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ABSTRACT
This paper investigates the optimal control problems for the finite-horizon continuous-time Markov
decision processes with delay-dependent control policies. We develop compactification methods in deci-
sion processes and show that the existence of optimal policies. Subsequently, through the dynamic
programming principle of the delay-dependent control policies, the differential-difference Hamilton-
Jacobi-Bellman (HJB) equation in the setting of discrete space is established. Under certain conditions, we
give the comparison principle and further prove that the value function is the unique viscosity solution to
this HJB equation. Based on this, we show that among the class of delay-dependent control policies, there
is an optimal one which is Markovian.
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1. Introduction

Continuous-time Markov decision processes (CTMDPs) have
been studied intensively due to their rich application in
queuing systems, population processes, see, e.g. the mono-
graphs (Baüerle & Rieder, 2011; Ghosh & Saha, 2012; Guo
& Hernández-Lerma, 2009; Prieto-Rumeau & Hernández-
Lerma, 2012) and the extensive references therein. From the
viewpoint of realistic applications, it is natural to investi-
gate the optimal control problem with delay-dependent con-
trols. The delay caused in the approach of observing the
state of the system, making a decision based on this state,
and then inputting this decision back into the studied sys-
tem. However, the system maybe has changed its state at that
time. More generally, this control policies are also known
as history-dependent control policies, see, for example, Guo
et al. (2015, 2012), Guo and Liao (2019), Huang (2018), Kumar
and Chandan (2015), Piunovskiy and Zhang (2011), Prieto-
Rumeau and Lorenzo (2010), and Zhang (2017). In this workwe
develop the viscosity solutions approach of CTMDPs, and it is
worth noting that due to the consideration of delay-dependent
controls, the controlled system is no longer a Markovian pro-
cess. For this reason, relevant theoretical tools, such as compact-
ification methods, comparison principle, differential-difference
HJB equations and viscosity solutions approach, have also been
discussed again.

It is a fundamental problem in the study of MDPs to dis-
tinguish the impact on the value function by taking account
of all history-dependent policies or of merely Markovian poli-
cies. For the discrete-timeMDPs in a finite state space, Derman
and Strauch (1966, Theorem 2) established a basic result which
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implies that for any history-dependent policy there exists a ran-
domised Markovian policy such that the associated controlled
process admits the same marginal state-action distributions.
This result also implies that with respect to the criteria of
expected discounted, non-discounted costs and expected aver-
age costs, the optimisation problem over history-dependent
policies and over Markovian policies will derive the same
value function, see Derman and Strauch (1966) and Fein-
berg et al. (2013). For the situations of infinite state spaces or
unbounded cost functions, more cautious research methods are
needed. We constructed an explicit example (see Appendix)
to illustrate that if there are no appropriate constraints on the
transition probability matrix and cost function, the value func-
tion on the history-dependent policies is not equal to that
on the Markovian policies. Therefore, discussing appropriate
constraints to ensure consistency of the value function across
different policy sets is also one of the topics of this article.

As is well known, the expected finite-horizon criterion
is a widely used optimality criterion for CTMDPs optimisa-
tion problems, which has been studied by numerous works,
see e.g. Baüerle and Rieder (2011), Ghosh and Saha (2012),
Guo et al. (2015), Miller (1968), Pliska (1975), and Yushke-
vich (1978). For finite-horizon CTMDPs with finite state and
action space, Miller (1968) gave a necessary and sufficient con-
dition for the existence of a piecewise constant optimal policy.
Subsequently, the state space of CTMDPs had been generalised
to denumerable space (cf. Yushkevich, 1978) andBorel space (cf.
Pliska, 1975), and the existence of an optimalMarkov policy had
been proven under the bounded hypothesis of transition rates
and cost functions. Recently, Baüerle and Rieder (2011) studies
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the finite-horizon CTMDPs with Markov polices by a method
based on the equivalent transformation from finite-horizon
CTMDPs to infinite-horizon discrete-time Markov decision
processes. The corresponding optimality equation had been
established according to the existing theory on discrete-time
Markov decision processes. In addition, Ghosh and Saha (2012)
considered the finite-horizonCTMDPs in Borel state space with
bounded transition rates and Markov policies. The existence of
a unique solution to the optimality equation is guaranteed by
the Banach fixed point theorem, relatively, the existence of an
optimal Markov policy is based on Itô-Dynkin’s formula. The
finite-horizon CTMDPs with unbounded transition rates are
investigated in Guo et al. (2015).

The work (Guo et al., 2015) also studied the history-
dependent control problem for jumping processes. The precise
construction of such kind of controlled system is presented.
However, via the main result (Guo et al., 2015, Theorem 4.1),
the value function V∗(t, i) (t> 0), defined in Guo et al. (2015,
p.1069), associated with the optimal control problem over the
set of randomised Markov policies can be characterised as a
unique solution to a differential equation, and in such case the
optimal Markov control policies are shown to exist. Neverthe-
less, if considering the control problem over the set of history-
dependent control policies, there is no result in Guo et al. (2015)
on the existence of the optimal control and on the characterisa-
tion of the associated value function. In the current work, we
shall show the existence of the optimal controls over the set of
delay-dependent controls and characterise the associated value
function.

The approaches used in the aforementioned works in the
study of CTMDPs rely on the characterisation of the Markov
chains, and are not suitable to our current situation any longer
since the controlled process is no longer aMarkovian one caused
by the delays. We develop the compactificionmethod used usu-
ally in the control problem for diffusion processes to the setting
of jumping processes in order to show the existence of the opti-
mal delay-dependent control policies. This is the starting point
of this work. Precisely, the main contributions of the present
paper are as follows:

(i) In comparison with Ghosh and Saha (2012) and Guo
et al. (2015), ourmethod used in the existence of an optimal
delay-dependent control does not involve the solvability of
the optimality equation, but is based on the compactifica-
tionmethod,which is an effectivemethod in the research of
the optimal control problem of jump-diffusion processes,
cf. Chow et al. (1985), Dufour and Miller (2006), Hauss-
mann and Suo (1995a, 1995b). The basic idea is inspired
by Kushner (1975), Haussmann and Suo (1995a, 1995b).
Our approach is also suitable to other optimality criteria in
the study of CTMDPs such as expected discounted, average
and risk-sensitive.

(ii) According to themeasurable selection theorem (cf. Stroock
& Varadhan, 1979), the dynamic programming princi-
ple is established in Theorem 4.1, which deduces that
the value function is a solution to a HJB equation pro-
vided the value function to be regular enough. Here the
HJB equation is a differential-difference equation. We
develop the viscosity solution approach to such equation,

and especially we establish the comparison principle for
such differential-difference HJB equation. In the second-
order HJB equations, Jensen (1988) extended the classical
Alexandrov Theorem (Alexandrov, 1939) to semi-convex
functions, providing the results of comparison principle
and establishing the uniqueness of viscosity solutions in
this context. Later the uniqueness result was generalised
by Ishii (1984, 1989) to the equations satisfying standard
Lipschitz regularity assumptions. While the differential-
difference HJB equation studied in our paper differs from
second-order partial differential equations, the compari-
son principle and the uniqueness of viscosity solutions we
present are inspired by the aforementioned results.

The rest of our paper is organised as follows. In Section 2,
we state the concept of delay-dependent controls and the opti-
mality problems of CTMDPs, and further introduced the main
assumptions of this article. For the convenience, the optimal-
ity problem is reformulated on the canonical path space. In
Section 3, by developing the compactification method within
the framework of MDPs, we prove the existence of the opti-
mal delay-dependent controls. In Section 4, we study the HJB
equation derived from the dynamic programming principle
through the viscosity solution approach. In order to prove the
existence and uniqueness of viscosity solution, we also prove
the comparison principle under the framework ofMDPs. Invok-
ing the corresponding results on the optimal control problem
over Markovian control policies, we further show that there
must exist an optimal Markovian control policy for the control
problem over the class of delay-dependent control policies.

2. Formulation and assumptions

The objective of this section is to describe briefly the con-
trolled process and the associated optimal control criterion in
this paper. Let (�,F , (Ft)t�0,P) be a filtered probability space
satisfying the usual conditions, i.e. (�,F ,P) is complete, the fil-
tration (Ft)t�0 is right-continuous and F0 contains all P-null
sets inF . LetS = {1, 2, . . .} be the countable state space,U be
the action spacewhich is a compact subset ofRk for some k ∈ N.
Denote byP(U) the collection of all probability measures over
U, which is endowed with L1-Wasserstein distanceW1 defined
by:

W1(μ, ν) = inf
{∫

U×U
|x − y|π(dx, dy); π ∈ C (μ, ν)

}
,

where C (μ, ν) stands for the set of all couplings of µ and ν in
P(U). Since U is compact, P(U) becomes a compact Polish
space under themetricW1, and the weak convergence of proba-
bility measures inP(U) is equivalent to the convergence in the
W1 distance (cf. e.g. Ambrosio et al., 2005, Chapter 7). In this
work we investigate the finite-horizon optimal control problem
on [0,T], where T> 0 is fixed throughout this work.

For each μ ∈ P(U), (qij(μ)) is a transition rate matrix over
the state space S , which is assumed to be conservative, i.e.

∑
j�=i

qij(μ) = qi(μ) = −qii(μ), ∀ i ∈ S , μ ∈ P(U).
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The process (�t) is an Ft-adapted jump process on S
satisfying

P(�t+δ = j |�t = i,μt = μ)

=
{
qij(μ)δ + o(δ), if i �= j,
1 + qii(μ)δ + o(δ), otherwise,

(1)

provided δ > 0.
In order to introduce the delay-dependent control, we first

introduce some notations. Given any metric space E, denote by
C ([0,T];E) the collection of continuous functions x : [0,T] →
E, and D([0,T];E) the collection of right-continuous functions
with left limits λ : [0,T] → E. For r0 ∈ (0,T) and s ∈ [0,T],
define a shift operator θs,r0 : D([0,T];S ) → D([0,T];S ) by

(θs,r0λ)(t) = λ((t − r0) ∨ s), t ∈ [0,T]. (2)

Moreover, θks,r0λ(t) := λ((t − kr0) ∨ s) for λ ∈ D([0,T];S ),
k ∈ Z+. For more properties and discussions on shift operator,
please refer to Billingsley (2013, Appendix M22, p. 258). Next,
we introduce the concept of delay-dependent control.

Definition 2.1: Fix an arbitrarym ∈ Z+ and r0 > 0. Given any
s ∈ [0,T) and i ∈ S , a randomised delay-dependent control is
a term α = (�t ,μt , s, i) such that

(i) (�t) is an Ft-adapted jump process satisfying (1) with
initial value�s = i.

(ii) There exists a measurable map h : [0,T] × S m+1 →
P(U) such that

μt = h(t, θ0s,r0�(t), . . . , θ
m
s,r0�(t))

for almost all t ∈ [s,T]. (3)

The parameter r0 > 0 is used to characterise the time interval
of delay of the controlled processes, and m ∈ Z+ for the num-
ber of delay. The collection of all delay-dependent controlαwith
initial condition (s, i) is denoted by
s,i. When the starting time
of the optimal control problem is s, as we have no further infor-
mation on the controlled system before the initial time s, we
use the state of the process (�t) at time s to represent its states
before time s, which is reflected by the definition of μt through
Equation (3). Such treatment has been used in the study of opti-
mal control problem over history-dependent policies; see, for
instance, Guo et al. (2015, 2012).

Let f : [0,T] × S × P(U) → [0,∞), g : S → [0,∞) be
two lower semi-continuous functions. The expected cost for the
delay-dependent control α ∈ 
s,i is defined by

J(s, i,α) = E

[∫ T

s
f (t,�t ,μt) dt + g(�T)

]
, (4)

and the value function is defined by

V(s, i) = inf
α∈
s,i

J(s, i,α). (5)

It immediately implies that the value function V satisfies
V(T, i) = g(i), ∀ i ∈ S . A delay-dependent control α∗ ∈ 
s,i
is said to be optimal, if V(s, i) = J(s, i,α∗).

The set of delay-dependent controls introduced in Defini
tion 2.1 contains many interesting control policies. Next, we
present some examples below.

Example 2.2: We consider the optimal control problem with
initial time s = 0.

(1) μt = h(�t) for some h : S → P(U). In this situation, α
is corresponding to the stationary randomisedMarkov pol-
icy studied by many works; see, e.g. Guo and Hernández-
Lerma (2009).

(2) μt = h(�(t−r0)∨0) for some h : S → P(U). Now the
control policies are purely determined by the jump process
with a positive delay. This kind of controls is very natural
to be used in the realistic application.

(3) μt = h(t,�(t−r0)∨0,�(t−2r0)∨0) for some h : [0,T] × S ×
S → P(U).

(4) μt = h(t,�(t−r0)∨0) for some h(t, i) = δut(i) for each i ∈
S , where t 	→ ut(i) is a curve inU and δx denote the Dirac
measure in U.

In this paper we impose the following assumptions on the
primitive Q-matrix of the continuous-time Markov decision
process (�t).

Assumption: (H1) μ 	→ qij(μ) is continuous for every i, j ∈
S , and

M := sup
i∈S

sup
μ∈P(U)

qi(μ) < ∞.

(H2) There exists a compact function � : S → [1,∞), a
compact set B0 ⊂ S , constants λ0 > 0 and κ0 � 0
such that

Qμ�(i) :=
∑
j�=i

qij(μ)
(
�(j)−�(i)

)
� λ0�(i)+ κ01B0(i).

(H3) There exists K ∈ N such that for every i ∈ S and μ ∈
P(U), qij(μ) = 0, if |j − i| > K.

Here if for every c ∈ R, the set {i ∈ S ;�(i) � c} is a com-
pact set, then� is called a compact function. Condition (H3) is
a technical condition, which is usedwhenwe consider to use the
dominated convergence theorem in the argument of our main
theorem.

In contrast to the well-studied continuous-time Markov
decision process, the controlled system (�t) studied in this
work is no longer a Markov chain, and the delay-dependent
control policy makes it more difficult to describe the evolution
of (�t). Following Shao (2020), we shall develop the classi-
cal compactness method to deal with the control problem with
delay-dependent controls. The compactificationmethod is usu-
ally used to cope with the optimal control problem for stochas-
tic differential equations (cf. Haussmann & Suo, 1995a, 1995b;
Kushner, 1975 and references therein). We extend this method
to deal with stochastic processes in discrete space.
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Let

U = {μ : [0,T] → P(U) is measurable}. (6)

U can be viewed as a subspace of P([0,T] × U) through the
map

(μt)t∈[0,T] 	→ μ̄,

where μ̄ is determined by

μ̄(A × B) = 1
T

∫
A
μt(B) dt.

Endow U with the induced weak convergence topology
from P([0,T] × U). This topology is equivalent to the
topology induced by the following Wasserstein distance on
P([0,T] × U):

W1(μ̄, ν̄)

= inf

∈C (μ̄,ν̄)

∫
([0,T]×U)2

(|s − t| + |x − y|) d
((s, x), (t, y)),
where C (μ̄, ν̄) stands for the collection of couplings of μ̄ and ν̄
over ([0,T] × U)2. The canonical path space for our problem is
defined as

�̂ = D([0,T];S )× U

endowed with the product topology, which is a metrizable and
separable space (cf. Haussmann & Suo, 1995a). Denote by D̃1

(resp. D̃2) the Borel σ -algebra of D([0,T];S ) (resp. U ), and
D̃1

t (resp. D̃2
t ) the σ -algebra up to time t. Define the σ -algebra

of �̂ as

F̂ := D̃1 × D̃2, and F̂t = D̃1
t × D̃2

t .

For each delay controlα = (�t ,μt , s, i) ∈ 
s,i, we define amea-
surable map�α : � → �̂ as

�α(ω) = (�t(ω),μt(ω))t∈[0,T],
�r(ω) ≡ i, μr(ω) ≡ μs, 0 � r � s.

Then, there exists a corresponding probability on (�̂, F̂ )

defined by R = P ◦�−1
α . We denote by 
̂s,i the space of prob-

abilities induced by the delay-dependent control set 
s,i with
initial condition (s, i). By the definition of value function, we
have

V(s, i) = inf
α∈
s,i

J(s, i,α)

= inf
R∈
̂s,i

ER

[∫ T

s
f (t,�t ,μt) dt + g(�T)

]
.

The topology and properties of the canonical path space have
beenwell studied, see, for instanceHaussmann and Suo (1995a),
Meyer and Zheng (1984), and Stroock andVaradhan (1979) and
the references therein.

3. Existence of optimal delay-dependent controls

By developing the compactification method presented, for
instance, in Haussmann and Suo (1995a), Kushner (1975), and
Shao (2020) investigated the optimal control problem for the
regime-switching processes. There, the control on the transition
rate matrix of the jumping process (�t) has been studied. In
this paper we shall apply the result (Shao, 2020, Theorem 2.3) to
the current situation to obtain the existence of optimal delay-
dependent controls of our continuous-time Markov decision
processes under the mild conditions (H1)–(H3).

Theorem 3.1: Assume (H1)–(H3) hold. Then for every s ∈
[0,T), i ∈ S , there exists an optimal delay-dependent control
α∗ ∈ 
s,i.

Proof: This theorem is proved by using the idea of Shao (2020,
Theorem 2.3). The proof is a little long. In order to save space,
here we only sketch the idea and point out the different points
compared with that of Shao (2020, Theorem 2.3).

We only need to consider the nontrivial case V(s, i) < ∞.
For simplicity of notation, we consider the case s = 0, and
separate the proof into three steps.

Step 1. According to the definition of V(0, i), there exists a
sequence of delay-dependent controls αn = (�

(n)
t ,μ(n)t , 0, i) ∈


0,i such that

lim
n→∞ J(0, i,αn) = V(0, i). (7)

Denote by Rn the probability measures on (�̂, F̂ ) correspond-
ing to αn. Let L n

μ (resp. L n
�) be the marginal distribution of

Rn with respect to (μ(n)t )t∈[0,T] (resp. (�(n)t )t∈[0,T]) in U (resp.
D([0,T];S )). Since P([0,T] × U) is compact and further U
is compact as a closed subset, we have (L n

μ)n�1 is tight.
We proceed to prove that (L n

�)n�1 is tight. For each n � 1,
due to (H1), the process�(n)t is non-explosive, and the number
of jumps within a finite time is finite. Therefore, for the function
� given in (H2), we have E�(�

(n)
t ) < ∞. Using (H2) and Itô-

Dynkin’s formula (cf. Guo et al., 2015, Theorem 3.1), we have

E�(�
(n)
t ) = �(i)+ E

∫ t

0
Qμs�(�

(n)
s ) ds

� �(i)+ E

∫ t

0

(
λ0�(�

(n)
s )+ κ0

)
ds

� (�(i)+ κ0T)+
∫ t

0
λ0E�(�

(n)
s ) ds.

The above inequality is obtained by interchanging the order of
expectation and integration based on Fubini’s theorem. Fur-
thermore, applying Gronwall’s inequality, it holds that

E�(�
(n)
t ) �

(
�(i)+ κ0T

)
eλ0t , t ∈ [0,T], n � 1. (8)

For any ε > 0, we can find Nε > 0 such that

sup
n

P(�
(n)
t ∈ Kc

ε) � sup
n

E�(�
(n)
t )

Nε
� (�(i)+ κ0T)eλ0T

Nε
< ε,

(9)
where Kε = {j ∈ S ;�(j) � Nε}. Since � is a compact func-
tion, Kε is a compact set. Moreover, for every 0 � u � δ, due
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to (H1),

E
[
1
�
(n)
t+u �=�(n)t

]
� 1 − P(�(n)s = �

(n)
t ,∀ s ∈ [t, t + u])

� 1 − e−Mu � 1 − e−Mδ =: γn(δ). (10)

To apply (Ethier & Kurtz, 1986, Theorem 8.6, p.138), by taking
q(i, j) = 1i �=j, β = 1, γn(δ) given in (10) and invoking (9), we
obtain the tightness of (L n

�)n�1.
Step 2. Since the marginal distributions (L n

�)n�1 and
(L n

μ)n�1 are both tight, (Rn)n�1 is tight as well. Hence, there
exists a subsequence nk, k � 1, such that Rnk weakly converges
to some probability measure R0 on (�̂, F̂ ) as k → ∞. By virtue
of Skorokhod’s representation theorem (cf. e.g. Ethier & Kurtz,
1986, Chapter 3), there exists a probability space (�′,F ′,P′)
on which is defined a sequence of �̂-valued random vari-
ables Ynk = (�

(nk)
t ,μ(nk)t )t∈[0,T] with distribution Rnk , k � 1,

and Y0 = (�
(0)
t ,μ(0)t )t∈[0,T] with distribution R0 such that

lim
k→∞

Ynk = Y0, P
′−a.s. (11)

Analogous to the Step 2 in the argument of Shao (2020,
Theorem 2.3), we can show that α∗ := (�

(0)
t ,μ(0)t , 0, i) is a

delay-dependent control in 
0,i. During this procedure, we
need to replace the sigma fields FX,�

−n,t by the following

F�−n,t := σ{(�(k)t , . . . ,�(k)t−mr0); k � n}.
Step 3. Invoking (7) and the lower semi-continuity of f and g, we
obtain

V(0, i) = lim
k→∞

E

[∫ T

0
f (t,�(nk)t ,μ(nk)t ) dt + g(�(nk)T )

]
� E

[∫ T

0
f (t,�(0)t ,μ(0)t ) dt + g(�(0)T )

]
� V(0, i).

By taking α∗ = (�
(0)
t ,μ(0)t , 0, i) ∈ 
0,i, the previous inequal-

ities imply that α∗ is an optimal delay-dependent control of
the continuous-time Markov jump process. The proof of this
theorem is complete. �

4. Dynamic programming principle and viscosity
solution

In the rest of the paper, we introduce the dynamic programming
principle for the controlled processes with delay-dependent
control and the differential equation satisfied by the value func-
tion. To do so, we introduce some notations. Assume that τ is
an F̂t-stopping time satisfying 0 � τ � T, F̂τ is denoted by the
collection of sets A such that A ∩ {τ � t} ∈ F̂t , ∀ t ∈ [0,T].

Theorem 4.1: Assume (H1)–(H3) hold. For each F̂t-stopping
time τ satisfying s � τ � T, then

V(s, i) =

inf
{

ER

[∫ τ

s
f (t,�t ,μt) dt + V(τ ,�τ )

]
;R ∈ 
̂s,i

}
.

Proof: Define a subset of 
̂s,i as


̂0
s,i =
{
R ∈ 
̂s,i : V(s, i)

= ER

[∫ T

s
f (t,�t ,μt) dt + g(�T)

]}
.

By Theorem 3.1, 
̂0
s,i �= ∅ for any s ∈ [0,T] and i ∈ S . Accord-

ing to measurable choices theorem presented by Stroock
and Varadhan (1979), there exists a Borel-measurable map H :
[0, t] × S → P(U), which is calledmeasurable selector, satis-
fying for each (s, i) ∈ [0, t] × S ,H(s, i) ∈ 
̂0

s,i. Refer to Hauss-
mann and Suo (1995a, Lemma 3.9) for more details of the
existence of the measurable selector. Hence, for any ω̂ ∈ �̂,
H(τ (ω̂),�τ(ω̂)) is a probability measure on (�̂, F̂ ) and satisfies

V(τ (ω̂),�τ(ω̂))

= EH(τ (ω̂),�τ(ω̂))

[∫ T

τ(ω̂)
f (t,�t ,μt) dt + g(�T)

]
. (12)

Note that the topology on �̂ is separable, then F̂t is countably
generated, and then for every probability measure P on (�̂, F̂ ),
the regular conditional probability distribution of P for given
F̂τ exists, cf. Haussmann and Suo (1995a, 1995b). Accord-
ing to Haussmann and Suo (1995b, Lemma 3.3), for each R ∈

̂s,i, there exists a unique probability measure, denoted by RH ,
such that RH(A) = R(A), ∀A ∈ Fτ and the regular conditional
probability distribution of RH for given Fτ is H(τ (·),�τ(·)).
Moreover, by Haussmann and Suo (1995b, Proposition 3.8), it
holds that RH ∈ 
̂s,i. Hence, we have

V(τ (ω̂),�τ(ω̂)) = ERH

[∫ T

τ(ω̂)
f (t,�t ,μt) dt + g(�T)

∣∣∣Fτ

]
.

Due to the definition of value function V(s, i), we have

V(s, i) � ERH

[∫ τ

s
f (t,�t ,μt) dt

+
∫ T

τ
f (t,�t ,μt) dt + g(�T)

]
= ERH

[∫ τ

s
f (t,�t ,μt) dt

+ERH

[∫ T

τ
f (t,�t ,μt) dt + g(�T)

∣∣∣Fτ

]]
= ER

[∫ τ

s
f (t,�t ,μt) dt + V(τ ,�τ )

]
,

where the last equation is based on the relationship between R
and RH . The arbitrariness of R ∈ 
̂s,i implies that

V(s, i)

� inf
{

ER

[∫ τ

s
f (t,�t ,μt) dt + V(τ ,�τ )

]
;R ∈ 
̂s,i

}
.

Conversely, by Theorem 3.1, there exists an optimal delay-
dependent control α∗ ∈ 
s,i and then denote by R∗ ∈ 
̂s,i
the corresponding probability measure on (�̂, F̂ ). Then
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we have

V(s, i)

= ER∗
[∫ τ

s
f (t,�t ,μt) dt

+
∫ T

τ
f (t,�t ,μt) dt + g(�T)

]
� ER∗

[∫ τ

s
f (t,�t ,μt) dt + V(τ ,�τ )

]
� inf

{
ER

[∫ τ

s
f (t,�t ,μt) dt + V(τ ,�τ )

]
;R ∈ 
̂s,i

}
.

The dynamic programming principle is thus proved. �

The next result is about the continuity of value function.
SinceS is a countable state space equipped with discrete topol-
ogy, we only need to consider the continuity ofV(s, i) in the time
variable s.

Proposition 4.2: Assume (H1)–(H3) hold. Suppose that f, g are
bounded and f satisfies the following condition,

|f (t, i,μ)− f (s, i,μ)| � C0|t − s|, 0 � s, t � T, (13)

uniformly for i ∈ S and μ ∈ P(U). Then, the value function
V(s, i) is Lipschitz continuous with respect to the time variable s.
In fact, there exists a constant C> 0 such that for any i ∈ S∣∣V(s, i)− V(s′, i)

∣∣ � C|s − s′|, 0 � s, s′ � T.

Proof: For convenience, denote byC1 andC2 the constants such
that

sup
(t,i,μ)∈[0,T]×S ×P(U)

|f (t, i,μ)| � C1 and sup
i∈S

|g(i)| � C2.

Fix any i ∈ S and assume 0 � s � s′ � T. According to
Theorem 3.1, there exists an optimal delay-dependent control
α∗ = (�t ,μt , s, i) ∈ 
s,i such that V(s, i) = J(s, i,α∗). By time
shift, we can define a couple of processes with initial point (s′, i)
as following

�′
t = �t−�s, μ′

t = μt−�s, ∀ t ∈ [s′,T],

where �s := s′ − s. It is easy to verify that (1) and (3) hold
for (�′

t ,μ′
t), which means that α′ := (�′

t ,μ′
t , s′, i) is a delay-

dependent control in
s′,i. Using (H1) and (1), we have

E

[
1�′

t �=�t

]
= P (�t−�s �= �t) � M�s + o(�s).

By the definition of the value function, we have

|V(s′, i)− V(s, i)|

� E

[∫ T

s′

∣∣f (t,�′
t ,μ

′
t)− f (t,�t ,μt)

∣∣ dt]

+ E
[∣∣g(�′

T)− g(�T)
∣∣]+ E

[∫ s′

s

∣∣f (t,�t ,μt)
∣∣ dt] . (14)

According to the boundedness of f and g, we obtain

E

[∫ s′

s
|f (t,�t ,μt)| dt

]
� C1�s, and

E
[|g(�′

T)− g(�T)|
]

� 2C2E
[
1�′

T �=�T

]
� 2MC2�s + o(�s).

To estimate the first term of (14), we combine the boundedness
and (13),

E

[∫ T

s′
|f (t,�′

t ,μ
′
t)− f (t,�t ,μt)| dt

]
= E

[∫ T−�s

s
|f (t +�s,�t ,μt) dt − f (t,�t ,μt)| dt

]

+ E

[∫ s′

s
|f (t,�t ,μt)| dt

]
+ E

[∫ T

T−�s
|f (t,�t ,μt)| dt

]
� TC0�s + 2C1�s.

Hence,

|V(s, i)− V(s′, i)| � (3C1 + 2MC2 + TC0)�s + o(�s).

By the symmetric position of s and s′, we have |V(s, i)−
V(s′, i)| � C|s − s′|. �

According to Proposition 4.2 and Rademacher’s theorem, we
know that for each i ∈ S , t → V(t, i) is almost everywhere dif-
ferentiable in [0,T] with respect to Lebesgue measure. In some
practical applications, the property of almost everywhere dif-
ferentiable is not enough, especially when S is a general state
space rather than a countable space. But, it is not easy to justify
whetherV(t, i) is differentiable everywhere in [0,T]. In such sit-
uation, it is useful to introduce the concept of viscosity solution
to further characterise V(t, i). Consider the following equation

− ∂v
∂t

− inf
μ∈P(U)

⎧⎨⎩∑
j�=i

qij(μ)
(
v(t, j)− v(t, i)

)+ f (t, i,μ)

⎫⎬⎭ = 0,

v(T, i) = g(i). (15)

Definition 4.3: Let v : [0,T)× S → R be a continuous
function.

(i) v is called a viscosity supersolution of (15) if v(T, i) =
g(i),

− ∂φ

∂t
(t0, i0)− inf

μ∈P(U)

⎧⎨⎩∑
j�=i0

qi0j(μ)
(
φ(t0, j)− φ(t0, i0)

)
+f (t0, i0,μ)

}
� 0

for all (t0, i0) ∈ [0,T)× S and for all φ ∈ C1([0,T)×
S ) such that (t0, i0) is a minimum point of v − φ.
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(ii) v is called a viscosity subsolution of (15) if v(T, i) = g(i),

− ∂φ

∂t
(t0, i0)− inf

μ∈P(U)

⎧⎨⎩∑
j�=i0

qi0j(μ)
(
φ(t0, j)− φ(t0, i0)

)
+f (t0, i0,μ)

}
� 0

for all (t0, i0) ∈ [0,T)× S and for all φ ∈ C1([0,T)×
S ) such that (t0, i0) is a maximum point of v − φ.

(iii) v is called a viscosity solution to (15) if it is both a viscosity
subsolution and a viscosity supersolution of (15).

The next result says that the value function is a solution to
the HJB Equation (15) in the viscosity sense.

Theorem 4.4: Under the conditions of Proposition 4.2, the value
function V(t, i) is a viscosity solution to (15).

Proof: We first consider the viscosity subsolution property. Let
(t0, i0) ∈ [0,T)× S andφ ∈ C1([0,T)× S ) be a test function
such that

0 = (V − φ)(t0, i0) = max{(V − φ)(t, i); (t, i) ∈ [0,T)× S }.
(16)

Take an arbitrary point μ̃ ∈ P(U) and let

μt = μ̃, ∀ t ∈ [s,T],

which is a constant control policy and obviously satisfies the
conditions of Definition 2.1. According to the dynamic pro-
gramming principle (Theorem 4.1), we have

V(t0, i0) � E

[∫ t

t0
f (r,�r , μ̃) dr + V(t,�t)

]
.

Due to (16), it holds V � φ, and hence

φ(t0, i0) � E

[∫ t

t0
f (r,�r , μ̃) dr + φ(t,�t)

]
. (17)

Applying Itô-Dynkin’s formula to the function φ (cf. Guo et al.,
2015, Theorem 3.1), we get

Eφ(t,�t)

= φ(t0, i0)+ E

[∫ t

t0

(
∂φ

∂r
(r,�r)+ Q(μ̃)φ(r,�r)

)
dr
]
.

(18)

Inserting (18) into (17) leads to

−E

[∫ t

t0

(
∂φ

∂r
(r,�r)+ Q(μ̃)φ(r,�r)+ f (r,�r , μ̃)

)
dr
]

� 0.

(19)
Dividing both sides of (19) by t − t0 and letting t ↓ t0, we get
from the almost sure right-continuity of the trajectories of (�t)
that

− ∂φ

∂t
(t0, i0)−

∑
j�=i0

qi0j(μ̃)(φ(t0, j)

− φ(t0, i0))+ f (t0, i0, μ̃) � 0. (20)

Then, by the arbitrariness of μ̃ ∈ P(U), V(t, i) is a viscosity
subsolution of (15).

Next, we proceed to the viscosity supersolution property. Let
(t0, i0) ∈ [0,T)× S andφ ∈ C1([0,T)× S ) be a test function
such that

0 = (V − φ)(t0, i0) = min{(V − φ)(t, i); (t, i) ∈ [0,T)× S }.
(21)

The desired result will be shown by contradiction. Assume

−∂φ
∂t
(t0, i0)− inf

μ∈P(U)

{
Q(μ)φ(t0, i0)+ f (t0, i0,μ)

}
< 0.

(22)
By (H1), the compactness of P(U) and the continuity of f, we
obtain from (22) that there exist ε, η > 0 such that for any 0 �
t − t0 � η, it holds

−∂φ
∂t
(t, i0)− inf

μ∈P(U)

{
Q(μ)φ(t, i0)+ f (t, i0,μ)

}
� −ε. (23)

Let (tk)k�1 be a sequence satisfying tk > t0 for any k � 1
and limk→∞ tk = t0. Using the dynamic programming prin-
ciple (Theorem 4.1) again, for each k � 1, there exists α(k) =
(�

(k)
t ,μ(k)t , t0, i0) ∈ 
t0,i0 such that

V(t0, i0) � E

[∫ βk

t0
f (r,�(k)r ,μ(k)r ) dr + V(βk,�

(k)
βk
)

]
− ε

2
(tk − t0),

where βk = tk ∧ τk, and τk is defined by

τk = inf{t ∈ [t0,T];�
(k)
t �= �

(k)
t0
} ∧ (t0 + η). (24)

Due to (21), we have V � φ and

φ(t0, i0) � E

[∫ βk

t0
f (r,�(k)r ,μ(k)r ) dr + φ(βk,�

(k)
βk
)

]
− ε

2
(tk − t0). (25)

Using Itô-Dynkin’s formula to the function φ, we have

E

[∫ βk

t0
f (r,�(k)r ,μ(k)r )+

(
∂φ

∂r
+ Q(μ(k)r )φ

)
(r,�(k)r ) dr

]
� ε

2
(tk − t0).

Then (23) and the definition of βk implies that

E[βk − t0]
tk − t0

� 1
2
, k � 1. (26)

On the other hand, by (H1), we have

P(βk − t0 � tk − t0) � P
(

sup
s∈[t0,tk]

|�(k)s −�
(k)
t0 | > 0

)
� 1 − e−M(tk−t0),
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Therefore,

lim
k→∞

P(βk − t0 � tk − t0) = 1.

Since

P(βk − t0 � tk − t0) � E[βk − t0]
tk − t0

� 1,

we get finally that

lim
k→∞

E[βk − t0]
tk − t0

= 1, (27)

which contradicts (26). Consequently, we have

− ∂φ

∂t
(t0, i0)− inf

μ∈P(U)

⎧⎨⎩∑
j�=i0

(
φ(t0, j)− φ(t0, i0)

)
+f (t0, i0,μ)

}
� 0. (28)

This means that V(t, i) is a viscosity supersolution of (15). We
conclude the proof of this theorem by the definition of viscosity
solution to (15). �

In the end let us discuss the uniqueness of the viscosity
solution to (15). For this purpose it is sufficient to establish
the following comparison principle for (15). We shall develop
the method used to establish the comparison principle for HJB
equations associated with diffusion processes to the equations
associated with purely jumping processes.

Theorem 4.5: Assume the conditions of Proposition 4.2 hold. Let
V1 (resp. V2) be a bounded viscosity supersolution (resp. viscosity
subsolution) of (15) in [0,T)× S . Then

sup
[0,T]×S

[V2 − V1] = sup
{T}×S

[V2 − V1] = 0.

Proof: Obviously, we just need to show that

sup
[0,T]×S

[V2 − V1] � sup
{T}×S

[V2 − V1] = 0. (29)

By the condition boundedness of V1 and V2, there exists a
constant K0 > 0 such that

K0 � sup
t∈[0,T]

sup
j∈S

{|V1(t, j)| ∨ |V2(t, j)|
}
. (30)

There exists a sequence of C2(R) functions λn(x) such that
λn(x) = 0 for x � 0, 0 < λ′

n(x) < 1, λn(x) ↑ max{x, 0} as n →
∞. Let

ηn(s, t) = t + λn(s − t), s, t ∈ [0,T].

Then ηn(s, t) ↑ max{s, t} as n → ∞. Define a function on
[0,T] × [0,T] as

�n
i0(t, s) = V2(t, i0)− V1(s, i0)

− 1
2δ
(t − s)2 + β

δ
(ηn(s, t)− T),

where δ,β > 0 are two parameters. Again, the continuity of
V1 and V2 implies that �n

i0 achieves the maximum on [0,T] ×

[0,T]. Denote by (t̄, s̄) ∈ [0,T] × [0,T] an arbitrary one of the
maximumpoints, and note that (t̄, s̄)may depend on the param-
eters δ, β and n.

We first give an estimate of the distance between s̄ and t̄. For
any ρ � 0, let

Dρ = {(t, s) ∈ [0,T] × [0,T] : |t − s|2 � ρ
}
,

m(1)i0 (ρ) = 2 sup
{|V1(t, i0)− V1(s, i0)| : (t, s) ∈ Dρ

}
,

m(2)i0 (ρ) = 2 sup
{|V2(t, i0)− V2(s, i0)| : (t, s) ∈ Dρ

}
.

Then m(1)i0 and m(2)i0 are increasing functions satisfying m(1)i0 (0)
= m(2)i0 (0) = 0. Moreover, it follows from the continuity of V1

and V2 and the compactness of [0,T] × [0,T] that m(1)i0 ,m(2)i0
are continuous. Since V1(·, i0) and V2(·, i0) are bounded,
m(1)i0 and m(2)i0 are bounded as well and bounded by Mi0 :=
sup{m(1)i0 (ρ)+ m(2)i0 (ρ) : ρ � 0} < ∞. We obtain from the fact
�n

i0(t̄ ∨ s̄, t̄ ∨ s̄) � �n
i0(t̄, s̄) that

1
δ
(t̄ − s̄)2 � 2

(
V2(t̄, i0)− V2(t̄ ∨ s̄, i0)+ V1(t̄ ∨ s̄, i0)

−V1(s̄, i0)) � Mi0 .

Hence,

|t̄ − s̄| �
√
δMi0 , and hence t̄ − s̄ → 0, as δ → 0. (31)

Next, we shall show by contradiction that t̄ equals to T. Assume
that t̄ ∈ [0,T). Define an auxiliary function on [0,T] × S as

ψ
(1)
i0 (s, j) = − 1

2δ
(t̄ − s)2 − 2K0

(
1 − 1i0(j)

)+ β

δ
(ηn(s, t̄)− T).

For each s ∈ [0,T], since�n
i0(t̄, s) � �n

i0(t̄, s̄), it holds that

V1(s̄, i0)+ 1
2δ
(t̄ − s̄)2 − β

δ
(ηn(s̄, t̄)− T)

� V1(s, i0)+ 1
2δ
(t̄ − s)2 − β

δ
(ηn(s, t̄)− T),

and further for each j ∈ S , j �= i0,

2K0 � V1(s, i0)− V1(s, j)

� V1(s̄, i0)− V1(s, j)+ 1
2δ
(t̄ − s̄)2

− 1
2δ
(t̄ − s)2 − β

δ
(ηn(s̄, t̄)− ηn(s, t̄)).

Hence, (s̄, i0) is the minimum point of the function (s, j) 	→
V1(s, j)− ψ

(1)
i0 (s, j). Since V1 is the viscosity supersolution of

(15), we have

− 1
δ
(t̄ − s̄)− β

δ
λ′
n(s̄ − t̄)

− inf
μ∈P(U)

{−2K0qi0(μ)+ f (s̄, i0,μ)
}

� 0. (32)
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Similarly, consider the test function on [0,T] × S as

ψ
(2)
i0 (t, j) = 1

2δ
(t − s̄)2 + 2K0

(
1 − 1i0(j)

)− β

δ
(ηn(s̄, t)− T).

Then,�n
i0(t, s̄) � �n

i0(t̄, s̄) implies that for each t ∈ [0,T],

V2(t, i0)− 1
2δ
(t − s̄)2 + β

δ
(ηn(s̄, t)− T)

� V2(t̄, i0)− 1
2δ
(t̄ − s̄)2 + β

δ
(ηn(s̄, t̄)− T),

and for each j ∈ S with j �= i0,

2K0 � V2(t, j)− V2(t̄, i0)+ 1
2δ
(t̄ − s̄)2 − 1

2δ
(t − s̄)2

+ β

δ
(ηn(s̄, t)− ηn(s̄, t̄)).

This means that (t̄, i0) is a maximumpoint of (t, j) 	→ V2(t, j)−
ψ
(2)
i0 (t, j). Since V2 is the viscosity subsolution of (15), we have

β

δ

(
1 − λ′

n(s̄ − t̄)
)− 1

δ
(t̄ − s̄)

− inf
μ∈P(U)

{
2K0qi0(μ)+ f (t̄, i0,μ)

}
� 0. (33)

Combining the inequalities (31)–(33) and (13), we arrive at

β

δ
� inf
μ∈P(U)

{
2K0qi0(μ)+ f (t̄, i0,μ)

}
− inf
μ∈P(U)

{− 2K0qi0(μ)+ f (s̄, i0,μ)
}

= sup
μ∈P(U)

{
2K0qi0(μ)− f (s̄, i0,μ)

}
− sup
μ∈P(U)

{− 2K0qi0(μ)− f (t̄, i0,μ)
}

� sup
μ∈P(U)

{
4K0qi0(μ)+ f (t̄, i0,μ)− f (s̄, i0,μ)

}
� 4K0M + C0|t̄ − s̄|. (34)

Invoking the estimate (31), this yields that

β � 4K0Mδ + C0δ
3/2√Mi0 .

Thus, letting δ → 0, we get that β � 0, which contradicts the
assumption that β > 0. Consequently, it must hold

t̄ = T. (35)

By the choice of (t̄, s̄), it holds that for every t ∈ [0,T),

V2(t, i0)− V1(t, i0)+ β

δ
(t − T)

= �n
i0(t, t) � �n

i0(t̄, s̄)

= V2(T, i0)− V1(s̄, i0)− 1
2δ
(T − s̄)2

� V2(T, i0)− V1(s̄, i0). (36)

Thus, letting first β → 0 and then δ → 0, noting limδ→0 |t̄ −
s̄| = 0 due to (31), we obtain that

V2(t, i0)− V1(t, i0) � V2(T, i0)− V1(T, i0).

The desired conclusion (29) follows from the arbitrariness of
i0 ∈ S . �

The following uniqueness result is an immediate result of
Theorems 4.4 and 4.5.

Corollary 4.6: Under the conditions of Proposition 4.2, the
value function V(t, i) is the unique viscosity solution to the
Equation (15).

Next, noticing that the Equation (15) does not rely on the
delay-dependent control policies, we shall take advantage of this
property to show the existence of an optimalMarkovian control
policy over the class of delay-dependent controls.

Theorem 4.7: Under the conditions of Proposition 4.2, for every
t ∈ [0,T], i ∈ S , there exists an optimal control α∗ for V(t, i),
which depends only on the current state of the process (�t), i.e. a
Markovian control policy.

Proof: Introduce a sub-class
m
s,i of
s,i by


m
s,i = {α ∈ (�t ,μt , s, i) ∈ 
s,i; ∃ h : S → P(U)

such that μt = h(�t)
}
,

which is the class of stationary randomised Markov policy. Let

Ṽ(s, i) = inf
α∈
m

s,i

J(s, i,α), (37)

which is consistent with the value function studied in
Guo et al. (2015, p.1069). According to Guo et al. (2015,
Theorem 4.1) and Proposition 4.2, the HJB equation cor-
responding to the value function Ṽ(s, i) is consistent with
Equation (15). Additionally, Guo et al. (2015, Theorem 4.1)
further demonstrates that for any i, the value function Ṽ(·, i)
is an almost everywhere differentiable solution to the HJB
Equation (15). By utilising the proof method of Theorem 4.4,
it can be proved that Ṽ is also the viscosity solution of the
HJB Equation (15). Hence, the uniqueness of viscosity solu-
tion given in Theorem 4.6 means that Ṽ(s, i) = V(s, i). Using
Guo et al. (2015, Theorem 4.1) again or along the procedure
of Theorem 3.1, there exists an α̃ ∈ 
m

s,i such that Ṽ(s, i) =
J(s, i, α̃). Therefore,

V(s, i) = Ṽ(s, i) = J(s, i, α̃), (38)

which means that α̃ ∈ 
m
s,i ⊂ 
s,i is the desired optimal control

policy in
s,i associated with V(s, i). �
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Appendix
In the section, we construct an example to illustrate that for discrete-time
decision processes in an infinite state space, the optimisation problemmay
have essential difference between the control mechanism over history-
dependent control policies and over Markovian policies. In this example,
the value function corresponding to taking infimum over Markovian poli-
cies equals+∞, while the one over history-dependent policies equals−∞.
Therefore, when analysing the influence of control policy class on the value
function, more attentions should be paid.

Let the state spaceX = Z+ = {0, 1, 2, . . .} and the action spaceA = Z+.
Denote P(A) the set of probability measures on A, and let

P2(A) =
{
μ ∈ P(A) :

∑
i∈A

i2μi < ∞
}
.

All the randomised policies considered in this example are assumed to take
values in P2(A). Consider the transition probability matrices given by

P0(0) = 1, P1(j | i, a) =
⎧⎨⎩

1
Kj2

, j �= 0,

0, j = 0.

P2(0 | i, a) = P3(0 | i, a) = 1, ∀ i ∈ X, a ∈ A.

Here K =∑∞
j=1

1
j2 is a constant. Let {ξk; k = 0, 1, 2, 3} denote the con-

trolled process. By the definition of Pt(· | i, a) above, it holds that
P(ξ0 = 0) = 1, P(ξ1 � 1) = 1, P(ξ2 = 0) = P(ξ3 = 0) = 1.

For a probability measure μ ∈ P2(A), denote by

m1(μ) =
∑
i�0

iμ(i), m2(μ) =
∑
i�0

i2μ(i),
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var(μ) = m2(μ)− (m1(μ))
2.

Let
ρ(x,μ) = −2m1(μ)+ var(μ) (A1)

for x ∈ X and μ ∈ P2(A). It is clear that ρ(x,μ) takes values in
(−∞,+∞), and is an unbounded function.

Define the cost function ct(·, ·) by
c1(i,μ) = 0, c2(i,μ) = i, c3(i,μ) = ρ(i,μ)

for i ∈ X and μ ∈ P(A). (A2)

For the control policy π ,

Vπ (i) := Ei

[ 3∑
t=1

ct(ξt−1,πt)

]
. (A3)

Let 
 be the set of all history-dependent control policies, and 
M the set
of all Markov control policies. Clearly,
M ⊂ 
. The corresponding value
functions are given by

V(i) = inf
π∈
Vπ (i), VM(i) = inf

π∈
M
Vπ (i), i ∈ X.

We shall show that

V(0) = −∞, but VM(0) = +∞. (A4)

Indeed, according to (A2),

Vπ (0) = E
[
c2(ξ1,π2)+ c3(ξ2,π3)

] = E[ξ1 + ρ(ξ2,π3)
]

= E
[
ξ1 + ρ(0,π3)

]
(as ξ2 = 0 a.s.).

Note that E[ξ1] =∑∞
i=1

1
Ki = +∞.

For every Markov control policy π , π3 is in P2(A) and hence
ρ(0,π3) < +∞. This further yields that Vπ (0) = +∞. Hence,

VM(0) = inf
π∈
M

Vπ (0) = +∞.

For the set of history-dependent control policies, we choose a special one
π̃ given by

π̃1(dx) = δ0(dx), π̃2(dx) = δ0(dx), π̃3(dx) = δξ1 (dx).

Note that π̃3 depends on ξ1, not on ξ2, so π̃ is not a Markov control policy.
Also, it is clear that π̃3 ∈ P2(A). Then

V π̃ (0) = E[ξ1 − 2ξ1] = −E[ξ1] = −∞.

Hence,
V(0) = inf

π∈
Vπ (0) � V π̃ (0) = −∞.

Consequently, we have proved the desired result (A4).
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