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Abstract

Many combinatorial sequences (for example, the Catalan and Motzkin
numbers) may be expressed as the constant term of P (x)kQ(x), for
some Laurent polynomials P (x) and Q(x) in the variable x with inte-
ger coefficients. Denoting such a sequence by ak, we obtain a general
formula that determines the congruence class, modulo p, of the indef-
inite sum

∑rp−1
k=0 ak, for any prime p, and any positive integer r, as

a linear combination of sequences that satisfy linear recurrence (alias
difference) equations with constant coefficients. This enables us (or
rather, our computers) to automatically discover and prove congru-
ence theorems for such partial sums. Moreover, we show that in many
cases, the set of the residues is finite, regardless of the prime p.

1. Introduction

Let {ak} be a sequence of integers, and r be a positive integer. We focus
on the congruences of the partial sum

∑rp−1
k=0 ak modulo a general prime p.

When ak is a hypergeometric term and r = 1 we get a truncated hypergeo-
metric series, which is closely related to the Gaussian hypergeometric series
introduced by Greene [3]. An interesting example is the congruence of the
Apéry number [1, 2]

A

(
p− 1

2

)
≡

p−1∑
k=0

(
2k

k

)4

2−8k ≡ γ(p) (mod p),
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where

A(n) =
n∑

j=0

(
n+ j

j

)2(
n

j

)2

,

and
∞∑
n=1

γ(n)qn = q
∞∏
n=1

(1− q2n)4(1− q4n)4.

These congruences are usually obtained case by case and the proofs are
complicated. For example, Pan and Sun [5] used a sophisticated combinato-
rial identity to deduce that

p−1∑
k=0

(
2k

k + d

)
≡
(
p− d

3

)
(mod p), d = 0, 1, . . . , p,

where
( ·
·

)
is the Legendre symbol. We propose an automated method to

discover and prove such congruences for a large family of combinatorial se-
quences {ak}. More precisely, we assume that ak is the constant term of
P (x)kQ(x) where P (x) and Q(x) are two Laurent polynomials in the (single)
variable x with integer coefficients. Rowland and Zeilberger [6] discovered an
algorithm to automatically generate automata for determining the congru-
ences, modulo a prime p, of combinatorial sequences (not the partial sums)
but for specific primes p (one at a time).

Throughout the paper, p always denotes a prime number. We write a ≡p b
if a is congruent to b modulo p. For a Laurent series f(x) =

∑
k≥k0

akx
k,

we use CT f(x) to denote the coefficient of the free term, x0. The set of
integers, rational numbers and complex numbers are denoted by Z,Q and C,
respectively. The finite field with p elements is denoted by Fp.

2. Evaluation

In this section, we show that the above-mentioned partial sums are linear
combinations of C-finite sequences, i.e., integer sequences that satisfy a lin-
ear recurrence equation with constant coefficients (like 2n and the Fibonacci
numbers, to name two examples). This would enable us (and our comput-
ers) to discover and prove practically infinitely-many theorems about the
congruences of such partial sums modulo an arbitrary (symbolic!) prime p.
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We have the following formula for the congruences of the partial sums.

Theorem 2.1 Let P (x), Q(x) be two Laurent polynomials in x with integer
coefficients and

ak := CTP (x)kQ(x).

Let −m and −n be the lowest degrees of P (x) and Q(x)/(P (x)− 1), respec-
tively. Then for any positive integer r, and any prime p > n, we have

rp−1∑
k=0

ak ≡p

rm∑
j=0

cjS(rm−j)p , (2.1)

where cj is the coefficient of x−rm+j in P (x)r − 1 and Sk is the coefficient of
xk in the Laurent expansion of

Q(x)

P (x)− 1
.

Proof. Noting that CT is a linear operator, we have

rp−1∑
k=0

ak = CT

rp−1∑
k=0

P (x)kQ(x) = CT
(P (x)rp − 1)Q(x)

P (x)− 1
.

Since the coefficients of P (x) are integers, we have, (by the “Freshman’s
Dream Identity” , (a+ b)p ≡p ap + bp), P (x)p ≡p P (xp) and hence

rp−1∑
k=0

ak ≡p CT
Q(x)(P (xp)r − 1)

P (x)− 1
.

By the definition of m and cj, we see that

P (x)r − 1 =
N∑
j=0

cjx
−rm+j.

for some integer N . If j > rm, we have

(−rm+ j)p− n > n(−rm+ j)− n ≥ 0,
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which implies that

CT
Q(x)x(−rm+j)p

P (x)− 1
= 0.

Hence

CT
Q(x)(P (xp)r − 1)

P (x)− 1
=

rm∑
j=0

cjCT
Q(x)x(−rm+j)p

P (x)− 1
=

rm∑
j=0

cjS(rm−j)p.

This completes the proof.

This theorem is implemented in the Maple package CTcong.txt available
from the webpage

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ctcong.html

where the user can also find sample input and output files.

The Maple command-line is

TheoG(P, Q, x, p, C, r),

where P,Q are two Laurent polynomials, with integer coefficients, in the
variable x, p is the symbol standing for the prime, C is the name for the
sequence of coefficients of Q(x)/(P (x) − 1), while r is as in Equation (2.1).
For example, typing (in a Maple session, after reading our Maple package
CTcong.txt)

TheoG(1/x+2+x, x^ d, x, p, C, 1);

immediately outputs

Corollary 2.2 Let A(i) be the constant term of the Laurent polynomial

xd

(
1

x
+ 2 + x

)i

,

and for any prime p, let

B(p) =

p−1∑
i=0

A(i).
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Then
B(p) ≡p C(p),

where C(n) is the C-finite sequence defined in terms of the generating func-
tion

∞∑
i=0

C(i)xi =
xd+1

x2 + x+ 1
.

Noting that

CTxd

(
1

x
+ 2 + x

)i

=

(
2i

i− d

)
=

(
2i

i+ d

)
,

and
xd+1

x2 + x+ 1
= xd+1(1 + x3 + x6 + · · · − x− x4 − x7 − · · · ),

Corollary 2.2 is equivalent to the congruence relation given by Pan and Sun

p−1∑
k=0

(
2k

k + d

)
≡p

(
p− d

3

)
.

[Of course this case, and many other ones, for small r, are easily humanly-
generated.]

Using this approach, we found many congruences, including the congru-
ences for the sums of generalized central trinomial coefficients that were con-
sidered by Sun in [7].

When Q(x)/(P (x) − 1) is a rational function such that every root of
the denominator is a root of unity, the coefficient of xk in Q(x)/(P (x) −
1) can be expressed as a quasi-polynomial in k. We can search for this
quasi-polynomial by the method of undetermined coefficients and thus derive
theorems presenting explicit forms for the congruences. This is implemented
by the procedure TheoQP in our Maple package CTcong.txt. The command-
line is

TheoQP(P, Q, x, p, r, d) ,
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where P,Q are the two Laurent polynomials in x, p is the symbol standing
for the prime, r is as above, and d is the expected degree of the searched
quasi-polynomial. (In practice, you start, optimistically, with d = 0, and if
it fails, you keep increasing d to 1, then 2, until you either find something,
or give up.)

For example, typing

TheoQP(1/x+2+x, 1, x, p, 2, 0);

yields

Corollary 2.3

2p−1∑
k=0

(
2k

k

)
≡p

{
3, if p ≡ 1 (mod 3),

−3, if p ≡ 2 (mod 3).

For more examples, we refer to the above-mentioned webpage

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ctcong.html

3. Reduction

In this section, we consider a further reduction of the coefficients Sp, S2p, . . .
in Equation (2.1). We find that in some cases, the set {Sp mod p} of residues
is a finite subset of Q when p runs over all primes.

First, let us consider the coefficients Sk given by

ux+ v

a+ bx+ cx2
=

∞∑
k=0

Skx
k,

where u, v, a, b, c are integers, a ̸= 0 and a + bx + cx2 is irreducible over Q.
Let ∆ = b2 − 4ac be the discriminate of ax2 + bx + c. Since a + bx + cx2 is
irreducible, ∆ ̸= 0, and hence ∆ ̸≡p 0 except for finitely many primes p.
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If ∆ is a square in the finite field Fp, then a+ bx+ cx2 is reducible in Fp

so that
ux+ v

a+ bx+ cx2
≡p

A

1− αx
+

B

1− βx
,

for some A,B, α, β ∈ Fp. We thus find that

Srp = Aαrp +Bβrp ≡p Aαr +Bβr = Sr.

If ∆ is not a square in Fp, then a + bx + cx2 is irreducible in Fp. Let us
consider the extension field Fp(α) with aα2 + bα + c = 0 and α ∈ C. Let
β ∈ C be another root of the equation ax2 + bx+ c = 0. By the property of
the Frobenius automorphism [8], it follows that in the extension field Fp(α),

αp = β, βp = α.

Hence in the field Fp(α), we have

Srp = Aαrp +Bβrp = Aβr +Bαr =
cr

ar
(
Aα−r +Bβ−r

)
=

cr

ar
S−r,

where S−r is determined by the initial values S0, S1 and the recurrence rela-
tion

aSn + bSn−1 + cSn−2 = 0, n ∈ Z.
Since Srp and S−r are both rational numbers, we obtain that Srp ≡p S−r.

In general, let q(x) be an irreducible polynomial in Z[x] of degree d with
non-zero constant term and α1, . . . , αd be the d roots of xdq(1/x) in C. If the
splitting field Q(α1, . . . , αd) equals Q(αj) for some 1 ≤ j ≤ d, we say that
q(x) is simple. Clearly, every irreducible polynomial of degree 2 is simple.

We have the following finiteness theorem regarding the congruences.

Theorem 3.1 Let P (x), Q(x) be two Laurent polynomials in x with integer
coefficients and

ak = CTP (x)kQ(x).

Suppose that each irreducible factor q(x) ̸= x of the denominator of Q(x)/(P (x)−
1) is simple. Then there exists a finite subset A of Q such that for any prime
p,

rp−1∑
k=0

ak ≡p a,

for some a ∈ A.
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Proof. By Theorem 2.1, for a sufficiently large prime p,
∑rp−1

k=0 ak modulo p
is a linear combination of S0, Sp, S2p, . . ., where Sk is the coefficient of xk in
the series

R(x) =
Q(x)

P (x)− 1
.

To prove the theorem, it suffices to show that for a fixed integer n, the set∪
p

{Snp mod p}

of residues is finite when p runs over all primes.

Consider the partial fraction decomposition of R(x) over Q

R(x) = g(x) +
m∑
i=1

hi(x)

qi(x)ℓi
,

where g(x) is a Laurent polynomial over Q and for each i = 1, . . . ,m, qi(x) ∈
Z[x] is irreducible and hi(x) ∈ Z is a polynomial with deg hi(x) < deg qi(x).
In order to show the finiteness of the set ∪p{Snp mod p}, it suffices to show
that the residues of the coefficients of each summand form a finite set.

Let h(x)/q(x)ℓ be one summand and

∞∑
k=0

skx
k =

h(x)

q(x)ℓ
.

Let q̃(x) = xdq(1/x) where d = deg q(x) and let α1, . . . , αd be the roots of
q̃(x). By assumption, we have Q(α1, . . . , αd) = Q(α) with α ∈ {α1, . . . , αd}.
Denote the splitting field Q(α) by K. Since q(x) is irreducible, we have

K =

{
a0 + a1α + · · ·+ ad−1α

d−1

b
: a0, . . . , ad−1, b ∈ Z

}
.

Let p be a prime larger than the maximal factor of the leading coefficient of
q̃(x). Then

Kp :=

{
a0 + a1α + · · ·+ ad−1α

d−1

b
: p ∤ b

}
⊂ K
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form a subring of K. There is a natural ring homomorphism τ : Kp →
F[x]/⟨q̃(x)⟩ given by

τ

(
a0 + a1α + · · · ad−1α

d−1

b

)
= a0b

−1 + a1b
−1x+ · · ·+ ad−1b

−1xd−1.

Clearly, the kernel of the map τ is pKp.

It is well-known that the coefficients sk can be expressed as

sk =
d∑

i=1

fi(k)α
k
i ,

where fi(k) is a polynomial over Q(α) of degree less than ℓ. It is easy to see
that

τ(fi(np)) = τ(ci),

where ci is the constant term of fi(x). Since q̃(x) ∈ Z[x], for each i = 1, . . . , d,
we have

q̃(τ(αp
i )) = τ

(
q̃(αp

i )
)
= τ
(
(q̃(αi))

p
)
= 0.

Hence τ(αp
i ) = τ(αj) for some 1 ≤ j ≤ d. Let σ be the map given by

τ(αp
i ) = τ(ασ(i)). We thus have

τ(snp) =
d∑

i=1

τ(ci)τ(α
n
σ(i)) = τ

(
d∑

i=1

ciα
n
σ(i)

)
.

Let
d∑

i=1

ciα
n
σ(i) = r0 + r1α + · · ·+ rd−1α

d−1.

Since τ(snp) ∈ Q, we have
τ(snp) = τ(r0),

and hence snp ≡p r0. Noting that there are only finitely many choices for σ,
hence the set ∪p{snp mod p} is finite.

Example. Suppose that

P (x) =
x3 − 2x+ 1

x
, and Q(x) = 1.
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We have
Q(x)

P (x)− 1
=

x

x3 − 3x+ 1
.

Let
α = −0.532 . . . , β = 0.6527 . . . , γ = 2.879 . . .

be the three roots of x3− 3x2+1. Using the approximate values of the three
roots, we may use the LLL algorithm [4] to find integral relations among β, γ
and powers of α. Using Maple, we get two possible relations

β = 2 + 2α− α2, γ = 1− 3α+ α2. (3.1)

It is easy to verify that

(2 + 2α− α2)3 − 3(2 + 2α− α2)2 + 1 = 0,

and
(1− 3α + α2)3 − 3(1− 3α + α2)2 + 1 = 0.

which means that 2 + 2α − α2 and 1 − 3α + α2 are roots of x3 − 3x2 + 1.
So we claim the relations in (3.1). Therefore, Q(α, β, γ) = Q(α) and hence
x3 − 3x+ 1 is simple. By Theorem 3.1, the set{

2p−1∑
k=0

CTP (x)k mod p

}

is finite. In fact, when p > 3, the only possibilities are −1 and 2.

We conclude with an example where the denominator is not simple.

Example. Let

P (x) = −2x2 + 1 +
1

x
, Q(x) = 1.

Then
Q(x)

P (x)− 1
=

x

1− 2x3
= x+ 2x4 + 22x7 + · · · .

Hence for p ≡ 1 (mod 3), we have

p−1∑
k=0

CTP (x)k ≡p 2
p−1
3 ≡p 2−

1
3 .
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It seems that the set {2− 1
3 mod p} is not finite.
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