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Given an immersed, Maslov-0, exact Lagrangian filling of a Legen-
drian knot, if the filling has a vanishing index and action double
point, then through Lagrangian surgery it is possible to obtain a
new immersed, Maslov-0, exact Lagrangian filling with one less
double point and with genus increased by one. We show that it is
not always possible to reverse the Lagrangian surgery: not every
immersed, Maslov-0, exact Lagrangian filling with genus g ≥ 1 and
p double points can be obtained from such a Lagrangian surgery
on a filling of genus g − 1 with p+ 1 double points. To show this,
we establish the connection between the existence of an immersed,
Maslov-0, exact Lagrangian filling of a Legendrian Λ that has p
double points with action 0 and the existence of an embedded,
Maslov-0, exact Lagrangian cobordism from p copies of a Hopf
link to Λ. We then prove that a count of augmentations provides
an obstruction to the existence of embedded, Maslov-0, exact La-
grangian cobordisms between Legendrian links.
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1. Introduction

An important problem in smooth topology is to understand the 4-ball genus
and the 4-ball crossing number of a smooth knot. Through a variety of
techniques, including Heegaard Floer homology, gauge theory, and instan-
ton homology [OS16, KM21], the 4-ball genus and crossing numbers have
been calculated for all prime knots with crossing number 10 or less. Less is
known about these invariants for connect sums; see, for example, [LVC18].
In general, the 4-ball genus and crossing numbers give information about
what combinations of genus and double points can be realized by surfaces in
the 4-ball with a fixed knot as their boundary: a transverse double point can
be resolved at the cost of increasing the genus of the surfaces, and sometimes
a disk that intersects the surface transversely along its boundary allows one
to reduce the genus at the cost of increasing the number of double points.

One can study analogous problems when the knot and surface satisfy
additional geometric conditions imposed by symplectic geometry. The de-
velopment of symplectic field theory [EGH00] motivated the study of La-
grangian cobordisms between Legendrian submanifolds; these are embedded
Lagrangian submanifolds in the symplectization of a contact manifold that
have cylindrical ends over the Legendrians, see Figure 3 for a schematic pic-
ture. Lagrangian fillings occur when the bottom Legendrian is the empty
set.

For a fixed Legendrian knot, obstructions to the existence of embedded,
exact Lagrangian fillings arise from classical and non-classical invariants of
the Legendrian; see, for example, [Cha10, Ekh12, DR16, ST13]. Legendrians
that admit embedded, Lagrangian fillings are relatively rare and Lagrangian
fillings that do exist are known to be more topologically rigid than their
smooth counterparts: an embedded, oriented, exact Lagrangian filling will
always realize the smooth 4-ball genus of the knot [Cha10].
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Immersed Lagrangian fillings are more plentiful: any Legendrian with
rotation number 0 will admit an immersed Lagrangian filling, see, for ex-
ample, [Cha10, Remark 4.2]. Currently, there are fewer known obstruc-
tions for immersed Lagrangian fillings. Classical invariants, linearized con-
tact homology, and generating family homology can give some insight into
the possible combinations of genus and double points that can be real-
ized in an immersed, Maslov-0, exact Lagrangian filling of a Legendrian
knot, [Cha10, Pez18, PT22, PR22]. Sometimes the existence of one such im-
mersed filling will lead to the existence of another: if Λ admits an immersed,
Maslov-0, exact Lagrangian filling of genus g with p ≥ 1 double points such
that one of the double points has “index and action equal to 0” (see Sec-
tion 2 for definitions), then through Lagrangian surgery it is possible to
construct a new immersed, Maslov-0, exact Lagrangian filling of genus g + 1
with p− 1 double points. In this paper we address the following question:
is it always possible to “reverse” the surgery process? Namely, can every
immersed, Maslov-0, exact Lagrangian filling with genus g ≥ 1 and p double
points be obtained by Lagrangian surgery on an action-0 and index-0 double
point of an immersed, Maslov-0, exact Lagrangian filling of genus g − 1 with
p+ 1 double points? See Figure 1 for a schematic of this question.
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Figure 1. Asking if a filling arises from Lagrangian surgery is asking if it is
possible to decrease g at the expense of increasing p.

We answer this question by first translating the existence of an im-
mersed, Maslov-0, exact Lagrangian filling with action-0 double points to
the existence of an embedded, Maslov-0, exact Lagrangian cobordism from
a disjoint union of Hopf links to Λ. We then construct new obstructions to
the existence of embedded, Maslov-0, exact Lagrangian cobordisms between
Legendrian links in R3

std through the theory of augmentations. Finally, we
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apply our obstruction techniques to find families of Legendrian knots admit-
ting immersed, Maslov-0, exact Lagrangian fillings that do not arise from
Lagrangian surgery as defined in Definition 3.3.

1.1. Immersed to embedded Lagrangian cobordisms

In [Cha15, Theorem 1.3] Chantraine showed that the existence of an im-
mersed, exact Lagrangian filling of Λ with a single action-0 double point
implies the existence of an embedded, exact Lagrangian cobordism from a
Hopf link to Λ. We give an extension of this result to more general cobor-
disms, more double points, and higher dimensions; Definition 2.5 defines Λk

H,
the Hopf link with Maslov potential induced by the integer k.

Theorem 1.1. Suppose Λ± are Legendrian links in R
2n−1
std , n ≥ 2. If there

exists an immersed, Maslov-0, exact Lagrangian cobordism L× from Λ− to
Λ+ with genus g and p double points, m of which, x1, . . . , xm, have action
0, then there exists an immersed, Maslov-0, exact Lagrangian cobordism L
of genus g with (p−m) double points from

⊔m
k=1 Λ

ik
H ∪ Λ− to Λ+, where the

Maslov potential on the Hopf links are induced by the indices ik of xik .

As a corollary, we see that if each of the p double points of L× has
action 0, then we can conclude the existence of an embedded, Maslov-0,
exact Lagrangian cobordism L of genus g from ⊔p

k=1Λ
ik
H ∪ Λ− to Λ+.

Remark 1.2. The hypothesis that all the double points of the immersed
exact Lagrangian cobordism have action 0 is not generic. Indeed, it corre-
sponds to the assumption that all Reeb chords in the Legendrian lift L̃ of the
Lagrangian cobordism have length 0. One can instead generalize to consider
a contractible double point, which is a double point X whose corresponding
Reeb chord cX is contractible, i.e., its length can be shrunk to 0 without the
front projection of L̃ needing to undergo any moves; see [EHK16, Definition
6.13] for a precise description of a contractible Reeb chord. The notion of
multiple action-0 double points can be generalized to multiple “simultane-
ously contractible” double points. The Legendrian Hopf link from Figure 9
illustrates that two individually contractible Reeb chords need not be si-
multaneously contractible: here, the two interstrand Reeb chords b1 and b2
are not simultaneously contractible since they cobound a disk. For any im-
mersed, exact Lagrangian filling we can apply a Legendrian isotopy so that
all Reeb chords in the Legendrian lift have nonzero length without any births
or deaths of pairs of Reeb chords; such a Legendrian isotopy on the Legen-
drian lift can be realized by a safe Hamiltonian isotopy of the Lagrangian
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filling, see [CDRGG]. However, in general there are obstructions in going
from a set of contractible Reeb chords to a set of action-0 double points.

Remark 1.3. Theorem 1.1 can be extended beyond transverse double
points to more general singularities of exact Lagrangians. In particular,
we can consider any Lagrangian singularity f such that the boundary of
a Darboux ball centered at the singularity, or a real morsification of the
singularity, intersects the exact Lagrangian as a Legendrian and the prim-
itive is constant on the Legendrian. See [Cas22] for some examples of such
singularities.

1.2. Obstructions to embedded exact Lagrangian cobordisms

For a Legendrian link Λ in the standard contact manifold R3
std, the

Chekanov-Eliashberg DGA [Che02, Eli98] (A(Λ), ∂) is a powerful invari-
ant that arises from symplectic field theory [EGH00]. An augmentation ϵ of
A(Λ) to a unital, commutative ring F is a DGA map ϵ : (A(Λ), ∂) → (F, 0),
where (F, 0) is a DGA with F in degree 0 and differential identically 0. Let
Aug(Λ;F) denote the set of augmentations of A(Λ) to F. An embedded,
Maslov-0, exact Lagrangian cobordism L from Λ− to Λ+ induces a DGA
map from A(Λ+) to A(Λ−) [EHK16] that by composition with an augmen-
tation of A(Λ−) induces a map

(1.1) FL : Aug(Λ−;F) → Aug(Λ+;F).

Let Aug(Λ;F)/ ∼Aug+ denote the set of augmentations up to the equiva-
lence relation ∼Aug+ given by the natural equivalence given in the augmen-
tation category Aug+(Λ), see Definition 5.1 , or equivalently with respect
to split-DGA homotopy, see Definition 5.3 and Proposition 5.5. We will use
|Aug(Λ;F)/ ∼Aug+ | to denote the cardinality of the set Aug(Λ;F)/ ∼Aug+ .

Theorem 1.4. Let Λ± be Legendrian links in R3
std such that there exists

an embedded, Maslov-0, exact Lagrangian cobordism L from Λ− to Λ+. Sup-
pose F is a commutative ring; if F does not have characteristic 2 we fur-
ther assume that L is spin. Given augmentations ϵ1, ϵ2 ∈ Aug(Λ−,F), if
FL(ϵ1),FL(ϵ2) are equivalent with respect to ∼Aug+, then ϵ1, ϵ2 are equiv-
alent with respect to ∼Aug+. In particular,

(1.2) |Aug(Λ−;F)/ ∼Aug+ | ≤ |Aug(Λ+;F)/ ∼Aug+ |.
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If Λ± are single component Legendrian knots or F = Z2, the map

(1.3) FL : Aug(Λ−;F)/ ∼Aug+→ Aug(Λ+;F)/ ∼Aug+

exists and is injective.

Although the map FL on the set of augmentations (see Equation 1.1)
always exists, the map FL on the set of equivalence classes of augmentations
(see Equation 1.3) does not exist for multi-component links or when F ̸=
Z2. See Remark 5.7. The fifth author [Pan17] proved a result that implies
Theorem 1.4 when Λ± are Legendrian knots. We will see that equation (1.2)
provides a practical way to obstruct the existence of embedded cobordisms
when F = Z2. When F is not of characteristic 2, then, as in [CDRGG20,
EES05b, Kar20, Sei08], rigid holomorphic disks in the moduli spaces that
arise in the proof of Theorem 1.4 are counted with signs.

Fillings induce augmentations, and so one of the many reasons to con-
sider augmentations to a more general F is that they can give information
on the number of fillings of a Legendrian link. It is known that Hamilto-
nian isotopic, embedded, Maslov-0, exact Lagrangian fillings induce ∼Aug+

equivalent augmentations to Z, [EHK16, Kar20]. Examples of Legendrian
links that have an infinite number of distinct fillings up to Hamiltonian iso-
topy were first given in [CG22] and later also in [CZ22, GSW20b, GSW20a?
]. From the existence of a Legendrian with an infinite number of distinct
fillings distinguished by augmentations to Z, we can apply Theorem 1.4 to
deduce the existence of more such Legendrians.

Corollary 1.5. (c.f. [CN21, Proposition 7.5, Remark 7.6]) Let N ∈ N ∪
{∞}. Suppose Λ− is a Legendrian link that has N augmentations to Z up to
∼Aug+ equivalence that are induced by embedded, Maslov-0, exact Lagrangian
fillings, and there exists an embedded, Maslov-0, exact Lagrangian cobordism
from Λ− to Λ+, then Λ+ admits N embedded, Maslov-0, exact Lagrangian
fillings that are distinct up to Hamiltonian isotopy.

Proof. Consider two embedded, Maslov-0, exact Lagrangian fillings of Λ−

that induce augmentations ϵ1, ϵ2 ∈ Aug(Λ−,Z) that are not equivalent with
respect to ∼Aug+ . Concatenating these fillings with the cobordism L from
Λ− to Λ+ produces two embedded, Maslov-0, exact Lagrangian fillings of
Λ+; the augmentations induced by these fillings agree with FL(ϵ1),FL(ϵ2) ∈
Aug(Λ+,Z). By Theorem 1.4, FL(ϵ1),FL(ϵ2) are not equivalent with respect
to ∼Aug+ , and thus the fillings of Λ+ are not Hamiltonian isotopic. □
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In the case when Λ± are knots, Theorem 1.4 was derived in [Pan17]
from studying the augmentation categoryAug+(Λ), which is an A∞-category
associated to a Legendrian Λ, see [NRS+20]. The objects of Aug+(Λ) are
augmentations ϵ : A(Λ) → F and morphisms Hom+(ϵ

1, ϵ2) are modules over
Reeb chords between Λ and its “push-off”. When Λ± are knots, the func-
toriality of the DGA under cobordisms naturally extends the map FL from
Equation (1.1) to a functor

(FL)+ : Aug+(Λ−) → Aug+(Λ+)

between the augmentation categories. In [Pan17] it is proved that FL is
injective on equivalence classes of objects when Λ± are knots by showing
that the functor (FL)+ induces an isomorphism on the degree 0 cohomol-
ogy of morphism spaces; i.e. H0Hom+(ϵ

1, ϵ2) ∼= H0Hom+(FL(ϵ
1),FL(ϵ

2)).
However, this latter statement fails for links. Moreover, the functor (FL)+ is
not even well-defined for cobordisms between links. Instead, we employ the
machinery of wrapped Floer theory for Lagrangian cobordisms developed in
[CDRGG20] (see Section 6), to argue that if FL(ϵ

1),FL(ϵ
2) are equivalent,

then ϵ1, ϵ2 are equivalent, where equivalence is with respect to ∼Aug+ . To do
this, we construct “wrong-way” maps, namely maps in direction opposite to
those induced by (FL)+,

ι : H∗Hom+(FL(ϵ
1),FL(ϵ

2)) → H∗Hom+(ϵ
1, ϵ2).

Combining the work of the second author [Leg20] and wrapped Floer theory,
we show that ι is unital and preserves the product structure on H∗Hom+

In Section 7.4, we build two additional obstructions to the existence of
embedded, Maslov-0, exact Lagrangian cobordisms in terms of linearized
contact homology LCHϵ

∗(Λ) (see Section 4.2) and the ruling polynomial
RΛ(z) (see Equation (8.1), which are Legendrian invariants that are asso-
ciated to augmentations. These results are extensions of parallel results in
[Pan17].

Proposition 1.6 (see Proposition 7.5). Assume F is a field, Λ± are
Legendrian links in R3

std, ϵ is an augmentation of Λ−, and L is an embedded,
Maslov-0, exact Lagrangian cobordism from Λ− to Λ+, which we further
assume to be spin if F does not have characteristic 2. Then,

(1.4) LCH
FL(ϵ)
k (Λ+) ∼= LCHϵ

k(Λ−)

for k < 0 and k > 1.
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Proposition 1.7 (see Corollary 7.8). Let L be a spin, embedded, Maslov-
0, exact Lagrangian cobordism from Λ− to Λ+. Then,

RΛ−
(q1/2 − q−1/2) ≤ q−χ(L)/2RΛ+

(q1/2 − q−1/2)

for any q that is a power of a prime number.

1.3. Obstructions to reversing Lagrangian surgery

We apply Theorem 1.1 and Theorem 1.4 to find examples of Legendrian
knots in R3

std admitting immersed, Maslov-0, exact Lagrangian fillings that
do not arise from Lagrangian surgery. We say that an immersed, Maslov-0,
exact Lagrangian filling F p

g of a Legendrian Λ with genus g and p double
points does not arise from Lagrangian surgery if there does not exist an
immersed, Maslov-0, exact Lagrangian filling F p+1

g−1 with genus g − 1 and
p+ 1 double points where the indices and actions of p of the double points
agree with those of F p

g and there is an additional double point of action and
index 0 that could be surgered to produce F p

g ; see Definition 3.3.
As a simple illustration of our techniques, consider the Legendrian knot

Λ74
in Figure 2(a), which is the maximal-tb representative of the knot 74.

Using known construction techniques, described in Section 8, we know that
Λ74

admits an embedded, Maslov-0, exact Lagrangian filling of genus 1; we
prove this filling cannot be obtained by applying Lagrangian surgery on an
immersed, Maslov-0, exact Lagrangian disk filling with one double point.
Indeed, if it was the case, Λ74

would admit an immersed, Maslov-0, exact
Lagrangian disk filling with a double point of action 0 and index 0. By
Theorem 1.1 the existence of such an immersed filling is equivalent to the
existence of an embedded, Maslov-0, exact Lagrangian cobordism from the
Hopf link Λ0

H to Λ74
. However, since we can compute

|Aug(Λ0
H;Z2)/ ∼Aug+ | = 3, and |Aug(Λ74

;Z2)/ ∼Aug+ | = 1,

by Theorem 1.4 such an embedded cobordism does not exist. In fact, for
this specific example, there is an underlying smooth reason that such an
immersed Lagrangian disk filling does not exist for Λ74

: it has been shown
in [OS16] using Heegaard Floer homology that the smooth knot 74 does not
have any smooth, immersed disk filling with 1 double point. The follow-
ing theorem gives examples of Legendrian knots with obstructed immersed
Lagrangian fillings, where there is no smooth obstruction. The Legendrian
knot shown in Figure 2(b) is an example of a Legendrian in Theorem 1.8
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(1), and the Legendrian shown in Figure 2(c) is an example of a Legendrian
in Theorem 1.8 (2).

(a) (b) (c)

Figure 2. Legendrian knots admitting fillings that do not arise from La-
grangian surgery. (a) Λ74

; (b) Λk|k=1 = Λ948
; (c) the clasped checkerboard

Λ1
2.

Theorem 1.8. 1) For all k ≥ 1, there exists a Legendrian knot Λk, with
Λ1 being a Legendrian 948 knot, that admits an immersed, Maslov-0,
exact Lagrangian filling F k

k , which has genus k and k double points,
that does not arise from Lagrangian surgery, even though Λk admits a
smooth filling of genus (k − 1) with (k + 1) double points.

2) Given g ∈ Z+, and p ∈ Z≥0, there is a Legendrian knot Λp
g that has an

immersed, Maslov-0, exact Lagrangian filling F p
g , which has genus g

and p double points, that does not arise from Lagrangian surgery.

The family Λp
g in Theorem 1.8(2) generalizes Λ74

: Λ0
1 = Λ74

. Other than
Λ0
1, the knots in this family have crossing numbers that are at least 11 and

can be arbitrarily large: a SnapPy calculation shows that Λ1
1 is the smooth

knot 11495, and, to the best of our knowledge, this and the others in the
family do not have smooth obstructions.

Remark 1.9. The Poincaré polynomial for the Legendrian contact homol-
ogy of Λ948

is t−1 + 2 + 2t, [CN13]. Using the techniques of generating fam-
ilies, this implies that any immersed, gf-compatible (and thus Maslov-0 and
exact) Lagrangian disk filling of Λ948

must have at least two double points,
of indices 0 and 1 [Pez18, PT22]. With the techniques of this paper, we
obstruct the case where both the double points must satisfy the additional
action-0 hypothesis, or the equivalent “contractible” formulation described
in Remark 1.2.
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We end this introduction with the following observation. The fact that
the immersed Lagrangian fillings in Theorem 1.8 are not obtained from
Lagrangian surgery on other fillings tells us about the non-existence of par-
ticular Lagrangian disks. As explained in Section 3, after a change of coor-
dinates and the removal of a cylindrical end, an exact Lagrangian filling L
of a Legendrian Λ in the symplectization of R3

std becomes a compact, exact
Lagrangian filling L in (B4, ωstd) of Λ ⊂ S3.

We will call an essential, embedded curve γ ⊂ L is a pre-singularity
loop if it is obtained by the transversal intersection of a Lagrangian disk
D ⊂ (B4, ωstd) with the interior of L. As shown in [Yau13], given a pre-
singularity loop, it is always possible to reverse Lagrangian surgery. Thus,
we obtain the following corollary to Theorem 1.8.

Corollary 1.10. Let Λ be one of the Legendrian knots from Theorem 1.8
that admits an immersed, Maslov-0, exact Lagrangian filling F p

g with genus
g and p double points that cannot be obtained by Lagrangian surgery. Then
the filling F p

g does not admit a pre-singularity loop.

Remark 1.11. Given an embedded, orientable, exact Lagrangian filling L
with a pre-singularity loop γ ⊂ L that bounds a Lagrangian disk with in-
terior disjoint from L, one can shrink the Lagrangian disk to a point and
perform Lagrangian surgery in one of the two ways, as explained in Sec-
tion 3, to obtain two embedded exact Lagrangian fillings L1 and L2. Note
that L1 and L2 are smoothly isotopic but not Hamiltonian isotopic. This
has been employed to great effect in the construction of infinitely many ori-
entable embedded exact Lagrangian fillings for certain Legendrian links up
to Hamiltonian isotopy by [CZ22, Theorem 4.21]. Obstructing the existence
of pre-singularity loops allows one to understand when such constructions
are not possible. The obstruction tools that we construct however do not de-
termine which curves in L are pre-singularity loops. They also only provide
an upper bound on the number of pre-singularity loops γ in L.

Outline: In Section 2, we define immersed, Maslov-0, exact Lagrangian
cobordisms and the action and index of double points. In Section 3, we
review Lagrangian surgery and prove Theorem 1.1 by employing the theory
of Liouville and Weinstein structures. We then review concepts that are
used in proving Theorem 1.4 including the Chekanov-Eliashberg DGA, the
augmentation category, and the wrapped Floer theory for cobordisms, in
Sections 4, 5, and 6, respectively. In Section 5, the equivalence relation∼Aug+

is reviewed and the new definition of split-DGA homotopy is introduced. In
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Section 7, we integrate everything together and prove Theorem 1.4 as well
as the other obstructions provided by Propositions 1.6 and 1.7. Finally, in
Section 8, we apply Theorem 1.1 and Theorem 1.4 to prove Theorem 1.8:
for one of the families we count augmentations directly while for the other
family we apply the theory of rulings to count augmentations.
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2. Actions and indices of double points

In the first subsection, we define immersed, exact Lagrangian cobordisms
between Legendrian links and the action of a double point. In the second
subsection, we define the index of a double point.

2.1. Immersed Lagrangian cobordisms and the action of a double
point

Let Λ be a Legendrian knot or link in the standard contact manifold R
2n+1
std =

(R2n+1, kerα), where α = dz −

n∑

i=1

yi dxi and (x1, . . . , xn, y1, . . . , yn, z) are

the coordinates of R2n+1. There are two useful projections of Λ: the La-
grangian projection πxy(Λ) where πxy : R2n+1 → R2n, (x,y, z) → (x,y),
and the front projection πxz(Λ) where πxz : R

2n+1 → Rn+1, (x,y, z) →
(x, z), where x and y are (x1, . . . , xn) and (y1, . . . , yn). We will always as-
sume that Λ is chord generic, meaning that the self-intersection points of
πxy(Λ) consists of a finite number of transverse double points.

Now we define immersed, exact Lagrangian cobordisms between Leg-
endrian links, which are immersed manifolds with “cylindrical ends” over
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Legendrian links; see Figure 3. This extends the definition of embedded,
exact Lagrangian cobordisms of [EHK16, Definition 1.1].

Definition 2.1. Let Λ± be Legendrian links in R
2n−1
std . An immersed, ex-

act Lagrangian cobordism L from Λ− to Λ+ is an immersed, Lagrangian
submanifold in the symplectization, L = i(Σ) for a Lagrangian immersion
i : Σ → (Rt × R2n−1, d(etα)), such that for some N > 0,

1) L ∩ ([−N,N ]× R2n−1) is compact,

2) L ∩ ([N,∞)× R2n−1) = [N,∞)× Λ+,

3) L ∩ ((−∞,−N ]× R2n−1) = (−∞,−N ]× Λ−, and

4) there exists a function f : Σ → R and constants c± such that i∗
(
etα
)
=

df , where f |i−1((−∞,−N ]×Λ−) = c−, and f |i−1([N,∞)×Λ+) = c+.

Λ+

Λ−

L

N

−N

t

Figure 3. A schematic picture of an immersed, exact Lagrangian cobordism
L from Λ− to Λ+ with genus 1 and two double points.

Remark 2.2.

1) The function f in condition (4) in Definition 2.1 is a primitive of
L. Since Λ± are Legendrian, it follows that on the ends of L, the
primitive f is locally constant. The condition (4) enforces that when
Λ− (or Λ+) is not connected, the constant c− (or c+) does not vary
from component to component. By the addition of a constant, we can
always assume that c− = 0; this will be the convention that we use in
Section 6.
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2) Generically all immersion points of L are isolated, transverse double
points. In this paper, when we write L for an immersed exact La-
grangian cobordism we implicitly assume that it comes as the image
of an immersion i : Σ → R× R2n−1 satisfying the conditions in Defini-
tion 2.1 and that all the immersion points are isolated and transverse
double points.

Given an immersed, exact Lagrangian cobordism L ⊂ R× R2n−1 from
Λ− to Λ+, the primitive f guaranteed by Definition 2.1(4) allows one to
construct the Legendrian lift of L, defined as L̃ = {(i(q),−f(q))|q ∈ Σ}
in the contactization of

(
Rt × R2n−1, d(etα)

)
, which is the contact manifold(

(Rt × R2n−1)× Ru, du+ etα
)
. Double points of L are in one-to-one corre-

spondence with Reeb chords of L̃, which are trajectories of the Reeb vector
field ∂

∂u that begin and end on L̃.
The action of a double point X of L is defined to be the length of

the corresponding Reeb chord cX of L̃ starting at c− ∈ L̃ and ending at
c+ ∈ L̃, which is given by u(c+)− u(c−) ≥ 0. From our construction of L̃, if
X is the image of p1, p2 ∈ Σ the action of a double point X is the absolute
value of the difference of the primitives at p1, and p2: |f(p1)− f(p2)|.

Remark 2.3. For an immersed, exact Lagrangian cobordism L = i(Σ), the
primitive, as defined in Remark 2.2, is defined on Σ, f : Σ → R. When all
the double points of L have action 0, the primitive is a well-defined function
f : L→ R.

2.2. Maslov class and index of a double point

We now clarify what we mean by the index of a double point in an immersed,
Maslov-0, exact Lagrangian cobordism. Briefly, the index of a non-zero ac-
tion double point will be defined in a standard way using the Conley-Zehnder
index of the corresponding Reeb chord (of strictly positive length) in the
Legendrian lift. We then define the index of an action-0 double point of an
immersed Lagrangian.

2.2.1. Maslov index of a loop of Lagrangians and Maslov class
of a Lagrangian. First, notice that our Lagrangian cobordisms live in(
R× R2n−1, d(etα)

)
which is equivalent via an exact symplectic diffeomor-

phism to
(
R2n,

∑
dqi ∧ dpi

)
. Then, there is a standard way of associating

an integer, known as the Maslov index, to a smooth loop on an immersed,
Lagrangian submanifold in R2n; see, for example, [EES05a, Section 2.2].
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All examples of Lagrangian cobordisms that we consider in this paper have
Maslov class 0 (denoted Maslov-0), meaning that all loops have Maslov in-
dex 0. In particular, this implies that the Lagrangians are orientable since the
Maslov class modulo 2 is the first Stiefel–Whitney class. In general, Maslov-n
ensures a well-defined Zn-grading for generators of the Chekanov-Eliashberg
DGA (Section 4.1) and generators of the Cthulhu complex (Section 6.2); all
augmentations and chain maps are also Zn-graded.

2.2.2. Index of a double point. Consider an embedded, connected Leg-
endrian Λ ⊂ R2n+1 and its Lagrangian projection πxy(Λ) ⊂ R2n. Given a
Reeb chord c of Λ, a capping path γ along Λ from the point corresponding
to the end of the Reeb chord c+ to the start of the Reeb chord c− together
with a standard closure, as defined in [EES05a], gives rise to a smooth loop
of Lagrangian subspaces. The Maslov index of this loop defines the Conley-
Zehnder index of the Reeb chord c, denoted CZγ(c). When the Maslov
class of the Lagrangian πxy(Λ) is 0, the Conley-Zehnder index does not de-
pend on the choice of the capping path along Λ, and so we denote it CZ(c).
Given this, if L is an immersed, Maslov-0, exact Lagrangian with embedded,
Maslov-0, Legendrian lift L̃, a double point X of L lifts to a Reeb chord cX ,
and we define the index of X as

(2.1) ind(X) = CZ(cX)− 1.

For low-dimensional Legendrians, there is a combinatorial way to com-
pute the Conley-Zehnder index of a Reeb chord of Λ using a Maslov potential
on the front projection, πxz(Λ). Let Λ denote an embedded Legendrian knot
in R3

std (resp. R5
std) with generic front projection, and let Λsing be the subset

of Λ where the front projection is not an immersion, i.e. the preimage by
πxz of the set of cusp points (resp. cusp edges and swallow tails). If the
Lagrangian πxy(Λ) has Maslov class 0, a Maslov potential is a locally
constant map

µ : Λ/Λsing → Z,

such that near a cusp point, or cusp edge, the Maslov potential of the upper
sheet is 1 more than that of the lower sheet. The Maslov potential is well
defined up to a global shift by an integer. Now let c be a Reeb chord of Λ
from c− to c+. In a neighborhood of c+ (resp. c−), Λ is the 1-jet of a Morse
function fu (resp. fl) defined on a neighborhood of πx(c), and πx(c) is a
critical point of the function ful := fu − fl. Given a Maslov potential µ on
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Λ, we have

(2.2) CZ(c) = µ(u)− µ(l) + indful
(πx(c)),

where u and l are the sheets of Λ containing c+ and c− respectively, see
[EES05a, Lemma 3.4].

In the case when Λ is not connected, there is no capping path for Reeb
chords between two different components, so we need to make additional
choices, as explained in, for example, [EHK16, Section 3.1]. In particular, the
capping paths involve the choice of points in each component of Λ as well as
paths between the corresponding Lagrangian tangent spaces at these points.
The Conley-Zehnder index of a particular Reeb chord between components
depends on these choices, but for two such Reeb chords, the difference is
independent of the choices. One can again compute the index of a Reeb
chord combinatorially using Equation 2.2; the paths determine “the jump”
of Maslov potential between the two components Λi and Λj .

The above definition of the index of a Reeb chord applies to the case
where the Legendrian Λ is embedded, and so c± are distinct points of Λ
for each Reeb chord c. In other words, the double points of the Lagrangian
projection πxy(Λ) are all of strictly positive action. When Λ is immersed
and c is a Reeb chord of length 0, meaning c+ = c− (by assumption this
Reeb chord still corresponds to a transverse double point in the Lagrangian
projection), the Conley-Zehnder index may depend on the choice of capping
path even if πxy(Λ) has Maslov class 0. Indeed, for any non-trivial path
γ : [0, 1] → Λ from c = c± to itself starting on one sheet of Λ and coming
back to c along the other sheet, both γ and its reverse −γ are capping paths
for the Reeb chord c. Since in a neighborhood of c, Λ consists of two sheets
meeting tangentially at c, using Equation 2.2, we find that

CZ−γ(c) = n− CZγ(c),

where n is the dimension of the Legendrian. Thus if X is an action-0 double
point of an n-dimensional, exact Lagrangian L, and cX denotes the associ-
ated length 0 Reeb chord in the Legendrian lift, then comparing a capping
path γ and its reverse, we have that

indγ(X) = CZγ(cX)− 1 = (n− CZ−γ(cX))− 1

= n− 1− CZ−γ(cX) = n− 2− ind−γ(X).

For the author's personal use only.

For the author's personal use only.



✐

✐

“4-Pan” — 2024/10/1 — 1:18 — page 614 — #16
✐

✐

✐

✐

✐

✐

614 Capovilla-Searle, et al.

In particular, when n = 2, the index of X using a capping path γ or its
reverse differs by a sign:

indγ(X) = −ind−γ(X).

Definition 2.4. Suppose X is an action-0 double point in an n-
dimensional, immersed, Maslov-0, exact Lagrangian. The index of X is de-
fined to be the greater of indγ(X) and ind−γ(X), for any capping path γ for
cX . When n = 2, we have that ind(X) = |indγ(X)|.

The index of a double point arises when considering Legendrian Hopf
links.

Definition 2.5. The (n− 1)-dimensional Legendrian Hopf link Λk
H is

given by the intersection of the standard local model of an index-k double
point of an n-dimensional Lagrangian submanifold (namely, Rn ∪ iRn ⊂ Cn)
and the unit sphere S2n−1 with its standard contact structure.

For n = 2, we can give a more specific description of the 1-dimensional
Legendrian Hopf link Λk

H.

Example 2.6 (Hopf links). When n = 2, consider the Hopf link Λk
H given

by the intersection of the local model for an index-k double point of a La-
grangian surface (R2 ∪ iR2 ⊂ C2) and S3. We claim that, potentially after
a Legendrian isotopy, there is a front projection of Λk

H as shown in the
leftmost diagram in Figure 9, where the Maslov potential, near the right
cusps, from bottom to top, on the four strands is given by 0, 1, k + 1 and
k + 2 (up to a global addition of an integer). To see this correspondence for
Λ0
H, we will observe in Lemma 3.2 that in order to get a Maslov-0 exact

Lagrangian cobordism from another Maslov-0, immersed, exact Lagrangian
cobordism on which we perform Lagrangian surgery, the index of the double
point we surgered must be 0. The Hopf link corresponding to this double
point (link of the singularity) will thus admit an embedded, Malsov-0, exact
Lagrangian filling. From consideration on augmentations and using the Sei-
del’s isomorphism, see Example 4.3, one can check that Λ0

H is the only Hopf
link that bounds an embedded, Maslov-0, exact Lagrangian filling. Then, if
the double point is of index k, the difference in Maslov potential of the two
components of R2 ∪ iR2 must be k. Therefore, the boundary Λk

H inherits
the required Maslov potential from that of the surface R2 ∪ iR2. An explicit
Legendrian isotopy via Legendrian Reidemeister moves shows that Λk

H and
Λ−k
H are Legendrian isotopic.
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3. Lagrangian surgery

We start this section by reviewing the Lagrangian surgery operation on im-
mersed Lagrangian submanifolds, which was first defined for Lagrangian
surfaces by Lalonde and Sikorav in [LS91] and then generalized to higher
dimensions by Polterovich [Pol91]. We then prove Theorem 1.1, which trans-
lates the existence of immersed fillings into the existence of embedded cobor-
disms with the double points of action 0 being replaced by Hopf links.

3.1. Lagrangian surgery construction

In this subsection, our goal is to prove the following:

Proposition 3.1. If a Legendrian link Λ ⊂ R3
std admits an immersed,

Maslov-0, exact Lagrangian filling L of genus g with p double points such
that one of the double points has index 0 and action 0, then Λ also admits an
immersed, Maslov-0, exact Lagrangian filling L′ of genus g + 1 with p− 1
double points.

To resolve a double point X of a Lagrangian, we remove a small neigh-
borhood of X and glue back in a Lagrangian handle. In the setting where
the Lagrangian L is exact, we can understand Lagrangian surgery in terms
of the Legendrian lift L̃ of L. This is the approach taken in [CMP19, Sec-
tion 6.2] where Casals Murphy Presas give explicit parametrizations of two
Lagrangian handles that can be constructed to replace an action-0 double
point. The Legendrian lift of one of these handles can be seen as a “cusp-
sum”, and the Legendrian lift of the other can be seen as a “cone-sum”;
see Figure 4. These two Lagrangian surgeries are smoothly the same [Pol91,
Proposition 2]. Observe that L′ obtained from either of these surgeries is nec-
essarily exact since it is constructed through its Legendrian lift. The proof
of Proposition 3.1 then follows immediately from the next lemma that tells
us that if the double point has index 0, the Maslov-0 condition is preserved
under surgery.

Lemma 3.2. (cf. [Pol91, CMP19]) Suppose L is an immersed, Maslov-0,
exact Lagrangian surface that contains an action-0 double point X; let L′ de-
note an exact Lagrangian obtained from one of the two Lagrangian surgeries
that correspond to the Legendrian “cusp-sum” or “cone-sum” resolutions of
the lift described above. If the index of X is 0, then L′ has Maslov class 0.
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t

x

t

x

y

u

Figure 4. On the top row, left side, are schematized πxy slices of the La-
grangian L ⊂ Rt × R3 in a neighborhood of a double point, and on the top
right are slices of the Lagrangian obtained after the two possible handle
attachments. The bottom row, left side, schematizes the Legendrian lift
L̃ ⊂ Rt × R3 × Ru of L and on the right the Legendrian lifts of each handle
attachment.

Proof. The Maslov class of L′ is 0 if and only if its Legendrian lift L̃′ admits
a (Z-valued) Maslov potential. Before surgery, L has Maslov class 0 so its lift
L̃ admits a Maslov potential µ. In the lower left model shown in Figure 4,
denote the upper and lower sheets of L̃ by u and ℓ respectively. For both the
cusp edge and the cone singularity cases, the Maslov potential µ can be “ex-
tended” after surgery to L̃′ if and only if µ(u)− µ(ℓ) = 1, (see also [DR11,
Figure 3] for the cusp edges arising after perturbing the cone). The condi-
tion µ(u)− µ(ℓ) = 1 is equivalent to the condition ind(X) = 0 according to
Definition 2.4 and Formulas (2.2) and (2.1). □

Definition 3.3. Let F p
g denote an immersed, Maslov-0, exact Lagrangian

filling F p
g of a Legendrian Λ with genus g and p double points of indices

i1, . . . , ip and actions a1, . . . , ap. We say that F p
g arises from Lagrangian

surgery if there exists an immersed, Maslov-0, exact Lagrangian filling F p+1
g−1

of Λ with genus g − 1 and p+ 1 double points such that

1) p of the double points have indices i1, . . . , ip and actions a1, . . . , ap,

2) there exists a double point x0 of index 0 and action 0, and

3) the Lagrangian surgery corresponding to the Legendrian cusp-sum or
cone-sum at x0 produces F p

g .
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If there is no such Lagrangian filling F p+1
g−1 , then we say that F p

g does not
arise from Lagrangian surgery.

3.2. Proof of Theorem 1.1

In [Cha15, Theorem 1.3] Chantraine showed that the existence of an im-
mersed, exact Lagrangian filling of Λ with a single action-0 double point
implies the existence of an embedded exact Lagrangian cobordism from a
Hopf link to Λ. In this section, we prove Theorem 1.1, which generalizes this
result to more general cobordisms, more double points, and higher dimen-
sions.

The proof of Theorem 1.1 will use the theory of Liouville structures.
Below we briefly describe some of the key terms. See, for example, [CE12,
Chapters 11 and 12] for more details. A 1-form λ on a manifold M such
that ω = dλ is symplectic is called a Liouville form; the associated ω-
dual vector field V , defined by iV ω = λ, is the Liouville vector field of
λ. A Liouville domain, (W,ω, V ), is a compact manifold with bound-
ary, W , equipped with an exact symplectic structure ω = dλ such that the
associated Liouville vector field V points outward along ∂W . The bound-
ary ∂W is a contact manifold with contact form α := λ|∂W . A Liouville
manifold is a manifold M together with a Liouville form λ, equivalently
a triple (M,ω = dλ, V ), such that V is complete and M admits an ex-
haustion M = ∪∞

k=1W
k where (W k, ω, V ) are Liouville domains. The skele-

ton of a Liouville manifold (M,ω = dλ, V ) is the isotropic set of points
that do not escape to infinity under the Liouville flow. More concretely,
Skel(M,ω, V ) = ∪∞

k=1 ∩t>0 ϕ
−1(W k), where ∪∞

k=1W
k is an exhaustion ofM ,

and ϕt :M →M is the flow along V for time t. A Liouville manifold is ob-
tained from a Liouville domain W by attaching the semi-infinite cylinder
([0,∞)× ∂W ) to W and extending the Liouville form by etα. For example,

(3.1)

(
R
2n, ωstd =

∑
dqi ∧ dpi, Vrad =

1

2

n∑

i=1

(
qi
∂

∂qi
+ pi

∂

∂pi

))

is a Liouville manifold. In a Liouville manifold (M,ω, V ), any hypersur-

face Σ
i
→֒M transverse to V is a contact manifold, with contact form given

by α = i∗λ. For any Legendrian Λ ⊂ Σ, flowing Λ along V defines a La-
grangian that is cylindrical over Λ. Weinstein domains are Liouville do-
mains with a compatible Morse handlebody decomposition. For k ≤ n, a
2n-dimensional Weinstein handle of index k has underlying Liouville
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domain given as
(
Bk × B2n−k, ωstd, Vk

)
, where

ωstd =

n∑

i=1

dqi ∧ dpi,

Vk =

k∑

i=1

(
−qi

∂

∂qi
+ 2pi

∂

∂pi

)
+

1

2

n∑

i=k+1

(
qi
∂

∂qi
+ pi

∂

∂pi

)
.

The core (respectively, cocore) of the k-handle is Bk × {0} (respectively,
{0} × B2n−k) and the handle has attaching sphere given by the boundary
of the core, Sk−1 × {0}. It is possible to build Weinstein cobordisms via at-
taching handles by gluing the isotropic attaching sphere to isotropic spheres
in the contact level sets, [CE12, Proposition 11.13].

Proof of Theorem 1.1. Let L× be an immersed, Maslov-0, exact Lagrangian
cobordism from Λ− to Λ+ with p double points, m of which, x1, . . . , xm,
have action 0. By Definition 2.1, we know that the value of the primitive
is constant along all components of Λ−. For the reader’s convenience, we
outline the argument.

1) Map (Rt × R2n−1, d(etα)) to (R2n − {ray}, ωstd =
∑
dqi ∧ dpi) ⊂

(R2n, ωstd) with an exact symplectomorphism so that L× is sent to
an exact Lagrangian L̃× that is cylindrical outside of B0(ρ+) and in-
side B0(ρ−), where B0(ρ) is the standard Euclidean ball centered at 0
of radius ρ.

2) Change the Liouville structure on R2n from (ωstd, Vrad) to a Liouville
structure (ωstd, V

rad
# ) so that a “multi-dumbbell region” D# ⊂ B0(ρ−)

has a Liouville structure obtained from attaching m “exterior” We-
instein 0-handles to a “center” Weinstein 0-handle via m Weinstein
1-handles.

3) Apply a Hamiltonian isotopy to drag the double points of L̃× to the
center of the exterior 0-handles of D# and move L̃× to agree with
standard intersecting Lagrangian disks near each double point. Now
L̃× ∩ ∂D# = Λ̃− consists of the disjoint union of m Legendrian Hopf
links and the Legendrian link corresponding to Λ−.

4) By modifying V rad
# inside D#, we change the Liouville structure from

(ωstd, V
rad
# ) to (ωstd, V0) so that V0 only vanishes at the origin. Further-

more, we also ensure that on a small ball B0(ϵ) ⊂ Int(D#), V0 agrees
with the radial Liouville structure. The flow of the Liouville vector
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field V0 over the Legendrian Λ̃− defines an exact Lagrangian cylin-
der LV0

. We construct a new, immersed, Maslov-0, exact Lagrangian
cobordism L̂ with only (p−m) double points by replacing L̃× ∩ IntD#

with the Lagrangian LV0
∩ (D# \ {0}). Since ∂(B0(ϵ)) is transverse to

V0, Λ̂− = L̂ ∩ ∂(ψ1(B0(ϵ)) is Legendrian consists of κ(Λ−) and m copy
of Hopf link. The Legendrian Λ̂− is the new negative end of L̂ even
though the primitives on κ(Λ−) and the Hopf links may not agree with
each other.

5) Sard’s Theorem guarantees the existence of a trajectory of V0 that
avoids L̂. This allows us to map the Lagrangian cobordism L̂ back
to an immersed, Maslov-0, exact Lagrangian cobordism L ⊂ (Rt ×
R2n−1, d(etα)) with only (p−m) double points. By applying another
Hamiltonian isotopy, we can guarantee that the primitive agrees with
the same constant on all components of the negative end.

We now give more details for these steps.
Step 1: As shown in, for example, [Gei08, Proposition 2.1.8] there is a

contactomorphism

κ : (R2n−1, kerα) →

(
S2n−1 − {pt}, ker

(
1

2

(∑
qidpi − pidqi

)))
.

This contactomorphism lifts to an exact symplectomorphism between the
symplectizations:

κ̃ : (Rt × R
2n−1, d(etα)) →

(
R
2n − {ray}, ωstd =

∑
dqi ∧ dpi

)

κ̃(t, p) 7→ etκ(p).

We can view the image of κ̃ as a subset of the Liouville manifold
(R2n, ωstd, Vrad), as defined in Equation (3.1). Then, L̃× := κ̃(L×) is an im-
mersed, Maslov-0, exact Lagrangian surface that is cylindrical over the Leg-
endrians κ(Λ±) with respect to the radial Liouville vector field Vrad. In
particular, if L× is cylindrical outside t±, there exist ρ± such that L̃× is
cylindrical outside B0 (ρ+) and inside B0(ρ−), which are balls with respect
to the standard Euclidean metric of radius ρ± centered at the origin.

Step 2: Choose y1, . . . , ym ∈ B0(ρ−), and consider balls By1
, . . . ,Bym

⊂
B0(ρ−) centered at y1, . . . , ym, and attach each of these balls via radial
paths δ1, . . . , δm to a disjoint center ball B0 ⊂ B0(ρ−) centered at the ori-
gin. View the balls B0 and Byk

, k = 1, . . . ,m, as Weinstein 0-handles and
construct m Weinstein 1-handles with core δk. Thus, it is possible to glue
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these Weinstein structures together to obtain a Weinstein structure on a
neighborhood of a dumbbell region D#, [CE12, Proposition 11.13]; see Fig-
ure 5 for a schematic picture. Let (D#, ωstd, V#) denote the resulting Liou-
ville domain. Now we define a new Liouville structure (R2n, ωstd, V

rad
# ) that

agrees with (ωstd, Vrad) outside a neighborhood of D# and with the Liou-
ville structure (ωstd, V#) on D#. Let N(D#) denote a contractible neigh-
borhood of D# where V# is defined. Let λrad and λ# denote the Liouville
1-forms for Vrad and V# in (R2n, ωstd). Since d(λ# − λrad) = ωstd − ωstd = 0,
and all closed 1-forms on N(D#) are exact, we know λ# − λrad = dH for
some function H : N(D#) → R. Let σ be a smooth bump function for D#

supported on N(D#): σ(p) = 1 for all p ∈ D#, and suppσ ⊂ N(D#). Then
consider λrad# = λrad + d(σH). On D#, λ

rad
# = λ#, while on the comple-

ment of N(D#), λ
rad
# = λrad. By construction, λrad# is a Liouville 1-form

of (R2n, ωstd), so it provides a uniquely defined Liouville vector field V rad
#

on (R2n, ωstd). By construction of λrad# , L̃ is still exact in the new Liouville

manifold (R2n, ωstd, V
rad
# ).

Step 3: By the n-transitivity of Hamiltonian isotopies, see for exam-
ple [Boo69, Theorem A], we can assume that after applying a compactly
supported Hamiltonian isotopy the double points xk are at the point yk
for k = 1, . . . ,m. By Moser’s arguments (as in, for example, [MS95, Sec-
tion 3.3]), we can further assume that, after applying a Hamiltonian isotopy,
the immersed L̃× agrees with standard intersecting Lagrangian disks pass-
ing through yk parallel to Rn and iRn. Then Λ̃− := L̃× ∩ ∂D# consists of m

Legendrian Hopf link and the Legendrian κ(Λ−), and the immersed L̃× is
cylindrical over the Legendrians κ(Λ±). By exactness of L̃×, λstd# |L̃× = df̃ ,

for f̃ : Σ → R, where L̃× is the immersed image of Σ. Observe that on the
intersecting Lagrangian disks at yk, λ

std
# = 0. Thus f̃ is constant on each of

these disks, and this constant must agree with f̃(yk). Letting f̃(yk) = ck,
k = 1, . . . ,m, we then know that the primitive restricts to the constant ck
on the k-th Hopf link in Λ̃−. By hypothesis, f̃ is constant on the Legendrian
κ(Λ−) ⊂ ∂B0 ∩ ∂D#; we denote this constant by c0.

Step 4: First, we construct a new Liouville vector filed V0. By construc-
tion, the skeleton of V rad

# , Skel(V rad
# ), consists of the origin, the points

yk, and the paths δk between the origin and yk for k = 1, . . . ,m. Choose
ϵ > 0 such that B0(ϵ) ⊂ IntD#, and fix an open neighborhood N0 ⊂ IntD#

containing Skel(V rad
# ) ∪ B0(ϵ). We will change the Liouville structure from

(R2n, ωstd = dλstd, V
rad
# ) to (R2n, ωstd = dλ0, V0) where V0 agrees with the

radial Liouville vector field Vrad (colored in blue) on N0, and V0 agrees with
V rad
# (colored in black) on R2n \ IntD# as shown in Figure 6.
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B0(ρ−)

L̃×

κ(Λ−)

N(D#)

D#

y1
y2

Figure 5. A schematic of the dumbbell region D# ⊂ IntB0(ρ−).

Figure 6. The Liouville vector field V0 consists of three parts that are colored
in blue, green and black respectively.

Since both λrad and λrad# are Liouville 1-forms for (R2n, ωstd), then,

as argued in Step 3, λrad − λrad# = dH0 for some function H0 : R
2n → R.

An important observation is that H0 is only determined up to a global
shift. Let σ0 : R

2n → [0, 1] be a smooth bump function for N0 supported
in IntD# : σ0(p) ≡ 1 for all p ∈ N0, suppσ0 ⊂ IntD#. Now consider λ0 =
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Figure 7. The Lagrangian L̂ is constructed in two parts: part of L̃× colored
in red and LV0

colored in green.

λrad# + d(σ0H0). On N0, λ0 = λrad, while on the complement of IntD#, we

have that λ0 = λrad# . By construction λ0 is a Liouville 1-form of (R2n, ωstd)

so it provides a uniquely defined Liouville vector field V0 on (R2n, ωstd).
We now show that on D#, we can choose λ0 and H0 well enough so

that V0 vanishes only at the origin. First observe that on N0, V0 = Vrad and
thus V0 only vanishes at the origin within this subset. All that remains to
be shown is that, with a good choice of λ0 and H0, we can ensure V0 ̸= 0
on D# \N0. Observe that, with respect to the standard almost complex
structure J , ι−J∇(σ0H0)ωstd = d(σ0H0). Also note that V rad

# = V# on D# \
N0. Hence, to show V0 = V# − J∇(σ0H0) does not vanish, we only need to
show V# ̸= J∇(σ0H0) on D# \N0. A calculation for the right side shows
that

−J∇(σ0H0) = −σ0J∇H0 −H0J∇σ0

= σ0(Vrad − V#) +H0(−J∇σ0), on D# \N0

where the last equation follows from the fact that ι−J∇H0
ωstd = dH0 =

λrad − λ# on D# \N0. We can choose σ0 such that ∇σ0 is parallel to −V#,
and thus −J∇σ0 is parallel to −JV#. Our goal is to show that no point p
in D#\N0 satisfies σ0(Vrad − V#) +H0(−J∇σ0) = −V#, which implies that
at p the following three properties hold at the same time.
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1) Vrad − V# is in the 2-plane spanned by V# and JV#, and thus Vrad is
contained in the 2-plane spanned by V# and JV#,

2) ⟨σ0(Vrad − V#), V#⟩ = −∥V#∥
2, and

3) ⟨σ0(Vrad − V#), JV#⟩JV# +H0(−J∇σ0) = 0.

Note that conditions (1) and (2) are closed conditions and thus the set of
points in D# \N0 that satisfy the first two conditions is a bounded closed
set. By globally shifting H0 by some constant, we can ensure that all points
in D# \N0 that satisfy the first two conditions can not satisfy the third one.
Thus, we finish proving that V0 only vanish at the origin in D#.

Next, we construct a new, immersed, Maslov-0, exact Lagrangian cobor-
dism L̂ in (R2n, ωstd = dλ0) by replacing L̃× ∩ IntD# with a Lagrangian LV0

formed by the trajectories of −V0 in D# − {0} through Λ̃− ⊂ ∂D#, see Fig-
ure 7. The fact that LV0

is Lagrangian implies that λ0 = 0 on TLV0
since

λ0(w) = ωstd(V0, w) = 0 for any vector w ∈ TLV0
. Thus LV0

is exact and so is
L̂. Since ∂(B0(ϵ)) is transverse to V0, Λ̂− = L̂ ∩ ∂(B0(ϵ)) is Legendrian. The
fact that λ0|TLV0

= 0 implies the primitive of LV0
is constant on each con-

nected component and thus evaluates to the same constants c0, c1, . . . , cm on
the components of Λ̂− (as was the case for the evaluation of the primitive f̃
on all components of the Legendrian Λ̃− of L̃×). Moreover, since the Maslov
potential of the k-th Hopf link Λik

H is inherited from the Maslov potential of

L̃×, replacing part of the surface does not affect the Maslov-0 condition.

Figure 8. A schematic picture for the map κ̃−1
0 .

For the author's personal use only.

For the author's personal use only.



✐

✐

“4-Pan” — 2024/10/1 — 1:18 — page 624 — #26
✐

✐

✐

✐

✐

✐

624 Capovilla-Searle, et al.

Step 5: We now send L̂ from in (R2n, ωstd = dλ0) back to (Rt ×
R2n−1, d(etα)). Similar to the map κ in Step 1, we have a contactomorphism

κ0 : (R
2n−1, kerα) → (∂(B0(ϵ))− {pt}, kerλ0) .

This contactomorphism lifts to an exact symplectomorphism between the
symplectizations via the flow lines ψV0

t of V0:

κ̃0 : (Rt × R
2n−1, d(etα)) →

(
R
2n − {γ0}, ωstd = dλ0

)

κ̃0(t, p) 7→ ψV0

t (κ(p)),

where γ0 is a trajectory of V0 over the point taken from ∂(B0(ϵ)), see Fig-
ure 8. Thus to send L̂ back through κ̃−1

0 , all we need to do is to find a

trajectory γ0 of V0 that does not intersect L̂.
We can ensure the existence of γ0 for the following reason. Note that

L̂ is a Lagrangian immersion i(Σ) for i : Σ → R2n − {0}, where Σ is an n-
dimensional embedded surface. We can project L̂ to ∂(B0(ϵ)) though the flow
line of V0 and get a smooth map from Σ to S2n−1. By Sard’s Theorem, this
map cannot be surjective for n > 1, and therefore we can always find a point
q on ∂(B0(ϵ)) that is not on the image of Σ and thus the preimage γ0 of q does
not intersect L̂. Once back in (Rt × R2n−1, d(etα)), by a Hamiltonian isotopy
we can adjust the primitives to be the same constant on all components at
the negative end (see, for example, [CDRGG20, Section 10.1]). Thus we get
an exact, Maslov 0, Lagrangian cobordism L with genus g and p−m double
points from

⊔m
k=1 Λ

ik
H ∪ Λ− to Λ+. □

4. Legendrian contact homology

In this section we recall the definition of Legendrian contact homology, which
was originally formulated by Chekanov [Che02] and Eliashberg [Eli98]. We
recall also the definition of augmentations and of linearized and bilinearized
Legendrian contact homology. Throughout this section, we follow notations
and conventions of [CDRGG20] and refer to this paper for more details.
More details about the situation when coefficients are taken in a field can
be found, for example, in [EES05b] or [EN22].
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4.1. Chekanov-Eliashberg DGA

Here we give the key definitions and set the notation that we will use. A care-
ful description of the Chekanov-Eliashberg DGA can be found, for example,
in [EN22, CDRGG20].

The Chekanov-Eliashberg differential graded algebra (DGA) of
Λ, (A(Λ), ∂) is the unital, graded algebra over a commutative ring F gen-
erated by Reeb chords of Λ. Let R(Λ) denote the set of Reeb chords of Λ.
The grading on A(Λ) is defined on the Reeb chord generators by

(4.1) |c| = CZ(c)− 1,

where CZ(c) is as described in Section 2.2.2. The differential ∂ on A(Λ)
is defined by a count of rigid pseudo-holomorphic disks in the symplec-
tization (Rt × R3, d(etα)), with boundary on R× Λ. For any Reeb chords
a, b1, . . . , bm ∈ R(Λ), and any almost complex structure J which is a cylin-
drical lift of an admissible almost complex structure on R2 (see [CDRGG20,

Section 2.2]), define the LCH moduli space M̃R×Λ
J (a; b1, . . . , bm) to be the

space of J-holomorphic maps u : (D2
m+1, ∂D

2
m+1) → (R× R3,R× Λ), with

a positive asymptotic to the Reeb chord a and negative asymptotics to the
Reeb chords b1, . . . , bm, up to conformal reparametrization of the domain;
see [CDRGG20, §3.2.3]. This moduli space admits an R-action by translation
along the symplectization direction; we let

MR×Λ
J (a; b1, . . . , bm)

denote the quotient of M̃R×Λ
J (a; b1, . . . , bm) by R. A disk u ∈

MR×Λ
J (a; b1, . . . , bm) is called rigid if dimMR×Λ

J (a; b1, . . . , bm) = 0. Com-
pactness results ensure that there are finitely many rigid holomorphic disks,
which are used to define the differential ∂:

∂(a) =
∑

dim(MR×Λ
J (a;b1,...,bm))=0

|MR×Λ
J (a; b1, . . . , bm)|b1 . . . bm.

The Legendrian contact homology of Λ, denoted LCH∗(Λ), is the ho-
mology of (A(Λ), ∂).

Example 4.1 (DGA of Hopf links). Consider the Hopf link Λk
H whose

front and Lagrangian projections as well as Maslov potential are depicted
in Figure 9. The algebra A(Λk

H) is generated by four Reeb chords a1, a2,
b1 and b2 with |ai| = 1 and |b1| = −|b2| = k. Using results of [DR16], the
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0

1

k + 1

k + 2

Figure 9. The front and Lagrangian projections of Λk
H.

differential as described above can be computed in a combinatorial way (see
for example in [Che02, EN22]), and the non-trivial part of the differential is
given by ∂a1 = b1b2 and ∂a2 = b2b1.

4.2. Augmentations

In this section, we review how augmentations, first used in [Che02], can be
used to construct a variety of “linearizations” of Legendrian contact homol-
ogy.

First observe that a commutative ring F can be considered as a DGA,
where all elements of F have degree 0 and the differential is identically 0.
Then an augmentation of A(Λ) to F is a DGA-morphism, which is a
graded algebra homomorphism that preserves the differential. In particular,
ϵ : (A(Λ), ∂) → (F, 0) is a chain map such that ϵ(1) = 1, and for any element
a of nonzero degree, ϵ(a) = 0.

Definition 4.2. Aug(Λ;F) will denote the set of augmentations of A(Λ) to
F. As shown in [EHK16], an embedded, Maslov-0, exact Lagrangian cobor-
dism L from Λ− to Λ+ induces a DGA map ΦL : A(Λ+) → A(Λ−) and thus
a map:

FL : Aug(Λ−;F) → Aug(Λ+;F),

ϵ− 7→ ϵ− ◦ ΦL.

As above, let R(Λ) denote the set of Reeb chords of Λ, and then let
C(Λ) denote the graded F-module generated by elements in R(Λ), where
the grading is as in Equation (4.1). Given an augmentation ϵ of A(Λ), the
linearized Legendrian contact homology of Λ, denoted LCHϵ

∗(Λ), is
the homology of the chain complex (C(Λ), ∂ϵ) with

∂ϵ(a) =
∑

dim(MR×Λ
J (a;pbq))=0

|MR×Λ
J (a;pbq)|ϵ(p)ϵ(q)b,

where a, b ∈ R(Λ), and p,q are words of Reeb chords.
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Example 4.3 (Augmentations of Hopf Links). Continuing with Ex-
ample 4.1, one computes that the Hopf link Λ0

H admits three augmentations
to Z2 defined by sending the pair of chords (b1, b2) to (0, 0), (1, 0) and (0, 1),
while the Hopf links Λk

H for k ̸= 0 admit only the augmentation sending
all chords to 0. One can now complete the explanation of the claim in Ex-
ample 2.6, namely that Λ0

H is the only Hopf link admitting an embedded,
Maslov-0, exact Lagrangian filling. If a Hopf link ΛH bounds a connected,
embedded, Maslov-0, exact Lagrangian filling L, then by Seidel’s isomor-
phism [Ekh12, DR16] the Poincaré polynomial of the Legendrian contact
homology linearized by the augmentation induced by L must be of the form
t+ 2g(L) + 1, where g(L) is the genus of L. The LCH polynomial of Λk

H is
2t+ tk + t−k when k ̸= 0 and is 2t+ 2 or t+ 1 when k = 0 (depending on
the choice of augmentation). Thus, when k ̸= 0, Seidel’s isomorphism ob-
structs the existence of a connected, embedded, exact, Maslov-0 Lagrangian
filling of Λk

H.

In fact, one can use two augmentations to linearize: given augmentations
ϵ1, ϵ2 of Λ, the bilinearized Legendrian contact homology LCHϵ1,ϵ2

∗ (Λ),
defined first in [BC14], is the homology of (C(Λ), ∂ϵ

1,ϵ2), where

∂ϵ
1,ϵ2(a) =

∑

dim(MR×Λ
J (a;pbq))=0

|MR×Λ
J (a;pbq)|ϵ1(p)ϵ2(q)b.

In Section 5 and 6, we will be using moduli spaces that are defined using
a partition of a Legendrian link into components. In the case Λ = Λ1 ∪ Λ2,
where Λ1,Λ2 are Legendrian links, denote R(Λi,Λj) the set of Reeb chords
from Λj to Λi. If c ∈ R(Λi,Λj) with i ̸= j, we call c a mixed Reeb chord,
otherwise we call c a pure Reeb chord. Denote C(Λ1,Λ2) the graded F-
module generated by elements in R(Λ1,Λ2). Augmentations ϵ1 of Λ1 and ϵ2

of Λ2 induce an augmentation ϵ = (ϵ1, ϵ2) of Λ1 ∪ Λ2 that agrees with ϵi on
pure chords of Λi, for i = 1, 2, and vanishes on mixed Reeb chords. Then,
the differential of the Legendrian contact homology of Λ linearized by ϵ,
and restricted to mixed Reeb chords in R(Λ1,Λ2) is defined via a count of
J-holomorphic disks in mixed LCH moduli spaces:

∂ϵ(a12)=
∑

dim
(
M

R×(Λ1∪Λ2)
J (a12;p11b12q22)

)
=0

|M
R×(Λ1∪Λ2)
J (a12;p11b12q22)|ϵ1(p11)ϵ2(q22)b12,

where a12, b12 ∈ R(Λ1,Λ2), p11 is a word of Reeb chords of Λ1, and q22 is a
word of Reeb chords of Λ2. Note that

(
C(Λ1,Λ2), ∂ϵ|C(Λ1,Λ2)

)
is a subcomplex

of (C(Λ), ∂ϵ).
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5. The augmentation category

In this section, we give a brief summary of the augmentation category mainly
following [NRS+20]. We then define a new notion of split-DGA homotopy for
augmentations of multicomponent links. This gives rise to a simple criterion,
Corollary 5.6, to determine when two augmentations are not equivalent in
Aug+, which will be used frequently in Section 8 when applying Theorem 1.4.

5.1. Definitions

Let Λ be a Legendrian knot or link in R3
std. Assume that the Lagrangian

projection πxy(Λ) has Maslov class 0 and that each connected component of
Λ is decorated with a base point.

The augmentation category Aug+(Λ) is an A∞-category whose ob-
jects are elements of Aug(Λ;F), namely augmentations of the Chekanov-
Eliashberg DGA A(Λ) to F. In order to define the morphisms in Aug+(Λ),
we use the DGA of a 2-copy of Λ, denoted by 2Λ = Λ1 ∪ Λ2. The copy Λ1 is
a perturbed push-off of Λ2 in the z-direction, perturbed via a positive Morse
function f : Λ → R+ having one maximum and one minimum on each com-
ponent of Λ, located near its base point as in Figure 10. Both Λ1 and Λ2

have the same Maslov potential. The Lagrangian projection of 2Λ for the
max tb right-handed (positive) trefoil is shown in Figure 11.

For any two objects ϵ1, ϵ2 ∈ Aug(Λ;F) of Aug+(Λ), the morphism space
from ϵ1 to ϵ2, denoted Hom+(ϵ

1, ϵ2), is the graded F-module generated by
the Reeb chords in R(Λ1,Λ2) of 2Λ, with the grading of generators shifted
up by 1, commonly denoted as

Hom+(ϵ
1, ϵ2) := C(Λ1,Λ2)[1].

We use | · | to denote the gradings in the F-module C(Λ), as given in Equa-
tion (4.1), and | · |+ to denote the shifted gradings in Hom+(ϵ

1, ϵ2).
Taking a closer look at the generator set of Hom+(ϵ

1, ϵ2), we note that
for each Reeb chord a of Λ, there is a corresponding mixed Reeb chord
a12 ∈ R(Λ1,Λ2) of 2Λ with grading given by

|a12|+ = |a|+ 1.

The other generators of Hom+(ϵ
1, ϵ2) are the Morse Reeb chords, corre-

sponding to the critical points of the Morse function f . Assume Λ has m
components, and denote the Morse Reeb chords corresponding to the max-
ima of f by x12i and the ones corresponding to the minima of f by y12i , for
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∗
x

y

Figure 10. The local model near the base point ∗ of each component of Λ,
with the arrow representing the orientation of Λ, and x (y) denoting the
maximum (minimum) of the function f .

Λ2

Λ1

Figure 11. The Lagrangian projection of the 2-copy 2Λ, where Λ is a max
tb positive trefoil.

i = 1, . . . ,m. By Equations (4.1) and (2.2), we find

(5.1) |x12i |+ = 1, and |y12i |+ = 0.

As a graded module, the morphism space Hom+(ϵ
1, ϵ2) does not depend

on ϵ1 or ϵ2, but the A∞ operators, called compositions,

mn : Hom+(ϵ
n, ϵn+1)⊗Hom+(ϵ

n−1, ϵn)⊗ · · · ⊗Hom+(ϵ
1, ϵ2)

→ Hom+(ϵ
1, ϵn+1)

do depend on the choice of augmentations ϵ1, . . . , ϵn+1. These A∞ operators
mn can be defined using the DGA of an (n+ 1)-copy of Λ. The (n+ 1)-copy
is perturbed in such a way that every Reeb chord generator of Hom+(ϵ

1, ϵ2)
has corresponding versions on consecutive pairs of the (n+ 1)-copy; see
[NRS+20, Figure 6]. We recall below the definitions of the operators m1

and m2 that will be used in this paper; see [NRS+20, Section 4] for details
of this construction.
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• The operator m1 : Hom+(ϵ
1, ϵ2) → Hom+(ϵ

1, ϵ2) is defined by a count
of rigid holomorphic disks with boundary on R× 2Λ = R× (Λ1 ∪ Λ2)
with one positive asymptotic and one negative asymptotic to Reeb
chords in R(Λ1,Λ2) and possibly some other negative asymptotics to
pure Reeb chords. Indeed,

m1(b
12) =

∑

dim(M(a12;p11b12q22))=0

|MR×(Λ1∪Λ2)(a12;p11b12q22)|ϵ1(p11)ϵ2(q22)a12,

where b12, a12 ∈ R(Λ1,Λ2), and p11, q22 are words of pure Reeb chords
in R(Λ1) and R(Λ2), respectively. The operator m1 is a degree 1 map
that satisfies m2

1 = 0, and we denote H∗Hom+(ϵ
1, ϵ2) the cohomology

of the complex (Hom+(ϵ
1, ϵ2),m1). In addition, one has the following

isomorphism from [NRS+20, Corollary 5.6]:

H∗Hom+(ϵ
1, ϵ2) ∼= LCHϵ1,ϵ2

1−∗ (Λ).

• To define the operator m2 : Hom+(ϵ
2, ϵ3)⊗Hom+(ϵ

1, ϵ2) →
Hom+(ϵ

1, ϵ3), we first consider the 3-copy 3Λ = Λ1 ∪ Λ2 ∪ Λ3,
where 3Λ is constructed such that for any i < j, the DGA of Λi ∪ Λj

is canonically identified with the DGA of 2Λ; see [NRS+20, Figure
6]. The operator m2 counts rigid holomorphic disks with boundary
on R× 3Λ, with a positive asymptotic to a Reeb chord in R(Λ1,Λ3),
two negative asymptotics to Reeb chords in R(Λ1,Λ2) and R(Λ2,Λ3)
respectively, and possibly additional negative asymptotics to pure
Reeb chords. More precisely,

m2(c
23, b12) =

∑

dim(M(a13;p11b12q22c23r33))=0

|MR×3Λ(a13;p11b12q22c23r33)|ϵ1(p11)ϵ2(q22)ϵ3(r33) a13,

where a13 ∈ R(Λ1,Λ3), b12 ∈ R(Λ1,Λ2), c23 ∈ R(Λ2,Λ3), and
p11,q22, r33 are words of pure chords. The operator m2 is of degree 0
and induces a product structure on the cohomology H∗Hom+:

m2 : H
iHom+(ϵ

2, ϵ3)⊗HjHom+(ϵ
1, ϵ2) → H i+jHom+(ϵ

1, ϵ3).

5.2. Unital A∞ category

A key property of Aug+(Λ) is that it is a strictly unital A∞ category:
for any ϵ, there is an element eϵ ∈ Hom+(ϵ, ϵ) with |eϵ|+ = 0 such that

• m1(eϵ) = 0;
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• for all a ∈ Hom+(ϵ, ϵ
′) and b ∈ Hom+(ϵ

′, ϵ),

m2(eϵ, b) = b, m2(a, eϵ) = a; and

• any higher order composition, mn for n ≥ 3 vanishes when eϵ is one of
the inputs.

In fact, if Λ has m components, the unit is given by

eϵ = −

m∑

i=1

y12i ∈ Hom+(ϵ, ϵ),

for y12i as defined in Equation (5.1). It follows that the induced cohomology
category H∗Aug+(Λ) is a unital category. This allows us to define a notion
of equivalence of two objects.

Definition 5.1. Two augmentations ϵ1 and ϵ2 of A(Λ) are equivalent in
the augmentation category Aug+(Λ), denoted by ϵ1 ∼Aug+ ϵ

2, if they are
isomorphic in H∗Aug+(Λ), that is, if there exist [α] ∈ H0Hom+(ϵ

1, ϵ2) and
[β] ∈ H0Hom+(ϵ

2, ϵ1) such that

m2([α], [β]) = [eϵ2 ] ∈ H0Hom+(ϵ
2, ϵ2),

and m2([β], [α]) = [eϵ1 ] ∈ H0Hom+(ϵ
1, ϵ1),

where [eϵi ] is the unit in H0Hom+(ϵ
i, ϵi) for i = 1, 2.

It can be difficult to show that two augmentations of Λ are not equivalent
using Definition 5.1. However, by relating this definition of equivalence to
the notion of DGA-homotopic augmentations, there is an easier criterion for
distinguishing non-equivalent augmentations; see Corollary 5.6.

An augmentation is a DGA morphism, and there is an established no-
tion of a homotopy between DGA morphisms; see, for example, [Kál05,
Section 2.3] and [NRS+20, Definition 5.15]. It is proved in [NRS+20, Propo-
sition 5.19] that if Λ is a Legendrian knot, then two augmentations are
DGA-homotopic if and only if they are equivalent in Aug+(Λ). In order to
obtain a similar result in the case where Λ is a Legendrian link, we use the
fact that the DGA of a Legendrian link has a “homotopy splitting,” which
was first defined by Mishachev [Mis03]. Before we explain this splitting of
the DGA for a Legendrian link, we give the general definition of a split DGA
and morphisms of split DGAs.
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Definition 5.2. A (unitary) split DGA (A∗∗, ∂∗∗) over F is an algebra
A∗∗ over F such that A∗∗ = ⊕n

j1,j2=1Aj1j2 , where

1) each Aj1j2 is a module over F,

2) there are bilinear multiplication maps Aj1j2 ×Aj3j4 → Aj1j4 that are
0 unless j2 = j3,

3) for all j, Ajj contains an element ej that acts as the identity under
multiplication, and

4) ∂∗∗ respects the splitting, namely ∂∗∗ : Aj1j2 → Aj1j2 , for all 1 ≤
j1, j2 ≤ n.

Given two split DGAs,
(
⊕n

i,j=1Aij , ∂
)

and
(
⊕m

i,j=1A
′
ij , ∂

′
)
, a split-DGA

morphism f : (⊕n
i,j=1Aij , ∂) → (⊕m

i,j=1A
′
ij , ∂

′) is a DGA morphism such
that for all i, j, there exist i′, j′ such that f(Aij) ⊂ A′

i′j′ . Observe that (F, 0)
can be viewed as a split DGA with no splitting.

The following is a new definition, which extends the definition of DGA
homotopy given, for example, in [NRS+20, Definition 5.15].

Definition 5.3. Given a unital, commutative ring F, let F∗ denote the set
of units. Two split-DGA morphisms f1, f2 : (⊕

n
i,j=1Aij , ∂) → (⊕m

i,j=1A
′
ij , ∂

′)
are split-DGA homotopic if there exists K : ⊕n

i,j=1Aij ,→ ⊕m
i,j=1A

′
ij such

that:

1) K is split, F-linear, and degree 1,

2) for all i, j there exists αi, αj ∈ F∗ such that for all a ∈ Aij ,

αif1(a)− αjf2(a) = ∂′K(a) +K∂(a), and

3) K(x · y) = K(x) · f2(y) + (−1)|x|f1(x) ·K(y), for all x, y ∈ ⊕n
i,j=1Aij .

Remark 5.4. 1) If αi = 1 for all i or F = Z2, then Definition 5.3 agrees
the usual definition of DGA homotopy.

2) If Λ has a single component, and ϵ1, ϵ2 are two augmentations of A(Λ),
then the existence of a DGA homotopy between ϵ1, ϵ2 is equivalent to
the existence of a split-DGA homotopy between ϵ1, ϵ2. It is immediate
to see that a DGA homotopy implies the existence of a split DGA
homotopy. In the other direction, a split DGA homotopy implies the
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existence of K and α ∈ F∗ satisfying

αf1(a)− αf2(a) = ∂′K +K∂, for all a ∈ A.

Then K ′ = α−1K is the desired DGA homotopy.

Given a Legendrian link Λ = (Λ1, . . . ,Λm), we can split what is essen-
tially a submodule of the Chekanov-Eliashberg DGA into m2 pieces that are
invariant under Legendrian isotopy as has been shown in, for example, [Ng03,
Definition 2.18] and [NT04, Section 2.4]). Let Aij be the module generated
by words of Reeb chords that begin on Λi and end on Λj , i.e. Reeb chords in
R(Λj ,Λi). If i = j we also add in an indeterminate ej . The differential ∂∗∗ is
defined on the generators a as follows: if the Reeb chord a begins and ends
on distinct components of Λ, then ∂∗∗(a) = ∂(a); if a is a Reeb chord that
begins and ends on the same component Λj of Λ, then replace any occur-
rence of 1 in ∂(a) by ej , that is, every holomorphic disk with boundary on
Λj with positive asymptotic to a and no negative asymptotics contributes
ej to ∂∗∗(a). Then ∂∗∗ extends to A∗∗ by applying the Leibniz rule and set-
ting ∂∗∗(ej) = 0, for all j. Augmentations ϵ : (A, ∂) → (F, 0) are in bijective
correspondence with split augmentations ϵ∗∗ : (A∗∗, ∂) → (F, 0): on any
Reeb chord generator a, ϵ(a) = ϵ∗∗(a) and ϵ(1) = 1 = ϵ∗∗(ej), for all j.

Using Definition 5.3, a slight modification of the proof of [NRS+20,
Proposition 5.19] gives the following proposition, whose proof is given in
Appendix A.

Proposition 5.5. Given a Legendrian link Λ ⊂ R3
std, two augmentations

ϵ1, ϵ2 : A(Λ) → F are equivalent in Aug+(Λ) if and only if the corresponding
split augmentations ϵ1∗∗ and ϵ2∗∗ are split-DGA homotopic.

Proposition 5.5 gives us a simple way to determine if two augmentations
are not equivalent in Aug+(Λ).

Corollary 5.6. Suppose that the Legendrian link Λ = (Λ1, . . . ,Λn) does not
have any degree −1 Reeb chords. Then any two augmentations ϵ1 and ϵ2 of
Λ are equivalent in Aug+(Λ) if and only if for all i, j ∈ {1, . . . , n} there
exist αi, αj ∈ F∗ such that αiϵ

1(a) = αjϵ
2(a), for all degree 0 Reeb chords

a ∈ R(Λj ,Λi). If F = Z2, then two augmentations are equivalent in Aug+(Λ)
if and only if they are identically the same.

Proof. Recall that the support of an augmentation is contained in the degree
0 portion of A(Λ). By Proposition 5.5, it suffices to show that when a Legen-
drian Λ does not have any degree −1 Reeb chords, ϵ1, ϵ2 : (A(Λ), ∂) → (F, 0)
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are split-DGA homotopic if and only if for all i, j there exist αi, αj ∈ F∗ such
that αiϵ

1(a)− αjϵ
2(a) = 0, for all degree 0 Reeb chords a ∈ R(Λj ,Λi). Sup-

pose ϵ1, ϵ2 are split-DGA homotopic via K : (A(Λ), ∂) → (F, 0). Since K is
degree 1 and F is in degree 0, K is supported in the degree −1 portion
of A(Λ), which since there are no −1 degree Reeb chords is spanned by
monomials of words length at least 2. Then an induction argument using
the condition (3) of Definition 5.3 tells us that K = 0. It follows that for an
arbitrary degree 0 Reeb chord a ∈ R(Λj ,Λi), αiϵ

1(a)− αjϵ
2(a) = 0. For the

other direction, if for all i, j ∈ {1, . . . , n} there exist αi, αj ∈ F∗ such that
αiϵ

1(a)− αjϵ
2(a) = 0, for all degree 0 Reeb chords a ∈ R(Λj ,Λi), by setting

K = 0, we get the desired split-DGA homotopy. □

Remark 5.7. Recall the map FL : Aug(Λ−;F) → Aug(Λ+;F) in Defini-
tion 4.2, induced by an embedded, Maslov-0, exact Lagrangian cobordism
L from Λ− to Λ+.

1) It is known that this map descends to

FL : Aug(Λ−;F)/ ∼DGA hom→ Aug(Λ+;F)/ ∼DGA hom,

where ∼DGA hom denotes the equivalence relation defined by DGA ho-
motopy: if K− is a DGA-homotopy between two augmentations ϵ1

and ϵ2 of Λ−, then K− ◦ ΦL is a DGA-homotopy between FL(ϵ
1)

and FL(ϵ
2). Thus, as observed in Remark 5.4 if Λ± are Legendrian

knots or if Λ± are Legendrian links and F = Z2, ∼Aug+ is the same as
∼DGA hom, and the map

FL : Aug(Λ−;F)/ ∼Aug+→ Aug(Λ+;F)/ ∼Aug+

exists.

2) In general the map FL does not descend to augmentations defined up
to equivalence by split-DGA homotopy. See the following example for
details.

Example 5.8. In this example, we show that there exists an embedded,
Maslov-0, exact Lagrangian cobordism L from a Hopf link to the trefoil
such that the Hopf link has two augmentations over Z that are split-DGA
homotopic, while their images under FL are not (split-)DGA homotopic
augmentations of the trefoil. See [ENS02] for a combinatorial definition of
the DGA over Z[t±1

1 , . . . , t±1
n ], and Section 4.2 of [CN21] for a combinatorial

definition of the DGA maps induced exact by pinch moves.

For the author's personal use only.

For the author's personal use only.



✐

✐

“4-Pan” — 2024/10/1 — 1:18 — page 635 — #37
✐

✐

✐

✐

✐

✐

Obstructions to reversing Lagrangian surgery 635

Λ+

t

Λ−

L

a1

a2

t

b1 b2 b3

a1

a2

t

−s
−1

s

b2 b3

∂+a1 = t−1 + b1 + b3 + b1b2b3

∂+a2 = 1− b1 − b3 − b3b2b1

∂+bi = 0

ΦL

ΦL(b1) = s

ΦL(b2) = b2 − s−1

ΦL(x) = x for x ̸= b1, b2

∂−a1 = t−1 + s(1 + b2b3)

∂−a2 = 1− (b3b2 + 1)s

∂+bi = 0

Figure 12. Example of a cobordism from a Hopf link to a trefoil and the
corresponding DGA differentials and DGA map.

Let L be the exact Lagrangian cobordism from the Hopf link Λ− to
the max-tb trefoil Λ+ given by pinching the Reeb chord b1 as shown in
Figure 12. The DGA A(Λ+) is a Z[t±1] tensor algebra generated by the
Reeb chords a1, a2, b1, b2, b3 and the DGA A(Λ−) is a Z[t±1, s±1] tensor
algebra over a1, a2, b2, b3 as labeled in Figure 12. The differentials ∂± and
the DGA map ΦL induced by the cobordism are described in Figure 12.
Note that augmentations ϵ1, ϵ2 of A(Λ−) that send (t, s, b2, b3) to (−1, 1, 1, 0)
and (−1, 1,−1, 0), respectively, are split-DGA homotopic. Indeed, since b2
is a mixed Reeb chord, and ∂−b2 = 0, then we can choose units α1 = 1 and
α2 = −1 such that

α1ϵ1(b2)− α2ϵ2(b2) = 1− 1 = 0,

so ϵ1 and ϵ2 are split-DGA homotopic. On the other hand, their in-
duced augmentations FL(ϵ1),FL(ϵ2) are augmentations of A(Λ+) that send
(t, b1, b2, b3) to (−1, 1, 0, 0) and (−1, 1,−2, 0). Since b2 is a pure Reeb chord
of Λ+ and ∂+b2 = 0, then FL(ϵ1) and FL(ϵ2) are DGA-homotopic only if
FL(ϵ1)(b2)−FL(ϵ2)(b2) = 0, which is not the case.
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6. Wrapped Floer theory

In this section we review the setup and some properties of Floer theory for
Lagrangian cobordisms as developed in [CDRGG20] for our setting of in-
terest. Namely, we consider the Cthulhu complex Cth(L1, L2) over a unital,
commutative ring F associated to a pair of transverse, embedded, Maslov-0,
exact Lagrangian cobordisms L1, L2. If F is not characteristic 2, we further
assume the cobordisms L1 and L2 are spin. Without loss of generality, we
assume that the constant value of the primitive of any cobordism we con-
sider vanishes on the negative end, i.e. c− = 0; see Remark 2.2. We review
the result established in [Pan17] that we can construct an isomorphism ϕ∗
between the cohomology of a quotient complex of the Cthulhu complex,
H∗(C−∞, d−∞), and H∗Hom+(ϵ

1
+, ϵ

2
+), see Equation (6.3). In fact, the co-

homology groups on both sides of this isomorphism possess a product struc-
ture, m−∞

2 ,m+
2 , and we review the fact, from [Leg20], that ϕ∗ preserves the

product structure, see Proposition 6.3. Understanding the definition ofm−∞
2

will be important in Section 7 where we will establish in Proposition 7.2,
the key result needed to prove Theorem 1.4.

6.1. A special pair

Let L be an embedded, Maslov-0, exact Lagrangian cobordism in the sym-
plectization of R3

std from Λ− to Λ+. Consider a perturbed 2-copy of L,
2L = L1 ∪ L2, where L1 is a push-off of L2 := L in the positive z-direction
via a Morse function F : L→ R+ such that L1 ∪ L2 on the two cylindrical
ends agrees with a cylinder over the 2-copies Λ1

± ∪ Λ2
± in the corresponding

Aug+ categories; for details see [Pan17]. In particular, the Morse function F
on [N,∞)× Λ+ and (−∞,−N ]× Λ− agrees with etf±, where f± are Morse
functions on Λ± that have the same critical points as the ones used in the
construction of 2Λ± in Aug+(Λ±); see Section 5.1. Moreover, we assume that
on
(
[−N,N ]× R3

)
∩ L the value of the Morse function F on each point is

less than the cobordism action of any pure Reeb chord γ of Λ−, given by
e−N

∫
γ α. Such an assumption is necessary in order to get the identifications

of complexes in Proposition 6.2 below.

Remark 6.1. We refer to [CDRGG20, Section 3.4.2] for more details on the
relation between the energy of pseudo-holomorphic disks with boundary on
L1 ∪ L2 and the action of intersection points and Reeb chords. In our special
pair case, intersection points in L1 ∩ L2 are in one-to-one correspondence
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with critical points of the Morse function F , and the action of p ∈ L1 ∩ L2

is given by the value of F at p ∈ L.

The particular type of perturbation used on the cylindrical ends implies
that the algebras A(Λ1

±) and A(Λ2
±) are canonically isomorphic: there are

canonical identifications of Reeb chords and the differentials agree under this
identification. An augmentation ϵ− of A(Λ2

−) gives under this identification
an augmentation of A(Λ1

−). Moreover, if the cobordisms L1 and L2 are
sufficiently C1-close, then they induce the same augmentation of A(Λ1

+)
and A(Λ2

+), i.e. ϵ− ◦ ΦL1 = ϵ− ◦ ΦL2 , under the canonical identification of
generators, see [CDRGG15, Theorem 2.15].

6.2. The Cthulhu complex Cth(L1, L2)

Given the special pair of cobordisms L1, L2 as above, for i = 1, 2 suppose
that ϵi− is an augmentation for A(Λi

−) and ϵ
i
+ = FLi(ϵi−) is the augmentation

of A(Λi
+) induced by ϵi− through Li. The Cthulhu complex Cth(L1, L2)

can be described as follows. It is a graded F-module generated by three types
of generators:

Cth(L1, L2) = C+(L
1, L2)⊕ C0(L

1, L2)⊕ C−(L
1, L2),

where

• C+(L
1, L2) = C(Λ1

+,Λ
2
+)[2] is the F-module generated by Reeb chords

from Λ2
+ to Λ1

+ with a grading shift, i.e. a Reeb chord a ∈ C+(L
1, L2)

has grading |a|Cth = |a|+ 2, for |a| as in Equation (4.1).

• C−(L
1, L2) = C(Λ1

−,Λ
2
−)[1].

• C0(L
1, L2) is the F-module generated by intersection points in L1 ∩

L2. The grading of intersection points is given by the Conley-Zehnder
index of the corresponding Reeb chords in the Legendrian lift, which
is the same as the grading in Lagrangian intersection homology.

We use the shortened notation Cth(L1, L2) = C+ ⊕ C0 ⊕ C−. The fact that
the Morse function F is positive implies, by energy restrictions, that the
differential d on Cth(L1, L2) is upper triangular [CDRGG20, Lemma 7.2]:

d =




d++ d+0 d+−

0 d00 d0−
0 0 d−−


 ,
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where each component is defined by a count of rigid pseudo-holomorphic
disks with boundary on L1 ∪ L2 that we now describe. Let J cyl, J adm be
respectively the sets of cylindrical and admissible almost complex structures
on (R× R3, d(etα)), defined as in [CDRGG20, Section 2.2].

1) The maps d±± are the bilinearized codifferentials with respect to
(ϵ1±, ϵ

2
±), as reviewed in Section 4.2, and therefore count rigid holomor-

phic disks with boundary on R× (Λ1
± ∪ Λ2

±) with one puncture pos-
itively asymptotic and one puncture negatively asymptotic to mixed
Reeb chords in R(Λ1

±,Λ
2
±). More explicitly,

d±±(b
12
± ) =

∑

dim

(
M

R×(Λ1
±

∪Λ2
±

)

J± (a12
± ;p11

± b12± q22
± )

)
=0

|M
R×(Λ1

±∪Λ2
±)

J± (a12± ;p11
± b

12
± q22

± )|ϵ1±(p
11
± )ϵ2±(q

22
± ) a12± ,

where J± ∈ J cyl, b12± , a12± are generators in C±, and p11
± , and q22

± are
words of pure Reeb chords of Λ1

± and Λ2
±, respectively.

2) The maps dij from Cj to Ci, for (i, j) = (+−), (+, 0), (0, 0) or (0,−),
are defined by a count of rigid holomorphic disks with boundary on
L1 ∪ L2 with a puncture positively asymptotic to a generator c+ of
Ci, a puncture negatively asymptotic to a generator c− of Cj , and
possibly other punctures negatively asymptotic to pure Reeb chords
of Λ1

− ∪ Λ2
−, as shown in Figure 13. We use (ϵ1−, ϵ

2
−) to augment the

Reeb chords at the negative pure punctures. The definition of such
moduli spaces is similar to the definition of mixed LCH moduli spaces
in Section 4.2 except that the Lagrangian boundary condition is not
cylindrical anymore. This means that there is no R-action, and so
we need a path Js of almost complex structures in J adm to ensure
transversality (see [CDRGG20, Section 3] for more details):

di,j(c−) =
∑

dim(ML1∪L2

Js
(c+;p11

− c−q22
− ))=0

|ML1∪L2

Js
(c+;p

11
− c−q

22
− )|ϵ1−(p

11
− )ϵ2−(q

22
− ) c+,

We can identify some subcomplex and quotient complex of
(Cth(L1, L2), d) with cochain complexes defined in Section 5.

Proposition 6.2 ([Pan17, Theorem 5.1]). The top and bottom cochain
complexes admit the following identifications

(C+, d++) = (Hom+(ϵ
1
+, ϵ

2
+)[1],m

+
1 ), (C−, d−−) = (Hom+(ϵ

1
−, ϵ

2
−),m

−
1 ),
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L1

L1

L1

L1

L2

L2

L2

L2

c+

c−

(a)

c+

c−

(c)

c+

c−

(b)

c+

c−
(d)

Figure 13. (a)− (d) are the types of holomorphic disks counted by di,j for
(i, j) = (+−), (+, 0), (0, 0) and (0,−), respectively, where c+ is a generator
of Ci and c− a generator of Cj .

and (C0, d00) is the cochain complex of the Morse cohomology for F with
differential counting Morse flow lines of F .

Observe that the Cthulhu complex (Cth(L1, L2), d) is the cone of ϕ :=
d+0 + d+−. The long exact sequence induced by the cone together with the
fact that the complex is acyclic [CDRGG20, Theorem 6.6] implies that ϕ
induces an isomorphism

(6.1) ϕ∗ : H
∗(C−∞, d−∞) → H∗+1(C+, d++),

where

C∗
−∞ = C∗

0 ⊕ C∗
−, and d−∞ =

(
d00 d0−
0 d−−

)
.

Note that ϕ∗ may depend on the perturbation F . We have also that C−∞

is the cone of d0−. The long exact sequence induced by a cone together
with the isomorphism ϕ∗ and the identifications in Proposition 6.2, give the
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following long exact sequence:

(6.2) · · · → Hk(L,Λ−) → HkHom+(ϵ
1
+, ϵ

2
+)

→ HkHom+(ϵ
1
−, ϵ

2
−) → Hk+1(L,Λ−) → · · · .

6.3. Product structure

The isomorphism ϕ∗ from Equation (6.1) together with the identification of
H∗+1(C+, d++) = H∗Hom+(ϵ

1
+, ϵ

2
+) given by Proposition 6.2 gives an iso-

morphism

(6.3) ϕ∗ : H
∗(C−∞, d−∞) → H∗Hom+(ϵ

1
+, ϵ

2
+).

As recalled in Section 5.1, there is a product structure on H∗Hom+ given
by the map m+

2 in the category Aug+(Λ+). There is also a product struc-
ture m−∞

2 on H∗(C−∞, d−∞) defined by the second author of this paper
[Leg20]. In fact, the isomorphism ϕ∗ preserves the product structures; see
Proposition 6.3.

Let us give a more detailed overview of the construction of m−∞
2 in

the case of a 3-copy 3L = L1 ∪ L2 ∪ L3 such that any pair (Li, Lj) for i <
j has the same Cthulhu complex as 2L; that is, for i < j, the cobordism
Li is a push-off of Lj using a positive Morse function F ij satisfying the
same conditions as the Morse function F . In particular, the Morse functions
F ij are chosen so that the action of any intersection point in the Cthulhu
complex Cth(Li, Lj) is less than the action of any pure Reeb chord of Λ−

and that the top and bottom cylinders of 3L agree with the cylinder over
3Λ± in Aug+(Λ±).

For i = 1, 2, 3, given augmentations ϵi− of A(Λ−), the induced augmen-
tations ϵi+ of A(Λ+), and a domain dependent almost complex structure Jz

with values in J adm, the operator

m−∞
2 : C−∞(L2, L3)⊗ C−∞(L1, L2) → C−∞(L1, L3)

counts rigid holomorphic disks with a puncture positively asymptotic to a
generator of C−∞(L1, L3), two punctures negatively asymptotic to a gener-
ator of C−∞(L1, L2) and a generator of C−∞(L2, L3), and punctures nega-
tively asymptotic to pure Reeb chords of 3Λ− that are augmented by ϵi−.
The operator m−∞

2 can be decomposed as the sum of the maps

µki,j : Ci(L
2, L3)⊗ Cj(L

1, L2) → Ck(L
1, L3)
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for i, j, k ∈ {0,−}, satisfying the following:

1) In the special setting we consider here, namely the 3-copy 3L, energy
restrictions guarantee that if one of the inputs of m−∞

2 is in C0, then
the output is in C0, i.e. µ

−
0,j = µ−i,0 = 0, for i, j = 0,−.

2) The map µ−−,− agrees with the usual m−
2 of Aug+(Λ−).

3) For the rest of the cases, (i, j, k) = (−, 0, 0), (0,−, 0), (0, 0, 0), (−,−, 0),
the map µki,j counts rigid holomorphic disks with boundary on 3L:

µki,j(c
23, b12) =

∑

dimMJz (a
13;p11

− b12q22
− c23r33− )=0

|ML1∪L2∪L3

Jz
(a13;p11

− b
12q22

− c
23r33− )|ϵ1−(p

11
− )ϵ2−(q

22
− )ϵ3−(r

33
− ) a13,

where a13 is a generator of Ck(L
1, L3), b12 is a generator of Cj(L

1, L2),
c23 is a generator of Ci(L

2, L3), and p11
− ,q

22
− , r

33
− are words of pure Reeb

chords of Λ1
−, Λ

2
−, Λ

3
−, respectively.

In [Leg20, Section 5.2], it is shown that m−∞
2 commutes with the differ-

entials d−∞ and thus induces a product map on cohomology

m−∞
2 : HmC−∞(L2, L3)⊗HnC−∞(L1, L2) → Hm+nC−∞(L1, L3).

Moreover, we have the following proposition:

Proposition 6.3 ([Leg20, Theorem 2]). The map ϕ∗ from Equa-
tion (6.3) preserves the product structures, i.e.

ϕ∗ ◦m
−∞
2 ([a], [b]) = m+

2 (ϕ∗[a], ϕ∗[b])

for [a] ∈ H∗C−∞(L2, L3) and [b] ∈ H∗C−∞(L1, L2).

Remark 6.4. Note that we abuse the notation of ϕ∗ here, for simplicity of
notation. This isomorphism ϕ∗ is defined on each pair of cobordisms 2L in
3L and could be different for the different 2-copies. A more rigorous way of
writing the identity in the proposition above would be

ϕ
(ϵ1−,ϵ3−)
∗ ◦m−∞

2 ([a], [b]) = m+
2

(
ϕ
(ϵ2−,ϵ3−)
∗ [a], ϕ

(ϵ1−,ϵ2−)
∗ [b]

)
.
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7. Obstructions to exact Lagrangian cobordisms
between links

In this section, we give an obstruction to the existence of embedded, Maslov-
0, exact Lagrangian cobordisms through a count of augmentations of the bot-
tom and top Legendrian links. We will count augmentations up to ∼Aug+ ,
the equivalence in Aug+(Λ±) (Definition 5.1), which by Proposition 5.5 is
the same as the split-DGA homotopy equivalence (Definition 5.3). The ob-
struction through a count of augmentations is proven in Section 7.1, with the
proofs of key propositions provided in 7.2 and 7.3. Section 7.4 provides other
obstructions in terms of linearized contact homology and ruling polynomials.

7.1. Proof of Theorem 1.4

Throughout this subsection, we suppose that ϵ− is an augmentation for
A(Λ−) and ϵ+ = FL(ϵ−) is the augmentation of A(Λ+) induced by ϵ−
through L. Since we will be counting augmentations up to equivalence in
Aug+(Λ±), we first define maps ι : H0Hom+(ϵ

i
+, ϵ

j
+) → H0Hom+(ϵ

i
−, ϵ

j
−),

for i, j ∈ {1, 2}. Consider the special pair of cobordisms 2L as described in
Section 6.1 and the isomorphism ϕ∗ : H

∗(C−∞, d−∞) → H∗Hom+(ϵ
i
+, ϵ

j
+)

in Equation (6.3). Note that (C0, d00) is a subchain complex of (C−∞, d−∞).
Combining this fact with Proposition 6.2, it follows that the quotient map
π : C−∞ → C− induces a map on cohomology:

π∗ : H
∗(C−∞, d−∞) → H∗Hom+(ϵ

i
−, ϵ

j
−).

Precomposing with ϕ−1
∗ gives a map

ι = π∗ ◦ ϕ
−1
∗ : H∗Hom+(ϵ

i
+, ϵ

j
+) → H∗Hom+(ϵ

i
−, ϵ

j
−).

The next proposition shows that ι is “natural”: although ϕ∗ may depend
on the Morse perturbation function F used to construct 2L, ι does not. The
proof of this proposition can be found in Section 7.2.

Proposition 7.1. The maps ι : H∗Hom+(ϵ
i
+, ϵ

j
+) → H∗Hom+(ϵ

i
−, ϵ

j
−) are

independent of the choice of the Morse perturbation function F , up to com-
pactly supported homotopy.

The following properties of the ι map are used in the proof of Theo-
rem 1.4, and are proved in Section 7.3.
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Proposition 7.2. The map ι : HkHom+(ϵ
i
+, ϵ

j
+) → HkHom+(ϵ

i
−, ϵ

j
−) sat-

isfies the following properties:

1) ι preserves the product structures, i.e.

m−
2 (ι[a], ι[b]) = ι(m+

2 ([a], [b]))

for [a] ∈ H∗Hom+(ϵ
2
+, ϵ

3
+) and [b] ∈ H∗Hom+(ϵ

1
+, ϵ

2
+), where m

±
2 are

the products in the augmentation categories Aug+(Λ±),

2) ι is unital, meaning that when ϵ1± = ϵ2± = ϵ±, we have ι([eϵ+ ]) = [eϵ− ].

Proof of Theorem 1.4. Let L be an embedded, Maslov-0, exact Lagrangian
cobordism from Λ− to Λ+, and ϵ

1
−, ϵ

2
− be two augmentations of A(Λ−). To

show that

|Aug(Λ−;F)/ ∼Aug+ | ≤ |Aug(Λ+;F)/ ∼Aug+ |

we show that if the induced augmentations ϵ1+ = F(ϵ1−) and ϵ
2
+ = F(ϵ2−) are

equivalent then ϵ1− and ϵ2− are also equivalent. Since ϵ1+, ϵ
2
+ are equivalent,

there exist [α] ∈ H0Hom+(ϵ
1
+, ϵ

2
+) and [β] ∈ H0Hom+(ϵ

2
+, ϵ

1
+) such that

m+
2 ([α], [β]) = [eϵ2+ ] ∈ H0Hom+(ϵ

2
+, ϵ

2
+),

and m+
2 ([β], [α]) = [eϵ1+ ] ∈ H0Hom+(ϵ

1
+, ϵ

1
+),

where [eϵi+ ] is the unit in H0Hom+(ϵ
i
+, ϵ

i
+), for i = 1, 2. By Proposition 7.2,

m−
2 (ι[α], ι[β]) = ι(m+

2 ([α], [β])) = ι([eϵ2+ ]) = [eϵ2− ].

Analogously, one can prove thatm−
2 (ι[β], ι[α]) = [eϵ1− ]. It follows that ϵ

1
− and

ϵ2− are equivalent, as desired. □

If Λ± are Legendrian knots or if Λ± are Legendrian links and F = Z2, as
mentioned in Remark 5.7(1), the map

FL : Aug(Λ−;F)/ ∼Aug+→ Aug(Λ+;F)/ ∼Aug+

exists; the above argument shows that FL is injective.
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7.2. Proof of Proposition 7.1

Proof of Proposition 7.1. Following the construction in Section 6.1, suppose
that F and F ′ are two Morse functions on L, homotopic through a homo-
topy with compact support, and let 2L = L1 ∪ L2 and 2L′ = L1′

∪ L2 de-
note the corresponding 2-copies. The homotopy between F and F ′ induces
a compactly supported Lagrangian isotopy between 2L and 2L′; note that
the isotopy keeps the two cylindrical ends fixed. According to [CDRGG20,
Proposition 6.4], the isotopy induces a chain map

φ : Cth(L1, L2) → Cth(L1′

, L2).

Following [Ekh12], we will show that the map φ is the identity map on
C+(L

1, L2) → C+(L
1′

, L2). Along a generic isotopy {L1
s}s∈[0,1] from L1

0 := L1

to L1
1 := L1′

, one can assume that except for a finite number of distinct
points 0 < s0 < s1 < · · · < sr < 1, the cobordisms L1

s and L2 are transverse
and the moduli spaces contributing to the differential of Cth(L1

s, L
2) are

transversely cut out. At the points sj , two different situations can occur:

1) The birth/death of a pair of intersection points, c1, c2 ∈ C0 with |c1| =
|c2|+ 1;

2) The appearance of a (−1)-disk u ∈ M(c1;pc2q) with boundary on the
non-cylindrical parts of the cobordisms.

Moreover, one can assume that these two cases do not occur simultane-
ously. Hence, from now on, let us assume that s0 ∈ (0, 1) is the only point
in the isotopy when situations (1) or (2) can occur. Suppose first that
case (1) occurs, and denote the Cthulhu chain complex with (resp. with-
out) the pair of intersection points by (C[+], d[+]) (resp. (C[−], d[−])). We
have d[+](c2) = c1 + v where v does not contain c1. The induced chain map
C[+] → C[−] corresponding to the death of the pair of intersection points
c1, c2 maps c2 → 0, c1 → −v and other elements to themselves. The induced
chain map C[−] → C[+] corresponding to the birth of c1, c2 sends an el-
ement c to c− c∗1(d[+]c)c2, where c

∗
1 is the dual element for c1. Note that

both c1 and c2 are intersection points, thus the induced chain maps are iden-
tity maps on C+. In the second case, a (−1)-disk u ∈ M(c1;pc2q) appears.
The induced map φ sends c2 to c2 + λc1, for some number λ, and all other
elements to themselves. Since the negative puncture c2 is not in C+, the
induced chain map is the identity on C+.
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Denote φ−∞ the component

φ−∞ : (C−∞(L1, L2), d−∞) → (C−∞(L1′

, L2), d′−∞)

The fact that φ is a chain map and fixes C+ implies that φ−∞ is a chain
map, i.e. φ−∞ ◦ d−∞ = d′−∞ ◦ φ−∞. Let us then denote φ+ the component

φ+ : Cth(L1, L2) → C+(L
1′

, L2)

The fact that φ is a chain map implies that for any cycle c ∈ C−∞(L1, L2)
one has

φ+ ◦ (ϕ+ d−∞)(c) = d′++ ◦ φ+(c) + ϕ′ ◦ φ−∞(c)

Using the fact that φ is the identity map on C+ and d−∞(c) = 0, this equa-
tion becomes,

ϕ(c) = d′++ ◦ φ+(c) + ϕ′ ◦ φ−∞(c).

It follows that

[ϕ(c)] = [ϕ′ ◦ φ−∞(c)] ∈ H∗(C+(L
1′

, L2)) = H∗Hom+(ϵ
i
+, ϵ

j
+).

In order to show that ι := π∗ ◦ ϕ
−1
∗ = π′∗ ◦ (ϕ

′
∗)

−1 =: ι′, where π and π′ are
the projection maps from C−∞ → C− for the two cases, respectively, we will
prove that

(7.1) if c ∈ C−∞(L1, L2), then π(c) = π′ ◦ φ−∞(c).

Again, it suffices to understand how φ−∞ behaves when either case (1)
or (2) occurs in the isotopy. If a (−1)-disk u ∈ M(c1;pc2q) occurs, the
positive puncture c1 can be an element in C+ or C0, and by definition of
φ−∞ we only need to consider disks u with c1 ∈ C0. Then, the induced chain
map φ−∞ sends any element c to c+m for m = 0 or m ∈ C0. If case (1)
occurs, and we have a birth/death of intersection points c1, c2 in C0, denote
the chain complex with (resp. without) the pair of intersection points by
(C−∞[+], d−∞[+]) (resp. (C−∞[−], d−∞[−])). Suppose that d−∞[+](c2) =
c1 + v. Since the differential of C−∞ is upper triangular, we know that v is
in C0. Thus, the map from C−∞[+] to C−∞[−] maps c1 to C0 and c2 to 0.
If we have a birth of intersection points, the map from C−∞[−] to C−∞[+]
sends an element c to c− c∗1(d−∞[+]c)c2, which is also in C0. In both cases
we have shown (7.1) is true and can conclude that the map ι does not depend
on the choice of Morse function F . □
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7.3. Proof of Proposition 7.2

To prove the first statement of Proposition 7.2, first recall that ι = π∗ ◦ ϕ
−1
∗

and that ϕ−1
∗ preserves the product structures; see Proposition 6.3. Thus

Proposition 7.2 (1) follows immediately from

Lemma 7.3. The map π∗ : H
∗(C−∞, d−∞) → H∗(C−, d−−) preserves the

products.

Proof. Recall that m−∞
2 (a, b) ∈ C0 if a or b is in C0. Thus the component of

m−∞
2 (a, b) with values in C− only comes from m−

2 (π(a), π(b)), i.e.

π ◦m−∞
2 (a, b) = m−

2 (π(a), π(b)).

□

In order to prove Proposition 7.2 (2), we need that for any augmentation
ϵ− of A(Λ−) and its induced augmentation ϵ+ of A(Λ+), the map

ι : H0Hom+(ϵ+, ϵ+) → H0Hom+(ϵ−, ϵ−)

preserves the unit. Note that ϕ−1
∗ is an isomorphism that preserves the

product structures and thus sends the unit [e+] ofH
0Hom+(ϵ+, ϵ+) to a unit

[e−∞] of H0(C−∞). In order to show π∗([e−∞]) ∈ H0Hom+(ϵ−, ϵ−) is the
unit [e−] of H

0Hom+(ϵ−, ϵ−), we only need to prove the following lemma.

Lemma 7.4. There is an element e = e− + e0 ∈ C−∞, where e0 is an ele-
ment in C0, such that d−∞(e) = 0.

Proof of Proposition 7.2. With Lemma 7.4 in hand, the fact that π∗ pre-
serves the product structure, and the fact that [e−∞] and [e−] are the units
of H∗(C−∞) and H0Hom+(ϵ−, ϵ−) respectively, we have that

π∗([e−∞]) = m−
2 ([e−], π∗([e−∞])) = m−

2 (π∗[e], π∗([e−∞]))

= π∗ ◦m
−∞
2 ([e], [e−∞]) = π∗[e] = [e−].

Thus, ι([e+]) = π∗ ◦ ϕ
−1
∗ ([e+]) = π∗([e−∞]) = [e−]. □

Proof of Lemma 7.4. Recall that the unit e− of Hom0
+(ϵ−, ϵ−) is given by

e− = −
∑
y12i , where y12i are the Reeb chord of 2Λ− corresponding to the

Morse minima of the Morse function f− used to define 2Λ−. Let e0 be
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negative of the sum of all the intersections that corresponds to the minima
of the Morse function F , and then let e = e0 + e−. We have that

d−∞(e) = d00(e0) + d0−(e−) + d−−(e−).

The fact that e− is closed in Hom+(ϵ−, ϵ−) implies d−−(e−) = 0. It follows
from Proposition 6.2 that d00 counts negative Morse flow lines of the Morse
function F . We need to interpret the holomorphic disks counted by d0−(e−)
in terms of Morse flow lines of a Morse function F̃ that agrees with F
in the main part but also encodes the Morse function f− on the bottom
cylinder. This can be done by concatenating a cobordism from the bottom
and comparing the Cthulhu complexes of the two pairs of cobordisms using a
transfer map defined in [CDRGG20]. The remainder of the proof is dedicated
to describing d00(e0) and d0−(e−) in detail.

Recall that Λ1
− is a push off of Λ2

− using a very small positive Morse
function f−. Let A ∈ R+ be twice the maximum value of f−. Consider the
cylinder R× Λ1

− and push the negative end of the cylinder in the −z di-
rection by A. Denote this new Legendrian in the negative end by Λ1

− −A.
Thus, we get a cobordism W 1 from Λ1

− −A to Λ1
− as shown in Figure 14.

Concretely, consider a non-increasing Morse function δ(t) : R → R which is
0 when t > −N − 1 and is equal to the constant A when t < N ′, for some
N ′ < −N − 1. Note that XH = −δ(t)∂/∂z is a Hamiltonian vector field, and
denote its time 1 flow by ΦH . It follows that W 1 := ΦH(R× Λ1

−) is an exact
Lagrangian cobordism. Denote by W 2 the cylinder R× Λ2

−.

R× Λ1
− W 1

R× Λ2
− W 2

t t

c

c̃

Figure 14. A schematic picture of wrapping the negative end of a cobordism.

Observe that there is a natural bijection between C0(W
1,W 2) and the

Morse Reeb chords in C+(W
1,W 2) with degree shifted up by 1. Moreover, we

can show that dW
1,W 2

+0 sends an intersection point to the corresponding Morse
Reeb chord, as follows. First, the projection map πxy : R× R3 → Rxy sends
W 1 ∪W 2 to πxy(Λ

1
− ∪ Λ2

−). Then, according to [DR16, Proposition 5.11], the
projection map also sends holomorphic disks with boundary on W 1 ∪W 2

to holomorphic disks with boundary on πxy(Λ
1
− ∪ Λ2

−). Suppose that a disk
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u ∈ MW 1∪W 2

(a,p11
− bq

22
− ) contributes to dW

1,W 2

+0 , i.e. a is a mixed Reeb chord
of Λ1

− ∪ Λ2
−, b is an intersection point in W 1 ∩W 2 and p11

− ,q
22
− are words of

pure degree 0 Reeb chords of Λ1
− −A and Λ2

−, respectively. The rigidity of u
implies that |a| − |b| = 1 using the grading in the Cthulhu complex. Project-
ing down to the xy-plane, we have that πxy(u) ∈ M(πxy(a);p

11
− πxy(b)q

22
− ) is

a holomorphic disk with boundary on πxy(Λ
1
− ∪ Λ2

−). Comparing the grading
in the Cthulhu complex and the grading in A(Λ1

− ∪ Λ2
−), we have

|a| = |πxy(a)|LCH + 2 and |b| = |πxy(b)|LCH + 1.

It follows that |πxy(a)|LCH − |πxy(b)|LCH = 0, or in other words, the ex-
pected dimension of M(πxy(a);p

11
− πxy(b)q

22
− ) is −1, which implies that

πxy(u) is constant and thus |πxy(a)| = |πxy(b)|. Therefore, we have proved

that dW
1,W 2

+0 sends an intersection point in W 1 ∩W 2 to the corresponding
Morse Reeb chord of Λ1

− ∪ Λ2
−.

Consider now the Cthulhu complex of the pair of concatenated cobor-
disms (W 1 ⊙ L1,W 2 ⊙ L2). Its generators can be decomposed into four
types.

Cth(W 1 ⊙ L1,W 2 ⊙ L2) = C−(W
1,W 2)⊕ C0(W

1,W 2)

⊕ C0(L
1, L2)⊕ C+(L

1, L2)

According to [CDRGG20], there is a chain map

ΨW : Cth(W 1 ⊙ L1,W 2 ⊙ L2) → Cth(L1, L2)

which is dW
1,W 2

+0 on C0(W
1,W 2), is dW

1,W 2

+− on C−(W
1,W 2) and is the iden-

tity on C0(L
1, L2)⊕ C+(L

1, L2) (in the case of the special pair of cobor-
disms we are considering in this paper). Due to action restrictions, Morse

Reeb chords do not show up in the image of dW
1,W 2

+− but only in the image

of dW
1,W 2

+0 .
Denote the intersection point in W 1 ∩W 2 corresponding to a Morse

Reeb chord c of Λ1
− ∪ Λ2

− by c̃, as shown in Figure 14. Due to the description

of dW
1,W 2

+0 , the chain map ΨW identifies the holomorphic disks counted by

dW
1⊙L1,W 2⊙L2

00 (c̃) such that the positive puncture is in C0(L
1, L2), with the

holomorphic disks counted by dL
1,L2

0− (c). Thus, we can describe dL
1,L2

0− (e−)

through dW
1⊙L1,W 2⊙L2

00 (ẽ−), where ẽ− = −
∑
ỹi and ỹi are the intersection

points corresponding to the Morse Reeb chords yi of Λ
1
− ∪ Λ2

−.
Observe that W 1 ⊙ L1 happens on a small neighborhood of W 2 ⊙ L2 =

L2 and thus can be described as a push-off of L2 along a Morse function F̃ .
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Note that the Morse function F̃ agrees with F on ([−N,N ]× R3) ∩ L2 but
has also minima at ỹi and saddle points at x̃i. Since W

1 ⊙ L1 and W 2 ⊙ L2

are close enough, the differential dW
1⊙L1,W 2⊙L2

00 counts the negative Morse

flow lines of F̃ . Let ẽ = ẽ− + e0 be the negative sum of all the minima of

F̃ . Observe that dW
1⊙L1,W 2⊙L2

00 (ẽ) = 0 since each saddle point of F̃ has two
Morse trajectories flowing down with the opposite sign and they have to
approach some minima. It follows from ΨW being a chain map that

d00(e0) + d0−(e−) = π0 ◦ d
L1,L2

◦ΨW (ẽ) = π0 ◦Ψ
W ◦ dW

1⊙L1,W 2⊙L2

(ẽ) = 0,

where π0 is the projection map: Cth(L1, L2) → C0(L
1, L2). □

7.4. Other obstructions

In this section, we give two additional obstructions to the existence of exact
Lagrangian cobordisms in terms of linearized contact homology and ruling
polynomials, which generalize the results in [Pan17].

Proposition 7.5. Assume F is a field and let L be an exact Lagrangian
cobordism from Λ− to Λ+ with Maslov-0. Suppose that ϵ− is an augmentation
of Λ− and ϵ+ is the induced augmentation of Λ+. Then we have that

(7.2) LCH
ϵ+
k (Λ+) ∼= LCH

ϵ−
k (Λ−)

for k < 0 and k > 1.

Proof. From Equation (6.2), we have a long exact sequence

· · · → Hk(L,Λ−) → HkHom+(ϵ+, ϵ+)

→ HkHom+(ϵ−, ϵ−) → Hk+1(L,Λ−) → · · · .

Note that Hk(L,Λ−) = 0 when k < 0 and k > 2. For k = 2, we know that
H2(L,Λ−) is 0 because any two components of Λ− cannot bound a closed
surface in L, i.e. a Lagrangian cap of two components of Λ−. Otherwise we
get a cobordism from a subset of Λ− (that admits an augmentation restricted
from ϵ−) to the empty set, which is a contradiction by [DR15, Corollary 1.9].
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The long exact sequence implies that

HkHom+(ϵ−, ϵ−) ∼= HkHom+(ϵ+, ϵ+),

for k < −1 and k > 1. Recall that HkHom+(ϵ, ϵ) ∼= LCHϵ
1−k(Λ), so we get

LCH
ϵ+
k (Λ+) ∼= LCH

ϵ−
k (Λ−),

for k > 2 and k < 0.
The isomorphism for k = 2 comes from the Sabloff duality [EES09],

which gives a long exact sequence:

· · · → Hk(Λ) → LCHk
ϵ (Λ) → LCHϵ

−k(Λ) → Hk+1(Λ) → · · · .

The fact that Hk(Λ) vanishes unless k = 0 or 1 implies that LCHϵ
−k(Λ)

∼=
LCHk

ϵ (Λ) for k > 1 and k < −1. Note that LCHϵ
k(Λ) are vector spaces

over a field F. It follows from the universal coefficient theorem that
dimLCHk

ϵ (Λ) = dimLCHϵ
k(Λ). Thus, we have that dimLCHϵ

−k(Λ)
∼=

dimLCHϵ
k(Λ) for k > 1. Since the isomorphism (7.2) holds for k = −2, the

dimension of the LCH homologies are the same for k = 2, which implies the
isomorphism for k = 2 as they are vector spaces over F. □

We do not get the relation between the LCH’s on degree 0 and 1 as Pan
did for cobordisms between knots in [Pan17, Corollary 1.4].

Example 7.6. Take F = Z2 and consider two exact Lagrangian cobordisms
L1, L2 from the Hopf link Λ0

H to the trefoil obtained by pinching the chords
b1 and b2 of the trefoil, respectively, as shown in Figure 15. Let ϵ1−, resp.
ϵ2−, be the augmentation of Λ0

H which sends the two Reeb chords (c1, c2) to
(0, 0), resp. (0, 1). Both augmentations ϵi−, induce through L

i for i = 1, 2 the
augmentation of the trefoil ϵ+, which sends the three Reeb chords (b1, b2, b3)
to (1, 1, 0). However, the Legendrian contact homology of Λ0

H linearized by ϵ1−
has rank one in degrees 0 and 1, while linearized by ϵ2− it has rank 2 in degrees
0 and 1. Thus, the data (L,Λ+,Λ−, ϵ+) cannot determine LCHϵ−(Λ−).

Another way to count the number of augmentations in the augmentation
category is the homotopy cardinality [NRSS17], which is defined by

π≥0Aug+(Λ;Fq)
∗ =

∑

[ϵ]∈Aug+(Λ;Fq)/∼

1

|Aut(ϵ)|
·
|H−1Hom+(ϵ, ϵ)| · |H

−3Hom+(ϵ, ϵ)| · · ·

|H−2Hom+(ϵ, ϵ)| · |H−4Hom+(ϵ, ϵ)| · · ·
,

where [ϵ] is the equivalence class of ϵ in the augmentation category and
|Aut(ϵ)| is the number of invertible elements in H0Hom+(ϵ, ϵ).
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(a) (b)

t

b1
b2 b3

b1
b2 b3

c1 c2

c1
c2

L1 L2

Figure 15. Part (a) and (b) shows two cobordisms obtained by doing pinch
move on b1 and b2, respectively.

Proposition 7.7. Let L be a spin exact Lagrangian cobordism from Λ− to
Λ+ with Maslov number 0. Then for any finite field Fq, we have that

π≥0Aug+(Λ+;Fq)
∗ ≥ π≥0Aug+(Λ−;Fq)

∗.

Proof. For each equivalence class in Aug+(Λ−;Fq), we take a representative
ϵ− and compare the term of [ϵ−] in the sum with the term of the induced
augmentation ϵ+ for Aug+(Λ+;Fq). It follows from Proposition 7.5 that the
HkHom+ spaces are isomorphic between ϵ− and ϵ+ for k < 0. Moreover, it
follows from Theorem 1.4 that if an element [α+] ∈ H0Hom+(ϵ+, ϵ+) is in-
vertible, then ι[α+] ∈ H0Hom+(ϵ−, ϵ−) is invertible. Thus H

0Hom+(ϵ−, ϵ−)
may have more invertible elements than H0Hom+(ϵ+, ϵ+). It follows that
for each equivalent class represented by ϵ−, the term in the summand for
ϵ+ is bigger than or equal to the term for ϵ−. Moreover, there may be more
equivalence classes in Aug+(Λ+) than in Aug+(Λ−). Thus the proposition
follows. □

The homotopy cardinality is related to the ruling polynomial RΛ(z), a
combinatorial invariant of Legendrian knots that is easily computed, in the
following way:

π≥0Aug+(Λ;Fq)
∗ = qtb(Λ)/2RΛ(q

1/2 − q−1/2).
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See Section 8.3 for more details on the ruling polynomial. Thus we have the
following corollary.

Corollary 7.8. Let L is a spin exact Lagrangian cobordism from Λ− to Λ+

with Maslov number 0. Then, we have that

RΛ−
(q1/2 − q−1/2) ≤ q−χ(L)/2RΛ+

(q1/2 − q−1/2)

for any q that is a power of a prime number.

8. Examples of obstructed fillings

In this section, we will prove Theorem 1.8. To prove that certain immersed
Lagrangian fillings of a Legendrian knot Λ do exist, we will use the “de-
composable” moves described below to prove the existence of embedded
Lagrangian cobordisms from a disjoint union of Legendrian Hopf links to Λ.
Recall that, by definition, the Legendrian Hopf link Λk

H admits an immersed,
Maslov-0, exact Lagrangian filling with one action-0 double point of index k.
We will prove that certain types of Lagrangian fillings of Λ cannot exist by
applying Theorems 1.1 and 1.4. Throughout this section, we consider DGAs
over Z2 and augmentations to Z2. For the family Λk in Theorem 1.8(1), we
will count augmentations directly, while for the family Λp

g in Theorem 1.8(2),
we will employ the theory of rulings to count augmentations.

All of the embedded, Maslov-0, exact Lagrangian fillings and cobordisms
that we construct in this section are decomposable in the following sense. It
is known that there exists an embedded, Maslov-0, exact Lagrangian cobor-
disms between two Legendrian links Λ± if Λ+ differs from Λ− by Legendrian
isotopy, pinch moves, and the death of a max tb unknotted component. Fig-
ure 16 illustrates the local front projections of an orientable downward in
time pinch move and the downward in time death of a max tb unknot. In or-
der to produce an orientable surface, the pinch move can only be performed
on strands with opposite orientations, and in order for the Lagrangian to
be Maslov-0, pinch moves can only be performed on strands whose upper
branch has a Maslov potential 1 greater than that of the lower branch, as
shown in Figure 16. A Lagrangian cobordism L from Λ− to Λ+ is called
elementary if it arises from isotopy, a single pinch move, or a single disk
filling. A Lagrangian cobordism is decomposable it is obtained by stacking
elementary cobordisms. The elementary moves that make up decomposable
cobordisms were introduced by Ekholm, Honda, and Kálmán in [EHK16,
Section 6].
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i+ 1

i

Λ+

∅Λ−

Figure 16. Local front projections of a merge/pinch move (topologically a
saddle cobordism/1-handle) and the birth/death of a max tb unknot (topo-
logically a disk/0-handle). The red arrows represent the positive t direction
and the labels on the strands indicate the Maslov potential.

As we apply Theorem 1.4, it will be useful to have the following aug-
mentation count.

Lemma 8.1.

|Aug(Λk
H;Z2)/ ∼Aug+ | =

{
3, k = 0

0, k ̸= 0.

Moreover,

|Aug(
⊔

i=1,...,m

Λki

H ;Z2)/ ∼Aug+ | = 3Z ,

where Z = |{i : ki = 0}|.

Proof. As explained in Example 4.3, the Hopf link Λk
H has 3 augmentations

when k = 0 and no augmentations otherwise. When k = 0, there are no
degree −1 chords, and thus, by Corollary 5.6, the count of augmentations up
to the equivalence relation ∼Aug+ is the same as the count of augmentations.

□

8.1. Proof of Theorem 1.8(1)

We construct the family of Legendrian knots Λk such that Λ1 = Λ948
as fol-

lows. Consider the tangle T in Figure 17. Arrange k copies T1, . . . , Tk of T
in a row and connect them by a tangle sum; then perform the standard rain-
bow tangle closure after introducing 1 more crossing, as shown in Figure 17.
The resulting Legendrian Λk admits a Maslov potential whose values on
each strand is also indicated in the figure. When k = 1, the Legendrian knot
obtained this way is a 948 knot; its front projection is shown in Figure 18
and its Lagrangian projection in Figure 19.
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T1 T2 Tk

0

1

1

2

0

1

1

2

1

1

Figure 17. Left: front projection of the tangle T ; right: front projection of
Λk. The numbers indicate the Maslov potential.

Proposition 8.2. Λk admits an immersed, Maslov-0, exact Lagrangian fill-
ing F k

k of genus k with k double points, each of which has action 0 and index
1.

Proof. When k = 1, by performing a sequence of pinch moves as indicated
by the red lines in the Figure 18 and Reidemeister moves, we obtain an
embedded, Maslov-0, exact Lagrangian cobordism from the Hopf link Λ1

H to
Λ948

. For k ≥ 2, by performing pinch moves on each copy of the tangle T
as in the case of Λ948

, we obtain an embedded, Maslov-0, exact Lagrangian
cobordism of genus k from ⊔kΛ

1
H to Λk. Each Λ1

H has an immersed, Maslov-0,
exact Lagrangian filling with a double point of action 0 and index 1. Stacking
these Lagrangian cobordisms produces the desired filling F k

k of Λk. □

Λ948 Λ1
H

Figure 18. Sequence of three pinch moves that prove the existence of an
embedded, Maslov-0, exact Lagrangian cobordism of genus 1 from the Hopf
link Λ1

H to Λ948
.

Proposition 8.3. Λk does not admit an immersed, Maslov-0, exact La-
grangian disk filling F k+1

k−1 with k + 1 double points, all of action 0 and k of
index 1 and one of index 0.
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The proof of this proposition will follow easily once we prove the follow-
ing count of augmentations.

Lemma 8.4. For all k ≥ 1, |Aug(Λk;Z2)/ ∼Aug+ | = 1.

Proof. When k = 1, the DGA A(Λ948
) is generated by ai, i = 1, · · · 6, bi, i =

1, · · · , 7, ci, i = 1, 2 with grading |ai| = 1, |bi| = 0, |ci| = −1 as shown in Fig-
ure 19. The differential is given by

a1

a2

a3

a4

a5

a6

c1

c2

b1b2

b3

b4

b5b6
b7

Figure 19. A Lagrangian projection for Λ948
.

∂a1 = 1 + b7(b3 + c1a5) ∂b2 = c1b6b4 + b3b6c2
∂a2 = 1 + a5b6c2b1 + b6b4b1 ∂b3 = c1(1 + b6b5)
∂a3 = 1 + b1c1b6a6 + b1b3b6 ∂b4 = (1 + b5b6)c2
∂a4 = 1 + (b4 + a6c2)b7 ∂bi = 0, for i ̸= 2, 3, 4
∂a5 = 1 + b6b5 ∂ci = 0, for i = 1, 2.
∂a6 = 1 + b5b6

There are two augmentations ϵ0 and ϵ1 of A(Λ948
) to Z2 with ϵi(b2) = i, and

ϵi(bj) = 1 for j ̸= 2, i = 0, 1. These two augmentations are DGA homotopic
since ϵ0 − ϵ1 = K ◦ ∂, where K sends c1 to 1 and the other Reeb chords to 0.
Since F = Z2, By Proposition 5.5 and Remark 5.4, equivalence with respect
to DGA homotopy is the same as equivalent with respect to ∼Aug+ , and
thus we have that |Aug(Λ948

;Z2)/ ∼Aug+ | = 1.
The calculation for k ≥ 2 is similar. Label the Reeb chords in the jth

tangle of Λk by bij , aij and cij following a similar labeling scheme as for

Λ948
, see Figure 20. Let b̃7, ã1 and ã4 denote the Reeb chords of Λk not

contained in any of the k tangles, and such that |b̃7| = 0 and |ã1| = |ã4| = 1.
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T1 T2 Tk

a5j
a2j

a3j

a6jc2j

b1j
b2j

b3j

b4j

b5j

b6j

c1j

b̃7

ã1

ã4

Figure 20. Lagrangian projections of the tangle T and the Legendrian Λk.

Then, one can find that any augmentation ϵ of Λk to Z2 takes the following
values: ϵ(b̃7) = 1, ϵ(bij ) = 1 for any ij ̸= 2j , and ϵ(b2j

) ∈ {0, 1}. Therefore,
for any Λk we have 2k augmentations to Z2. Suppose that ϵ1 and ϵ2 are
two augmentations of Λk such that ϵ1(b2j

)− ϵ2(b2j
) = 1 for j contained in

some subset J ⊂ {1, . . . , k}. Then, there exists a DGA homotopy K from ϵ1
to ϵ2 where K(c1j

) = 1 for j ∈ J , and which maps all other Reeb chords to
0. Therefore, the Legendrians Λk have a unique augmentation to Z2 up to
DGA homotopy and thus up to ∼Aug+ . □

Proof of Proposition 8.3. By Theorem 1.1, the existence of the filling F k+1
k−1

is equivalent to the existence of an embedded, Maslov-0, exact Lagrangian
cobordism from ⊔kΛ

1
H ⊔ Λ0

H to Λk. By Lemma 8.1 and Lemma 8.4,

|Aug(⊔kΛ
1
H ⊔ Λ0

H;Z2)/ ∼Aug+ | = 3, and |Aug(Λk;Z2)/ ∼Aug+ | = 1,

and thus by Theorem 1.4 such an embedded cobordism from ⊔kΛ
1
H ⊔ Λ0

H to
Λk does not exist. □

We now have all the ingredients to prove our first part of Theorem 1.8.

Proof of Theorem 1.8(1). Fix Λk. Proposition 8.2 shows the existence of the
immersed, Maslov-0, exact Lagrangian filling F k

k with genus k that has k
double points, each with action 0 and index 1. Proposition 8.3 shows there
does not exist an immersed, Maslov-0, exact Lagrangian disk filling F k+1

k−1
with (k + 1) double points, all of action 0, k of index 1, and one of index 0.
Thus, by Definition 3.3, F k

k does not arise from Lagrangian surgery.
For the smooth comparison, Λ1 = Λ948

admits a smooth disk filling with
one immersed point [OS16, Section 4.6], and thus it also admits a disk filling
with p immersed points, for any p ≥ 1. One can more easily see that by two
“unclasping” moves, 948 has an unknotting number of 2: it follows that
there exists a smooth disk filling of Λ948

with 2 double points. Similarly,
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when k ≥ 2, by performing unclasping moves in each of the k tangles, we
see that Λk admits a smooth disk filling with 2k double points, and thus by
smooth surgery a smooth genus j filling with 2k − j double points for all
0 ≤ j ≤ k. □

8.2. Proof of Theorem 1.8(2)

For all g ≥ 1 and p ≥ 0, we will show the existence of a Legendrian knot
Λp
g that has an immersed, Maslov-0, exact Lagrangian filling F p

g , which has
genus g and p double points of action and index 0, that does not arise from
Lagrangian surgery. The construction of Λp

g is an example of the Mondrian
diagrams of [Ng05].

To construct the Legendrian checkerboard knot Λ0
g, g ≥ 1, begin with

a (2g + 2)× 4 shaded checkerboard, with the lower left square shaded. For
every shaded square, replace the right (resp. left) edge with a right (resp.
left) cusp. If two shaded squares share a vertex, replace the vertex with a
crossing, and otherwise replace the vertex with a smoothing of the vertex.
An example is given in Figure 21. We can directly check that Λ0

g has a single
component, for all g ≥ 1.

4

3

2

1

0

Figure 21. The Legendrian Λ0
3 constructed by starting with a (2(3) + 2)× 4

shaded checkerboard; the red lines denote the pinches used in the construc-
tion of F 0

3 .

For p ≥ 1, the Legendrian knot Λp
g will be constructed by applying Legen-

drian Reidemeister I moves and adding p clasps to Λ0
g, as shown in Figure 22.

To form Λ1
g, for g ≥ 1, start with the two shaded regions corresponding to the

bottom row, first and third columns in the shaded (2g + 2)× 4-checkerboard
used to construct Λ0

g. Perform one downward Reidemeister I move on each
portion of Λ0

g corresponding to these two shaded regions, and clasp the pair
of cusps facing each other as schematized on Figure 22. We form Λ2

g by again
starting with the two bottom left shaded regions of Λ0

g, performing 6 Reide-
meister I moves, and then forming 2 clasps in the shaded tiles of the plane.
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Similarly, for all p ≥ 1, we can form the clasped checkerboard Legendrian
Λp
g, by starting with Λ0

g, performing 4p− 2 Reidemeister moves, and adding
p clasps, as shown in Figure 22. Observe that Λp

g has a single component.

· · · · · ·
2

1
0

2p− 1 clasp

4

2p− 1 pinch

2g + 2

· · ·

2g + 2

· · · 4

2

1
0

Figure 22. Construction of the clasped checkerboard Legendrian Λp
g, p ≥

1, and a schematization of pinch moves around each clasp that shows the
existence of a cobordism from ⊔pΛ

0
H ∪ Λ0

g to Λp
g.

Proposition 8.5. For all g ≥ 1 and p ≥ 0, the Legendrian knot Λp
g admits

an immersed, Maslov-0, exact Lagrangian filling F p
g of genus g with p double

points, each of which has action 0 and index 0.

Proof. First fix Λ0
g, for some g ≥ 1. By performing pinch moves on each

pair of strands that correspond to the top and bottom edges of each shaded
square in the (2g + 2)× 4 shaded checkerboard that was used to constuct
Λ0
g, we obtain an embedded, exact, Lagrangian cobordism from a disjoint

union of max tb Legendrian unknots to Λ0
g; see an illustration in Figure 21.

The Maslov potential on the strands on which we perform the pinch moves
ensures that this cobordism has Maslov class 0. Each Legendrian unknot can
be filled with a disk to obtain F 0

g , an embedded, Maslov-0, exact Lagrangian

filling of Λ0
g. As we perform

1
2(2g + 2)4 pinch moves and obtain 4 + (2g + 1)

unknots, we see that this filling does indeed have genus g, as desired.
Now fix Λp

g, for p ≥ 1. By performing pinch moves along the red dash
lines besides the clasps as schematized in Figure 22, we build a genus 0
embedded, Maslov-0, exact Lagrangian cobordism from ⊔pΛ

0
H ∪ Λ0

g to Λp
g.

The Λ0
g has an embedded, Maslov-0, exact Lagrangian filling of genus g,

while each Hopf link Λ0
H can be filled by an immersed, Maslov-0, exact

Lagrangian filling with one double point of action 0 and index 0. By stacking
this Lagrangian cobordism and these fillings, we obtain the desired F p

g . □
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Proposition 8.6. The Legendrian knot Λp
g does not admit an immersed,

Maslov-0, exact Lagrangian disk filling F p+1
g−1 with p+ 1 double points, all of

action 0 and index 0.

The proof follows easily from the following calculation, which will be
proved in Section 8.3.

Lemma 8.7. |Aug(Λp
g;Z2)/ ∼Aug+ | = 3p.

Proof of Proposition 8.6. By Theorem 1.1, the existence of the filling F p+1
g−1

is equivalent to the existence of an embedded, Maslov-0, exact Lagrangian
cobordism of genus g from ⊔p+1Λ

0
H to Λp

g. By Lemma 8.1 and Lemma 8.7,

|Aug(⊔p+1Λ
0
H;Z2)/ ∼Aug+ | = 3p+1, and |Aug(Λp

g;Z2)/ ∼Aug+ | = 3p,

and thus by Theorem 1.4 such an embedded cobordism from ⊔p+1Λ
0
H to Λk

does not exist. □

Proof of Theorem 1.8(2). Proposition 8.5 shows the existence of the im-
mersed, Maslov-0, exact Lagrangian genus g filling F p

g of Λp
g that has p

double points of action 0 and index 0. Proposition 8.6 shows there does not
exist an immersed, Maslov-0, exact Lagrangian genus (g − 1) filling F p+1

g−1 of
Λp
g with (p+ 1) double points, all of action 0 and index 0. Thus, by Defini-

tion 3.3, F p
g does not arise from Lagrangian surgery. □

It remains to prove Lemma 8.7, which we do in the next subsection.

8.3. Proof of Lemma 8.7

As opposed to the more direct counting strategy we employed in Lemma 8.4,
here we count augmentations of these arbitrarily high crossing knots Λp

g using
the theory of rulings. So we begin with some background on rulings, first
defined in [PC05, Fuc03], and review the definition of the ruling polynomial.

Following [Sab20], a (graded, normal) ruling of a Legendrian knot Λ is
a set of crossings (called switches) such that resolving the switches yields
a link of unknots Λ1, . . . ,Λm such that

1) At each switch, the two strands have the same Maslov potential;

2) Each Λi, i = 1, . . . ,m, is a Legendrian unknot with 0 crossings and 2
cusps that bounds a ruling disk Di;

3) Exactly two components are incident to any switch;
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4) Near each switch, the incident ruling disks Di bounded by Λi are either
nested or disjoint as shown in Figure 23.

For each ruling R of a Legendrian Λ, denote the number of switches and disks
by s(R) and d(R), respectively. For a Legendrian Λ, the ruling polynomial
RΛ(z) is the polynomial

(8.1) RΛ(z) =
∑

R

zs(R)−d(R).

Figure 23. Around a switch, the possible nested or disjoint configurations
of the incident disks.

Rulings and augmentations are related: the existence of one implies the
existence of the other [Fuc03, FI04, Sab05]. The following lemma shows how
we can use the ruling polynomial to find our desired count of augmentations.

Lemma 8.8. Let Λ be a Legendrian knot with no negative degree Reeb
chords. Then

(8.2) |Aug(Λ;Z2)/ ∼Aug+ | = 2χ(Λ)/2RΛ(2
−1/2),

for χ(Λ) =
∑

k≥0

(−1)kak, where ak is the number of Reeb chords of degree k.

Proof. Under the assumption of the lemma, following [HR15, Remark 3.3(ii)]
the number of augmentations |Aug(Λ;Z2)| is related to the ruling polynomial
RΛ(z) in the following way:

2−χ(Λ)/2|Aug(Λ;Z2)| = RΛ(2
1/2 − 2−1/2),

where χ(Λ) is the Euler characteristic of (A(Λ), ∂), defined as χ(Λ) =∑
k≥0(−1)kak, where ak is the number of generators of A(Λ) of degree k. By

Corollary 5.6, we know that |Aug(Λ;Z2)| = |Aug(Λ;Z2)/ ∼Aug+ |, and our
result follows. □
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Proof of Lemma 8.7. First consider the checkerboard Legendrian knot Λ0
g.

Observe that Λ0
g has a unique ruling that switches at every crossing: one

can check this by considering the shaded regions in the top row of Λ0
g: the

left cusp of each shaded square has to match with the right cusp of that
same shaded square, thus it forces the crossings at the bottom vertices of
these shaded squares to be switches. Similarly for the second topmost row,
the right cusp of each shaded square has to match with the left cusp of the
same shaded square forcing the crossings at the bottom vertices of these
shaded squares to be switches. Thus, by considering Λ0

g from top to bottom
we can conclude that every crossing in Λ0 is a switch. In this unique ruling
R, using Equations (2.2) and (4.1), we see that all Reeb chords in A(Λ0

g)
have degree 0 or 1. Furthermore, s(R)− d(R) = χ(Λ0

g) since there is a switch
at each degree 0 chord and a one-to-one correspondence between disks and
right cusps (which correspond to Reeb chords of degree 1). Then applying
Lemma 8.8, we find

|Aug(Λ0
g;Z2)/ ∼Aug+ | = 2χ(Λ

0
g)/2RΛ0

g
(2−1/2) = 2χ(Λ

0
g)/2(2−1/2)χ(Λ

0
g) = 1.

Now consider Λp
g, for p ≥ 1. As shown in Figure 22, the first clasp in the

construction Λp
g introduces four new degree 0 Reeb chords (two from the

Reidemeister moves, two in the clasp region), and two rulings. With just

one clasp, the ruling polynomial changes from RΛ0
g
(z) = zχ(Λ

0
g) to

RΛ1
g
(z) = zχ(Λ

1
g)(z−2 + 1).

Each additional clasp introduces 6 new degree 0 Reeb chords (4 from Reide-
meister moves, 2 in the clasp region). Considering rulings, each new chord
coming from a Reidemeister move must be a switch and then one can either
switch at both or neither of the two crossings in the clasp region. Thus, the
ruling polynomial becomes

RΛp
g
(z) = zχ(Λ

p
g)(z−2 + 1)p.

Using Equation (8.2), we find that the number of augmentations of Λp
g to

Z2 is 3p:

|Aug(Λp
g;Z2)/ ∼Aug+ | = 2χ(Λ

p
g)/2(2−1/2)χ(Λ

p
g)((2−1/2)−2 + 1)p = 3p.

□
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Appendix A. Equivalence in Aug+(Λ) for Legendrian links

In this appendix we will provide the proof of Proposition 5.5 following the
proof for the case of single component knots in [NRS+20, Proposition 5.19].
We start by setting some basic notation. Let Λ = ∪m

k=1Λk be a Legendrian
link with m link components. For a mixed Reeb chord a that starts on
an ith link component Λi and ends on the jth link component Λj , that is
a ∈ R(Λj ,Λi), we let c(a) = i and r(a) = j.

Let Λn
f denote the n-copy of Λ that has been perturbed by a Morse

function f with a single maximum and minimum as in [NRS+20]. Note
that if Λ = ∪m

k=1Λk is a link with m link components, then Λn
f = ∪n

i=1 ∪
m
k=1

Λi
k is a link with mn link components. Given a Legendrian link Λ, and

its perturbed two copy Λ2
f = Λ1 ∪ Λ2, for any Reeb chord a ∈ R(Λ1,Λ2),

there is a corresponding element ǎ ∈ Hom+(ϵ
1, ϵ2) with degree |ǎ|+ = |a|+

1. Observe that this is a different notation convention than what we use in
Section 5.

Let (ϵ1, . . . , ϵn+1) be a tuple of augmentations of (A(Λ), ∂). De-
fine ((A(Λn+1

f ))ϵ, ∂n+1
ϵ ) as follows. Let (A(Λn+1

f ))ϵ := (A(Λn+1
f )⊗ F)/(tk =

ϵ(tk)) and set ∂n+1
ϵ = ϕϵ ◦ ∂

n+1 ◦ ϕ−1
ϵ , where ϕϵ(a) = a+ ϵ(a). Then, the

composition maps

mn : Hom+(ϵ
n, ϵn+1)⊗ · · · ⊗Hom+(ϵ

2, ϵ3)⊗Hom+(ϵ
1, ϵ2)

→ Hom+(ϵ
1, ϵn+1),

are given by

mn(α̌n, . . . , α̌1) = (−1)σ
∑

a∈R∪xk∪yk

ǎ · Coeffα12
1 α23

2 ···αn,n+1
n

(∂n+1
ϵ a1,n+1)

where αi ∈ {a1, . . . , ar, x1, . . . , xm, y1, . . . , ym} for each i, and σ = n(n−
1)/2 +

∑
p<q |α̌p|+|α̌q|+ + |α̌n−1|+ + |α̌n−3|+ + · · · .

Proposition A.1 ([NRS+20, Proposition 4.14]). Let Λ ⊂ R3
std be a

Legendrian link with m link components, one basepoint tk per link component
and Reeb chords R = {a1, . . . , ar}. The DGA of the perturbed n-copy of Λ,
Λn
f , is generated by

1) (tik)
±1 for 1 ≤ i ≤ n, 1 ≤ k ≤ m, with |tik| = 0;

2) aijh for 1 ≤ i, j ≤ n, and 1 ≤ h ≤ r with |aijh | = |ah|;

3) xijk for 1 ≤ i, j ≤ n, and 1 ≤ k ≤ m, with |xijk | = 0;
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4) yijk for 1 ≤ i, j ≤ n, 1 ≤ k ≤ m, with |yij | = −1,

and satisfies the relations tik(t
i
k)

−1 = (tik)
−1tik = 1 for each i and k. The dif-

ferential of A(Λn
f , ∂

n) can be described as follows. Assemble the generators

of A(Λn
f , ∂

n) into n× n matrices: Ah = (aijh ), ∆k = Diag(t1k, . . . , t
n
k),

Xk =




1 x12k · · · x1nk
0 1 · · · x2nk
...

...
. . .

...
0 0 · · · 1


 , and Yk =




0 y12k · · · y1nk
0 0 · · · y2nk
...

...
. . .

...
0 0 · · · 0




where 1 ≤ k ≤ m, and 1 ≤ h ≤ r. Then, applying ∂n to matrices entry-by-
entry, we have

∂n(Ah) = Φ(∂(ah)) + Yr(ah)Ah + (−1)|ah|+1AhYc(ah)

∂n(Xk) = ∆−1
k Yk∆kXk −XkYk

∂n(Yk) = Y 2
k

where Φ : A(Λ) →Mat(M,An) is a ring of homomorphism such that
Φ(ah) = Ah,Φ(tk) = ∆kXk,Φ(t

−1
k ) = X−1

k ∆k.

The following Lemma A.2, and Proposition A.3 are generalizations
of Lemma 5.16, Proposition 5.17 and Proposition 5.18 in [NRS+20].
Lemma A.2 is an immediate consequence of Proposition A.1 which allows
us to compute m1 and m2 from (A(Λ2

f ), ∂
2) and (A(Λ3

f ), ∂
3).

Lemma A.2. Let Λ ⊂ R3
std be an m component Legendrian link with one

basepoint tk per link component, Reeb chords R = {a1, . . . , ar} and augmen-
tations ϵ1, ϵ2. In Hom+(ϵ

1, ϵ2), we have that

m1(ǎh) =
∑

1≤l≤n

δbl,ah
σu|(M

R×Λ
J (ah′ ; b1, . . . , bn)|ϵ

1(b1 · · · bl−1)ϵ
2(bl+1 · · · bn)ǎh′

m1(y̌k) = (ϵ1(tk)
−1ϵ2(tk)− 1)x̌k +

∑

ah∈{a∈R|c(a)=k}

ϵ2(ah)ǎh

+
∑

a∈{a∈R|r(a)=k}

(−1)|ah|+1ϵ1(ah)ǎh

m1(x̌k) ∈ spanF{ǎ1 . . . , ǎr} for k ∈ {1, . . . , N}.

where bi ∈ spanF{a1, . . . , ar, t1, . . . , tm}, and σu ∈ {±1} denotes the product
of all orientation signs at the corners of the disk u. We also have that for
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i, j ∈ {1, . . . ,m}, and 1 ≤ h, h′ ≤ r,

m2(y̌i, y̌j) =

{
−y̌i if i = j

0 if i ̸= j
m2(x̌i, y̌j) =

{
−ϵ1(ti)

−1ϵ2(ti)x̌i if i = j

0 if i ̸= j

m2(y̌i, x̌j) =

{
−x̌i if i = j

0 if i ̸= j
m2(y̌i, ǎh) =

{
−ǎh if c(ah) = i

0 if c(ah) ̸= i

m2(ǎh, y̌i) =

{
−ǎh if r(ah) = i

0 if r(ah) ̸= i

m2(ǎh, ǎh′),m2(x̌i, x̌j),m2(x̌i, ǎh),m2(ǎh, x̌j) ∈ spanF{ǎ1, . . . , ǎr}.
Moreover, If we assume that the Reeb chords of Λ are labeled by increasing
height, h(a1) ≤ h(a2) ≤ · · · ≤ h(a2), then m2(ǎh, ǎh′) ∈ spanF{ǎl | l ≥
max(h, h′), 1 ≤ h, h′ ≤ r}.

Proposition A.3. Consider an element α ∈ Hom0
+(ϵ

1, ϵ2) of the form
α = −

∑m
k=1 cky̌k −

∑r
h=1K(ah)ǎh

where K : (A(Λ), ∂) → (F, 0) is an F linear map. Then, m1(α) = 0 if
and only if K is a split DGA homotopy from ϵ1 to ϵ2.

Proof. First, observe that

r∑

h=1

K(ah)m1(ǎh)

=

r∑

h=1

K(ah)[
∑

1≤l≤n

δbl,ah
|(M

R×Λ
J (ah′ ; b1, . . . , bn)|ϵ

1(b1 · · · bl−1)ϵ
2(bl+1 · · · bn)ǎh′ ]

=

r∑

h=1

[
∑

1≤l≤n

δbl,ah
(−1)|b1···bl−1||(M

R×Λ
J (ah′ ; b1, . . . , bn)|ϵ

1(b1 · · · bl−1)K(bl)ϵ
2(bl+1 · · · bn)]ǎh′

=

r∑

h=1

K ◦ ∂(ah)ǎh
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where the last equality follows from the fact that K(t±k ) = 0 for all k ∈
{1, . . . ,m}. Therefore, using Lemma A.2, we know that

−m1(α) = m1(

m∑

k=1

cky̌k +

r∑

h=1

K(ah)ǎh)

=

m∑

k=1

ckm1(y̌k) +

r∑

h=1

(K ◦ ∂(ah))ǎh

=

m∑

k=1

ck(ϵ
1(tk)

−1ϵ2(tk)− 1)x̌k

+

r∑

h=1

[cc(ah)ϵ
2(ah) + (−1)|ah|+1cr(ah)ϵ

1(ah)]ǎh

+

r∑

h=1

(K ◦ ∂(ah))ǎh

Thus, m1(α) = 0 if and only if K ◦ ∂(ah) = −cc(ah)ϵ
2(ah)−

(−1)|ah|+1cr(ah)ϵ
1(ah) for all h ∈ {1, . . . , r}, and (ϵ1(tk)

−1ϵ2(tk)− 1) = 0 for
all k ∈ {1, . . . ,m}. Note that F is supported in grading 0, and therefore
ϵ1(ah) = (−1)|ah|ϵ1(ah) for all h since ϵ1 is supported in grading 0. If A(Λ)
has a Zn grading, and ϵ1 is an n-graded augmentation, recall that the
grading is defined mod n. Therefore, K ◦ ∂(ah) = cr(ah)ϵ

1(ah)− cc(ah)ϵ
2(ah),

and ϵ1 and ϵ2 are split DGA homotopic via the operator K. □

Proof of Proposition 5.5. Suppose that ϵ1 and ϵ2 are equivalent in
Aug+(Λ). Then, as stated in Definition 5.1, there exist cocycles α ∈
Hom+(ϵ

1, ϵ2), and β ∈ Hom+(ϵ
2, ϵ1) such that [m2(α, β)] = −

∑m
k=1[y̌k] ∈

H0Hom+(ϵ
1, ϵ2).That is, m2(α, β) +

∑m
k=1 y̌k = m1(γ) for some γ ∈

Hom+(ϵ
2, ϵ2). By Lemma A.2 and the fact that γ ∈ Hom+(ϵ

2, ϵ2),
we know that ⟨m1(γ), y̌k⟩ = 0 and ⟨m1(γ), x̌k⟩ = 0. Therefore, m1(γ) =∑r

h=1K(ah)ǎh for some F linear map K : (A(Λ), ∂) → (F, 0) which is natu-
rally split. We can now writem2(α, β) = −

∑m
k=1 y̌k +

∑r
h=1K(ah)ǎh. Again

by Lemma A.2 and the fact that |α|+ = |β|+ = 0, while |x̌k|+ = 1, we know
that

α =

m∑

k=1

(cα)ky̌k +

r∑

h=1

Kα(ah)ǎh

β =

m∑

k=1

(cβ)ky̌k +

r∑

h=1

Kβ(ah)ǎh
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such that (cα)k, (cβ)k ∈ F∗ and (cα)k(cβ)k = 1 for each k, and for some F

linear maps Kα,Kβ : (A(Λ), ∂) → (F, 0). Both α and β are cocycles so by
Proposition A.3, Kα and Kβ are DGA homotopies between ϵ1 and ϵ2.

Suppose that ϵ1 and ϵ2 are split DGA homotopic, such that for any Reeb
chord a,

cc(a)ϵ
1(a)− cr(a)ϵ

2(a) = K ◦ ∂(a)

for constants ci ∈ F∗ and some split DGA homotopy K : (A(Λ), ∂) →
(F, 0). We know that K(a) = 0 for any Reeb chord a such that |a| ≠
−1. By Lemma A.3, α =

∑m
k=1(cα)ky̌k +

∑r
h=1K(ah)ǎh is a cocycle in

H0Hom+(ϵ
1, ϵ2). We now construct cocycles β, γ ∈ Hom+(ϵ

1, ϵ2) such that
|β|+ = |γ|+ = 0, m2(β, α) = m2(α, γ) = −

∑m
k=1 y̌k. This implies that [β] =

[γ] ∈ H0Hom+(ϵ
1, ϵ2) is the multiplicative inverse of [α] in Aug+(Λ). The

construction of γ is similar to the construction of β which we now provide.
Suppose that the Reeb chords {ǎ1, . . . , ǎr} are ordered by height.

Then we can write α =
∑m

k=1(cα)ky̌k +A where A ∈ spanF{ǎ1, . . . , ǎr}.
Let β =

∑m
k=1(cβ)ky̌k +B where (cα)k(cβ)k = 1 for 1 ≤ k ≤ m, B ∈

spanF{ǎ1, . . . , ǎr} and is defined inductively to satisfy B = A+m2(B,A).
Then, m2(β, α) = −

∑
k y̌k. To verify that β is a cocycle note that the A∞

relations on Aug+(Λ) imply that

m1(−

m∑

k=1

y̌k) = m1(m2(β, α) = m2(m1(β), α) +m2(β,m1(α)).

We know that m1(y̌k) = 0 for all 1 ≤ k ≤ m and that m1(α) = 0 so
m2(β,m1(α)) = 0. Therefore, m2(m1(β), α) = 0.

We will show that if X ∈ spanF{ǎ1, . . . , ǎr, x̌1, . . . , x̌N , y̌1, . . . , y̌N},
then m2(X,α) = 0 implies that X = 0. Note that m2(X,A) ∈
spanF{ǎ1, . . . , ǎr, x̌1, . . . , x̌m, y̌1, . . . , y̌m} by Lemma A.2. Then,

0 = m2(X,α) = m2(X,

m∑

k=1

(cα)ky̌k +A) = m2(X,

m∑

k=1

(cα)ky̌k) +m2(X,A)

Thus, m2(X,
∑m

k=1(cα)ky̌k) = m2(X,A). Note that m2(X,A) ∈
spanF{ǎ1, . . . , ǎr} because A ∈ spanF{ǎ1, . . . , ǎr} by Lemma A.2. There-
fore, we know that ⟨X, x̌k⟩ = ⟨X, y̌k⟩ = 0 for all 1 ≤ k ≤ m, and so
X ∈ spanF{ǎ1, . . . , ǎr}. Moreover, by induction on the height of Reeb
chords, and Lemma A.2, we know that ⟨X, ǎh⟩ = 0 for all 1 ≤ h ≤ r.
Thus, for X = m1(β) ∈ span{ǎ1, . . . , ǎr, x̌1, . . . , x̌m, y̌1, . . . , y̌m}, since
m2(m1(β), α) = 0 as shown above, we can conclude that m1(β) = 0. □
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