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Abstract. This work investigates the large deviation principle for a fully cou-

pled two time-scale system, whose slow process is a diffusion process and fast
process is a purely jumping process on a discrete state space. We focus on over-

coming the difficulties caused by the infinite countability of the state space of

the fast process. To this end, two different drift conditions are proposed sepa-
rately to deal with two different time-scale ratios.

1. Introduction. We study in this work a fully coupled two time-scale stochastic
system (Xε,α

t , Y ε,α
t ) in Rd × S, where S = {1, 2, . . . , N} with N ≤ ∞. The slow

process (Xε,α
t ) is described as a solution to the following stochastic differential

equation (SDE):

dXε,α
t = b(Xε,α

t , Y ε,α
t )dt+

√
εσ(Xε,α

t , Y ε,α
t )dWt,

Xε,α
0 = x0 ∈ Rd, Y ε,α

0 = i0 ∈ S,
(1.1)

and the fast process (Y ε,α
t ) is a jumping-process on S satisfying

P(Y ε,α
t+δ = j|Y ε,α

t = i,Xε,α
t = x) =

{
1
αqij(x)δ + o(δ), if i ̸= j,

1 + 1
αqii(x)δ + o(δ), if i = j

(1.2)

for δ > 0, i, j ∈ S, x ∈ Rd, and ε, α are small positive parameters. In the existing
literature, the system (Xε,α

t , Y ε,α
t ) is called fully coupled if the diffusion coefficient

σ of slow process (Xε,α
t ) depends on the fast process (Y ε,α

t ) and the transition rates
(qij(x))i,j∈S of the fast process (Y ε,α

t ) depends on (Xε,α
t ) as well.

Multi-scale systems arise in many research fields such as in systems biology [7,
17, 18, 20, 36], in mathematical finance [8, 9], etc. Correspondingly, there are many
works devoted to the study of averaging principle, central limit theorems, and large
deviations of these stochastic models. For a two time-scale system where both slow
and fast components are continuous processes given as solutions of SDEs, these
problems have been extensively studied, such as, in [1, 19, 20, 21, 28, 29, 33, 34, 37,
40, 41] amongst others. The interaction between the fast component and the slow
one makes a fully coupled two time-scale system much complicated, which has been
revealed in the works [22, 37, 40, 41].
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In [30] we have studied the averaging principle for (Xε,α
t , Y ε,α

t ), which says that
(Xε,α

t ) converges strongly or weakly to some limit process (X̄t) as ε, α → 0. In
[30] we focus on addressing the impact on the limit process (X̄t) caused by the
regularity of invariant probability measure πx of (qij(x)) when S is an infinitely
countable state space. To establish the averaging principle, we proposed different
ergodicity conditions on the Markov chains associated with (qij(x)) for every x, and
generalized the coupling method based on Skorokhod’s representation theorem for
jumping processes.

As a continuation work of [30], we aim to establish the large deviation principle
(LDP) associated with the fully coupled system (Xε,α

t , Y ε,α
t ) as ε, α→ 0. We mainly

want to analyze the difficulties caused by: 1) the infinite countability of the state
space S of the fast process (Y ε,α

t ); 2) the different ratios ε/α as ε, α→ 0.
When S is a finite state space, there are many related works on the LDP of the

two time-scale system (Xε,α
t , Y ε,α

t ). In the situation that (Y ε,α
t ) is independent of

the slow process (Xε,α
t ), Eizenberg and Freidlin [6], Freidlin and Lee [12] investigated

separately the limit behavior of solutions of PDE systems with Dirichlet boundary
associated with (Xε,α

t , Y ε,α
t ) when the diffusion coefficient of Xε,α

t does not depend
or depends on Y ε,α

t . These two works reveal that whether the diffusion coefficient
of Xε,α

t depends on Y ε,α
t or not has an important impact on the method to study

the limit behavior of (Xε,α
t , Y ε,α

t ). Moreover, to provide a decisive estimate on the
difference between (Xε,α

t ) and its limit process, the LDP was established in [14, 15].
In the setting where the fast process (Y ε,α

t ) is a jumping process depending on the
slow process (Xε,α

t ) as well, the averaging principle and the LDP have been studied
by Faggionato, Gabrielli, and Crivellari [7] and Budhiraja, Dupuis and Ganguly
[3]. [7] considered a simple case without diffusion term for the slow component.
Whereas, [3] considered a fully coupled case by using the weak convergence method,
and established a process level large deviation principle.

It is known that the infinite countability of the state space S of (Y ε,α
t ) has an

important impact on the averaging principle and LDP of (Xε,α
t , Y ε,α

t ). For example,
in a simple setting α ≡ 1, Bezuidenhout [2] studied the LDP of certain functionals
of (Xε,α

t , Y ε,α
t ) with the diffusion coefficient of (Xε,α

t ) independent of (Y ε,α
t ). It

showed that the LDP holds when (Y ε,α
t ) is in a finite state space. Furthermore, it

was shown by a counterexample that when (Y ε,α
t ) is a Markov chain in an infinite

state space, the LDP may fail.
In order to deal with the difficulty caused by the infinite countability of S, we

propose separately two drift conditions in the different situations that the ratio
ε/α = 1 or tends to ∞ as ε, α → 0. We shall apply the nonlinear semigroup
method developed in [10] to study the LDP of {Xε,α

t ; ε, α > 0}. It is known (cf.
[10]) that a crucial point of this method is to establish the comparison principle
for the associated Hamilton-Jacobi equation. This task is of great challenging in
applications for different stochastic systems. For example, Popovic [36] verified
the comparison principle for chemical reaction networks on multiple time-scales.
Kraaij and Schlottke [26] established a comparison principle for the Hamilton-Jacobi
equation in terms of a Hamiltonian given in a variational form, and applied it in
[25] to investigate the LDP for two time-scale interacting particle system on a finite
state space coupled to fast drift-diffusion processes on a compact space. In this work
we prove the desired comparison principle by checking the conditions of a general
result established by Ishii [16], where the continuity of x 7→ πx established in the
study of averaging principle in [30] is needed.
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The remainder of this work is organized as follows. In Section 2, we introduce
the framework and the nonlinear semigroup method developed in Feng and Kurtz
[10] to establish the LDP of {Xε,α

t ; ε, α > 0}. We present the conditions needed
to be checked later for our studied processes. In Section 3, we establish the LDP
in the case ε/α = 1. In Section 4, we deal with the LDP in the case ε/α → ∞ as
ε, α→ 0.

2. Framework. Let us begin with introducing three fundamental conditions on
the stochastic system (Xε,α

t , Y ε,α
t ), which will be used throughout this work.

(A1) There exist constants K1, K2 > 0 such that

|b(x, i)− b(y, i)|+ ∥σ(x, i)− σ(y, i)∥ ≤ K1|x− y|,

|b(x, i)|+ ∥σ(x, i)∥ ≤ K2, x, y ∈ Rd, i ∈ S.

(A2) For each x ∈ Rd, (qij(x))i,j∈S is a conservative, irreducible transition rate
matrix. Assume κ := supi∈S

∑
j∈S,j ̸=i supx∈Rd qij(x) <∞.

(A3) There exists a constant K3 > 0 such that

∥Q(x)−Q(y)∥ℓ1 := sup
i∈S

∑
j ̸=i

|qij(x)− qij(y)| ≤ K3|x− y|, x, y ∈ Rd.

Under these conditions (A1)-(A3), the two time-scale system (1.1), (1.2) admit a
unique strong solution to any initial value Xε,α

0 = x0 ∈ Rd and Y ε,α
0 = i0 ∈ S; see,

e.g. [43] or [38] under certain more general non-Lipschitz conditions.
In this work we shall investigate the LDP for {Xε,α

t ; ε, α > 0} using the nonlinear
semigroup and viscosity solution method. A general method was developed by Feng
and Kurtz in [10] to establish the LDP for Markov processes based on nonlinear
semigroups and viscosity solutions to HJB equations. Nevertheless, much effort
is needed to verify the abstract conditions to apply this method for two time-
scale stochastic processes. See, for instance, Peletier and Schlottke [35] and Kumar
and Popovic [27], where [35] studied the LDP by this method for two time-scale
system (Xt, Yt) where (Xt) is a diffusion process over torus, and (Yt) is a jumping
process over a finite state space S. [27] studied the LDP for two time-scale jump-
diffusion processes. By Skorokhod’s representation theorem for jumping processes,
the regime-switching processes (Xε,α

t , Y ε,α
t ) can be viewed as a degenerate jump-

diffusion processes (cf. [30, Section 3]). As noticed in [3, page 3], the requirement
of Lipschitz continuity on the jump coefficients prevents the application of the LDP
results in [27] to our current setting.

We first introduce some necessary notations before describing the idea of argu-
ment. Consider the two time-scale system (Xε,α

t , Y ε,α
t ) defined in (1.1), (1.2). For

h ∈ Cb(Rd), let

uhε,α(t, x, i) = ε logE
[
exp

(h(Xε,α
t )

ε

)∣∣∣Xε,α
0 = x, Y ε,α

0 = i
]
. (2.1)

Let Aε,α be the infinitesimal generator of the process (Xε,α
t , Y ε,α

t ), that is,

Aε,αf(x, i)=⟨b(x, i),∇f(x, i)⟩+ ε

2
tr(a(x, i)∇2f(x, i))+

1

α

∑
j∈S

qij(x)(f(x, j)−f(x, i))

for f ∈ C2
c (Rd × S), where a(x, i) = σ(x, i)σ∗(x, i). Define a nonlinear operator

Hε,α by

Hε,αu(x, i) = εe−u/εAε,αe
u/ε(x, i). (2.2)
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It can be shown (see [10]) that uhε,α is a viscosity solution of the Cauchy problem:

∂tu = Hε,αu, in (0, T ]× Rd × S,

u(0, x, i) = h(x), for x ∈ Rd, i ∈ S,
(2.3)

where for each f ∈ C2(Rd), ∇f(x) and ∇2f(x) denote the gradient and the Hessian
matrix of f evaluated at x. We refer the reader to, e.g. [9], [11], for notions of
viscosity solution, subsolution and supersolution to Hamilton-Jacobi equations.

Along the nonlinear semigroup method of [10] to study the LDP for {Xε,α
t ; ε, α >

0}, the proof consists of the following steps.

Step 1. Taking appropriate limits of uhε,α to (2.3), we get upper semi-continuous

and lower semi-continuous functions ūh and uh, respectively.
Step 2. Using an index set Λ, we construct a family of operators H0( · ;β) and

H1( · ;β) for β ∈ Λ, such that ūh is a viscosity subsolution to the Cauchy
problem for the operator infβ∈ΛH0( · ;β), and uh a viscosity supersolution
to the Cauchy problem for the operator supβ∈ΛH1( · ;β). In our setting, the
operators Hk( · ;β), k = 0, 1, will be constructed differently according to the
different ratio ε/α as ε, α tend to 0.

Step 3. Find a suitable operator H0( · ) satisfying
inf
β∈Λ

H0( · ;β) ≤ H0( · ) ≤ sup
β∈Λ

H1( · ;β)

and establish the comparison principle for the Hamilton-Jacobi equations as-
sociated with H0( · ), which further implies the convergence of uhε,α to the so-

lution of the Cauchy problem for H0( · ). Together with the exponential tight-
ness of {Xε,α

t ; ε, α > 0}, it follows from Bryc’s theorem that {Xε,α
t ; ε, α > 0}

satisfies a large deviation principle.

As in [9] and [10], the desired results in Step 1 and Step 2 can be proved by check-
ing the following two families of conditions, Condition 3.1 and Condition 3.2. For
the convenience of the readers, let us introduce these conditions in a general frame-
work, and in the subsequent sections we shall verify these conditions in respective
cases according to α = ε or ε/α→ ∞.

Let

D+ = {f : f(x) = φ(x) + log(1 + |x|2);φ ∈ C2
c (Rd)},

D− = {f : f(x) = φ(x)− log(1 + |x|2);φ ∈ C2
c (Rd)}.

(2.4)

A collection of compact sets in Rd × S is defined by

Q =
{
K × K̃;K ⊂⊂ Rd, K̃ ⊂⊂ S

}
,

where K ⊂⊂ Rd means that K is a compact subset of Rd. K̃ ⊂⊂ S is defined
similarly.

Take the index set

Λ =
{
β = (ξ, θ); ξ ∈ Cc(S), 0 < θ < 1

}
. (2.5)

Let

Dε,+ = {f ; f ∈ C2(Rd × S), f has compact finite level set},
Dε,− = {f ; −f ∈ Dε,+}.

(2.6)

Given two functions

Hk(x, p;β) : Rd × Rd → R, β ∈ Λ, k = 0, 1,
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define H0f(x) = H0(x,∇f(x)) for f ∈ D+, and H1f(x) = H1(x,∇f(x)) for f ∈
D−, where

H0(x, p) = inf
β∈Λ

H0(x, p;β), H1(x, p) = sup
β∈Λ

H1(x, p;β). (2.7)

Condition 3.1. For each f ∈ D+ and β ∈ Λ, there exists fε ∈ Dε,+ such that

1. for each c > 0, there exists K × K̃ ∈ Q satisfying

{(x, i); Hε,αfε(x, i) ≥ −c} ∩ {(x, i); fε(x, i) ≤ c} ⊂ K × K̃;

2. for K × K̃ ∈ Q, lim
ε→0

sup
(x,i)∈K×K̃

|fε(x, i)− f(x)| = 0;

3. whenever (xε, i) ∈ K × K̃ ∈ Q satisfies xε → x as ε→ 0,

lim sup
(ε,α)→0

Hε,αfε(xε, i) ≤ H0(x,∇f(x);β).

Condition 3.2. For each f ∈ D− and β ∈ Λ, there exists fε ∈ Dε,− such that

1. for each c > 0, there exists K × K̃ ∈ Q satisfying

{(x, i); Hε,αfε(x, i) ≤ c} ∩ {(x, i); fε(x, i) ≥ −c} ⊂ K × K̃;

2. for each K × K̃ ∈ Q, lim
ε→0

sup
(x,i)∈K×K̃

|fε(x, i)− f(x)| = 0;

3. whenever (xε, i) ∈ K × K̃ ∈ Q satisfying xε → x,

lim inf
(ε,α)→0

Hε,αfε(xε, i) ≥ H1(x,∇f(x);β).

To establish the comparison principle, we shall use the following results estab-
lished in [30]. Let P x

t be the semigroup associated with the Q-matrix (qij(x)), and
πx its associated invariant probability measure provided it exists.

(A4) There exist constants c1, λ1 > 0 such that

sup
i∈S

∥P x
t (i, ·)− πx∥var ≤ c1e

−λ1t, t > 0, x ∈ Rd.

(A5) There exist a function θ : S → (0,∞), a decreasing function η : [0,∞) → [0, 2]
satisfying

∫∞
0
ηsds <∞ such that

∥P x
t (i, ·)− πx∥var ≤ θ(i)ηt, t > 0, x ∈ Rd, i ∈ S.

Proposition 1 ([30]). (i) Assume that (A2), (A3) and (A4) hold. Then Rd ∋ x 7→
πx ∈ P(S) is Lipschitz continuous, i.e.

∥πx − πy∥var ≤ Cπ|x− y|, x, y ∈ Rd,

where Cπ = 4c1K3

λ1
.

(ii) Assume that (A2), (A3), (A5) hold. Then x 7→ πx is 1/2-Hölder continuous,
i.e.

∥πx − πy∥var ≤ K4

√
|x− y|, x, y ∈ Rd,

where K4 =
√
K3(infi∈S θ(i))

∫∞
0
ηsds.
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3. LDP for the switching systems in the case ε/α = 1. In this section, we
consider the LDP of {Xε,α

t ; ε, α > 0} in the situation that α = ε → 0. We begin
with checking Conditions 3.1 and 3.2. To this end, we introduce a drift condition to
cope with the case that S is infinitely countable. Such kind of condition was used
in the study of the LDP for Markov chains; see, e.g. [24].

(A6) Let ζ be a function from S to [1,∞). If S is infinitely countable, assume that
{i ∈ S; ζi ≤ c} is compact for every c > 0, and for every x ∈ Rd, there exist
constants c2, c3 > 0 and a compact set B in S such that

e−ζi
∑
j∈S

qij(x)(e
ζj − eζi) ≤ −c2ζi + c31B(i), i ∈ S. (3.1)

Define

T(x) =
{
(i, j) ∈ S × S; qij(x) > 0

}
(3.2)

for x ∈ Rd, and

q(x) = inf
(i,j)∈T(x)

qij(x). (3.3)

Theorem 3.1 (LDP in the case ε/α = 1). Assume that conditions (A1)-(A3) and
(A6) hold. Suppose that for each R > 0, inf |x|≤R q(x) > 0 and for each x ∈ Rd,

i ∈ S, there are finite number of j ∈ S such that qij(x) > 0. Then {Xε,α
t ; ε, α > 0}

given in (1.1), (1.2) with α = ε satisfies a LDP with speed 1/ε and rate function

I(x, x0, t) = sup
h∈Cb(Rd)

{
h(x)− uh(t, x0)

}
, (3.4)

where uh is the unique viscosity solution to the Hamilton-Jacobi equation (3.22)
below.

To prove this theorem using the nonlinear semigroup method, we need to make
some necessary preparation to check the conditions presented in Section 2. As we
consider only α = ε in this part, we write simply Hε,α = Hε for the operator Hε,α

given in (2.2).

Verifying Condition 3.1. For each f ∈ D+ and each β = (ξ, θ) ∈ Λ with Λ given
in (2.5), let

gi = (1− θ)ξi + θζi, and fε(x, i) = f(x) + εgi. (3.5)

Then,

Hεfε(x, i) =⟨b(x, i),∇f(x)⟩+1

2
⟨a(x, i)∇f(x),∇f(x)⟩+ ε

2
tr(a(x, i)∇2f(x))

+e−giQ(x)eg(i),

where e−giQ(x)eg(i) = e−gi
∑

j∈S qij(x)(e
gj − egi). By Hölder’s inequality and

Young’s inequality, as qii(x) = −
∑

j ̸=i qij(x),

e−giQ(x)eg(i) =
∑
j ̸=i

qij(x)e
(1−θ)(ξj−ξi)+θ(ζj−ζi)

≤
(∑

j ̸=i

qij(x)e
ξj−ξi

)1−θ(∑
j ̸=i

qij(x)e
ζj−ζi

)θ
+ qii(x)

≤ (1− θ)
∑
j ̸=i

qij(x)e
ξj−ξi + θ

∑
j ̸=i

qij(x)e
ζj−ζi + qii(x)

= (1− θ)e−ξiQ(x)eξ(i) + θe−ζiQ(x)eζ(i).
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Therefore,

Hεfε(x, i) ≤ ⟨b(x, i),∇f(x)⟩+1

2
⟨a(x, i)∇f(x),∇f(x)⟩+ ε

2
tr(a(x, i)∇2f(x))

+ (1− θ)e−ξiQ(x)eξ(i) + θe−ζiQ(x)eζ(i).
(3.6)

Define the operator

H0(x, p;β) =sup
i∈S

{
⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩+(1−θ)e−ξiQ(x)eξ(i)

+ θe−ζiQ(x)eζ(i)
}
, β = (ξ, θ) ∈ Λ,

(3.7)

and it holds that whenever (xε, i) ∈ K × K̃ ∈ Q satisfying xε → x,

lim sup
ε→0

Hεfε(xε, i) ≤ H0(x,∇f(x);β). (3.8)

In addition, by the definition of fε(x, i) and (A6), for each c > 0, there exists

K × K̃ ∈ Q such that

{(x, i); fε(x, i) ≤ c} ⊂ K × K̃,

and further {(x, i);Hεfε(x, i) ≥ −c} ∩ {(x, i); fε(x, i) ≤ c} ⊂ K × K̃. For each

K × K̃ ∈ Q,

lim
ε→0

sup
(x,i)∈K×K̃

|fε(x, i)− f(x)| = lim
ε→0

sup
(x,i)∈K×K̃

ε|gi| = 0.

Consequently, we have verified Condition 3.1.

Verifying Condition 3.2. For each f ∈ D− and β = (ξ, θ) ∈ Λ, define

f̄ε(x, i) = f(x) + εḡi with ḡi = (1 + θ)ξi − θζi,

then f̄ε ∈ Dε,− and f̄ε converges uniformly to f̄ on every K × K̃ ∈ Q. Moreover,

(A6) implies that {(x, i); f̄ε(x, i) ≥ −c} is contained in some K × K̃ ∈ Q.
To check the last assertion in Condition 3.2, noting that

1

1 + θ

(
(1 + θ)(ξj − ξi)− θ(ζj − ζi)

)
+

θ

1 + θ
(ζj − ζi) = ξj − ξi,

by Young’s inequality ab ≤ ap/p+ bq/q, we have∑
j ̸=i

qij(x)e
ξj−ξi =

∑
j ̸=i

qij(x)e
1

1+θ

(
(1+θ)(ξj−ξi)−θ(ζj−ζi)

)
+ θ

1+θ (ζj−ζi)

≤ 1

1 + θ

∑
j ̸=i

qij(x)e
(1+θ)(ξj−ξi)−θ(ζj−ζi)+

θ

1 + θ

∑
j ̸=i

qij(x)e
ζj−ζi .

This yields

e−(1+θ)ξi+θζi
∑
j ̸=i

qij(x)e
(1+θ)ξj−θζj ≥ (1 + θ)

∑
j ̸=i

qij(x)e
ξj−ξi − θ

∑
j ̸=i

qij(x)e
ζj−ζi ,

and further

e−(1+θ)ξi+θζiQ(x)e(1+θ)ξ−θζ(i) = e−(1+θ)ξi+θζi
∑
j ̸=i

qij(x)e
(1+θ)ξj−θζj + qii(x)

≥ (1 + θ)e−ξiQ(x)eξ(i)− θe−ζiQ(x)eζ(i).
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Hence,

Hεf̄ε(x, i) = ⟨b(x, i),∇f(x)⟩+ 1

2
⟨a(x, i)∇f(x),∇f(x)⟩+ ε

2
tr(a(x, i)∇2f(x))

+ e−(1+θ)ξi+θζiQ(x)e(1+θ)ξ−θζ(i)

≥ ⟨b(x, i),∇f(x)⟩+ 1

2
⟨a(x, i)∇f(x),∇f(x)⟩+ ε

2
tr(a(x, i)∇2f(x))

+ (1 + θ)e−ξiQ(x)eξ(i)− θe−ζiQ(x)eζ(i).

(3.9)

Define the operator

H1(x, p;β) =inf
i∈S

{
⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩+(1+ θ)e−ξiQ(x)eξ(i)

− θe−ζiQ(x)eζ(i)
}
, β =(ξ, θ)∈Λ.

(3.10)

Then it holds that whenever (xε, i) ∈ K × K̃ ∈ Q with xε → x,

lim inf
ε→0

Hεf̄ε(xε, i) ≥ H1(x,∇f(x);β). (3.11)

Consequently, under the assumption (A6), for the constructed operators H0(x, p;β)
in (3.7) and H1(x, p;β) in (3.10). Conditions 3.1 and 3.2 have been verified for
(Xε,α

t , Y ε,α
t ) in the case α = ε.

Let

H0(x, p) = inf
β∈Λ

H0(x, p;β), H1(x, p) = sup
β∈Λ

H1(x, p;β). (3.12)

After verifying Conditions 3.1 and 3.2, according to [9, Lemma 4.1] or [27, Lemma
6], we can complete Step 1 and Step 2 as mentioned above in applying nonlinear
semigroup method. We conclude these assertions in the following lemma.

Lemma 3.2. Suppose (A6) holds. Let uhε,α given by (2.1) be the viscosity solution

to the Cauchy problem (2.3) for h ∈ Cb(Rd). Define

uh† = sup
{
lim sup

ε→0
uhε,ε(tε, xε, i); ∃ (tε, xε, i) ∈ [0, T ]×K × K̃,

(tε, xε) → (t, x),K × K̃ ∈ Q
}
,

uh‡ = inf
{
lim inf
ε→0

uhε,ε(tε, xε, i); ∃ (tε, xε, i) ∈ [0, T ]×K × K̃,

(tε, xε) → (t, x),K × K̃ ∈ Q
}
,

and ūh the upper semicontinuous regularization of uh† and uh the lower semicontin-

uous regularization of uh‡ . Then, ūh is a viscosity subsolution to

∂tu(t, x) ≤ H0(x,∇u(t, x)), u(0, x) = h(x),

and uh is a viscosity supersolution to

∂tu(t, x) ≥ H1(x,∇u(t, x)), u(0, x) = h(x).

Proof. The proof is completely similar to [9, Lemma 4.1] after checking Condi-
tions 3.1 and 3.2 under assumption (A6). The uniform boundedness of uhε,ε, i.e.

sup
ε>0

∥uhε,ε∥∞<∞, follows easily from the definition of uhε,α and h ∈ Cb(Rd).
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Next, we proceed to Step 3 in applying the nonlinear semigroup method to
establish the LDP for {Xε,α

t ;α = ε > 0}. Introduce the operator

H0(x, p) = sup
µ∈P(S)

{∑
i∈S

µi⟨b(x, i), p⟩+
∑
i∈S

µi⟨a(x, i)p, p⟩ − IQ(µ;x)
}
, (3.13)

where

IQ(µ;x) = − inf
g∈D++(Qx)

∑
i∈S

µiQ(x)g(i)

gi
, (3.14)

and D++(Qx) denotes the subset of domain of operator Q(x) which is strictly
bounded from below by a positive constant; P(S) stands for the space of all prob-
ability measures over S.

Proposition 2. Assume (A6) holds. Then it holds

H0(x, p) = H0(x, p), x, p ∈ Rd. (3.15)

Proof. When S is a finite state space, clearly eζ ∈ D++(Qx). When S is an infinite
state space, by (A6), ζ has compact finite level set, and hence eζ ∈ D++(Qx). Then,

inf
g∈D++(Qx)

∑
i∈S

µiQ(x)g(i)

gi
≤

∑
i∈S

µiQ(x)eζ(i)

eζi
.

Thus, the desired conclusion follows from [10, Lemma 11.35].

We proceed to show H1(x, p) ≥ H0(x, p). For simplicity of notation, set

Vx,p(i) = ⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩. (3.16)

Lemma 3.3. Let (Ỹ x
t )t≥0 be a continuous time Markov chain on S with transition

rate matrix (qij(x)). For each x, p ∈ Rd, if there exists a constant C(x, p) such that

lim
t→∞

1

t
logEi

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
= C(x, p), ∀ i ∈ S, (3.17)

then

H1(x, p) ≥ H0(x, p), x, p ∈ Rd.

Proof. According to [10, Theorem B.12], if there exists a constant CV such that

lim
t→∞

1

t
logEν

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
= CV (3.18)

for each ν ∈ P(S) satisfying ν(ψ) > −∞ with ψi := e−ζiQ(x)eζ(i), then

H1(x, p) ≥ H0(x, p), x, p ∈ Rd.

To prove this lemma, we only need to show that condition (3.17) implies condition
(3.18).

Denote by PV
t the Feynman-Kac semigroup

PV
t f(i) = Ei

[
f(Ỹ x

t )e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
, f ∈ Cb(S). (3.19)

Firstly, let us show that (3.18) holds with CV = C(x, p) for ν ∈ P(S) in the
form

ν =

m∑
k=1

λkδik , satisfying λk ∈ [0, 1],

m∑
k=1

λk = 1, and ik ∈ S, m ∈ N.
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Indeed,

lim
t→∞

1

t
logEν

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
= lim

t→∞

1

t
log

m∑
k=1

λkP
V
t 1(ik)

≤ lim
t→∞

max
1≤k≤m

1

t
logPV

t 1(ik)

= C(x, p).

On the other hand,

lim
t→∞

1

t
logEν

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
≥ lim

t→∞
min

1≤k≤m

1

t
logPV

t 1(ik) = C(x, p).

Secondly, for a general ν ∈ P(S), there exists a sequence of µn ∈ P(S) in the
form

µn =

mn∑
k=1

λnkδink , λnk ∈ [0, 1],

mn∑
k=1

λnk = 1, ink ∈ S

such that µn converges weakly to ν. For each fixed x, p ∈ Rd, i 7→ Vx,p(i) is a
bounded function on S due to (A1), then it follows from the weak convergence of
µn to ν that

lim
n→∞

Eµn

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
= lim

n→∞

∑
i∈S

µn(i)P
V
t 1(i) = Eν

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
.

Moreover, for any ϵ > 0, there exists K > 0 such that for all n > K,

(1− ϵ)Eµn

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
≤ Eν

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
≤ (1 + ϵ)Eµn

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
.

Therefore, by the arbitrariness of ϵ, we obtain

lim
t→∞

1

t
logEν

[
e
∫ t
0
Vx,p(Ỹ

x
s )ds

]
= C(x, p),

which completes the proof.

Remark 1. (i) In Lemma 3.3, we assume the convergence of log-moment generat-

ing functions in (3.17) for the Markov chains (Ỹ x
t )t≥0 associated with (qij(x))i,j∈S

for every x ∈ Rd. This condition can be used to prove large deviations estimates

for
∫ t

0
F (Ỹ x

s )ds by standard large deviations techniques (cf. [5, Chapter 6]). Espe-
cially, when S is a finite state space, the limit (3.17) always exists for conservative,
irreducible Markov chains on S (cf. [5, Theorem 6.3.8, Remark p.275]).

(ii) When S is an infinite state space, the limit (3.17) corresponds to a type of mul-
tiplicative mean ergodic theorem, and many works have been devoted to this topic.
For example, Wu [42] proved the limit exists supposing the logarithmic Sobolev
inequality holds. Kontoyiannis and Meyn [23, 24] studied the multiplicative er-
godic theory using the spectral theory, which can yield the existence of the limit in
(3.17). Their tools rely on the geometric ergodicity or drift conditions. When V
is unbounded, [13] and [39] investigated this limit under the help of dimension-free
Harnack inequality.

Next, when S is an infinite state space, based on assumption (A6), we shall
introduce a proposition to guarantee the existence of limit in (3.17) according to
the investigation in [24]. The results in [24] are stated in the setting of discrete-
time Markov chains, which are also valid for the continuous-time Markov chains
analogous to the discussion in [23].
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Lemma 3.4. Assume (A2) and (A6) hold. Then, there exist constants ε0 > 0,

0 < η0 ≤ 1, Λx,p, a function f̃ : S → R, constants b0, b1 > 0 such that∣∣∣Ei exp
[ ∫ t

0

Vx,p(Ỹ
x
s )ds− tΛx,p

]
− f̃(i)

∣∣∣ ≤ ε0e
η0ζi+b1−b0t, i ∈ S. (3.20)

This yields that (3.17) holds with the constant C(x, p) = Λx,p.

Proof. Notice first that condition (A2) means that the Markov chain (Ỹ x
t ) is ir-

reducible and aperiodic. For any function W : S → (0,∞], define the Banach
space

LW
∞ =

{
g : S → R; sup

i∈S

|gi|
Wi

<∞
}

endowed with the norm

∥F∥W = sup
i∈S

|Fi|
Wi

.

By virtue of [24, Theorem 3.4], if there is a function W : S → [1,∞), a small set
C ⊂ S, and constants δ > 0, b <∞, such that

e−ζQ(x)eζ ≤ −δW + b1C , (3.21)

then there exist constants ε0 > 0, 0 < η0 ≤ 1, b0, b1 > 0 and a function f̃ : S → R
such that for any F ∈ LW

∞ satisfying ∥F∥W ≤ ε0 we have∣∣∣Ei

[
exp

(∫ t

0

F (Ỹ x
s )ds− tΛ(F )

)]
− f̃i

∣∣∣ ≤ ∥F∥W eη0ζi+b1−b0t, i ∈ S,

where Λ(F ) is a constant depending only on F and independent of the initial state
i ∈ S. Therefore, to establish (3.20), we only need to find suitable functionW on S,
a small set C ⊂ S, constants δ > 0, b <∞ such that (3.21) holds and the function
Vx,p satisfying ∥Vx,p∥W < ε0.

By (A6) and the boundedness of Vx,p : S → R, we have limi→∞ |Vx,p(i)|/ζi = 0,
and hence there exists an N0 ∈ N such that supi∈S,i>N0

|Vx,p(i)|/ζi < ε0. Moreover,
there exists a constant k0 > 0 such that

max
{
|Vx,p(i)|/(ζi + k0); 1 ≤ i ≤ N0

}
< ε0.

Define our desired function W by

Wi = ζi + k01C̃(i), i ∈ S,

where C̃ = {1, . . . , N0} ⊂ S. Then

∥Vx,p∥W < ε0.

Thanks to [31, Theorem 6.0.1] and [31, Theorem 5.5.7], the irreducible and aperiodic

property of the Markov chain (Ỹ x
t ) yield that the compact set C̃ ∪B is a small set,

and it follows from (A6) that

e−ζQ(x)eζ ≤ −c2W + c2k01C̃ + c31B ≤ −c2W + (c2k0 + c3)1C̃∪B .

Consequently, (3.21) and further (3.20) hold by [24, Theorem 3.4].

Invoking Lemma 3.4 and Lemma 3.3, we obtain that:

Proposition 3. Let conditions (A2) and (A6) hold. Then,

H0(x, p) ≤ H1(x, p), x, p ∈ Rd.
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Now we go to establish the comparison principle for the Hamilton-Jacobi equation

∂tu = H0(x,∇u), u(0, x) = h(x), (3.22)

i.e. for any viscosity subsolution u0(t, x) and any viscosity supersolution u1(t, x) to
(3.22), it holds

u0(t, x) ≤ u1(t, x), (t, x) ∈ [0, T ]× Rd.

To this end, we shall use the comparison principle established in [16], and pro-
vide appropriate conditions on the coefficients of (Xε,α

t , Y ε,α
t ) to verify the required

conditions in [16]. According to [16, Theorem 2] and the discussion following [16,
Theorem 1], we introduce a general comparison principle for a Hamilton-Jacobi
equation. The conditions and the Hamiltonian H there have been simplified to
adapt to our current setting.

Lemma 3.5 (Ishii [16]). Consider the Hamilton-Jacobi equation

∂tu+H(x,∇u(t, x)) = 0, in (0, T )× Rd, (3.23)

where T > 0 is a given constant. Assume the following conditions hold.

(H1) The function (x, p) 7→ H(x, p) is continuous on Rd × Rd.
(H2) For each R > 0 it holds

lim
r→∞

inf
{
H(x, p);x ∈ BR(0), |p| ≥ r

}
= ∞,

where BR(0) denotes the closed ball centered at 0 with radius R.
(H3) The function p 7→ H(x, p) is convex and

H(x, 0) ≤ 0, and H
(
x,− δx

|x|2 + 1

)
≤ C

for all x, t and for some δ, C > 0.

Let u and v be respectively a viscosity subsolution and a viscosity supersolution to
(3.23). Assume that u(0, x) ≤ v(0, x) for all x ∈ Rd, and that infRd×[0,T ) v > −∞.

Then u ≤ v on Rd × [0, T ), that is, the comparison principle holds for the equation
(3.23).

Theorem 3.6 (Comparison principle). Assume (A1)-(A3) hold and inf |x|≤R q(x) >

0 for every R > 0. Suppose that for each x ∈ Rd, each i ∈ S, there are only
finite number of j ∈ S such that qij(x) > 0. In addition, suppose that there exists
η : [0,∞) → (0,∞) such that for each R > 0

⟨a(x, i)p, p⟩ ≥ η(R)|p|2, ∀x ∈ BR(0), i ∈ S, p ∈ Rd.

Then the comparison principle holds for the Hamilton-Jacobi equation (3.22), which
implies that the viscosity solution to (3.22) is unique.

Proof. We shall prove this theorem by Lemma 3.5, and hence we need to verify the
conditions (H1)-(H3) of Lemma 3.5.

By virtue of the expression of H0(x, p) in (3.13), due to (A1), it is clear that
p 7→ H0(x, p) is convex, H0(x, 0) = 0 by noting Q(x)1 = 0, and

H0

(
x,

−2x

|x|2 + 1

)
≤ 2K2.

Therefore, condition (H3) of Lemma 3.5 is satisfied.
In order to check (H1) and (H2) of Lemma 3.5, the key point is to show the

uniform continuity of x 7→ IQ(µ;x) w.r.t. µ ∈ P(S). For R > 0, BR(0) stands
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for the closed ball in Rd centered at 0 with radius R. By the hypothesis of this
theorem, for every x ∈ Rd and every i ∈ S, there are only finite number of j ∈ S
such that qij(x) > 0, which means that for every measurable function h on S,

lim
t↓0

P x
t h(i)− h(i)

t
= Q(x)h(i), i ∈ S,

and hence h is in the weak domain D(Qx) of generator Q(x). This means that
D(Qx) = B(S), and hence

IQ(µ;x) =− inf
g∈D++(Qx)

∑
i,j∈S,i̸=j

µiqij(x)
(gj
gi

− 1
)

= sup
g∈B(S),g>0

∑
i,j∈S,i̸=j

µiqij(x)
(
1− gj

gi

)
.

(3.24)

This deduces thatD++(Qx)=D++(Qy) for x, y∈Rd and x ̸=y. For each x ∈ BR(0),
for any ϵ > 0, there exists a measurable function gϵ with gϵ > 0 such that

0 ≤ IQ(µ;x) ≤
∑

i,j∈S,i̸=j

µiqij(x)
(
1−

gϵj
gϵi

)
+ ϵ.

This yields ∑
i,j∈S,i̸=j

µiqij(x)
gϵj
gϵi

≤
∑

i,j∈S,i̸=j

µiqij(x) + ϵ ≤ κ+ ϵ,

where constant κ is given in (A2), and further that∑
(i,j)∈T(x)

µi

gϵj
gϵi

≤ 1

q(x)
(κ+ ϵ). (3.25)

Then, for any y ∈ BR(0), by (A3) and (3.25),

IQ(µ;x)− IQ(µ; y)

≤ ϵ+
∑

i,j∈S,i̸=j

|qij(x)− qij(y)|µi

(
1 +

gϵj
gϵi

)
≤ ϵ+K3|x− y|

(
1 +

∑
(i,j)∈T(x)

µi

gϵj
gϵi

)
≤ ϵ+K3|x− y|+K3

κ+ ϵ

inf |x|≤R q(x)
|x− y|.

By the arbitrariness of ϵ and the symmetric position of x and y, there exists a
positive constant C(R) independent of µ ∈ P(S) such that

|IQ(µ;x)− IQ(µ; y)| ≤ C(R)|x− y|, x, y ∈ BR(0). (3.26)

By virtue of the definition of H0(x, p) in (3.13), for x, y, p, p′ ∈ Rd and for any
ϵ > 0 there exists µϵ ∈ P(S) such that

H0(x, p)−H0(y, p
′)

≤
∑
i∈S

µϵ
i

[
⟨b(x, i), p⟩+ ⟨a(x, i)p, p⟩ − ⟨b(y, i), p′⟩ − ⟨a(y, i)p′, p′⟩

]
− IQ(µ

ϵ;x) + IQ(µ
ϵ; y) + ϵ.
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By (A1), (3.26), the arbitrariness of ϵ, and the symmetric position of x, y, we can
derive from this estimate that (x, p) 7→ H0(x, p) is continuous, i.e. (H1) of Lemma
3.5 holds.

By (A2) and (3.24), IQ(µ, x) ≤ κ, and hence

lim
r→∞

inf
{
H0(x, p); x ∈ BR(0), |p| ≥ r

}
≥ lim

r→∞
inf

{
sup

µ∈P(S)

{
−K2|p|+η(R)|p|2−IQ(µ;x)

}
; x ∈ BR(0), |p| ≥ r

}
= ∞.

So we have verified (H2) of Lemma 3.5. Consequently, we obtain from Lemma 3.5
that the comparison principle holds for the Hamilton-Jacobi equation (3.22).

Proof of Theorem 3.1. Invoking Lemma 3.2, Proposition 2, Proposition 3 and
Theorem 3.6, and applying [9, Lemma 4.2], we obtain that

ūh = uh = uh, and lim
ε→0

sup
t∈[0,T ]

sup
(x,i)∈K×K̃

|uhε,ε(t, x, i)− uh(t, x)| = 0 (3.27)

for anyK×K̃ ∈ Q, where uh is the unique viscosity solution to the Hamilton-Jacobi
equation (3.22).

To see {Xε,α
t ; ε, α > 0} is exponential tight, let f(x) = log(1 + |x|2). Then

f(x) → ∞ as |x| → ∞, and supx∈Rd{|∇f(x)|∞ + ∥∇2f(x)∥} < ∞. For any c > 0
there exists a compact set Kc ⊂ Rd such that f(x) > c for any x ̸∈ Kc. Taking
fε(x, i) = f(x) for x ∈ Rd, i ∈ S, it holds

Hεfε(x, i) = εe−fε/εAεe
fε/ε(x, i)

= ⟨b(x, i),∇f(x)⟩+ 1

2
⟨a(x, i)∇f(x),∇f(x)⟩+ ε

2
tr(a(x, i)∇2f(x)).

By (A1), there exists a constant C̃ > 0 such that

sup
x∈Rd,i∈S

Hεfε(x, i) ≤ C̃.

Since

Mt := exp
{
f(Xε,α

t )− f(Xε
0)−

∫ t

0

Hεf(X
ε,α
s , Y ε,α

s )ds
}

is a nonnegative local martingale, it follows from the choice of Kc and the estimate
above that

P(Xε,α
t ̸∈ Kc)e

(c−f(x0)−C̃t)/ε ≤ E
[
ef(X

ε,α
t )−f(Xε

0 )−
∫ t
0
Hεf(X

ε,α
s ,Y ε,α

s )ds
]
≤ 1.

Hence, ε logP(Xε,α
t ̸∈ Kc) ≤ tC̃ + f(x0)− c. Since C̃ is fixed and independent of c,

this means that {Xε,α
t ; ε, α > 0} is exponentially tight.

Consequently, applying Bryc’s theorem, {Xε,α
t ; ε = α > 0} satisfies the LDP

with rate 1/ε and good rate function I(x, x0, t) given in (3.4).

Remark 2. In Theorem 3.1, when S is finite, (A6) is a trivial condition, and one
only needs to pay attention to the restriction inf |x|≤R q(x) > 0 for each R > 0. This
type of condition on q(x) is also used in [3, Assumption 2.3], where it is assumed
that infx∈Rd q(x) > 0, which is a little stronger than ours.



LDP FOR TWO TIME-SCALE SWITCHING PROCESSES 2783

4. The LDP in the case ε/α→ ∞. In this section, we go to investigate the LDP
for the system (Xε,α

t , Y ε,α
t ) when the time scales satisfying lim(ε,α)→0 ε/α = ∞.

We still use the notations Λ, D+, D−, Dε,+, Dε,− given in (2.4), (2.5) and (2.6).
Instead of (A6), we shall use the following drift condition in this part.

(A7) Let ζ̃ : S → [0,∞). If S is infinitely countable, suppose that {i; ζ̃i ≤ c} is
compact for every c > 0, and for each x ∈ Rd there are constants c4, c5 > 0
and a compact set B̃ ⊂ S such that

Q(x)ζ̃(i) ≤ −c4ζ̃i + c51B̃(i), for any i ∈ S. (4.1)

According to [24, Proposition 2.1], the condition (4.1) in (A7) is weaker than the
condition (3.1) in (A6).

Verifying Condition 3.1. For β = (ξ, θ) ∈ Λ, and f ∈ D+, let

fα(x, i) = f(x) + αgi, with gi = ξi + θζ̃i, x ∈ Rd, i ∈ S. (4.2)

Then fα ∈ Dε,+ and fα converges to f as α → 0 uniformly on compact sets.
Moreover, (A7) yields that for every c > 0, {(x, i); fα(x, i) ≤ c} is contained in

some K × K̃ ∈ Q.
Next, a direct calculation yields

Hε,αfα(x, i) = εe−
fα
ε Aε,αe

fα
ε (x, i)

= ⟨b(x, i),∇f(x)⟩+ 1

2
⟨a(x, i)∇f(x),∇f(x)⟩+ ε

2
tr(a(x, i)∇2f(x))

+
ε

α

∑
j ̸=i

qij(x)
(
e

α
ε (gj−gi) − 1

)
.

(4.3)

Under the assumption (A2), for each i ∈ S and x ∈ Rd, there is only finite number
of items in the summation

∑
j ̸=i qij(x)

(
e

α
ε (gj−gi) − 1

)
. Noting further that α

ε → 0

as (ε, α) → 0, we obtain

lim
Γ∋(ε,α)→0

ε

α

∑
j ̸=i

qij(x)
(
e

α
ε (gj−gi) − 1

)
=

∑
j ̸=i

qij(x)(gj − gi). (4.4)

Here and in the remainder of this subsection, we use the notation Γ ∋ (ε, α) → 0 to
represent taking the limit as (ε, α) → 0 satisfying at the same time ε/α→ ∞.

Different to H0(x, p;β) defined in (3.7) in the case ε = α, now we define the
operator H0(x, p;β) for β = (ξ, θ) ∈ Λ by

H0(x, p;β)

= sup
i∈S

{
⟨b(x, i), p⟩+1

2
⟨a(x, i)p, p⟩+Q(x)ξ(i)−θc4ζ̃i+θc51B̃(i)

}
,

(4.5)

where ζ̃ is given in (A7). Then, we derive from (A7) and (4.4) that

lim sup
Γ∋(ε,α)→0

Hε,αfα(x, i) ≤ ⟨b(x, i),∇f(x)⟩+ 1

2
⟨a(x, i)∇f(x),∇f(x)⟩

+
∑
j ̸=i

qij(x)(ξj − ξi)− θc4ζ̃i + θc51B̃(i)

≤ H0(x,∇f(x);β).

(4.6)
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Therefore, all the three assertions in Condition 3.1 have been checked.

Verifying Condition 3.2. For β = (ξ, θ) ∈ Λ, let f̃ ∈ D− and gi = ξi − θζ̃i, i ∈ S
with ξ ∈ Cc(S). Let f̃α(x, i) = f̃(x) + αgi. Define

H1(x, p;β)

= inf
i∈S

{
⟨b(x, i), p⟩+1

2
⟨a(x, i)p, p⟩+Q(x)ξ(i)+θc4ζ̃i−θc51B̃(i)

}
.

(4.7)

Then,

• f̃α ∈ Dε,−, and f̃α converges uniformly to f̃ on every K × K̃ ∈ Q as α→ 0.

• For c > 0, {(x, i); f̃α(x, i) ≥ −c} is contained in some K×K̃ ∈ Q due to (A7).
• Completely similar to (4.6), one gets

lim inf
Γ∋(ε,α)→0

Hε,αf̃α(x, i) ≥ H1(x,∇f̃(x);β). (4.8)

Hence, Condition 3.2 has been checked.

Lemma 4.1. When S is infinitely countable, under (A2), either condition (A7) or
condition (A6) implies condition (A5).

Proof. As mentioned above, (A7) is weaker than (A6), hence we only need to prove
(A5) from (A7). By virtue of [32, Theorem 6.1], it follows from (A7) that there
exist constants R, λ > 0 such that

∥P x
t (i, ·)− πx∥var ≤ R(1 + ζ̃i)e

−λt, t > 0, i ∈ S, x ∈ Rd.

The constants R, λ may depend on the function ζ̃, and c4, c5 in (A7). It is clear

that e−λt is integrable over [0,∞), and hence (A5) holds with θi = R(1 + ζ̃i) and
ηt = e−λt.

Lemma 4.2. Suppose that (A1)-(A3) and (A7) hold. Then the Markov chain
associated with (qij(x)) admits a unique invariant probability measure πx, which is
1/2-Hölder continuous from Rd to P(S).

Proof. When S is finite, since (qij(x)) is irreducible, (qij(x)) admits a unique invari-
ant measure πx. When S is infinitely countable, by Lemma 4.1, the Markov chain
associated with (qij(x)) is ergodic and has a unique invariant probability measure
πx. Moreover, as shown in the argument of Lemma 4.1, (A7) yields that (A5) holds

with θi := R(1 + ζ̃i). Furthermore, we can even get from (A7) that

Q(x)θ(i) = RQ(x)ζ̃(i)

≤ −Rc4ζ̃i +Rc51B̃(i)

= −c4θ(i) +Rc4 +Rc51B̃(i),

which implies that the condition (2.7) in [30, Theorem 2.4] is also satisfied. Conse-
quently, according to Proposition 1(ii), we have that x 7→ πx is 1/2-Hölder contin-
uous.

Let

H0(x, p) = inf
β∈Λ

H0(x, p;β), H1(x, p) = sup
β∈Λ

H1(x, p;β). (4.9)

Define

H0(x, p) = ⟨b̄(x), p⟩+ 1

2
⟨ā(x)p, p⟩, (4.10)
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where

b̄(x) =
∑
i∈S

πx
i b(x, i), ā(x) =

∑
i∈S

πx
i a(x, i), x ∈ Rd.

Lemma 4.3. Suppose (A1)-(A3) and (A7) hold. If S is infinitely countable, assume

further that for every x, p ∈ Rd the solution (ξ̃j(x, p))j∈S to the following Poisson
equation is bounded:∑

j ̸=i

qij(x)
(
ξ̃j(x, p)− ξ̃i(x, p)

)
= ηi(x, p), i ∈ S, (4.11)

where

ηi(x, p) = ⟨b̄(x), p⟩+ 1

2
⟨ā(x)p, p⟩ −

(
⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩

)
.

Then,

H0(x, p) ≤ H0(x, p) ≤ H1(x, p), x, p ∈ Rd. (4.12)

Proof. (i) Consider first the case that S is a finite state space. By the definition of
b̄(x) and ā(x), it holds ∑

i∈S
πx
i ηi(x, p) = 0, x, p ∈ Rd. (4.13)

The Fredholm alternative theorem yields that for every x, p ∈ Rd there exists a
solution (ξ̃i(x, p))i∈S to the Poisson equation (4.11), which is unique up to adding

a constant. The solution (ξ̃i(x, p))i∈S to (4.11) obviously belongs to Cc(S) since S
is compact itself. Due to the definitions in (4.9), we have

H0(x, p) ≤ inf
0<θ<1

H0

(
x, p; (ξ̃(x, p), θ)

)
= inf

0<θ<1
sup
i∈S

{
⟨b̄(x), p⟩+ 1

2
⟨ā(x)p, p⟩ − θc4ζ̃i + θc51B̃(i)

}
≤ inf

0<θ<1
sup
i∈S

{
⟨b̄(x), p⟩+ 1

2
⟨ā(x)p, p⟩+ θc51B̃(i)

}
= H0(x, p).

Similarly,

H1(x, p) ≥ sup
0<θ<1

H1

(
x, p; (ξ̃(x, p), θ)

)
≥ H0(x, p).

As a consequence,

H0(x, p) ≤ H0(x, p) ≤ H1(x, p), x, p ∈ Rd.

(ii) Now consider the case S = {1, 2, . . .}. The equality (4.13) still holds in this

case, and hence the solution (ξ̃i(x, p))i∈S to (4.11) exists. However, a new difficulty

comes from the fact that (ξ̃i(x, p))i∈S may not belong to Cc(S). Therefore, we need
to use the truncation method to define

ξ̃mi (x, p) = ξ̃i(x, p)1i≤m for m ∈ N.

Then,

Q(x)ξ̃m(x, p)(i)=

Q(x)ξ̃(x, p)(i)−
∑

j>m qij(x)ξ̃j(x, p), if i ≤ m,

Q(x)ξ̃(x, p)(i)+qi(x)ξ̃i(x, p)−
∑

j>m,j ̸=i

qij(x)ξ̃j(x, p), if i > m.
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According to the assumption that (ξ̃i(x, p))i∈S is bounded, there exists a positive
constant C0(x, p) such that

sup
i∈S

|ξ̃i(x, p)| ≤ C0(x, p), i ∈ S. (4.14)

Then, by (A2) and (A7), for all m ≥ 1,

lim
i→∞

Q(x)ξ̃m(x, p)(i)− θc4ζ̃i

≤ lim
i→∞

∑
j ̸=i

qij(x) sup
k,l∈S

|ξ̃k(x, p)−ξ̃l(x, p)|−θc4ζ̃i

= −∞.

(4.15)

Combining this with the estimate

⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩ ≤ K2|p|+

1

2
K2

2 |p|2,

there exists i′ ∈ S such that for all m ≥ 1 and for all i ∈ S with i ≥ i′,

⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩+Q(x)ξ̃m(x, p)(i)− θc4ζ̃i

≤ ⟨b(x, 1), p⟩+ 1

2
⟨a(x, 1)p, p⟩+Q(x)ξ̃m(x, p)(1)− θc4ζ̃1

for x, p ∈ Rd, θ ∈ (0, 1). Hence, for all m ≥ 1,

sup
i∈S

{
⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩+Q(x)ξ̃m(x, p)(i)− θc4ζ̃i + θc51B̃(i)

}
= sup

i≤i′

{
⟨b(x, i), p⟩+ 1

2
⟨a(x, i)p, p⟩+Q(x)ξ̃m(x, p)(i)− θc4ζ̃i + θc51B̃(i)

}
.

Invoking the definition of H0(x, p),

H0(x, p)

≤ lim inf
m→∞

inf
0<θ<1

H0

(
x, p; (ξ̃m(x, p), θ)

)
≤ lim inf

m→∞
inf

0<θ<1
sup
i≤i′

{
⟨b(x, i), p⟩+1

2
⟨a(x, i)p, p⟩+Q(x)ξ̃m(x, p)(i)+ θc51B̃(i)

}
≤ lim inf

m→∞
inf

0<θ<1
sup
i≤i′

{
⟨b̄(x), p⟩+1

2
⟨ā(x)p, p⟩−

∑
j>m

qij(x)ξ̃j(x, p)+θc51B̃(i)

}
≤ ⟨b̄(x), p⟩+ 1

2
⟨ā(x)p, p⟩

= H0(x, p).

(4.16)

Similarly, we can show that

H1(x, p) ≥ lim sup
m→∞

sup
0<θ<1

H1

(
x, p; (ξ̃m(x, p), θ)

)
≥ H0(x, p). (4.17)

Combining (4.17) with (4.16), we finally get (4.12) and complete the proof.

Lemma 4.4 (Comparison principle). Assume (A1)-(A3) and (A7) hold. In addi-
tion, suppose that there exists η : [0,∞) → (0,∞) such that for each R > 0

⟨a(x, i)p, p⟩ ≥ η(R)|p|2, ∀x ∈ BR(0), i ∈ S, p ∈ Rd.
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Then the comparison principle holds for the Hamilton-Jacobi equation

∂tu = H0(x,∇u) in (0, T )× Rd,

u(0, x) = h(x) in Rd,
(4.18)

where h ∈ Cb(Rd).

Proof. By Lemma 4.3, x 7→ πx is 1/2-Hölder continuous. Together with (A1), we
obtain that b̄, ā are also 1/2-Hölder continuous, and further

(x, p) 7→ H0(x, p) = ⟨b̄(x), p⟩+ 1

2
⟨ā(x)p, p⟩ is continuous.

Clearly, p 7→ H0(x, p) is convex by the nonnegative definiteness of ā. Hence, (H1)
of Lemma 3.5 has been checked. (H3) of Lemma 3.5 is obvious by the boundedness
of b̄ and ā due to (A1). By (A1), |b̄(x)| ≤ K2,

lim
r→∞

inf{H(x, p); x ∈ BR(0), |p| ≥ r}

≥ lim
r→∞

inf{−K2|p|+ η(R)|p|2; |p| ≥ r}

= ∞.

This implies that condition (H2) of Lemma 3.5 holds. Consequently, the comparison
principle holds for the Hamilton-Jacobi equation (4.18).

Theorem 4.5 (LDP in the case ε/α → ∞). Suppose that the assumptions of
Lemma 4.3 hold and that ε/α → ∞ as ε, α → 0. In addition, suppose there exists
η : [0,∞) → (0,∞) such that for each R > 0

⟨a(x, i)p, p⟩ ≥ η(R)|p|2, ∀x ∈ BR(0), i ∈ S, p ∈ Rd.

Then {Xε,α
t ; ε, α > 0} satisfies the LDP with rate 1/ε and good rate function

I(x, x0, t) = sup
h∈Cb(Rd)

{
h(x)− uh(t, x0)

}
, (4.19)

where uh is the unique viscosity solution to (4.18).

Proof. Following the approach of [10], it follows from Lemmas 4.1 and 4.3 that

lim
Γ∋(ε,α)→0

sup
t∈[0,T ]

sup
(x,i)∈K×K̃

|uhε,α(t, x, i)− uh(t, x)| = 0

for any K × K̃ ∈ Q, where uh is the unique viscosity solution to (4.18). Since the
exponential tightness of {Xε,α

t ; ε, α > 0} has been proved in Theorem 4.5, we get
that {Xε,α

t ; ε, α > 0} satisfying lim(ε,α)→0 ε/α = ∞ satisfies the LDP with rate 1/ε
and rate function I(x, x0, t) given in (4.19) by virtue of Bryc’s theorem.

In Theorem 4.5, we impose a condition on the boundedness of the solution to
the Poisson equation (4.11) when S = {1, 2, . . .}, which is needed to establish the
comparison principle. There are a lot of investigations on Poisson equations, but it
is not an easy task to provide explicit conditions to ensure the boundedness of the
solution. This is an interesting topic to be studied later.

In the following, for a special class of Markov chains, single-birth processes, we
provide an explicit solution to the Poisson equation, hence its boundedness can be
checked immediately. Moreover, see [4, Theorem 1.1] for the explicit solutions to
more general Poisson equations for single-birth processes.
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Example 1. Assume that (qij(x)) is a conservative Q-matrix satisfying qi(i+1)(x) >
0, qik(x) = 0 for all i ∈ S and k ≥ i+ 2. Let

F
(i)
i = 1, F (i)

n =
1

qn(n+1)(x)

n−1∑
k=i

q(k)n (x)F
(i)
k , n > i ≥ 1,

where q(k)n (x) :=

k∑
j=1

qnj(x), 1 ≤ k < n.

Then for a function f on S, the solution g to the Poisson equation

Q(x)g = f

has the following explicit representation in terms of (qij(x))

gn = g1 +
∑

1≤k≤n−1

∑
1≤j≤k

F
(j)
k fj

qj(j+1)(x)
, n ≥ 1.

Example 2. Consider the following two time-scale system:

dXε,α
t = b(Xε,α

t , Y ε,α
t )dt+

√
εdWt,

Xε,α
0 = x0 ∈ R, Y ε,α

0 = i0 ∈ S,
(4.20)

where

b(x, i) = e−i sinx, i ∈ S, x ∈ R,
S = {1, 2, . . .} is an infinite state space, (Y ε,α

t ) is a jumping process on S satisfying
(1.2) and for every i ≥ 2, qii(x) = −

∑
j∈S qij(x),

qii+1(x) = 1 + cosx, qii−1(x) = i2 − cosx, qij(x) = 0, ∀ j ̸∈ {i, i− 1, i+ 1},
and −q11(x) = q12(x) = 1 + cosx. It is clear that conditions (A1)-(A3) hold.

Taking

ζi = log(i+ 3), i ∈ S,
we have that for some C > 0, K ∈ N,

e−ζi
∑
j∈S

qij(x)(e
ζj − eζi)

=
1

i+ 3

(
qii+1(x)− qii−1(x)

)
=

1

i+ 3

(
1 + cosx− i2 + cosx

)
≤ − log(i+ 3) + C1{i≤K}, i ∈ S.

Consequently, (A6) has been checked. Therefore, Theorem 3.1 implies that (Xε,α
t )

satisfies a LDP when α = ε→ 0.
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