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ABSTRACT. This work investigates the large deviation principle for a fully cou-
pled two time-scale system, whose slow process is a diffusion process and fast
process is a purely jumping process on a discrete state space. We focus on over-
coming the difficulties caused by the infinite countability of the state space of
the fast process. To this end, two different drift conditions are proposed sepa-
rately to deal with two different time-scale ratios.

1. Introduction. We study in this work a fully coupled two time-scale stochastic
system (X[ YY) in R? x S, where S = {1,2,..., N} with N < co. The slow
process (X;'”) is described as a solution to the following stochastic differential
equation (SDE):

AXE = b(XP, YoM dt + Ve (XD, YEY) AW,
Xg¥ =20 €RY Yy =ig€S,

(1.1)

and the fast process (Y;7'”) is a jumping-process on S satisfying

équ(x)é—i_o(é)a if 4 #.77

P e _ 'Ys’a:i,XE’azif —
(Yis = ilY; ¢ ) 1+éqii(x)5+o(5), ifi=j

(1.2)
for § > 0,4, j €S,z €R? and ¢, o are small positive parameters. In the existing
literature, the system (X7, Y,”?) is called fully coupled if the diffusion coefficient
o of slow process (X;’") depends on the fast process (Y,7") and the transition rates
(¢ij(x))i jes of the fast process (V") depends on (X;'*) as well.

Multi-scale systems arise in many research fields such as in systems biology [7,
17, 18, 20, 36], in mathematical finance [8, 9], etc. Correspondingly, there are many
works devoted to the study of averaging principle, central limit theorems, and large
deviations of these stochastic models. For a two time-scale system where both slow
and fast components are continuous processes given as solutions of SDEs, these
problems have been extensively studied, such as, in [1, 19, 20, 21, 28, 29, 33, 34, 37,
40, 41] amongst others. The interaction between the fast component and the slow
one makes a fully coupled two time-scale system much complicated, which has been
revealed in the works [22, 37, 40, 41].

2020 Mathematics Subject Classification. Primary: 60F10; Secondary: 60J74, 60J10.

Key words and phrases. Large deviations, regime-switching, comparison principle, Markov
modulated diffusions.

All authors are supported by National Key R&D Program of China (No. 2022YFA1006000)
and NNSFs of China (No. 12271397).

*Corresponding author: Jinghai Shao.

2769


http://dx.doi.org/10.3934/dcdss.2025068
mailto:jianruili@tju.edu.cn
mailto:shaojh@tju.edu.cn

2770 JIANRUI LI AND JINGHAI SHAO

In [30] we have studied the averaging principle for (X;**,Y,””), which says that
(X;%) converges strongly or weakly to some limit process (X;) as e, — 0. In
[30] we focus on addressing the impact on the limit process (X;) caused by the
regularity of invariant probability measure 7* of (g;;(x)) when S is an infinitely
countable state space. To establish the averaging principle, we proposed different
ergodicity conditions on the Markov chains associated with (¢;;(z)) for every x, and
generalized the coupling method based on Skorokhod’s representation theorem for
jumping processes.

As a continuation work of [30], we aim to establish the large deviation principle
(LDP) associated with the fully coupled system (X;*,Y,”%) ase,a — 0. We mainly
want to analyze the difficulties caused by: 1) the infinite countability of the state
space S of the fast process (V;7%); 2) the different ratios e/a as e, — 0.

When S is a finite state space, there are many related works on the LDP of the
two time-scale system (X;*“,Y,”®). In the situation that (Y,>") is independent of
the slow process (X;”), Eizenberg and Freidlin [6], Freidlin and Lee [12] investigated
separately the limit behavior of solutions of PDE systems with Dirichlet boundary
associated with (X7, Y,>”) when the diffusion coefficient of X;*® does not depend
or depends on Y,”®. These two works reveal that whether the diffusion coefficient
of X;“ depends on Y,”® or not has an important impact on the method to study
the limit behavior of (X;,Y;”). Moreover, to provide a decisive estimate on the
difference between (X;*) and its limit process, the LDP was established in [14, 15].
In the setting where the fast process (Y;7%) is a jumping process depending on the
slow process (X;*®) as well, the averaging principle and the LDP have been studied
by Faggionato, Gabrielli, and Crivellari [7] and Budhiraja, Dupuis and Ganguly
[3]. [7] considered a simple case without diffusion term for the slow component.
Whereas, [3] considered a fully coupled case by using the weak convergence method,
and established a process level large deviation principle.

It is known that the infinite countability of the state space S of (V;7'") has an
important impact on the averaging principle and LDP of (X7, Y;>®). For example,
in a simple setting o = 1, Bezuidenhout [2] studied the LDP of certain functionals
of (X7, Y,S®) with the diffusion coefficient of (X;**) independent of (V). It
showed that the LDP holds when (Y;“) is in a finite state space. Furthermore, it
was shown by a counterexample that when (Y,”“) is a Markov chain in an infinite
state space, the LDP may fail.

In order to deal with the difficulty caused by the infinite countability of S, we
propose separately two drift conditions in the different situations that the ratio
e/a = 1 or tends to co as e, — 0. We shall apply the nonlinear semigroup
method developed in [10] to study the LDP of {X;*;e,a > 0}. It is known (cf.
[10]) that a crucial point of this method is to establish the comparison principle
for the associated Hamilton-Jacobi equation. This task is of great challenging in
applications for different stochastic systems. For example, Popovic [36] verified
the comparison principle for chemical reaction networks on multiple time-scales.
Kraaij and Schlottke [26] established a comparison principle for the Hamilton-Jacobi
equation in terms of a Hamiltonian given in a variational form, and applied it in
[25] to investigate the LDP for two time-scale interacting particle system on a finite
state space coupled to fast drift-diffusion processes on a compact space. In this work
we prove the desired comparison principle by checking the conditions of a general
result established by Ishii [16], where the continuity of x — 7% established in the
study of averaging principle in [30] is needed.
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The remainder of this work is organized as follows. In Section 2, we introduce
the framework and the nonlinear semigroup method developed in Feng and Kurtz
[10] to establish the LDP of {X;“;e,a > 0}. We present the conditions needed
to be checked later for our studied processes. In Section 3, we establish the LDP
in the case /o = 1. In Section 4, we deal with the LDP in the case ¢/ — o0 as
g, a— 0.

2. Framework. Let us begin with introducing three fundamental conditions on
the stochastic system (X;*,Y,””), which will be used throughout this work.

(A1) There exist constants K1, Ko > 0 such that
[b(z, 1) = b(y, )| + [lo(2,1) — oy, )| < Kilz =y,
|b(z, )| + [|o(x,i)|| < Ko, r,ycRY ieS.

(A2) For each z € R?, (g;j())i jes is a conservative, irreducible transition rate
matrix. Assume k1= SUD;es D cs j4i SUPzera ¢ij(T) < 0.
(A3) There exists a constant K3 > 0 such that

1Q(x) = QW)lle, :=sup Y _laij(2) — q;(y)| < Kalw —y|, x,y€R%
€S i
Under these conditions (A1)-(A3), the two time-scale system (1.1), (1.2) admit a
unique strong solution to any initial value X5 = zq € R? and Yy =ip € S; see,
e.g. [43] or [38] under certain more general non-Lipschitz conditions.

In this work we shall investigate the LDP for {X;%;e, @ > 0} using the nonlinear
semigroup and viscosity solution method. A general method was developed by Feng
and Kurtz in [10] to establish the LDP for Markov processes based on nonlinear
semigroups and viscosity solutions to HJB equations. Nevertheless, much effort
is needed to verify the abstract conditions to apply this method for two time-
scale stochastic processes. See, for instance, Peletier and Schlottke [35] and Kumar
and Popovic [27], where [35] studied the LDP by this method for two time-scale
system (Xy,Y;) where (X;) is a diffusion process over torus, and (Y;) is a jumping
process over a finite state space S. [27] studied the LDP for two time-scale jump-
diffusion processes. By Skorokhod’s representation theorem for jumping processes,
the regime-switching processes (X;'*,Y;”) can be viewed as a degenerate jump-
diffusion processes (cf. [30, Section 3]). As noticed in [3, page 3], the requirement
of Lipschitz continuity on the jump coefficients prevents the application of the LDP
results in [27] to our current setting.

We first introduce some necessary notations before describing the idea of argu-
ment. Consider the two time-scale system (X;*,Y,”") defined in (1.1), (1.2). For
h € Cy(RY), let

h(X®

ul (i) = 5log]E[exp (%) ‘Xg’“ . z} (2.1)

Let 7 , be the infinitesimal generator of the process (X;*,Y,”®), that is,
. ) - . . 1 . .
%,af(xv Z) = <b(£€, Z)a Vf(l', z)>+§tr(a(x, Z)vzf(x, Z))+ az qij (x)(f(xvj)ff(x, Z))
JjE€S

for f € C%(R? x S), where a(x,i) = o(x,i)0*(x,i). Define a nonlinear operator
H. o by

H. qu(z,i) = ee™ /ol oo/ (x,1). (2.2)
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It can be shown (see [10]) that u , is a viscosity solution of the Cauchy problem:
Ou = H. qu, in (0,T] xR xS,

u(0,2,i) = h(z), forzcRY icS,

where for each f € C?(R%), Vf(x) and V2 f(x) denote the gradient and the Hessian
matrix of f evaluated at x. We refer the reader to, e.g. [9], [11], for notions of
viscosity solution, subsolution and supersolution to Hamilton-Jacobi equations.

Along the nonlinear semigroup method of [10] to study the LDP for {X;%;e, a >
0}, the proof consists of the following steps.

(2.3)

Step 1. Taking appropriate limits of ug)a to (2.3), we get upper semi-continuous
and lower semi-continuous functions @ and w”, respectively.

Step 2. Using an index set A, we construct a family of operators Hy(-;/5) and
Hy(-;B) for B € A, such that @” is a viscosity subsolution to the Cauchy
problem for the operator infgea Ho(-;f3), and u® a viscosity supersolution
to the Cauchy problem for the operator supge, Hy(-;8). In our setting, the
operators Hy(-;03), k = 0,1, will be constructed differently according to the
different ratio €/« as €, a tend to 0.

Step 3. Find a suitable operator Ho( -) satisfying

L_igelgHo(wﬂ) < Ho(-) S;gng(-;ﬂ)

and establish the comparison principle for the Hamilton-Jacobi equations as-
sociated with Hg( - ), which further implies the convergence of u?,a to the so-
lution of the Cauchy problem for Hy( - ). Together with the exponential tight-
ness of {X;“;e,a > 0}, it follows from Bryc’s theorem that {X;*;e,a > 0}
satisfies a large deviation principle.

Asin [9] and [10], the desired results in Step 1 and Step 2 can be proved by check-
ing the following two families of conditions, Condition 3.1 and Condition 3.2. For
the convenience of the readers, let us introduce these conditions in a general frame-
work, and in the subsequent sections we shall verify these conditions in respective

cases according to o = € or €/a — 0.
Let

Dy ={f: f(z) = p() +log(1 + |z*);p € CZR?)},
D_ = {f: f(z) = p(z) —log(1 + |z*);p € CZ(R")}.
A collection of compact sets in R? x S is defined by
Q={KxK;KccR,LK ccS},

(2.4)

where K CC RY means that K is a compact subset of RY. K CC S is defined
similarly.
Take the index set

A={B=(£0);£€C.(S),0<0 <1} (2.5)
Let
D.. ={f; f € C*(R? x S), f has compact finite level set},
D, ={f; —f €D +}.
Given two functions

Hy(z,p;B) :RIx R =R, BeA k=01,
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define Hof(x) = Ho(z,Vf(x)) for f € D4, and Hy f(x) = Hi(z,Vf(x)) for f €
D_, where

Ho(z,p) = inf Ho(z,p; ), Hi(z,p) =21611KH1(x,p;/8)- (2.7)

Condition 3.1. For each f € D} and 3 € A, there exists f. € D, 4 such that
1. for each ¢ > 0, there exists K x KeQ satisfying

{(@,4); Heofe(w,1) > —c} 0 {(2,4); fo(2,4) < ¢} C K x K;

2. for K x K€ Q, lim sup |f-(z,i) — f(z)] = 0;
e=0 (z,4)EK XK
3. whenever (z.,7) € K x K € Q satisfies x. — = as ¢ — 0,

limsup He o fe(xe, 1) < Ho(z, Vf(z); B).

(e,a)—0
Condition 3.2. For each f € D_ and € A, there exists f. € D, _ such that
1. for each ¢ > 0, there exists K X KeoQ satisfying

{(2,0); Heofe(w,i) < e} n{(,0); felw,i) = —c} C K x K;

2. forcach K x K € Q, lim  sup  |fo(z,i) — f(z)] = 0;
€0 (z,i)eKxK

3. whenever (z.,i) € K x K € Q satisfying z. — z,

liminf H. o f-(2c,i) > Hy(z, Vf(2); B).

(e,0)—0

To establish the comparison principle, we shall use the following results estab-
lished in [30]. Let P} be the semigroup associated with the Q-matrix (g;;(x)), and
" its associated invariant probability measure provided it exists.

(A4) There exist constants ¢1, Ay > 0 such that
sup || P (4, ) — 7 lvar < cre”™t >0, e RY
€S

(A5) There exist a function 6 : § — (0, 00), a decreasing function 7 : [0, 00) — [0, 2]
satisfying fooo nsds < oo such that

| PE(iy ) — 7% lvar < (i), t>0,z€RY €S,

Proposition 1 ([30]). (i) Assume that (A2), (A3) and (A4) hold. Then R? > x
w* € P(8S) is Lipschitz continuous, i.e.

||7rw_77y||var é C7r|x_y‘7 .’E,yERd,

where Cp = LiKB.

(ii) Assume that (A2), (A3), (A5) hold. Then x — ©* is 1/2-Hdélder continuous,

i.e.
||7TI_7Ty||var S K4 V |33—y|, xayeRd7

where K4 = \/Kg(il’lfieg 0(i)) Jy° nsds.
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3. LDP for the switching systems in the case ¢/a = 1. In this section, we

consider the LDP of {X;"”;e,& > 0} in the situation that « = ¢ — 0. We begin

with checking Conditions 3.1 and 3.2. To this end, we introduce a drift condition to

cope with the case that S is infinitely countable. Such kind of condition was used

in the study of the LDP for Markov chains; see, e.g. [24].

(A6) Let ¢ be a function from S to [1,00). If S is infinitely countable, assume that
{i € S; ¢; < ¢} is compact for every ¢ > 0, and for every x € R?, there exist
constants cs, c3 > 0 and a compact set B in S such that

e ¢ Zqij(w)(e@' —e%) < —eo(i 4 e31p(i), i€ S. (3.1)
JjES
Define
T(x) = {(i,j) € S x §; gi(x) > 0} (3.2)
for z € R%, and
q(x) = . qij (). (3.3)

Theorem 3.1 (LDP in the case ¢/a = 1). Assume that conditions (A1)-(A3) and
(A6) hold. Suppose that for each R > 0, inf,j<rq(x) > 0 and for each v € R4,
i €S, there are finite number of j € S such that ¢;;(z) > 0. Then {X;%;e,a > 0}
given in (1.1), (1.2) with a = ¢ satisfies a LDP with speed 1/e and rate function

I(z,z0,t) = sup {h(x) — uh(t,xo)}, (3.4)
heCy,(R?)
where u” is the unique viscosity solution to the Hamilton-Jacobi equation (3.22)

below.

To prove this theorem using the nonlinear semigroup method, we need to make
some necessary preparation to check the conditions presented in Section 2. As we
consider only a = ¢ in this part, we write simply H. , = H. for the operator H,
given in (2.2).

Verifying Condition 3.1. For each f € Dy and each 5 = (£,6) € A with A given
n (2.5), let

gi = (1—0)& +6¢, and f.(z,i) = f(z) + eg;. (3.5)
Then,

H. f.(x,i) =(b(z,1), Vf(m)>+%<a(x, )V f(x), Vf(x))+ %tr(a(m, i)V2f(x))
+e 9 Q(x)ed (7),

where e 9 Q(z)e?(i) = 79 30 s qij(w)(e? — e9"). By Holder’s inequality and
Young’s inequality, as ¢;;(z) = — Zj# gij(x),

e 9 Q(x)e (i) = Z i (I)e(l—G)(éj—Ei)-‘r@(Cj—(i)

J#i
< ( Z qij (x)egj 7&) e ( Z Qij (x)eCfCi)e + qii(x)
J#i j#i
<(1-0) Z Qij(x)egji& +0 Z 0ij (2)e% ™% + gyi(z)

J#i J#i
= (1—0)e 5Q(x)e (i) + e Q(z)e (7).



LDP FOR TWO TIME-SCALE SWITCHING PROCESSES 2775

Therefore,
Hefo(r,) < (00,0, 910 g0l D95 @), D1 @) (e DV o
+ (1= 0)e 5 Qa)el (3) + ¢ Qe ().
Define the operator
Hy(z,p; B) zsgg {(b(x,i),p)+ %(a(m,i)p,p>+(1—9)e—fiQ(x)e£(i) .
’ 3.7
+0eQM@)) ), B=(€.0) €A,
and it holds that whenever (z.,i) € K x KeQ satisfying z. — x,
lim sup H fe(xe,i) < Ho(z,V f(x); B). (3.8)

In addition, by the definition of f.(z,i) and (A6), for each ¢ > 0, there exists
K x K € 9 such that

{(z,1); fo(z,i) <} C K x K,
and fl~1rther {(z,i); He fe(z,i) > —c} N {(w,i); fe(z,i) < e} C K X K. For each
K x K e Q,

lim  sup |fe(x,i) — f(z)| = lim  sup e[g;| =0.

€20 ek xR 20 4 iyeKx K

Consequently, we have verified Condition 3.1.
Verifying Condition 3.2. For each f € D_ and 5 = (§,0) € A, define

fg(x,i) = f(x) +¢eg; with g; = (1 + 9)& —6¢;,

then f. € D, _ and f- converges uniformly to f on every K x K e Q. Moreover,
(A6) implies that {(z,4); f-(v,i) > —c} is contained in some K x K € Q.
To check the last assertion in Condition 3.2, noting that

1
T (0 = &) —0(G =) + 745G -G =& — &

by Young’s inequality ab < a?/p + b?/q, we have

3 i (@)e8 6 = 3 gy (w)e s ((T0E&=€0=0—0)) + 25 (G~
J#i J;ﬁl

(1+9)(€ —&i)—0({—Ci) —Ci
S 52 ' Ry 5 ‘
+ J7#i + J7#i

1446

This yields
e~ (1+0)6:+0¢; Z i (m)e(l-&-e)ij—@@' > (1+6) Z Gij (x)efj_& | Z qij(x)ecj_<i7
Jj#i Jj#i J#i
and further
ef(1+9)£¢+04iQ(x)e(lJrG)&f%(i) — o~ (1+0)&:+0¢; Z qij(x)e(lJr@)Er@Cj + qii(x)
J#i
> (14 0)e 5 Q(a)et (i) — b= Q(2)e ().
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Hence,

H. fe(x,q) = (b(z, ), Vf(x)) + %<a(x, )V f(x), V() + %tr(a(x, )V f(x))
e~ (1H+0)&:+0C ) () o (1H+0)E—0C (;
+ Q( 1) (4) ) (3.9)
> <b(.7;, i)? Vf($)> + 5(@(.’[7, Z)Vf(l’), Vf(fﬂ)) + 51:1"(&(56, z)VQf(x))
+ (14 0)e Q)¢ (i) — B~ Q(a)e (i).

Define the operator
(2, 8) =g { (e 0), ) + 5 {a(e, D), ) + (14 0)e S Q) (i)

(3.10)
~0e7Qu)e (i)}, B=(&0)€EN.

Then it holds that whenever (z.,i) € K x K € Q with z. — z,

lim inf H_f(xc,i) > Hy(x,Vf(z); B). (3.11)

Consequently, under the assumption (A6), for the constructed operators Hy(x, p; 8)
in (3.7) and Hy(z,p;B8) in (3.10). Conditions 3.1 and 3.2 have been verified for
(X7, YY) in the case a = e.

Let

HO(:L'vp) = inf HO(mvp;ﬁ)v Hl(xap) :sule(x,p;ﬂ). (312)
BEA BEA
After verifying Conditions 3.1 and 3.2, according to [9, Lemma 4.1] or [27, Lemma

6], we can complete Step 1 and Step 2 as mentioned above in applying nonlinear
semigroup method. We conclude these assertions in the following lemma.

Lemma 3.2. Suppose (A6) holds. Let ul', given by (2.1) be the viscosity solution
to the Cauchy problem (2.3) for h € Cy(R?). Define

uff = sup{limsupug,a(ta,xg,i); I (te,xe,7) €10,T] x K X K,
€

—0
(te,x2) = (ta2), K x K € 9},
uft = inf { liminful (e, e, i); 3 (te, ze, 1) € [0,T] x K x K,
e—0
(te,xc) — (t2), K x K € Q},

and u" the upper semicontinuous reqularization of uf[b and u" the lower semicontin-
uous reqularization of u?. Then, @" is a viscosity subsolution to

Opu(t,x) < Ho(z, Vu(t,x)), u(0,z) = h(x),
and u” is a viscosity supersolution to
Owu(t,x) > Hy(z,Vu(t,z)), u(0,z)= h(x).

Proof. The proof is completely similar to [9, Lemma 4.1] after checking Condi-

tions 3.1 and 3.2 under assumption (A6). The uniform boundedness of u” _,

sup [[u _[|oc <00, follows easily from the definition of u/ , and h € C,(R?). O
e>0

i.e.
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Next, we proceed to Step 3 in applying the nonlinear semigroup method to
establish the LDP for {X;"“;a = > 0}. Introduce the operator

Ho(z,p) = sup {Z,uz x,1) +Z“Z a(z,i)p,p) — Io(w )}, (3.13)
HEP(S) * jes i€S

where

Io(wx) = inf Z i@ (3.14)

geDHH(Q*) ¢

and DTT(Q%) denotes the subset of domam of operator Q(z) which is strictly
bounded from below by a positive constant; &?(S) stands for the space of all prob-
ability measures over S.

Proposition 2. Assume (A6) holds. Then it holds
Hy(x,p) = Ho(z,p), =, peR™ (3.15)

Proof. When S is a finite state space, clearly e¢ € DT+(Q%). When S is an infinite
state space, by (A6), ¢ has compact finite level set, and hence e< € DT(Q%). Then,

: piQ i@
el g SX T &

gi i€S
Thus, the desired conclusion follows from [10, Lemma 11.35]. O

We proceed to show Hy(z,p) > Ho(z,p). For simplicity of notation, set

Vap(i) = (b(z,4),p) + %<a(%i)p,p>- (3.16)

Lemma 3.3. Let (f?)tzo be a continuous time Markov chain on & with transition
rate matriz (q;j(x)). For each x,p € RY, if there exists a constant C(z,p) such that

lim flogE [efo Vop(¥7)ds | C(z,p), Vies, (3.17)

t—oo ¢
then
Hl(xap) ZFO(zvp)a ’I‘,pGRd.

Proof. According to [10, Theorem B.12], if there exists a constant Cy such that
1 t v
lim - logE, [efo Ve (V)| — ¢y, (3.18)
t—oo §
for each v € P(8) satistying v(1)) > —oo with v; := e~%Q(z)e¢ (i), then
Hl(xap) zﬁo('rap)v x,pERd.

To prove this lemma, we only need to show that condition (3.17) implies condition
(3.18).
Denote by PV the Feynman-Kac semigroup

PY J(i) = Ei | f(V)els Vor 0008 f e (). (3.19)
Firstly, let us show that (3.18) holds with Cy = C(z,p) for v € Z(S) in the

form

v=> M, satisfying Ay €[0,1], > M\ =1land i, €S, meN.
_ k=1
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Indeed,

?S‘T)ds

RS ,
tlirrolo n log kz_l MePY 1(iy)

1 ¢
lim —logE, [efo Vap(
t—oo

. 1 Vs
tli?go 1g}cagxm ; log Pt 1(Zk)

= C(z,p).

A

On the other hand,

1 t v 1
A S Vi p (Y )ds:| S T P V(i) —
tlggo ; logE, {e 0 > tlggo  Din - log P 1(i) = C(x, p).

Secondly, for a general v € Z(S), there exists a sequence of u, € #(S) in the
form

Mn

/J/TL:Z/\;@L(S%”: )‘26[071]a Z)"I::L:L ZZGS
k=1 k=1

such that p, converges weakly to v. For each fixed z,p € R%, i — V, (i) is a
bounded function on S due to (Al), then it follows from the weak convergence of
tn to v that
lim E, {efo Vw<Ys">dS} = 1im Y )PV 1() = E, [efo Vz,p<Y!>d8]

€S

n—oo

Moreover, for any € > 0, there exists K > 0 such that for all n > K,
(1-¢)E,, [efo‘ vz,p&:)ds] <E, [efg vx.p&:)ds} < (1+€E, [efg vz,p&;)ds]

n

Therefore, by the arbitrariness of ¢, we obtain
1 ¢ o
1 — f Vi p (Y, )d5i| —
Jim ~logE, [eft C(z.p),
which completes the proof. O

Remark 1. (i) In Lemma 3.3, we assume the convergence of log-moment generat-
ing functions in (3.17) for the Markov chains (f@m)tzo associated with (g;;(2)): jes
for every & € R?. This condition can be used to prove large deviations estimates
for fg F(Y7)ds by standard large deviations techniques (cf. [5, Chapter 6]). Espe-
cially, when § is a finite state space, the limit (3.17) always exists for conservative,
irreducible Markov chains on S (cf. [5, Theorem 6.3.8, Remark p.275]).

(ii) When S is an infinite state space, the limit (3.17) corresponds to a type of mul-
tiplicative mean ergodic theorem, and many works have been devoted to this topic.
For example, Wu [42] proved the limit exists supposing the logarithmic Sobolev
inequality holds. Kontoyiannis and Meyn [23, 24] studied the multiplicative er-
godic theory using the spectral theory, which can yield the existence of the limit in
(3.17). Their tools rely on the geometric ergodicity or drift conditions. When V
is unbounded, [13] and [39] investigated this limit under the help of dimension-free
Harnack inequality.

Next, when S is an infinite state space, based on assumption (A6), we shall
introduce a proposition to guarantee the existence of limit in (3.17) according to
the investigation in [24]. The results in [24] are stated in the setting of discrete-
time Markov chains, which are also valid for the continuous-time Markov chains
analogous to the discussion in [23].
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Lemma 3.4. Assume (A2) and (AG) hold. Then, there exist constants €9 > 0,
0<mno <1, Ay p, a function f: S = R, constants by, by > 0 such that

t
E; exp {/ Vo (Vi)ds = th | — f(i)‘ < gpeGittitbot e S (3.90)
0

This yields that (3.17) holds with the constant C(z,p) = Ay p.

Proof. Notice first that condition (A2) means that the Markov chain (Y}7) is ir-
reducible and aperiodic. For any function W : & — (0,00], define the Banach
space

LZ:{g:S%R; sup 19 <oo}
ies Wi
endowed with the norm
|F]
Wy '
By virtue of [24, Theorem 3.4], if there is a function W : § — [1,00), a small set
C C S, and constants § > 0, b < oo, such that

e SQ(x)eS < —0W +blg, (3.21)

[1Fllw = sup
i€S

then there exist constants 9 > 0, 0 < 1y < 1, by, by > 0 and a function f:S—>R
such that for any F' € LY satisfying || F||w < &g we have

Ei[exp (/OtF(f/S””)ds— tA(F))} — fi

where A(F) is a constant depending only on F' and independent of the initial state
i € S. Therefore, to establish (3.20), we only need to find suitable function W on S,
a small set C' C S, constants 6 > 0, b < oo such that (3.21) holds and the function
Ve p satistying ||V pl|lw < €o.

By (A6) and the boundedness of V,,,, : S — R, we have lim;_, |V ,(¢)|/¢ =0,
and hence there exists an Ny € N such that sup;cs ;~n, [Va,p(7)|/¢ < €0- Moreover,
there exists a constant kg > 0 such that

max {|Vrp(l)|/(Cz +hko);1<i< NO} < ep.
Define our desired function W by
Wi =G+ kolg(i), i€,

< ||Fllwemsittizbot e s,

where C = {1,..., Ny} C S. Then
[Vepllw < eo.

Thanks to [31, Theorem 6.0.1] and [31, Theorem 5.5.7], the irreducible and aperiodic
property of the Markov chain (Y;*) yield that the compact set C'U B is a small set,
and it follows from (A6) that

e ¢ Q(z)eS < —caW + cokolys + c3lp < —coW + (coko + ¢3)15 -
Consequently, (3.21) and further (3.20) hold by [24, Theorem 3.4]. O
Invoking Lemma 3.4 and Lemma 3.3, we obtain that:
Proposition 3. Let conditions (A2) and (A6) hold. Then,
Ho(z,p) < Hi(z,p), z,peR
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Now we go to establish the comparison principle for the Hamilton-Jacobi equation

Oyu = Ho(z, Vu), u(0,2) = h(z), (3.22)

i.e. for any viscosity subsolution u(t, z) and any viscosity supersolution wu; (¢, ) to
(3.22), it holds

ug(t,x) < uy(t, ), (t,z) € [0,T] x RY.

To this end, we shall use the comparison principle established in [16], and pro-

vide appropriate conditions on the coefficients of (X;**,Y,”") to verify the required

conditions in [16]. According to [16, Theorem 2| and the discussion following [16,

Theorem 1], we introduce a general comparison principle for a Hamilton-Jacobi

equation. The conditions and the Hamiltonian H there have been simplified to
adapt to our current setting.

Lemma 3.5 (Ishii [16]). Consider the Hamilton-Jacobi equation
Owu+ H(x,Vu(t,z)) =0, in (0,T) x R?, (3.23)
where T > 0 is a given constant. Assume the following conditions hold.
(H1) The function (x,p) — H(z,p) is continuous on R? x RY.
(H2) For each R > 0 it holds
Tli)ngo inf { H(z,p); x € Br(0), |p| > r} = oo,

where Br(0) denotes the closed ball centered at 0 with radius R.

(H3) The function p — H(z,p) is convex and
ox
H(Z‘,O) SO, and H(.T,—W> SC

for all x,t and for some §,C > 0.
Let u and v be respectively a viscosity subsolution and a viscosity supersolution to
(3.23). Assume that uw(0,2) < v(0,z) for all x € R?, and that infgay o ryv > —00.
Then u < v on R4 x [0,T), that is, the comparison principle holds for the equation
(3.23).

Theorem 3.6 (Comparison principle). Assume (A1)-(A3) hold and inf |, < q(x) >
0 for every R > 0. Suppose that for each x € R?, each i € S, there are only
finite number of j € S such that ¢;;(x) > 0. In addition, suppose that there exists
7 :[0,00) = (0,00) such that for each R >0

(a(z,9)p,p) > n(R)|p|*>, Vz € Br(0), i€ S, peR™

Then the comparison principle holds for the Hamilton-Jacobi equation (3.22), which
implies that the viscosity solution to (3.22) is unique.

Proof. We shall prove this theorem by Lemma 3.5, and hence we need to verify the
conditions (H1)-(H3) of Lemma 3.5.

By virtue of the expression of Ho(z,p) in (3.13), due to (A1), it is clear that
p— Ho(x,p) is convex, Hg(x,0) = 0 by noting Q(z)1 = 0, and
— —2z
i ( 7) < 2Ky,
P apr1) =2
Therefore, condition (H3) of Lemma 3.5 is satisfied.

In order to check (H1) and (H2) of Lemma 3.5, the key point is to show the
uniform continuity of x — Ig(u;z) wrt. p € Z(S). For R > 0, Bg(0) stands
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for the closed ball in R? centered at 0 with radius R. By the hypothesis of this
theorem, for every z € R? and every i € S, there are only finite number of j € S
such that g;;(z) > 0, which means that for every measurable function h on S,

. PPh(i) = h(i) . )
ltli(r)lf =Q(@)h(i), €S,

and hence h is in the weak domain D(Q®) of generator Q(z). This means that
D(Q") = #A(S), and hence

Io(wx) = inf Z pigij(z (*_ )
gED**(Q )1]68 it 9i

g
= Sup Z Mz‘qz‘j(m)( —*])
gEB(S), 9>0; iES i) 9i

(3.24)

This deduces that D™+ (Q*)=D*+(Q¥) for x,y €R% and x#y. For each z € Br(0),
for any € > 0, there exists a measurable function g¢ with g¢ > 0 such that

0<Ig(mwa)< > pigi(x (1 - —) + €.
i,jE€S,i#] Yi

This yields
E

Z igij (@ gﬂ < Z 1iqij(x) + € < K+ e,
?

1L,JES,i#] 1,J€S,i#]
where constant & is given in (A2), and further that
9; 1
wi—= < ——(k+e€). 3.25
> =g m)( ) (3.25)

(4,5)€T(x)
Then, for any y € Br(0), by (A3) and (3.25),
Io(ps ) — Ig(m;y)

€

gs
<e+ Z qz] qz](y)|:uz(1+ ;i)

1,jE€S,i#] ¢
€
<6+K3|xfy|(l+ Z i —= )
et Ui
K+ €

Se+ Kslz—y|+ K3 =yl

—|T
1Df\z|<R Q( )

By the arbitrariness of € and the symmetric position of x and y, there exists a
positive constant C'(R) independent of p € £(S) such that

Ho(wz) = lo(wsy)| < C(R)|lz —yl,  x,y € Br(0). (3.26)

By virtue of the definition of Hy(z,p) in (3.13), for z, y, p, p’ € R% and for any
€ > 0 there exists p. € Z(S) such that

Ho(z,p) — Ho(y,p)
<> s [(b(x,4), p) + (alz, i)p, p) — (b(y. 1), ') — (aly, i)p/, p')]

€S
—Ig(pSz) + Ig(pSy) +e
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By (A1), (3.26), the arbitrariness of €, and the symmetric position of z,y, we can
derive from this estimate that (z,p) — Ho(x,p) is continuous, i.e. (H1) of Lemma
3.5 holds.

By (A2) and (3.24), Ig(u, z) < k, and hence

lim inf {Ho(z,p); = € Br(0),|p| >}

T—00

> lim inf { sup { — Kalp|+n(R)Ip|*—Iq(u;2)}; « € Br(0),|p| >}
r—00 #69(5)

= Q.

So we have verified (H2) of Lemma 3.5. Consequently, we obtain from Lemma 3.5
that the comparison principle holds for the Hamilton-Jacobi equation (3.22). O

Proof of Theorem 3.1. Invoking Lemma 3.2, Proposition 2, Proposition 3 and
Theorem 3.6, and applying [9, Lemma 4.2], we obtain that

a" = u" =", and lim sup sup |u?)s(t,x,i) —u(t,z)| =0 (3.27)

€704€(0,T) (2,i)e K x K

for any K x K€ Q, where u" is the unique viscosity solution to the Hamilton-Jacobi
equation (3.22).

To see {X;%;e,a > 0} is exponential tight, let f(z) = log(l + |z|?). Then
f(z) = 0o as |z| — oo, and sup,cra{|Vf(z)|e + |[V2f(z)|} < co. For any ¢ > 0
there exists a compact set K. C R? such that f(x) > c for any x ¢ K.. Taking
fo(x,d) = f(x) for v € R4, i € S, it holds

H.f.(x,i) = ce T/ o ef</% (1)
= (b(a, 1), V() + 5la(e, )V (), VF(@) + Str(ale, )97 ().
By (A1), there exists a constant C' > 0 such that

sup  H.f.(x,i) <C.
r€Re €S

Since
M= e {F0XE) = $165) - [ g0z v as)

is a nonnegative local martingale, it follows from the choice of K. and the estimate
above that

P(X5® ¢ K,)elc—F@)=Ct)/e < E[ef(Xf’a)—f(XS)—fJ Haf(X?O‘%E'O‘)dS} <1

Hence, elogP(X;* & K.) < tC + f(x0) — ¢. Since C is fixed and independent of ¢,
this means that {X;"*;e, & > 0} is exponentially tight.

Consequently, applying Bryc’s theorem, {X;“;e = a > 0} satisfies the LDP
with rate 1/e and good rate function I(z,zg,t) given in (3.4). O

Remark 2. In Theorem 3.1, when S is finite, (A6) is a trivial condition, and one
only needs to pay attention to the restriction inf|, <z g(z) > 0 for each R > 0. This
type of condition on ¢(z) is also used in [3, Assumption 2.3, where it is assumed
that inf,cpa g(z) > 0, which is a little stronger than ours.
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4. The LDP in the case ¢/a — oo. In this section, we go to investigate the LDP

for the system (X;*,Y;"®) when the time scales satisfying lim o)_0&/a = o0.

We still use the notations A, Dy, D_, D, 1, D. _ given in (2.4), (2.5) and (2.6).

Instead of (A6), we shall use the following drift condition in this part.

(A7) Let ¢ : & — [0,00). If S is infinitely countable, suppose that {i;¢; < ¢} is
compact for every ¢ > 0, and for each = € R? there are constants c4,cs > 0
and a compact set B C S such that

Q(x)C(i) < —eali + cs15(i), foranyie€S. (4.1)
According to [24, Proposition 2.1], the condition (4.1) in (A7) is weaker than the
condition (3.1) in (A6).
Verifying Condition 3.1. For 8 = (£,0) € A, and f € D, let

fa(z,i) = f(z) + ag;, with g; =& +0(, zeRYieS. (4.2)

Then f, € D, and f, converges to f as o — 0 uniformly on compact sets.
Moreover, (A7) yields that for every ¢ > 0, {(x,1); fa(z,4) < ¢} is contained in
some K x K € Q.

Next, a direct calculation yields

H, o fo(z,i) = ce & o, ne'® (2,1)
= (b, ), V() + 5a(e, )V (), VF (@) + Str(ale, )97 £(2))
4= qu eE(gj gi)_]_).

J#l
(4.3)

Under the assumption (A2), for each i € S and z € RY, there is only finite number
of items in the summation } ., g;;(x) (e2(9i=9:) —1). Noting further that =0
as (g,a) — 0, we obtain

hm un es(gﬂ 9:) un - gi)- (4.4)

(e,a)—0 &
J#i

Here and in the remainder of this subsection, we use the notation I 5 (¢, @) — 0 to
represent taking the limit as (g, a) — 0 satisfying at the same time ¢/a — oo.

Different to Hy(x,p; ) defined in (3.7) in the case ¢ = «, now we define the
operator Hy(x,p; 8) for 8= (£,0) € A by

HO(x7p; B)
; 1 . : ‘ (4.5)
- i,gg {<b(x,z)ap>+2< a(z,?)p,p)+Q(x )5(2)—004§i+90513(z)}’
where ¢ is given in (AT). Then, we derive from (A7) and (4.4) that
limsup H; o fo(z,i) < (b(z,7),Vf(x))+ %(a(a:,i)Vf(x), Vf(z))
I's(e,a)—0
+> ai(x — Ocali + Oes1 5 (i) (4.6)

Jj#i
< Ho(x,Vf(x); B).
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Therefore, all the three assertions in Condition 3.1 have been checked.
Verifying Condition 3.2. For 8 = (£,0) € A, let feD_andg =& —0(,i€S
with € € C(S). Let fo(x,i) = f(z) + ag;. Define

Hl(x7p; B)

= int {{b(a,1),) + 5 a(z, )p, )+ Q()E()+ st —0es 1 (1) ).

(4.7)

Then,
o foc D, _, and fu converges uniformly to f on every K x KeQasa—0.
e For ¢ > 0, {(z,1); fa(x,i) > —c} is contained in some K x K € Q due to (A7).
e Completely similar to (4.6), one gets
liminf H. ofo(z,7) > Hi(z,Vf(z); ). (4.8)
I's(e,a)—0
Hence, Condition 3.2 has been checked.

Lemma 4.1. When S is infinitely countable, under (A2), either condition (A7) or
condition (A6) implies condition (A5).

Proof. As mentioned above, (A7) is weaker than (A6), hence we only need to prove
(A5) from (A7). By virtue of [32, Theorem 6.1], it follows from (A7) that there
exist constants R, A > 0 such that

|PE (i) — 7% |lvar < R(1+()e ™, t>0,ieS8,zeRY

The constants R, A may depend on the function C~, and ¢4, ¢5 in (A7), It is clear

that e~ is integrable over [0,00), and hence (A5) holds with 6; = R(1 + ¢;) and
—Xt

= . O

Lemma 4.2. Suppose that (A1)-(A3) and (A7) hold. Then the Markov chain
associated with (g;;(x)) admits a unique invariant probability measure ™, which is
1/2-Hélder continuous from RY to 2(S).

Proof. When S is finite, since (g;;(x)) is irreducible, (g;;(x)) admits a unique invari-
ant measure 7. When S is infinitely countable, by Lemma 4.1, the Markov chain
associated with (g;;(x)) is ergodic and has a unique invariant probability measure
7. Moreover, as shown in the argument of Lemma 4.1, (A7) yields that (A5) holds
with 6; := R(1 + ¢;). Furthermore, we can even get from (A7) that

Q(z)8(i) = RQ(x)( ()
< —ReyC; + Res1 (i)
= —040(1') + Req + R051B(i)7

which implies that the condition (2.7) in [30, Theorem 2.4] is also satisfied. Conse-
quently, according to Proposition 1(ii), we have that x — 7% is 1/2-Holder contin-

uous. O
Let
H, = inf H ; H = H 1 B).
o(z,p) inf o(z,p; B), 1(x, p) [S;éﬁ 1(z,p; B) (4.9)
Define

Ho(w,p) = (), p) + 3 (@@)p. ), (110)
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where

b(a) =Y wfb(x,i), alx)=Y nfa(x,i), xzeR™
= ies
Lemma 4.3. Suppose (A1)-(A3) and (A7) hold. If S is infinitely countable, assume

further that for every x,p € R the solution (§;(x,p))jes to the following Poisson
equation is bounded:

> aij(@) (& (@, p) = &ilw,p)) = milw,p), €S, (4.11)
J#i
where
mlwp) = (6(2), ) + 5{a(2)p. ) — (6, 9),9) + 5 {alz, )p. ).
Then,

HO(x7p) S Fo(l’,p) S Hl(‘T,p)a T,p € Rd' (412)

Proof. (i) Consider first the case that S is a finite state space. By the definition of
b(x) and a(z), it holds

> wimi(w,p) =0, xpeR” (4.13)
i€S

The Fredholm alternative theorem yields that for every x,p € R? there exists a
solution (& (z,p))ies to the Poisson equation (4.11), which is unique up to adding
a constant. The solution (& (z,p))ics to (4.11) obviously belongs to C.(S) since S
is compact itself. Due to the definitions in (4.9), we have

Ho(w,p) < inf Ho(x,p; (&(x,p),0))

— inf sup {(B(x).p) + > (a(@)p,p) — eals + Oes1 ()}

0<0<1 jcs 2
_ 1
< inf ~(a 14(i
< nf sup {(b(z),p) + 5 (@(@)p.p) + bes 5()}
= Fo(ﬂf,p)

Similarly,

Hi(z,p) > sup Hi(z,p;((2,p),0)) > Ho(z,p).
0<h<1

As a consequence,
Ho(l’ap) S FO(QT,p) S Hl(m;p)7 x,p S Rd'

(ii) Now consider the case S = {1,2,...}. The equality (4.13) still holds in this
case, and hence the solution (él (z,p))ics to (4.11) exists. However, a new difficulty
comes from the fact that (&;(x, p))ies may not belong to C.(S). Therefore, we need
to use the truncation method to define

&™(x,p) = &(@,p)li<m  for m € N.
Then,

@)0) - Tty @E@p).  fi<m,
(z,p) (@) +qi(x)&i(x,p)— > qij(x)&(w,p), ifi>m.

J>m,j#i

L
o
—~
8
NI

A AT
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According to the assumption that (éz(ili, p))ics is bounded, there exists a positive
constant Co(z,p) such that

sup [&(x,p)| < Co(a,p), i€, (4.14)
i€

Then, by (A2) and (A7), for all m > 1,
Jlim Q)€™ (w,p)(i) — Beal;

Zgrélquzg Sup |6k (2, ) —&i (2, p)| —BcaCi (4.15)
J#i k,ies
= —o00.

Combining this with the estimate

. 1 ) 1
<b(l’,l)7p> =+ 5<a(1',l)p,p> < KQ‘p| + §K22|p|27

there exists i € S such that for all m > 1 and for all i € S with ¢ > ¢/,
(b, 1), ) + 5 {a(e, D) + QIE™ (2, p) (1) — O
< (b, 1),1) + 3 (ol U, p) + QU)E™ () (1) — s

for z,p € R%, 6 € (0,1). Hence, for all m > 1,
. 1 . P . =
sup {(b(x,i),p) + Slala, i)p,p) + Q@)™ (&, p) (i) — Oeati + fcs1p) )
1€

= sup { (b, ).9) + 5 (ale. Dp. ) + QE™ (2. p)(0) — el + OesLp )

Invoking the definition of Hy(x,p),
Ho(z,p)
<liminf inf Ho(gc p; (E™(2,p),0))

m—oo 0<0<1

< liminf inf sup{(b(x,i),p)—&—%(a(x,i)p,p>+Q(w)«§m'(x,p)(i)+ 9051&@)}

Mm—00 0<0<1; <4/

< liminf inf 5up{(b(x),p) qu x)&i(x,p) )+0cs1 50} (4.16)
m—00 0<<1,</ =
< (B(2).1) + 5 a(e)p,p)
= Ho(z,p).
Similarly, we can show that
Hy(x,p) > limsup sup H; (x,p; (fm(w,p), 0)) > Ho(z, p). (4.17)

m—oo 0<0<1

Combining (4.17) with (4.16), we finally get (4.12) and complete the proof. O

Lemma 4.4 (Comparison principle). Assume (A1)-(A8) and (A7) hold. In addi-
tion, suppose that there exists 1 : [0,00) — (0,00) such that for each R > 0

(a(z,i)p,p) > n(R)|p|>, Yz € Bgr(0), i€ S, peR.
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Then the comparison principle holds for the Hamilton-Jacobi equation
Ou = Ho(z,Vu) in (0,T) x RY, (4.18)
u(0,2) = h(z) in RY, .

where h € Cy(RY).

Proof. By Lemma 4.3, z + 7% is 1/2-Holder continuous. Together with (A1), we
obtain that b, @ are also 1/2-Holder continuous, and further

(z,p) = Ho(z,p) = (b(z),p) + %(a(x)p,m is continuous.

Clearly, p — Ho(x,p) is convex by the nonnegative definiteness of a. Hence, (H1)
of Lemma 3.5 has been checked. (H3) of Lemma 3.5 is obvious by the boundedness
of b and @ due to (Al). By (Al), |b(z)| < K,

li}m inf{H (z,p); = € Br(0),|p| > r}

> lim inf{—FKo[p| +n(R)Ip* [p| = r}

= Q.

This implies that condition (H2) of Lemma 3.5 holds. Consequently, the comparison
principle holds for the Hamilton-Jacobi equation (4.18). O

Theorem 4.5 (LDP in the case e/a — o0). Suppose that the assumptions of
Lemma 4.3 hold and that e/a — o0 as €, — 0. In addition, suppose there exists
7 :[0,00) = (0,00) such that for each R >0

(a(z,i)p,p) = n(R)p]*, V€ Bg(0), i€ S, peR™
Then {X;%;e,a > 0} satisfies the LDP with rate 1/¢ and good rate function

I(z,20,t) = sup {h(z)—u"(t,20)}, (4.19)
heCy (RY)
where u" is the unique viscosity solution to (4.18).

Proof. Following the approach of [10], it follows from Lemmas 4.1 and 4.3 that

lim  sup  sup |ul (¢, z,i) —u"(t,x)] =0
I3(,0)=0te(0,T) (4, i)e K x K

for any K x K € Q, where u” is the unique viscosity solution to (4.18). Since the
exponential tightness of {X;*;e,a > 0} has been proved in Theorem 4.5, we get
that {X;“;e,a > 0} satisfying lim(. )¢ €/a = oo satisfies the LDP with rate 1/¢
and rate function I(z,xo,t) given in (4.19) by virtue of Bryc’s theorem. O

In Theorem 4.5, we impose a condition on the boundedness of the solution to
the Poisson equation (4.11) when & = {1,2,...}, which is needed to establish the
comparison principle. There are a lot of investigations on Poisson equations, but it
is not an easy task to provide explicit conditions to ensure the boundedness of the
solution. This is an interesting topic to be studied later.

In the following, for a special class of Markov chains, single-birth processes, we
provide an explicit solution to the Poisson equation, hence its boundedness can be
checked immediately. Moreover, see [4, Theorem 1.1] for the explicit solutions to
more general Poisson equations for single-birth processes.
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Example 1. Assume that (g;;()) is a conservative Q-matrix satisfying g;(i41)(z) >
0, ¢ix(x) =0for all i € S and k > i+ 2. Let

n—1

1 .
SaP@EY, n>ix1,

Fi(i) =1, ngi) =
qn(nJrl)(x) e

k
where  ¢\®(z) := anj(x), 1<k<n.
j=1

Then for a function f on S, the solution g to the Poisson equation

Qz)g = f
has the following explicit representation in terms of (g;;(z))
(4)
Jal2n's

g 152 GG (@)
Example 2. Consider the following two time-scale system:
AXE = p(X5% Vo) dt + VedW, 420)
X5 =z €R, Yo =g €S,

where _
b(x,i) = e 'sinz, 1€S8, xR,

S =1{1,2,...} is an infinite state space, (Y,”") is a jumping process on § satisfying
(1.2) and for every i > 2, ¢;i(z) = — 3~ ;s ¢i5(7),

Giit1(x) =1+cosx, qy_1(x) =i* —cosa, ¢ij(x) =0, Vj&{i,i —1,i+1},
and —q11(z) = q12(x) = 1 4+ cosz. It is clear that conditions (A1)-(A3) hold.

Taking

G =log(i+3), ie€S,

we have that for some C' > 0, K € N,

e Y i) (€ = )

jes
1
= m(qiiﬂ(iﬂ) - Qiiq(x))
= - 1+ cosz —i? + cosw
1+ 3

Consequently, (A6) has been checked. Therefore, Theorem 3.1 implies that (X;'“)
satisfies a LDP when oo =¢ — 0.
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