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Obstructions to reversing Lagrangian
surgery in Lagrangian fillings

ORsoLA CAPOVILLA-SEARLE, NOEMIE LEGOUT, MAVLIS LIMOUZINEAU,
EMMYy MURPHY, YU PAN, AND LiSA TRAYNOR

Given an immersed, Maslov-0, exact Lagrangian filling of a Legen-
drian knot, if the filling has a vanishing index and action double
point, then through Lagrangian surgery it is possible to obtain a
new immersed, Maslov-0, exact Lagrangian filling with one less
double point and with genus increased by one. We show that it is
not always possible to reverse the Lagrangian surgery: not every
immersed, Maslov-0, exact Lagrangian filling with genus g > 1 and
p double points can be obtained from such a Lagrangian surgery
on a filling of genus g — 1 with p + 1 double points. To show this,
we establish the connection between the existence of an immersed,
Maslov-0, exact Lagrangian filling of a Legendrian A that has p
double points with action 0 and the existence of an embedded,
Maslov-0, exact Lagrangian cobordism from p copies of a Hopf
link to A. We then prove that a count of augmentations provides
an obstruction to the existence of embedded, Maslov-0, exact La-
grangian cobordisms between Legendrian links.
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1. Introduction

An important problem in smooth topology is to understand the 4-ball genus
and the 4-ball crossing number of a smooth knot. Through a variety of
techniques, including Heegaard Floer homology, gauge theory, and instan-
ton homology [OS16, KM21], the 4-ball genus and crossing numbers have
been calculated for all prime knots with crossing number 10 or less. Less is
known about these invariants for connect sums; see, for example, [LVCIS].
In general, the 4-ball genus and crossing numbers give information about
what combinations of genus and double points can be realized by surfaces in
the 4-ball with a fixed knot as their boundary: a transverse double point can
be resolved at the cost of increasing the genus of the surfaces, and sometimes
a disk that intersects the surface transversely along its boundary allows one
to reduce the genus at the cost of increasing the number of double points.

One can study analogous problems when the knot and surface satisfy
additional geometric conditions imposed by symplectic geometry. The de-
velopment of symplectic field theory [EGHO00] motivated the study of La-
grangian cobordisms between Legendrian submanifolds; these are embedded
Lagrangian submanifolds in the symplectization of a contact manifold that
have cylindrical ends over the Legendrians, see Figure [3| for a schematic pic-
ture. Lagrangian fillings occur when the bottom Legendrian is the empty
set.

For a fixed Legendrian knot, obstructions to the existence of embedded,
exact Lagrangian fillings arise from classical and non-classical invariants of
the Legendrian; see, for example, [Chal0l [Ekh12| [DR16, [ST13|. Legendrians
that admit embedded, Lagrangian fillings are relatively rare and Lagrangian
fillings that do exist are known to be more topologically rigid than their
smooth counterparts: an embedded, oriented, exact Lagrangian filling will
always realize the smooth 4-ball genus of the knot [Chal0)].
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Immersed Lagrangian fillings are more plentiful: any Legendrian with
rotation number 0 will admit an immersed Lagrangian filling, see, for ex-
ample, [ChalO, Remark 4.2]. Currently, there are fewer known obstruc-
tions for immersed Lagrangian fillings. Classical invariants, linearized con-
tact homology, and generating family homology can give some insight into
the possible combinations of genus and double points that can be real-
ized in an immersed, Maslov-0, exact Lagrangian filling of a Legendrian
knot, [Chal0), [Pez18, [PT22, [PR22]. Sometimes the existence of one such im-
mersed filling will lead to the existence of another: if A admits an immersed,
Maslov-0, exact Lagrangian filling of genus g with p > 1 double points such
that one of the double points has “index and action equal to 0” (see Sec-
tion [2| for definitions), then through Lagrangian surgery it is possible to
construct a new immersed, Maslov-0, exact Lagrangian filling of genus g + 1
with p — 1 double points. In this paper we address the following question:
is it always possible to “reverse” the surgery process? Namely, can every
immersed, Maslov-0, exact Lagrangian filling with genus ¢ > 1 and p double
points be obtained by Lagrangian surgery on an action-0 and index-0 double
point of an immersed, Maslov-0, exact Lagrangian filling of genus g — 1 with
p + 1 double points? See Figure [1| for a schematic of this question.
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Figure 1. Asking if a filling arises from Lagrangian surgery is asking if it is
possible to decrease g at the expense of increasing p.

We answer this question by first translating the existence of an im-
mersed, Maslov-0, exact Lagrangian filling with action-0 double points to
the existence of an embedded, Maslov-0, exact Lagrangian cobordism from
a disjoint union of Hopf links to A. We then construct new obstructions to
the existence of embedded, Maslov-0, exact Lagrangian cobordisms between
Legendrian links in thd through the theory of augmentations. Finally, we
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apply our obstruction techniques to find families of Legendrian knots admit-
ting immersed, Maslov-0, exact Lagrangian fillings that do not arise from
Lagrangian surgery as defined in Definition

1.1. Immersed to embedded Lagrangian cobordisms

In [Chalbl Theorem 1.3] Chantraine showed that the existence of an im-
mersed, exact Lagrangian filling of A with a single action-0 double point
implies the existence of an embedded, exact Lagrangian cobordism from a
Hopf link to A. We give an extension of this result to more general cobor-
disms, more double points, and higher dimensions; Deﬁnition defines AI]‘;’I,
the Hopf link with Maslov potential induced by the integer k.

Theorem 1.1. Suppose AL are Legendrian links in Rgfd_l, n > 2. If there
exists an immersed, Maslov-0, exact Lagrangian cobordism L* from A_ to
A with genus g and p double points, m of which, x1,...,Zm, have action
0, then there exists an immersed, Maslov-0, exact Lagrangian cobordism L
of genus g with (p —m) double points from | |, Aﬁ UA_ to Ay, where the
Maslov potential on the Hopf links are induced by the indices iy, of x;, .

As a corollary, we see that if each of the p double points of L* has
action 0, then we can conclude the existence of an embedded, Maslov-0,
exact Lagrangian cobordism L of genus g from LI _ Ay UA_ to Ay.

Remark 1.2. The hypothesis that all the double points of the immersed
exact Lagrangian cobordism have action 0 is not generic. Indeed, it corre-
sponds to the assumption that all Reeb chords in the Legendrian lift L of the
Lagrangian cobordism have length 0. One can instead generalize to consider
a contractible double point, which is a double point X whose corresponding
Reeb chord cx is contractible, i.e., its length can be shrunk to 0 without the
front projection of L needing to undergo any moves; see [EHK16, Definition
6.13] for a precise description of a contractible Reeb chord. The notion of
multiple action-0 double points can be generalized to multiple “simultane-
ously contractible” double points. The Legendrian Hopf link from Figure [9]
illustrates that two individually contractible Reeb chords need not be si-
multaneously contractible: here, the two interstrand Reeb chords b; and b
are not simultaneously contractible since they cobound a disk. For any im-
mersed, exact Lagrangian filling we can apply a Legendrian isotopy so that
all Reeb chords in the Legendrian lift have nonzero length without any births
or deaths of pairs of Reeb chords; such a Legendrian isotopy on the Legen-
drian lift can be realized by a safe Hamiltonian isotopy of the Lagrangian
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filling, see [CDRGG]. However, in general there are obstructions in going
from a set of contractible Reeb chords to a set of action-0 double points.

Remark 1.3. Theorem can be extended beyond transverse double
points to more general singularities of exact Lagrangians. In particular,
we can consider any Lagrangian singularity f such that the boundary of
a Darboux ball centered at the singularity, or a real morsification of the
singularity, intersects the exact Lagrangian as a Legendrian and the prim-
itive is constant on the Legendrian. See [Cas22] for some examples of such
singularities.

1.2. Obstructions to embedded exact Lagrangian cobordisms

For a Legendrian link A in the standard contact manifold Rgtd, the
Chekanov-Eliashberg DGA [Che02) [EL98] (A(A),0) is a powerful invari-
ant that arises from symplectic field theory [EGH00]. An augmentation e of
A(A) to a unital, commutative ring F is a DGA map € : (A(A),9) — (F,0),
where (F,0) is a DGA with F in degree 0 and differential identically 0. Let
Aug(A;F) denote the set of augmentations of A(A) to F. An embedded,
Maslov-0, exact Lagrangian cobordism L from A_ to A, induces a DGA
map from A(A;) to A(A_) [EHKI16] that by composition with an augmen-
tation of A(A_) induces a map

(1.1) Fr : Aug(A_;F) — Aug(A4; F).

Let Aug(A;F)/ ~4ug, denote the set of augmentations up to the equiva-
lence relation ~ 4,4, given by the natural equivalence given in the augmen-
tation category Aug;(A), see Definition , or equivalently with respect
to split-DGA homotopy, see Definition and Proposition We will use
|Aug(A;F)/ ~aug, | to denote the cardinality of the set Aug(A;F)/ ~aqy, -

Theorem 1.4. Let Ay be Legendrian links in ]Rg’td such that there exists
an embedded, Maslov-0, exact Lagrangian cobordism L from A_ to A. Sup-
pose F is a commutative ring; if F does not have characteristic 2 we fur-
ther assume that L is spin. Given augmentations €1,eo € Aug(A_,F), if
Fr(e1),Fr(e2) are equivalent with respect to ~ayg, , then €1, ez are equiv-
alent with respect to ~ Ayg, . In particular,

(1.2) [Aug(A—;F)/ ~ aug, | < [Aug(As;F)/ ~aug, |-
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If A+ are single component Legendrian knots or F = Zs, the map
(1.3) Fr: Aug(A_;F)/ ~aug, = Aug(AL;F)/ ~aug,
exists and is injective.

Although the map F7, on the set of augmentations (see Equation
always exists, the map Fr, on the set of equivalence classes of augmentations
(see Equation does not exist for multi-component links or when FF #
Zs. See Remark The fifth author [Panl7] proved a result that implies
Theorem [1.4{ when Ay are Legendrian knots. We will see that equation
provides a practical way to obstruct the existence of embedded cobordisms
when F = Zy. When F is not of characteristic 2, then, as in [CDRGG20),
EES05b], Kar20, [Sei0§], rigid holomorphic disks in the moduli spaces that
arise in the proof of Theorem are counted with signs.

Fillings induce augmentations, and so one of the many reasons to con-
sider augmentations to a more general F is that they can give information
on the number of fillings of a Legendrian link. It is known that Hamilto-
nian isotopic, embedded, Maslov-0, exact Lagrangian fillings induce ~ 444,
equivalent augmentations to Z, [EHK16, [Kar20]. Examples of Legendrian
links that have an infinite number of distinct fillings up to Hamiltonian iso-
topy were first given in [CG22] and later also in [CZ22l [GSW20b, I(GSW20al?
]. From the existence of a Legendrian with an infinite number of distinct
fillings distinguished by augmentations to Z, we can apply Theorem to
deduce the existence of more such Legendrians.

Corollary 1.5. (c.f. [CN21, Proposition 7.5, Remark 7.6]) Let N € NU
{o0}. Suppose A_ is a Legendrian link that has N augmentations to Z up to
~ Aug, equivalence that are induced by embedded, Maslov-0, exact Lagrangian
fillings, and there exists an embedded, Maslov-0, exact Lagrangian cobordism
from A_ to Ay, then Ay admits N embedded, Maslov-0, exact Lagrangian
fillings that are distinct up to Hamiltonian isotopy.

Proof. Consider two embedded, Maslov-0, exact Lagrangian fillings of A_
that induce augmentations €1, €2 € Aug(A_,Z) that are not equivalent with
respect to ~ 4,4, . Concatenating these fillings with the cobordism L from
A_ to Ay produces two embedded, Maslov-0, exact Lagrangian fillings of
A ; the augmentations induced by these fillings agree with Fp,(e1), Fr(e2) €
Aug(A4,Z). By Theorem[1.4] Fy (1), Fi(€2) are not equivalent with respect
to ~Aug, , and thus the fillings of A} are not Hamiltonian isotopic. O
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In the case when Ayt are knots, Theorem was derived in [PanlT]
from studying the augmentation category Aug(A), which is an A-category
associated to a Legendrian A, see [NRST20|. The objects of Augy(A) are
augmentations € : A(A) — F and morphisms Hom (¢!, €?) are modules over
Reeb chords between A and its “push-off”. When A4 are knots, the func-
toriality of the DGA under cobordisms naturally extends the map F, from

Equation (1.1]) to a functor
(FL)+ : Augy (M) — Augy (Ay)

between the augmentation categories. In [Panl7] it is proved that Fi is
injective on equivalence classes of objects when Ay are knots by showing
that the functor (F7)+ induces an isomorphism on the degree 0 cohomol-
ogy of morphism spaces; i.e. H'Hom, (€', €?) = H'Hom, (Fp(e), Fr(€2)).
However, this latter statement fails for links. Moreover, the functor (Fr,)+ is
not even well-defined for cobordisms between links. Instead, we employ the
machinery of wrapped Floer theory for Lagrangian cobordisms developed in
ICDRGG20] (see Section @, to argue that if Fy(e!), F1(e?) are equivalent,
then €', €2 are equivalent, where equivalence is with respect to ~ Aug, - To do
this, we construct “wrong-way” maps, namely maps in direction opposite to
those induced by (Fr)+,

v 2 H*Hom y (Fr(€'), (%)) — H*Hom, (¢!, €%).

Combining the work of the second author [Leg20] and wrapped Floer theory,
we show that ¢ is unital and preserves the product structure on H*Hom

In Section [7.4] we build two additional obstructions to the existence of
embedded, Maslov-0, exact Lagrangian cobordisms in terms of linearized
contact homology LCHE(A) (see Section and the ruling polynomial
Ra(2) (see Equation (8.1, which are Legendrian invariants that are asso-
ciated to augmentations. These results are extensions of parallel results in
[Panl17].

Proposition 1.6 (see Proposition . Assume F is a field, Ay are
Legendrian links in Rg’td, € is an augmentation of A_, and L is an embedded,
Maslov-0, exact Lagrangian cobordism from A_ to Ay, which we further
assume to be spin if F does mot have characteristic 2. Then,

(1.4) LCH? 9 (Ay) =~ LCHE(A.)

for k<0 and k > 1.
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Proposition 1.7 (see Corollary [7.8)). Let L be a spin, embedded, Maslov-
0, exact Lagrangian cobordism from A_ to Ay. Then,

Ra (q1/2 o q—1/2) < q—x(L)/QRA+(q1/2 o q—1/2)
or any q that is a power of a prime number.
Jor any

1.3. Obstructions to reversing Lagrangian surgery

We apply Theorem and Theorem to find examples of Legendrian
knots in R‘;’t 4 admitting immersed, Maslov-0, exact Lagrangian fillings that
do not arise from Lagrangian surgery. We say that an immersed, Maslov-0,
exact Lagrangian filling F}; of a Legendrian A with genus g and p double
points does not arise from Lagrangian surgery if there does not exist an
immersed, Maslov-0, exact Lagrangian filling Fgfll with genus g — 1 and
p + 1 double points where the indices and actions of p of the double points
agree with those of F}y and there is an additional double point of action and
index 0 that could be surgered to produce F}; see Definition

As a simple illustration of our techniques, consider the Legendrian knot
Az, in Figure [2f(a), which is the maximal-tb representative of the knot 7,.
Using known construction techniques, described in Section [§] we know that
A7, admits an embedded, Maslov-0, exact Lagrangian filling of genus 1; we
prove this filling cannot be obtained by applying Lagrangian surgery on an
immersed, Maslov-0, exact Lagrangian disk filling with one double point.
Indeed, if it was the case, A7, would admit an immersed, Maslov-0, exact
Lagrangian disk filling with a double point of action 0 and index 0. By
Theorem the existence of such an immersed filling is equivalent to the
existence of an embedded, Maslov-0, exact Lagrangian cobordism from the
Hopf link A% to A7,. However, since we can compute

|Au9(A(IJ-I’ZQ)/ ~Aug, ‘ = 37 and |Au9(A74;ZQ)/ ~Aug, | = 1’

by Theorem such an embedded cobordism does not exist. In fact, for
this specific example, there is an underlying smooth reason that such an
immersed Lagrangian disk filling does not exist for A7,: it has been shown
in [OS16] using Heegaard Floer homology that the smooth knot 7,4 does not
have any smooth, immersed disk filling with 1 double point. The follow-
ing theorem gives examples of Legendrian knots with obstructed immersed
Lagrangian fillings, where there is no smooth obstruction. The Legendrian
knot shown in Figure (b) is an example of a Legendrian in Theorem



Obstructions to reversing Lagrangian surgery 607

(1), and the Legendrian shown in Figure [[c) is an example of a Legendrian
in Theorem (1. 8 (2).

<y Yy >
><?>

>
=
(c)

Figure 2. Legendrian knots admitting fillings that do not arise from La-
grangian surgery. (a) A7,; (b) Ag|k=1 = Ag,,; (c) the clasped checkerboard
AL

Theorem 1.8. 1) For all k > 1, there exists a Legendrian knot Ay, with
A1 being a Legendrian 948 knot, that admits an immersed, Maslov-0,
exact Lagrangian filling FF, which has genus k and k double points,
that does not arise from Lagrangian surgery, even though Ay admits a
smooth filling of genus (k — 1) with (k+ 1) double points.

2) Given g € Z", and p € Z=°, there is a Legendrian knot A} that has an
immersed, Maslov-0, exact Lagrangian filling FY, which has genus g
and p double points, that does not arise from Lagrangian surgery.

The family A in Theorem 2) generalizes A7,: AY = A7,. Other than
AY, the knots in this family have crossing numbers that are at least 11 and
can be arbitrarily large: a SnapPy calculation shows that Al is the smooth
knot 11495, and, to the best of our knowledge, this and the others in the
family do not have smooth obstructions.

Remark 1.9. The Poincaré polynomial for the Legendrian contact homol-
ogy of Ag,, is t1 + 2 + 2¢, [CN13]. Using the techniques of generating fam-
ilies, this implies that any immersed, gf-compatible (and thus Maslov-0 and
exact) Lagrangian disk filling of Ag,, must have at least two double points,
of indices 0 and 1 [Pezl8, [PT22]. With the techniques of this paper, we
obstruct the case where both the double points must satisfy the additional
action-0 hypothesis, or the equivalent “contractible” formulation described
in Remark [[.2]
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We end this introduction with the following observation. The fact that
the immersed Lagrangian fillings in Theorem are not obtained from
Lagrangian surgery on other fillings tells us about the non-existence of par-
ticular Lagrangian disks. As explained in Section [3] after a change of coor-
dinates and the removal of a cylindrical end, an exact Lagrangian filling L
of a Legendrian A in the symplectization of R‘Z’td becomes a compact, exact
Lagrangian filling L in (B*, wgq) of A C S3.

We will call an essential, embedded curve v C L is a pre-singularity
loop if it is obtained by the transversal intersection of a Lagrangian disk
D C (B* wyy) with the interior of L. As shown in [Yaul3], given a pre-
singularity loop, it is always possible to reverse Lagrangian surgery. Thus,
we obtain the following corollary to Theorem

Corollary 1.10. Let A be one of the Legendrian knots from Theorem [1.§
that admits an immersed, Maslov-0, exact Lagrangian filling F} with genus
g and p double points that cannot be obtained by Lagrangian surgery. Then
the filling FY does not admit a pre-singularity loop.

Remark 1.11. Given an embedded, orientable, exact Lagrangian filling L
with a pre-singularity loop v C L that bounds a Lagrangian disk with in-
terior disjoint from L, one can shrink the Lagrangian disk to a point and
perform Lagrangian surgery in one of the two ways, as explained in Sec-
tion [3] to obtain two embedded exact Lagrangian fillings L; and Lo. Note
that L1 and Lo are smoothly isotopic but not Hamiltonian isotopic. This
has been employed to great effect in the construction of infinitely many ori-
entable embedded exact Lagrangian fillings for certain Legendrian links up
to Hamiltonian isotopy by [CZ22, Theorem 4.21]. Obstructing the existence
of pre-singularity loops allows one to understand when such constructions
are not possible. The obstruction tools that we construct however do not de-
termine which curves in L are pre-singularity loops. They also only provide
an upper bound on the number of pre-singularity loops v in L.

Outline: In Section [2, we define immersed, Maslov-0, exact Lagrangian
cobordisms and the action and index of double points. In Section [3| we
review Lagrangian surgery and prove Theorem by employing the theory
of Liouville and Weinstein structures. We then review concepts that are
used in proving Theorem including the Chekanov-Eliashberg DGA, the
augmentation category, and the wrapped Floer theory for cobordisms, in
Sections and|[6] respectively. In Section 5} the equivalence relation ~ 4y,
is reviewed and the new definition of split-DGA homotopy is introduced. In
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Section [7] we integrate everything together and prove Theorem as well
as the other obstructions provided by Propositions and Finally, in
Section [§ we apply Theorem [I.1] and Theorem [I.4] to prove Theorem
for one of the families we count augmentations directly while for the other
family we apply the theory of rulings to count augmentations.
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pleted. We also thank Roger Casals, Georgios Dimitroglou-Rizell, Lenny Ng,
Brendan Owens, and Laura Starkston for helpful conversations.

2. Actions and indices of double points

In the first subsection, we define immersed, exact Lagrangian cobordisms
between Legendrian links and the action of a double point. In the second
subsection, we define the indez of a double point.

2.1. Immersed Lagrangian cobordisms and the action of a double
point
Let A be a Legendrian knot or link in the standard contact manifold RS&H =
n
(R27+1 ker o), where o = dz — Zyl dzr; and (1,...,Zp,Y1,---,Yn,2) are
i=1
the coordinates of R?"*1. There are two useful projections of A: the La-
grangian projection 7, (A) where 7., : RZ" — R?" (x,y,2) — (x,y),
and the front projection m,.(A) where m,, : R*"*1 » R (x,y, 2) —
(x,z), where x and y are (z1,...,2,) and (y1,...,y,). We will always as-
sume that A is chord generic, meaning that the self-intersection points of
T2y (A) consists of a finite number of transverse double points.
Now we define immersed, exact Lagrangian cobordisms between Leg-
endrian links, which are immersed manifolds with “cylindrical ends” over
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Legendrian links; see Figure [3] This extends the definition of embedded,
exact Lagrangian cobordisms of [EHKI6, Definition 1.1].

Definition 2.1. Let Ay be Legendrian links in Rg&_l. An immersed, ex-
act Lagrangian cobordism L from A_ to A, is an immersed, Lagrangian
submanifold in the symplectization, L =i(X) for a Lagrangian immersion
i:Y — (Ry x R?71 d(efa)), such that for some N > 0,

1) LN ([-N, N] x R?*"~1) is compact,

2) LN ([N,0) x R?"1) = [N, 00) x A4,

3) LN ((—o00,—N] x R 1) = (—00, —N] x A_, and
)

4) there exists a function f : ¥ — R and constants ¢4 such that ¢* (eta) =

df, where f|i-1((—co,~NJxA_) = €= and fli1((N,00)xA,) = C+-

Figure 3. A schematic picture of an immersed, exact Lagrangian cobordism
L from A_ to Ay with genus 1 and two double points.

Remark 2.2.

1) The function f in condition (4) in Definition is a primitive of
L. Since Ay are Legendrian, it follows that on the ends of L, the
primitive f is locally constant. The condition (4) enforces that when
A_ (or Ay) is not connected, the constant ¢_ (or ¢4 ) does not vary
from component to component. By the addition of a constant, we can
always assume that ¢c_ = 0; this will be the convention that we use in
Section [6l
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2) Generically all immersion points of L are isolated, transverse double
points. In this paper, when we write L for an immersed exact La-
grangian cobordism we implicitly assume that it comes as the image
of an immersion i : ¥ — R x R?"~! satisfying the conditions in Defini-
tion and that all the immersion points are isolated and transverse
double points.

Given an immersed, exact Lagrangian cobordism L C R x R?"~! from
A_ to Ay, the primitive f guaranteed by Definition [2.1[4) allows one to
construct the Legendrian lift of L, defined as L = {(i(q), —f(q))|q € £}
in the contactization of (Rt x R2n—1 d(eta)), which is the contact manifold
((R x R27=1) x Ry, du+e a) Double points of L are in one-to-one corre-
spondence with Reeb chords of L which are trajectories of the Reeb vector
field 6 that begin and end on L.

The action of a double point X of L is defined to be the length of
the corresponding Reeb chord cx of L starting at ¢~ € L and ending at

* € L, which is given by u(c*) — u(¢™) > 0. From our construction of L, if
X is the image of p1, ps € 3 the action of a double point X is the absolute
value of the difference of the primitives at p1, and po: |f(p1) — f(p2)].

Remark 2.3. For an immersed, exact Lagrangian cobordism L = i(X), the
primitive, as defined in Remark is defined on X, f: 3 — R. When all
the double points of L have action 0, the primitive is a well-defined function
f:L—R.

2.2. Maslov class and index of a double point

We now clarify what we mean by the index of a double point in an immersed,
Maslov-0, exact Lagrangian cobordism. Briefly, the index of a non-zero ac-
tion double point will be defined in a standard way using the Conley-Zehnder
index of the corresponding Reeb chord (of strictly positive length) in the
Legendrian lift. We then define the index of an action-0 double point of an
immersed Lagrangian.

2.2.1. Maslov index of a loop of Lagrangians and Maslov class
of a Lagrangian. First, notice that our Lagrangian cobordisms live in
(R x R2n—1 d(eta)) which is equivalent via an exact symplectic diffeomor-
phism to (RQ”, > dgi A dpi). Then, there is a standard way of associating
an integer, known as the Maslov index, to a smooth loop on an immersed,
Lagrangian submanifold in R?"; see, for example, [EES05a, Section 2.2].
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All examples of Lagrangian cobordisms that we consider in this paper have
Maslov class 0 (denoted Maslov-0), meaning that all loops have Maslov in-
dex 0. In particular, this implies that the Lagrangians are orientable since the
Maslov class modulo 2 is the first Stiefel-Whitney class. In general, Maslov-n
ensures a well-defined Z,-grading for generators of the Chekanov-Eliashberg
DGA (Section and generators of the Cthulhu complex (Section [6.2)); all
augmentations and chain maps are also Z,-graded.

2.2.2. Index of a double point. Consider an embedded, connected Leg-
endrian A C R*"*1 and its Lagrangian projection my,(A) C R*". Given a
Reeb chord ¢ of A, a capping path v along A from the point corresponding
to the end of the Reeb chord c¢* to the start of the Reeb chord ¢~ together
with a standard closure, as defined in [EES05al, gives rise to a smooth loop
of Lagrangian subspaces. The Maslov index of this loop defines the Conley-
Zehnder index of the Reeb chord ¢, denoted C'Z,(c). When the Maslov
class of the Lagrangian m,,(A) is 0, the Conley-Zehnder index does not de-
pend on the choice of the capping path along A, and so we denote it C'Z(c).
Given this, if L is an immersed, Maslov-0, exact Lagrangian with embedded,
Maslov-0, Legendrian lift L, a double point X of L lifts to a Reeb chord cx,
and we define the index of X as

(2.1) ind(X) = CZ(cy) — 1.

For low-dimensional Legendrians, there is a combinatorial way to com-
pute the Conley-Zehnder index of a Reeb chord of A using a Maslov potential
on the front projection, 7., (A). Let A denote an embedded Legendrian knot
in R3,, (resp. R3,,) with generic front projection, and let Ag;ng be the subset
of A where the front projection is not an immersion, i.e. the preimage by
7y, Of the set of cusp points (resp. cusp edges and swallow tails). If the
Lagrangian m,,(A) has Maslov class 0, a Maslov potential is a locally
constant map

p A Aging — Z,

such that near a cusp point, or cusp edge, the Maslov potential of the upper
sheet is 1 more than that of the lower sheet. The Maslov potential is well
defined up to a global shift by an integer. Now let ¢ be a Reeb chord of A
from ¢~ to ¢*. In a neighborhood of ¢t (resp. ¢7), A is the 1-jet of a Morse
function f,, (resp. f;) defined on a neighborhood of 7,(c), and m,(c) is a
critical point of the function f,; := fu, — fi. Given a Maslov potential u on
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A, we have

(2.2) CZ(c) = p(u) — p(l) + indy,, (m2(c)),

where u and [ are the sheets of A containing ¢ and ¢~ respectively, see
[EESO5a, Lemma 3.4].

In the case when A is not connected, there is no capping path for Reeb
chords between two different components, so we need to make additional
choices, as explained in, for example, [EHK16] Section 3.1]. In particular, the
capping paths involve the choice of points in each component of A as well as
paths between the corresponding Lagrangian tangent spaces at these points.
The Conley-Zehnder index of a particular Reeb chord between components
depends on these choices, but for two such Reeb chords, the difference is
independent of the choices. One can again compute the index of a Reeb
chord combinatorially using Equation the paths determine “the jump”
of Maslov potential between the two components A; and A;.

The above definition of the index of a Reeb chord applies to the case
where the Legendrian A is embedded, and so ¢t are distinct points of A
for each Reeb chord c. In other words, the double points of the Lagrangian
projection my,(A) are all of strictly positive action. When A is immersed
and c¢ is a Reeb chord of length 0, meaning ¢t = ¢~ (by assumption this
Reeb chord still corresponds to a transverse double point in the Lagrangian
projection), the Conley-Zehnder index may depend on the choice of capping
path even if 7., (A) has Maslov class 0. Indeed, for any non-trivial path
7 :[0,1] = A from ¢ = c¢* to itself starting on one sheet of A and coming
back to ¢ along the other sheet, both v and its reverse —v are capping paths
for the Reeb chord c. Since in a neighborhood of ¢, A consists of two sheets
meeting tangentially at ¢, using Equation we find that

CZ_(c)=n—CZ/c),

where n is the dimension of the Legendrian. Thus if X is an action-0 double
point of an n-dimensional, exact Lagrangian L, and cx denotes the associ-
ated length 0 Reeb chord in the Legendrian lift, then comparing a capping
path v and its reverse, we have that

ind,(X)=CZ,(cx)—1=(n—CZ_4(cx)) —1
=n—-1-CZ_,(cx) =n—2—ind_(X).
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In particular, when n = 2, the index of X using a capping path v or its
reverse differs by a sign:

ind,(X) = —ind_(X).

Definition 2.4. Suppose X is an action-0 double point in an n-
dimensional, immersed, Maslov-0, exact Lagrangian. The index of X is de-
fined to be the greater of ind, (X) and ind_,(X), for any capping path v for
cx. When n = 2, we have that ind(X) = |ind, (X)].

The index of a double point arises when considering Legendrian Hopf
links.

Definition 2.5. The (n — 1)-dimensional Legendrian Hopf link AF is
given by the intersection of the standard local model of an index-k double
point of an n-dimensional Lagrangian submanifold (namely, R” U iR"™ C C")
and the unit sphere S?*~! with its standard contact structure.

For n = 2, we can give a more specific description of the 1-dimensional
Legendrian Hopf link AI’fI.

Example 2.6 (Hopf links). When n = 2, consider the Hopf link A¥, given
by the intersection of the local model for an index-k double point of a La-
grangian surface (R%2UiR? C C2?) and S3. We claim that, potentially after
a Legendrian isotopy, there is a front projection of A’Ifl as shown in the
leftmost diagram in Figure [9] where the Maslov potential, near the right
cusps, from bottom to top, on the four strands is given by 0,1,k + 1 and
k + 2 (up to a global addition of an integer). To see this correspondence for
A%, we will observe in Lemma that in order to get a Maslov-0 exact
Lagrangian cobordism from another Maslov-0, immersed, exact Lagrangian
cobordism on which we perform Lagrangian surgery, the index of the double
point we surgered must be 0. The Hopf link corresponding to this double
point (link of the singularity) will thus admit an embedded, Malsov-0, exact
Lagrangian filling. From consideration on augmentations and using the Sei-
del’s isomorphism, see Example one can check that A% is the only Hopf
link that bounds an embedded, Maslov-0, exact Lagrangian filling. Then, if
the double point is of index k, the difference in Maslov potential of the two
components of R? UiR? must be k. Therefore, the boundary AI’fI inherits
the required Maslov potential from that of the surface R? UiR?. An explicit
Legendrian isotopy via Legendrian Reidemeister moves shows that AI’fI and
Aﬁk are Legendrian isotopic.
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3. Lagrangian surgery

We start this section by reviewing the Lagrangian surgery operation on im-
mersed Lagrangian submanifolds, which was first defined for Lagrangian
surfaces by Lalonde and Sikorav in [LS91] and then generalized to higher
dimensions by Polterovich [Pol91]. We then prove Theorem [I.1] which trans-
lates the existence of immersed fillings into the existence of embedded cobor-
disms with the double points of action 0 being replaced by Hopf links.

3.1. Lagrangian surgery construction

In this subsection, our goal is to prove the following:

Proposition 3.1. If a Legendrian link A C Rg’td admits an immersed,
Maslov-0, exact Lagrangian filling L of genus g with p double points such
that one of the double points has index 0 and action 0, then A also admits an
immersed, Maslov-0, exact Lagrangian filling L' of genus g +1 with p — 1
double points.

To resolve a double point X of a Lagrangian, we remove a small neigh-
borhood of X and glue back in a Lagrangian handle. In the setting where
the Lagrangian L is exact, we can understand Lagrangian surgery in terms
of the Legendrian lift L of L. This is the approach taken in [CMPI9 Sec-
tion 6.2] where Casals Murphy Presas give explicit parametrizations of two
Lagrangian handles that can be constructed to replace an action-0 double
point. The Legendrian lift of one of these handles can be seen as a “cusp-
sum”, and the Legendrian lift of the other can be seen as a “cone-sum”;
see Figure [4] These two Lagrangian surgeries are smoothly the same [Pol91,
Proposition 2]. Observe that L’ obtained from either of these surgeries is nec-
essarily exact since it is constructed through its Legendrian lift. The proof
of Proposition then follows immediately from the next lemma that tells
us that if the double point has index 0, the Maslov-0 condition is preserved
under surgery.

Lemma 3.2. (cf. [Pol91, [CMP19]) Suppose L is an immersed, Maslov-0,
ezact Lagrangian surface that contains an action-0 double point X ; let L de-
note an exact Lagrangian obtained from one of the two Lagrangian surgeries

that correspond to the Legendrian “cusp-sum” or “cone-sum” resolutions of
the lift described above. If the index of X is 0, then L' has Maslov class 0.
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e =<

LX X

Figure 4. On the top row, left side, are schematized 7., slices of the La-
grangian L C R; x R? in a neighborhood of a double point, and on the top
right are slices of the Lagrangian obtained after the two possible handle
attachments. The bottom row, left side, schematizes the Legendrian lift
LcC R; x R3 x R, of L and on the right the Legendrian lifts of each handle
attachment.

Proof. The Maslov class of L’ is 0 if and only if its Legendrian lift L’ admits
a (Z-valued) Maslov potential. Before surgery, L has Maslov class 0 so its lift
L admits a Maslov potential . In the lower left model shown in Figure
denote the upper and lower sheets of L by u and £ respectively. For both the
cusp edge and the cone singularity cases, the Maslov potential p can be “ex-
tended” after surgery to L’ if and only if u(u) — u(€) = 1, (see also [DRII]
Figure 3| for the cusp edges arising after perturbing the cone). The condi-
tion p(u) — p(f) =1 1is equivalent to the condition ind(X) = 0 according to
Definition [2.4] m and Formulas and (| . O

Definition 3.3. Let F}; denote an immersed, Maslov-0, exact Lagrangian
filling F} of a Legendrian A with genus g and p double points of indices
i1,...,1p and actions ay,...,a,. We say that F} arises from Lagranglan
surgery if there exists an 1mmersed Maslov-0, exact Lagrangian filling F}; b +

of A with genus g — 1 and p 4+ 1 double points such that

1) p of the double points have indices i1, ...,1%, and actions ar,...,ap,
2) there exists a double point zg of index 0 and action 0, and

3) the Lagrangian surgery corresponding to the Legendrian cusp-sum or
cone-sum at z produces Fy.
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FP+ 1

If there is no such Lagrangian filling g1

arise from Lagrangian surgery.

then we say that Fj does not

3.2. Proof of Theorem [1.1]

In |Chalb, Theorem 1.3] Chantraine showed that the existence of an im-
mersed, exact Lagrangian filling of A with a single action-0 double point
implies the existence of an embedded exact Lagrangian cobordism from a
Hopf link to A. In this section, we prove Theorem which generalizes this
result to more general cobordisms, more double points, and higher dimen-
sions.

The proof of Theorem will use the theory of Liouville structures.
Below we briefly describe some of the key terms. See, for example, [CE12)
Chapters 11 and 12] for more details. A 1-form A on a manifold M such
that w = d\ is symplectic is called a Liouville form; the associated w-
dual vector field V, defined by iyw = A, is the Liouville vector field of
A. A Liouville domain, (W,w,V), is a compact manifold with bound-
ary, W, equipped with an exact symplectic structure w = dX such that the
associated Liouville vector field V' points outward along OW. The bound-
ary OW is a contact manifold with contact form o := Asy. A Liouville
manifold is a manifold M together with a Liouville form A, equivalently
a triple (M,w = dA,V), such that V is complete and M admits an ex-
haustion M = U, W* where (W¥,w, V) are Liouville domains. The skele-
ton of a Liouville manifold (M,w = d\, V) is the isotropic set of points
that do not escape to infinity under the Liouville flow. More concretely,
Skel(M,w,V) = U Ni>o ¢~ (W), where UZOZIW’“ is an exhaustion of M,
and ¢! : M — M is the flow along V for time t. A Liouville manifold is ob-
tained from a Liouville domain W by attaching the semi-infinite cylinder
([0,00) x OW) to W and extending the Liouville form by efa. For example,

2n _ . 1 — 0 0
(3.1) (R Jwsta = 3 dg; A dpi, Veag = 3 > % D0 ‘f‘piaip'

i=1 v

is a Liouville manifold. In a Liouville manifold (M,w,V), any hypersur-

face ¥ < M transverse to V is a contact manifold, with contact form given
by o =i*A. For any Legendrian A C X, flowing A along V defines a La-
grangian that is cylindrical over A. Weinstein domains are Liouville do-
mains with a compatible Morse handlebody decomposition. For £k < n, a
2n-dimensional Weinstein handle of index £ has underlying Liouville
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% BZn—k

domain given as (IB%’“ , Wstd,s Vk) , where

n
wta = »_ dgi Adp;,

i1
k n
0 0 1 0 0
Vi = —¢+2¢>+ <i+ )
g ;( qa%’ papz‘ 2@.:%;1 qaqi papz'

The core (respectively, cocore) of the k-handle is B* x {0} (respectively,
{0} x B?"~*) and the handle has attaching sphere given by the boundary
of the core, S¥=1 x {0}. It is possible to build Weinstein cobordisms via at-
taching handles by gluing the isotropic attaching sphere to isotropic spheres
in the contact level sets, [CEI2, Proposition 11.13].

Proof of Theorem[1.1]. Let L* be an immersed, Maslov-0, exact Lagrangian
cobordism from A_ to Ay with p double points, m of which, x1,...,zm,
have action 0. By Definition [2.I we know that the value of the primitive
is constant along all components of A_. For the reader’s convenience, we
outline the argument.

1) Map (R; x RZ"71 d(efa)) to (R?™ — {ray},wsa = Y. dg; Adp;) C
(R?", wyq) with an exact symplectomorphism so that L* is sent to
an exact Lagrangian L* that is cylindrical outside of By(p4) and in-
side Bo(p_), where By(p) is the standard Euclidean ball centered at 0
of radius p.

2) Change the Liouville structure on R?" from (wgsq, Vraq) to a Liouville
structure (wsg, V#ad) so that a “multi-dumbbell region” Dy C Bo(p—)
has a Liouville structure obtained from attaching m “exterior” We-
instein 0-handles to a “center” Weinstein 0-handle via m Weinstein
1-handles.

3) Apply a Hamiltonian isotopy to drag the double points of L* to the
center of the exterior 0-handles of Dy and move L* to agree with
standard intersecting Lagrangian disks near each double point. Now
LN 0D4 = A_ consists of the disjoint union of m Legendrian Hopf
links and the Legendrian link corresponding to A_.

4) By modifying V#‘d inside D, we change the Liouville structure from
(Wstds V#“d) to (wstd, Vo) so that Vj only vanishes at the origin. Further-
more, we also ensure that on a small ball By(e) C Int(Dy), Vo agrees
with the radial Liouville structure. The flow of the Liouville vector
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field Vj over the Legendrian A_ defines an exact Lagrangian cylin-
der Ly,. We construct a new, immersed, Maslov-0, exact Lagrangian
cobordism L with only (p — m) double points by replacing L* N Int Dy
with the Lagrangian Ly, N (D \ {0}). Since d(By(¢)) is transverse to
Vo, A_ = LN (11 (Bo(e)) is Legendrian consists of £(A_) and m copy
of Hopf link. The Legendrian A_ is the new negative end of L even
though the primitives on x(A_) and the Hopf links may not agree with
each other.

5) Sard’s Theorem guarantees the existence of a trajectory of Vp that
avoids L. This allows us to map the Lagrangian cobordism L back
to an immersed, Maslov-0, exact Lagrangian cobordism L C (R; x
R27~1 d(eta)) with only (p —m) double points. By applying another
Hamiltonian isotopy, we can guarantee that the primitive agrees with
the same constant on all components of the negative end.

We now give more details for these steps.
Step 1: As shown in, for example, [Gei08, Proposition 2.1.8] there is a
contactomorphism

1
. 2n—1 2n—1 - . -
k: (R ,kera)) — (S {pt}, ker <2 < E qidp; pdez>>> .

This contactomorphism lifts to an exact symplectomorphism between the
symplectizations:

R: (R x R d(ela) = (B = {ray},woa = Y dai A dp;)
Rt p) = e'k(p).

We can view the image of K as a subset of the Liouville manifold
(R%", Wi, Viad), as defined in Equation . Then, LX = k(LX) is an im-
mersed, Maslov-0, exact Lagrangian surface that is cylindrical over the Leg-
endrians k(Ay) with respect to the radial Liouville vector field V,.q. In
particular, if L* is cylindrical outside t4, there exist pi+ such that L is
cylindrical outside By (p+) and inside Bg(p—), which are balls with respect
to the standard Euclidean metric of radius p4 centered at the origin.

Step 2: Choose y1,...,Ym € Bo(p—), and consider balls B, ,...,B,, C
Bo(p—) centered at yi,...,ym, and attach each of these balls via radial
paths d1,...,d,, to a disjoint center ball By C By(p_) centered at the ori-
gin. View the balls By and B,,, k = 1,...,m, as Weinstein 0-handles and
construct m Weinstein 1-handles with core d;. Thus, it is possible to glue
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these Weinstein structures together to obtain a Weinstein structure on a
neighborhood of a dumbbell region Dy, [CEI12, Proposition 11.13]; see Fig-
ure [ I 5| for a schematic picture. Let (D, wstq, V) denote the resulting Liou-
ville domain. Now we define a new Liouville structure (R?", w4, V;ad) that
agrees with (wstd, Vreq) outside a neighborhood of Dy and with the Liou-
ville structure (wgq, V) on Dy. Let N(Dy) denote a contractible neigh-
borhood of Dy where V4 is defined. Let A,.qq and Ay denote the Liouville
1-forms for V.44 and V in (R2", w,4). Since d(Ag — Arad) = Wstd — Wstd = 0,
and all closed 1-forms on N (D) are exact, we know Ay — \pqq = dH for
some function H : N(D4) — R. Let o be a smooth bump function for D4
supported on N(Dx): o(p) =1 for all p € Dy, and suppo C N(D4). Then
consider )\;fd = Arad +d(0H). On Dy, )\’"“d A%, while on the comple-
ment of N(Dx), )\;fd = A\rad- By constructlon )\md is a Liouville 1-form
of (R?" wgy4), so it provides a uniquely defined Liouville vector field V#“d

on (R?" wyq). By construction of )\T#"d, L is still exact in the new Liouville
manifold (R?", wgq, V#ad).

Step 3: By the n-transitivity of Hamiltonian isotopies, see for exam-
ple [Boo69, Theorem A], we can assume that after applying a compactly
supported Hamiltonian isotopy the double points z; are at the point y
for k=1,...,m. By Moser’s arguments (as in, for example, [MS95l, Sec-
tion 3.3]), we can further assume that, after applying a Hamiltonian isotopy,
the immersed L™ agrees with standard intersecting Lagrangian disks pass-
ing through yj, parallel to R” and iR"™. Then A_ := L* N 0Dy consists of m
Legendrian Hopf link and the Legendrian x(A_), and the immersed Lx is
cylindrical over the Legendrians x(Ay). By exactness of L*, )\‘;’éd| ix =df,

for f: > = R, where L* is the immersed image of X. Observe that on the
intersecting Lagrangian disks at yx, )\%fd = 0. Thus f is constant on each of

these disks, and this constant must agree with f(yk) Letting f(yk) = ¢,

k=1,...,m, we then know that the primitive restricts to the constant cj

on the k: th Hopf link in A . By hypothesis, f is constant on the Legendrian
k(A_) C 0B N 0D4; we denote this constant by co.

Step 4: First, we construct a new Liouville vector filed V4. By construc-
tion, the skeleton of V#“d, Skel(V#ad), consists of the origin, the points
Yk, and the paths §; between the origin and gy for £k =1,...,m. Choose
€ > 0 such that Bg(e) C Int Dy, and fix an open neighborhood Ny C Int D4
containing Skel(V#ad) U Bo(e). We will change the Liouville structure from
(R2" wetg = dAstd, V#“d) to (R2", wgq = dXo, Vo) where V agrees with the
radial Liouville vector field V,..4 (colored in blue) on Ny, and Vj agrees with
V#ad (colored in black) on R?" \ Int D4 as shown in Figure @
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Figure 6. The Liouville vector field Vj consists of three parts that are colored
in blue, green and black respectively.

Since both A,.,q and )\r#“d are Liouville 1-forms for (R?",wgy), then,
as argued in Step 3, A\pqd — /\;fd = dH, for some function Hj:R?*" — R.
An important observation is that Hy is only determined up to a global
shift. Let oo : R*™ — [0,1] be a smooth bump function for Ny supported
in IntDy : op(p) =1 for all p € Ny, suppog C IntDy. Now consider A\g =
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Figure 7. The Lagrangian L is constructed in two parts: part of L* colored
in red and Ly; colored in green.

)\;gd + d(ooHp). On Ny, Ao = Ared, while on the complement of Int Dy, we
have that \g = )\;fd. By construction Ag is a Liouville 1-form of (R?", wgq)
so it provides a uniquely defined Liouville vector field Vo on (R%", wg).

We now show that on Dy, we can choose A\g and Hy well enough so
that V{ vanishes only at the origin. First observe that on Ny, Vi = V,..q and
thus Vy only vanishes at the origin within this subset. All that remains to
be shown is that, with a good choice of Ay and Hy, we can ensure V) # 0
on Dy \ Ny. Observe that, with respect to the standard almost complex
structure J, t_ ;v (o, Hy)Wstd = d(00Hp). Also note that V#ad =Vy on Dy \
Ny. Hence, to show Vy = Vi — JV(00Hy) does not vanish, we only need to
show Vy # JV(ooHp) on Dy \ Ng. A calculation for the right side shows
that

—JV(O'()H()) = —UQJVHO — H()JVO’()
= O-O(V;"ad — V#) + H[)(*JVO’()), on D# \ Ny

where the last equation follows from the fact that (_jvH,wsiq = dHp =
Arad — Ay on Dy \ No. We can choose o such that Vo is parallel to —V,
and thus —JVoy is parallel to —JV,x. Our goal is to show that no point p
in D4\ Ny satisfies 0(Vrqq — Vi) + Ho(—JVog) = —Vy, which implies that
at p the following three properties hold at the same time.
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1) Viad — Vi is in the 2-plane spanned by Vi and JVy, and thus V,,q is
contained in the 2-plane spanned by Vx and JV,

2) (00(Vrad = V), Vi) = [V, and
3) (00(Vyad — Vi), JVi) IV + Ho(—JVay) = 0.

Note that conditions (1) and (2) are closed conditions and thus the set of
points in Dy \ Ny that satisfy the first two conditions is a bounded closed
set. By globally shifting Hy by some constant, we can ensure that all points
in Dy \ No that satisfy the first two conditions can not satisfy the third one.
Thus, we finish proving that Vj only vanish at the origin in D.

Next, we construct a new, immersed, Maslov-0, exact Lagrangian cobor-
dism L in (R*™, wstq = dXo) by replacing L* N Int Dy with a Lagrangian Ly,
formed by the trajectories of —V{ in Dy — {0} through A cC 0Dy, see Fig-
ure [7] The fact that Ly, is Lagrangian implies that Ao =0 on 7Ly, since
éo(w) = wstqd(Vo, w) = 0 for any vector w € T'Ly,. Thus Ly, is exact and so is
L. Since 9(By(¢)) is transverse to Vp, A_ = LN I(By(e)) is Legendrian. The
fact that Ao|rr,, = 0 implies the primitive of Ly, is constant on each con-
nected component and thus evaluates to the same constants co, ¢1, ..., ¢m on
the components of A_ (as was the case for the evaluation of the primitive f
on all components of the Legendrian A_ of L*). Moreover, since the Maslov
potential of the k-th Hopf link Aﬁ is inherited from the Maslov potential of
EX, replacing part of the surface does not affect the Maslov-0 condition.

Ay

Figure 8. A schematic picture for the map & L
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Step 5: We now send L from in (R?" wyq = d\g) back to (R; x
R27~1 d(efa)). Similar to the map & in Step 1, we have a contactomorphism

ko : (R kera) — (9(Bo(e)) — {pt}, ker \g).

This contactomorphism lifts to an exact symplectomorphism between the
symplectizations via the flow lines wz/" of Vj:

Ko : (Ry x R d(efa)) — (R2" — {0}, wsta = dXo)
Ro(t,p) = ¢ (k(p)),

where 7 is a trajectory of Vy over the pomt taken from O0(By(e)), see Fig-

Thus to send L back through % ’fo . all we need to do is to find a
traJectory Yo of Vy that does not intersect L.

We can ensure the existence of g for the following reason. Note that
L is a Lagrangian immersion i(3) for i : ¥ — R2" — {0}, where ¥ is an n-
dimensional embedded surface. We can project L to 8(Bo(e)) though the flow
line of V and get a smooth map from ¥ to S?"~1. By Sard’s Theorem, this
map cannot be surjective for n > 1, and therefore we can always find a point
q on 9(Bo(€)) that is not on the image of ¥ and thus the preimage o of ¢ does
not intersect L. Once back in (R; x R2"!, d(e')), by a Hamiltonian isotopy
we can adjust the primitives to be the same constant on all components at
the negative end (see, for example, [CDRGG20,, Section 10.1]). Thus we get
an exact, Maslov 0, Lagrangian cobordism L with genus g and p — m double
points from ||;", Al UA_ to Aj. O

4. Legendrian contact homology

In this section we recall the definition of Legendrian contact homology, which
was originally formulated by Chekanov [Che02] and Eliashberg [EIL98]. We
recall also the definition of augmentations and of linearized and bilinearized
Legendrian contact homology. Throughout this section, we follow notations
and conventions of [CDRGG20] and refer to this paper for more details.
More details about the situation when coefficients are taken in a field can
be found, for example, in [EES05b] or [EN22].
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4.1. Chekanov-Eliashberg DGA

Here we give the key definitions and set the notation that we will use. A care-
ful description of the Chekanov-Eliashberg DGA can be found, for example,
in [EN22, [(CDRGG20].

The Chekanov-Eliashberg differential graded algebra (DGA) of
A, (A(A),0) is the unital, graded algebra over a commutative ring F gen-
erated by Reeb chords of A. Let R(A) denote the set of Reeb chords of A.
The grading on A(A) is defined on the Reeb chord generators by

(4.1) le| =CZ(c) -1,

where CZ(c) is as described in Section The differential 9 on A(A)
is defined by a count of rigid pseudo-holomorphic disks in the symplec-
tization (R; x R3, d(e'a)), with boundary on R x A. For any Reeb chords
a,by,...,by € R(A), and any almost complex structure J which is a cylin-
drical lift of an admissible almost complex structure on R? (see [CDRGG20)
Section 2.2]), define the LCH moduli space M%XA(CL; bi,...,bm) to be the
space of J-holomorphic maps u : (D72n+1, 8D?n+1) — (R x R3,R x A), with
a positive asymptotic to the Reeb chord a and negative asymptotics to the
Reeb chords b1, ...,b,,, up to conformal reparametrization of the domain;
see [CDRGG20, §3.2.3]. This moduli space admits an R-action by translation
along the symplectization direction; we let

ME}{XA(a;bl, vy bm)

denote the quotient of MVH}XA(Q; bi,...,bm) by R. A disk we
MENMasby, ... by) s called rigid if dim M5 (a;by, ..., by) = 0. Com-
pactness results ensure that there are finitely many rigid holomorphic disks,
which are used to define the differential 0:

d(a) = > IMEMa;b1, .. )by - by
dim (M5 (@b e bim) ) =0

The Legendrian contact homology of A, denoted LCH,(A), is the ho-
mology of (A(A), D).

Example 4.1 (DGA of Hopf links). Consider the Hopf link A% whose
front and Lagrangian projections as well as Maslov potential are depicted
in Figure @ The algebra A(A%) is generated by four Reeb chords ay, as,
by and by with |a;| =1 and |bi| = —|ba| = k. Using results of [DR16], the
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1 by [
0
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. . . . k
Figure 9. The front and Lagrangian projections of Afj.

differential as described above can be computed in a combinatorial way (see
for example in [Che(02, [EN22]), and the non-trivial part of the differential is
given by 8&1 = b1b2 and 8&2 == bgbl.

4.2. Augmentations

In this section, we review how augmentations, first used in [Che02], can be
used to construct a variety of “linearizations” of Legendrian contact homol-
ogy.

First observe that a commutative ring F can be considered as a DGA,
where all elements of F have degree 0 and the differential is identically 0.
Then an augmentation of A(A) to F is a DGA-morphism, which is a
graded algebra homomorphism that preserves the differential. In particular,
€: (A(A),0) — (F,0) is a chain map such that ¢(1) = 1, and for any element
a of nonzero degree, €(a) = 0.

Definition 4.2. Aug(A;F) will denote the set of augmentations of A(A) to
F. As shown in [EHK16], an embedded, Maslov-0, exact Lagrangian cobor-
dism L from A_ to A4 induces a DGA map @, : A(A}) — A(A_) and thus
a map:
Fr + Aug(A—;F) = Aug(A4;F),
€E_r>e_odyr.

As above, let R(A) denote the set of Reeb chords of A, and then let
C(A) denote the graded F-module generated by elements in R(A), where
the grading is as in Equation . Given an augmentation e of A(A), the
linearized Legendrian contact homology of A, denoted LCHE(A), is
the homology of the chain complex (C(A), 0) with

9 (a) = > M5 a; pba)|e(p)e(q)b,
dim(M5** (a;pbq) ) =0

where a,b € R(A), and p,q are words of Reeb chords.
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Example 4.3 (Augmentations of Hopf Links). Continuing with Ex-
ample one computes that the Hopf link A% admits three augmentations
to Zg defined by sending the pair of chords (b1, b2) to (0,0), (1,0) and (0, 1),
while the Hopf links Aﬁ for k # 0 admit only the augmentation sending
all chords to 0. One can now complete the explanation of the claim in Ex-
ample namely that A% is the only Hopf link admitting an embedded,
Maslov-0, exact Lagrangian filling. If a Hopf link Ag bounds a connected,
embedded, Maslov-0, exact Lagrangian filling L, then by Seidel’s isomor-
phism [Ekh12l [IDR16] the Poincaré polynomial of the Legendrian contact
homology linearized by the augmentation induced by L must be of the form
t +2g(L) + 1, where g(L) is the genus of L. The LCH polynomial of A% is
2t +t* +¢t7% when k # 0 and is 2t +2 or t + 1 when k = 0 (depending on
the choice of augmentation). Thus, when k # 0, Seidel’s isomorphism ob-
structs the existence of a connected, embedded, exact, Maslov-0 Lagrangian

filling of AI’iI.

In fact, one can use two augmentations to linearize: given augmenltagions
€', €2 of A, the bilinearized Legendrian contact homology LC H; *“ (A),
defined first in [BCT4], is the homology of (C'(A),d<"¢"), where

< (a) = > | M5 (a; pba) ¢! (p)€*(q)b.

dim(./\/l%>< A (a;pbq))zo

In Section [l and [6] we will be using moduli spaces that are defined using
a partition of a Legendrian link into components. In the case A = A U A2,
where A, A? are Legendrian links, denote R(A*, A7) the set of Reeb chords
from A7 to A’ If ¢ € R(A?, A7) with i # j, we call ¢ a mixed Reeb chord,
otherwise we call ¢ a pure Reeb chord. Denote C(A!, A?) the graded F-
module generated by elements in R(A', A%). Augmentations ! of A and €
of A% induce an augmentation € = (¢!, €2) of A U A? that agrees with ¢ on
pure chords of A%, for i = 1,2, and vanishes on mixed Reeb chords. Then,
the differential of the Legendrian contact homology of A linearized by e,
and restricted to mixed Reeb chords in R(A', A?) is defined via a count of
J-holomorphic disks in mixed LCH moduli spaces:

Be(aw): Z ‘Mﬂﬁx(A UA )(a12;p11b12q22)|61(p11)62(q22)b12,
dim(./\/lex(AIUAQ)(a,n;p“bnq”)):o
where a'2,b12 € R(A!, A?), p!! is a word of Reeb chords of A!, and g?? is a

word of Reeb chords of A%. Note that (C(A!, A?), 8|€C(A1 A2)) is a subcomplex
of (C(A),0°).
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5. The augmentation category

In this section, we give a brief summary of the augmentation category mainly
following [NRS™20]. We then define a new notion of split-DGA homotopy for
augmentations of multicomponent links. This gives rise to a simple criterion,
Corollary to determine when two augmentations are not equivalent in
Augy, which will be used frequently in Section [8|when applying Theorem[T.4]

5.1. Definitions

Let A be a Legendrian knot or link in Rgtd. Assume that the Lagrangian
projection 7., (A) has Maslov class 0 and that each connected component of
A is decorated with a base point.

The augmentation category Augi(A) is an A.-category whose ob-
jects are elements of Aug(A;F), namely augmentations of the Chekanov-
Eliashberg DGA A(A) to F. In order to define the morphisms in Aug (A),
we use the DGA of a 2-copy of A, denoted by 2A = A U A?. The copy Al is
a perturbed push-off of A? in the z-direction, perturbed via a positive Morse
function f : A — RT having one maximum and one minimum on each com-
ponent of A, located near its base point as in Figure Both A! and A2
have the same Maslov potential. The Lagrangian projection of 2A for the
max tb right-handed (positive) trefoil is shown in Figure

For any two objects €', €2 € Aug(A;F) of Aug, (M), the morphism space
from €' to €2, denoted Hom (€', €?), is the graded F-module generated by
the Reeb chords in R(A!, A?) of 2A, with the grading of generators shifted
up by 1, commonly denoted as

Hom (¢!, €?) := C(AL, AD)[1].

We use | - | to denote the gradings in the F-module C(A), as given in Equa-
tion , and | - |4 to denote the shifted gradings in Hom. (¢!, €?).

Taking a closer look at the generator set of Hom. (¢!, €?), we note that
for each Reeb chord a of A, there is a corresponding mixed Reeb chord
a'? € R(A', A?) of 2A with grading given by

ja*[y = a] + 1.

The other generators of Hom, (e',¢?) are the Morse Reeb chords, corre-
sponding to the critical points of the Morse function f. Assume A has m
components, and denote the Morse Reeb chords corresponding to the max-

ima of f by z}? and the ones corresponding to the minima of f by y}?, for
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Figure 10. The local model near the base point * of each component of A,
with the arrow representing the orientation of A, and z (y) denoting the
maximum (minimum) of the function f.

Figure 11. The Lagrangian projection of the 2-copy 2A, where A is a max
tb positive trefoil.

i=1,...,m. By Equations (4.1) and (2.2)), we find
(5.1) 2% =1, and  |y%[4 =0.

As a graded module, the morphism space Hom (¢!, €?) does not depend

on €' or €2, but the A, operators, called compositions,

My : Homy (€%, ") @ Homy ("1, e") @ - - @ Homy (€', €%)

— Homy (', ")
do depend on the choice of augmentations €', ..., e"*!. These A,, operators
m,, can be defined using the DGA of an (n + 1)-copy of A. The (n + 1)-copy
is perturbed in such a way that every Reeb chord generator of Hom. (€', €?)
has corresponding versions on consecutive pairs of the (n+ 1)-copy; see
INRST20, Figure 6]. We recall below the definitions of the operators m;
and mgy that will be used in this paper; see [NRS™20, Section 4] for details
of this construction.
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e The operator m1 : Hom (¢!, €?) — Hom (¢!, €?) is defined by a count
of rigid holomorphic disks with boundary on R x 2A = R x (A' U A?)
with one positive asymptotic and one negative asymptotic to Reeb
chords in R(A', A?) and possibly some other negative asymptotics to
pure Reeb chords. Indeed,

12 1 2
ml(b ) — Z |MR><(A UA )(a12;p11b12q22)|61(p11)62(q22)a12,
dim(M (a'2;p!1b12q22))=0

where b'2, a'? € R(A', A?), and p'!, q*2 are words of pure Reeb chords
in R(A') and R(A?), respectively. The operator m is a degree 1 map
that satisfies m? = 0, and we denote H* Hom (¢!, €2) the cohomology
of the complex (Hom. (€', €?),m1). In addition, one has the following
isomorphism from [NRS™20, Corollary 5.6]:

H*Hom (', €2) = LCH < (A).

e To define the operator my: Homy (e, €3) @ Homy (e, e?) —
Hom, (¢',€%), we first consider the 3-copy 3A = A'UAZUA3,
where 3A is constructed such that for any i < j, the DGA of AU AJ
is canonically identified with the DGA of 2A; see [NRST20, Figure
6]. The operator mg counts rigid holomorphic disks with boundary
on R x 3A, with a positive asymptotic to a Reeb chord in R(A!, A3),
two negative asymptotics to Reeb chords in R(A', A?) and R(A2, A3)
respectively, and possibly additional negative asymptotics to pure
Reeb chords. More precisely,

23 112 : . 2 99 93 3 oon 8, ac .
mQ(C , b ) — Z |MJR><SA(a13;pllbllqzzczdrdﬂ)‘61(p11)€2(q22)65(r33) alJ’
dim(M(a'3;p!1b12q>2c23r33))=0

where a'® € R(A',A3),b12 € R(AL,A?),c?3 € R(A%, A3), and
p'!, %2, 33 are words of pure chords. The operator ms is of degree 0
and induces a product structure on the cohomology H*Hom. :

my : H'Hom, (¢2,¢) @ HY Hom (e, €%) — H™ Hom (', é%).
5.2. Unital A, category

A key property of Augy(A) is that it is a strictly unital A, category:
for any e, there is an element e, € Hom (e, €) with |e.|+ = 0 such that

e my(ec) = 0;
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e for all a € Hom4 (e,€') and b € Hom (€, ¢€),
ma(ee,b) = b, ma(a,e) = a; and

e any higher order composition, m, for n > 3 vanishes when e, is one of
the inputs.

In fact, if A has m components, the unit is given by

m
€e = _Zyi12 S H0m+(6, 6)7
=1

for y!? as defined in Equation ([5.1)). It follows that the induced cohomology
category H*Augy(A) is a unital category. This allows us to define a notion
of equivalence of two objects.

Definition 5.1. Two augmentations €' and €2 of A(A) are equivalent in
the augmentation category Augi(A), denoted by €' ~ 4,4, €2, if they are
isomorphic in H* Aug. (A), that is, if there exist [a] € H'Hom, (¢!, €?) and
(8] € HHom (€2, €') such that

ma([e], [8]) = [ee] € H'Hom (¢%,¢%),
and  mo([A],[a]) = [ea] € H'Hom (e, ),

where [e.] is the unit in HHom.y (€%, €') for i = 1,2.

It can be difficult to show that two augmentations of A are not equivalent
using Definition [5.1] However, by relating this definition of equivalence to
the notion of DGA-homotopic augmentations, there is an easier criterion for
distinguishing non-equivalent augmentations; see Corollary

An augmentation is a DGA morphism, and there is an established no-
tion of a homotopy between DGA morphisms; see, for example, [Kal05|
Section 2.3] and [NRS™20, Definition 5.15]. It is proved in [NRS™20, Propo-
sition 5.19] that if A is a Legendrian knot, then two augmentations are
DGA-homotopic if and only if they are equivalent in Augy(A). In order to
obtain a similar result in the case where A is a Legendrian link, we use the
fact that the DGA of a Legendrian link has a “homotopy splitting,” which
was first defined by Mishachev [Mis03]. Before we explain this splitting of
the DGA for a Legendrian link, we give the general definition of a split DGA
and morphisms of split DGAs.
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Definition 5.2. A (unitary) split DGA (A.s, Os) over F is an algebra
A« over F such that A, = @?1,j2:1~’4j1j27 where

1) each Aj, j, is a module over F,

2) there are bilinear multiplication maps Aj;, j, X Aj,;, = Aj,j, that are
0 unless jo = js3,

3) for all j, Aj; contains an element e; that acts as the identity under
multiplication, and

4) O respects the splitting, namely O, :Aj j, — Aj j,, for all 1<
J1,J2 < n.

Given two split DGAsS, (@ijlAijﬁ) and (@Z}:lA;j,a/), a split-DGA
morphism f: (&},_;A4ij,0) — (&]_1Aj;,0') is a DGA morphism such
that for all 4, j, there exist ', j’ such that f(A;;) C Aj ;. Observe that (F,0)

can be viewed as a split DGA with no splitting.

The following is a new definition, which extends the definition of DGA
homotopy given, for example, in [NRS™ 20, Definition 5.15].

Definition 5.3. Given a unital, commutative ring [F, let F* denote the set
of units. Two split-DGA morphisms f1, f2 : (B,-1A4ij,0) — (B A;;,9")
are split-DGA homotopic if there exists K : @ijl.Aij, — 69?:3:1.,4;]. such
that:

1) K is split, F-linear, and degree 1,

2) for all 7, j there exists oy, a; € F* such that for all a € A;j,
aifi(a) — ajfz(a) = O K(a) + K8(a), and
3) K(z-y) = K(z) - faly) + (D) f1(z) - K(y), for all z,y € &F;_; Ayj.

Remark 5.4. 1) If oy = 1 for all ¢ or F = Zy, then Definition |5.3| agrees
the usual definition of DGA homotopy.

2) If A has a single component, and €', € are two augmentations of A(A),
then the existence of a DGA homotopy between !, €? is equivalent to
the existence of a split-DGA homotopy between €, €. It is immediate
to see that a DGA homotopy implies the existence of a split DGA
homotopy. In the other direction, a split DGA homotopy implies the
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existence of K and o € F* satisfying
afi(a) —afy(a) =K + K9, forallac A.
Then K’ = o~ 'K is the desired DGA homotopy.

Given a Legendrian link A = (A!,... A™), we can split what is essen-
tially a submodule of the Chekanov-Eliashberg DGA into m? pieces that are
invariant under Legendrian isotopy as has been shown in, for example, [Ng03|
Definition 2.18] and [NT04) Section 2.4]). Let A;; be the module generated
by words of Reeb chords that begin on A* and end on A7, i.e. Reeb chords in
R(Aj , Ai). If i = j we also add in an indeterminate e;. The differential 0, is
defined on the generators a as follows: if the Reeb chord a begins and ends
on distinct components of A, then O..(a) = 9(a); if a is a Reeb chord that
begins and ends on the same component A7 of A, then replace any occur-
rence of 1 in d(a) by e;, that is, every holomorphic disk with boundary on
A; with positive asymptotic to a and no negative asymptotics contributes
e;j to Oxx(a). Then Oy extends to A, by applying the Leibniz rule and set-
ting O.«(e;j) = 0, for all j. Augmentations € : (A, J) — (F,0) are in bijective
correspondence with split augmentations ¢ : (A, d) — (F,0): on any
Reeb chord generator a, €(a) = ex(a) and €(1) = 1 = €,4(e;), for all j.

Using Definition a slight modification of the proof of [NRS™20)
Proposition 5.19] gives the following proposition, whose proof is given in

Appendix [A]

Proposition 5.5. Given a Legendrian link A C R‘ztd, two augmentations

el €2 A(A) — F are equivalent in Augy (A) if and only if the corresponding

split augmentations €L, and €2, are split-DGA homotopic.
Proposition 5.5 gives us a simple way to determine if two augmentations
are not equivalent in Augy (A).

Corollary 5.6. Suppose that the Legendrian link A = (Al ... A™) does not
have any degree —1 Reeb chords. Then any two augmentations €' and € of
A are equivalent in Augi(A) if and only if for all i,5 € {1,...,n} there
exist a;,aj € F* such that a;el(a) = aje?(a), for all degree 0 Reeb chords
a € R(A,AY). If F = Zy, then two augmentations are equivalent in Aug, (A)
if and only if they are identically the same.

Proof. Recall that the support of an augmentation is contained in the degree
0 portion of A(A). By Proposition 5.5} it suffices to show that when a Legen-
drian A does not have any degree —1 Reeb chords, €!,¢? : (A(A),d) — (F,0)
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are split-DGA homotopic if and only if for all 7, j there exist o;, oj € F* such
that a;el(a) — aje?(a) = 0, for all degree 0 Reeb chords a € R(A7, A?). Sup-
pose €', €2 are split-DGA homotopic via K : (A(A),d) — (F,0). Since K is
degree 1 and F is in degree 0, K is supported in the degree —1 portion
of A(A), which since there are no —1 degree Reeb chords is spanned by
monomials of words length at least 2. Then an induction argument using
the condition (3) of Definition |5.3| tells us that K = 0. It follows that for an
arbitrary degree 0 Reeb chord a € R(A7, A?), ajel(a) — aje?(a) = 0. For the
other direction, if for all 4,j € {1,...,n} there exist a;,a; € F* such that
aiet(a) — aje?(a) = 0, for all degree 0 Reeb chords a € R(A7, A?), by setting
K =0, we get the desired split-DGA homotopy. O

Remark 5.7. Recall the map Fr, : Aug(A_;F) — Aug(A4;F) in Defini-
tion [£.2] induced by an embedded, Maslov-0, exact Lagrangian cobordism
L from A_ to Ay.

1) It is known that this map descends to

Fr, s Aug(A_;F)/ ~pca hom— Aug(AL;F)/ ~pGa hom,

where ~paa hom denotes the equivalence relation defined by DGA ho-
motopy: if K_ is a DGA-homotopy between two augmentations e!
and € of A_, then K_o®j is a DGA-homotopy between Fr(e!)
and Fp(e?). Thus, as observed in Remark if Ay are Legendrian
knots or if A4 are Legendrian links and F = Zs, ~ 444, is the same as
~DGA hom, and the map

Fr: Aug(A_;F)/ ~aug, — Aug(A5F)/ ~aug.

exists.

2) In general the map F7, does not descend to augmentations defined up
to equivalence by split-DGA homotopy. See the following example for
details.

Example 5.8. In this example, we show that there exists an embedded,
Maslov-0, exact Lagrangian cobordism L from a Hopf link to the trefoil
such that the Hopf link has two augmentations over Z that are split-DGA
homotopic, while their images under Fj, are not (split-)DGA homotopic
augmentations of the trefoil. See [ENS02] for a combinatorial definition of
the DGA over Z[t{!, ... ], and Section 4.2 of [CN21] for a combinatorial
definition of the DGA maps induced exact by pinch moves.
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a t
: dyar =t7" 4 b1 + by + bibobs
A+ /\% 8+a2 =1- bl — bg — b3b2b1
by b bs
\/az a+b7, =0
t Dr(b1) =s
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Figure 12. Example of a cobordism from a Hopf link to a trefoil and the
corresponding DGA differentials and DGA map.

Let L be the exact Lagrangian cobordism from the Hopf link A_ to
the max-tb trefoil A4 given by pinching the Reeb chord b; as shown in
Figure The DGA A(Ay) is a Z[t*!] tensor algebra generated by the
Reeb chords ai,as,bi,ba, b3 and the DGA A(A_) is a Z[tT!, sT1] tensor
algebra over ai,as, bs, bs as labeled in Figure The differentials 94+ and
the DGA map ®; induced by the cobordism are described in Figure
Note that augmentations €1, €3 of A(A_) that send (t, s, b, b3) to (—1,1,1,0)
and (—1,1,—1,0), respectively, are split-DGA homotopic. Indeed, since by
is a mixed Reeb chord, and 0_bs = 0, then we can choose units a; = 1 and
a9 = —1 such that

ag€1(by) — aoea(by) =1 —1=0,

so €1 and €y are split-DGA homotopic. On the other hand, their in-
duced augmentations Fr,(€1), Fr(€2) are augmentations of A(AL) that send
(t,b1,b2,b3) to (—1,1,0,0) and (—1,1,—2,0). Since by is a pure Reeb chord
of Ay and 04by = 0, then Fr(e1) and Fr(e2) are DGA-homotopic only if
Fr(e1)(b2) — Fr(e2)(b2) = 0, which is not the case.



636 Capovilla-Searle, et al.

6. Wrapped Floer theory

In this section we review the setup and some properties of Floer theory for
Lagrangian cobordisms as developed in [CDRGG20] for our setting of in-
terest. Namely, we consider the Cthulhu complex Cth(L', L?) over a unital,
commutative ring [F associated to a pair of transverse, embedded, Maslov-0,
exact Lagrangian cobordisms L', L?. If F is not characteristic 2, we further
assume the cobordisms L' and L? are spin. Without loss of generality, we
assume that the constant value of the primitive of any cobordism we con-
sider vanishes on the negative end, i.e. ¢ = 0; see Remark We review
the result established in [Panl7] that we can construct an isomorphism ¢,
between the cohomology of a quotient complex of the Cthulhu complex,
H*(C_w,d—o), and H*Hom (el €2), see Equation (6.3). In fact, the co-
homology groups on both sides of this isomorphism possess a product struc-
ture, m, >, m;, and we review the fact, from [Leg20], that ¢, preserves the
product structure, see Proposition Understanding the definition of m; >
will be important in Section [7] where we will establish in Proposition
the key result needed to prove Theorem

6.1. A special pair

Let L be an embedded, Maslov-0, exact Lagrangian cobordism in the sym-
plectization of R‘ztd from A_ to A,. Consider a perturbed 2-copy of L,
2L = L' U L?, where L' is a push-off of L? := L in the positive z-direction
via a Morse function F : L — R such that L' U L? on the two cylindrical
ends agrees with a cylinder over the 2-copies AL U A% in the corresponding
Augy categories; for details see [Panl7|. In particular, the Morse function F’
on [N,00) x Ay and (—oo, —N] x A_ agrees with e’ f+, where fi are Morse
functions on A4 that have the same critical points as the ones used in the
construction of 2A4 in Aug (A+); see Section 5.1} Moreover, we assume that
on ([-N,N] x R*) N L the value of the Morse function F on each point is
less than the cobordism action of any pure Reeb chord v of A_, given by
e N J., . Such an assumption is necessary in order to get the identifications
of complexes in Proposition below.

Remark 6.1. We refer to [CDRGG20), Section 3.4.2] for more details on the
relation between the energy of pseudo-holomorphic disks with boundary on
L' U L? and the action of intersection points and Reeb chords. In our special
pair case, intersection points in L' N L? are in one-to-one correspondence
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with critical points of the Morse function F, and the action of p € L' N L?
is given by the value of F' at p € L.

The particular type of perturbation used on the cylindrical ends implies
that the algebras A(AL) and A(A%) are canonically isomorphic: there are
canonical identifications of Reeb chords and the differentials agree under this
identification. An augmentation e_ of A(A%) gives under this identification
an augmentation of A(Al). Moreover, if the cobordisms L! and L? are
sufficiently C'-close, then they induce the same augmentation of A(Aﬁr)
and A(A2), i.e. e~ o ®r1 =e_ o @2, under the canonical identification of
generators, see [CDRGG15, Theorem 2.15].

6.2. The Cthulhu complex Cth(L', L?)

Given the special pair of cobordisms L', L? as above, for i = 1,2 suppose
that €’ is an augmentation for A(A) and €, = Fp: (e’ ) is the augmentation
of A(A%) induced by €’ through L. The Cthulhu complex Cth(L!, L?)
can be described as follows. It is a graded [F-module generated by three types
of generators:

Cth(L', L?) = C (LY, L?) ® Co (LY, L?) @ C_ (LY, L?),

where

e C4(L', L?) = C(AL,A2)[2] is the F-module generated by Reeb chords
from A% to A} with a grading shift, i.e. a Reeb chord a € C (L', L?)
has grading |a|csp, = |a| + 2, for |a| as in Equation (4.1)).

o C_(L', L?) = C(AY,A2)[1].

e Co(L', L?) is the F-module generated by intersection points in L' N
L?. The grading of intersection points is given by the Conley-Zehnder
index of the corresponding Reeb chords in the Legendrian lift, which
is the same as the grading in Lagrangian intersection homology.

We use the shortened notation Cth(L!, L?) = C & Cy @ C_. The fact that
the Morse function F' is positive implies, by energy restrictions, that the
differential d on Cth(L', L?) is upper triangular [CDRGG20, Lemma 7.2]:

dyy dyo dy
d= 0  doo do- |,
0 0 d__
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where each component is defined by a count of rigid pseudo-holomorphic
disks with boundary on L' U L? that we now describe. Let J Cyl, Jadm he
respectively the sets of cylindrical and admissible almost complex structures
on (R x R3 d(efa)), defined as in [CDRGG20, Section 2.2].

1) The maps diy are the bilinearized codifferentials with respect to
(€, €%), as reviewed in Section and therefore count rigid holomor-
phic disks with boundary on R x (AL U A%) with one puncture pos-
itively asymptotic and one puncture negatively asymptotic to mixed
Reeb chords in R(AL, A%). More explicitly,

12 Rx(ALUA
des(by) = > MG (12, p 22 el (p1)ed () o2,
. Ex(AiuAi) .
dim (Mji (a}?;p}t blfqzﬁ)) =0
where J* € J Cyl bi2 @12 are generators in Cy, and pit, and g?? are
5 i g =+ | S q¥
words of pure Reeb chords of AL and A%, respectively.

2) The maps d;; from C; to Cj, for (i,j5) = (+-),(+,0),(0,0) or (0,—),
are defined by a count of rigid holomorphic disks with boundary on
L' U L? with a puncture positively asymptotic to a generator c, of
C;, a puncture negatively asymptotic to a generator c_ of C}, and
possibly other punctures negatively asymptotic to pure Reeb chords
of AL UA2, as shown in Figure We use (e!,€2) to augment the
Reeb chords at the negative pure punctures. The definition of such
moduli spaces is similar to the definition of mixed LCH moduli spaces
in Section except that the Lagrangian boundary condition is not
cylindrical anymore. This means that there is no R-action, and so
we need a path Jg of almost complex structures in J%™ to ensure

transversality (see [CDRGG20, Section 3] for more details):

dij(c-) = > IME O (e ptea®)]el (pM)eX (a*2) ey,
dim(/\/tﬁslULz(c+;pilc,q§‘2))_

We can identify some subcomplex and quotient complex of
(Cth(L', L?),d) with cochain complexes defined in Section

Proposition 6.2 ([Panl7, Theorem 5.1]). The top and bottom cochain
complexes admit the following identifications

(C+7d++) = (H0m+(ei,ei)[1],mf), (C—7d——) = (H0m+(e£,e%),m1_),
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Cyt Cyt
Lt L? Lt L?
C_
Cc_
(a) ()
Cy Cy
Lt L? Lt L?
C_
C_

(¢) (d)
Figure 13. (a) — (d) are the types of holomorphic disks counted by d; ; for
(i,7) = (+—),(+,0),(0,0) and (0, —), respectively, where c; is a generator
of C; and c_ a generator of Cj.

and (Co,doo) is the cochain complex of the Morse cohomology for F with
differential counting Morse flow lines of F.

Observe that the Cthulhu complex (Cth(L', L?),d) is the cone of ¢ :=
dio + dy—_. The long exact sequence induced by the cone together with the
fact that the complex is acyclic [CDRGG20), Theorem 6.6] implies that ¢
induces an isomorphism

(6.1) bu: H(C_ o, d_o0) — HTHCy, dyy),

where

d _
C* . =CiaC*, and d_o=[ " do- )
0 d__
Note that ¢, may depend on the perturbation F. We have also that C'_,,
is the cone of dyp_. The long exact sequence induced by a cone together
with the isomorphism ¢, and the identifications in Proposition [6.2] give the



640 Capovilla-Searle, et al.

following long exact sequence:

(6.2) - — H¥(L,A_) — H*Hom (e}, €%)
— H*Hom, (L, e*) — HM (L, A_) — - -

6.3. Product structure

The isomorphism ¢, from Equation (6.1]) together with the identification of
H**Y(Cy,dyy) = H*Homy (€}, €2) given by Proposition gives an iso-
morphism

(6.3) Gu t H*(C_oo,d_oo) — H*Hom (€, €3).

As recalled in Section there is a product structure on H*Hom, given
by the map mJ in the category Aug; (A4 ). There is also a product struc-
ture m, > on H*(C_,d_o) defined by the second author of this paper
[Leg20]. In fact, the isomorphism ¢, preserves the product structures; see
Proposition [6.3

Let us give a more detailed overview of the construction of m;, " in
the case of a 3-copy 3L = L' U L? U L? such that any pair (L%, L7) for i <
j has the same Cthulhu complex as 2L; that is, for ¢ < j, the cobordism
L' is a push-off of L7 using a positive Morse function F% satisfying the
same conditions as the Morse function F'. In particular, the Morse functions
F are chosen so that the action of any intersection point in the Cthulhu
complex Cth(L!, L7) is less than the action of any pure Reeb chord of A_
and that the top and bottom cylinders of 3L agree with the cylinder over
3A:|: in Aug+ (Ai)

For i = 1,2, 3, given augmentations € of A(A_), the induced augmen-
tations ei of A(Ay), and a domain dependent almost complex structure J,
with values in J adm, the operator

my > C_o(L? L) @ C_ (L', L) — C_oo(L', L?)

counts rigid holomorphic disks with a puncture positively asymptotic to a
generator of C_., (L', L3), two punctures negatively asymptotic to a gener-
ator of C_ (L', L?) and a generator of C_.,(L?, L3), and punctures nega-
tively asymptotic to pure Reeb chords of 3A_ that are augmented by €’ .
The operator m; > can be decomposed as the sum of the maps

uﬁj :Ci(L*, L) @ Cj(LY, L?) — Cy(L*, L?)
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for i, 4,k € {0, —}, satisfying the following:

1) In the special setting we consider here, namely the 3-copy 3L, energy
restrictions guarantee that if one of the inputs of m; > is in Cp, then
the output is in Cy, i.e. Poj = Mg = 0, for i,5 =0, —.

2) The map p_ _ agrees with the usual my, of Aug (A-).

3) For the rest of the cases, (4,7, k) = (—,0,0),(0,—,0),(0,0,0), (-, —,0),
the map ,uﬁ ; counts rigid holomorphic disks with boundary on 3L:

k 23 112 1UL2UL8 5 93 a: oy 8, .
Mi,j (C ’b ) — Z |MiuL UL (a13;pl_lbl2q2_zc25r3§)|el_(pl_1)62 (q2z)63 (r33) als7

dim My (a'3;p!'b12q2c?3r?)=0
where a'3 is a generator of Ci,(L', L?), b'? is a generator of Cj(L', L?),

¢ is a generator of C;(L?, L3), and p!!, %2, r33 are words of pure Reeb
chords of AL, A%, A3, respectively.

In [Leg20], Section 5.2], it is shown that m, * commutes with the differ-
entials d_., and thus induces a product map on cohomology

my > H™C_oo(L?, L?) @ H"C_oo (L', L?) — H™™"C_ (L', L?).
Moreover, we have the following proposition:

Proposition 6.3 (|[Leg20, Theorem 2]). The map ¢« from Equa-
tion preserves the product structures, i.e.

s 0 my*([a], [b]) = m3 (¢x[al, dx[b])

for [a] € H*C_oo(L?, L?) and [b] € H*C_ (L', L?).

Remark 6.4. Note that we abuse the notation of ¢, here, for simplicity of
notation. This isomorphism ¢, is defined on each pair of cobordisms 2L in
3L and could be different for the different 2-copies. A more rigorous way of
writing the identity in the proposition above would be

o omy™ ([al, b)) = mi (67 la). o).
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7. Obstructions to exact Lagrangian cobordisms
between links

In this section, we give an obstruction to the existence of embedded, Maslov-
0, exact Lagrangian cobordisms through a count of augmentations of the bot-
tom and top Legendrian links. We will count augmentations up to ~ayg. ,
the equivalence in Aug, (A+) (Definition [5.1), which by Proposition is
the same as the split-DGA homotopy equivalence (Definition . The ob-
struction through a count of augmentations is proven in Section[7.1] with the
proofs of key propositions provided in[7.2] and Section [7.4] provides other
obstructions in terms of linearized contact homology and ruling polynomials.

7.1. Proof of Theorem [1.4]

Throughout this subsection, we suppose that e_ is an augmentation for
A(A_) and e; = Fr(e—) is the augmentation of A(A;) induced by e_
through L. Since we will be counting augmentations up to equivalence in
Augy(Ay), we first define maps ¢ : H'Hom (€', €),) = H'Hom (¢",€"),
for 4,7 € {1,2}. Consider the special pair of cobordisms 2L as described in
Section and the isomorphism ¢, : H*(C_o,d—x) — H*Hom (€, €,)
in Equation (6.3)). Note that (Co, doo) is a subchain complex of (C_ o, d—oo)-
Combining this fact with Proposition [6.2] it follows that the quotient map
7 : C_» — C_ induces a map on cohomology:

Tt H¥(C_no,d_oo) — H*Hom (€', €).
Precomposing with ¢! gives a map
L=moop;t: H*Hom+(ei_,ej+) — H*Hom (€' ,€).

The next proposition shows that ¢ is “natural”: although ¢, may depend
on the Morse perturbation function F' used to construct 2L, ¢ does not. The
proof of this proposition can be found in Section

Proposition 7.1. The maps ¢ : H* Hom. (€, , ei) — H*Hom (¢, € ) are
independent of the choice of the Morse perturbation function F', up to com-
pactly supported homotopy.

The following properties of the ¢ map are used in the proof of Theo-
rem and are proved in Section [7.3
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Proposition 7.2. The map ¢ : H*Hom. (€, eiL) — H*Hom (¢, €) sat-
isfies the following properties:

1) ¢ preserves the product structures, i.e.

my (tlal, ¢[b]) = e(m3 ([a], [B]))

for [a] € H*Hom (e, €3) and [b] € H*Hom (¢!, €%), where my are
the products in the augmentation categories Augy(Ay),

2) ¢ is unital, meaning that when €} = €% = ex, we have 1([e.,]) = [ec_].

Proof of Theorem[I.4. Let L be an embedded, Maslov-0, exact Lagrangian
cobordism from A_ to Ay, and €' ,e? be two augmentations of A(A_). To
show that

[Aug(A—F)/ ~aug, | < [Aug(A;F)/ ~aug, |

we show that if the induced augmentations €, = F(el) and €2 = F(e2) are

equivalent then €' and €2 are also equivalent. Since ei, e%r are equivalent,

there exist [a] € H'Hom (e}, €2) and [8] € HHom. (€%, €l ) such that

m;([a]v Bl) = [663_] € HOHom-i-(e%-)Ei)a
and  m3 ([6],[a]) = [ea] € H*Hom (], ),

where [e: | is the unit in H°Hom (', €\), for i = 1,2. By Proposition

m;(L[a]vb[B]) = L(m;([a], [/8])) = L([eei]) = [662 ]

Analogously, one can prove that my (.[8], t[a]) = [eq ]. It follows that ¢! and

€2 are equivalent, as desired. Il

If AL are Legendrian knots or if A4 are Legendrian links and F = Zs, as
mentioned in Remark [5.7(1), the map

Fr : Aug(A—F)/ ~aug, — Aug(A;F)/ ~aug,

exists; the above argument shows that Fp, is injective.
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7.2. Proof of Proposition (7.1

Proof of Proposition[7.1] Following the construction in Section [6.1], suppose
that F' and F’ are two Morse functions on L, homotopic through a homo-
topy with compact support, and let 2L = L' U L? and 2L’ = LY U L? de-
note the corresponding 2-copies. The homotopy between F' and F’ induces
a compactly supported Lagrangian isotopy between 2L and 2L’; note that
the isotopy keeps the two cylindrical ends fixed. According to [CDRGG20),
Proposition 6.4], the isotopy induces a chain map

¢: Cth(L',L*) — Cth(LY,L?).

Following [Ekh12], we will show that the map ¢ is the identity map on
C (L', L?) — C (LY, L?). Along a generic isotopy {L;}SG[O,I] from L} := L*
to L} := L', one can assume that except for a finite number of distinct
points 0 < sg < 81 < -+- < s, < 1, the cobordisms L! and L? are transverse
and the moduli spaces contributing to the differential of Cth(Ll, L?) are
transversely cut out. At the points s;, two different situations can occur:

1) The birth/death of a pair of intersection points, ¢, c2 € Cp with |¢1| =
|lca| + 15

2) The appearance of a (—1)-disk u € M(c1; pc2q) with boundary on the
non-cylindrical parts of the cobordisms.

Moreover, one can assume that these two cases do not occur simultane-
ously. Hence, from now on, let us assume that so € (0,1) is the only point
in the isotopy when situations (1) or (2) can occur. Suppose first that
case (1) occurs, and denote the Cthulhu chain complex with (resp. with-
out) the pair of intersection points by (C[+],d[+]) (resp. (C[—],d[-])). We
have d[+](c2) = ¢1 + v where v does not contain ¢;. The induced chain map
C[+] — C[—] corresponding to the death of the pair of intersection points
c1,cy maps co — 0, c; — —v and other elements to themselves. The induced
chain map C[—] — C[+] corresponding to the birth of ¢;,co sends an el-
ement ¢ to ¢ — ¢ (d[+]c)ca, where ¢} is the dual element for ¢;. Note that
both ¢; and ¢y are intersection points, thus the induced chain maps are iden-
tity maps on Cy. In the second case, a (—1)-disk u € M(c1; pcaq) appears.
The induced map ¢ sends c¢s to co + Acy, for some number A, and all other
elements to themselves. Since the negative puncture cz is not in Cy4, the
induced chain map is the identity on C.
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Denote ¢_,, the component
Voot (Coco(LY L?),d-co) — (C—oo(LY, L?),d )

The fact that ¢ is a chain map and fixes Cy implies that ¢_ is a chain
map, i.e. 900 0d_oo =d"_ 0 p_o. Let us then denote ¢4 the component

@y : Cth(L*, L?) — C (LY, L?)

The fact that ¢ is a chain map implies that for any cycle ¢ € C_ (L, L?)
one has

pro(p+d_o)(c) = d/++ opi(c)+ ¢’ o P-oo(C)

Using the fact that ¢ is the identity map on Cy and d_(¢) = 0, this equa-
tion becomes,

plc) =dy opi(c) + ¢ op_o(c).
It follows that

[6(c)] = [¢/ 0 p-oa(0)] € H' (O (LY, L2)) = H* Hom (€}, €,).

In order to show that ¢ := m, 0 ¢, 1 =7l o (¢.)~! =: ¢/, where 7 and 7’ are
the projection maps from C_,, — C_ for the two cases, respectively, we will
prove that

(7.1) if c € C_oo(L', L?), then 7(c) = ' 0 p_oo(c).

Again, it suffices to understand how ¢_., behaves when either case (1)
or (2) occurs in the isotopy. If a (—1)-disk u € M(c1;pcaq) occurs, the
positive puncture ¢; can be an element in C; or Cp, and by definition of
P—_oo We only need to consider disks u with ¢; € Cjy. Then, the induced chain
map ¢_ sends any element ¢ to ¢+ m for m =0 or m € Cy. If case (1)
occurs, and we have a birth/death of intersection points ¢, co in Cp, denote
the chain complex with (resp. without) the pair of intersection points by
(C_co[+],d—cc]+]) (resp. (C_co[—],d—xc]|—])). Suppose that d_[+](c2) =
c1 + v. Since the differential of C_, is upper triangular, we know that v is
in Cy. Thus, the map from C_[+] to C_s[—] maps ¢; to Cp and ¢z to 0.
If we have a birth of intersection points, the map from C_[—] to C_o[+]
sends an element ¢ to ¢ — ¢} (d—oo[+]c)c2, which is also in Cp. In both cases
we have shown is true and can conclude that the map ¢ does not depend
on the choice of Morse function F'. O
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7.3. Proof of Proposition

To prove the first statement of Proposition first recall that ¢ = m, o ¢!
and that ¢! preserves the product structures; see Proposition Thus
Proposition (1) follows immediately from

Lemma 7.3. The map my : H*(C_oo,d—oc) = H*(C_,d__) preserves the
products.

Proof. Recall that m;*°(a,b) € Cp if a or b is in Cy. Thus the component of

my < (a,b) with values in C_ only comes from m; (7(a), 7(b)), i.e.

momy(a,b) =my (m(a), n(b)).
]

In order to prove Proposition (2), we need that for any augmentation
e of A(A_) and its induced augmentation e; of A(Ay), the map

v: H'Hom, (e;,ey) — H'Hom, (e_ € )

preserves the unit. Note that ¢! is an isomorphism that preserves the
product structures and thus sends the unit [e ] of H Hom (¢4, €y ) to a unit
[e—oo] of H(C_s). In order to show m.([e_oo]) € H'Hom, (e_,€_) is the
unit [e_] of HYHom, (e_,e_), we only need to prove the following lemma.

Lemma 7.4. There is an element e = e_ + ey € C_o,, where eg is an ele-
ment in Cy, such that d_(e) = 0.

Proof of Proposition[7.2. With Lemma [7.4] in hand, the fact that 7, pre-
serves the product structure, and the fact that [e_] and [e_] are the units
of H*(C_) and HHom, (e_,e_) respectively, we have that

Te(le—oo]) = my ([e-], ma([e-oo])) = my (mile], mi([e-c0]))

— 7 0my([e], le—oc]) = mule] = [e_].

Thus, 1([e4]) = 7 0 ¢, ([e4]) = mu([e—cc]) = [e-]. O

Proof of Lemma[74 Recall that the unit e_ of Hom9 (e_,e_) is given by
e_ = — > yi% where y? are the Reeb chord of 2A_ corresponding to the

)
Morse minima of the Morse function f_ used to define 2A_. Let ey be
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negative of the sum of all the intersections that corresponds to the minima
of the Morse function F', and then let e = eg + e_. We have that

d,m(e) = dog(eo) + dof(ef) + d,,(ef).

The fact that e_ is closed in Hom(e_,e_) implies d__(e_) = 0. It follows
from Proposition that dpg counts negative Morse flow lines of the Morse
function F'. We need to interpret the holomorphic disks counted by do—(e)
in terms of Morse flow lines of a Morse function F' that agrees with F
in the main part but also encodes the Morse function f_ on the bottom
cylinder. This can be done by concatenating a cobordism from the bottom
and comparing the Cthulhu complexes of the two pairs of cobordisms using a
transfer map defined in [CDRGG20]. The remainder of the proof is dedicated
to describing dgp(ep) and dy—(e—) in detail.

Recall that Al is a push off of A2 using a very small positive Morse
function f_. Let A € R* be twice the maximum value of f_. Consider the
cylinder R x AL and push the negative end of the cylinder in the —z di-
rection by A. Denote this new Legendrian in the negative end by AL — A.
Thus, we get a cobordism W' from A! — A to A! as shown in Figure
Concretely, consider a non-increasing Morse function §(¢) : R — R which is
0 when t > —N — 1 and is equal to the constant A when ¢t < N’, for some
N’ < —N — 1. Note that X = —0(t)0/0z is a Hamiltonian vector field, and
denote its time 1 flow by ®y. It follows that W' := &y (R x Al) is an exact
Lagrangian cobordism. Denote by W? the cylinder R x A% .

R x Al, I/Lrl

C
R x AZ f w2
_JE

Figure 14. A schematic picture of wrapping the negative end of a cobordism.

Observe that there is a natural bijection between Co(W?!, W?) and the
Morse Reeb chords in Cy (W', W?) with degree shifted up by 1. Moreover, we
can show that d%l’wz sends an intersection point to the corresponding Morse
Reeb chord, as follows. First, the projection map 7., : R x R3 — R;y sends
W1 UW?to 7y (AL U A%). Then, according to [DRI6], Proposition 5.11], the
projection map also sends holomorphic disks with boundary on W' u W?

to holomorphic disks with boundary on 7., (AL U A2). Suppose that a disk
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ue MWHW? (a, p*'bq??) contributes to d%l’wz, i.e. a is a mixed Reeb chord
of AL UAZ?, bis an intersection point in W' N W?2 and p!!, g*? are words of
pure degree 0 Reeb chords of A! — A and A? | respectively. The rigidity of u
implies that |a| — |b| = 1 using the grading in the Cthulhu complex. Project-
ing down to the zy-plane, we have that 7., (u) € M(mzy(a); P2y (b)q??) is
a holomorphic disk with boundary on 7., (AL U A2 ). Comparing the grading
in the Cthulhu complex and the grading in A(A! U A?), we have

la] = |mey(a)|Lon + 2 and |b] = [may(b)|Lom + 1.
It follows that |mgy(a)|rcH — |Ty(b)|Lor =0, or in other words, the ex-

pected dimension of M (7 (a); plms,(b)q??) is —1, which implies that
Tey(w) is constant and thus |7y (a)| = |74y(b)|. Therefore, we have proved

that ci_FWOI’W2 sends an intersection point in W' N W? to the corresponding
Morse Reeb chord of A! UA2.

Consider now the Cthulhu complex of the pair of concatenated cobor-
disms (W!® LY, W2 ® L?). Tts generators can be decomposed into four

types.

CthiWro LY W2 o L?) = C_ (WL, W?) @ Co(Wh, W?)
® Co(L', L?) @ O (L, L?)

According to [CDRGG20], there is a chain map
oW cth(W o LY, W? o L?) — Cth(L', L?)

which is d%l’wz on Co(WL W?2), is deFV_I’WQ on C_ (W', W?) and is the iden-
tity on Co(L', L?) @ Cy (L', L?) (in the case of the special pair of cobor-
disms we are considering in this paper). Due to action restrictions, Morse
Reeb chords do not show up in the image of d?f:’wz but only in the image
of d'fy ™"

Denote the intersection point in W' N W? corresponding to a Morse
Reeb chord ¢ of AL U A? by ¢, as shown in Figure [14l Due to the description
of dL/VOl’Wz7 the chain map ¥" identifies the holomorphic disks counted by

dgngLl’W2®L2 (¢) such that the positive puncture is in Co(L!, L?), with the

holomorphic disks counted by dgi’LQ(c). Thus, we can describe dgi’Lz(e_)
through dgngLl’W2®L2 (e_), where e_ = — > y; and y; are the intersection
points corresponding to the Morse Reeb chords y; of AL UAZ.

Observe that W' ® L! happens on a small neighborhood of W? ® L? =

L? and thus can be described as a push-off of L? along a Morse function F.
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Note that the Morse function F agrees with F on ([—=N, N] x R3) N L2 but
has also minima at 3; and saddle points at #;. Since W! ® L' and W? ® L?
are close enough, the differential dgngLl’WQQLZ counts the negative Morse
flow lines of F. Let € = é_ + ey be the negative sum of all the minima of
F. Observe that dgngLl’WZQLQ (€) = 0 since each saddle point of F has two
Morse trajectories flowing down with the opposite sign and they have to
approach some minima. It follows from U"W being a chain map that

doo(eo) + do—(e—) = mg 0 d"*" 0 WV () = mg 0 W 0 VOO @) — 0,

where 7 is the projection map: Cth(L', L?) — Co(L*, L?). O

7.4. Other obstructions

In this section, we give two additional obstructions to the existence of exact
Lagrangian cobordisms in terms of linearized contact homology and ruling
polynomials, which generalize the results in [PanlT7].

Proposition 7.5. Assume F is a field and let L be an exact Lagrangian
cobordism from A_ to Ay with Maslov-0. Suppose that e_ is an augmentation
of A_ and ey is the induced augmentation of Ay. Then we have that

(7.2) LCH,*(Ay) = LCH, (A-)
for k<0 and k > 1.

Proof. From Equation (6.2]), we have a long exact sequence

oo = HM(L,A_) — H*Hom (ey,€e))
— H*Hom (e_,e ) = H*"YL,A_) — -

Note that H*(L,A_) =0 when k < 0 and k > 2. For k = 2, we know that
H?(L,A_) is 0 because any two components of A_ cannot bound a closed
surface in L, i.e. a Lagrangian cap of two components of A_. Otherwise we
get a cobordism from a subset of A_ (that admits an augmentation restricted
from e_) to the empty set, which is a contradiction by [DRI5, Corollary 1.9].
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The long exact sequence implies that
H*Homy (e_,e_) = H*Hom, (4, ey),
for k < —1 and k > 1. Recall that H*Hom (¢,¢) = LCH{_,(A), so we get
LCH,*(Ay) = LCH, (A-),

for k > 2 and k < 0.
The isomorphism for k =2 comes from the Sabloff duality [EES09],
which gives a long exact sequence:

.- = HY(A) - LCHF(A) = LOH® ,(A) — H*Y(A) — - -

The fact that H¥(A) vanishes unless k = 0 or 1 implies that LCH€ ,(A) &
LCHF(A) for k> 1 and k < —1. Note that LCHE(A) are vector spaces
over a field F. It follows from the universal coefficient theorem that
dim LOCHF(A) = dim LCH{(A). Thus, we have that dim LCH€,(A) %
dim LCHE(A) for k > 1. Since the isomorphism holds for k = —2, the
dimension of the LCH homologies are the same for k£ = 2, which implies the
isomorphism for k = 2 as they are vector spaces over F. O

We do not get the relation between the LCH’s on degree 0 and 1 as Pan
did for cobordisms between knots in [Panl7, Corollary 1.4].

Example 7.6. Take F = Zy and consider two exact Lagrangian cobordisms
L', L? from the Hopf link A% to the trefoil obtained by pinching the chords
b1 and b of the trefoil, respectively, as shown in Figure Let €', resp.
€2, be the augmentation of A% which sends the two Reeb chords (¢, ¢2) to
(0,0), resp. (0,1). Both augmentations ¢’ , induce through L¢ for i = 1,2 the
augmentation of the trefoil e, which sends the three Reeb chords (b1, ba, b3)
to (1,1,0). However, the Legendrian contact homology of A% linearized by €.
has rank one in degrees 0 and 1, while linearized by €2 it has rank 2 in degrees
0 and 1. Thus, the data (L,A;+,A_,e;) cannot determine LCH - (A_).

Another way to count the number of augmentations in the augmentation
category is the homotopy cardinality [NRSS17], which is defined by

1 |[H Y Hom, (e, )| - [H3Hom (¢, €)| - -
AF o . +\& +\&s
m20Aug (A;Fy) > [Aut(e)] |H-2Homy (e, €)| - |[H- Homy (e, )| -’
(e Aug, (AF,)/~

where [e] is the equivalence class of € in the augmentation category and
| Aut(€)| is the number of invertible elements in H*Hom (e, ).
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Figure 15. Part (a) and (b) shows two cobordisms obtained by doing pinch
move on by and by, respectively.

Proposition 7.7. Let L be a spin exact Lagrangian cobordism from A_ to
AL with Maslov number 0. Then for any finite field Fy, we have that

m>0Augy (Ay; Fy)* > m>pAugs (A—; Fy)*.

Proof. For each equivalence class in Aug; (A_;F,), we take a representative
e_ and compare the term of [e_] in the sum with the term of the induced
augmentation e for Aug, (Ay;Fy). It follows from Proposition that the
H¥Hom,, spaces are isomorphic between e_ and e, for k < 0. Moreover, it
follows from Theorem [1.4] that if an element [a}] € HOHom (e, ey ) is in-
vertible, then t[a] € HOHom (e_,e_) is invertible. Thus H'Hom  (e_,¢_)
may have more invertible elements than HYHom, (e, ,e,). It follows that
for each equivalent class represented by e_, the term in the summand for
€4+ is bigger than or equal to the term for e_. Moreover, there may be more
equivalence classes in Augy(Ay) than in Aug, (A_). Thus the proposition
follows. g

The homotopy cardinality is related to the ruling polynomial Rx(z), a
combinatorial invariant of Legendrian knots that is easily computed, in the
following way:

ms0Augy (A Fy)* = ¢*W/2Ry (M2 — ¢71/?2).
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See Section [8.3] for more details on the ruling polynomial. Thus we have the
following corollary.

Corollary 7.8. Let L is a spin exact Lagrangian cobordism from A_ to Ay
with Maslov number 0. Then, we have that

RA (q1/2 _ q—1/2) < q_X(L)/QRM(ql/Q - q—1/2)

for any q that is a power of a prime number.

8. Examples of obstructed fillings

In this section, we will prove Theorem To prove that certain immersed
Lagrangian fillings of a Legendrian knot A do exist, we will use the “de-
composable” moves described below to prove the existence of embedded
Lagrangian cobordisms from a disjoint union of Legendrian Hopf links to A.
Recall that, by definition, the Legendrian Hopf link A’fl admits an immersed,
Maslov-0, exact Lagrangian filling with one action-0 double point of index k.
We will prove that certain types of Lagrangian fillings of A cannot exist by
applying Theorems and Throughout this section, we consider DGAs
over Zg and augmentations to Zy. For the family Ay in Theorem [1.8(1), we
will count augmentations directly, while for the family AL in Theorem |1.8|(2),
we will employ the theory of rulings to count augmentations.

All of the embedded, Maslov-0, exact Lagrangian fillings and cobordisms
that we construct in this section are decomposable in the following sense. It
is known that there exists an embedded, Maslov-0, exact Lagrangian cobor-
disms between two Legendrian links Ay if A, differs from A_ by Legendrian
isotopy, pinch moves, and the death of a max tb unknotted component. Fig-
ure illustrates the local front projections of an orientable downward in
time pinch move and the downward in time death of a max tb unknot. In or-
der to produce an orientable surface, the pinch move can only be performed
on strands with opposite orientations, and in order for the Lagrangian to
be Maslov-0, pinch moves can only be performed on strands whose upper
branch has a Maslov potential 1 greater than that of the lower branch, as
shown in Figure A Lagrangian cobordism L from A_ to Ay is called
elementary if it arises from isotopy, a single pinch move, or a single disk
filling. A Lagrangian cobordism is decomposable it is obtained by stacking
elementary cobordisms. The elementary moves that make up decomposable
cobordisms were introduced by Ekholm, Honda, and Kélmén in [EHKI6,
Section 6.
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v < @

Figure 16. Local front projections of a merge/pinch move (topologically a
saddle cobordism/1-handle) and the birth/death of a max tb unknot (topo-
logically a disk/0-handle). The red arrows represent the positive ¢ direction
and the labels on the strands indicate the Maslov potential.

As we apply Theorem [1.4] it will be useful to have the following aug-
mentation count.

Lemma 8.1.
3, k=0

Aug(AE: Z9) ) ~ang. | =
]ug( H 2)/ A9+| {0, k‘#o.

Moreover,

[Aug( || AY3Z2)/ ~aug, | =37,

i=1,....m

where Z = |{i : k; = 0}|.

Proof. As explained in Example the Hopf link A]I?I has 3 augmentations
when £ =0 and no augmentations otherwise. When k£ = 0, there are no
degree —1 chords, and thus, by Corollary the count of augmentations up

to the equivalence relation ~ 4,4, is the same as the count of augmentations.
O

8.1. Proof of Theorem [1.8((1)

We construct the family of Legendrian knots Ay such that A; = Ag,, as fol-
lows. Consider the tangle T" in Figure Arrange k copies T1,...,T; of T
in a row and connect them by a tangle sum; then perform the standard rain-
bow tangle closure after introducing 1 more crossing, as shown in Figure
The resulting Legendrian Aj admits a Maslov potential whose values on
each strand is also indicated in the figure. When k = 1, the Legendrian knot
obtained this way is a 948 knot; its front projection is shown in Figure
and its Lagrangian projection in Figure



654 Capovilla-Searle, et al.

o'~ =N

Figure 17. Left: front projection of the tangle T'; right: front projection of
Aj. The numbers indicate the Maslov potential.

Proposition 8.2. Ay admits an immersed, Maslov-0, exact Lagrangian fill-
ing F,f of genus k with k double points, each of which has action 0 and index
1.

Proof. When k = 1, by performing a sequence of pinch moves as indicated
by the red lines in the Figure and Reidemeister moves, we obtain an
embedded, Maslov-0, exact Lagrangian cobordism from the Hopf link Alli to
Ay,,. For k > 2, by performing pinch moves on each copy of the tangle T’
as in the case of Ag,,, we obtain an embedded, Maslov-0, exact Lagrangian
cobordism of genus k from U kA11{ to Ay. Each Alli has an immersed, Maslov-0,
exact Lagrangian filling with a double point of action 0 and index 1. Stacking
these Lagrangian cobordisms produces the desired filling F,ff of Ag. O

Figure 18. Sequence of three pinch moves that prove the existence of an
embedded, Maslov-0, exact Lagrangian cobordism of genus 1 from the Hopf
link Af to Ag,,.

Proposition 8.3. Ay does not admit an immersed, Maslov-0, exact La-
grangian disk filling F,ffll with k 4+ 1 double points, all of action 0 and k of
index 1 and one of index 0.
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The proof of this proposition will follow easily once we prove the follow-
ing count of augmentations.

Lemma 8.4. For all k > 1, [Aug(Ay; Z2)/ ~aug, | = 1.
Proof. When k =1, the DGA A(Ay,,) is generated by a;,i = 1,---6, b;,i =

, 7, ¢iyi = 1,2 with grading |a;| = 1, |b;| = 0,]|c;| = —1 as shown in Fig-
ure The differential is given by

Figure 19. A Lagrangian projection for Ag,,.

da; =1+ b7(b3 + 61a5) Oby = c1bgby + bgbgca
Oas = 1 + asbgcaby + bgbaby Obg = 61(1 + b6b5)
Oag = 1 + bicibgag + b1bsbg 0by = (1 + bsbg)co

dag =1+ (b4 + a602)b7 ob; =0, fori#2 3,4
OJas = 1 + bgbs Oc; =0, fori=1,2.
Oag = 1 + bsbg

There are two augmentations ey and €; of A(Ag,,) to Zs with €;(b2) = i, and
€i(bj) =1 for j # 2, i = 0,1. These two augmentations are DGA homotopic
since ¢g — €1 = K o 9, where K sends c¢; to 1 and the other Reeb chords to 0.
Since F = Zy, By Proposition [5.5] and Remark [5.4] equivalence with respect
to DGA homotopy is the same as equivalent with respect to ~ 4,4, , and
thus we have that |Aug(Ag,y;Z2)/ ~Aug, | = 1.

The calculation for £ > 2 is similar. Label the Reeb chords in the jth
tangle of Ay by b;,,a;, and c¢;, following a similar labeling scheme as for
Ao,,, see Figure 20l Let by, @, and a4 denote the Reeb chords of Ay not
contained in any of the k tangles, and such that |b7| = 0 and |a1| = |as| = 1.
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Figure 20. Lagrangian projections of the tangle T" and the Legendrian Ay.

Then, one can find that any augmentation € of Ay to Zs takes the following
values: e(by) = 1, €(bi,) = 1 for any i; # 2;, and €(ba,) € {0,1}. Therefore,
for any Aj we have 2F augmentations to Zy. Suppose that €; and e are
two augmentations of Ay such that e;(ba,) — €e2(b2,) = 1 for j contained in
some subset J C {1,...,k}. Then, there exists a DGA homotopy K from ¢;
to e where K(cy,) =1 for j € J, and which maps all other Reeb chords to
0. Therefore, the Legendrians Ay have a unique augmentation to Zs up to
DGA homotopy and thus up to ~ 4y, - O

Proof of Proposition[8.3 By Theorem the existence of the filling F,fjll
is equivalent to the existence of an embedded, Maslov-0, exact Lagrangian
cobordism from I_lkA%{ U A% to Ax. By Lemma and Lemma

|Au9(|—|kAll-I U A%722)/ ~Augy ‘ = 3’ and ’Aug(A’wZ?)/ ~Aug, | = 17

and thus by Theorem such an embedded cobordism from UkAlli U A% to
A does not exist. O

We now have all the ingredients to prove our first part of Theorem

Proof of Theorem ( 1). Fix Ag. Proposition shows the existence of the
immersed, Maslov-0, exact Lagrangian filling Flf with genus k that has k
double points, each with action 0 and index 1. Proposition [8.3| shows there
does not exist an immersed, Maslov-0, exact Lagrangian disk filling Flffll
with (k + 1) double points, all of action 0, k of index 1, and one of index 0.
Thus, by Definition F ,f does not arise from Lagrangian surgery.

For the smooth comparison, A; = Ag,, admits a smooth disk filling with
one immersed point [OS16, Section 4.6], and thus it also admits a disk filling
with p immersed points, for any p > 1. One can more easily see that by two
“unclasping” moves, 948 has an unknotting number of 2: it follows that
there exists a smooth disk filling of Ag,, with 2 double points. Similarly,
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when k > 2, by performing unclasping moves in each of the k tangles, we
see that A, admits a smooth disk filling with 2k double points, and thus by
smooth surgery a smooth genus j filling with 2k — j double points for all
0<j<k. O

8.2. Proof of Theorem (2)

For all ¢ > 1 and p > 0, we will show the existence of a Legendrian knot
AP that has an immersed, Maslov-0, exact Lagrangian filling F}, which has
genus g and p double points of action and index 0, that does not arise from
Lagrangian surgery. The construction of A is an example of the Mondrian
diagrams of [Ng05].

To construct the Legendrian checkerboard knot Ag, g > 1, begin with
a (2g + 2) x 4 shaded checkerboard, with the lower left square shaded. For
every shaded square, replace the right (resp. left) edge with a right (resp.
left) cusp. If two shaded squares share a vertex, replace the vertex with a
crossing, and otherwise replace the vertex with a smoothing of the vertex.
An example is given in Figure We can directly check that Ag has a single
component, for all g > 1.

o
o W W W

Figure 21. The Legendrian A§ constructed by starting with a (2(3) + 2) x 4
shaded checkerboard; the red lines denote the pinches used in the construc-
tion of F??.

For p > 1, the Legendrian knot A} will be constructed by applying Legen-
drian Reidemeister I moves and adding p clasps to AS, as shown in Figure
To form A;, for g > 1, start with the two shaded regions corresponding to the
bottom row, first and third columns in the shaded (2¢ + 2) x 4-checkerboard
used to construct Ag. Perform one downward Reidemeister I move on each
portion of Ag corresponding to these two shaded regions, and clasp the pair
of cusps facing each other as schematized on Figure [22| We form Af] by again
starting with the two bottom left shaded regions of A, performing 6 Reide-
meister I moves, and then forming 2 clasps in the shaded tiles of the plane.
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Similarly, for all p > 1, we can form the clasped checkerboard Legendrian
AP, by starting with AO performing 4p — 2 Reidemeister moves, and adding
p clasps, as shown in Flgure l 22 Observe that AL has a single component.

29 +2 29 +2

2p—1 2p—1

pinch

clasp

RK—EBE >~ B — ¥

Figure 22. Construction of the clasped checkerboard Legendrian AJ, p >
1, and a schematization of pinch moves around each clasp that shows the
existence of a cobordism from L,AY U Ag to AL.

Proposition 8.5. For all g > 1 and p > 0, the Legendrian knot A} admits
an immersed, Maslov-0, exact Lagrangian filling F} of genus g with p double
points, each of which has action 0 and index 0.

Proof. First fix Ag, for some g > 1. By performing pinch moves on each
pair of strands that correspond to the top and bottom edges of each shaded
square in the (2g + 2) x 4 shaded checkerboard that was used to constuct
AO, we obtain an embedded, exact, Lagrangian cobordism from a disjoint
union of max tb Legendrian unknots to AO see an illustration in Flgure l
The Maslov potential on the strands on Wthh we perform the pinch moves
ensures that this cobordism has Maslov class 0. Each Legendrian unknot can
be filled with a disk to obtaln Fy Y an embedded, Maslov-0, exact Lagrangian
filling of AJ. As we perform (29 + 2)4 pinch moves and obtain 4 + (2g + 1)
unknots, we see that this ﬁlhng does indeed have genus g, as desired.

Now fix AP, for p > 1. By performing pinch moves along the red dash
lines besides the clasps as schematized in Figure we build a genus 0
embedded, Maslov-0, exact Lagrangian cobordism from I_IPA% U AS to AL
The A(g] has an embedded, Maslov-0, exact Lagrangian filling of genus g,
while each Hopf link A% can be filled by an immersed, Maslov-0, exact
Lagrangian filling with one double point of action 0 and index 0. By stacking
this Lagrangian cobordism and these fillings, we obtain the desired Fy. O
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Proposition 8.6. The Legendrian knot Al does not admit an immersed,
Maslov-0, exact Lagrangian disk filling ngll with p + 1 double points, all of
action 0 and index 0.

The proof follows easily from the following calculation, which will be
proved in Section 8.3

Lemma 8.7. |Aug(Ay;Zs)/ ~aug, | = 3P.

Proof of Proposition 8.6, By Theorem the existence of the filling F;)fll
is equivalent to the existence of an embedded, Maslov-0, exact Lagrangian
cobordism of genus g from I_Jp+1A% to AD. By Lemma and Lemma

|Aug(|—|p+1A%;ZZ)/ ~Augy | = 3p+1, and |Aug(A§,Zg)/ ~ Aug., | = 3}7,

and thus by Theorem such an embedded cobordism from Ll,1AY to Ay
does not exist. g

Proof of Theorem[1.§(2). Proposition shows the existence of the im-
mersed, Maslov-0, exact Lagrangian genus g filling FJ of AL that has p
double points of action 0 and index 0. Proposition [8.6] shows there does not
exist an immersed, Maslov-0, exact Lagrangian genus (¢ — 1) filling F’ 5:1 of
AP with (p+ 1) double points, all of action 0 and index 0. Thus, by Defini-
tion FY does not arise from Lagrangian surgery. O

It remains to prove Lemma [8.7, which we do in the next subsection.
8.3. Proof of Lemma

As opposed to the more direct counting strategy we employed in Lemma|8.4]
here we count augmentations of these arbitrarily high crossing knots AJ using
the theory of rulings. So we begin with some background on rulings, first
defined in [PCO05) [Fuc03], and review the definition of the ruling polynomial.

Following [Sab20], a (graded, normal) ruling of a Legendrian knot A is
a set of crossings (called switches) such that resolving the switches yields
a link of unknots Aq,...,A,, such that

1) At each switch, the two strands have the same Maslov potential;

2) Each A;, i =1,...,m, is a Legendrian unknot with 0 crossings and 2
cusps that bounds a ruling disk D;;

3) Exactly two components are incident to any switch;
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4) Near each switch, the incident ruling disks D; bounded by A; are either
nested or disjoint as shown in Figure [23|

For each ruling R of a Legendrian A, denote the number of switches and disks
by s(R) and d(R), respectively. For a Legendrian A, the ruling polynomial
RA(z) is the polynomial

R

>
—
>

Figure 23. Around a switch, the possible nested or disjoint configurations
of the incident disks.

Rulings and augmentations are related: the existence of one implies the
existence of the other [Fuc03, [F104, [Sab05]. The following lemma shows how
we can use the ruling polynomial to find our desired count of augmentations.

Lemma 8.8. Let A be a Legendrian knot with no negative degree Reeb
chords. Then

(8.2) |Aug(A; Zs)/ ~aug, | = 2XN/2R) (271/2),

for x(A) = Z(—l)kak, where ay, is the number of Reeb chords of degree k.
k>0

Proof. Under the assumption of the lemma, following [HR15, Remark 3.3(ii)]
the number of augmentations |Aug(A; Zz)| is related to the ruling polynomial
RA(2) in the following way:

27XWN/2| Aug(A; Zy)| = Ry (212 — 271/2),

where x(A) is the Euler characteristic of (A(A),d), defined as x(A) =
> i>0(—1)*ay, where ay, is the number of generators of A(A) of degree k. By
Corollary we know that |Aug(A;Za)| = |Aug(A; Z2)/ ~ aug, |, and our
result follows. O
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Proof of Lemma([8.7 First consider the checkerboard Legendrian knot Ag.
Observe that A[g) has a unique ruling that switches at every crossing: one
can check this by considering the shaded regions in the top row of Ag: the
left cusp of each shaded square has to match with the right cusp of that
same shaded square, thus it forces the crossings at the bottom vertices of
these shaded squares to be switches. Similarly for the second topmost row,
the right cusp of each shaded square has to match with the left cusp of the
same shaded square forcing the crossings at the bottom vertices of these
shaded squares to be switches. Thus, by considering Ag from top to bottom
we can conclude that every crossing in Ay is a switch. In this unique ruling
R, using Equations and , we see that all Reeb chords in A(Ag)
have degree 0 or 1. Furthermore, s(R) — d(R) = X(AS) since there is a switch
at each degree 0 chord and a one-to-one correspondence between disks and
right cusps (which correspond to Reeb chords of degree 1). Then applying
Lemma [8:8] we find

\Aug(Ag; Za)/ ~ ug. | = 2X(A2)/2RA2(2_1/2) = ox(A9)/2(9=1/2)x(A)) — 1,

Now consider AL, for p > 1. As shown in Figure the first clasp in the
construction A introduces four new degree 0 Reeb chords (two from the
Reidemeister moves, two in the clasp region), and two rulings. With just
one clasp, the ruling polynomial changes from Rpo(z) = 2(89) 1o

RA}] (z) = ZX(A-}?)(Z_2 +1).
Each additional clasp introduces 6 new degree 0 Reeb chords (4 from Reide-
meister moves, 2 in the clasp region). Considering rulings, each new chord
coming from a Reidemeister move must be a switch and then one can either

switch at both or neither of the two crossings in the clasp region. Thus, the
ruling polynomial becomes

Ras(z) = XM (272 4 1),

Using Equation (8.2)), we find that the number of augmentations of A} to
Zo is 3P:

| Aug(AL; o)/ ~ aug, | = 2X(A)/2(271/2)X(A0) (271/2)=2 4 1)p = 3P,
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Appendix A. Equivalence in Aug, (A) for Legendrian links

In this appendix we will provide the proof of Proposition following the
proof for the case of single component knots in [NRS™20, Proposition 5.19].
We start by setting some basic notation. Let A = U]" ;Aj, be a Legendrian
link with m link components. For a mixed Reeb chord a that starts on
an ith link component A; and ends on the jth link component Aj, that is
a € R(Aj,A\;), we let ¢(a) =i and 7(a) = j.

Let A}l denote the n-copy of A that has been perturbed by a Morse
function f with a single maximum and minimum as in [NRST20]. Note
that if A = UL Ay is a link with m link components, then A%} = UL, Ui,
A}'C is a link with mn link components. Given a Legendrian link A, and
its perturbed two copy A? = A' U A2, for any Reeb chord a € R(A', A?),
there is a corresponding element @ € Hom (¢!, €?) with degree |a|y = |a| +
1. Observe that this is a different notation convention than what we use in
Section Bl

Let (e!,...,e"™!) be a tuple of augmentations of (A(A),d). De-
fine ((A(A?H))E,G?H) as follows. Let (A(A;ﬁ“))€ = (.A(A}ZH) QF)/(ty =
e(tr)) and set 9" = ¢. 00" o p 1, where ¢ (a) = a+ e(a). Then, the
composition maps

My : Homy (", " ™) @ - @ Homy (2, €%) @ Homy (e, €?)
— Hom (e, ™),
are given by
M (G, . 00) = (=1)7 Y - Coeff j1agzs. guoner (97 e ™)
a€ERUz Uy,
where «; € {a1,...,ar,21,...,Zm,Y1,...,Ym} for each i, and o =n(n—
1)/2 + Zp<q ‘é‘p|+‘é‘q’+ + ’dn_1’+ + ’an—3’+ + -

Proposition A.1 ([NRST20, Proposition 4.14]). Let ACR3, be a
Legendrian link with m link components, one basepoint ti, per link component
and Reeb chords R ={ay,...,a,}. The DGA of the perturbed n-copy of A,
A’}, is generated by

1) (t)* for 1 <i<n,1<k<m, with |t;| = 0;
2) azj for1<i,57<m,and1<h<r with |a2j| = lap|;

3) 2 for 1<i,j<n, and 1 <k <m, with |27 = 0;
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4) y,ij for1<i,j<n,1<k<m, with |y7]| = -1,

and satisfies the relations ti (ti)~! = ()71t =1 for each i and k. The dif-
ferential of A(A}L,E)”) can be described as follows. Assemble the generators

of A(A’}, d") into n x n matrices: Ap = (aﬁlj), Ay, = Diag(t, ... . t0),

1 z2 - " 0y’ "

0O 1 ... g2 0 0 - g
Xp=1. . . ", anay, = . .

o 0 --- 1 o 0 --- 0

where 1 <k <m, and 1 < h <r. Then, applying 0™ to matrices entry-by-
entry, we have

0"(Ap) = ®((an)) + Yy(an)An + (1) 1A, Y,
O"(Xk) = A YR AL Xy — X1 Y5
V) =Y¢

where ® : A(A) — Mat(M,A™) is a ring of homomorphism such that
D(ap) = Ap, (tr) = ApXp, (1) = X ' Ay

The following Lemma [A:2] and Proposition [A.3] are generalizations
of Lemma 5.16, Proposition 5.17 and Proposition 5.18 in |[NRS™T20).
Lemma [A72) is an immediate consequence of Proposition [A.] which allows
us to compute my and my from (A(A?),(‘?Q) and (A(A?c), 0%).

Lemma A.2. Let A C Rg’td be an m component Legendrian link with one
basepoint ty, per link component, Reeb chords R = {a1,...,a,} and augmen-
tations €', 2. In Hom. (€', €?), we have that

_ ——RxA .
mi(an) = Y Ovanoul My (ansby, o bo)le by bio1)e® (brg -+ by )
1<Ii<n
SN =12 . 2 =
ma(s) = (€' (ts) " €2 (tr) — 1)k + > (ap)an
an€{a€R|c(a)=k}
- > (=plHeap)an
a€{a€R|r(a)=k}
mi(Z) € spang{ay ...,a,} forke{l,...,N}.

where b; € spang{ai,...,ap,t1,...,tm}, and o, € {1} denotes the product
of all orientation signs at the corners of the disk w. We also have that for
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ije{l,....m}, and 1 < bW <,

0 ifi#]

ma(Yi, ;) = {;xl Z z ;j ma(Yi, ap) = {_ah Z:f clar) :Z:

oy ) —an if r(ap) =1
mQ(ahayz)_{O Zf r(ah);éi

o —; ifi=j o —el(t) etz ifi=j
ma(¥i, ;) = ma(Zi, Jj) = . .

mg(dh, dh/), mz(i‘i, ﬂvjj), mg(i'i, dh), mg(dh, i‘j) c Spanﬂr{dl, - ,dr}.
Moreover, If we assume that the Reeb chords of A are labeled by increasing
height, h(a1) < h(az) <--- < h(az), then mo(an,an) € spang{a | 1>
max(h,h'),1 < h,h' <r}.

Proposition A.3. Consider an element o € Hom (¢!, €*) of the form
= =D Uk — >y K(an)an
where K : (A(A),0) — (F,0) is an F linear map. Then, mi(a) =0 if
and only if K is a split DGA homotopy from €' to €.

Proof. First, observe that

r

Z K(ap)mi(an)
h=1

A 3
ZK% Z by an | (M RX (ans b1y bp)l€ (b1 bi1)€*(bygr - - - bp)an]
h_l

1<i<n

A Ny
_Z > G (DA s 1, b€ by b)) K () (i o)y

h=1 1<I<n

=Y Kod(an)a
h=1
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where the last equality follows from the fact that K (tf) =0 for all k€
{1,...,m}. Therefore, using Lemma we know that

—mi(a) = m E CrYk + Z K (an)an)

= ama (i) + Z(K o d(an))an

k=1 h=1
= crl(e' (tr) 1 (tr) — g
k=1

+ [Cc(ah)62 (an) +(=1) lax ‘—Hcr(ah)el (an)lan

+ (K o 9(ap))ap
=1

>

Thus, my(a)=0 if and only if K od(an) = —cq,)e(an) —
(—1)‘“h|+lcr(ah)el(ah) for all h € {1,...,r}, and (e'(tx) " te?(t) — 1) = 0 for
all k€ {1,...,m}. Note that F is supported in grading 0, and therefore
e'(ap) = (=1)lorlel (ay) for all h since €! is supported in grading 0. If A(A)
has a Z, grading, and €' is an n-graded augmentation, recall that the
grading is defined mod n. Therefore, K 0 d(ap) = ¢;(q,)€' (an) = Ce(a,) € (an),
and €' and €2 are split DGA homotopic via the operator K. 0

Proof of Proposition[5.5. Suppose that €' and €? are equivalent in
Augy(A). Then, as stated in Definition there exist cocycles a €
Hom (e!,€?), and 8 € Hom(e?,€') such that [ma(a, 8)] = — > 1, [Uk] €
H°Hom (e*,€?).That is, ma(a, 8) + > pey Uk =mi(y) for some €
Hom, (¢2,¢?). By Lemma and the fact that € Hom.y (€2, €?),
we know that (mi(y),9x) =0 and (mi(y),&x) = 0. Therefore, my(y) =
> n—1 K (an)ay, for some F linear map K : (A(A),d) — (F,0) which is natu-
rally split. We can now write ma(cv, ) = — Y 3y Uk + 2_p—q K (ar)an. Again
by Lemma[A.2]and the fact that || = |8]4+ = 0, while |#;]+ = 1, we know
that

(ca)ilin + > Kalan)n

I
NE

k=1 h 1
m

B =" (co)in +2K5 an)a
k=1 h=1
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such that (cq)k, (cg)r € F* and (cq)i(cg)r =1 for each k, and for some F
linear maps K, K3 : (A(A),9) — (F,0). Both o and 3 are cocycles so by
Proposition K, and Kg are DGA homotopies between el and €.

Suppose that €! and €2 are split DGA homotopic, such that for any Reeb
chord a,

Cc(a)el (a’) - Cr(a)€2(a) =Ko a(a)

for constants ¢; € F* and some split DGA homotopy K : (A(A),0) —
(F,0). We know that K(a) =0 for any Reeb chord a such that |a|#
—1. By Lemma a=Y 1" (Ca)klr + Y p_y K(ap)ay is a cocycle in
H°Hom. (€', €?). We now construct cocycles 3,7 € Hom (¢!, €?) such that
Bl+ = |7l+ =0, ma(B, @) = ma(a,y) = = 3241 gk This implies that [5] =
[v] € H'Hom, (¢!, €?) is the multiplicative inverse of [a] in Aug,(A). The
construction of « is similar to the construction of 8 which we now provide.

Suppose that the Reeb chords {aj,...,a,} are ordered by height.
Then we can write o= " (ca)kyr + A where A € spanp{ai,...,ar}.
Let B=>7"1(cp)rip + B where (co)p(cg)y=1 for 1<k<m, Be
spang{ai,...,a,} and is defined inductively to satisfy B = A + mqy(B, A).
Then, ma (B, ) = — ;. Uk. To verify that § is a cocycle note that the A
relations on Aug, (A) imply that

(= k) = ma(ma(B, a) = ma(mi(B), @) + ma(B, mi()).

k=1

We know that mi(gx) =0 for all 1<k <m and that mi(a) =0 so
ma(B, mi(a)) = 0. Therefore, ma(mi(3),a) = 0.

We will show that if X € spang{ai,...,dr, %1, -, EN,U1,--- N},
then mgo(X,a) =0 implies that X =0. Note that mo(X,A) €
spang{ai,...,ar, &1, ..., Em, Y1, ..., Ym} by Lemma[A.2] Then,

m m
0=m(X,a) = X,Z Ca)kik +A) = X,Z Ca)kUk) + ma(X, A)
k=1 k=1

Thus, mo(X,Y 1 (ca)k¥i) = m2(X,A). Note that mg(X, A) e
spang{ai,...,a,} because A € spang{ai,...,a,} by Lemma There-
fore, we know that (X, &;) = (X,gx) =0 for all 1<k<m, and so
X € spang{ai,...,a,}. Moreover, by induction on the height of Reeb
chords, and Lemma , we know that (X,ap) =0 for all 1<h<r.
Thus, for X =m(8) € span{ai,...,ar,T1, s Em,Y1,---,Um}, since
ma(m1(58),a) = 0 as shown above, we can conclude that my(8) = 0. O
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