ θ)− Ŷ ξ
k0δ

(θ)
∣∣p)

≤ cM max
k∈S

E|Y ξ((k0 − k)δ)− Y ξ((k0 − k − 1)δ)|p

+ cM max
k∈S

E
(

sup
(k0−k−1)δ≤s≤(k0−k+1)δ

∣∣Y ξ(s)− Y ξ((k0 − k − 1)δ)
∣∣p).

In the case of k ≤ k0 − 1, we find from (29) that (27) holds. On the other hand, if
k = k0, from (A3), (29), and Mδ = τ , then one gets that (27) holds. Moreover, for
k ≥ 1 + k0, (27) is still true due to (A3). The proof is therefore complete.

With the previous lemmas in hand, we are now in the position to complete the
following proof.

Proof of Theorem 2.1. Let

W ξ
2 (t) = W (t) +

∫ t

0

hξ
1(s)ds, t ≥ 0, (30)

where hξ
1 was introduced in (20). Define

Rξ
2(t) = exp

(
−
∫ t

0

〈
hξ
1(s),dW (s)

〉
− 1

2

∫ t

0

∣∣hξ
1(s)

∣∣2ds), t ≥ 0

and dQξ
2 = Rξ

2(T )dP, where T > 0 satisfies (7). Due to (7) and (22), the Girsanov

theorem implies that (W ξ
2 (t))t∈[0,T ] is a Brownian motion under the probability

measure Qξ
2. Thus, (3) can be rewritten in the form

dY ξ(t) =
{
b(Y ξ(tδ)) + Z(Ŷ ξ

tδ
)
}
dt+ σ dW ξ

2 (t), t > 0 (31)

with the initial value Y ξ(θ) = ξ(θ), θ ∈ [−τ, 0] so that (Y ξ(t),W ξ
2 (t))t∈[0,T ] is a

weak solution to (5) under Qξ
2. Obviously, (5) has a unique strong solution so that

the weak solution is unique. Since, by (7) and (21), (Y ξ(t),W ξ
1 (t))t∈[0,T ] is a weak
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solution to (1) under Qξ
1 and (Y ξ(t),W ξ

2 (t))t∈[0,T ] is a weak solution to (5) under

Qξ
2, we deduce from the weak uniqueness due to Lemma 2.3 and Hölder’s inequality

that∣∣Ef(X(T ))− Ef(X(δ)(T ))
∣∣

=
∣∣∣EQξ

1
f(Y ξ(T ))− EQξ

2
f(Y ξ(T ))

∣∣∣
=

∣∣E((Rξ
1(T )−Rξ

2(T )
)
f(Y ξ(T ))

)∣∣
≤ 9f 9∞ E

∣∣Rξ
1(T )−Rξ

2(T )
∣∣

≤ 9f 9∞ E
((

Rξ
1(T ) +Rξ

2(T )
)(∣∣∣∣ ∫ T

0

⟨σ−1Z(Y ξ
s ) + hξ

1(s),dW (s)⟩
∣∣∣∣

+
1

2

∫ T

0

| |hξ
1(s)|2 − |σ−1Z(Y ξ

s )|2|ds
))

≤ 9f 9∞

((
E
(
Rξ

1(T )
)q)1/q

+
(
E
(
Rξ

2(T )
)q)1/q)

×
{(

E
(∣∣∣∣ ∫ T

0

⟨σ−1Z(Y ξ
s ) + hξ

1(s),dW (s)⟩
∣∣∣∣p))1/p

+
1

2

∫ T

0

(
E
∣∣|hξ

1(s)|2 − |σ−1Z(Y ξ
s )|2

∣∣p)1/pds}
=: 9f 9∞ Γ(T )

{
Θ1(T ) + Θ2(T )

}
, t ∈ [0, T ]

(32)

for 1/p + 1/q = 1, p, q > 1, where in the second inequality we utilized the funda-
mental inequality

|ex − ey| ≤ (ex + ey)|x− y|, x, y ∈ R,

and, in the last two inequalities, employed the Hölder inequality followed by the
Minkowski inequality. For notation brevity, let

M1(t) =

∫ t

0

〈
σ−1Z(Y ξ

s ),dW (s)
〉

and M2(t) = −
∫ t

0

〈
hξ
1(s),dW (s)

〉
, t ≥ 0.

For any q > 1, using Hölder’s inequality and the fact that e2qMi(t)−2q2⟨Mi⟩(t), i = 1, 2,
is an exponential martingale leads to

E
(
Rξ

1(T )
)q

+ E
(
Rξ

2(T )
)q

= EeqM1(T )− q
2 ⟨M1⟩(T ) + EeqM2(T )− q

2 ⟨M2⟩(T )

≤
(
Ee(2q

2−q)⟨M1⟩(T )
)1/2

+
(
Ee(2q

2−q)⟨M2⟩(T )
)1/2

=

(
E exp

(
(2q2 − q)

∫ T

0

|σ−1Z(Y ξ
t )|2dt

))1/2

+

(
E exp

(
(2q2 − q)

∫ T

0

|hξ
1(t)|2dt

))1/2

.

Whence, by taking q ↓ 1 and exploiting (7), (21), and (22), one has for some

C̃q,T > 0,

Γ(T ) ≤ C̃q,T . (33)

In view of (A1) and (A2), in addition to |Y ξ(t)− Y ξ(tδ)| ≤ ∥Y ξ
t − Ŷ ξ

tδ
∥∞, it holds

that
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t ) + hξ

1(t)
∣∣ ≤ ∥σ−1∥op

{∣∣b(Y ξ(t))− b(Y ξ(tδ))
∣∣+ ∣∣Z(Y ξ

t )− Z(Ŷ ξ
tδ
)
∣∣}

≤ ∥σ−1∥op
{
L1

∣∣Y ξ(t)− Y ξ(tδ)
∣∣+ L2

∥∥Y ξ
t − Ŷ ξ

tδ

∥∥α
∞

}
≤ ∥σ−1∥op

{∥∥Y ξ
t − Ŷ ξ

tδ

∥∥
∞ +

∥∥Y ξ
t − Ŷ ξ

tδ

∥∥α
∞

}
.

(34)

This, with BDG’s inequality followed by Hölder’s inequality, yields that for p > 2/α,

Θ1(T ) ≤ c

(∫ T

0

E
∣∣σ−1Z(Y ξ

t ) + hξ
1(t)

∣∣pdt)1/p

≤ c

(∫ T

0

{
E
∥∥Y ξ

t − Ŷ ξ
tδ

∥∥p
∞ + E

∥∥Y ξ
t − Ŷ ξ

tδ

∥∥pα
∞

}
dt

)1/p

≤ cδ
α
2 − 1

p ,

(35)

where we utilized (27) in the last line. On the other hand, applying Hölder’s in-
equality and combining (A1) with (A2) and (34) enables us to obtain that, for any
p > 1/α,

Θ2(T ) ≤
1

2

∫ T

0

2
{
E
∣∣hξ

1(t)− σ−1Z(Y ξ
t )

∣∣2pE∣∣σ−1Z(Y ξ
t ) + hξ

1(t)
∣∣2p}1/2p

dt

≤ c

∫ T

0

{(
1 + E

∥∥Y ξ
t

∥∥2p
∞ + E

∥∥Ŷ ξ
tδ

∥∥2p
∞

)
×
(
E
∥∥Y ξ

t − Ŷ ξ
tδ

∥∥2p
∞ + E

∥∥Y ξ
t − Ŷ ξ

tδ

∥∥2pα
∞

)}1/2p
dt

≤ c

∫ T

0

{
E
∥∥Y ξ

t − Ŷ ξ
tδ

∥∥2p
∞ + E

∥∥Y ξ
t − Ŷ ξ

tδ

∥∥2pα
∞

}1/2p
dt

≤ cδ
α
2 − 1

2p ,

(36)

where we used (25) and (28) in the penultimate procedure and exploited (27) in
the last step. Consequently, substituting (33), (35), and (36) into (32) and taking
p > 2/α sufficiently large (so that q ↓ 1), yields the assertions in (8).

3. Extensions to other scenarios. In this section, we intend to extend the ap-
proach to derive Theorem 2.1 and investigate the weak convergence of the other
kinds of numerical schemes for path-dependent SDEs with irregular coefficients.

3.1. Extension to truncated EM scheme. In this subsection we are still inter-
ested in (1). Rather than the EM scheme (5), we introduce the following truncated
EM scheme (see e.g. [32]) associated with (1)

dX(δ)(t) =
{
b
(
X(δ)(tδ)

)
+ Z

(
X̂

(δ)
t

)}
dt+ σ dW (t), t > 0 (37)

with the initial value X(δ)(θ) = X(θ) = ξ(θ), θ ∈ [−τ, 0], where X̂
(δ)
t ∈ C is defined

in the following way:

X̂
(δ)
t (θ) := X(δ)

(
(t+ θ) ∧ tδ

)
, θ ∈ [−τ, 0].

As for the truncated EM scheme (37), the main result in this subsection is stated
as below.

Theorem 3.1. Let (A1) and (A2) hold. Then, for any T > 0 such that

2 ∥σ∥2op∥σ−1∥2op{(4L2
1 + L2

2)1{α=1} + L2
11{α∈(0,1)}} < e−(1+βT )/T 2,
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there exists a constant C2,T > 0 (dependent on 9f9∞) such that∣∣Ef(X(t))− Ef
(
X(δ)(t)

)∣∣ ≤ C2,T δα/2, f ∈ Bb(Rd), t ∈ [0, T ]. (38)

Proof. Herein, we just outline some dissimilarities since the argument of Theorem
3.1 parallels that of Theorem 2.1. Set

hξ
2(t) := σ−1

{
b(Y ξ(t))− b(Y ξ(tδ))− Z(Ŷ ξ

t )
}
, t ≥ 0, ξ ∈ C

with
Ŷ ξ
t (θ) := Y ξ

(
(t+ θ) ∧ tδ

)
, θ ∈ [−τ, 0].

It is easy to see that ∥∥Ŷ ξ
t

∥∥
∞ = sup

t−τ≤s≤t

∣∣Y ξ(s ∧ tδ)
∣∣ ≤ ∥∥Y ξ

t

∥∥
∞

so that Lemma 2.6 still holds with hξ
1 being replaced by hξ

2 by virtue of Lemma 2.4.
On the other hand, by (A1) and (28), we infer from Hölder’s inequality and BDG’s
inequality that

E
∥∥Y ξ

t − Ŷ ξ
t

∥∥p
∞ = E

(
sup

t−τ≤s≤t

∣∣Y ξ(s)− Y ξ(s ∧ tδ)
∣∣p)

= E
(

sup
t−τ≤s≤t

|Y ξ(s)− Y ξ(tδ)|p1{s≥tδ}

)
= E

(
sup

t−τ≤s≤t

∣∣∣∣ ∫ s

tδ

b(Y ξ(u)du+

∫ s

tδ

σdW (u)

∣∣∣∣p1{s≥tδ}

)
≤ c

{
δp−1

∫ t

tδ

E
∣∣b(Y ξ(u)

∣∣pdu+ E
(

sup
tδ≤s≤t

∣∣∣∣ ∫ s

tδ

σdW (u)

∣∣∣∣p)}
≤ cδp/2, p ≥ 1.

(39)

Having Lemma 2.6, writing hξ
2 in lieu of hξ

1, and (39) in hand, the proof of Theorem
3.1 is therefore complete by inspecting the argument of Theorem 2.1.

Remark 3.2. In terms of Theorems 2.1 and 3.1, we conclude that the truncated EM
scheme (37) enjoys a better weak convergence rate than the EM scheme (5). On the
other hand, with regard to the truncated EM scheme, we drop the assumption (A3)
in Theorem 3.1. Furthermore, we point out that the EM scheme (5) established
via interpolation works merely for path-dependent SDEs with finite memory since
the linear interpolation therein relies on the length of memory. The truncated EM
scheme (37) is still available for path-dependent SDEs with infinite memory as the
following subsection demonstrates.

3.2. Extension to path-dependent SDEs with infinite memory. As we de-
picted in Remark 3.2, one of the advantages of the truncated EM scheme (37) is
that it is applicable to path-dependent SDEs with infinite memory. To proceed, we
first introduce some additional notations. For a fixed number r ∈ (0,∞), let

Cr =
{
ϕ ∈ C((−∞, 0];Rd) : ∥ϕ∥r := sup

−∞<θ≤0
(erθ|ϕ(θ)|) < ∞

}
,

which is a Polish space under the metric induced by ∥ · ∥r.
In this subsection, we focus on the path-dependent SDE with infinite memory

dX(t) =
{
b(X(t)) + Z(Xt)

}
dt+ σdW (t), t > 0, X0 = ξ ∈ Cr, (40)

in which
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(A2′) Z : Cr → Rd is Hölder continuous, i.e., there exist α ∈ (0, 1] and L4 > 0 such
that

|Z(ξ)− Z(η)| ≤ L4∥ξ − η∥αr , ξ, η ∈ Cr,

and the other quantities are stipulated exactly as in (1). Similar to (37), we define
the truncated EM scheme associated with (40) by

dX(δ)(t) =
{
b
(
X(δ)(tδ)

)
+ Z

(
X̂

(δ)
t

)}
dt+ σ dW (t), t > 0 (41)

with the initial datum X(δ)(θ) = X(θ) = ξ(θ), θ ∈ (−∞, 0], in which X̂
(δ)
t ∈ Cr is

designed by

X̂
(δ)
t (θ) := X(δ)

(
(t+ θ) ∧ tδ

)
, θ ∈ (−∞, 0].

The main result in this subsection is presented as follows.

Theorem 3.3. Assume the assumptions of Theorem 3.1 hold with (A2) replaced
by (A2′). Then, there exists a constant C3,T > 0 (dependent on 9f9∞) such that∣∣Ef(X(t))− Ef

(
X(δ)(t)

)∣∣ ≤ C3,T δα/2, f ∈ Bb(Rd), t ∈ [0, T ] (42)

provided that the step size δ ∈ (0, 1) is sufficiently small.

Proof. Since ∥∥Y ξ
t

∥∥
r
≤ ∥ξ∥r + sup

0≤s≤t

∣∣Y ξ(s)
∣∣,

Lemma 2.4 still holds with ∥ · ∥∞ replaced by ∥ · ∥r. Also, (21) holds under as-
sumptions (A1) and (A2′) so that (40) has a unique weak solution by following the
argument of Lemma 2.3. Let

hξ
3(t) = σ−1

{
b
(
Y ξ(t)

)
− b

(
Y ξ(tδ)

)
− Z

(
Ŷ ξ
t

)}
, t ≥ 0, ξ ∈ Cr,

where
Ŷ ξ
t (θ) := Y ξ

(
(t+ θ) ∧ tδ

)
, θ ∈ (−∞, 0].

Clearly, we have∥∥Ŷ ξ
t

∥∥
r
= e−rt sup

−∞<s≤t

(
ers|Y ξ(s ∧ tδ)|

)
≤ erδe−rt sup

−∞<s≤t

(
ers

∣∣Y ξ(s)
∣∣) = erδ

∥∥Y ξ
t

∥∥
r
.

So, (22), writing hξ
3(t) instead of hξ

1(t), remains true whenever the step size δ ∈ (0, 1)
is sufficiently small. Moreover, by virtue of (A1), (28) and Hölder’s inequality as
well as BDG’s inequality, it follows that

E
∥∥Y ξ

t − Ŷ ξ
t

∥∥p
r
= e−prtE

(
sup

−∞<s≤t

(
eprs

∣∣Y ξ(s)− Y ξ(s ∧ tδ)
∣∣p))

≤ E
(

sup
tδ<s≤t

(∣∣∣∣ ∫ s

tδ

b(Y ξ(0)(s))ds+ σ(W (s)−W (tδ))

∣∣∣∣p))
≤ cδp/2, p ≥ 2.

Afterwards, carrying out a similar argument to derive Theorem 2.1, we obtain the
desired assertion (42).

Remark 3.4. To the best of our knowledge, Theorem 3.3 is the first result upon
the weak convergence for path-dependent SDEs with infinite memory and irreg-
ular drifts. For path-dependent SDEs with finite memory, Theorems 2.1 and 3.1
show that the weak convergence order can be achieved for any δ ∈ (0, 1). However,
concerning path-dependent SDEs with infinite memory, the weak convergence rate
can only be available whenever the step size δ ∈ (0, 1) is sufficiently small. This
illustrates one of the essential features between SDEs with finite memory and SDEs
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infinite memory. Moreover, Theorem 3.3 further shows the superiority of the trun-
cated EM scheme (37) with contrast to the EM scheme established by interpolations
at discrete-time points.

4. Weak convergence: Degenerate case. In the previous sections, we inves-
tigated the weak convergence of EM schemes and its variants for non-degenerate
path-dependent SDEs with Hölder continuous drifts. In this section, we are still
interested in the same topic, but concerned with a class of degenerate SDEs on
R2d := Rd × Rd{

dX(t) = {X(t) + Y (t)}dt
dY (t) = {b(X(t), Y (t)) + Z(Xt, Yt)}dt+ σdW (t), t ≥ 0

(43)

with the initial datum (X0, Y0) = (ξ, η) ∈ C 2, where b : R2d → Rd, Z : C 2 → Rd,
σ ∈ Md

non, and (W (t))t≥0 is a d-dimensional Brownian motion on the probability
space (Ω,F , (Ft)t≥0,P). (43) is the so-called stochastic Hamiltonian system which
has been investigated considerably in [19, 29, 35, 37, 39], to name a few.

Throughout this section, we assume that:

(H1) b is Lipschitz continuous, that is, there exists a constant K1 > 0 such that

|b(x1, y1)− b(x2, y2)| ≤ K1(|x1 − y1|+ |y1 − y2|), (x1, y1), (x2, y2) ∈ R2d (44)

and there exist constants α, β, λ, C > 0 and γ ∈ (−αβ, αβ) such that

⟨αx+ γy, x+ y⟩+ ⟨βy + γx, b(x, y)⟩ ≤ C − λ(|x|2 + |y|2), (x, y) ∈ R2d. (45)

(H2) Z is Hölder continuous, i.e., there exist constants α ∈ (0, 1] and K2 > 0 such
that

|Z(ξ1, η1)− Z(ξ2, η2)| ≤ K2

(
∥ξ1 − ξ2∥α∞ + ∥η1 − η2∥α∞

)
, (ξ1, η1), (ξ2, η2) ∈ C 2.

By carrying out a similar argument to derive Lemma 2.3 and taking advantage
of Lemma 4.3 below, (43) has a unique weak solution under (H1) and (H2). Under
(44), the following reference SDE{

dU(t) = {U(t) + V (t)}dt
dV (t) = b (U(t), V (t))dt+ σdW (t), t ≥ 0

(46)

with the initial data (U(0), V (0)) = (u, v) ∈ R2d is well-posed. To emphasize the
initial value (u, v) ∈ R2d, we shall write (Uu,v(t), V u,v(t)) instead of (U(t), V (t)).
Analogous to (4), we can respectively extend U(t) and V (t) in the following ways:

Uξ,η(t) = ξ(t)1[−τ,0)(t) + Uξ(0),η(0)(t)1[0,∞)(t), t ∈ [−τ,∞), (ξ, η) ∈ C 2

and

V ξ,η(t) = η(t)1[−τ,0)(t) + V ξ(0),η(0)(t)1[0,∞)(t), t ∈ [−τ,∞), (ξ, η) ∈ C 2.

Let Uξ,η
t and V ξ,η

t be the segment process associated with Uξ,η(t) and V ξ,η(t),
respectively. Next, the truncated EM scheme corresponding to (43) is given by{

dX(δ)(t) =
{
X(δ)(t) + Y (δ)(t)

}
dt

dY (δ)(t) =
{
b
(
X(δ)(tδ), Y

(δ)(tδ)
)
+ Z

(
X̂

(δ)
t , Ŷ

(δ)
t

)}
dt+ σdW (t)

with the initial value (X(δ)(θ), Y (δ)(θ)) = (X(θ), Y (θ)) = (ξ(θ), η(θ)) ∈ R2d,
θ ∈ [−τ, 0], where

X̂
(δ)
t (θ) := X(δ)

(
(t+ θ) ∧ tδ

)
and Ŷ

(δ)
t (θ) := Y (δ)

(
(t+ θ) ∧ tδ

)
, θ ∈ [−τ, 0].
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Observe that

dX(δ)(t) =
{
X(δ)(t) + Y (δ)(0) + b

(
X(δ)(0), Y (δ)(0)

)
t+ Λ(t) + σW (t)

}
dt, t ∈ [0, δ]

where, for any θ ∈ [−τ, 0],

Λ(t) :=

∫ t

0

Z
(
X̃(δ)

s , Ỹ (δ)
s

)
ds with X̃(δ)

s (θ) := X
(
(s+θ)∧0

)
, Ỹ (δ)

s (θ) := Y
(
(s+θ)∧0

)
.

Thus, (X(δ)(t))t∈[0,δ] can be obtained explicitly via the variation-of-constants for-

mula. Inductively, X(δ)(t) enjoys an explicit formula.
In the following, for α, β, γ such that we have (45), consider the following Lya-

punov function:

W(x, y) :=
α

2
|x|2 + β

2
|y|2 + γ⟨x, y⟩, x, y ∈ Rd.

For γ ∈ (−αβ, αβ), it is easy to see that

κ2(|x|2 + |y|2) ≤ W(x, y) ≤ κ1(|x|2 + |y|2), x, y ∈ Rd, (47)

in which κ1 := (1 + α)(1 + β)/2 and

κ2 :=
1

2

{(
α− 1

2
(α/|γ|+ |γ|/β)

)
∧
(
β − 2|γ|

α/|γ|+ |γ|/β

)}
. (48)

The main result in this section is presented as follows.

Theorem 4.1. Assume (H1) and (H2) hold. Then, for any T > 0 such that

2κ3 ∥σ∥2op∥σ−1∥2op
{
(4K2

1 +K2
2 )1{α=1} + 2K2

11{α∈(0,1)}
}
T 2 < κ2 e

λκ2T−1

there exists C4,T > 0 (dependent on 9f9∞) such that∣∣Ef(X(t), Y (t))−Ef
(
X(δ)(t), Y (δ)(t)

)∣∣ ≤ C4,T δ
α/2, f ∈ Bb(R2d), t ∈ [0, T ]. (49)

Remark 4.2. The dissipative condition (45) is imposed to guarantee that the
time horizon T > 0 in Theorem 4.1 is large in certain situations. Nevertheless,
in case of λ < 0, (49) remains true, but for a small time horizon. Moreover, we
can also investigate the weak convergence of the EM scheme via interpolation for
(43), but with an additional assumption put on the initial value. Also, we point
out that whenever the numerical scheme of the second component is established by
interpolation, the algorithm for the first component is much more explicit compared
to the truncated EM scheme.

The proof of Theorem 4.1 is based on several lemmas below. The following lemma
shows exponential integrability of the segment process.

Lemma 4.3. Assume (H1) and (H2) hold. Then, for any T > 0,

E exp

(
λ

∫ T

0

(∥∥Uξ,η
t

∥∥2
∞ +

∥∥V ξ,η
t

∥∥2
∞

)
dt

)
< ∞, λ <

κ2 e
λκ2T−1

κ3 ∥σ∥2opT 2
(50)

where κ3 := γ2 ∨ β2.

Proof. For notation simplicity, in what follows we write U(t) and V (t) in lieu of
Uξ,η(t) and V ξ,η(t), respectively. By a close inspection of the proof for Lemma 2.4,
to verify (50) it is sufficient to show that, for any ε > 0 and γ > −λκ2+κ3 ∥σ∥2op ε,

E
(

sup
0≤t≤T

eε κ2 e−γ T (|U(t)|2+|V (t)|2)
)

< ∞, (51)
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where κ2 was given in (48) and κ3 := γ2 ∨β2. By Itô’s formula, it follows from (45)
and (47) that

d
(
e−γtW(U(t), V (t))

)
= e−γt

{
− γW(U(t), V (t)) +

〈
αU(t) + γV (t), U(t) + V (t)

〉
+
〈
γU(t) + βV (t), b(U(t), V (t))

〉
+ (C + ∥σ∥2HS/2)

}
dt

+ e−γt
〈
σ∗(γU(t) + βV (t)),dW (t)

〉
≤ e−γt

{
− (γ + λκ2)W(U(t), V (t)) + (C + ∥σ∥2HS/2)

}
dt

+ e−γt
〈
σ∗(γU(t) + βV (t)),dW (t)

〉
.

This implies via Itô’s formula that

deεe
−γtW(U(t),V (t))

≤ −ε
(
γ + λκ2 − κ3∥σ∥2opε

)
e−γteεe

−γtW(U(t),V (t))W(U(t), V (t))dt

+ εe−γteεe
−γtW(U(t),V (t))

〈
σ∗(γU(t) + βV (t)),dW (t)

〉
,

+ cεeεe
−γtW(U(t),V (t))dt, ε > 0

(52)

for some constant c > 0. For any γ > −λκ2 + κ3∥σ∥2opε, Gronwall’s inequality, in
addition to (47), yields that

Eeε e
−γtW (U(t),V (t)) ≤ e

c ε
γ eεκ1(|ξ(0)|2+|η(0)|2), (53)

which, together with (52), further leads to

ε
(
γ + λκ2 − κ3∥σ∥2opε

) ∫ t

0

e−γsEeε e
−γsW(U(s),V (s))W(U(s), V (s))ds

≤
(
1 +

cε

γ
e

c ε
γ

)
eεκ1(|ξ(0)|2+|η(0)|2).

(54)

Subsequently, by means of BDG’s inequality, we derive from (47) and (54) that

E
(

sup
0≤s≤t

∫ s

0

e−γueε e
−γuW(U(u),V (u))⟨σ∗(γU(u) + βV (u)),dW (u)⟩

)
≤ 4

√
2E

(∫ t

0

e−2γse2ε e
−γsW(U(s),V (s))|σ∗(γU(s) + βV (s))|2ds

)1/2

≤ 1

2
E
(

sup
0≤s≤t

eε e
−γtW(U(t),V (t))

)
+ c

∫ t

0

e−γsEeεe
−γsW(U(s),V (s))W(U(s), V (s))ds

≤ 1

2
E
(

sup
0≤s≤t

eε e
−γtW(U(t),V (t))

)
+ c (1 + ecεt)eεκ1(|ξ(0)|2+|η(0)|2).

(55)

With (52)-(55) in hand, we arrive at

E
(

sup
0≤t≤T

eεe
−γ TW(U(t),V (t))

)
< ∞.

This, combined with (47), yields (51).

For notation brevity, we set

hξ,η(t) := σ−1
{
b
(
Uξ,η(t), V ξ,η(t)

)
− b

(
Uξ,η(tδ), V

ξ,η(tδ)
)
− Z

(
Ûξ,η
t , V̂ ξ,η

t

)}
.
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Lemma 4.4. Assume (H1) and (H2). Then,

Eeλ
∫ T
0

|σ−1Z(Uξ,η
t ,V ξ,η

t )|2dt < ∞ (56)

for any λ, T > 0, such that

λ <
κ2 e

λκ2T−1

2κ3∥σ∥2op∥σ−1∥2op{K2
21{α=1} + 01{α∈(0,1)}}T 2

Furthermore,

Eeλ
∫ T
0

|hξ,η(t)|2dt < ∞, λ <
κ2 e

λκ2T−1

4κ3∥σ∥2op∥σ−1∥2op(4K2
1 +K2

2 )T
2

(57)

for any λ, T > 0, such that

λ <
κ2 e

λκ2T−1

4κ3∥σ∥2op∥σ−1∥2op{(4K2
1 +K2

2 )1{α=1} + 2K2
11{α∈(0,1)}}T 2

.

Proof. From (A2), it holds that there exists some constant cε > 0 such that, for
any ε > 0,∣∣σ−1Z

(
Uξ,η
t , V ξ,η

t

)∣∣2 ≤ cε+
{
2K2

2∥σ−1∥2op(1 + ε)1{α=1} + ε1{α∈(0,1)}
}

×
(
∥Uξ,η

t ∥2∞ + ∥V ξ,η
t ∥2∞

)
.

(58)

Thus, (56) follows from (58) and Lemma 4.3.

Next, with the aid of (44), and (H2) and due to the facts that ∥Ûξ,η
t ∥∞ ≤

∥Uξ,η
t ∥∞ and ∥V̂ ξ,η

t ∥∞ ≤ ∥V ξ,η
t ∥∞, it follows that∣∣hξ,η(t)

∣∣2 ≤ cε + 4
∥∥σ−1

∥∥2
op

(
4K2

1 +K2
2 (1 + ε)

)(∥∥Uξ,η
t

∥∥2
∞ +

∥∥V ξ,η
t

∥∥2
∞

)
(59)

for some cε > 0 and

νε := 4
∥∥σ−1

∥∥2
HS

{(
4K2

1 +K2
2 (1 + ε)

)
1{α=1} + 2K2

11{α∈(0,1)}
}

Therefore, by virtue of (59) and Lemma 4.3, (57) holds true.

Now, we proceed to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. Under Assumption (H1), it is standard to show that

E
(

sup
−τ≤t≤T

(∣∣Uξ,η(t)
∣∣p + ∣∣V ξ,η(t)

∣∣p)) ≤ Cp,T

(
∥ξ∥p∞ + ∥η∥p∞

)
.

This, combined Hölder’s inequality with BDG’s inequality, leads to

sup
0≤t≤T

E
∥∥Uξ,η

t − Ûξ,η
t

∥∥p
∞ + E

∥∥V ξ,η
t − V̂ ξ,η

t

∥∥p
∞ ≤ cδpα/2. (60)

Thus, mimicking the argument of Theorem 2.1, we obtain the desired assertion from
(60) and Lemma 4.4.
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5. Weak convergence: Integrability conditions. In the previous sections, we
investigated the weak convergence of EM schemes for path-dependent SDEs, where
the irregular drifts are at most of linear growth. In this section, we still focus on
the topic of the weak convergence but for path-dependent SDEs under integrability
conditions, which might allow the irregular drifts to be non-globally Lipschitz.

We start with some additional notations. Denote by C2(Rd) the set of all con-
tinuously twice differentiable functions f : Rd → R and C∞

0 (Rd) the family of
arbitrarily often differentiable functions f : Rd → R with compact support. Let ∇
and ∇2 represent the gradient operator and the Hessian operator, respectively. Let
P(Rd) stand for the collection of all probability measures on Rd. For σ ∈ Md

non
and V ∈ C2(Rd) with e−V ∈ L1(dx) and µ0(dx) := CV e

−V (x)dx ∈ P(Rd), where
CV is the normalization, set Z0 : Rd → Rd by

Z0(x) := −(σσ∗)∇V (x), x ∈ Rd. (61)

Thus, by the integration by parts formula, the operator

L0f(x) :=
1

2
tr
(
(σσ∗)∇2f

)
(x) + ⟨Z0(x),∇f(x)⟩, x ∈ Rd, f ∈ C∞

0 (Rd)

is symmetric on L2(µ0), i.e., for any f, g ∈ C∞
0 (Rd),

E0(f, g) := ⟨f,L0g⟩L2(µ0) = ⟨g,L0f⟩L2(µ0) = −⟨σ∗∇f, σ∗∇g⟩L2(µ0).

Let H1,2
σ be the completion of C∞

0 (Rd) under the Sobolev norm

∥f∥H1,2
σ

:=
(
µ0(|f |2 + |σ∗f |2)

)1/2
.

Then, (E0, H
1,2
σ ) is a symmetric Dirichlet form on L2(µ0), and the associated Markov

process can be constructed as the solution to the reference SDE

dY (t) = Z0(Y (t))dt+ σdW (t), t > 0, Y (0) = x, (62)

where W (t) is a d-dimensional Brownian motion defined on the probability space
(Ω,F ,P) with the filtration (Ft)t≥0. Assume that

(C1) Z0 : Rd → Rd is Lipschitz continuous, i.e., there exists an L0 > 0 such that

|Z0(x)− Z0(y)| ≤ L0|x− y| x, y ∈ Rd,

and there exist constants C > 0 and β ∈ R such that

2⟨x, Z0(x)⟩ ≤ C + β|x|2, x ∈ Rd.

Under (C1), (62) has a unique solution (Y x(t))t≥0 with initial value Y x(0) = x.
Observe that µ0 is the invariant probability measure of the Markov semigroup
Ptf(x) := Ef(Y x(t)), f ∈ Bb(Rd).

In this section, we consider the following path-dependent SDE

dX(t) =

{
Z0(X(t)) +

∫ 0

−τ

Z(X(t+ θ))ρ(dθ)

}
dt+ σdW (t), t ≥ 0, X0 = ξ, (63)

where ρ(·) is a probability measure on [−τ, 0]. Under assumption (65) below, (63)
admits a unique weak solution by following exactly the argument of Lemma 2.3.
The EM scheme associated with (63) is given by

dX(δ)(t) =

{
Z0(X

(δ)(tδ)) +

∫ 0

−τ

Z
(
X̂

(δ)
t (θ)

)
ρ(dθ)

}
dt+ σdW (t) (64)
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with initial value X(δ)(θ) = X(θ) = ξ(θ), θ ∈ [−τ, 0], where

X̂
(δ)
t (θ) := X(δ)

(
(t+ θ) ∧ tδ

)
, θ ∈ [−τ, 0].

Analogously, we define

Ŷ ξ
t (θ) = Y ξ

(
(t+ θ) ∧ tδ

)
, θ ∈ [−τ, 0],

where Y ξ was extended as in (4). Moreover, we set

hξ
4(t) := σ−1

{
Z0(Y

ξ(t))− Z0(Y
ξ(tδ))−

∫ 0

−τ

Z
(
Ŷ ξ
t (θ)

)
ρ(dθ)

}
.

Our main result in this section is as follows, which reveals the weak convergence
order of the EM scheme for path-dependent SDEs under an integrability condition.

Theorem 5.1. Assume (C1) holds, and suppose further that there exists a constant
κ > 0 such that

µ0

(
eκ|Z(·)|2) < ∞ (65)

and that there exist constants m ≥ 1, α ∈ (0, 1], and C > 0 such that

|Z(x)− Z(y)| ≤ C
(
1 + |x|m + |y|m

)
|x− y|α x, y ∈ Rd. (66)

Then, there exists C5,T > 0 (dependent on 9f9∞) such that∣∣Ef(Xξ(t))− Ef
(
X(δ)(t)

)∣∣ ≤ C1,T δ
α, ξ ∈ C , f ∈ Bb(Rd), t ∈ [0, T ], (67)

where T > 0 satisfies

1 <
κ

2(2 ∨ d)∥σ−1∥2opT 2
∧ e−(1+βT )

32 ∥σ∥2op∥σ−1∥2opT 2
∧ κ

(1 ∨ d
2 )T

. (68)

Proof. From ξ ∈ C and (66), we infer from Lemma 5.3 below that (65) is available
so that

Ee(1+ε)
∫ T
0

|
∫ 0
−τ

Z(Y ξ(t+θ))ρ(dθ)|2dt + Ee(1+ε)
∫ T
0

|hξ
4(t)|

2dt < ∞ (69)

for some ε ∈ (0, 1) sufficiently small and T > 0 such that (68) is satisfied. Next,
exploiting Hölder’s inequality and taking advantage of (28), (39), and (66) enables
us to obtain that∫ 0

−τ

E
∣∣Z(Y ξ(t+ θ))− Z(Ŷ ξ

t (θ))
∣∣pρ(dθ)

≤
∫ 0

−τ

E
(

sup
tδ≤s≤t

∣∣Z(Y ξ(s))− Z(Y ξ(tδ))
∣∣p1{t+θ≥tδ}

)
ρ(dθ)

≤ cE
(

sup
tδ≤s≤t

(
1 +

∣∣Z(Y ξ(s))
∣∣pm +

∣∣Y ξ(tδ)
∣∣pm)∣∣Y ξ(s)− Y ξ(tδ)

∣∣pα)
≤ cδpα/2.

(70)

With (71) and (79) in hand, the proof of Theorem 5.1 can be done by following the
reasoning of Theorem 2.1.

Remark 5.2. The integrability condition (65) is explicit and verifiable since the
density of µ0 is given in advance. If µ0 is a Gaussian measure (e.g., V (x) = c |x|2
for some constant c > 0) and Z : Rd → Rd is Hölder continuous with the Hölder
exponent α ∈ (0, 1), then (65) holds definitely for any κ > 0. Moreover, the
linear growth of Z imposed in Lemma 2.4 is an essential ingredient, whereas the
integrability condition (65) might allow Z to be non-globally Lipschitz. Last but
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not least, Z might be singular at a certain setup, e.g., Z(x) = (log 1
|x|α )1{|x|≤1} +

x1{|x|>1}, x ∈ R, for some α ∈ (0, 1).

Via the dimension-free Harnack inequality (see e.g. [36]), we can establish the
following exponential integrability under an integrability condition, which is an
essential ingredient in analyzing weak convergence.

Lemma 5.3. Assume that (C1) and (65) hold. Then,

Eeλ
∫ T
0

|
∫ 0
−τ

Z(Y ξ(t+θ))ρ(dθ)|2dt < ∞ (71)

and
E eλ

∫ T
0

|hξ
4(t)|

2dt < ∞ (72)

whenever λ, T > 0 such that

λ <
κ

2(2 ∨ d)∥σ−1∥2opT 2
∧ e−(1+βT )

32 ∥σ∥2op∥σ−1∥2opL2
0T

2
.

Proof. By Hölder’s inequality and Jensen’s inequality, it follows that

Eeλ
∫ T
0

|
∫ 0
−τ

Z(Y ξ(t+θ))ρ(dθ)|2dt

≤ Eeλ
∫ T
0

∫ 0
−τ

|Z(Y ξ(t+θ))|2ρ(dθ)dt

≤ 1

T

∫ T

0

∫ 0

−τ

EeλT |Z(Y ξ(t+θ))|2ρ(dθ)dt

≤ 1

T

{∫ 0

−τ

eλT |Z(ξ(θ))|2dθ +

∫ T

0

EeλT |Z(Y ξ(0)(t))|2dt

}
.

(73)

If for any γ > 0 and p > (1 ∨ d/2) with pγ < κ there exists a continuous positive
function x 7→ Λp(x) such that

E eγ|Z(Xx(t))|2 ≤ Λp(x)
(
1− e−L0t

)−d/2p(
eκ|Z(·)|2)1/p, (74)

then (71) holds true due to the facts that 1− e−L0t ∼ L0t as t → 0 and∫ t

0

s−d/2pds < ∞ for p >
d

2
.

In what follows, it remains to verify that (74) holds. According to [36, Theorem
1.1], the following dimension-free Harnack inequality

(Ptf(x))
p ≤ Ptf

p(y) exp

(
pL0|x− y|2

2(p− 1)(1− e−L0t)

)
(75)

holds for any x, y ∈ Rd, f ∈ Bb(Rd), and p > 1. For any n, γ > 0, and p > (1∨d/2)
with pγ < κ, applying the Harnack inequality (75) to the function Rd ∋ x 7→
eγ|Z(x)|2 ∧ n ∈ Bb(Rd) yields that

exp

(
− pL0|x− y|2

2(p− 1)(1− e−L0t)

)(
E
(
eγ|Z(Y x(t))|2 ∧ n

))p

≤ E
(
epγ|Z(Y y(t))|2 ∧ np

)
.

Thereby, integrating w.r.t. µ0(dy) on both sides and taking the invariance of µ0

and (65) into consideration leads to

exp
(
− pL0

2(p− 1)

)∫
|x−y|2≤1−e−L0t

µ0(dy)
(
Eeγ|Z(Y x(t))|2 ∧ n

)p

≤
∫
Rd

E
(
epγ|Z(Y y(t))|2 ∧ np

)
µ0(dy)
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≤ µ0

(
epγ|Z(·)|2 ∧ np

)
≤ µ0

(
eκ|Z(·)|2) < ∞, x ∈ Rd, pγ < κ.

So, by the dominated convergence theorem, we arrive at(∫
|x−y|2≤1−e−L0t

µ0(dy)

)1/p

Eeγ|Z(Y x(t))|2

≤
(
µ0(e

κ|Z(·)|2)
)1/p

exp
( L0

2(p− 1)

)
.

(76)

Next, from µ0(dy) = CV e
−V (y)dy and Taylor’s expansion, we deduce that∫

|x−y|2≤1−e−L0t

µ0(dy) = CV

∫
|x−y|2≤1−e−L0t

e−V (y)dy

≥ CV e
−V (x)

∫
|z|2≤1−e−L0t

e−
∫ 1
0
|∇V (x+θz)|·|z|dθdz

≥ CV e
−V (x) inf

|y|≤1+|x|
e−|∇V |(y)

∫
|z|2≤1−e−L0t

e−|z|dz

≥ CV π
d/2

Γ(1 + d/2)
e−(1+V (x))

× inf
|y|≤1+|x|

e−|∇V |(y)(1− e−L0t
)d/2

,

(77)

where Γ(·) is the Gamma function. Whence, inserting (77) back into (76) gives
(74).

A direct calculation shows from (C1) and Hölder’s inequality that∣∣hξ
4(t)

∣∣2 ≤ 2
∥∥σ−1

∥∥2
HS

{
2L2

0

(∣∣Y ξ(t)
∣∣2 + ∣∣Y ξ(tδ)

∣∣2)+ ∫ 0

−τ

∣∣Z(Ŷ ξ
t (θ))

∣∣2ρ(dθ)}.
Thus, Hölder’s inequality implies that

Eeλ
∫ T
0

|hξ
4(t)|

2dt ≤
(
Ee16λL

2
0∥σ

−1∥2
HS

∫ T
0

∥Y ξ
t ∥2

∞dt
)1/2

×
(
Ee4λ∥σ

−1∥2
HS

∫ T
0

∫ 0
−τ

|Z(Ŷ ξ
t (θ))|2ρ(dθ)dt

)1/2

=:
√
I1(T )×

√
I2(T ).

On the one hand, in view of (11), it holds that

I1(T ) < ∞ if λ <
e−(1+βT )

32 ∥σ∥2op∥σ−1∥2opL2
0T

2
. (78)

On the other hand, Hölder’s inequality and Jensen’s inequality show that, for any
λ > 0,

Eeλ
∫ T
0

∫ 0
−τ

|Z(Ŷ ξ
t (θ))|2ρ(dθ)dt

≤ 1

T

∫ 0

−τ

∫ T

0

EeλT |Z(Ŷ ξ
t (θ))|2dtρ(dθ)

=
1

T

∫ 0

−τ

∫ T

0

E
{
eλT |Z(Y ξ(t+θ))|21{t+θ≤tδ} + eλT |Z(Y ξ(tδ))|21{t+θ>tδ}

}
dtρ(dθ)

≤ 1

T

{∫ 0

−τ

eλT |Z(ξ(θ))|2dθ
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+ eλT |Z(ξ(0))|2 +

∫ T

0

EeλT |Z(Y ξ(t))|2dt+

∫ T

δ

E eλT |Z(Y ξ(tδ))|2dt

}
so that, by virtue of (74),

I2(T ) < ∞ if λ <
κ

2(2 ∨ d)
∥∥σ−1

∥∥2
op
T 2

. (79)

Thus, (72) follows immediately from (78) and (79).
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