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Abstract. This work investigates the optimal control problem for reflected McKean—Vlasov
SDEs and the viscosity solutions to Hamilton—-Jacobi-Bellman (HJB) equations on the Wasserstein
space in terms of intrinsic derivative. It follows from the flow property of reflected McKean—Vlasov
SDEs that the dynamic programming principle holds. Applying the decoupling method and the
heat kernel estimates for parabolic equations, we show that the value function is a viscosity solution
to an appropriate HJB equation on the Wasserstein space, where the characterization of absolutely
continuous curves on the Wasserstein space by the continuity equations plays an important role.
To establish the uniqueness of the viscosity solution, we generalize the construction of a distance-
like function initiated in Burzoni et al. [SIAM J. Control Optim., 58 (2020), pp. 1676-1699] to
the Wasserstein space over multidimensional space and show its effectiveness for coping with HJB
equations in terms of intrinsic derivative on the Wasserstein space.
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1. Introduction. Let & be a bounded convex domain in R including the origin
and with C1'! boundary. & denotes the closure of & and 0& its boundary. Let ()
be the unit outward normal of &. Consider the following reflected McKean—Vlasov
equation:

dXt = b(t, XtagXt y Oét)dt + O'dBt — ﬁ(Xt)dkt,
1.1 K
(L) Ky :/ 1o (X )dks,
0

where L%, denotes the distribution of X;. (Bi) is a d-dimensional Brownian motion.
The coefficients b, o will be detailed later. The term a; represents the control strategy
imposed on (X;). The solution of (1.1) is a pair (X¢,k:), and the process (X;) will
stay always in &. (k;) is called the local time of (X;) on ¢, which is a continuous
process and increases only when X hits the boundary 00.

In this work, we shall investigate the finite horizon optimal control problem for the
reflected process (X;). The associated value function will be defined on the Wasser-
stein space Z(0), the space of all probability measures over ¢. The admissible
controls considered in this work are of feedback control form and contain the set of
deterministic controls used as in [8]. This adds a new difficulty to verifying the value
function as a viscosity supersolution. The dynamic programming principle is estab-
lished following from the flow property of the solutions to reflected McKean—Vlasov
SDEs. Then, using the intrinsically differential structure for functions on &(&), and
taking advantage of the characterization of absolutely continuous curves on #(&) in
terms of continuity equations (cf. [3]), the value function is proved to be a viscosity
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solution to an appropriate HJB equation on £?(&). In the argument, we use the
decoupling method and the heat kernel estimates for parabolic equations to overcome
the difficulty caused by the feedback controls. The intrinsically differential struc-
ture on #(0) is closely related to the study of the optimal transport map problem
(cf. [3, 32]) and Monge-Ampere equations (cf. [9, 31, 32]), which can provide rich
geometric structure on Z(0).

As is well known in the study of HJB equations over the Wasserstein space, one
of the main challenges is to prove the uniqueness of the viscosity solution. The theory
of viscosity solutions for HJB equations in infinite dimensional space was initiated
by Crandall and Lions [15] on Hilbert space or certain Banach space. However, the
recent study of the optimal control problem for McKean—Vlasov SDEs and mean field
games has motivated a lot of research interest on HJB equations on the Wasserstein
space; cf., e.g., [8, 11, 12, 25, 28, 29, 30].

The Wasserstein space has various differential structures, and correspondingly
various HJB equations have been established on it. For example, Ambrosio and
Feng [2] and Gangbo and Swiech [19] used a metric derivative to study viscosity
solutions of (first order) Hamilton—Jacobi equations on the Wasserstein space. Lions
[26] lifted functions defined on the Wasserstein space to functions on an appropriate
L? space and used the well-developed viscosity solution theory for HJB equations
on the Hilbert space to study HJB equations on the Wasserstein space. Gangbo,
Nguyen, and Tudorascu [18] and Gangbo and Tudorascu [20] exploited the isometry
between a quotient space of L? space to the Wasserstein space at length, and made
inferences on partial differential equations in the latter space. Pham and Wei [28, 29]
studied HJB equations on the Wasserstein space by using Lions’ lifting to solve the
optimal control problem for McKean—Vlasov SDEs (with common noise). Burzoni
et al. [8] investigated the viscosity solutions to HIB equations using a linear functional
derivative on the Wasserstein space. They raised a distance-like function on the
Wasserstein space over R, whose linear functional derivative can be controlled by
itself. The construction of this distance-like function is quite subtle.

Our strategy to establish the uniqueness of the viscosity solution is based on two
observations: (1) The L?-Wasserstein distance W is only intrinsically differentiable
at the probability measures satisfying a certain regular property, and its derivative
cannot satisfy the smoothness condition of the HJB equation established by solv-
ing the optimal control problem associated with (1.1). (2) The distance-like function
constructed in [8] is also intrinsically differentiable, and its intrinsic derivative is
smooth enough to be used as the smooth test function of the value function. Thus,
we generalize the construction of [8] for Z(R) to the Wasserstein space &(0) over
multidimensional space and make use of the weak compactness of Z22(&) to establish
the comparison principle for the viscosity sub/supersolutions to our established HIB
equations on Z(0). A technical restriction of this method, like in [8], is that the drift
b can only depend on the finite order moments of p and is independent of z.

This work is organized as follows. In section 2, we present the framework of
the optimal control problem for (1.1) and study the continuity of the value function
and establish the dynamic programming principle. In section 3, under the intrinsic
differential structure of (&), the law u; of the controlled process X; is shown to
be an absolutely continuous curve in (&), whose velocity v; can be characterized.
Furthermore, the value function is shown to be a viscosity solution to an appropriate
HJB equation on (). In section 4, we study the regularity of L2-Wasserstein
distance W5 based on the regularity of the solution of the Monge-Ampere equation.
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Then, the uniqueness of the viscosity solution is established under the generalization
of [8]’s construction of a distance-like function.

2. Framework. Let (Q,%,{%}+>0,P) be a complete filtered probability space.
Let #(0) be the space of all probability measures over &. Let (a;) be an .Z;-adapted
process. Let U be a compact set in R™ for some m € N. We shall study the finite
horizon optimal control problem, so let 7' > 0 be given and fixed in this work. As & is
bounded, all the probability measures in (&) own finite pth moments for all p > 1.
Let

(2.1) PO = {u € P(0);du(z) < dzand p(-) := j—g cCt(0), p() > O} )

DEFINITION 2.1. A pair (Xy, k) is called a solution to (1.1) if (X¢) is an adapted
continuous process on O, (k) is an adapted continuous increasing process such that
P-a.e.

t
/ (b(r, X, L 0)| + |lo])dr < 00, ¢ >0,
0
and ky = [} Lo (X,)dks,

t t
X=X+ / b(r,X,, Zx,,a,)dr + cB; — / a(X,)dk,.
0 0

A triple (Xy, ke, By)i>o is called a weak solution to (1.1) if (By) is a d-dimensional
Brownian motion under a probability space (2, F,{Fi}i>0,P), and (X, ki) solves
(1.1) with initial value Xog =& € Fy:

t t
X =¢ +/ b(r, X, Lx,.,ap)dr + 0B — / n(X,)dk,.
0 0

If for any two weak solutions (X, ki, By)i>o0 under probability PP, ()?t, /~ct, Et)tzo under
probability P satisfying Lx,p = gf(olﬁ’ then Z(x, k)P = iﬂ()}t’,;t)@ for t >0, SDE
(1.1) is called weakly unique.

We call (1.1) weakly wellposed for distributions in P if it has a unique weak
solution for any Fo-measurable variable & with £ € @, and the distribution of X
remains in @ for any t > 0. When P = P(0), we simply say that (1.1) is weakly
wellposed.

The LP-Wasserstein distance W,, for two probability measures y,v € Z(0) is
defined by

1
P
W = inf — y|PT'(dz,d >1
P(/Jﬂl/) FE%I%/LV) (/5’><5’|x y| ( z, y)) ’ p=1

where € (u,v) stands for the collection of all couplings of p and v.
Let U be a compact set in R¥ for some & > 1. Assume that the coefficients
b:[0,T] x O x P(0) x U R o€ R4 satisty the following:
(Hy) 3K, >0 such that for all s,t€[0,7), z,y€ O, u,ve P2(0), a,acU,

bt 2 1,0) — b(s,y,1,@)| < Ky (Is — t] + | — y| + Wa () + | — a).
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(Hz) 3o >1 such that for all z,z € RY, ye 2(RY),
)‘61|Z|2 < <AZ7Z> < )‘0|Z|2’

where A= (a;;) =00”, and o* denotes the transpose of the matrix o.
Let II be the class of functions F': [0,T] x ¢ x (&) — U such that there exists
Cr >0,

|F(t, 2, p) = F(t,y,v)| < Cp (|l =yl + Wa(pu,v)),

(2.2) T _ _
/ |F(s,0,00)|?ds <00, t€[0,T], x,y€ 0, p,veP(0).
0

According to [1, Theorem 3.2] or [33], under the condition (H;), for each F € II
and £ € %, there exists a unique solution to the reflected SDE: for 0 < s <t < T,

t t
(2.3) thf—i—/ b(r,XT,,ZXT,F(r,XT,,ZX,,,))dr—i—o(Bt—Bs)—/ H(X,)dk,.

DEFINITION 2.2. For s € [0,T) and p€ 2(0), a control policy o= (a)ie(s,r) i
said to be in the class of admissible feedback controls Il , if there exists a function
F eIl such that

ap = F(ththt)v

where (Xi)ie[s,1) s the solution to the reflected SDE (2.3) with X, € F, satisfying
ng = W.

We use (X;")ie[s,7] to denote the solution of (2.3) with initial value X, =¢ and
Ze = p associated with a. It follows from the weak uniqueness of (2.3) that the
distribution of X;* for ¢ € [s,T] depends on ¢ only through its law u. Given two
measurable functions ¥ : [0,T] x & x 2(0) x U — [0,00) and g: 0 x P(0) — [0,00),
our aim is to minimize the objective function

T
(24) J(SMJ,,C() =K [/ 19(717 Xi’ungﬁ’Haar)dr +g(X;’M7gX;H)

We should notice that J(s, i1;c) is well defined, that is, it depends only on the initial
law 1 no matter which random variable £ or { with £ = £z = p has been used as the
initial value of SDE (2.3). Indeed, for o € II; ,, in the form a; = F'(r, X;, Zx, ), we have

E

T T
/ 19(T7vafjfxs,g,a,«)dr] :/ /ﬁ(r,x,sz,g,F(r,x,fxs,g))sz,g(dx)dr.
S " S 57 " " "

A similar deduction yields that the term E [g(X;’g, ZLys.¢)] also depends on ¢ through
T
its law.
The value function is defined by

(2.5) V(s,pu)= inf J(s,u; ).

aclly ,

Next, we present some properties of the value function. In particular, the value
function satisfies the dynamic programming principle, which is based on the flow
property of the solution to (1.1).
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LEMMA 2.3. Assume (Hy), (Hz) hold. For any U-valued F;-adapted process
(at)tefs,m) and O-valued random wariables &, & € F, consider the solutions (X,

kt)iers,r), (Xt ki)ieps,r) to (1.1) with initial values Xy = & and X, = £, respectively.
Then,
(2.6)  Wa(Zx,, L5 )? <E|X; — X|? < (El¢ — £2)2F+ED0=) ¢ e [s,7T).

t

Proof. Since 0 is convex and 1i(z) is unit outward normal of €, it holds that
(f(z),y—x)<0 VYzedl, yeo.
By Ito’s formula,
A1X; — X = 2(X — Xy, d(Xy — X)) +d(X; — X,) - d( Xy — X)
—2(X, — Xy, 65(X,))dky +2(X; — Xp, 5(X,))dy.
Since k; increases only when X; € 00 and k; increases only when )~(t € 00, we have
(X; — Xp, 8(X,))dk >0, (X; — X, 65(X,))dk, <0.

Thusa by (Hl)a
t
E|X; — Xi|* <EJ¢§ — &° + (K1 + K12)/ E [('Xr - Xy +W2($XM$55,,,))2} dr.

As Wy (Zx,, 25 )? <E|X, — X, |2, it follows from Gronwall’s inequality that

r

t
E|X, — X, <El¢ — & + 2(K: + K?) / EIX, - X, [2dr,

S

Wa(Lx,, L5, )? EIX, — X < (BJE — €[?)ePEr+EDE),

Therefore, we arrive at the desired estimate (2.6). d

Let us introduce the regular condition on the cost functions 9 and g as follows.
(H3) There exist Ko, K3 >0 such that

|9(s, 2, u,0)| <Ky Vs€[0,T],z€0,pc P(0),acU;
[9(s, 2, 1, ) =9t y, v, )| + |g (@, 1) — gy, v)| < Kz (|s—t]+]z—y[+Wa(p,v))

for all s,t €[0,T], z,y€ O, p,ve P(0), acU.
PROPOSITION 2.4. Suppose (Hy)—-(Hgs) hold. Then the value function satisfies

(2.7) IV(S,M)—V(S’aM')|SC(VIS—S/\+W2(M,N')>7 5,5 €(0,T], u,p' € 2(0),

for some constant C > 0.

Proof. Let 0 <s< s’ <T. By the definition of V(s', i), for any £ > 0 there exists
a control a® € Il ;v such that

J(s' 1) V(') +e

Let (X7,k7) be the associated controlled process to a® with X, = ¢ and % = /',
Due to a® €Iy, there exists F©:[0,T] x & x Z(0) — U in the class II such that
o = F°(r, X7, Lxe) for r € [s',T]. Let
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FV(TJJ )_ Fs(slvxvlj')a 7‘6[0,8/],
T P, rels, T

We can check directly that F €11. Consider the reflected SDEs: ky = f 1os(X )dl;?o7

t ¢ t
:£+/ b(r,XT,fgr,F(r,XT,ZXT))dr+/ a(r)dBTf/ n(X,)dk,.

Here the random variable £ € .Z, is chosen so that L= and E|€—¢€'|2 = Wy (u, i')?,
whose existence is a result of the existence of optimal coupling of y and p' (cf. [32]).
Define &, = F'(r, X;, L5 ), r €[s,T], then &= (ar),e[s,7) is in 1L, 5.

Due to (H3), we have ¢ and g are bounded. Therefore, by Lemma 2.3,

V(s,n) =V (s, 1)

<E /19TX L% &T)dr—i-g(f(;r,,,?f)%)}

-E [/ I(r, X5, Lxe,05)dr+g(X7, Lxe) |+

T 1
<E / 19TXT,$)?T,dT)dT +2K3/ (E|X - X7 )Ed

’

+ 2K (B[ X — X5%) 2 42
<als' —sl+a ()% —¢F)* +e
~ ~ 1 1
<eals’ —s| + e (B[ Xy — X,]%]) 2 +61(E“X SFN)* +

<co(ls" = s|+ V|8 — s| + Wa(p, ') + €

~ 1
where we have used Wy(Z5 , Lx:) < (E|X, — X£|?)?, and ¢, c2 are constants
depending only on K3, T, and the diameter of &. Therefore,

Vis,) = V(s 1) s (VI = sl + Walu, 1) ) +

for some c3 > 0. Letting e — 0, we get the desired estimate of V' (s, ) —V(s',1'). The
estimate V (s, /) — V (s, ) can be proved in a similar way. The proof is completed. O

PROPOSITION 2.5 (dynamic programming principle). Suppose (Hy), (Hz) hold.
Then, for any 0<s<t<T, uc Z(0),

t
(2.8) Vs, pu)= irﬁf {]E {/ W, X7, Lo, ap)dr + V(t,gxs,u,a>:| } ,
aclls , s ¢
where for each a €11, (Xf’“’a)te[s_,T] stands for the corresponding controlled process
with initial value X3H% satisfying Lxsme = pu.
Proof. For each a € Il ,,, the wellposedness of reflected McKean-Vlasov (1.1)
yields that the flow property holds:

X%

X3¢ =X, relt,T], s<t.

)

This assertion can be proved in the same way as the McKean—Vlasov equations with-
out reflection; see [7, section 3].
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Denote the right-hand side of (2.8) by V (s, ). Then, according to the definition
of V(s,p), for any € > 0 there exists an admissible feedback control a € I, ,, such
that

V(s,p)

t
>E / D(r, X5M Lo one, oy )dr

T
+/t ﬁ(r,Xﬁ’M7a,$Xﬁ«Mva,ar)dT+g(X;’#’a7gx;,u,a)‘| —&

t
>E [/ I(r, X7 Ly s e, 0p)dr + V(t,.ﬁfxf,u,a)} —e>V(s,u) —¢,

ENTRG:

where in the second inequality we have used the flow property of (X;*"%). Letting
€ — 0, we obtain that V(s,u) >V (s, u). B

For the inverse inequality, for all €0, by the definition of V' (s, 1), there is a €Il ,,
associated with F €I such that

t
29 e+ Tl B[ [ 00 X0 Lo adr 4 V(e L)

By the definition of V(t,,Zth,u,a), there exists a feedback control o’ € HLng%a

corresponding to a function F €11 such that

(210) e+ V(t,Lyrma) >E

T
/t I(r, Xﬁ’”t,fxi,ut,a;)dr —l—g(X;in,thT,,/t )] ;

where v = Zy:ue. We define a new function F by

F(r,a,p)=F(rz,m)l< + F(r,z, p)Licr<r,
and check directly that Fell Then, corresponding to F', consider the following SDE:
(2.11) dX, =b(r, X,, Ly F(r,X,,Zs ))dr + o(r)dB, — (X, )dk,
with initial value )A(SA: ¢ and £ = p. By the uniqueness of the solution to SDE
(2.11), it holds that X, = X5 for r € [s,t] and X, = X" for r € [t, T]. Associated

with F, there is an admissible feedback control é& € Il ,, and & satisfies

~ /
Qp = a’rlsgrgt + ar1t<r§T~

Then, invoking (2.9), (2.10), by the definition of V (s, u),

T
9% +V(s,u) > E /ﬁ(r,Xr,er,&r)dr +g(Xr, 2 )| > Vs,

Letting € — 0, we get V (s, 1) > V (s, ). In all, we have shown V (s, ) = V (s, ) and
the proof is completed. O
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3. Characterization of the value function: Existence of viscosity
solution.

3.1. Riemannain structure of the Wasserstein space. In this subsection,
we adopt the Riemannian interpretation of the Wasserstein space developed by Otto
in [27] to introduce an HJB equation on the Wasserstein space and show that the
value function is a viscosity solution to it. However, we defer the discussion on the
uniqueness of the viscosity solution to this HJB equation to section 4.

The tangent space, geodesics, and Ricci curvature can be developed on &, (R%) :=
{pe P(RY); [palz[*du(z) < oo} endowed with the L2-Wasserstein distance Wy based
on the theory on optimal transport maps. See, e.g., [3] and [32]. As & is bounded, it is
clear that P5(0) = P (0). As we are interested in the reflected stochastic processes
on O, similar to &5(R?), we consider the following Riemannian structure of Z2(&).
For each pu € 2(0), the tangent space at y is defined by

(3.1)
= {v: 0 — R"is measurable satisfying p(|v|?) < co and (Av, i) =00n 00},

where A=o00*, and 1 is the unit outward normal of &¢. Then, .7, is a Hilbert space
under the inner product

(v,0) 7, = [vll%, = u(lvl).

DEFINITION 3.1. Let u : 2(0) — R be a continuous function, and let Id be the
identity map on R?. u is said to be intrinsically differentiable at a point u € P(0) if
there is a linear functional D' : T, — R such that

u(po (Id +ev) ™) — u(p)

Dfu(u):liﬁ)l 6 ., VET,, peP0).

In this situation, the unique element D*u(u) € 9, such that

(D up),v) 7, = /ﬁ (DEu()(z), v(2))u(dz) = Dru(p), ve T,

1s called the intrinsic derivative of u at .

DEFINITION 3.2. Let & be a subset of 2(0). We write u € C’i’b(gz) if u
is Lipschitz continuous in (P(0),Ws) and intrinsically differentiable at any point
pe P, and its intrinsic derivative D u(p)(z) satisfies that

() for each pe P, x> DEu(p)(x) is continuously differentiable;

(i) sup {|DPu()(z)] + |V DPulp) (z)|; € P,z € 6} < o0;

(iii) g DEu(p)(-) is continuous from P to L*(0) in the sense that if jin, € P

and Wo(tin, 1) = 0 as n— oo, then for any € >0

pn({z€ 0| (Ve DEp(t, ) (x) — Vo DL (t, p)(z)] > £}) —0, asn— oo.

For a function 1 : [0, T]xf@ — R, if for each p € 2, Y(-, 1) is continuously differential;
for each t €[0,T), ¢(t,-) € Cp (&), and

D50 :=sup{| DX (t, p)(2)|;t €[0,T],p € P,z € O} < 0,

we say that ¥ € C’i’})([o, T)x P).
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DEFINITION 3.3 (absolutely continuous curves). A curve u : (a,b) — P(0) is
said to be in AC(a,b) for a,b>0 if there exists m € L*(a,b) such that

¢
Wg(,us,,ut)g/ m(r)dr, a<s<t<b.

For an absolutely continuous curve p: (a,b) = FP(0) the limit

- Wo(ps, )
() =1 ’
1) =l =

exists for Leb-a.e. t € (a,b), which is called the metric derivative of the curve (ug).

Next, let us recall some results on the absolutely continuous curves in Z(&) as
a subspace of Z5(R?), which can be proved in the same way as in Zy(R?).

THEOREM 3.4 (see [3, Theorem 8.3.1)). Let p: [0,T] — P(0) be an absolutely
continuous curve and let || € L*([0,T)) be its metric derivative. Then there exists a
Borel vector field v : (t,z) — vi(x) such that

(32)  welAG RS m), Nl <) forac.te [0,T],
and the continuity equation
(3.3) Oipie +V - (vgpg) =0 in[0,T] x O

holds in the sense of distribution, i.e.,

T
64 [ [ (0wt (). Voo Jdu@a =0 Yo (0.1)x 0),

where C((0,T) x €) denotes the set of smooth functions on (0,T)x € with compact
support.

Conversely, if a continuous curve p : [0,T] — P(0) satisfies the continuity
equation (3.3) for some Borel velocity field vy with (vl 124, € LY([0,T)), then
p: [0,T] — P(0) is absolutely continuous and |p'|(t) < ||villp2(4,,,) for Leb-a.e.
te[0,T].

PROPOSITION 3.5 (see [3, Theorem 8.4.6]). Let p: [0,T] — P(0) be absolutely
continuous, and let vy € F,,, be such that (3.2), (3.3) hold. Then

(3 5) lim W2(,ut+67,ut o (Id+€vt)71)
’ el0 £

=0.

It is easy to show that the curve (L, )ic[s,) of the controlled process (X¢)ie[s, 1)
is an absolutely continuous curve in &(&) under (H;), (Hz). However, it is not easy
to describe the velocity (v;) of (Ly,) in 2(0).

Let po € 27(0), and ¢ is a random variable in .%, with Le = po. For a1y,
denote (X?’“",k?’“")te[oﬂ its associated controlled process satisfying (1.1). Under
the nondegenerate condition (Hz), the law of X#° admits a density p;(z), which
satisfies the nonlinear Fokker—Planck equation:

{atpm) = Lt pi(), zed,te(0,T),

(36) (AVpu(a) i) =0,  zedoite(0,T),
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where

d d
) |
Lop(z) =3 D a0 4 pe(x) = O, (bilt, @, pr(x)da, ) py ().

ij=1 i=1

Using the decoupling method, via fixing the distribution of the process (X;), the
controlled process (X, k:) can be viewed as a solution to the following SDE:

d)?t = b(t,)?t,uhat)dt + O'dBt — ﬁ(_}zt)déh
t
b= [ Lao(Ro)dk,
0

where i = Zx, is fixed by the unique solution of SDE (1.1). In particular, the law
of X; coincides with that of X;. Let p(s,x;t,y) be the transition probability of the
process (X;), which is a fundamental solution of a parabolic equation with Neumann
boundary condition. There is a large number of works in the literature on the esti-
mates of fundamental solutions to parabolic equations with the Dirichlet boundary
condition or Neumann boundary condition; see, for instance, [4, 5, 14, 17, 34, 35, 36)
and references therein. In particular, [34] generalized the work [36] to the time-
homogeneous parabolic equation with mixed boundary condition. [14] deals with
time-inhomogeneous parabolic equations with Neumann boundary. Under (H;), the
drift b admits a bound M determined by K; and the diameters of & and U. Then, the
Gaussian type estimates hold for p(s,z;t,y). Namely, there exist constants k1, ko2 > 0,
depending on T, such that

— L exp _ly—al® < p(s,z3t,y) € — 2 exp i
(37) K1 (t — s)4/2 ko(t—s)) — ~(t—s)d/? t—s
' ) K1 ly — =) =
|3tp(8,$7t,y)|§(t_s)w+2>/2€XP<—’f2 P ) r,y€0,0<s<t<T.

Furthermore, the density p:(z) of Zx, can be represented by

(3.8) pt(x)zép(s,z;t,z)uo(dz), t>s.

Consequently, under the nondegenerate condition (Hz), the distribution of the solution
X: to SDE (1.1) will always stay in &7(0).

THEOREM 3.6 (tangent vector fields: regular case). Assume (Hy) and (Ha) hold.
Let (X, kt)icjo,r) be a solution to (1.1) associated with a feedback control o € Iy
in the form oy = F(t, Xy, Lx,) and Lx, = o€ P"(0). Then,

(1) [0,7] > t = w = Zx, is an absolutely continuous curve in P7(0); its

associated velocity field vy satisfying (3.2), (3.3) is given by

d d
1 a; »(%Ejp T
(39) Ut<x)zz bi(t”autaF(taxa,ut))_iZJit() €,
i=1 2 j=1 pe(@)
where py(x) = d“dtiix) denotes the density of p:, and {e1,...,eq} is the canon-

ical orthonormal basis of R%;
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(ii) let ue C’i7b(f@r(5’)), then

(3.10)
du(pe)
dt _Dliu(/l’t)
1

= [ 0t PPl @)din(z) - [ (DPulie) (), AT ()
é é

:/ﬁ(b(t,x,,ut,at),DLu(ut)(x))dut(x)—l—%/ftr(AVmDLu(ut)(m))dut(x).
é é

Proof. (i) By (H;) and Lemma 2.3, we have that for 0 <s<t<T
Wo (pe, ps)? <E|[Xy — X

<C <(t - s)E/ (1+ | XA dr + o] (t - s)> <O(t—sl>+[t—s|)

for a generic positive constant C' whose value may change from line to line. Therefore,
t > py is absolutely continuous in 4?(&). Theorem 3.4 implies that there exists a
velocity v such that (3.2) and (3.3) hold.

Due to (3.4), for any ¥ (t,z) = B(t)h(z) € C((0,T) x 0),

| [ Ona)+ o) 509w s

= [ (5 @B X + BB wn(X,), Th(X0)] e =

This yields
(3.11)

T d T T
/0 ﬁ(t)&]Eh(Xt)dt:—/O B(t)IEh(Xt)dt:/o ﬂ(t)E[(vt(Xt),Vxh(Xt»]dt.

Applying Itd’s formula and Green’s formula, for h € C2°(0), we have
d

&Eh(Xt) =E {(b(t, X, gy ), Vzh(Xt)>+;tr(AVih(Xt))}

Edj S0 1ai;0, pr (X))
pe(Xe)

Inserting this into the left-hand side of (3.11), the arbitrariness of B(t)h(x) € C°
((0,T) x O) can yield that v;(x) can be represented as (3.9).

(ii) Since w is Lipschitz continuous in (£2(0), Wa), there exists C' > 0 such that
u(pere) = ulpe o (Id +eve) )| < OWa(gse, e 0 (Id + €v) 1) = 0(e).
According to Proposition 3.5,
Wa(pte-ve, e 0 (Id +€v) 1) = o(e),
where v; is given by (3.9). Thus,

Culppere) () u(ﬂto(Id—i—svt)’l)—u(,ut)_ L
liro . —lm . = (D u(p),vr) 7,

:IE[(b(t,Xt,ut,at),Vxh(Xt»] - %]E axlh(Xt) .

i=1

:‘/ﬁ<b(tvx7ﬂt70¢t)aDLU(Nt)(CE»dut(x)
- 1/<DLU(M)($)714V,0t(913)>d£13.

2 /6
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Since (ADTu(u),n) =0 on 0, we derive from Green’s formula that
(D ulp) v 7, = [ 000,00, DPul) @) 2)
Z

+ % /5;tr(AVzDLU(ut)(w))dﬂt(l‘)-

We complete the proof. ]

THEOREM 3.7 (tangent vector fields: general case). Assume (Hy) and (Hs) hold.
Let (Xi, kt)iejo,r) be a solution to (1.1) associated with a feedback control o € g ;,, in
the form oy = F(t, Xy, Lx,) and Lx, = po € P(0). Then, for every ueCi b W(2(0))
and 0 <ty <ty <T, it holds that

Wiy, // bt 10, ), D ) ()

+ Etr(AVmD U(Mt)(x)))dﬂt($>dt-

Proof. Similar to the proof of Theorem 3.6(i), for o € £(0) instead of in 227 (),
the curve (p;) is still an absolutely continuous curve in #(&). The existence of the
vector field v, satisfying (3.3) in the sense of (3.4) still exists according to Theorem 3.4.
Now, we cannot have the explicit expression (3.9) for v;. Nevertheless, by (3.4), similar
to the deduction in (3.11), using Itd’s formula and smooth approximation, it holds
that for any v (t,z) € C%2([0,T] x €) (i.e., 1(t,x) is continuous in ¢ and second order
continuously differentiable in ), for 0 <t; <ty <T,

ta
/ /vt V(7)) dpe(a dtf/wtl, 2)dpi, (@ /m, 2)dpiy (@)
(3.12) %

[ /" bt s 00), Vb (1,2)) + 511 (A2 7)) ) dpg ()t
The relation

W (pege, e o (Id+evr) ™) = o(e)
still holds due to Proposition 3.5, and hence for u € C} b(@(ﬁ_’)),

M%%M%F[ﬁmmﬁj//DLm op(@)dpap ()t
Define 1

P(t,x) :/ DEu(py)(z)dz + M for somezo € O,

where M is a constant such that [z(0,2)duo(z) = [;¢(T,z)dur(z). As u €
C1 4(2(0)), we have i € C*2([0,T] x €) and

(3.13) Vat(t,w) = Dhu()(z), z€0,t€(0,T),

then we derive from (3.12) the desired conclusion,

Wiy, A/ bt 10, ), D ) ()

+ §tr(AVmD u(ut)(:c)))dut(x)dt- 0
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2. Viscosity solutions to HJB equations. Based on Theorem 3.7 and
Proposition 2.5, we shall characterize the value function as a unique viscosity solution
to the following HJB equation:

—Opu(t, p) —infaepy H(t, u,u, DPu,a)=0, t€[0,T),uc P(0),
u(p) = [ glen)duo) we 2(6),
(78
where the Hamiltonian
Mt DPu,0) = [ (bt Dult, ) du(o)

17

(3.15) + 5 [ o(AD e ) @) di(o)
/ I(t,z, p, )dp(x).

Let us first introduce the notation of viscosity solution for (3.14).

(3.14)

DEFINITION 3.8. Let u: [0,T] x 2(0) =R be a continuous function.
(i) w is called a viscosity subsolution to (3.14) if u(T,p) = [, g(x, n)du(z), and

(316) _8tw(t07/~1'0) - igg%(to,ﬂo,¢7DLw,@) < 0
for all ¢ € C’i’})([O,T) x P(0)) and all (to, po) € [0,T)x P(0) being a mazi-

mum point of u — 1.
(ii) w is called a viscosity supersolution to (3.14) if u(T, ) = [, g(x, p)dpu(z), and

(317) 78{#’@07#0) - ilelfUH(thﬂov?/J7DL1/)7a) > 0
forally e Ci’}?([o, T)xP(0)) and all (to, o) € [0,T)xP(0) being a minimum
point of u — ).

(iii) If w is both a wiscosity subsolution and a viscosity supersolution to (3.14),
then u is called a viscosity solution to (3.14).

LEMMA 3.9. Assume (Hy)-(Hs) hold. Let v € Cpy([0,7)x 2(0)). If p, pn €
P(0), n>1, satisfy lim,, oo Wy (pn, 1) =0, then

(3.18) ILm H(L, pin, 0, DY, o) = H(t, p,p, DF1p, )  uniformlyw.r.t. a €U.

Proof. We shall estimate the convergence of three terms in H(t, pn, v, D9, a)
separately. Notice that since € is compact, for every p> 1, lim,, o Wy (ttn, 1) =0 is
equivalent to the weak convergence of u, to u (cf. [32, Chapter 6]).

First, consider the convergence of the term

/ (DP (b, ) (@), bt s 1, ) () — / (DE(t, i) (), bt 7, fn ) i)
173 172

= [ DH0.1)(@) = DH00. 1) @) it )0
t Nn ) b(tvxvﬂnva) - b(taxau7a>>dﬂn(x)

+

(3.19) /ﬁ
/ﬁ 2),b(t. 2.1, 0)) (dja(a) = djan (2)
(I) + (I2) + (I3).
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Put
Mb:sup{\b(t,z,y,aﬂ;(t,x,l/,a) [0,T] x O x 2(0 XU}
My :sup{|DLw(t,1/)(x)| + |V,DEy (t,v)(2)|; (t,z,v) €[0,T] x O x @(5’)},

which are all finite due to (Hy), ¢ € Ci’})([O,T) x P(0)), and the compactness of &
and U. Then,

1) < / My D 4p(t, ) () — DP4b(t 1) (@) | djin ().
17
By Definition 3.2(iii),
(320)  pn({z € O:|DMY(t ) (@) — DMb(t ) ()] = £}) — 0, asn oo,

and hence, the dominated convergence theorem yields that

21 Jim |0)]< Jim [ MIDED0 ) ) = D 0) @)l () =0,

n—roo

uniformly w.r.t. «. Next, for term (I), it follows from (H;) that

(3.22) lim |(I2)] < lim K1 MyWa(py, p) =0, uniformly w.r.t.o € U.
n—oo n—oo
Now we proceed to estimate the term (I3). Under the condition (H;), one can
check directly that @+ (D (t, u) (), b(t, z, 1, @)) is a bounded, Lipschitz continuous
function with

sup sup (DEap(t, ) (), b(t, @, p, ) = (DEap(t, 1) (), b(L, y, p, @) o

acU x#y ‘JJ _y|

According to the dual representation of Wasserstein distance Wy, i.e.,

h(x)—h
(3.23)  Wiy(p,v) =sup / h(x)dp(x) 7/ h(z)dv(zx); supM <1p,
o 17 TH£Y ‘l‘ - y|
there is some constant C' > 0 such that
(3.24) |(Is)] < CWy (pn, ) — 0, asn— oo, uniformly w.r.t.aeU.

Inserting the estimates (3.21), (3.22), (3.24) into (3.19), we get

(3.25)
T [ (DP( 1) (), b8, 2, @) i () = / (D™ (t, 1) (@), b(t, 2, 1, )) ()
7 o

uniformly w.r.t. a€U.
Second,

‘/tr(AVxDLw(t,Mn)(m))dun(x)—/ tr(AV, D"y (t, p)(z))dp(z)
o %
| / (60 (AV, DE(E, ) (@) — b (AV DE(t, () | dpin ()

/ (AVLD"(t, ) () d(pn — p) ()| -
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Then, by Definition 3.2(iii) and the weak convergence of p, to u, we get that
(3.26)
lim ’ / tr (AV, D) (t, 1) () dpt () — / tr(AV, DLt ,u)(:n))du(x)' —0.
n—=l Jo 6

At last, due to (H3) and the dual representation (3.23) of Wy,

/ﬁtx,un, ) (x /ﬁtmﬂ, )dp(z)

G20 < [ otta.gin0) = otz @)+ | [ 9t a)d = )(a)

< K3Wo (pn, 1) + KsWq (pp, p) — 0,  asmn — oo, uniformly w.r.t.« € U.

Consequently, the desired conclusion (3.18) follows immediately from (3.27), (3.26),
and (3.25). The proof is complete. |

LEMMA 3.10. Assume (Hy) and (Hy) hold. Then for any g, € P(0) and © €
Wiy s the law ZLx, of the controlled process Xy satisfies that there exists C' >0 such
that

Wl(uhuto)gc\/t_tO) te[thT]a
||:ut - ,us”var < C(ln(t - to) - IH(S - to)), taS € (thT]

Proof. 1f s =tg, for any h with ||z, :=sup,_, @) =hW)l < 1 by (3.8) and (3.7),

[z—yl
/h )dpu (@ /h x)dpg, (z

p(to,y;t, )dps, (y)dr— /h Ydpe, (v)

/ / (to,y; 1 @) () — h(y)|daedps, ()

K g =yl
< [ [ e T ) - by dad (0
0 JR |t—t0‘2
= [ e ) bl (0
OJR
le/t—to/ |z|e_"“2‘z‘2dz.
Rd

Thus, the dual representation (3.23) of W, yields

Wi (g, pity) < CVE—to.

If s> tp, for any continuous function h with |h|s :=sup,cpa |R(x)] <1,

h( )d/,ét( ) h( )dMS //'h Hp thy7t 33 (t07y§37$)’dxdﬂto(y)

lo—y|?
///|8rp to,y;7, ) |drdxduto // / et drdzdug, (y)
rRaJs (r— to T
Smln(t to)/ er2lzl’q,.
S—to Rd

The proof is complete. ad
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We shall use the estimate of Wi (ug,us) below, and the estimate of the total
variation distance between u; and ug is presented as a supplemental property.

THEOREM 3.11. Under the conditions (Hy)—-(Hs), the value function V(t,u) given
in (2.5) is a viscosity solution to the HJB equation (3.14).

Proof. Viscosity subsolution. According to Proposition 2.4, V' is a continuous
function. Let (to, ptt,) € [0,T)x P () and ¢ € C’i’é([O,T)x P(0)) be a test function
such that

0=(V = )(to, uey) = max { (V= 9)(t, p); (t,p) €[0,T) x 2(0)}.

Let (X, k:) be the solution to SDE (1.1) associated with the control oy =« € U with
initial value Zx, = py,. Denote puy = ZLx, for t > 1o. By the dynamic programming
principle,
t
V<t07 /”'to) S E |:/ 19(7‘, X’r'a Moy O[)d’l" + V(ta //Lt) )
to
which yields that
t
(3.28) Oltose) = ltosseg) + [ [ Do) (@)dr 20
toJ O
By Theorem 3.7, we get
t
J
1

+ 5t (AVL DR ) (@) ) die ()

2

0.(rn) + [ (1002 10,0). D07 ) )

+ /719(7", T, s a)d,ur(x)l dr > 0.
G

Using Lemmas 3.9 and 3.10, dividing both sides of the previous inequality with ¢ —tg,
and letting t | g, we obtain that

= Oup(tos pieo) —/ﬁ(<b(’5075€7thOé)aDLl/J(to,Nto)(x»
+ St (AVLD (o, 1) () ) e (1)
—/519(t0,33,ut0706)dut0(33) <0.
By the arbitrariness of « € U, we obtain that
—0i(to, po) — inf H(to, ey, ¥, D'y, ) <0.
Hence, V' is a viscosity subsolution to (3.14).
Viscosity supersolution. Let (Lo, s, ) € [0, T)x 2 (0), wGCi’V%,([O,T)x@(ﬁf)) such

that

(3.29) 0=(V =) (to, pey) = min { (V = 9)(t, p); (t,p0) €[0,T) x 2(0)}.
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We shall prove
(330) —6“?(7507/%0) - ;25%(ﬁ0,ﬂt0,¢,DL¢,a) ZO
by contradiction. Suppose

(331) _8tw(t07uto) - lnf H(thMtoa/lz[}aDquJ?a) <0

For any a €1y, ,, , the associated controlled process (X, Jorkto kto Hto °)eelto,) 18

given in (1.1). Under the nondegenerate condition (Hy), the law of X;"" admits a
density p(x). Due to (3.8), p; admits a representation

(o) = [ plto.zit.a)da o)

Therefore, by Lemmas 3.9 and 3.10, there exist €, (; > 0 such that for any |t —to| < (1
and any o € Uy, 4,

(3.32)
— Ot ) — /ﬁ (600,210 00, DH(0, 1) () + gt (AVL D21 ) () )l ()

/ (@, pir, o )dpe (x) < —e.
Take two sequences 0, 7, >0, n > 1, satisfying
On <C1, lim 5,/d,=0.
n—oo
By the dynamic programming principle, there exists a sequence of admissible feedback

controls v, €11y, ,,, such that

to+9o.
V(t07.u0) E]E / 19(T7X??N?’O‘:‘)dr+v(t0+5n7.u“z)+6n)‘| — Tn

to

where (X}') denotes the controlled process associated with a,, and p} denotes the
law of X;*. Due to (3.29),

to+0on
¢(t07M0) EE / ﬁ(r,Xﬁ,u:},af)dr+w(to+5n,u?0+5n)] — In-
to
Hence,
Y 1 to+dn to+0n d
e gr| [ s anars [ L wln)ar.

Since ¢ € Ci’},([QT) x P(0)), by Theorem 3.7 and (3.32),

%21/t0+6
On — On Jy,

+ %tr(AVZDLw(r, 1) (@) +9(r,z, af)) duf(az)] dr

1 to+0n

za EdT:€>0.

0.0 2)+ [ (b0 ata). D26(r ) )
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Letting n — oo, this contradicts lim,, o, #* = 0. Consequently, the assertion (3.32)
is false, and V' (¢, ) is a viscosity supersolution to the HIB equation (3.14). In all,
according to Definition 3.8, V' is a viscosity solution to (3.14). d

4. Comparison principle for HIJB equations. In this part we proceed to
study the uniqueness of the viscosity solution to the HIJB equation (3.14) associated
with the intrinsic derivative. To this aim, the crucial point is to find suitable test func-
tions to approximate the viscosity solution. In the study of HJB equations on R?, the
Euclidean distance |z —y|? plays an important role in the argument of the comparison
principle. On £(0), although W, is intrinsically differentiable (cf. Proposition 4.2
below or [3, Theorem 8.4.7]), the L?-Wasserstein distance Wy is not smooth enough
to establish the comparison principle for the HJB equation (3.14) on £ (&), which
will be clarified in the study below.

The regularity of W w.r.t. the intrinsic derivative depends heavily on the theory
of optimal transport maps between probability measures, which essentially depends on
the study of the Monge—Ampeére equation. A large number of works have been devoted
to the study of the Monge—-Ampere equation. We refer to the works of Trudinger and
Wang [31], Caffarelli and McCann [9], and Chen, Liu, and Wang [13], among others.

Let us recall a result in [13] to be used later.

THEOREM 4.1 (see [13, Theorem 1.1]). Suppose O,0* are bounded convex do-
mains in R® with CY' boundary. Suppose u is a convex solution to the Monge—Ampére
equation

— _r@)
(1) {det (D?u(z)) = e,

A(Du(x))’
Du(0) = 0%,

where det(_B) stands for the determinant of matriz B. The following assertion holds:
if pe CP(0), pe CP(O*) for some B€(0,1), then

[ullc2(0) < C,

where C' is a constant depending on d, 3, p, p,O, and OF.

Applying the theory on optimal transport maps between probability measures
(cf., for example, [32]), for two probability measures p = p(z)dz and v = p(z)dz on
R?, there exists a convex function u : R? — R? such that the mapping 7,*(z) := Du(x)
satisfies

= (T} )pp=po (T})~ /h )dv(z /h (TH(x))du(z), Vhe By(RY),
WG, = [ o= T2 (o) Pdula).
Thus, u is a solution to the Monge—Ampere equation:

p(x)
det(D?u(z)) = ———+—
(P2 = 5iDutayy
Moreover, although w is not unique, its gradient and hence the mapping 7,/ are unique
and invertible. Also, the convexity of u yields that D?u > 0. Here we present a result
for the cost function |z — y|?, and much effort has been devoted to the study on the
general cost functions and on general spaces (cf. [3, 31, 32]).
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PROPOSITION 4.2 (derivative of Wasserstein distance). For each (€ 27 (0), the
associated functional p— W3 (p,¢) belongs to Cp (27(0)) and

(4.2) DMW3(u,Q)(a) =2(x — T (2)), €, peP7(0),

where TC” : 0 — O denotes the unique optimal transport map such that

(T2) 1= € and WE(y1,¢) = /ﬁ 2 — T(2)Pdu(z).

Proof. For i € 27(0), and for any tangent vector v € 7, the curve pi. :=
po (Id +ev)~! for € € [0,1] is an absolutely continuous curve in Z(&). According to
[3, Theorem 8.4.7],

(4.3 T30 = [ 260 - s, a),

where + is a probability measure on & x € satisfying
@)+ gleadaonen) = [ faduten) + [ gla)dc(e), f.9€BO)
6? & é
[ o 22y, a2) = W30 ).
02

By virtue of the results on optimal transport maps (cf., e.g., [3, Chapter 6]), since
p e P(0) admits a density w.r.t. the Lebesgue measure, the previous optimal plan
~ is uniquely determined by v = (Id x ’72" )4t Moreover, there exists a function
u: 0 — R satisfying the Monge-Ampere equation (4.1) with 6* = &, p=dp/dz, and
p=d¢/dx such that

7! () = Du(x).

By Theorem 4.1, as p, p€C'(0), for each B€(0,1), there exists a constant C'>0 such
that

[ullg2.(6) < C.

This yields that 7 = Du is in C*#(&). Consequently, we can rewrite (4.3) to
2| 8000 = [ 21 - @) ) i), ve T
£ le=0 é

This yields that W3(-,¢) is intrinsically differentiable at u with
D W3 (1, ¢) () = 2(z — T (2)).

Moreover, as u € C?#(0), x — DEYW3 (1, ¢)(z) = 2(x — Du(x)) is continuous in z € 0.
Obviously, DEW2(u, () is also bounded as & is compact. 0

Remark 4.3. From Proposition 4.2 we can see that pu+— W3(u,() is intrinsically
differentiable on the subset 27 (&). To ensure the existence of second order differ-
entiability of z +— DEFW2(u,¢)(x), a further smoothness condition on the densities of
i and ( is needed, to act as a smooth approximation function to the HJB equation
(3.14). However, the completion of 27 (&) under the metric Wy will be 22(&), which
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cannot guarantee the desired smoothness of densities. Thus, W3 is not an appropriate
smooth approximation function to study the uniqueness of the viscosity solution to
the HIB equation (3.14).

Recently, Burzoni et al. [8] studied the optimal control problem for McKean—
Vlasov jump-diffusion processes and the viscosity solution to HJB equations on the
Wasserstein space in terms of the linear functional derivative. To establish the com-
parison principle, they constructed a distance-like function by

ch - 7fj )

where the countable set {f;} en is carefully constructed so that the linear functional
derivative of d can be estimated by itself. The construction of {f;},cn is very subtle
especially in the presence of jumps in the controlled process. [8] only constructed
d(u,v) on Z(R).

In this work we shall generalize the construction of d(, v) in [8] to the Wasserstein
space over & CR?. Moreover, we shall show that such a distance-like function is also
useful to establish the comparison principle for HJIB equations on the Wasserstein
space with intrinsically differential structure. Unfortunately, an additional assumption
on the drift b is needed like in [8], that is, the drift b(¢,z,pu, ) cannot depend on
variable x and depends on p via its moments.

Before establishing the comparison principle, we introduce the generalization of
the distance-like function d(u,v) on 2(0). Let us begin with the 1-dimensional
case by recalling the construction in [8]. Since our controlled processes are diffusion
processes without jumps, we can simplify the expression {f;},cn in [8].

A set of polynomials x is said to have an (x)-property if it satisfies that

for anyfeX,f(i) ex,Vi>0,

where f(9) denotes ith order derivative of f with f(©) = f. For any given polynomial
f, let x(f) be the smallest set of polynomials with the (x)-property that includes f.

So, x(f) = {f(i);iEO}. Put
0=Jx(
j=1

Then © contains all monomials {7 }521, it is countable, and x(f) C © for every
feO. Let { fi}52, be an enumeration of O, which is fixed in what follows. We refer
to [8] for more dlscuss1on on x, x(f), and the (x)-property.

Now we generalize the previous notions to the multidimensional situation. Denote

Zy={0,1,2,...}, and ™ =27 wy? - -2y for n=(nq,.. nd)6Z+,w—(x1, ., Tg)E
R4 Let \n| =ny+---+ng. For pe€ P(0) and f : ﬁ’ — R*. denote by <u fy=
Isf Babed on the above fixed enumeration { f;}32, of @ we define fp,(z) =

Jra (xl)fnz (1’2) < frng(xa), for n=(nq,...,n4), and
Spn=1+ SUP e 2(5) <;U/7 fn>2-
Put
fn) = {91(@1)g2(x2) - ga(wa); 9 € X(fn,), 1 i < d},

which contains all the partial derivatives of f,. Since x(fn) contains a finite number
of polynomials, there exists a finite index set Z,, satisfying
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X(fn) = {fmy mEIn}-

Let
—1 -1
Cn = ( Z 2|m|Cdml+d_1> ( Z sm> , neZi,
meLy, meL,
where C7' = m As sm > 1 and fp, € x(fn), it holds that
9—In|
Cn < ———.
C,\n|+d—l

Ifl €Z,, then fi € x(frn), x(fi) C x(fn), and hence Z; C Z,,. By the definition of
Cn, this implies that

(4.4) cL > Cn.
LEMMA 4.4. Define a function S: 2(0) — R by
(45) S(M):Z n<:uf,fn>2'
k=1|n|=k

Then S satisfies S(u) <1 for every p €

o0

(4.6) DES(e) =3
k=

(0) and is intrinsically differentiable with

K
S 2enlp fa)V ).

lin|=k
Proof. Noting that n € Z,,, we have
<X 3 g I o3
k=1|n|=k k=1
For any v € 7,
S(po (Id +ev)™t) — S(n)

ot~ TS
ds _ OZ Z Cn </ fn(x +ev(x))du(z ))

k=1|n|=k
=5 2enlisfa) [ (Vhnla) () dno)
k=1|n|=k o
Therefore, S is intrinsically differentiable with DLS(u) given by (4.6). d
We need to modify the condition of the drift b to establish the comparison

principle.
(H}) The drift b(t,z, u, o) does not depend on x. There are K4> 0 and a finite set
7 c N4 such that for any u, v € 2(0), a €U, t, s€[0,T],
bt @) < Ky [b(tp0) = b(s,va)P < Ko (Jt =52+ Y0 (= v,2)?),

This condition is especially suitable to deal with SDEs with drifts depending only on
the moments of (X;), for example,

dXt = b(t, E[Xt], E[|Xt‘2]7 Oét)dt + O'dBt — H(Xt)dkit.
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THEOREM 4.5 (comparison principle). Suppose that (H}), (H2), and (H3) hold.
Let W and V be, respectively, a viscosity subsolution and a viscosity supersolution to
the HJB equation (3.14) satisfying the continuity property (2.7). Then

(4.7) W(t,pn) <V(t,p), te[0,T), pc 2(0).

Proof. We prove (4.7) by contradiction. Assume there is (¢,71) € [0,T) x 2(0)
such that

(4.8) W (t, i) > V(& ).

Then, by the continuity of W and V, there exist some (,f1) € (0,T) x Z2(&) such
that

(49) W B) > V(E p).
Consider the auxiliary function
O(t, s, pu,v) =W(t,u) — V(s,v) —o(t,s,u,v), t,s€(0,T], uveP0),
with
1 , A A
(4.10) o(t, s, p,v) = %(It —sP+S(u—v))+ BT —t—s)+ T+35

for parameters 8, A,d € (0,1), where the functional S is defined in Lemma 4.4. Due

to the compactness of [0, T]x[0, T|x Z(0)x P(0) when F(0) is endowed with weak

convergence topology, there exists a point (to, So, to, v0) € (0, T)x(0, T|x P (O)x P(0)
such that

(4.11) O(t], 80, 1§, V] ) = sup {(I>(t, S, v);t, s €[0,T), v € 9(5’)}

Notice that (¢§, g, 1§, v{) depend on the parameters 7 = (3, A, ). By (4.11),
QD85 55, 15,07 > B(E] 15 5 15) + (s 55,5 ).

which yields that

(4.12) W, u5) = W(sg, 1) + V (5, 15) = V(s5,5) = < (It§ — s51* + S(ug — ).

| =

Since W and V' are bounded, which follows from the boundedness of ¥ and g, this
implies

: T _ T2 T T) —
(4.13) %1&)1 |t — sol” + S(ug —v) =0.
Due to the compactness of [0,7] x [0,T] x 2(0) x Z(0), there is a subsequence

(5", 50" 10", v5") Of (85,5, 13,15 satisfying 7 = (5, Ak, k) — (8,0,0) as k — oo,
and

(4.14) (toF, 80", g” s vg* ) converges to some (to, So, flo, 70)-
Due to (4.13), it holds that
0.

to=30, S(fio—1wo)= Jim S(ugt —vg")
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Since the class of polynomials {w"}nezi cq fn}nezi is a measure determining class
of functions, then we get from S(fg — ) = 0 that g = 7p. Combining this with
(4.14), (2.7), and (4.12), we obtain that

1
(4.15) lim < (|t — 55 [ + S (g — ) =0.

k—o00 Of

Case 1: If for some sequence 7, = (5, Ak, 0k ), the corresponding maximum points
(toF, som, ugk vyt satisty t0F V siF =T. By (4.11),

(1,7 ) < BT S5 17t ),

which yields

W )~V (F, )~ 28T 1) 22

1
S W(tg" 1ot) =V (sg's ng)—ﬁ(\tg’“—sg’“|2+3(u5’“—ug’“)).
k
Letting k — oo, due to (4.15) and W (T, u) =V (T, u) for any u € 2(0),
Then, letting 8 — 0, we get W (¢, 1) — V (¢, 1) <0, which contradicts (4.9).

Case 2: For any 7, = (8, A, 0k ), the corresponding maximum points satisfy ¢3* V
st <T. Let

T, T, 1 Tk T T )\ )\
it ) = V(3 00) + 55 (1t = s P4 S(n = 154)) + BET =t = 57) + 55+
0

According to Lemma 4.4, ¢ € C}J’i(((),T] x 2(0)). Consider the function

() = W (t, 1) =t ) = (E, 56", s 15"

which attains its maximum at (¢5*, u)*) by (4.11). Because W is a viscosity subsolu-
tion to (3.14), it holds that

(4'16) —3t¢(t5’“ ’ :ugk) - iggH(tSk ’ Ngkv vDL'l/)v a) <0.
Analogously, let
7 Tk T 1 T Tk T A A
U(s,v) =W(tg", ne")— 5+ (|tok - 5|2+S(N0k —v)=BRT —tg*—s)— Ti*i'
205 to s

Then, (s,v)— V(s,v) — (s, v) attains its minimum at (sg*,rg*). As V is a viscosity
supersolution to (3.14), it holds that

(4.17) —851;(88’“71/8—’“) — ailelgH(sgk,ng,iﬁ,DLzE,a) >0.
Combining (4.17) with (4.16), we obtain

Dup(tTr , gk ) — Db (sgk v
: Tk T 7 L7 . T T L
(418) Z;EBH(SOR’VOIC’ZZJ’D Q/J,Ck) _;relgH(tOknuokv 7D ’l/J,Oé)

> HelfU {H(sgk,yg",&,DLi/;,a) —’H(tg’“,ug", ,DLdJ,a)}.
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According to Lemma 4.4,
T[T 1 - T
DLQ/)(to 1ot ) () = DL?/)(SOkaVo 5* Z Z = 15", fn)V fn(2).

By direct calculation, we get from (4.18) that

(4.19)

9> mf{ /ﬁ< (sgv, v, ), D (s34, v gt — /{;b(tgk,uo, ), DEG(E, i) g

1 -
+5 (/tr(AVmDLw(sg’“,ug’“))dl/g’“ /tr(AV DIy (tgE, gt ))d%k)

/19 soF, xy vk, a)dugk —/ﬁ(tg’“,x,pg’“,a)dugk}
&

:éng{ )+ () + (Im) }.

We shall estimate these three terms one by one.
First, let us estimate term (I). By (H}), there exists K > 0 such that

b(t, 1, ) —b(s,v, Q)P <K ([t — s>+ S(u—v)), tsel0,T], uveP0),

where the functional S is given in Lemma 4.4.

5k Z Z en gt —vg®, fn) (/ (b(sgr vk, a)—b(tk , plk ), V fn(2))dvk (z)

m=1|n|=m

/ (b3 1T >,an<w>>d<u5k—ugk><x>>

2
Z—@Z > cn[ ok —ugk, fn)2 42 ((b(sgk,ygk,a) b, b 7a)7/6an(x)dugk(x))>

m=1|n|=

2
+2( z)—wu'o , & /an kfﬂgk)(w)) :|

z—fZ Z C“{#o’“—vsk,fn>2+2lb<sswo ) —b(t3, u¥ )2

2]
R [W 0?28 (|05 =g P800 ) ’/ﬁvfn(a?)dugk(x)

2

2

_an(a?)dl/gk (z)
é

+2|b t() 7/1/0 ) k _Mgk)(x)

2

/ 'V fa(@)d — 3t (@)
o

Notice that Oy, fn(x) € x(fn) for each i €{1,...,d}, and so there exists l;(n) € T,
such that Oy, frn () = fi,(n)(z). By (4.4), ¢i,(n) > cn, and

2

Cn < cy(n)

2
/ Oy, Fn(@) A ()
17

/_ fii(n) (z)drg* (x)
17
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Besides, Lemma 4.4 tells us that S(vj*) < 1. This yields that

S5 e B3I

m=1 |n\:m m=1 |n‘:ml=1

oo d
<D am Wt fum)® <4,

m=1|n|=mi=1

2

/,anw)dugk (2)
7

/ Oy, () (1)
7

and

(4.20)
2
<d en Vgt — 1o"s n>2'

m

> cn
Inj=m

Invoking the previous estimates, we finally obtain that

[ Vin@aeg - e

m=1 4

&
3
I
3

1 T T C T, Tk T T
(4.21) (> _ES(Nok —y") — ﬁ(“ok - 50k|2 +S(pg* — Vok))

for some constant C' > 0 independent of k.
Now we deal with term (I). Similar to the estimate of (4.20), there exists C' >0
independent of k such that

(4.22)
=53 3 el 15t fo) [ AV ule)AOF - 47 (0)

o

>l X [makvak, W24 ([ e )i - e ) ]

C - Tk Tk C T T
2772 Z Cn kgt —vo"s n>2:*as(ﬂok*’/ok)~

m=1|n|=m

At last, we estimate term (II). By virtue of (4.14), ¢J* converges to o, g,
vg* converges and weakly to fip as k — co. As € is bounded, this also implies that
W2(M6k7ﬁ0) — 0 as k— oo. By <H3)7

(4.23)
lim (Il) = lim {/ (D(sg", 2, 15%, @) — 9(tF, 2, g, @) ) dugh (o)
k—o0 k—o0 é

+ / (9T 2T, ) — O(Fo, @, fior @) AW — 1) (@)

o
+ [ 90,2 10, )05 — i) (@)}
o

> lim {—K3(|sgk—tg’“|+W2(zxg’“,ug’“))—2K3(|t8’“—fo|+W2(u8’“,ﬂo))

T k—oo

+ [ 000,005 0)~ [ 0G0, 0,0 ()}
2 o
=0.

Finally, inserting the estimates (4.23), (4.22), (4.21) into (4.19), due to (4.15),
we get
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lim —28> lim (I) + () 4+ (IM) =0,

k—o0 k—o0

which contradicts the fact 8 > 0.
Consequently, we have shown that the existence of (¢, 1) satisfying (4.9) is false,
and so is the existence of (,f1). Thus, we conclude that W (t,u) < V(¢,u) for all

(t,p) €]0,T)x P(0) as desired. 0

At last, we propose two possible applications of the conclusions of this work. One
is to develop the viscosity solution theory on the Wasserstein space over Riemannian
manifolds associated with the optimal control problem for stochastic processes on
Riemannian manifolds. Another is the study of the control problem for N-particle
systems or mean-field games. There are many works in the literature dedicated to
the study of convergence of mean field games and N-particles systems, for instance,
[11, 12, 16, 22, 23] and references therein. There are very few explicit solvable mean
field game models; see, for example, linear quadratic models [6, 21], and the optimal
investment model [24]. The idea of using the HIB equation or the Master equation to
prove the limit theorem of an N-particles system has proven to be powerful; see, e.g.,
[10] and references therein. However, a key point of the approach of [10] is that it
works under the sole assumption that the Master equation admits a classical solution.
How to generalize the approach of [10] to the setting of viscosity solutions is a question
worth investigation in the future.
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