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Given an unstable SDE with regime-switching, we provide explicit conditions to 
stabilize this system in distribution. Since the instability of original system allows 
that the drift coefficient does not satisfy any dissipative condition, we hence 
essentially use the delay term to ensure the existence of invariant probability 
measure. This result remains meaningful even for stochastic processes without 
regime-switching. Two methods are used: the first method uses the Krylov
Bogoliubov theorem by viewing the segment process as a Markov process in the 
infinite dimension path space. The second method takes advantage of the special 
structure of the controlled system to construct a family of embedded finite dimension 
Markov processes.
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1. Introduction

Consider a Markovian regime-switching process

dX̃(t) = b(X̃(t),Λ(t))dt + σ(X̃(t),Λ(t))dW (t), (1.1)

where (Λ(t)) is a Markov chain on a countable state space S = {1, 2, . . . , N}, N ≤ ∞, (W (t)) is a d
dimension Wiener process, b : Rd × S → Rd, σ : Rd × S → Rd×d. If X̃(·) ≡ 0 is an equilibrium state of the 
original system (1.1), but it is not stable, one wants to add additional term to stabilize it. For the sake of 
saving cost and being more realistic, Mao [16] proposed to stabilize the previous system using a feedback 
control based on discrete time observations of (X̃(t)) as follows:

dX̃(t) =
(
b(X̃(t),Λ(t)) − u(X̃(δt),Λ(t))

)
dt + σ(X̃(t),Λ(t))dW (t), (1.2)

where δt = [t/δ]δ for some δ > 0 and [t/δ] denotes the integer part of t/δ.
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Inspired by this work, many researches have been devoted to this topic. For instance, [17,26] aimed to 
find a better lower bound of time duration δ between two consecutive observations; [12,23] and [20,22] used 
different methods to stabilize the unstable system based on both discrete time observations of (X̃(t)) and 
(Λ(t)); [11] designed a periodically intermittent controller based on discrete time observations of (X̃(t)); 
[13] and [6] designed a controller based on the response lags and discrete time observations of (X̃(t)) and 
(Λ(t)).

All the previously mentioned works focus on the stability of equilibrium state X(·) ≡ 0 in various 
senses including moments stability and almost sure stability. However, the stability of equilibrium state 
is sometimes too strong, so it is of meaning to investigate the solutions to be stable in distribution. The 
stability in distribution has been studied in many works (with some subtle differences). For instance, [3] for 
diffusion processes with degenerate diffusion coefficients; [27] for SDEs with Markovian regime-switching; 
[28] for delay-dependent SDEs with Markovian regime-switching. Our purpose of this work is to stabilize 
the unstable system (1.1) in distribution via feedback controls based on discrete time observations of (X̃(t))
and (Λ(t)).

A little precisely, we aim to design a controller based on the discrete time observations such that the 
obtained stochastic system

dX(t) =
(
b(X(t),Λ(t)) − u(X(δt),Λ(δt))

)
dt + σ(X(t),Λ(t))dW (t) (1.3)

admits a limit in distribution as t → ∞, where δt = [t/δ]δ. Since the controlled system (X(t),Λ(t)) in 
(1.3) becomes a path-dependent SDE, it is natural to investigate the existence of limit distribution for the 
segment process (Xt,Λt), where Xt ∈ C ([−δ, 0];Rd) is defined as Xt(s) = X((t + s) ∨ 0), −δ ≤ s ≤ 0, and 
Λt ∈ D([−δ, 0];S) defined as Λt(s) = Λ((t + s) ∨ 0) for s ∈ [−δ, 0].

SDE (1.3) is a kind of stochastic functional differential equation (SFDE). Many literatures have been 
devoted to investigating the stationary distributions of SFDEs, see, for instance, [1,5,7,9] and [2] for SFDEs 
with regime-switching. As shown in [5], a typically crucial condition to ensure the existence of invariant 
probability measure for the SFDE

dX(t) = f(Xt)dt + g(Xt)dW (t)

is in the form

〈f(φ), φ(0)〉 ≤ −c|φ(0)|p, φ ∈ C ([−δ, 0];Rd) (1.4)

for some p ∈ (0, 1], c > 0. Namely, the drift coefficient f acting on φ ∈ C ([−δ, 0];Rd) must be dissipative 
w.r.t. the current state φ(0).

To see the difficulty to stabilize SDE (1.3) in distribution, let us consider a simple example. The coefficient 
b can be extended as a function on C ([−δ, 0];Rd) by setting b(φ, i) = b(φ(0), i), φ ∈ C ([−δ, 0];Rd), i ∈ S. 
Since the original system is unstable, it is possible that b(x, i) is in the form

b(φ, i) = φ(0), φ ∈ C ([−δ, 0];Rd), i ∈ S, and hence 〈b(φ, i), φ(0)〉 = |φ(0)|2,

which obviously violates (1.4) and cannot satisfy any dissipative condition. Therefore, the main challenge to 
stabilize (1.3) lies in how to use the delay term u(φ(δt),Λ(δt)) to ensure the existence of invariant probability 
measure of (Xt,Λt) in the infinite dimensional space C ([−δ, 0];Rd) × D([−δ, 0];S).

We use two methods to realize the stabilization of (1.3) in distribution in this work. Our first method is 
based on the idea of [9] and [16]. We view (Xt,Λt) as a Markov process in the path space C ([−δ, 0];Rd) ×
D([−δ, 0];S), and notice that the difference E|X(t) − X(δt)|6 can be controlled by E|X(t)|6 when δ is 
small (see Lemma 2.3), which guarantees the existence of an invariant probability measure for (Xt,Λt)
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under appropriate explicit conditions (see Theorem 2.8). Moreover, in this case we actually show that the 
distribution of (Xt,Λt) converges weakly to its invariant probability measure in C ([−δ, 0];Rd)×D([−δ, 0];S).

Our second method takes advantage of the special structure of SFDE (1.3). To show the idea, let us 
consider only a simple case here. Note that for r ∈ (0, δ), the process 

(
X(nδ + r), X(nδ),Λ(nδ)

)
n≥0 is a 

Markov process on R2d × S. This permits us to use the criterion on the existence of invariant probability 
measure for the finite dimension Markov process (cf. e.g. [14,15]). Then, via the Kolmogorov extension 
theorem, we obtain a probability measure μ on C ([−δ, 0];Rd) × D([−δ, 0];S) such that the distribution of 
(Xnδ,Λnδ) converges in finite dimension projection to μ as n → ∞. The convergence in finite dimension 
projection is weaker than the weak convergence in C ([−δ, 0];Rd)×D([−δ, 0];S). But, the conditions on the 
term u(x, i) are also much weaker than those imposed in the first method. See Theorem 3.3 and Remark 3.5
below.

This work is organized as follows. In Section 2, we investigate the existence and uniqueness of invariant 
probability measure for SDE (1.3) in the infinite dimensional path space C ([−δ, 0];Rd) × D([−δ, 0];S). 
In Section 3, we first verify the structure of embedded Markov processes of SDE (1.3). Then, using the 
criterion on the existence of finite dimensional Markov processes, we obtain the existence of a unique 
invariant probability measure for each embedded Markov process. At last, we obtain the desired probability 
measure on C ([−δ, 0];Rd)×D([−δ, 0];S) by virtue of the Kolmogorov extension theorem, which is the limit 
distribution of (Xnδ,Λnδ) as n → ∞ in the sense of convergence in finite dimension projection.

2. An approach in an infinite dimensional path space

In this section we shall view (Xt,Λt) as a Markov process in the path space, and use the Krylov-Bogoliubov 
theorem to show the existence of the invariant probability measure. Then, by showing the t0-regularity of 
the corresponding semigroup, the uniqueness of the invariant probability measure is also shown.

Denote C ([−δ, 0];Rd) the continuous path space from [−δ, 0] to Rd, endowed with the uniform norm 
‖φ‖ = sups∈[−δ,0] |φ(s)|. Define D([−δ, 0];S) the collection of right continuous functions from [−δ, 0] to S
with left limits, endowed with Skorokhod’s topology (cf. [4]). In this work Lξ denotes the distribution of 
random variable ξ. ‖ν1−ν2‖var := 2 supA∈B(E) |ν1(A)−ν2(A)| denotes the total variation distance between 
two probability measures ν1 and ν2 on a measurable space (E,B(E)).

Define the segment process (Xt,Λt) on C ([−δ, 0];Rd)×D([−δ, 0];S) for the solution (X(t),Λ(t)) to SDE 
(1.3) by

Xt(s) = X((t + s) ∨ 0), Λt(s) = Λ((t + s) ∨ 0), s ∈ [−δ, 0], t ≥ 0.

We collect the conditions on the coefficients used in this work here.

(H1) There exist constants α, β ≥ 0 such that

max{|b(x, i)|2, ‖σ(x, i)‖2
HS} ≤ α|x|2 + β, x ∈ Rd, i ∈ S,

where ‖σ(x, i)‖2
HS := tr(σσ∗)(x, i) and σ∗(x, i) denotes the transpose of matrix σ(x, i).

(H2) There exist constants η, η̂, c0, c1,Ku ≥ 0 such that

|u(x, i) − u(y, i)| ≤ Ku|x− y|, |u(x, i)|2 ≤ c0 + c1|x|2,
η|x|2 ≤ 〈x, u(x, i)〉 ≤ η̂|x|2, x, y ∈ Rd, i ∈ S.

(H3) There is a constant K̃ such that

|b(x, i) − b(y, i)| + ‖σ(x, i) − σ(y, i)‖HS ≤ K̃|x− y|, x, y ∈ Rd, i ∈ S.
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(H4) There exists a constant c2 > 0 such that

ξ∗σ(x, i)σ∗(x, i)ξ ≥ c2|ξ|2, ∀ ξ ∈ Rd, x ∈ Rd, i ∈ S.

(H5) Q = (qij)i,j∈S is a conservative, irreducible transition rate matrix. Assume that M := sup{−qii; i ∈
S} < ∞ and there exist a function H : S → [1,∞), constants κ1, κ2 > 0 such that

lim 
j→∞

H(j) = ∞, QH(i) :=
∑
j∈S

qijH(j) ≤ −κ1H(i) + κ2, i ∈ S. (2.1)

The process (Λ(t)) is a continuous-time Markov chain with transition rate matrix (qij)i,j∈S . (Λ(t)) and 
(W (t)) are assumed to be mutually independent throughout this work. It is known that the drift condition 
(2.1) means that the process (Λ(t))t≥0 is exponentially ergodic, and there is a stationary distribution γ of 
(Λ(t)) on S such that

lim 
t→∞

‖P
(
Λ(t) ∈ · |Λ(0) = i

)
− γ‖var = 0, ∀ i ∈ S.

Remark 2.1. Under the conditions (H1)-(H3), SDE (1.3) admits a unique strong solution (cf. e.g. [20]). 
Condition (H4) is used to ensure the validation of ϕ-irreducibility of skeleton process of (X(t),Λ(t)) in 
order to apply the Lyapunov criterion studied in Meyn and Tweedie [15], which can be replaced by weaker 
conditions such as hypoelliptic condition. We refer to [24] for the study of strong Feller property of regime
switching processes under the hypoelliptic condition.

Definition 2.2. Let (X(t),Λ(t))t≥0 be the solution to (1.3).

(i) We say that (X(t),Λ(t))t≥0 is strongly stable in distribution if the distribution of (Xt,Λt) con
verges weakly to some probability measure μ on C ([−δ, 0];Rd) × D([−δ, 0];S) for every initial value 
(X(0),Λ(0)) = (x, i) ∈ Rd × S as t → ∞.

(ii) It is said (X(t),Λ(t))t≥0 is weakly stable in distribution if there is a probability measure μ
on C ([−δ, 0];Rd) × D([−δ, 0];S) such that for any finite dimension projection map πF × πΛ, 
L(X(n+1)δ,Λ(n+1)δ)◦(πF ×πΛ)−1 converges weakly to μ◦(πF ×πΛ)−1 for every initial value (X(0),Λ(0)) =
(x, i) ∈ Rd × S as n → ∞, where

πF : C ([−δ, 0];Rd) → R(k+1)d, φ �→
(
φ(−(δ − rk)), . . . , φ(−(δ − r1)), φ(−δ)

)
πΛ : D([−δ, 0];S) −→ S, ψ �→ ψ(−δ),

associated with F = {0 = r0 < r1 < . . . < rk < δ} for some k ∈ N.

In view of the fact that the Markov chain (Λ(t)) is assumed to be exponentially ergodic with stationary 
distribution γ, the limit of segment process LΛt

in D([−δ, 0];Rd) is clearly equal to γ[−δ,0], denoting the 
infinite product measure of (S, γ) with index set [−δ, 0]. Therefore, in the definition of weak stability in 
distribution, we only consider the projection πΛ to map ψ ∈ D([−δ, 0];S) to ψ(−δ) ∈ S, which is sufficient 
to guarantee the finite projection process (πF × πΛ)(X(n+1)δ,Λ(n+1)δ), n ≥ 0, to be a Markov process (see 
Lemma 3.1).

In practical applications, the stability of a given system is often checked or used on a sequence of discrete 
times τ, 2τ, . . . , nτ, . . . with a time step size τ > 0. This induces many works to study how to stabilize a 
system based on discrete time observations (cf. [12,13,16] and references therein). If a system is weak stable 
in distribution, then this system is stable enough with respect to the discrete observations times τ, 2τ, . . .
with suitable τ > 0.
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Lemma 2.3. Assume (H1), (H2) and (H5) hold. If δ > 0 is sufficiently small so that

K(δ) := 25(12α + c1)δe(6+60α+2c1+12β+2c0)δ < 1, (2.2)

then for any t > 0,

E|X(t) −X(δt)|6 ≤ K(δ) 
1 −K(δ)E|X(t)|6 + (6β + c0)δe(6+60α+2c1+12β+2c0)δ

1 −K(δ) . (2.3)

Proof. Note that for each t ∈ [nδ, (n + 1)δ) with n ∈ Z+, δt = nδ is a fixed point. Then, applying Itô’s 
formula and (H1), (H2), we obtain that

d|X(t) −X(δt)|6

= 3|X(t) −X(δt)|4
(
2〈X(t) −X(δt), b(X(t),Λ(t)) − u(X(δt),Λ(δt))〉

+ ‖σ(X(t),Λ(t))‖2
HS

)
dt + 6|X(t) −X(δt)|4〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉

+ 12|X(t) −X(δt)|2
[ d ∑
k=1

( d ∑
l=1 

σlk(X(t),Λ(t))(Xl(t) −Xl(δt))
)2]

dt

≤ 3|X(t) −X(δt)|4
{
2|X(t) −X(δt)|2 + |b(X(t),Λ(t))|2 + |u(X(δt),Λ(δt))|2

+ ‖σ(X(t),Λ(t))‖2
HS

}
dt + 12|X(t) −X(δt)|4‖σ(X(t),Λ(t))‖2

HSdt

+ 6|X(t) −X(δt)|4〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉
≤ 3|X(t) −X(δt)|4

{
2|X(t) −X(δt)|2 + 6α|X(t)|2 + 6β + c0 + c1|X(δt)|2

}
dt

+ 6|X(t) −X(δt)|4〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉.

By Young’s inequality, for any x, y ≥ 0, x4y2 ≤ 2
3x

6 + 1
3y

6. Hence,

d|X(t) −X(δt)|6

≤
{
(6 + 36α)|X(t) −X(δt)|6 + (36α + 3c1)|X(t) −X(δt)|4|X(δt)|2

+ 3(6β + c0)|X(t) −X(δt)|4
}
dt + 6|X(t) −X(δt)|4〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉

≤
{
(6 + 60α + 2c1 + 12β + 2c0)|X(t) −X(δt)|6 + (12α + c1)|X(δt)|6 + 6β + c0

}
dt

+ 6|X(t) −X(δt)|4〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉.

By taking expectation in both sides of the previous inequality, we get

E|X(t) −X(δt)|6 ≤
(
(12α + c1)E|X(δt)|6 + 6β + c0

)
δ

+
t ∫

δt

{
(6 + 60α + 2c1 + 12β + 2c0)E|X(s) −X(δs)|6

}
ds.

Gronwall’s inequality implies that

E|X(t) −X(δt)|6 ≤
(
(12α + c1)δE|X(δt)|6 + (6β + c0)δ

)
e(6+60α+2c1+12β+2c0)δ

≤
(
25(12α + c1)δ

(
E|X(t) −X(δt)|6 + E|X(t)|6

)
+ (6β + c0)δ

)
e(6+60α+2c1+12β+2c0)δ.

Therefore, if K(δ) < 1, this inequality deduces the estimate (2.3). �
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Theorem 2.4. Assume (H1), (H2) and (H5) hold. Suppose that η > α + 1 sufficiently large and δ > 0
sufficiently small such that K(δ) < 1,

θ(η, δ) := 72
√

2δe3(2η−2α−2)δκ(2η − 2α− 2)
(
α

3
2 + 1

2
)

+ 36δ3 K6
uK(δ) 

1 −K(δ) < 1, (2.4)

and

9e−6(η−α−1)δ

1 − θ(η, δ) < 1, (2.5)

where κ(2η − 2α− 2) = C33−
1
4 Γ

(
1
6

) 3
2 Γ

(
1
8

)2
(2η − 2α− 2)− 1

2 , Γ(·) denotes the Gamma function, and C3 is 
the universal constant in Burkholder-Davis-Gundy’s inequality. Then

sup
t≥0 

E
[
‖Xt‖6] < ∞,

where we put X(s) = X(0) for s ≤ 0.

Proof. Let Z(t) = |X(t)|2, then by (H1), (H2) and Itô’s formula,

dZ(t) ≤
(
Z(t) + |b(X(t),Λ(t))|2 + ‖σ(X(t),Λ(t))‖2

HS − 2〈X(t), u(X(δt),Λ(δt))〉
)
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉

≤
(
Z(t) + 2(αZ(t) + β) − 2〈X(t), u(X(t),Λ(δt))〉

+ 2〈X(t), u(X(t),Λ(δt)) − u(X(δt),Λ(δt))〉
)
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉

≤
(
2β + (2α + 1)Z(t) − 2ηZ(t) + Z(t) + K2

u|X(t) −X(δt)|2
)
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉

=
(
2β + (2α + 2 − 2η)Z(t) + K2

u|X(t) −X(δt)|2
)
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉.

For simplicity of notation, let

λ = 2η − 2α− 2,

which is positive by assumption. So,

d
(
eλtZ(t)

)
≤ eλt

(
2β + K2

u|X(t) −X(δt)|2
)
dt + 2eλt〈X(t), σ(X(t),Λ(t))dW (t)〉.

This implies that for 0 ≤ s < t,

eλtZ(t) ≤ eλsZ(s) +
t ∫

s 

eλr
(
2β + K2

u|X(r) −X(δr)|2
)
dr

+
t ∫

s 

2eλr〈X(r), σ(X(r),Λ(r))dW (r)〉.

(2.6)
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There is a 1-dimension Brownian motion (B(t))t≥0 w.r.t. the same filtration such that

〈X(s), σ(X(s),Λ(s))dW (s)〉 = χ(s, ω)dB(s), (2.7)

where

χ(s, ω) =
( d ∑

j=1 

( d ∑
i=1 

Xi(s)σij(X(s),Λ(s))
)2) 1

2
.

According to [9, Lemma 2.2],

E sup 
0≤t≤T

∣∣∣
t ∫

0 

e−λ(t−s)χ(s, ω)dB(s)
∣∣∣3 ≤ κ(λ)E

[ T∫
0 

|χ(s, ω)|3ds
]
, (2.8)

where

κ(λ) = C33−
1
4 Γ

(1
6

) 3
2 Γ

(1
8

)2
λ− 1

2 , (2.9)

and C3 is the universal constant in Burkholder-Davis-Gundy’s inequality, i.e. for a martingale (Mt)t≥0,

E
[
sup
s≤t 

|Ms|3
]
≤ C3E

[
〈M〉3/2t

]
.

Indeed, κ(λ) is derived from the argument of [9, Lemma 2.2] by taking there p = 3, α = 5 
12 , μ = λ.

Due to (H1),

χ(s, ω)2 ≤ |X(s)|2‖σ(X(s),Λ(s))‖2
HS ≤ |X(s)|2

(
α|X(s)|2 + β

)
. (2.10)

As (a + b + c)3 ≤ 9(a3 + b3 + c3) for a, b, c ≥ 0, (2.3), (2.6), (2.8) and (2.10) yield that for t �= kδ for some 
k ∈ Z+,

E
[

sup 
δt≤s≤t

(
eλsZ(s)

)3]

≤ 9e3λδtEZ(δt)3 + 9δ2
t ∫

δt

e3λrE
[(

2β + K2
u|X(r) −X(δt)|2

)3]dr

+ 72e3λ(δt+δ)κ(λ)E
[ t ∫
δt

|ϑ(r, ω)|3dr
]

≤ 9e3λδtEZ(δt)3 + 9δ2
t ∫

δt

e3λr
(
32β3 + 4K6

uE
[
|X(r) −X(δt)|6

])
dr

+ 72e3λ(δt+δ)κ(λ)
√

2
t ∫

δt

E
[
α

3
2 |X(r)|6 + 1

2β
3 + 1

2 |X(r)|6
]
dr

≤ 9e3λδtEZ(δt)3 + 96δ2β3 1 
λ

(
e3λt − e3λδt

)
+ 36

√
2e3λ(δt+δ)κ(λ)β3δ
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+ 36δ3 K6
uK(δ) 

1 −K(δ)E
[

sup 
δt≤s≤t

e3λsZ(s)3
]

+ 72δ3K6
uβ

1 −K(δ) 
e3λt − e3λδt

λ 
e(6+60α+η̂+12β)δ

+ 72
√

2δe3λδκ(λ)
(
α

3
2 + 1

2
)
E
[

sup 
δt≤s≤t

e3λsZ(s)3
]
.

Let

θ1(λ, δ) = 72
√

2δe3λδκ(λ)
(
α

3
2 + 1

2
)

+ 36δ3K6
u

K(δ) 
1 −K(δ) , (2.11)

θ2(λ, δ) = 96δ2β3 e3λδ − 1
λ 

+ 36
√

2e3λδκ(λ)β3δ (2.12)

+ 72δ3K6
uβ

1 −K(δ) 
e3λδ − 1

λ 
e(6+60α+η̂+12β)δ.

If θ1(λ, δ) < 1, then for k ≥ 0,

E
[

sup 
kδ≤s<(k+1)δ

e3λsZ(s)3
]
≤ 9 

1 − θ1(λ, δ)
E
[
e3λkδZ(kδ)3

]
+ θ2(λ, δ)e3λkδ

1 − θ1(λ, δ) 
. (2.13)

Define a function V : C ([−δ, 0];Rd) → R by

V (ζ) = sup 
−δ≤s≤0

e3λs|ζ(s)|6, ζ ∈ C ([−δ, 0];Rd).

It is easy to see

V (ζ) = e−3λδ sup 
0≤s≤δ

e3λs|ζ(s− δ)|6 ≥ |ζ(0)|6.

Applying (2.13) to k = 0, we obtain that

E
[
V (Xδ)

]
≤ 9e−3λδ

1 − θ1(λ, δ)
E
[
|X(0)|6

]
+ θ2(λ, δ)e−3λδ

1 − θ1(λ, δ) 
.

Applying (2.13) to k ≥ 1,

E
[
V (X(k+1)δ)

]
= e−3λ(k+1)δE

[
sup 

kδ≤s≤(k+1)δ
e3λs|X(s)|6

]

≤ 9e−3λδ

1 − θ1(λ, δ)
E
[
|X(kδ)|6

]
+ θ2(λ, δ)e−3λδ

1 − θ1(λ, δ) 

≤ 9e−3λδ

1 − θ1(λ, δ)
E
[
V (Xkδ)

]
+ θ2(λ, δ)e−3λδ

1 − θ1(λ, δ) 
.

Therefore, if

θ3(λ, δ) := 9e−3λδ

1 − θ1(λ, δ)
< 1, (2.14)

then iterating above estimate, we have

E
[
V (X(k+1)δ)

]
≤ θ3(λ, δ)E

[
|X(0)|6

]
+ 1 

1 − θ3(λ, δ)
· θ2(λ, δ)e−3λδ

1 − θ1(λ, δ) 
, ∀ k ≥ 1.
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Combining these estimates with the fact ‖Xt‖6 ≤ ‖Xkδ‖6 + ‖X(k+1)δ‖6 for t ∈ (kδ, (k + 1)δ), we finally get

sup
t≥0 

E
[
‖Xt‖6

]
≤ 2θ3(λ, δ)e3λδE

[
|X(0)|6

]
+ 2 

1 − θ3(λ, δ)
· θ2(λ, δ) 
1 − θ1(λ, δ)

< ∞,

and complete the proof. �
Remark 2.5. Note that

lim
δ↓0 

K(δ) = 0, lim
δ↓0 

lim 
η→∞

θ(η, δ) = 0,

then by choosing η, δ such that lim 
δ→0,η→∞

e−3ηδ = 0, the conditions in Theorem 2.4 could be verified for 
suitable δ and η.

Proposition 2.6. Under the conditions of Theorem 2.4, the class of distributions {L(Xt,Λt); t ≥ 0} is tight.

Proof. Let us first show that {LΛt
; t ≥ 0} is tight. According to Kurtz’s tightness criterion ([10, Theorem 

8.6, p. 137]), we only need to show there exists a sequence of nonnegative random variables γt(ε) such that 
limε→0 supt≥0 E[γt(ε)] = 0, and

E
[
1Λt(s+u) 	=Λt(s)

∣∣FΛt
s

]
≤ E

[
γt(ε)|FΛt

s

]
(2.15)

for 0 ≤ u ≤ ε, −δ ≤ s ≤ 0, where FΛt
s = σ{Λt(r);−δ ≤ r ≤ s}. Due to (H5),

P
(
Λt(s + r) = Λt(s),∀ r ∈ [0, u]

)
≥ E

[
exp

(
− supj∈S qju

)]
≥ exp(−Mu).

Then, we take γt(ε) = 1 − e−Mε to arrive at

E
[
1Λt(s+u) 	=Λt(s)

∣∣FΛt
s

]
≤ 1 − P

(
Λt(s + r) = Λt(s),∀ r ∈ [0, u]

)
≤ 1 − e−Mε = γt(ε), ∀ 0 ≤ u ≤ ε.

It is clear that (2.15) is verified, and we conclude that {LΛt
; t ≥ 0} is tight.

By Itô’s formula and (H1), (H2), for any 0 ≤ s1 < s2 ≤ δ,

E|Xt(−s1) −Xt(−s2)|4 = E|X((t− s1) ∨ 0) −X((t− s2) ∨ 0)|4

≤ E
[∣∣∣

(t−s1)∨0∫
(t−s2)∨0

b(X(s),Λ(s)) − u(X(δs),Λ(δs))ds +
(t−s1)∨0∫

(t−s2)∨0

σ(X(s),Λ(s))dW (s)
∣∣∣4]

≤ 8(s2 − s1)3E
[ (t−s1)∨0∫
(t−s2)∨0

(
2α|X(s)|2 + 2β + 2c0 + 2c1|X(δs)|2

)2ds]

+ 288(s2 − s1)E
[ (t−s1)∨0∫
(t−s2)∨0

(
α|X(s)|2 + β

)2ds].

Hence, according to Theorem 2.4, supt≥0 E|X(t)|6 < ∞, then

sup
t≥0 

E|Xt(−s1) −Xt(−s2)|4 ≤ C(s2 − s1)2
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for some constant C > 0. By virtue of [4, Theorem 12.3], {LXt
; t ≥ 0} is tight. In all, it is easy to see that 

{L(Xt,Λt); t ≥ 0} is tight. �
Next, we study the continuous dependence on initial values of (X(t),Λ(t)). As S is endowed with discrete 

topology, we only need to focus on the component (X(t)). Let (X(m)(t),Λ(t))t≥0 and (X(t),Λ(t))t≥0 be the 
solution to the following SDEs respectively

X(m)(t) = xm +
t ∫

0 

b(X(m)(s),Λ(s)) − u(X(m)(δs),Λ(δs))ds

+
t ∫

0 

σ(X(m)(s),Λ(s))dW (s),

(2.16)

X(t) = x0 +
t ∫

0 

b(X(s),Λ(s)) − u(X(δs),Λ(δs))ds

+
t ∫

0 

σ(X(s),Λ(s))dW (s),

(2.17)

where i ∈ S, xm, x0 ∈ Rd. Let X(m)(s) = xm, X(s) = x0 for s ≤ 0.

Lemma 2.7. Assume (H1)-(H3) hold. Then for any bounded continuous function F : C ([−δ, 0];Rd) → R it 
holds

lim 
m→∞

EF (X(m)
t ) = EF (Xt), t > 0,

if limm→∞ xm = x0.

Proof. We derive from Itô’s formula that

d|X(m)(t) −X(t)|2 =
{
2〈b(X(m)(t),Λ(t)) − b(X(t),Λ(t)), X(m)(t) −X(t)〉

+ 2〈u(X(δt),Λ(δt)) − u(X(m)(δt),Λ(δt)), X(m)(t) −X(t)〉
}
dt

+ ‖σ(X(m)(t),Λ(t)) − σ(X(t),Λ(t))‖2
HSdt + dMt,

where

Mt =
t ∫

0 

2〈X(m)(s) −X(s),
(
σ(X(m)(s),Λ(s)) − σ(X(s),Λ(s))

)
dW (s)〉.

Hence, by (H2) and (H3),

‖X(m)
t −Xt‖2 ≤ 2|xm − x0|2 +

t ∫
0 

(2K̃2 + K2
u + 2)‖X(m)

s −Xs‖2ds + sup 
0≤s≤t

Ms.

Furthermore,
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E‖X(m)
t −Xt‖4 ≤ 3

(
4|xm − x0|4 + (2K̃2 + K2

u + 2)2t
t ∫

0 

E
[
‖X(m)

s −Xs‖4]ds

+ 16K̃2
t ∫

0 

E
[
|X(m)(s) −X(s)|4

]
ds

)
.

It follows from Gronwall’s inequality that

E‖X(m)
t −Xt‖4 ≤ 12|xm − x0|4 exp

(
3(2K̃2 + K2

u + 2)2t + 48K̃2).
So, X(m)

t converges to Xt in probability as m → ∞, and the dominated convergence theorem yields that

lim 
m→∞

EF (X(m)
t ) = EF (Xt), t > 0,

which yields the Feller property of (Xt) in C ([−δ, 0];Rd). �
Theorem 2.8. Suppose the conditions of Theorem 2.4 hold. In addition, assume (H3) and (H4) hold. Then 
the process (Xt,Λt)t≥0 admits a unique invariant probability measure μ, and the distribution of (Xt,Λt) in 
C ([−δ, 0];Rd) × D([−δ, 0];S) converges weakly to μ. Hence, (X(t),Λ(t)) is strongly stable in distribution.

Proof. According to the Krylov-Bogoliubov Theorem (cf. [8, Section 3.1]), the existence of invariant prob
ability measure μ follows from Proposition 2.6 and Lemma 2.7.

To see the uniqueness of μ, we need to check the semigroup Pt corresponding to (Xt,Λt) is t0-regular 
for some t0 > 0. By definition (cf. [8, Section 4.1]), if all the transition probabilities Pt0((φ, i), ·), (φ, i) ∈
C ([−δ, 0];Rd)×S, are mutually equivalent, then Pt is t0-regular. For SDE (1.3), the initial value for (X(t))
satisfies that X0(s) ≡ X(0) = x for all s ∈ [−δ, 0]. So we can write Pt0((φ, i), ·) = Pt0((φ(0), i), ·). Since (qij)
is irreducible, the transition probability Pij(t) := P (Λ(t) = j|Λ(0) = i) of the Markov chain (Λ(t)) satisfies 
that Pij(t) > 0 for all i, j ∈ S and all t > 0. Therefore, the initial state i of (Λ(t)) has no impact on the 
equivalence of Pt0((φ(0), i), ·).

To emphasize the initial state of solution to SDE (1.3), we denote Xx,i(t) the solution to SDE (1.3)
with X(0) = x,Λ(0) = i. Due to (H1)-(H3), particularly the nondegenerate condition (H4), for all x ∈ Rd, 
i ∈ S, t > 0, the distributions of Xx,i(t) are all equivalent to the Lebesgue measure. Therefore, given 
any t0 > 0, for all x ∈ Rd, i ∈ S, the finite dimensional projection of the distributions of (Xx,i

t0 ,Λt0) on 
C ([−δ, 0];Rd)×D([−δ, 0];S) are all equivalent, which yields that Pt0((x, i), ·), (x, i) ∈ Rd×S, are mutually 
equivalent. Then, applying [8, Theorem 4.2.1], μ is the unique invariant probability measure of Pt((x, i), ·)
on C ([−δ, 0];Rd) × D([−δ, 0];S) and Pt((x, i), ·) converges weakly to μ. By Definition 2.2, (X(t),Λ(t)) is 
strongly stable in distribution. �
Remark 2.9. Theorem 2.4 cannot be proved by a direct application of [9, Theorem 3.2], since we cannot 
verify simultaneously the conditions (H0) and (H2) there for the SDE (1.3). The control of E|X(t)−X(δt)|6
via E|X(t)|6 plays essential role in our argument.

3. An approach via embedding Markov processes in finite dimensional spaces

In this section instead of viewing (X(t))t≥0 via the segment process (Xt)t≥0 in the path space 
C ([−δ, 0];Rd), we shall apply the special history dependent structure of the process (X(t))t≥0 to construct 
a family of finite dimensional embedded Markov process and to prove its existence of invariant probability 
measure. Then, via Kolmogorov’s extension theorem, we can find a probability measure μ on the path space 
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C ([−δ, 0];Rd) such that any finite dimensional projection of the distribution of the segment process Xt will 
converge to the corresponding finite dimensional projection of μ. Notice that this does not mean that the 
distribution of Xt in C ([−δ, 0];Rd) converges weakly to μ; see [4, Chapter 3] for more discussions. Compared 
with Theorem 2.4, in this situation the condition on the term u(x, i) will be weakened. Our approach in 
this section is based on the following observation:

• For each k ≥ 1 and any 0 < r1 < . . . < rk < δ, the process 
(
X(nδ+rk), . . . , X(nδ+r1), X(nδ),Λ(nδ)

)
n≥0

is a Markov process on Rkd × S.

In order to present a strict argument, we recall Skorokhod’s representation for continuous time Markov 
chains, which has been extensively studied in the study of regime-switching processes; see, e.g. [25,20] and 
the recent work [21] on its application to study the ergodicity of state-dependent regime-switching processes.

Precisely, define a sequence of intervals Δij on [0,∞) associated with the transition rate matrix (qij)i,j∈S
of (Λt)t≥0 in the following way:

Δ12 = [0, q12), Δ13 = [q12, q12 + q13), . . . ,Δ1N =
[ ∑

1<j<N

q1j , q1

)
,

Δ21 = [q1, q1 + q21), Δ23 = [q1 + q21, q1 + q21 + q23), . . . ,

and so on. For convenience of notation, put Δii = ∅. Then, introduce an auxiliary function ϑ : S×[0,∞) → R

defined by

ϑ(i, z) =
∑

j∈S,j 	=i

(j − i)1Δij
(z).

Let N (dt,dz) be a Poisson random measure with intensity dt × dz, which is independent of the Wiener 
process (W (t))t≥0. Consequently, (Λ(t))t≥0 can be expressed as a solution to the following SDE:

Λ(t) = Λ(0) +
t ∫

0 

∫
[0,∞)

ϑ(Λ(s), z)N (ds,dz). (3.1)

Lemma 3.1. Assume (H1)-(H3) and (H5) hold. Let (X(t),Λ(t)) be the solution to (1.3). Then

(i) (X(nδ),Λ(nδ))n≥0 is a discrete-time Markov process on Rd × S.
(ii) For each k ≥ 1 and any 0 < r1 < . . . < rk < δ, the process 

(
X(nδ + rk), . . . , X(nδ +

r1), X(nδ),Λ(nδ)
)
n≥0 is a Markov process on R(k+1)d × S.

Proof. (i) Based on Skorokhod’s representation (3.1) for (Λ(t))t≥0, we can rewrite (X(t),Λ(t))t≥0 as a 
solution to the SDE below:

d
(
X(t)
Λ(t)

)
=

(
b(X(t),Λ(t)) − u(X(δt),Λ(δt))

0

)
dt +

(
σ(X(t),Λ(t))

0

)
dW (t)

+
∫

[0,∞)

(
0

ϑ(Λ(s), z)

)
N (ds,dz).

(3.2)

Under conditions (H1)-(H3), SDE (3.2) admits a unique strong solution (cf. [20, Theorem 2.4]). This means
(
X((n + 1)δ),Λ((n + 1)δ)

)
= F

(
X(nδ),Λ(nδ), (W (t),N (t))t∈[nδ,(n+1)δ)

)
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for some measurable functional F . Refer to the argument of [19, Theorem 7.1.2] on the Markov prop
erty of solution to SDE for more details. So, 

(
X((n + 1)δ),Λ((n + 1)δ)

)
is independent of its history 

(X(s),Λ(s))s∈[0,nδ). Consequently, (X(nδ),Λ(nδ))n≥0 becomes a Markov process.
We proceed to give out the transition probability measure of the process (X(nδ),Λ(nδ))n≥0. For x ∈ Rd, 

i ∈ S, consider the SDE

X̃(t) = x− u(x, i)t +
t ∫

0 

b(X̃(s), Λ̃(s))ds +
t ∫

0 

σ(X̃(s), Λ̃(s))dW (s),

where (Λ̃(t)) is a Markov chain on S with transition rate matrix (qij) and being independent of the Wiener 
process (W (t)). Under conditions (H1)-(H3), the previous SDE admits a unique strong solution, and define

Pt((x, i);A× {j}) = P
(
X̃(t) ∈ A, Λ̃(t) = j

∣∣X̃(0) = x, Λ̃(0) = i
)

for A ∈ B(Rd), j ∈ S, t > 0. Then the transition probability measure of the Markov process 
(X(nδ),Λ(nδ))n≥0 is given by

P (X((n + 1)δ) ∈ A,Λ((n + 1)δ) = j|X(nδ) = x,Λ(nδ) = i) = Pδ((x, i);A× {j}). (3.3)

Moreover, under the uniform ellipticity condition (H4), the density of Pt((x, i), · × {j}) w.r.t. the Lebesgue 
measure exists, denoted by pt

(
(x, i); (z, j)

)
, and so

Pt((x, i);A× {j}) =
∫
A 

pt
(
(x, i); (z, j)

)
dz. (3.4)

Combining (H4) with the irreducibility of (qij), it also holds

pt((x, i); (z, j)) > 0, x, z ∈ Rd, i, j ∈ S.

(ii) For simplicity of notation, we only consider the case k = 1 with r1 = r ∈ (0, δ). Combining (3.2) with 
the following observation

X((n + 1)δ + r) −X((n + 1)δ)

=
(n+1)δ+r∫
(n+1)δ 

(
b(X(s),Λ(s)) − u(X((n + 1)δ),Λ((n + 1)δ))

)
ds

+
(n+1)δ+r∫
(n+1)δ 

σ(X(s),Λ(s))dW (s),

we obtain that (X((n + 1)δ + r,X((n + 1)δ),Λ((n + 1)δ) depends only on (X(nδ + r), X(nδ),Λ(nδ)) and 
(W (t))t∈[nδ,(n+1)δ+r), (N (t))t∈[nδ,(n+1)δ+r). Hence, (X(nδ+r), X(nδ),Λ(nδ))n≥0 becomes a Markov process.

To characterize the transition probability of (X(nδ+r), X(nδ),Λ(nδ))n≥0, we introduce another auxiliary 
SDE: for given y ∈ Rd, i ∈ S,

X̄(t) = x− u(y, i)(t− r) +
t ∫

r

b(X̄(s), Λ̄(s))ds +
t ∫

r

σ(X̄(s), Λ̄(s))dW (s), t ≥ r,
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where (Λ̄(t))t≥0 satisfying Λ̄(r) = k ∈ S is a Markov chain with transition rate matrix (qij) and independent 
of (W (t)). Also, the previous SDE admits a unique strong solution under conditions (H1)-(H3). Define

P̄
(y,i)
t−r ((x, k);A× {j}) = P

(
X̄(t) ∈ A, Λ̄(t) = j

∣∣X̄(r) = x, Λ̄(r) = k
)

(3.5)

for A ∈ B(Rd), j ∈ S, t > r. After these preparations the transition probability of (X(nδ +
r), X(nδ),Λ(nδ))n≥0 is given by

P
(
X((n + 1)δ + r) ∈ A1, X((n + 1)δ) ∈ A2,Λ((n + 1)δ) = j

∣∣X(nδ + r) = x,X(nδ) = y,Λ(nδ) = i
)

= P
(
X((n + 1)δ + r) ∈ A1

∣∣X((n + 1)δ) ∈ A2,Λ((n + 1)δ) = j
)

·
∑
k∈S

P
(
X((n + 1)δ) ∈ A2,Λ((n + 1)δ) = j

∣∣X(nδ + r) = x,Λ(nδ + r) = k,X(nδ) = y,Λ(nδ) = i
)

· P (X(nδ + r) ∈ dx,Λ(nδ + r) = k
∣∣X(nδ) = y,Λ(nδ) = i)

· 1 
P
(
X(nδ + r) ∈ dx

∣∣X(nδ) = y,Λ(nδ) = i
) (3.6)

= 1 ∑
k∈S

pr
(
(y, i); (x, k)

) ∑
k∈S

∫
A2

Pr((z, j);A1 × S)P̄ (y,i)
δ−r

(
(x, k); dz × {j}

)
pr
(
(y, i); (x, k)

)

for A1, A2 ∈ B(Rd), i, j ∈ S. �
Notice that the previous observations (i) and (ii) on the Markov property of embedded processes of 

(X(t),Λ(t))t≥0 do not hold in general for other type of stochastic functional differential equations. For 
instance, it does not hold for the following stochastic delay differential equation:

dY (t) = b(Y (t), Y (t− 1))dt + dW (t).

To this equation, one can only view the segment process {Yt; t ≥ 0}, defined by Yt(u) = Y (t + u) for 
u ∈ [−1, 0], as a Markov process in the infinite dimensional space C ([−1, 0];Rd) (cf. [18, Theorem 1.1 of 
Chapter III]).

Lemma 3.2. Under the conditions (H1)-(H3) and (H5), if

K̃(δ) := 2(4α + c1)δe(2+4α)δ < 1, (3.7)

then

E
[
|X(t) −X(δt)|2

]
≤ K̃(δ) 

1 − K̃(δ)
E|X(t)|2 + (2β + c0)δe(2+4α)δ

1 − K̃(δ) 
, t ≥ 0. (3.8)

Proof. By Itô’s formula, due to (H1), (H2),

d|X(t) −X(δt)|2

=
[
2〈X(t) −X(δt), b(X(t),Λ(t)) − u(X(δt),Λ(δt))〉 + ‖σ(X(t),Λ(t))‖2

HS
]
dt

+ 2〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉
≤

[
2|X(t) −X(δt)|2 + |b(X(t),Λ(t))|2 + |u(X(δt),Λ(δt))|2 + ‖σ(X(t),Λ(t))‖2

HS
]
dt

+ 2〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉
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≤
[
(2 + 4α)|X(t) −X(δt)|2 + (4α + c1)|X(δt)|2 + 2β + c0

]
dt

+ 2〈X(t) −X(δt), σ(X(t),Λ(t))dW (t)〉.

Then we obtain from Gronwall’s inequality that

E
[
|X(t) −X(δt)|2

]
≤ (4α + c1)δe(2+4α)δE

[
|X(δt)|2

]
+ (2β + c0)δe(2+4α)δ

≤ 2(4α + c1)δe(2+4α)δE
[
|X(t) −X(δt)|2

]
+ 2(4α + c1)δe(2+4α)δE

[
|X(t)|2

]
+ (2β + c0)δe(2+4α)δ,

which yields the estimate (3.8) immediately if K̃(δ) < 1. �
After these preparations, we shall apply the Lyapunov criterion on geometric ergodicity of discrete time 

Markov processes to study the long time behavior of the process (X(t)). Such kind of criterion was extensively 
studied in Meyn and Tweedie [15]. In addition, Mattingly et al. [14] provided a self-contained proof in terms 
of reachability structure which arises in many applications to SDEs.

Theorem 3.3. Assume that (H1)-(H4) and (H5) hold. If K̃(δ) < 1 and

2η − 2 − 2α− K2
uK̃(δ) 

1 − K̃(δ)
> 0,

then (X(t),Λ(t)) is weakly stable in distribution. Precisely, there is a probability measure μ on C ([−δ,0];Rd)×
D([−δ, 0];S) such that for every finite set F = {0 = r0 < r1 < . . . < rm < δ} L(X(n+1)δ,Λ(n+1)δ)◦(πF ×πΛ)−1

will converge weakly to μ ◦ (πF × πΛ)−1 as n → ∞.

Proof. Based on the observations in Lemma 3.1, we shall apply the Foster-Lyapunov drift condition and 
Kolmogorov extension theorem to prove this theorem. See Meyn and Tweedie [15, Theorem 15.0.1] or 
Mattingly et al. [14, Theorem 2.5] for the Foster-Lyapunov drift condition in the study of ergodicity of 
Markov processes.

Step 1. We shall prove the exponential ergodicity of any finite dimensional embedded Markov processes 
associated with (X(t),Λ(t))t≥0 based on Lemma 3.1. For each finite set F = {0 = r0 < r1 < . . . < rk < δ}
for some k ∈ N, let

Yn = (X(nδ + rk), . . . , X(nδ + r1), X(nδ)), Zn = (Yn,Λ(nδ)), n ≥ 0.

Then (Zn)n≥0 is a Markov process on the state space R(k+1)d×S due to Lemma 3.1. Put FZ
n = σ

{
Zm; 0 ≤

m ≤ n
}

and Ft = σ{(W (s),Λ(s)); 0 ≤ s ≤ t}. By virtue of non-degenerate condition (H4) and irreducibility 
of (qij), in view of the transition probability measure of (Zn) given in (3.6) for the case k = 1, it holds that 
(Zn)n≥0 is ϕ-irreducible with the choice that

ϕ(dx,di) = Leb(dx) × δS ,

where Leb(dx) denotes the Lebesgue measure on Rkd and δS the Dirac measure over S. The aperiodicity 
of (Zn) is immediate from the positivity of the transition probability due to (3.6). What we need to do 
is to construct the desired Lyapunov function satisfying the drift condition. Namely, construct a function 
V : R(k+1)d × S → [1,∞) such that
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E
[
V (Zn+1)|FZ

n

]
≤ θV (Zn) + C̃ (3.9)

for some constants θ ∈ (0, 1), C̃ < ∞.
We shall construct the desired Lyapunov function based on the following estimation. Due to (H1) and 

(H2),

d|X(t)|2 =
(
2〈X(t), b(X(t),Λ(t)) − u(X(δt),Λ(δt))〉 + ‖σ(X(t),Λ(t))‖2

HS
)
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉

≤
[
|X(t)|2 + |b(X(t),Λ(t))|2 + ‖σ(X(t),Λ(t))‖2

HS − 2〈X(t), u(X(δt),Λ(δt))〉

+ 2〈X(t), u(X(t),Λ(δt)) − u(X(δt),Λ(δt))〉
]
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉

≤
[
(2 + 2α− 2η)|X(t)|2 + 2β + K2

u|X(t) −X(δt)|2
]
dt

+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉.

According to Lemma 3.2,

d 
dtE

[
|X(t)|2

∣∣Fs

]
≤

(
2 + 2α− 2η + K2

uK̃(δ) 
1 − K̃(δ)

)
E
[
|X(t)|2

∣∣Fs

]

+ K2
u(2β + c0)δ
1 − K̃(δ) 

e(2+4α)δ + 2β.

Setting

θ4(η, δ) = 2η − 2 − 2α− K2
uK̃(δ) 

1 − K̃(δ)
, (3.10)

θ5(δ) = K2
u(2β + c0)δ
1 − K̃(δ) 

e(2+4α)δ + 2β, (3.11)

and if θ4(η, δ) > 0, we obtain that for t > s ≥ 0,

E
[
|X(t)|2

∣∣Fs

]
≤ |X(s)|2e−θ4(η,δ)(t−s) + θ5(δ) 

θ4(η, δ)

(
1 − e−θ4(η,δ)(t−s)

)
. (3.12)

In addition, by virtue of (2.1), it follows from Itô’s formula that

E
[
H(Λ(t))

∣∣Fs

]
≤ e−κ1(t−s)H(Λ(s)) + κ2

κ1

(
1 − e−κ1(t−s)), t > s ≥ 0. (3.13)

According to the estimates (3.12) and (3.13), we construct the desired Lyapunov function V in the 
following way: for arbitrary ε0, . . . , εk−1 ∈ (0, 1), let

V (xk, xk−1, . . . , x0, i) = |xk|2 +
k−1∑
�=0 

ε�|x�|2 + H(i), x� ∈ Rd, � ∈ {0, . . . , k}, i ∈ S.

Obviously, we have V ≥ 1 as H ≥ 1. Notice that FZ
n ⊂ Fnδ+rk , and X(nδ + rk),Λ(nδ) ∈ FZ

n by the 
definition of (Zn). Invoking the estimates (3.12) and (3.13), we obtain that
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E
[
V (Zn+1)

∣∣FZ
n

]
= E

[
E
[
V (Zn+1)

∣∣Fnδ+rk

]∣∣∣FZ
n

]

= E
[
E
[
|X((n + 1)δ + rk)|2 +

k−1∑
�=0 

ε�|X((n + 1)δ + r�)|2 + H(Λ((n + 1)δ))
∣∣Fnδ+rk

]∣∣∣FZ
n

]

≤ E
[
|X(nδ + rk)|2

(
e−θ4(η,δ)δ +

k−1∑
�=0 

ε�e−θ4(η,δ)(δ+r�−rk)
)

+ H(Λ(nδ + rk))e−κ1(δ−rk)
∣∣∣FZ

n

]

+ θ5(δ) 
θ4(η, δ)

(
1 − e−θ4(η,δ)δ +

k−1∑
�=0 

ε�

(
1 − e−θ4(η,δ)(δ+r�−rk)

))
+ κ2

κ1

(
1 − e−κ1(δ−rk))

≤ |X(nδ + rk)|2
(
e−θ4(η,δ)δ +

k−1∑
�=0 

ε�e−θ4(η,δ)(δ+r�−rk)
)

+ H(Λ(nδ))e−κ1δ

+ θ5(δ) 
θ4(η, δ)

(
1 − e−θ4(η,δ)δ +

k−1∑
�=0 

ε�

(
1 − e−θ4(η,δ)(δ+r�−rk)

))
+ κ2

κ1

(
2 − e−κ1rk − e−κ1(δ−rk))

≤ V (Zn) max
{

e−θ4(η,δ)δ +
k−1∑
�=0 

ε�

(
1 − e−θ4(η,δ)(δ+r�−rk)

)
, e−κ1δ

}

+ θ5(δ) 
θ4(η, δ)

(
1 − e−θ4(η,δ)δ +

k−1∑
�=0 

ε�

(
1 − e−θ4(η,δ)(δ+r�−rk)

))
+ κ2

κ1

(
2 − e−κ1rk − e−κ1(δ−rk)).

As a consequence, since θ4(η, δ) > 0 and ε0, . . . , εk−1 ∈ (0, 1) can be taken arbitrarily small, we can find 
ε0, . . . , εk−1 ∈ (0, 1) such that

e−θ4(η,δ)δ +
k−1∑
�=0 

ε�

(
1 − e−θ4(η,δ)(δ+r�−rk)

)
< 1,

and further we have

θ := max
{

e−θ4(η,δ)δ +
k−1∑
�=0 

ε�

(
1 − e−θ4(η,δ)(δ+r�−rk)

)
, e−κ1δ

}
< 1.

Therefore, the function V satisfied the drift condition (3.9). Due to [14, Theorem 2.5], the Markov pro
cess (Zn)n≥0 is exponentially ergodic. Namely, there are constants c3, λ3 > 0 and a probability measure 
Γrk,...,r1,r0,i on R(k+1)d × S such that

∣∣E[f(Zn)
]
− Γrk,...,r1,r0,i(f)

∣∣ ≤ c3e−λ3n (3.14)

for all f : R(k+1)d × S → R such that |f | ≤ V . As V ≥ 1, (3.14) implies that

‖L(X(nδ+rk),...,X(nδ+r1),X(nδ),Λ(nδ)) − Γrk,...,r1,r0,i‖var ≤ c3e−λ3n. (3.15)

Besides, by the ergodicity of (Λ(t)) due to (H5), (3.14) also yields the projection measure of Γrk,...,r1,r0,i

into S must equal to γ, i.e. Γrk,...,r1,r0,i ◦ π−1
Λ = γ.

Step 2. Let D be the collection of all finite subsets of [0, δ), ordered by set inclusion. By the arbitrariness of 
the finite set F in the argument of Step 1, we obtain that for each F = {0 = r0 < r1 < . . . < rk < δ}, there 
is a probability measure ΓF := Γrk,...,r1,r0 on the product space RF × S, where RF := R(k+1)d. Therefore, 
we obtain a family of probability measures 

{
ΓF ; F ∈ D

}
. We shall check its consistent property below.
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For F, F̃ ∈ D satisfying F̃ ⊂ F , denote by πF,F̃ the projection map from RF to RF̃ . The Kolmogorov 
consistent condition obviously holds for the finite dimension marginal distribution of (X(n+1)δ) for every 
n ∈ N, that is,

LX(n+1)δ ◦ π−1
F̃

=
(
LX(n+1)δ ◦ π−1

F

)
◦ π−1

F,F̃
.

Invoking the convergence of (3.15), this yields that

ΓF̃ ◦ π−1
F̃

=
(
ΓF ◦ π−1

F

)
◦ π−1

F,F̃
.

So, the family of probability measures {ΓF ; F ∈ D} on C ([−δ, 0];Rd)×S is Kolmogorov consistent. Then, 
by the Kolmogorov extension theorem, there is a unique probability measure μ̃ on C ([−δ, 0];Rd) × S such 
that

μ̃
(
π−1
F (A) ×B

)
= ΓF (A×B), ∀ A ∈ B(RF ), B ∈ B(S), ∀ F ∈ D. (3.16)

Let μ be a probability measure on C ([−δ, 0];Rd) × D([−δ, 0];S) given by

μ(A×G) = μ̃(A× πΛ(G)), ∀ A ∈ B
(
C ([−δ, 0];Rd)

)
, G ∈ B

(
D([−δ, 0];S)

)
.

Using (3.15) again, we have

‖L(X(nδ+rm),...,X(nδ+r1),Λ(nδ)) − μ ◦ (πF × πΛ)−1‖var → 0

as n → ∞. By Definition 2.2, (X(t),Λ(t)) is weakly stable in distribution. �
Corollary 3.4. Under the conditions of Theorem 3.3, the obtained measure μ̃ in (3.16) on C ([−δ, 0];Rd)×S
is also a stationary probability measure for the process (X(n+1)δ,Λ(nδ))n≥0.

Proof. For F ∈ D, denote Cb(RF ×S) the set of bounded continuous functions on RF ×S. As an application 
of the Kolmogorov extension theorem, if for two probability measures ν and ν̃ on C ([−δ, 0];Rd) × S, if

ν ◦ π−1
F (f) = ν̃ ◦ π−1

F (f), ∀ f ∈ Cb(RF × S), F ∈ D,

then ν = ν̃.
According to the argument of Step 1 in Theorem 3.3, Γrk,...,r1,r0,i is the unique stationary distri

bution of the Markov processes 
(
X(nδ + rk), . . . , X(nδ + r1), X(nδ),Λ(nδ)

)
n≥0, which yields that if (

X(rk), . . . , X(r1), X(0),Λ(0)
)

is distributed as Γrk,...,r1,r0,i, then 
(
X(nδ+rk), . . . , X(nδ+r1), X(nδ),Λ(nδ)

)
for all n ∈ N is also distributed as Γrk,...,r1,r0,i. Thus, for every f ∈ Cb(RF × S)

EΓrk,...,r1,r0,i

[
f
(
X(nδ + rk), . . . , X(nδ + r1), X(nδ),Λ(nδ)

)]
= (Γrk,...,r1,r0,i)(f).

Invoking (3.16), we can rewrite above equation into

Eμ̃

[
(f ◦ (πF × IdS))(X(n+1)δ,Λ(nδ))

]
= (μ̃ ◦ (πF × IdS)−1)(f), (3.17)

where IdS stands for the identity map on S. Together with the arbitrariness of F ∈ D and f ∈
Cb(RF × S), this means that if (Xδ,Λ(0)) is distributed as μ̃ on C ([−δ, 0];Rd) × S, the distribution of 
(X(n+1)δ,Λ(nδ)) will coincide with μ for n ≥ 1. Namely, μ̃ is a stationary probability measure for the 
process (X(n+1)δ,Λ(nδ))n≥0. �
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Remark 3.5. Notice that the weak convergence of probability measures on the path space C ([−δ, 0];Rd)
implies the convergence of corresponding finite dimension projection measures. But the converse fails. See 
[4, Sec. 1.5]. So, the convergence of Theorem 3.3 is weaker than that of Theorem 2.8. Certainly, the conditions 
of Theorem 3.3 are weaker than those of Theorem 2.8 as well.
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