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OPTIMAL CONTROL PROBLEM FOR REFLECTED
McKEAN--VLASOV SDEs\ast 

JINGHAI SHAO\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This work investigates the optimal control problem for reflected McKean--Vlasov
SDEs and the viscosity solutions to Hamilton--Jacobi--Bellman (HJB) equations on the Wasserstein
space in terms of intrinsic derivative. It follows from the flow property of reflected McKean--Vlasov
SDEs that the dynamic programming principle holds. Applying the decoupling method and the
heat kernel estimates for parabolic equations, we show that the value function is a viscosity solution
to an appropriate HJB equation on the Wasserstein space, where the characterization of absolutely
continuous curves on the Wasserstein space by the continuity equations plays an important role.
To establish the uniqueness of the viscosity solution, we generalize the construction of a distance-
like function initiated in Burzoni et al. [SIAM J. Control Optim., 58 (2020), pp. 1676--1699] to
the Wasserstein space over multidimensional space and show its effectiveness for coping with HJB
equations in terms of intrinsic derivative on the Wasserstein space.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . viscosity solution, Wasserstein space, reflected McKean--Vlasov, feedback control

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 60H10, 35Q93, 49L25

\bfD \bfO \bfI . 10.1137/23M1602206

1. Introduction. Let O be a bounded convex domain in \BbbR d including the origin
and with C1,1 boundary. \=O denotes the closure of O and \partial O its boundary. Let \vec{}n(\cdot )
be the unit outward normal of O. Consider the following reflected McKean--Vlasov
equation: \left\{   

dXt = b(t,Xt,LXt
, \alpha t)dt+ \sigma dBt  - \vec{}n(Xt)dkt,

kt =

\int t

0

1\partial O(Xs)dks,
(1.1)

where LXt
denotes the distribution of Xt. (Bt) is a d-dimensional Brownian motion.

The coefficients b, \sigma will be detailed later. The term \alpha t represents the control strategy
imposed on (Xt). The solution of (1.1) is a pair (Xt, kt), and the process (Xt) will
stay always in \=O. (kt) is called the local time of (Xt) on \partial O, which is a continuous
process and increases only when Xt hits the boundary \partial O.

In this work, we shall investigate the finite horizon optimal control problem for the
reflected process (Xt). The associated value function will be defined on the Wasser-
stein space P( \=O), the space of all probability measures over \=O. The admissible
controls considered in this work are of feedback control form and contain the set of
deterministic controls used as in [8]. This adds a new difficulty to verifying the value
function as a viscosity supersolution. The dynamic programming principle is estab-
lished following from the flow property of the solutions to reflected McKean--Vlasov
SDEs. Then, using the intrinsically differential structure for functions on P( \=O), and
taking advantage of the characterization of absolutely continuous curves on P( \=O) in
terms of continuity equations (cf. [3]), the value function is proved to be a viscosity
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solution to an appropriate HJB equation on P( \=O). In the argument, we use the
decoupling method and the heat kernel estimates for parabolic equations to overcome
the difficulty caused by the feedback controls. The intrinsically differential struc-
ture on P( \=O) is closely related to the study of the optimal transport map problem
(cf. [3, 32]) and Monge--Amp\`ere equations (cf. [9, 31, 32]), which can provide rich
geometric structure on P( \=O).

As is well known in the study of HJB equations over the Wasserstein space, one
of the main challenges is to prove the uniqueness of the viscosity solution. The theory
of viscosity solutions for HJB equations in infinite dimensional space was initiated
by Crandall and Lions [15] on Hilbert space or certain Banach space. However, the
recent study of the optimal control problem for McKean--Vlasov SDEs and mean field
games has motivated a lot of research interest on HJB equations on the Wasserstein
space; cf., e.g., [8, 11, 12, 25, 28, 29, 30].

The Wasserstein space has various differential structures, and correspondingly
various HJB equations have been established on it. For example, Ambrosio and
Feng [2] and Gangbo and Swiech [19] used a metric derivative to study viscosity
solutions of (first order) Hamilton--Jacobi equations on the Wasserstein space. Lions
[26] lifted functions defined on the Wasserstein space to functions on an appropriate
L2 space and used the well-developed viscosity solution theory for HJB equations
on the Hilbert space to study HJB equations on the Wasserstein space. Gangbo,
Nguyen, and Tudorascu [18] and Gangbo and Tudorascu [20] exploited the isometry
between a quotient space of L2 space to the Wasserstein space at length, and made
inferences on partial differential equations in the latter space. Pham and Wei [28, 29]
studied HJB equations on the Wasserstein space by using Lions' lifting to solve the
optimal control problem for McKean--Vlasov SDEs (with common noise). Burzoni
et al. [8] investigated the viscosity solutions to HJB equations using a linear functional
derivative on the Wasserstein space. They raised a distance-like function on the
Wasserstein space over \BbbR , whose linear functional derivative can be controlled by
itself. The construction of this distance-like function is quite subtle.

Our strategy to establish the uniqueness of the viscosity solution is based on two
observations: (1) The L2-Wasserstein distance \BbbW 2 is only intrinsically differentiable
at the probability measures satisfying a certain regular property, and its derivative
cannot satisfy the smoothness condition of the HJB equation established by solv-
ing the optimal control problem associated with (1.1). (2) The distance-like function
constructed in [8] is also intrinsically differentiable, and its intrinsic derivative is
smooth enough to be used as the smooth test function of the value function. Thus,
we generalize the construction of [8] for P(\BbbR ) to the Wasserstein space P( \=O) over
multidimensional space and make use of the weak compactness of P( \=O) to establish
the comparison principle for the viscosity sub/supersolutions to our established HJB
equations on P( \=O). A technical restriction of this method, like in [8], is that the drift
b can only depend on the finite order moments of \mu and is independent of x.

This work is organized as follows. In section 2, we present the framework of
the optimal control problem for (1.1) and study the continuity of the value function
and establish the dynamic programming principle. In section 3, under the intrinsic
differential structure of P( \=O), the law \mu t of the controlled process Xt is shown to
be an absolutely continuous curve in P( \=O), whose velocity vt can be characterized.
Furthermore, the value function is shown to be a viscosity solution to an appropriate
HJB equation on P( \=O). In section 4, we study the regularity of L2-Wasserstein
distance \BbbW 2 based on the regularity of the solution of the Monge--Amp\`ere equation.
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3114 JINGHAI SHAO

Then, the uniqueness of the viscosity solution is established under the generalization
of [8]'s construction of a distance-like function.

2. Framework. Let (\Omega ,F ,\{ Ft\} t\geq 0,\BbbP ) be a complete filtered probability space.
Let P( \=O) be the space of all probability measures over \=O. Let (\alpha t) be an Ft-adapted
process. Let U be a compact set in \BbbR m for some m \in \BbbN . We shall study the finite
horizon optimal control problem, so let T > 0 be given and fixed in this work. As O is
bounded, all the probability measures in P( \=O) own finite pth moments for all p\geq 1.
Let

Pr( \=O) =

\biggl\{ 
\mu \in P( \=O); d\mu (x)\ll dx and \rho (\cdot ) := d\mu 

dx
\in C1( \=O), \rho (\cdot )> 0

\biggr\} 
.(2.1)

Definition 2.1. A pair (Xt, kt) is called a solution to (1.1) if (Xt) is an adapted
continuous process on \=O, (kt) is an adapted continuous increasing process such that
\BbbP -a.e. \int t

0

\bigl( 
| b(r,Xr,LXr , \alpha r)| + \| \sigma \| 2

\bigr) 
dr <\infty , t\geq 0,

and kt =
\int t
0
1\partial O(Xs)dks,

Xt =X0 +

\int t

0

b(r,Xr,LXr , \alpha r)dr+ \sigma Bt  - 
\int t

0

\vec{}n(Xr)dkr.

A triple (Xt, kt,Bt)t\geq 0 is called a weak solution to (1.1) if (Bt) is a d-dimensional
Brownian motion under a probability space (\Omega ,F ,\{ Ft\} t\geq 0,\BbbP ), and (Xt, kt) solves
(1.1) with initial value X0 = \xi \in F0:

Xt = \xi +

\int t

0

b(r,Xr,LXr , \alpha r)dr+ \sigma Bt  - 
\int t

0

\vec{}n(Xr)dkr.

If for any two weak solutions (Xt, kt,Bt)t\geq 0 under probability \BbbP , ( \widetilde Xt, \~kt, \widetilde Bt)t\geq 0 under

probability \widetilde \BbbP satisfying LX0| \BbbP = L \widetilde X0| \widetilde \BbbP , then L(Xt,kt)| \BbbP = L( \widetilde Xt,\~kt)| \widetilde \BbbP for t > 0, SDE

(1.1) is called weakly unique.
We call (1.1) weakly wellposed for distributions in \^P if it has a unique weak

solution for any F0-measurable variable \xi with L\xi \in \^P, and the distribution of Xt

remains in \^P for any t > 0. When \^P = P( \=O), we simply say that (1.1) is weakly
wellposed.

The Lp-Wasserstein distance \BbbW p for two probability measures \mu ,\nu \in P( \=O) is
defined by

\BbbW p(\mu ,\nu ) = inf
\Gamma \in C (\mu ,\nu )

\biggl( \int 
\=O\times \=O

| x - y| p\Gamma (dx,dy)
\biggr) 1

p

, p\geq 1,

where C (\mu ,\nu ) stands for the collection of all couplings of \mu and \nu .
Let U be a compact set in \BbbR k for some k \geq 1. Assume that the coefficients

b : [0, T ]\times \=O \times P( \=O)\times U \rightarrow \BbbR d, \sigma \in \BbbR d\times d, satisfy the following:
(H1) \exists K1 > 0 such that for all s, t\in [0, T ], x, y \in \=O, \mu ,\nu \in P( \=O), \alpha , \~\alpha \in U ,

| b(t, x,\mu ,\alpha ) - b(s, y, \nu , \~\alpha )| \leq K1

\bigl( 
| s - t| + | x - y| +\BbbW 2(\mu ,\nu ) + | \alpha  - \~\alpha | 

\bigr) 
.
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OPTIMAL CONTROL PROBLEM FOR REFLECTED MKV 3115

(H2) \exists \lambda 0 \geq 1 such that for all x, z \in \BbbR d, \mu \in P(\BbbR d),

\lambda  - 1
0 | z| 2 \leq \langle Az, z\rangle \leq \lambda 0| z| 2,

where A= (aij) = \sigma \sigma \ast , and \sigma \ast denotes the transpose of the matrix \sigma .

Let \widetilde \Pi be the class of functions F : [0, T ]\times \=O \times P( \=O)\rightarrow U such that there exists
CF > 0,

| F (t, x,\mu ) - F (t, y, \nu )| \leq CF
\bigl( 
| x - y| +\BbbW 2(\mu ,\nu )

\bigr) 
,\int T

0

| F (s,0, \delta 0)| 2ds <\infty , t\in [0, T ], x, y \in \=O, \mu , \nu \in P( \=O).
(2.2)

According to [1, Theorem 3.2] or [33], under the condition (H1), for each F \in \widetilde \Pi 
and \xi \in Fs, there exists a unique solution to the reflected SDE: for 0\leq s\leq t\leq T ,

Xt = \xi +

\int t

s

b(r,Xr,LXr
, F (r,Xr,LXr

))dr+ \sigma (Bt  - Bs) - 
\int t

s

\vec{}n(Xr)dkr.(2.3)

Definition 2.2. For s \in [0, T ) and \mu \in P( \=O), a control policy \bfitalpha = (\alpha t)t\in [s,T ] is
said to be in the class of admissible feedback controls \Pi s,\mu if there exists a function

F \in \widetilde \Pi such that

\alpha t = F (t,Xt,LXt),

where (Xt)t\in [s,T ] is the solution to the reflected SDE (2.3) with Xs \in Fs satisfying
LXs = \mu .

We use (Xs,\mu 
t )t\in [s,T ] to denote the solution of (2.3) with initial value Xs = \xi and

L\xi = \mu associated with \bfitalpha . It follows from the weak uniqueness of (2.3) that the
distribution of Xs,\mu 

t for t \in [s,T ] depends on \xi only through its law \mu . Given two
measurable functions \vargamma : [0, T ]\times \=O \times P( \=O)\times U \rightarrow [0,\infty ) and g : \=O \times P( \=O)\rightarrow [0,\infty ),
our aim is to minimize the objective function

J(s,\mu ;\bfitalpha ) :=\BbbE 

\Biggl[ \int T

s

\vargamma (r,Xs,\mu 
r ,LXs,\mu 

r
, \alpha r)dr+ g(Xs,\mu 

T ,LXs,\mu 
T

)

\Biggr] 
.(2.4)

We should notice that J(s,\mu ;\bfitalpha ) is well defined, that is, it depends only on the initial
law \mu no matter which random variable \xi or \~\xi with L\xi =L\~\xi = \mu has been used as the
initial value of SDE (2.3). Indeed, for \bfitalpha \in \Pi s,\mu in the form \alpha t = F (r,Xt,LXt

), we have

\BbbE 

\Biggl[ \int T

s

\vargamma (r,Xs,\xi 
r ,LXs,\xi 

r
, \alpha r)dr

\Biggr] 
=

\int T

s

\int 
\=O

\vargamma 
\bigl( 
r,x,LXs,\xi 

r
, F (r,x,LXs,\xi 

r
)
\bigr) 
LXs,\xi 

r
(dx)dr.

A similar deduction yields that the term \BbbE 
\bigl[ 
g(Xs,\xi 

T ,LXs,\xi 
T

)
\bigr] 
also depends on \xi through

its law.
The value function is defined by

V (s,\mu ) = inf
\bfitalpha \in \Pi s,\mu 

J(s,\mu ;\bfitalpha ).(2.5)

Next, we present some properties of the value function. In particular, the value
function satisfies the dynamic programming principle, which is based on the flow
property of the solution to (1.1).
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3116 JINGHAI SHAO

Lemma 2.3. Assume (H1), (H2) hold. For any U -valued Ft-adapted process
(\alpha t)t\in [s,T ] and \=O-valued random variables \xi , \~\xi \in Fs, consider the solutions (Xt,

kt)t\in [s,T ], ( \widetilde Xt, \~kt)t\in [s,T ] to (1.1) with initial values Xs = \xi and \widetilde Xs = \~\xi , respectively.
Then,

\BbbW 2(LXt
,L \widetilde Xt

)2 \leq \BbbE | Xt  - \widetilde Xt| 2 \leq 
\bigl( 
\BbbE | \xi  - \~\xi | 2

\bigr) 
e2(K1+K

2
1 )(t - s), t\in [s,T ].(2.6)

Proof. Since O is convex and \vec{}n(x) is unit outward normal of O, it holds that

\langle \vec{}n(x), y - x\rangle \leq 0 \forall x\in \partial O, y \in O.

By It\^o's formula,

d| Xt  - \widetilde Xt| 2 = 2\langle Xt  - \widetilde Xt,d(Xt  - \widetilde Xt)\rangle +d(Xt  - \widetilde Xt) \cdot d(Xt  - \widetilde Xt)

 - 2\langle Xt  - \widetilde Xt, \vec{}n(Xt)\rangle dkt + 2\langle Xt  - \widetilde Xt, \vec{}n( \widetilde Xt)\rangle d\~kt.

Since kt increases only when Xt \in \partial O and \~kt increases only when \widetilde Xt \in \partial O, we have

\langle Xt  - \widetilde Xt, \vec{}n(Xt)\rangle dkt \geq 0, \langle Xt  - \widetilde Xt, \vec{}n( \widetilde Xt)\rangle d\~kt \leq 0.

Thus, by (H1),

\BbbE | Xt  - \widetilde Xt| 2 \leq \BbbE | \xi  - \~\xi | 2 + (K1 +K2
1 )

\int t

s

\BbbE 
\Bigl[ \bigl( 
| Xr  - \widetilde Xr| +\BbbW 2(LXr ,L \widetilde Xr

)
\bigr) 2\Bigr] 

dr.

As \BbbW 2(LXr
,L \widetilde Xr

)2 \leq \BbbE | Xr  - \widetilde Xr| 2, it follows from Gronwall's inequality that

\BbbE | Xt  - \widetilde Xt| 2 \leq \BbbE | \xi  - \~\xi | 2 + 2(K1 +K2
1 )

\int t

s

\BbbE | Xr  - \widetilde Xr| 2dr,

\BbbW 2(LXr
,L \widetilde Xr

)2 \leq \BbbE | Xt  - \widetilde Xt| 2 \leq 
\bigl( 
\BbbE | \xi  - \~\xi | 2

\bigr) 
e2(K1+K

2
1 )(t - s).

Therefore, we arrive at the desired estimate (2.6).

Let us introduce the regular condition on the cost functions \vargamma and g as follows.
(H3) There exist K2, K3 > 0 such that

| \vargamma (s,x,\mu ,\alpha )| \leq K2 \forall s\in [0, T ], x\in \=O, \mu \in P( \=O), \alpha \in U ;

| \vargamma (s,x,\mu ,\alpha ) - \vargamma (t, y, \nu ,\alpha )| + | g(x,\mu ) - g(y, \nu )| \leq K3

\bigl( 
| s - t| +| x - y| +\BbbW 2(\mu ,\nu )

\bigr) 
for all s, t\in [0, T ], x, y \in \=O, \mu , \nu \in P( \=O), \alpha \in U .

Proposition 2.4. Suppose (H1)--(H3) hold. Then the value function satisfies

| V (s,\mu ) - V (s\prime , \mu \prime )| \leq C
\Bigl( \sqrt{} 

| s - s\prime | +\BbbW 2(\mu ,\mu 
\prime )
\Bigr) 
, s, s\prime \in [0, T ], \mu ,\mu \prime \in P( \=O),(2.7)

for some constant C > 0.

Proof. Let 0\leq s < s\prime \leq T . By the definition of V (s\prime , \mu \prime ), for any \varepsilon > 0 there exists
a control \bfitalpha \varepsilon \in \Pi s\prime ,\mu \prime such that

J(s\prime , \mu \prime )\leq V (s\prime , \mu \prime ) + \varepsilon .

Let (X\varepsilon 
t , k

\varepsilon 
t ) be the associated controlled process to \bfitalpha \varepsilon with X\varepsilon 

s\prime = \xi \prime and L\xi = \mu \prime .

Due to \bfitalpha \varepsilon \in \Pi s\prime ,\mu \prime , there exists F \varepsilon : [0, T ]\times \=O \times P( \=O)\rightarrow U in the class \widetilde \Pi such that
\alpha \varepsilon r = F \varepsilon (r,X\varepsilon 

r ,LX\varepsilon 
r
) for r \in [s\prime , T ]. Let
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OPTIMAL CONTROL PROBLEM FOR REFLECTED MKV 3117

\widetilde F (r,x,\mu ) =\Biggl\{ F \varepsilon (s\prime , x,\mu ), r \in [0, s\prime ],

F \varepsilon (r,x,\mu ), r \in [s\prime , T ].

We can check directly that \widetilde F \in \widetilde \Pi . Consider the reflected SDEs: \~kt =
\int t
s
1\partial O( \widetilde Xr)d\~kr,

\widetilde Xt = \~\xi +

\int t

s

b(r, \widetilde Xr,L \widetilde Xr
, \widetilde F (r, \widetilde Xr,L \widetilde Xr

))dr+

\int t

s

\sigma (r)dBr  - 
\int t

s

\vec{}n( \widetilde Xr)d\~kr.

Here the random variable \~\xi \in Fs is chosen so that L\~\xi = \mu and \BbbE | \~\xi  - \xi \prime | 2 =\BbbW 2(\mu ,\mu 
\prime )2,

whose existence is a result of the existence of optimal coupling of \mu and \mu \prime (cf. [32]).
Define \~\alpha r = \widetilde F (r, \widetilde Xr,L \widetilde Xr

), r \in [s,T ], then \~\bfitalpha = (\~\alpha r)r\in [s,T ] is in \Pi s,\mu .
Due to (H3), we have \vargamma and g are bounded. Therefore, by Lemma 2.3,

V (s,\mu ) - V (s\prime , \mu \prime )

\leq \BbbE 

\Biggl[ \int T

s

\vargamma (r, \widetilde Xr,L \widetilde Xr
, \~\alpha r)dr+g( \widetilde XT ,L \widetilde XT

)

\Biggr] 

 - \BbbE 

\Biggl[ \int T

s\prime 
\vargamma (r,X\varepsilon 

r ,LX\varepsilon 
r
, \alpha \varepsilon r)dr+g(X

\varepsilon 
T ,LX\varepsilon 

T
)

\Biggr] 
+\varepsilon 

\leq \BbbE 

\Biggl[ \int s\prime 

s

\vargamma (r, \widetilde Xr,L \widetilde Xr
, \~\alpha r)dr

\Biggr] 
+2K3

\int T

s\prime 

\bigl( 
\BbbE | \widetilde Xr - X\varepsilon 

r | 2
\bigr) 1

2 dr

+ 2K3

\bigl( 
\BbbE | \widetilde XT  - X\varepsilon 

T | 2
\bigr) 1

2 +\varepsilon 

\leq c1| s\prime  - s| + c1
\bigl( 
\BbbE 
\bigl[ 
| \widetilde Xs\prime  - \xi | 2

\bigr] \bigr) 1
2 + \varepsilon 

\leq c1| s\prime  - s| + c1
\bigl( 
\BbbE [| \widetilde Xs\prime  - \widetilde Xs| 2]

\bigr) 1
2 + c1

\bigl( 
\BbbE [| \widetilde Xs  - \xi | 2]

\bigr) 1
2 + \varepsilon 

\leq c2
\bigl( 
| s\prime  - s| +

\sqrt{} 
| s\prime  - s| +\BbbW 2(\mu ,\mu 

\prime )
\bigr) 
+ \varepsilon ,

where we have used \BbbW 2(L \widetilde Xr
,LX\varepsilon 

r
) \leq 

\bigl( 
\BbbE | \widetilde Xr  - X\varepsilon 

r | 2
\bigr) 1

2 , and c1, c2 are constants
depending only on K3, T , and the diameter of O. Therefore,

V (s,\mu ) - V (s\prime , \mu \prime )\leq c3

\Bigl( \sqrt{} 
| s\prime  - s| +\BbbW 2(\mu ,\mu 

\prime )
\Bigr) 
+ \varepsilon 

for some c3 > 0. Letting \varepsilon \rightarrow 0, we get the desired estimate of V (s,\mu ) - V (s\prime , \mu \prime ). The
estimate V (s\prime , \mu \prime ) - V (s,\mu ) can be proved in a similar way. The proof is completed.

Proposition 2.5 (dynamic programming principle). Suppose (H1), (H2) hold.
Then, for any 0\leq s\leq t\leq T , \mu \in P( \=O),

V (s,\mu ) = inf
\bfitalpha \in \Pi s,\mu 

\biggl\{ 
\BbbE 
\biggl[ \int t

s

\vargamma (r,Xs,\mu ,\alpha 
r ,LXs,\mu ,\alpha 

r
, \alpha r)dr+ V (t,LXs,\mu ,\alpha 

t
)

\biggr] \biggr\} 
,(2.8)

where for each \bfitalpha \in \Pi s,\mu , (X
s,\mu ,\alpha 
t )t\in [s,T ] stands for the corresponding controlled process

with initial value Xs,\mu ,\alpha 
s satisfying LXs,\mu ,\alpha 

s
= \mu .

Proof. For each \bfitalpha \in \Pi s,\mu , the wellposedness of reflected McKean--Vlasov (1.1)
yields that the flow property holds:

Xs,\xi 
r =X

t,Xs,\xi 
t

r , r \in [t, T ], s\leq t.

This assertion can be proved in the same way as the McKean--Vlasov equations with-
out reflection; see [7, section 3].
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3118 JINGHAI SHAO

Denote the right-hand side of (2.8) by \widetilde V (s,\mu ). Then, according to the definition
of V (s,\mu ), for any \varepsilon > 0 there exists an admissible feedback control \bfitalpha \in \Pi s,\mu such
that

V (s,\mu )

\geq \BbbE 

\Biggl[ \int t

s

\vargamma (r,Xs,\mu ,\alpha 
r ,LXs,\mu ,\alpha 

r
, \alpha r)dr

+

\int T

t

\vargamma (r,Xs,\mu ,\alpha 
r ,LXs,\mu ,\alpha 

r
, \alpha r)dr+g(X

s,\mu ,\alpha 
T ,LXs,\mu ,\alpha 

T
)

\Biggr] 
 - \varepsilon 

\geq \BbbE 
\biggl[ \int t

s

\vargamma (r,Xs,\mu ,\alpha 
r ,LXs,\mu ,\alpha 

r
, \alpha r)dr+ V (t,LXs,\mu ,\alpha 

t
)

\biggr] 
 - \varepsilon \geq \widetilde V (s,\mu ) - \varepsilon ,

where in the second inequality we have used the flow property of (Xs,\mu ,\alpha 
t ). Letting

\varepsilon \rightarrow 0, we obtain that V (s,\mu )\geq \widetilde V (s,\mu ).
For the inverse inequality, for all \varepsilon >0, by the definition of \widetilde V (s,\mu ), there is \bfitalpha \in \Pi s,\mu 

associated with F \in \widetilde \Pi such that

\varepsilon + \widetilde V (s,\mu )\geq \BbbE 
\biggl[ \int t

s

\vargamma (r,Xs,\mu ,\alpha 
r ,LXs,\mu ,\alpha 

r
, \alpha r)dr+ V (t,LXs,\mu ,\alpha 

t
)

\biggr] 
.(2.9)

By the definition of V (t,LXs,\mu ,\alpha 
t

), there exists a feedback control \bfitalpha \prime \in \Pi t,LX
s,\mu ,\alpha 
t

corresponding to a function \widetilde F \in \widetilde \Pi such that

\varepsilon + V (t,LXs,\mu ,\alpha 
t

)\geq \BbbE 

\Biggl[ \int T

t

\vargamma (r,Xt,\nu t
r ,LX

t,\nu t
r

, \alpha \prime 
r)dr+ g(Xt,\nu t

T ,LX
t,\nu t
T

)

\Biggr] 
,(2.10)

where \nu t =LXs,\mu ,\alpha 
t

. We define a new function \^F by

\^F (r,x,\mu ) = F (r,x,\mu )1r\leq t + \widetilde F (r,x,\mu )1t<r\leq T ,
and check directly that \^F \in \widetilde \Pi . Then, corresponding to \^F , consider the following SDE:

d \^Xr = b
\bigl( 
r, \^Xr,L \^Xr

, \^F (r, \^Xr,L \^Xr
)
\bigr) 
dr+ \sigma (r)dBr  - \vec{}n( \^Xr)dkr(2.11)

with initial value \^Xs = \xi and L\xi = \mu . By the uniqueness of the solution to SDE
(2.11), it holds that \^Xr =Xs,\mu ,\alpha 

r for r \in [s, t] and \^Xr =Xt,\nu t
r for r \in [t, T ]. Associated

with \^F , there is an admissible feedback control \^\bfitalpha \in \Pi s,\mu and \^\bfitalpha satisfies

\^\alpha r = \alpha r1s\leq r\leq t + \alpha \prime 
r1t<r\leq T .

Then, invoking (2.9), (2.10), by the definition of V (s,\mu ),

2\varepsilon + \widetilde V (s,\mu )\geq \BbbE 

\Biggl[ \int T

s

\vargamma (r, \^Xr,L \^Xr
, \^\alpha r)dr +g( \^XT ,L \^XT

)

\Biggr] 
\geq V (s,\mu ).

Letting \varepsilon \rightarrow 0, we get \widetilde V (s,\mu )\geq V (s,\mu ). In all, we have shown V (s,\mu ) = \widetilde V (s,\mu ) and
the proof is completed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
25

 to
 2

22
.1

6.
19

2.
5 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



OPTIMAL CONTROL PROBLEM FOR REFLECTED MKV 3119

3. Characterization of the value function: Existence of viscosity
solution.

3.1. Riemannain structure of the Wasserstein space. In this subsection,
we adopt the Riemannian interpretation of the Wasserstein space developed by Otto
in [27] to introduce an HJB equation on the Wasserstein space and show that the
value function is a viscosity solution to it. However, we defer the discussion on the
uniqueness of the viscosity solution to this HJB equation to section 4.

The tangent space, geodesics, and Ricci curvature can be developed on P2(\BbbR d) :=
\{ \mu \in P(\BbbR d);

\int 
\BbbR d | x| 2d\mu (x)<\infty \} endowed with the L2-Wasserstein distance \BbbW 2 based

on the theory on optimal transport maps. See, e.g., [3] and [32]. As \=O is bounded, it is
clear that P2( \=O) =P( \=O). As we are interested in the reflected stochastic processes
on \=O, similar to P2(\BbbR d), we consider the following Riemannian structure of P( \=O).
For each \mu \in P( \=O), the tangent space at \mu is defined by

T\mu :=
\bigl\{ 
v : \=O \rightarrow \BbbR d is measurable satisfying \mu (| v| 2)<\infty and \langle Av,\vec{}n\rangle = 0 on \partial O

\bigr\} 
,

(3.1)

where A= \sigma \sigma \ast , and \vec{}n is the unit outward normal of O. Then, T\mu is a Hilbert space
under the inner product

\langle v, v\rangle T\mu 
= \| v\| 2T\mu 

:= \mu (| v| 2).

Definition 3.1. Let u :P( \=O)\rightarrow \BbbR be a continuous function, and let Id be the
identity map on \BbbR d. u is said to be intrinsically differentiable at a point \mu \in P( \=O) if
there is a linear functional DLu :T\mu \rightarrow \BbbR such that

DL
v u(\mu ) = lim

\varepsilon \downarrow 0

u(\mu \circ (Id + \varepsilon v) - 1) - u(\mu )

\varepsilon 
, v \in T\mu , \mu \in P( \=O).

In this situation, the unique element DLu(\mu )\in T\mu such that

\langle DLu(\mu ), v\rangle T\mu =

\int 
\=O

\langle DLu(\mu )(x), v(x)\rangle \mu (dx) =DL
v u(\mu ), v \in T\mu ,

is called the intrinsic derivative of u at \mu .

Definition 3.2. Let \^P be a subset of P( \=O). We write u \in C1
L,b(

\^P) if u

is Lipschitz continuous in (P( \=O),\BbbW 2) and intrinsically differentiable at any point
\mu \in \^P, and its intrinsic derivative DLu(\mu )(x) satisfies that

(i) for each \mu \in \^P, x \mapsto \rightarrow DLu(\mu )(x) is continuously differentiable;
(ii) sup

\bigl\{ 
| DLu(\mu )(x)| + | \nabla xD

Lu(\mu )(x)| ;\mu \in \^P, x\in \=O
\bigr\} 
<\infty ;

(iii) \mu \mapsto \rightarrow DLu(\mu )(\cdot ) is continuous from \^P to L1( \=O) in the sense that if \mu n, \mu \in \^P
and \BbbW 2(\mu n, \mu )\rightarrow 0 as n\rightarrow \infty , then for any \varepsilon > 0

\mu n
\bigl( \bigl\{ 
x\in O

\bigm| \bigm| | \nabla xD
L\psi (t, \mu n)(x) - \nabla xD

L\psi (t, \mu )(x)| \geq \varepsilon 
\bigr\} \bigr) 

 - \rightarrow 0, as n\rightarrow \infty .

For a function \psi : [0, T ]\times \^P \rightarrow \BbbR , if for each \mu \in \^P, \psi (\cdot , \mu ) is continuously differential;
for each t\in [0, T ], \psi (t, \cdot )\in C1

L,b(
\^P), and

\| DL\psi \| \infty := sup\{ | DL\psi (t, \mu )(x)| ; t\in [0, T ], \mu \in \^P, x\in \=O\} <\infty ,

we say that \psi \in C1,1
L,b([0, T ]\times \^P).
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3120 JINGHAI SHAO

Definition 3.3 (absolutely continuous curves). A curve \mu : (a, b) \rightarrow P( \=O) is
said to be in AC(a, b) for a, b\geq 0 if there exists m\in L1(a, b) such that

\BbbW 2(\mu s, \mu t)\leq 
\int t

s

m(r)dr, a < s< t < b.

For an absolutely continuous curve \mu : (a, b)\rightarrow P( \=O) the limit

| \mu \prime | (t) := lim
s\rightarrow t

\BbbW 2(\mu s, \mu t)

| s - t| 

exists for Leb-a.e. t\in (a, b), which is called the metric derivative of the curve (\mu t).

Next, let us recall some results on the absolutely continuous curves in P( \=O) as
a subspace of P2(\BbbR d), which can be proved in the same way as in P2(\BbbR d).

Theorem 3.4 (see [3, Theorem 8.3.1]). Let \mu : [0, T ] \rightarrow P( \=O) be an absolutely
continuous curve and let | \mu \prime | \in L1([0, T ]) be its metric derivative. Then there exists a
Borel vector field v : (t, x) \mapsto \rightarrow vt(x) such that

vt \in L2( \=O \rightarrow \BbbR d;\mu t), \| vt\| L2( \=O;\mu t) \leq | \mu \prime | (t) fora.e. t\in [0, T ],(3.2)

and the continuity equation

\partial t\mu t +\nabla \cdot (vt\mu t) = 0 in [0, T ]\times \=O(3.3)

holds in the sense of distribution, i.e.,\int T

0

\int 
O

\Bigl( 
\partial t\psi (t, x)+\langle vt(x),\nabla x\psi (t, x)\rangle 

\Bigr) 
d\mu t(x)dt= 0 \forall \psi \in C\infty 

c ((0, T )\times O),(3.4)

where C\infty 
c ((0, T )\times O) denotes the set of smooth functions on (0, T )\times O with compact

support.
Conversely, if a continuous curve \mu : [0, T ] \rightarrow P( \=O) satisfies the continuity

equation (3.3) for some Borel velocity field vt with \| vt\| L2( \=O;\mu t) \in L1([0, T ]), then

\mu : [0, T ] \rightarrow P( \=O) is absolutely continuous and | \mu \prime | (t) \leq \| vt\| L2( \=O;\mu t) for Leb-a.e.
t\in [0, T ].

Proposition 3.5 (see [3, Theorem 8.4.6]). Let \mu : [0, T ] \rightarrow P( \=O) be absolutely
continuous, and let vt \in T\mu t

be such that (3.2), (3.3) hold. Then

lim
\varepsilon \downarrow 0

\BbbW 2(\mu t+\varepsilon , \mu t \circ (Id + \varepsilon vt)
 - 1)

\varepsilon 
= 0.(3.5)

It is easy to show that the curve (LXt)t\in [s,T ] of the controlled process (Xt)t\in [s,T ]

is an absolutely continuous curve in P( \=O) under (H1), (H2). However, it is not easy
to describe the velocity (vt) of (LXt

) in P( \=O).
Let \mu 0 \in Pr( \=O), and \xi is a random variable in F0 with L\xi = \mu 0. For \bfitalpha \in \Pi 0,\mu 0

,
denote (X0,\mu 0

t , k0,\mu 0

t )t\in [0,T ] its associated controlled process satisfying (1.1). Under

the nondegenerate condition (H2), the law of X0,\mu 0

t admits a density \rho t(x), which
satisfies the nonlinear Fokker--Planck equation:\Biggl\{ 

\partial t\rho t(x) =\scrL \ast 
\alpha \rho t(x), x\in O, t\in (0, T ),

\langle A\nabla \rho t(x), \vec{}n(x)\rangle = 0, x\in \partial O, t\in (0, T ),
(3.6)
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where

\scrL \ast 
\alpha \rho t(x) =

1

2

d\sum 
i,j=1

aij\partial 
2
xixj

\rho t(x) - 
d\sum 
i=1

\partial xi

\bigl( 
bi(t, x, \rho t(x)dx,\alpha t)\rho t(x)

\bigr) 
.

Using the decoupling method, via fixing the distribution of the process (Xt), the
controlled process (Xt, kt) can be viewed as a solution to the following SDE:\left\{   d \widetilde Xt = b(t, \widetilde Xt, \mu t, \alpha t)dt+ \sigma dBt  - \vec{}n( \widetilde Xt)d\~kt,

\~kt =

\int t

0

1\partial O( \widetilde Xs)d\~ks,

where \mu t = LXt is fixed by the unique solution of SDE (1.1). In particular, the law
of Xt coincides with that of \widetilde Xt. Let p(s,x; t, y) be the transition probability of the
process ( \widetilde Xt), which is a fundamental solution of a parabolic equation with Neumann
boundary condition. There is a large number of works in the literature on the esti-
mates of fundamental solutions to parabolic equations with the Dirichlet boundary
condition or Neumann boundary condition; see, for instance, [4, 5, 14, 17, 34, 35, 36]
and references therein. In particular, [34] generalized the work [36] to the time-
homogeneous parabolic equation with mixed boundary condition. [14] deals with
time-inhomogeneous parabolic equations with Neumann boundary. Under (H1), the
drift b admits a boundM determined by K1 and the diameters of O and U . Then, the
Gaussian type estimates hold for p(s,x; t, y). Namely, there exist constants \kappa 1, \kappa 2 > 0,
depending on T , such that

1

\kappa 1(t - s)d/2
exp

\biggl( 
 - | y - x| 2

\kappa 2(t - s)

\biggr) 
\leq p(s,x; t, y)\leq \kappa 1

(t - s)d/2
exp

\biggl( 
 - \kappa 2

| y - x| 2

t - s

\biggr) 
,

| \partial tp(s,x; t, y)| \leq 
\kappa 1

(t - s)(d+2)/2
exp

\biggl( 
 - \kappa 2

| y - x| 2

t - s

\biggr) 
, x, y \in \=O,0\leq s < t\leq T.

(3.7)

Furthermore, the density \rho t(x) of LXt can be represented by

\rho t(x) =

\int 
O

p(s, z; t, x)\mu 0(dz), t > s.(3.8)

Consequently, under the nondegenerate condition (H2), the distribution of the solution
Xt to SDE (1.1) will always stay in Pr( \=O).

Theorem 3.6 (tangent vector fields: regular case). Assume (H1) and (H2) hold.
Let (Xt, kt)t\in [0,T ] be a solution to (1.1) associated with a feedback control \bfitalpha \in \Pi 0,\mu 0

in the form \alpha t = F (t,Xt,LXt) and LX0 = \mu 0\in Pr( \=O). Then,
(i) [0, T ] \ni t \mapsto \rightarrow \mu t := LXt

is an absolutely continuous curve in Pr( \=O); its
associated velocity field vt satisfying (3.2), (3.3) is given by

vt(x) =

d\sum 
i=1

\left(  bi(t, x,\mu t, F (t, x,\mu t)) - 1

2

d\sum 
j=1

aij\partial xj\rho t(x)

\rho t(x)

\right)  ei,(3.9)

where \rho t(x) =
\mathrm{d}\mu t(x)

\mathrm{d}x denotes the density of \mu t, and \{ e1, . . . ,ed\} is the canon-
ical orthonormal basis of \BbbR d;
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3122 JINGHAI SHAO

(ii) let u\in C1
L,b(P

r( \=O)), then

du(\mu t)

dt
=DL

vtu(\mu t)

=

\int 
\=O

\langle b(t, x,\mu t, \alpha t),DLu(\mu t)(x)\rangle d\mu t(x) - 
1

2

\int 
\=O

\langle DLu(\mu t)(x),A\nabla x\rho t(x)\rangle dx

=

\int 
\=O

\langle b(t, x,\mu t, \alpha t),DLu(\mu t)(x)\rangle d\mu t(x)+
1

2

\int 
\=O

tr
\bigl( 
A\nabla xD

Lu(\mu t)(x)
\bigr) 
d\mu t(x).

(3.10)

Proof. (i) By (H1) and Lemma 2.3, we have that for 0\leq s < t\leq T

\BbbW 2(\mu t, \mu s)
2 \leq \BbbE | Xt  - Xs| 2

\leq C

\biggl( 
(t - s)\BbbE 

\int t

s

(1 + | Xr| 2)dr+ \| \sigma \| 2(t - s)

\biggr) 
\leq C

\bigl( 
| t - s| 2 + | t - s| 

\bigr) 
for a generic positive constant C whose value may change from line to line. Therefore,
t \mapsto \rightarrow \mu t is absolutely continuous in P( \=O). Theorem 3.4 implies that there exists a
velocity vt such that (3.2) and (3.3) hold.

Due to (3.4), for any \psi (t, x) = \beta (t)h(x)\in C\infty 
c ((0, T )\times \=O),\int T

0

\int 
O

\bigl( 
\beta \prime (t)h(x)+\langle vt(x), \beta (t)\nabla xh(x)\rangle 

\bigr) 
d\mu t(x)dt

=

\int T

0

\Bigl( 
\beta \prime (t)\BbbE h(Xt)+\beta (t)\BbbE 

\bigl[ 
\langle vt(Xt),\nabla xh(Xt)\rangle 

\bigr] \Bigr) 
dt= 0.

This yields

\int T

0

\beta (t)
d

dt
\BbbE h(Xt)dt= - 

\int T

0

\beta \prime (t)\BbbE h(Xt)dt=

\int T

0

\beta (t)\BbbE 
\bigl[ 
\langle vt(Xt),\nabla xh(Xt)\rangle 

\bigr] 
dt.

(3.11)

Applying It\^o's formula and Green's formula, for h\in C\infty 
c (O), we have

d

dt
\BbbE h(Xt) =\BbbE 

\biggl[ 
\langle b(t,Xt, \mu t, \alpha t),\nabla xh(Xt)\rangle +

1

2
tr
\bigl( 
A\nabla 2

xh(Xt)
\bigr) \biggr] 

=\BbbE [\langle b(t,Xt, \mu t, \alpha t),\nabla xh(Xt)\rangle ] - 
1

2
\BbbE 

\Biggl[ 
d\sum 
i=1

\sum d
j=1aij\partial xj\rho t(Xt)

\rho t(Xt)
\partial xih(Xt)

\Biggr] 
.

Inserting this into the left-hand side of (3.11), the arbitrariness of \beta (t)h(x) \in C\infty 
c

((0, T )\times O) can yield that vt(x) can be represented as (3.9).
(ii) Since u is Lipschitz continuous in (P( \=O),\BbbW 2), there exists C > 0 such that

| u(\mu t+\varepsilon ) - u(\mu t \circ (Id + \varepsilon vt)
 - 1)| \leq C\BbbW 2(\mu t+\varepsilon , \mu t \circ (Id + \varepsilon vt)

 - 1) = o(\varepsilon ).

According to Proposition 3.5,

\BbbW 2(\mu t+\varepsilon , \mu t \circ (Id + \varepsilon vt)
 - 1) = o(\varepsilon ),

where vt is given by (3.9). Thus,

lim
\varepsilon \downarrow 0

u(\mu t+\varepsilon ) - u(\mu t)
\varepsilon 

= lim
\varepsilon \downarrow 0

u(\mu t \circ (Id + \varepsilon vt)
 - 1) - u(\mu t)

\varepsilon 
= \langle DLu(\mu t), vt\rangle T\mu t

=

\int 
\=O

\langle b(t, x,\mu t, \alpha t),DLu(\mu t)(x)\rangle d\mu t(x)

 - 1

2

\int 
\=O

\langle DLu(\mu t)(x),A\nabla \rho t(x)\rangle dx.
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Since \langle ADLu(\mu ),n\rangle = 0 on \partial O, we derive from Green's formula that

\langle DLu(\mu t), vt\rangle T\mu t
=

\int 
\=O

\langle b(t, x,\mu t, \alpha t),DLu(\mu t)(x)\rangle d\mu t(x)

+
1

2

\int 
\=O

tr
\bigl( 
A\nabla xD

Lu(\mu t)(x)
\bigr) 
d\mu t(x).

We complete the proof.

Theorem 3.7 (tangent vector fields: general case). Assume (H1) and (H2) hold.
Let (Xt, kt)t\in [0,T ] be a solution to (1.1) associated with a feedback control \bfitalpha \in \Pi 0,\mu 0 in
the form \alpha t = F (t,Xt,LXt

) and LX0
= \mu 0\in P( \=O). Then, for every u\in C1

L,b(P( \=O))
and 0\leq t1 < t2 \leq T , it holds that

u(\mu t2) - \mu (\mu t1) =
\int t2

t1

\int 
\=O

\Bigl( 
\langle b(t, x,\mu t, \alpha t),DLu(\mu t)(x)\rangle 

+
1

2
tr
\bigl( 
A\nabla xD

Lu(\mu t)(x)
\bigr) \Bigr) 

d\mu t(x)dt.

Proof. Similar to the proof of Theorem 3.6(i), for \mu 0 \in P( \=O) instead of in Pr( \=O),
the curve (\mu t) is still an absolutely continuous curve in P( \=O). The existence of the
vector field vt satisfying (3.3) in the sense of (3.4) still exists according to Theorem 3.4.
Now, we cannot have the explicit expression (3.9) for vt. Nevertheless, by (3.4), similar
to the deduction in (3.11), using It\^o's formula and smooth approximation, it holds
that for any \psi (t, x)\in C0,2([0, T ]\times \=O) (i.e., \psi (t, x) is continuous in t and second order
continuously differentiable in x), for 0\leq t1 < t2 \leq T ,\int t2

t1

\int 
\=O

\langle vt(x),\nabla \psi (t, x)\rangle d\mu t(x)dt=
\int 

\=O

\psi (t1, x)d\mu t1(x) - 
\int 

\=O

\psi (t2, x)d\mu t2(x)

+

\int t2

t1

\int 
\=O

\Bigl( 
\langle b(t, x,\mu t, \alpha t),\nabla x\psi (t, x)\rangle +

1

2
tr
\bigl( 
A\nabla 2

x\psi (t, x)
\bigr) \Bigr) 

d\mu t(x)dt.

(3.12)

The relation

\BbbW 2(\mu t+\varepsilon , \mu t \circ (Id + \varepsilon vt)
 - 1) = o(\varepsilon )

still holds due to Proposition 3.5, and hence for u\in C1
L,b(P( \=O)),

u(\mu t2) - u(\mu t1) =

\int t2

t1

du(\mu t)

dt
dt=

\int t2

t1

\int 
\=O

\langle DLu(\mu t)(x), vt(x)\rangle d\mu t(x)dt.

Define

\psi (t, x) =

\int x

x0

DLu(\mu t)(x)dx+M for some x0 \in O,

where M is a constant such that
\int 

\=O \psi (0, x)d\mu 0(x) =
\int 

\=O \psi (T,x)d\mu T (x). As u \in 
C1
L,b(P( \=O)), we have \psi \in C0,2([0, T ]\times \=O) and

\nabla x\psi (t, x) =DLu(\mu t)(x), x\in \=O, t\in (0, T ),(3.13)

then we derive from (3.12) the desired conclusion,

u(\mu t2) - \mu (\mu t1) =
\int t2

t1

\int 
\=O

\Bigl( 
\langle b(t, x,\mu t, \alpha t),DLu(\mu t)(x)\rangle 

+
1

2
tr
\bigl( 
A\nabla xD

Lu(\mu t)(x)
\bigr) \Bigr) 

d\mu t(x)dt.
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3.2. Viscosity solutions to HJB equations. Based on Theorem 3.7 and
Proposition 2.5, we shall characterize the value function as a unique viscosity solution
to the following HJB equation:\left\{    - \partial tu(t, \mu ) - inf\alpha \in U \scrH (t, \mu ,u,DLu,\alpha )= 0, t\in [0, T ), \mu \in P( \=O),

u(T,\mu ) =

\int 
O

g(x,\mu )d\mu (x), \mu \in P( \=O),
(3.14)

where the Hamiltonian

\scrH (t, \mu ,u,DLu,\alpha ) =

\int 
O

\langle b(t, x,\mu ,\alpha ),DLu(t, \mu )\rangle d\mu (x)

+
1

2

\int 
O

tr
\bigl( 
A\nabla xD

Lu(t, \mu )(x)
\bigr) 
d\mu (x)

+

\int 
O

\vargamma (t, x,\mu ,\alpha )d\mu (x).

(3.15)

Let us first introduce the notation of viscosity solution for (3.14).

Definition 3.8. Let u : [0, T ]\times P( \=O)\rightarrow \BbbR be a continuous function.
(i) u is called a viscosity subsolution to (3.14) if u(T,\mu ) =

\int 
O g(x,\mu )d\mu (x), and

 - \partial t\psi (t0, \mu 0) - inf
\alpha \in U

\scrH 
\bigl( 
t0, \mu 0,\psi ,D

L\psi ,\alpha 
\bigr) 
\leq 0(3.16)

for all \psi \in C1,1
L,b

\bigl( 
[0, T )\times P( \=O)

\bigr) 
and all (t0, \mu 0)\in [0, T )\times P( \=O) being a maxi-

mum point of u - \psi .
(ii) u is called a viscosity supersolution to (3.14) if u(T,\mu ) =

\int 
O g(x,\mu )d\mu (x), and

 - \partial t\psi (t0, \mu 0) - inf
\alpha \in U

\scrH 
\bigl( 
t0, \mu 0,\psi ,D

L\psi ,\alpha 
\bigr) 
\geq 0(3.17)

for all \psi \in C1,1
L,b([0, T )\times P( \=O)) and all (t0, \mu 0)\in [0, T )\times P( \=O) being a minimum

point of u - \psi .
(iii) If u is both a viscosity subsolution and a viscosity supersolution to (3.14),

then u is called a viscosity solution to (3.14).

Lemma 3.9. Assume (H1)--(H3) hold. Let \psi \in C1,1
L,b

\bigl( 
[0, T )\times P( \=O)

\bigr) 
. If \mu , \mu n \in 

P( \=O), n\geq 1, satisfy limn\rightarrow \infty \BbbW 1(\mu n, \mu ) = 0, then

lim
n\rightarrow \infty 

\scrH (t, \mu n,\psi ,D
L\psi ,\alpha ) =\scrH (t, \mu ,\psi ,DL\psi ,\alpha ) uniformlyw.r.t. \alpha \in U.(3.18)

Proof. We shall estimate the convergence of three terms in \scrH (t, \mu n,\psi ,D
L\psi ,\alpha )

separately. Notice that since \=O is compact, for every p\geq 1, limn\rightarrow \infty \BbbW p(\mu n, \mu ) = 0 is
equivalent to the weak convergence of \mu n to \mu (cf. [32, Chapter 6]).

First, consider the convergence of the term\int 
O

\langle DL\psi (t, \mu )(x), b(t, x,\mu ,\alpha )\rangle d\mu (x) - 
\int 

O

\langle DL\psi (t, \mu n)(x), b(t, x,\mu n, \alpha )\rangle d\mu n(x)

=

\int 
O

\langle DL\psi (t, \mu )(x) - DL\psi (t, \mu n)(x), b(t, x,\mu ,\alpha )\rangle d\mu n(x)

+

\int 
O

\langle DL\psi (t, \mu n)(x), b(t, x,\mu n, \alpha ) - b(t, x,\mu ,\alpha )\rangle d\mu n(x)

+

\int 
O

\langle DL\psi (t, \mu )(x), b(t, x,\mu ,\alpha )\rangle 
\bigl( 
d\mu (x) - d\mu n(x)

\bigr) 
=: (I1) + (I2) + (I3).

(3.19)
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Put

Mb = sup
\bigl\{ 
| b(t, x, \nu ,\alpha )| ; (t, x, \nu ,\alpha )\in [0, T ]\times \=O \times P( \=O)\times U

\bigr\} 
,

M\psi = sup
\bigl\{ 
| DL\psi (t, \nu )(x)| + | \nabla xD

L\psi (t, \nu )(x)| ; (t, x, \nu )\in [0, T ]\times \=O \times P( \=O)
\bigr\} 
,

which are all finite due to (H1), \psi \in C1,1
L,b

\bigl( 
[0, T )\times P( \=O)

\bigr) 
, and the compactness of \=O

and U . Then, \bigm| \bigm| (I1)\bigm| \bigm| \leq \int 
O

Mb| DL\psi (t, \mu )(x) - DL\psi (t, \mu n)(x)| d\mu n(x).

By Definition 3.2(iii),

\mu n
\bigl( 
\{ x\in O; | DL\psi (t, \mu n)(x) - DL\psi (t, \mu )(x)| \geq \varepsilon \} 

\bigr) 
 - \rightarrow 0, as n\rightarrow \infty ,(3.20)

and hence, the dominated convergence theorem yields that

lim
n\rightarrow \infty 

\bigm| \bigm| (I1)\bigm| \bigm| \leq lim
n\rightarrow \infty 

\int 
O

Mb| DL\psi (t, \mu )(x) - DL\psi (t, \mu n)(x)| d\mu n(x) = 0,(3.21)

uniformly w.r.t. \alpha . Next, for term (I2), it follows from (H1) that

lim
n\rightarrow \infty 

\bigm| \bigm| (I2)\bigm| \bigm| \leq lim
n\rightarrow \infty 

K1M\psi \BbbW 2(\mu n, \mu ) = 0, uniformly w.r.t. \alpha \in U.(3.22)

Now we proceed to estimate the term (I3). Under the condition (H1), one can
check directly that x \mapsto \rightarrow \langle DL\psi (t, \mu )(x), b(t, x,\mu ,\alpha )\rangle is a bounded, Lipschitz continuous
function with

sup
\alpha \in U

sup
x \not =y

\langle DL\psi (t, \mu )(x), b(t, x,\mu ,\alpha )\rangle  - \langle DL\psi (t, \mu )(y), b(t, y,\mu ,\alpha )\rangle 
| x - y| 

<\infty .

According to the dual representation of Wasserstein distance \BbbW 1, i.e.,

\BbbW 1(\mu ,\nu ) = sup

\Biggl\{ \int 
O

h(x)d\mu (x) - 
\int 

O

h(x)d\nu (x); sup
x \not =y

| h(x) - h(y)| 
| x - y| 

\leq 1

\Biggr\} 
,(3.23)

there is some constant C > 0 such that

| (I3)| \leq C\BbbW 1(\mu n, \mu ) - \rightarrow 0, as n\rightarrow \infty , uniformly w.r.t. \alpha \in U.(3.24)

Inserting the estimates (3.21), (3.22), (3.24) into (3.19), we get

lim
n\rightarrow \infty 

\int 
O

\langle DL\psi (t, \mu n)(x), b(t, x,\mu n, \alpha )\rangle d\mu n(x) =
\int 

O

\langle DL\psi (t, \mu )(x), b(t, x,\mu ,\alpha )\rangle d\mu (x)

(3.25)

uniformly w.r.t. \alpha \in U .
Second,\bigm| \bigm| \bigm| \bigm| \int 

O

tr
\bigl( 
A\nabla xD

L\psi (t, \mu n)(x)
\bigr) 
d\mu n(x) - 

\int 
O

tr
\bigl( 
A\nabla xD

L\psi (t, \mu )(x)
\bigr) 
d\mu (x)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| \int 

O

\bigl[ 
tr
\bigl( 
A\nabla xD

L\psi (t, \mu n)(x)
\bigr) 
 - tr

\bigl( 
A\nabla xD

L\psi (t, \mu )(x)
\bigr) \bigr] 
d\mu n(x)

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int 
O

tr
\bigl( 
A\nabla xD

L\psi (t, \mu )(x)
\bigr) 
d(\mu n  - \mu )(x)

\bigm| \bigm| \bigm| \bigm| .
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Then, by Definition 3.2(iii) and the weak convergence of \mu n to \mu , we get that

lim
n\rightarrow \infty 

\bigm| \bigm| \bigm| \int 
O

tr
\bigl( 
A\nabla xD

L\psi (t, \mu n)(x)
\bigr) 
d\mu n(x) - 

\int 
O

tr
\bigl( 
A\nabla xD

L\psi (t, \mu )(x)
\bigr) 
d\mu (x)

\bigm| \bigm| \bigm| = 0.

(3.26)

At last, due to (H3) and the dual representation (3.23) of \BbbW 1,\bigm| \bigm| \bigm| \bigm| \int 
O

\vargamma (t, x,\mu n, \alpha )d\mu n(x) - 
\int 

O

\vargamma (t, x,\mu ,\alpha )d\mu (x)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 

O

| \vargamma (t, x,\mu n, \alpha ) - \vargamma (t, x,\mu ,\alpha )| d\mu n(x) +
\bigm| \bigm| \bigm| \int 

O

\vargamma (t, x,\mu ,\alpha )d(\mu n  - \mu )(x)
\bigm| \bigm| \bigm| 

\leq K3\BbbW 2(\mu n, \mu ) +K3\BbbW 1(\mu n, \mu ) - \rightarrow 0, as n\rightarrow \infty , uniformly w.r.t. \alpha \in U.

(3.27)

Consequently, the desired conclusion (3.18) follows immediately from (3.27), (3.26),
and (3.25). The proof is complete.

Lemma 3.10. Assume (H1) and (H2) hold. Then for any \mu t0 \in P( \=O) and \Theta \in 
\Pi t0,\mu t0

, the law LXt
of the controlled process Xt satisfies that there exists C > 0 such

that

\BbbW 1(\mu t, \mu t0)\leq C
\surd 
t - t0, t\in [t0, T ],

\| \mu t  - \mu s\| \mathrm{v}\mathrm{a}\mathrm{r} \leq C
\bigl( 
ln(t - t0) - ln(s - t0)

\bigr) 
, t, s\in (t0, T ].

Proof. If s= t0, for any h with | h| Lip := supx \not =y
| h(x) - h(y)| 

| x - y| \leq 1, by (3.8) and (3.7),\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\=O

h(x)d\mu t(x) - 
\int 

\=O

h(x)d\mu t0(x)

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\=O

\int 
\=O

h(x)p(t0, y; t, x)d\mu t0(y)dx - 
\int 

\=O

h(y)d\mu t0(y)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int 

\=O

\int 
\=O

p(t0, y; t, x)| h(x) - h(y)| dxd\mu t0(y)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int 

\=O

\int 
\BbbR d

\kappa 1

| t - t0| 
d
2

e - \kappa 2
| x - y| 2
t - t0 | h(x) - h(y)| dxd\mu t0(y)

=

\int 
\=O

\int 
\BbbR d

\kappa 1e
 - \kappa 2| z| 2 | h(y+

\surd 
t - t0z) - h(y)| dzd\mu t0(y)

\leq \kappa 1
\surd 
t - t0

\int 
\BbbR d

| z| e - \kappa 2| z| 2dz.

Thus, the dual representation (3.23) of \BbbW 1 yields

\BbbW 1(\mu t, \mu t0)\leq C
\surd 
t - t0.

If s > t0, for any continuous function h with | h| \infty := supx\in \BbbR d | h(x)| \leq 1,\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\=O

h(x)d\mu t(x) - 
\int 

\=O

h(x)d\mu s(x)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\=O

\int 
\=O

| h(x)| 
\bigm| \bigm| p(t0, y; t, x) - p(t0, y;s,x)\bigm| \bigm| dxd\mu t0(y)

\leq 
\int 

\=O

\int 
\=O

\int t

s

\bigm| \bigm| \partial rp(t0, y; r,x)\bigm| \bigm| drdxd\mu t0(y)\leq \int 
\=O

\int 
\BbbR d

\int t

s

\kappa 1

(r - t0)
d
2+1

e - \kappa 2
| x - y| 2
r - t0 drdxd\mu t0(y)

\leq \kappa 1 ln

\biggl( 
t - t0
s - t0

\biggr) \int 
\BbbR d

e - \kappa 2| z| 2dz.

The proof is complete.
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We shall use the estimate of \BbbW 1(\mu t, \mu s) below, and the estimate of the total
variation distance between \mu t and \mu s is presented as a supplemental property.

Theorem 3.11. Under the conditions (H1)--(H3), the value function V (t, \mu ) given
in (2.5) is a viscosity solution to the HJB equation (3.14).

Proof. Viscosity subsolution. According to Proposition 2.4, V is a continuous
function. Let (t0, \mu t0)\in [0, T )\times P( \=O) and \psi \in C1,1

L,b

\bigl( 
[0, T )\times P( \=O)

\bigr) 
be a test function

such that

0 = (V  - \psi )(t0, \mu t0) =max
\bigl\{ 
(V  - \psi )(t, \mu ); (t, \mu )\in [0, T )\times P( \=O)

\bigr\} 
.

Let (Xt, kt) be the solution to SDE (1.1) associated with the control \alpha t \equiv \alpha \in U with
initial value LXt0

= \mu t0 . Denote \mu t = LXt for t\geq t0. By the dynamic programming
principle,

V (t0, \mu t0)\leq \BbbE 
\biggl[ \int t

t0

\vargamma (r,Xr, \mu r, \alpha )dr+ V (t, \mu t)

\biggr] 
,

which yields that

\psi (t, \mu t) - \psi (t0, \mu t0) +

\int t

t0

\int 
\=O

\vargamma (r,x,\mu r, \alpha )d\mu r(x)dr\geq 0.(3.28)

By Theorem 3.7, we get\int t

t0

\Biggl[ 
\partial r\psi (r,\mu r) +

\int 
\=O

\Bigl( 
\langle b(r,x,\mu r, \alpha ),DL\psi (r,\mu r)(x)\rangle 

+
1

2
tr
\bigl( 
A\nabla xD

L\psi (r,\mu r)(x)
\bigr) \Bigr) 

d\mu r(x)

+

\int 
\=O

\vargamma (r,x,\mu r, \alpha )d\mu r(x)

\Biggr] 
dr\geq 0.

Using Lemmas 3.9 and 3.10, dividing both sides of the previous inequality with t - t0,
and letting t \downarrow t0, we obtain that

 - \partial t\psi (t0, \mu t0) - 
\int 

\=O

\Bigl( 
\langle b(t0, x,\mu t0 , \alpha ),DL\psi (t0, \mu t0)(x)\rangle 

+
1

2
tr
\bigl( 
A\nabla xD

L\psi (t0, \mu t0)(x)
\bigr) \Bigr) 

d\mu t0(x)

 - 
\int 

\=O

\vargamma (t0, x,\mu t0 , \alpha )d\mu t0(x)\leq 0.

By the arbitrariness of \alpha \in U , we obtain that

 - \partial t\psi (t0, \mu 0) - inf
\alpha \in U

\scrH (t0, \mu t0 ,\psi ,D
L\psi ,\alpha )\leq 0.

Hence, V is a viscosity subsolution to (3.14).
Viscosity supersolution. Let (t0, \mu t0)\in [0, T )\times P( \=O), \psi \in C1,1

L,b

\bigl( 
[0, T )\times P( \=O)

\bigr) 
such

that

0 = (V  - \psi )(t0, \mu t0) =min
\bigl\{ 
(V  - \psi )(t, \mu ); (t, \mu )\in [0, T )\times P( \=O)

\bigr\} 
.(3.29)
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We shall prove

 - \partial t\psi (t0, \mu t0) - inf
\alpha \in U

\scrH (t0, \mu t0 ,\psi ,D
L\psi ,\alpha )\geq 0(3.30)

by contradiction. Suppose

 - \partial t\psi (t0, \mu t0) - inf
\alpha \in U

\scrH (t0, \mu t0 ,\psi ,D
L\psi ,\alpha )< 0.(3.31)

For any \bfitalpha \in \Pi t0,\mu t0
, the associated controlled process (X

t0,\mu t0
t , k

t0,\mu t0
t )t\in [t0,T ] is

given in (1.1). Under the nondegenerate condition (H2), the law of X
t0,\mu t0
t admits a

density \rho t(x). Due to (3.8), \rho t admits a representation

\rho t(x) =

\int 
\=O

p(t0, z; t, x)d\mu t0(z).

Therefore, by Lemmas 3.9 and 3.10, there exist \varepsilon , \zeta 1 > 0 such that for any | t - t0| < \zeta 1
and any \bfitalpha \in \Pi t0,\mu t0

,

 - \partial t\psi (t, \mu t) - 
\int 

\=O

\Bigl( 
\langle b(t, x,\mu t, \alpha t),DL\psi (t, \mu t)(x)\rangle +

1

2
tr
\bigl( 
A\nabla xD

L\psi (t, \mu t)(x)
\bigr) \Bigr) 

d\mu t(x)

 - 
\int 

\=O

\vargamma (t, x,\mu t, \alpha t)d\mu t(x)\leq  - \varepsilon .

(3.32)

Take two sequences \delta n, \gamma n > 0, n\geq 1, satisfying

\delta n < \zeta 1, lim
n\rightarrow \infty 

\gamma n/\delta n = 0.

By the dynamic programming principle, there exists a sequence of admissible feedback
controls \bfitalpha n \in \Pi t0,\mu t0

such that

V (t0, \mu 0)\geq \BbbE 

\Biggl[ \int t0+\delta n

t0

\vargamma (r,Xn
r , \mu 

n
r , \alpha 

n
r )dr+ V (t0 + \delta n, \mu 

n
t0+\delta n)

\Biggr] 
 - \gamma n,

where (Xn
t ) denotes the controlled process associated with \bfitalpha n, and \mu nt denotes the

law of Xn
t . Due to (3.29),

\psi (t0, \mu 0)\geq \BbbE 

\Biggl[ \int t0+\delta n

t0

\vargamma (r,Xn
r , \mu 

n
r , \alpha 

n
r )dr+\psi (t0 + \delta n, \mu 

n
t0+\delta n)

\Biggr] 
 - \gamma n.

Hence,

\gamma n
\delta n

\geq 1

\delta n
\BbbE 

\Biggl[ \int t0+\delta n

t0

\vargamma (r,Xn
r , \mu 

n
r , \alpha 

n
r )dr+

\int t0+\delta n

t0

d

dr

\bigl( 
\psi (r,\mu nr )

\bigr) 
dr

\Biggr] 
.

Since \psi \in C1,1
L,b

\bigl( 
[0, T )\times P( \=O)

\bigr) 
, by Theorem 3.7 and (3.32),

\gamma n
\delta n

\geq 1

\delta n

\int t0+\delta n

t0

\Biggl[ 
\partial r\psi (r,\mu 

n
r )+

\int 
\=O

\Bigl( 
\langle b(r,x,\mu nr , \alpha nr ),DL\psi (r,\mu nr )(x)\rangle 

+
1

2
tr
\bigl( 
A\nabla xD

L\psi (r,\mu nr )(x)
\bigr) 
+\vargamma (r,x,\mu nr , \alpha 

n
r )
\Bigr) 
d\mu nr (x)

\Biggr] 
dr

\geq 1

\delta n

\int t0+\delta n

t0

\varepsilon dr= \varepsilon > 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
25

 to
 2

22
.1

6.
19

2.
5 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



OPTIMAL CONTROL PROBLEM FOR REFLECTED MKV 3129

Letting n\rightarrow \infty , this contradicts limn\rightarrow \infty 
\gamma n
\delta n

= 0. Consequently, the assertion (3.32)
is false, and V (t, \mu ) is a viscosity supersolution to the HJB equation (3.14). In all,
according to Definition 3.8, V is a viscosity solution to (3.14).

4. Comparison principle for HJB equations. In this part we proceed to
study the uniqueness of the viscosity solution to the HJB equation (3.14) associated
with the intrinsic derivative. To this aim, the crucial point is to find suitable test func-
tions to approximate the viscosity solution. In the study of HJB equations on \BbbR d, the
Euclidean distance | x - y| 2 plays an important role in the argument of the comparison
principle. On P( \=O), although \BbbW 2 is intrinsically differentiable (cf. Proposition 4.2
below or [3, Theorem 8.4.7]), the L2-Wasserstein distance \BbbW 2 is not smooth enough
to establish the comparison principle for the HJB equation (3.14) on P( \=O), which
will be clarified in the study below.

The regularity of \BbbW 2 w.r.t. the intrinsic derivative depends heavily on the theory
of optimal transport maps between probability measures, which essentially depends on
the study of the Monge--Amp\`ere equation. A large number of works have been devoted
to the study of the Monge--Amp\`ere equation. We refer to the works of Trudinger and
Wang [31], Caffarelli and McCann [9], and Chen, Liu, and Wang [13], among others.

Let us recall a result in [13] to be used later.

Theorem 4.1 (see [13, Theorem 1.1]). Suppose \scrO ,\scrO \ast are bounded convex do-
mains in \BbbR d with C1,1 boundary. Suppose u is a convex solution to the Monge--Amp\`ere
equation \Biggl\{ 

det
\bigl( 
D2u(x)

\bigr) 
= \rho (x)

\~\rho (Du(x)) , x\in \scrO ,
Du(\scrO ) =\scrO \ast ,

(4.1)

where det(B) stands for the determinant of matrix B. The following assertion holds:
if \rho \in C\beta ( \=\scrO ), \~\rho \in C\beta ( \=\scrO \ast ) for some \beta \in (0,1), then

\| u\| C2,\beta ( \=\scrO ) \leq C,

where C is a constant depending on d,\beta , \rho , \~\rho ,\scrO , and \scrO \ast .

Applying the theory on optimal transport maps between probability measures
(cf., for example, [32]), for two probability measures \mu = \rho (x)dx and \nu = \~\rho (x)dx on
\BbbR d, there exists a convex function u :\BbbR d\rightarrow \BbbR d such that the mapping \scrT \mu 

\nu (x) :=Du(x)
satisfies

\nu = (\scrT \mu 
\nu )\#\mu := \mu \circ (\scrT \mu 

\nu ) - 1, i.e.,

\int 
h(x)d\nu (x) =

\int 
h(\scrT \mu 

\nu (x))d\mu (x), \forall h\in Bb(\BbbR d),

\BbbW 2
2(\mu ,\nu ) =

\int 
\BbbR d

| x - \scrT \mu 
\nu (x)| 2d\mu (x).

Thus, u is a solution to the Monge--Amp\`ere equation:

det
\bigl( 
D2u(x)

\bigr) 
=

\rho (x)

\~\rho (Du(x))
.

Moreover, although u is not unique, its gradient and hence the mapping \scrT \mu 
\nu are unique

and invertible. Also, the convexity of u yields that D2u\geq 0. Here we present a result
for the cost function | x - y| 2, and much effort has been devoted to the study on the
general cost functions and on general spaces (cf. [3, 31, 32]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
25

 to
 2

22
.1

6.
19

2.
5 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3130 JINGHAI SHAO

Proposition 4.2 (derivative of Wasserstein distance). For each \zeta \in Pr( \=O), the
associated functional \mu \mapsto \rightarrow W 2

2 (\mu , \zeta ) belongs to C1
L,b(P

r( \=O)) and

DL\BbbW 2
2(\mu , \zeta )(x) = 2

\bigl( 
x - \scrT \mu 

\zeta (x)
\bigr) 
, x\in \=O, \mu \in Pr( \=O),(4.2)

where \scrT \mu 
\zeta : \=O \rightarrow \=O denotes the unique optimal transport map such that

(\scrT \mu 
\zeta )\#\mu = \zeta and\BbbW 2

2(\mu , \zeta ) =

\int 
\=O

| x - \scrT \mu 
\zeta (x)| 2d\mu (x).

Proof. For \mu \in Pr( \=O), and for any tangent vector v \in T\mu , the curve \mu \varepsilon :=
\mu \circ (Id+ \varepsilon v) - 1 for \varepsilon \in [0,1] is an absolutely continuous curve in P( \=O). According to
[3, Theorem 8.4.7],

d

d\varepsilon 

\bigm| \bigm| \bigm| 
\varepsilon =0

\BbbW 2
2(\mu \varepsilon , \zeta ) =

\int 
\=O2

2\langle x1  - x2, v(x1)\rangle d\gamma (x1, x2),(4.3)

where \gamma is a probability measure on \=O \times \=O satisfying\int 
\=O2

f(x1) + g(x2)d\gamma (x1, x2) =

\int 
\=O

f(x1)d\mu (x1) +

\int 
\=O

g(x2)d\zeta (x2), f, g \in \scrB b( \=O),\int 
\=O2

| x1  - x2| 2d\gamma (x1, x2) =\BbbW 2
2(\mu , \zeta ).

By virtue of the results on optimal transport maps (cf., e.g., [3, Chapter 6]), since
\mu \in Pr( \=O) admits a density w.r.t. the Lebesgue measure, the previous optimal plan
\gamma is uniquely determined by \gamma = (Id \times \scrT \mu 

\zeta )\#\mu . Moreover, there exists a function

u : \=O \rightarrow \BbbR satisfying the Monge--Amp\`ere equation (4.1) with \=O\ast = \=O, \rho =d\mu /dx, and
\~\rho =d\zeta /dx such that

\scrT \mu 
\zeta (x) =Du(x).

By Theorem 4.1, as \rho , \~\rho \in C1( \=O), for each \beta \in (0,1), there exists a constant C>0 such
that

\| u\| C2,\beta ( \=O) \leq C.

This yields that \scrT \mu 
\zeta =Du is in C1,\beta ( \=O). Consequently, we can rewrite (4.3) to

d

d\varepsilon 

\bigm| \bigm| \bigm| 
\varepsilon =0

\BbbW 2
2(\mu \varepsilon , \zeta ) =

\int 
\=O

2\langle x1  - \scrT \mu 
\zeta (x1), v(x1)\rangle d\mu (x1), v \in T\mu .

This yields that \BbbW 2
2(\cdot , \zeta ) is intrinsically differentiable at \mu with

DL\BbbW 2
2(\mu , \zeta )(x) = 2(x - \scrT \mu 

\zeta (x)).

Moreover, as u\in C2,\beta ( \=O), x \mapsto \rightarrow DL\BbbW 2
2(\mu , \zeta )(x) = 2(x - Du(x)) is continuous in x\in \=O.

Obviously, DL\BbbW 2
2(\mu , \zeta ) is also bounded as \=O is compact.

Remark 4.3. From Proposition 4.2 we can see that \mu \mapsto \rightarrow \BbbW 2
2(\mu , \zeta ) is intrinsically

differentiable on the subset Pr( \=O). To ensure the existence of second order differ-
entiability of x \mapsto \rightarrow DL\BbbW 2

2(\mu , \zeta )(x), a further smoothness condition on the densities of
\mu and \zeta is needed, to act as a smooth approximation function to the HJB equation
(3.14). However, the completion of Pr( \=O) under the metric \BbbW 2 will be P( \=O), which
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OPTIMAL CONTROL PROBLEM FOR REFLECTED MKV 3131

cannot guarantee the desired smoothness of densities. Thus, \BbbW 2
2 is not an appropriate

smooth approximation function to study the uniqueness of the viscosity solution to
the HJB equation (3.14).

Recently, Burzoni et al. [8] studied the optimal control problem for McKean--
Vlasov jump-diffusion processes and the viscosity solution to HJB equations on the
Wasserstein space in terms of the linear functional derivative. To establish the com-
parison principle, they constructed a distance-like function by

d(\mu ,\nu ) =

\infty \sum 
j=1

cj\langle \mu  - \nu , fj\rangle 2,

where the countable set \{ fj\} j\in \BbbN is carefully constructed so that the linear functional
derivative of d can be estimated by itself. The construction of \{ fj\} j\in \BbbN is very subtle
especially in the presence of jumps in the controlled process. [8] only constructed
d(\mu ,\nu ) on P(\BbbR ).

In this work we shall generalize the construction of d(\mu ,\nu ) in [8] to the Wasserstein
space over O\subset \BbbR d. Moreover, we shall show that such a distance-like function is also
useful to establish the comparison principle for HJB equations on the Wasserstein
space with intrinsically differential structure. Unfortunately, an additional assumption
on the drift b is needed like in [8], that is, the drift b(t, x,\mu ,\alpha ) cannot depend on
variable x and depends on \mu via its moments.

Before establishing the comparison principle, we introduce the generalization of
the distance-like function d(\mu ,\nu ) on P( \=O). Let us begin with the 1-dimensional
case by recalling the construction in [8]. Since our controlled processes are diffusion
processes without jumps, we can simplify the expression \{ fj\} j\in \BbbN in [8].

A set of polynomials \chi is said to have an (\ast )-property if it satisfies that

for any f \in \chi ,f (i) \in \chi ,\forall i\geq 0,

where f (i) denotes ith order derivative of f with f (0) = f . For any given polynomial
f , let \chi (f) be the smallest set of polynomials with the (\ast )-property that includes f .
So, \chi (f) =

\bigl\{ 
f (i); i\geq 0

\bigr\} 
. Put

\widetilde \Theta =

\infty \bigcup 
j=1

\chi (xj).

Then \widetilde \Theta contains all monomials \{ xj\} \infty j=1, it is countable, and \chi (f) \subset \widetilde \Theta for every

f \in \widetilde \Theta . Let \{ fj\} \infty j=1 be an enumeration of \widetilde \Theta , which is fixed in what follows. We refer
to [8] for more discussion on \chi , \chi (f), and the (\ast )-property.

Now we generalize the previous notions to the multidimensional situation. Denote
\BbbZ + = \{ 0,1,2, . . .\} , and \bfitx \bfitn = xn1

1 xn2
2 \cdot \cdot \cdot xnd

d for \bfitn = (n1, . . . , nd)\in \BbbZ d+, \bfitx = (x1, . . . , xd)\in 
\BbbR d. Let | \bfitn | = n1 + \cdot \cdot \cdot + nd. For \mu \in P( \=O) and f : \=O \rightarrow \BbbR k, denote by \langle \mu ,f\rangle =\int 

\=O f(x)d\mu (x). Based on the above fixed enumeration \{ fj\} \infty j=1 of \widetilde \Theta , we define f\bfitn (\bfitx ) =
fn1

(x1)fn2
(x2) \cdot \cdot \cdot fnd

(xd), for \bfitn = (n1, . . . , nd), and

s\bfitn = 1+ sup\mu \in P( \=O)\langle \mu ,f\bfitn \rangle 2.

Put

\chi (f\bfitn ) =
\bigl\{ 
g1(x1)g2(x2) \cdot \cdot \cdot gd(xd);gi \in \chi (fni

),1\leq i\leq d
\bigr\} 
,

which contains all the partial derivatives of f\bfitn . Since \chi (f\bfitn ) contains a finite number
of polynomials, there exists a finite index set \scrI \bfitn satisfying
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3132 JINGHAI SHAO

\chi (f\bfitn ) =
\bigl\{ 
f\bfitm ; \bfitm \in \scrI \bfitn 

\bigr\} 
.

Let

c\bfitn =

\Biggl( \sum 
\bfitm \in \scrI \bfitn 

2| \bfitm | C
| \bfitm | +d - 1
d - 1

\Biggr)  - 1\Biggl( \sum 
\bfitm \in \scrI \bfitn 

s\bfitm 

\Biggr)  - 1

, \bfitn \in \BbbZ d+,

where Cmk = m!
k!(m - k)! . As s\bfitm \geq 1 and f\bfitn \in \chi (f\bfitn ), it holds that

c\bfitn \leq 2 - | \bfitn | 

C
| \bfitn | +d - 1
d - 1

.

If \bfitl \in \scrI \bfitn , then f\bfitl \in \chi (f\bfitn ), \chi (f\bfitl )\subset \chi (f\bfitn ), and hence \scrI \bfitl \subset \scrI \bfitn . By the definition of
c\bfitn , this implies that

c\bfitl \geq c\bfitn .(4.4)

Lemma 4.4. Define a function S :P( \=O)\rightarrow \BbbR by

S(\mu ) =

\infty \sum 
k=1

\sum 
| \bfitn | =k

c\bfitn \langle \mu ,f\bfitn \rangle 2.(4.5)

Then S satisfies S(\mu )\leq 1 for every \mu \in P( \=O) and is intrinsically differentiable with

DLS(\mu )(x) =

\infty \sum 
k=1

\sum 
| \bfitn | =k

2c\bfitn \langle \mu ,f\bfitn \rangle \nabla f\bfitn (x).(4.6)

Proof. Noting that \bfitn \in \scrI \bfitn , we have

S(\mu )\leq 
\infty \sum 
k=1

\sum 
| \bfitn | =k

2 - k
\bigl( 
Ck+d - 1
d - 1

\bigr)  - 1 \langle \mu ,f\bfitn \rangle 2

s\bfitn 
\leq 

\infty \sum 
k=1

2 - k = 1.

For any v \in T\mu ,

DL
v S(\mu ) = lim

\varepsilon \rightarrow 0

S(\mu \circ (Id + \varepsilon v) - 1) - S(\mu )

\varepsilon 

=
d

d\varepsilon 

\bigm| \bigm| \bigm| 
\varepsilon =0

\infty \sum 
k=1

\sum 
| \bfitn | =k

c\bfitn 

\biggl( \int 
O

f\bfitn (x+ \varepsilon v(x))d\mu (x)

\biggr) 2

=

\infty \sum 
k=1

\sum 
| \bfitn | =k

2c\bfitn \langle \mu ,f\bfitn \rangle 
\int 

O

\langle \nabla f\bfitn (x), v(x)\rangle d\mu (x).

Therefore, S is intrinsically differentiable with DLS(\mu ) given by (4.6).

We need to modify the condition of the drift b to establish the comparison
principle.

(H\prime 
1) The drift b(t, x,\mu ,\alpha ) does not depend on x. There are K4> 0 and a finite set

\scrI \subset \BbbN d such that for any \mu , \nu \in P( \=O), \alpha \in U , t, s\in [0, T ],

| b(t, \mu ,\alpha )| 2 \leq K4, | b(t, \mu ,\alpha ) - b(s, \nu ,\alpha )| 2 \leq K4

\Bigl( 
| t - s| 2 +

\sum 
\bfiti \in \scrI 

\langle \mu  - \nu ,\bfitx \bfiti \rangle 2
\Bigr) 
.

This condition is especially suitable to deal with SDEs with drifts depending only on
the moments of (Xt), for example,

dXt = b(t,\BbbE [Xt],\BbbE [| Xt| 2], \alpha t)dt+ \sigma dBt  - n(Xt)dkt.
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Theorem 4.5 (comparison principle). Suppose that (H\prime 
1), (H2), and (H3) hold.

Let W and V be, respectively, a viscosity subsolution and a viscosity supersolution to
the HJB equation (3.14) satisfying the continuity property (2.7). Then

W (t, \mu )\leq V (t, \mu ), t\in [0, T ), \mu \in P( \=O).(4.7)

Proof. We prove (4.7) by contradiction. Assume there is (\~t, \=\mu ) \in [0, T )\times P( \=O)
such that

W (\~t, \=\mu )>V (\~t, \=\mu ).(4.8)

Then, by the continuity of W and V , there exist some (\=t, \=\mu ) \in (0, T ) \times P( \=O) such
that

W (\=t, \=\mu )>V (\=t, \=\mu ).(4.9)

Consider the auxiliary function

\Phi (t, s,\mu , \nu ) =W (t, \mu ) - V (s, \nu ) - \varphi (t, s,\mu , \nu ), t, s\in (0, T ], \mu , \nu \in P( \=O),

with

\varphi (t, s,\mu , \nu ) =
1

2\delta 

\bigl( 
| t - s| 2 + S(\mu  - \nu )

\bigr) 
+ \beta (2T  - t - s) +

\lambda 

t
+
\lambda 

s
(4.10)

for parameters \beta ,\lambda , \delta \in (0,1), where the functional S is defined in Lemma 4.4. Due
to the compactness of [0, T ]\times [0, T ]\times P( \=O)\times P( \=O) when P( \=O) is endowed with weak
convergence topology, there exists a point (t0, s0, \mu 0, \nu 0)\in (0, T ]\times (0, T ]\times P( \=O)\times P( \=O)
such that

\Phi (t\tau 0 , s
\tau 
0 , \mu 

\tau 
0 , \nu 

\tau 
0 ) = sup

\bigl\{ 
\Phi (t, s,\mu , \nu ); t, s\in [0, T ], \mu , \nu \in P( \=O)

\bigr\} 
.(4.11)

Notice that (t\tau 0 , s
\tau 
0 , \mu 

\tau 
0 , \nu 

\tau 
0 ) depend on the parameters \tau = (\beta ,\lambda , \delta ). By (4.11),

2\Phi (t\tau 0 , s
\tau 
0 , \mu 

\tau 
0 , \nu 

\tau 
0 )\geq \Phi (t\tau 0 , t

\tau 
0 , \mu 

\tau 
0 , \mu 

\tau 
0) +\Phi (s\tau 0 , s

\tau 
0 , \nu 

\tau 
0 , \nu 

\tau 
0 ),

which yields that

W (t\tau 0 , \mu 
\tau 
0) - W (s\tau 0 , \nu 

\tau 
0 ) + V (t\tau 0 , \mu 

\tau 
0) - V (s\tau 0 , \nu 

\tau 
0 )\geq 

1

\delta 

\bigl( 
| t\tau 0  - s\tau 0 | 2 + S(\mu \tau 0  - \nu \tau 0 )

\bigr) 
.(4.12)

Since W and V are bounded, which follows from the boundedness of \vargamma and g, this
implies

lim
\delta \downarrow 0

| t\tau 0  - s\tau 0 | 2 + S(\mu \tau 0  - \nu \tau 0 ) = 0.(4.13)

Due to the compactness of [0, T ]\times [0, T ]\times P( \=O)\times P( \=O), there is a subsequence
(t\tau k0 , s

\tau k
0 , \mu 

\tau k
0 , \nu 

\tau k
0 ) of (t\tau 0 , s

\tau 
0 , \mu 

\tau 
0 , \nu 

\tau 
0 ) satisfying \tau k = (\beta ,\lambda k, \delta k)  - \rightarrow (\beta ,0,0) as k \rightarrow \infty ,

and

(t\tau k0 , s
\tau k
0 , \mu 

\tau k
0 , \nu 

\tau k
0 ) converges to some (\=t0, \=s0, \=\mu 0, \=\nu 0).(4.14)

Due to (4.13), it holds that

\=t0 = \=s0, S(\=\mu 0  - \=\nu 0) = lim
k\rightarrow \infty 

S(\mu \tau k0  - \nu \tau k0 ) = 0.
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Since the class of polynomials \{ \bfitx \bfitn \} \bfitn \in \BbbZ d
+
\subset \{ f\bfitn \} \bfitn \in \BbbZ d

+
is a measure determining class

of functions, then we get from S(\=\mu 0  - \=\nu 0) = 0 that \=\mu 0 = \=\nu 0. Combining this with
(4.14), (2.7), and (4.12), we obtain that

lim
k\rightarrow \infty 

1

\delta k

\bigl( 
| t\tau k0  - s\tau k0 | 2 + S(\mu \tau k0  - \nu \tau k0 )

\bigr) 
= 0.(4.15)

Case 1: If for some sequence \tau k = (\beta ,\lambda k, \delta k), the corresponding maximum points
(t\tau k0 , s

\tau k
0 , \mu 

\tau k
0 , \nu 

\tau k
0 ) satisfy t\tau k0 \vee s\tau k0 = T . By (4.11),

\Phi (\=t, \=t, \=\mu , \=\mu )\leq \Phi (t\tau k0 , s
\tau k
0 , \mu 

\tau k
0 , \nu 

\tau k
0 ),

which yields

W (\=t, \=\mu ) - V (\=t, \=\mu ) - 2\beta (T - \=t) - 2\lambda k
\=t

\leq W (t\tau k0 , \mu 
\tau k
0 ) - V (s\tau k0 , \nu 

\tau k
0 ) - 1

2\delta k

\bigl( 
| t\tau k0  - s\tau k0 | 2+S(\mu \tau k0  - \nu \tau k0 )

\bigr) 
.

Letting k\rightarrow \infty , due to (4.15) and W (T,\mu ) = V (T,\mu ) for any \mu \in P( \=O),

W (\=t, \=\mu ) - V (\=t, \=\mu ) - \beta (T  - \=t)\leq 0.

Then, letting \beta \rightarrow 0, we get W (\=t, \=\mu ) - V (\=t, \=\mu )\leq 0, which contradicts (4.9).
Case 2: For any \tau k = (\beta ,\lambda k, \delta k), the corresponding maximum points satisfy t\tau k0 \vee 

s\tau k0 <T . Let

\psi (t, \mu ) = V (s\tau k0 , \nu 
\tau k
0 ) +

1

2\delta k

\bigl( 
| t - s\tau k0 | 2+S(\mu  - \nu \tau k0 )

\bigr) 
+ \beta (2T  - t - s\tau k0 ) +

\lambda k
t

+
\lambda k
s\tau k0

.

According to Lemma 4.4, \psi \in C1,1
L,b

\bigl( 
(0, T ]\times P( \=O)

\bigr) 
. Consider the function

(t, \mu ) \mapsto \rightarrow W (t, \mu ) - \psi (t, \mu ) =\Phi (t, s\tau k0 , \mu , \nu 
\tau k
0 )

which attains its maximum at (t\tau k0 , \mu 
\tau k
0 ) by (4.11). Because W is a viscosity subsolu-

tion to (3.14), it holds that

 - \partial t\psi (t\tau k0 , \mu 
\tau k
0 ) - inf

\alpha \in U
\scrH 
\bigl( 
t\tau k0 , \mu 

\tau k
0 ,\psi ,D

L\psi ,\alpha 
\bigr) 
\leq 0.(4.16)

Analogously, let

\~\psi (s, \nu ) =W (t\tau k0 , \mu 
\tau k
0 ) - 1

2\delta k

\bigl( 
| t\tau k0  - s| 2+S(\mu \tau k0  - \nu ) - \beta (2T  - t\tau k0  - s) - \lambda k

t\tau k0
 - \lambda k
s
.

Then, (s, \nu ) \mapsto \rightarrow V (s, \nu ) - \~\psi (s, \nu ) attains its minimum at (s\tau k0 , \nu 
\tau k
0 ). As V is a viscosity

supersolution to (3.14), it holds that

 - \partial s \~\psi (s\tau k0 , \nu 
\tau k
0 ) - inf

\alpha \in U
\scrH 
\bigl( 
s\tau k0 , \nu 

\tau k
0 , \~\psi ,DL \~\psi ,\alpha 

\bigr) 
\geq 0.(4.17)

Combining (4.17) with (4.16), we obtain

\partial t\psi (t
\tau k
0 , \mu 

\tau k
0 ) - \partial s \~\psi (s

\tau k
0 , \nu 

\tau k
0 )

\geq inf
\alpha \in U

\scrH 
\bigl( 
s\tau k0 , \nu 

\tau k
0 , \~\psi ,DL \~\psi ,\alpha 

\bigr) 
 - inf
\alpha \in U

\scrH 
\bigl( 
t\tau k0 , \mu 

\tau k
0 ,\psi ,D

L\psi ,\alpha 
\bigr) 

\geq inf
\alpha \in U

\Bigl\{ 
\scrH 
\bigl( 
s\tau k0 , \nu 

\tau k
0 , \~\psi ,DL \~\psi ,\alpha 

\bigr) 
 - \scrH 

\bigl( 
t\tau k0 , \mu 

\tau k
0 ,\psi ,D

L\psi ,\alpha 
\bigr) \Bigr\} 
.

(4.18)
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According to Lemma 4.4,

DL\psi (t\tau k0 , \mu 
\tau k
0 )(x) =DL \~\psi (s\tau k0 , \nu 

\tau k
0 ) =

1

\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn \langle \mu \tau k0  - \nu \tau k0 , f\bfitn \rangle \nabla f\bfitn (x).

By direct calculation, we get from (4.18) that

 - 2\beta \geq inf
\alpha \in U

\Biggl\{ \int 
\=O

\langle b(s\tau k0 , \nu 
\tau k
0 , \alpha ),D

L \~\psi (s\tau k0 , \nu 
\tau k
0 )\rangle d\nu \tau k0  - 

\int 
\=O

\langle b(t\tau k0 , \mu 
\tau k
0 , \alpha ),D

L\psi (t\tau k0 , \mu 
\tau k
0 )\rangle d\mu \tau k0

+
1

2

\Biggl( \int 
\=O

tr
\bigl( 
A\nabla xD

L \~\psi (s\tau k0 , \nu 
\tau k
0 )
\bigr) 
d\nu \tau k0  - 

\int 
\=O

tr
\bigl( 
A\nabla xD

L\psi (t\tau k0 , \mu 
\tau k
0 )
\bigr) 
d\mu \tau k0

\Biggr) 

+

\int 
\=O

\vargamma (s\tau k0 , x, \nu 
\tau k
0 , \alpha )d\nu \tau k0  - 

\int 
\=O

\vargamma (t\tau k0 , x,\mu 
\tau k
0 , \alpha )d\mu 

\tau k
0

\Biggr\} 
=: inf

\alpha \in U

\bigl\{ 
(I) + (II) + (III)

\bigr\} 
.

(4.19)

We shall estimate these three terms one by one.
First, let us estimate term (I). By (H\prime 

1), there exists K > 0 such that

| b(t, \mu ,\alpha ) - b(s, \nu ,\alpha )| 2 \leq K
\bigl( 
| t - s| 2 + S(\mu  - \nu )

\bigr) 
, t, s\in [0, T ], \mu , \nu \in P(O),

where the functional S is given in Lemma 4.4.

(I) =
1

\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn \langle \mu \tau k
0  - \nu 

\tau k
0 , f\bfitn \rangle 

\Biggl( \int 
\=O

\langle b(s\tau k0 , \nu 
\tau k
0 , \alpha ) - b(t

\tau k
0 , \mu 

\tau k
0 , \alpha ),\nabla f\bfitn (x)\rangle d\nu \tau k0 (x)

+

\int 
\=O

\langle b(t\tau k0 , \mu 
\tau k
0 , \alpha ),\nabla f\bfitn (x)\rangle d(\nu \tau k0  - \mu 

\tau k
0 )(x)

\Biggr) 

\geq  - 
1

2\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn 

\Biggl[ 
\langle \mu \tau k

0  - \nu 
\tau k
0 , f\bfitn \rangle 2+2

\biggl( 
\langle b(s\tau k0 , \nu 

\tau k
0 , \alpha ) - b(t

\tau k
0 , \mu 

\tau k
0 , \alpha ),

\int 
\=O

\nabla f\bfitn (x)d\nu 
\tau k
0 (x)\rangle 

\biggr) 2

+ 2

\biggl( 
\langle b(t\tau k0 , \mu 

\tau k
0 , \alpha ),

\int 
\=O

\nabla f\bfitn (x)d(\nu 
\tau k
0  - \mu 

\tau k
0 )(x)

\biggr) 2
\Biggr] 

\geq  - 
1

2\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn 

\Biggl[ 
\langle \mu \tau k

0  - \nu 
\tau k
0 , f\bfitn \rangle 2+2| b(s\tau k0 , \nu 

\tau k
0 , \alpha ) - b(t

\tau k
0 , \mu 

\tau k
0 , \alpha )| 2

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\nabla f\bfitn (x)d\nu 
\tau k
0 (x)

\bigm| \bigm| \bigm| \bigm| 2

+ 2| b(t\tau k0 , \mu 
\tau k
0 , \alpha )| 2

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\nabla f\bfitn (x)d(\nu 
\tau k
0  - \mu 

\tau k
0 )(x)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 

\geq  - 
1

2\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn 

\Biggl[ 
\langle \mu \tau k

0  - \nu 
\tau k
0 , f\bfitn \rangle 2+2K

\Bigl( 
| t\tau k0  - s

\tau k
0 | 2+S(\nu 

\tau k
0  - \mu 

\tau k
0 )
\Bigr) \bigm| \bigm| \bigm| \bigm| \int 

\=O

\nabla f\bfitn (x)d\nu 
\tau k
0 (x)

\bigm| \bigm| \bigm| \bigm| 2

+ 2K4

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\nabla f\bfitn (x)d(\nu 
\tau k
0  - \mu 

\tau k
0 )(x)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
.

Notice that \partial xi
f\bfitn (x) \in \chi (f\bfitn ) for each i \in \{ 1, . . . , d\} , and so there exists \bfitl i(\bfitn ) \in \scrI \bfitn 

such that \partial xi
f\bfitn (x) = f\bfitl i(\bfitn )(x). By (4.4), c\bfitl i(\bfitn ) \geq c\bfitn , and

c\bfitn 

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\partial xi
f\bfitn (x)d\nu 

\tau k
0 (x)

\bigm| \bigm| \bigm| \bigm| 2 \leq c\bfitl i(\bfitn )

\bigm| \bigm| \bigm| \bigm| \int 
\=O

f\bfitl i(\bfitn )(x)d\nu 
\tau k
0 (x)

\bigm| \bigm| \bigm| \bigm| 2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
25

 to
 2

22
.1

6.
19

2.
5 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3136 JINGHAI SHAO

Besides, Lemma 4.4 tells us that S(\nu \tau k0 )\leq 1. This yields that

\sum 
m=1

\sum 
| \bfitn | =m

c\bfitn 

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\nabla f\bfitn (x)d\nu \tau k0 (x)

\bigm| \bigm| \bigm| \bigm| 2 \leq \infty \sum 
m=1

\sum 
| \bfitn | =m

d\sum 
i=1

c\bfitn 

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\partial xi
f\bfitn (x)d\nu 

\tau k
0 (x)

\bigm| \bigm| \bigm| \bigm| 2

\leq 
\infty \sum 
m=1

\sum 
| \bfitn | =m

d\sum 
i=1

c\bfitl i(\bfitn )\langle \nu \tau k0 , f\bfitl i(\bfitn )\rangle 2 \leq d,

and

\sum 
m=1

\sum 
| \bfitn | =m

c\bfitn 

\bigm| \bigm| \bigm| \bigm| \int 
\=O

\nabla f\bfitn (x)d(\nu \tau k0  - \mu \tau k0 )(x)

\bigm| \bigm| \bigm| \bigm| 2 \leq d
\sum 
m=1

\sum 
| \bfitn | =m

c\bfitn \langle \nu \tau k0  - \mu \tau k0 , f\bfitn \rangle 2.

(4.20)

Invoking the previous estimates, we finally obtain that

(I)\geq  - 1

2\delta k
S(\mu \tau k0  - \nu \tau k0 ) - C

2\delta k

\bigl( 
| t\tau k0  - s\tau k0 | 2 + S(\mu \tau k0  - \nu \tau k0 )

\bigr) 
(4.21)

for some constant C > 0 independent of k.
Now we deal with term (II). Similar to the estimate of (4.20), there exists C > 0

independent of k such that

(II) =
1

\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn \langle \mu \tau k0  - \nu \tau k0 , f\bfitn \rangle 
\int 

\=O

tr(A\nabla 2f\bfitn (x))d(\nu 
\tau k
0  - \mu \tau k0 )(x)

\geq  - 1

2\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn 

\Biggl[ 
\langle \mu \tau k0  - \nu \tau k0 , f\bfitn \rangle 2+

\biggl( \int 
\=O

tr
\bigl( 
A\nabla 2f\bfitn (x)

\bigr) 
d(\nu \tau k0  - \mu \tau k0 )(x)

\biggr) 2
\Biggr] 

\geq  - C

\delta k

\infty \sum 
m=1

\sum 
| \bfitn | =m

c\bfitn \langle \mu \tau k0  - \nu \tau k0 , f\bfitn \rangle 2 = - C

\delta k
S(\mu \tau k0  - \nu \tau k0 ).

(4.22)

At last, we estimate term (III). By virtue of (4.14), t\tau k0 converges to \=t0, \mu 
\tau k
0 ,

\nu \tau k0 converges and weakly to \=\mu 0 as k \rightarrow \infty . As O is bounded, this also implies that
\BbbW 2(\mu 

\tau k
0 , \=\mu 0)\rightarrow 0 as k\rightarrow \infty . By (H3),

lim
k\rightarrow \infty 

(III) = lim
k\rightarrow \infty 

\Bigl\{ \int 
\=O

\bigl( 
\vargamma (s\tau k0 , x, \nu 

\tau k
0 , \alpha ) - \vargamma (t\tau k0 , x,\mu 

\tau k
0 , \alpha )

\bigr) 
d\nu \tau k0 (x)

+

\int 
\=O

\bigl( 
\vargamma (t\tau k0 , x,\mu 

\tau k
0 , \alpha ) - \vargamma (\=t0, x, \=\mu 0, \alpha )

\bigr) 
d(\nu \tau k0  - \mu \tau k0 )(x)

+

\int 
\=O

\vargamma (\=t0, x, \=\mu 0, \alpha )d(\nu 
\tau k
0  - \mu \tau k0 )(x)

\Bigr\} 
\geq lim
k\rightarrow \infty 

\Bigl\{ 
 - K3

\bigl( 
| s\tau k0  - t\tau k0 | +\BbbW 2(\nu 

\tau k
0 , \mu \tau k0 )

\bigr) 
 - 2K3

\bigl( 
| t\tau k0  - \=t0| +\BbbW 2(\mu 

\tau k
0 , \=\mu 0)

\bigr) 
+

\int 
\=O

\vargamma (\=t0, x, \=\mu 0, \alpha )d\nu 
\tau k
0 (x) - 

\int 
\=O

\vargamma (\=t0, x, \=\mu 0, \alpha )d\mu 
\tau k
0 (x)

\Bigr\} 
= 0.

(4.23)

Finally, inserting the estimates (4.23), (4.22), (4.21) into (4.19), due to (4.15),
we get
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lim
k\rightarrow \infty 

 - 2\beta \geq lim
k\rightarrow \infty 

(I) + (II) + (III) = 0,

which contradicts the fact \beta > 0.
Consequently, we have shown that the existence of (\=t, \=\mu ) satisfying (4.9) is false,

and so is the existence of (\~t, \~\mu ). Thus, we conclude that W (t, \mu ) \leq V (t, \mu ) for all
(t, \mu )\in [0, T )\times P( \=O) as desired.

At last, we propose two possible applications of the conclusions of this work. One
is to develop the viscosity solution theory on the Wasserstein space over Riemannian
manifolds associated with the optimal control problem for stochastic processes on
Riemannian manifolds. Another is the study of the control problem for N -particle
systems or mean-field games. There are many works in the literature dedicated to
the study of convergence of mean field games and N -particles systems, for instance,
[11, 12, 16, 22, 23] and references therein. There are very few explicit solvable mean
field game models; see, for example, linear quadratic models [6, 21], and the optimal
investment model [24]. The idea of using the HJB equation or the Master equation to
prove the limit theorem of an N -particles system has proven to be powerful; see, e.g.,
[10] and references therein. However, a key point of the approach of [10] is that it
works under the sole assumption that the Master equation admits a classical solution.
How to generalize the approach of [10] to the setting of viscosity solutions is a question
worth investigation in the future.
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