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Abstract. Let G be a finite abelian group and k be an integer not
dividing the exponent of G. We denote by Ek(G) the smallest positive
integer l such that every sequence over G of length no less than l has a
zero-sum subsequence of length not divisible by k. In this paper, we focus
on determining Ek(G) for G = Cn, a cyclic group of order n. Specifically,
we prove that

Ek(Cn) =

⌊
k

k − 1
(n− 1)

⌋
+1

for k ∈ {3} ∪ (dn2 e, n).

1. Introduction and Main Results

For a positive integer n, we denote by Cn a cyclic group of order n. It is
well known that any non-trivial finite abelian group G can be written as

G = Cn1 ⊕ · · · ⊕ Cnr

with 1 < n1 | n2 | · · · | nr. We refer to r as the rank of G and to nr = exp(G)

as the exponent of G. Throughout this paper, let G be a finite abelian
group, written additively, and 0 be its identity element. A sequence S over
G (unordered and repetition is allowed) is called a zero-sum sequence if the
sum of all elements of S is 0.

A typical direct zero-sum problem studies the condition which ensures
that given sequences have non-empty zero-sum subsequences with prescribed
properties. The investigations on the direct zero-sum problems were initi-
ated by P. Erdős, A. Ginzburg and A. Ziv. In 1961 [6], they proved that
s(Cn) = 2n− 1 (see also [2] for some other proofs), where s(G) is defined as
the smallest integer l such that every sequence of length l has a zero-sum
subsequence of length exp(G). The result is well known as Erdős-Ginzburg-
Ziv Theorem, which is regarded as a cornerstone of the zero-sum theory,
and the invariant s(G) is called Erdős-Ginzburg-Ziv constant.

A few years later, another zero-sum invariant was introduced by H. Dav-
enport in a famous western conference (cf. [5] and [14] – [15]). He raised the
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question of determining the maximal number of distinct prime ideals that
may appear in the prime ideal decomposition of an irreducible element in
an algebraic number field F . Let D(G) denote the smallest positive integer
l such that every sequence S over G of length |S| ≥ l contains a nonemp-
ty zero-sum subsequence. Davenport pointed out that D(G) is exactly the
maximal number that he asked if the ideal class group of F is isomorphic to
G. The invariant D(G) is so called the Davenport constant, and it played a
crucial role in the proof of the famous result that there are infinitely many
Carmichael numbers in 1994 [1].

The Erdős-Ginzburg-Ziv constant s(G) and the Davenport constant D(G)
are classical invariants in combinatorial number theory and have received
a great deal of attention in recent years (cf. [3]–[4], [7]–[11] and [16]). To
further study s(G), the first author of this paper introduced the following
invariant in 2000 [9].

Definition 1.1. Let G be a finite abelian group and k be a positive integer
with k - exp(G). We denote by Ek(G) the smallest positive integer l such that
every sequence S over G of length |S| ≥ l has a zero-sum subsequence of
length not divided by k.

It was proved in [9] that E2(G) = 2D(G) − 1, where G = Cn or G is
a p-group for some prime p. Ek(G) for all abelian p-groups was completely
determined by W. Schmid in 2001 [18] and the main result is summarized
in the following lemma.

Lemma 1.2. [18, Theorem 1.2, Lemmas 2.1 and 2.4] Let G = Cn1 ⊕
Cn2 ⊕ . . .⊕ Cnr with 1 < n1| . . . |nr and k be a positive integer not dividing
exp(G).

(1)
D(G) ≤ Ek(G) ≤ s(G).

Specifically, the equality on the left-hand side is valid if k > D(G).
(2)

Ek(G) ≥
⌊

k

k − 1

r∑
i=1

(ni − 1)

⌋
+1.

Moreover, the equality holds if G is a p-group and gcd(p, k) = 1.

Based on Lemma 1.2 (2), it is natural to give the following conjecture.

Conjecture 1.3. Let n and k be positive integers satisfying that n ≥ 3,
k > 1 and gcd(k, n) = 1. Then for any cyclic group Cn, we have

Ek(Cn) =

⌊
k

k − 1
(n− 1)

⌋
+1.



ON THE EXISTENCE OF ZERO-SUM SUBSEQUENCES WITH LENGTH NOT DIVIDED BY A GIVEN NUMBER3

Clearly, Ek(Cn) = n for k > n by Lemma 1.2 (1). Therefore, Conjecture 1.3

remains open when k ≤ n.
The first main result of this paper verifies this conjecture for k = 3.

Theorem 1.4. Let n be a positive integer with 3 - n. Then

E3(Cn) =

⌊
3

2
(n− 1)

⌋
+ 1.

We also prove the following related result.

Theorem 1.5. Let n and k be positive integers with k - n. If dn
2
e < k <

n, then

Ek(Cn) = n+ 1.

The paper is organized in the following way. In Section 2, we gather some
notations and some preliminary results. Section 3 provides some essential
lemmas. Our main results are proved in Section 4.

2. Notation and Preliminaries

2.1. Notation. We recall some standard notation and terminology. We de-
note by N the set of positive integers, and by N0 the set N ∪ {0}. For any
two integers a, b ∈ N0, we set [a, b] = {x ∈ N0 | a ≤ x ≤ b}. For a real
number x, we denote by bxc the largest integer that is less than or equals
to x, which is called the floor of x. Similarly, we denote by dxe the smallest
integer that is greater than or equals to x, which is called the ceiling of x.

We denote by F(G) the free abelian monoid with basis G under multi-
plication. The elements of F(G) are called sequences over G. The identity
element ∅ ∈ F(G) is called the empty sequence. Every sequence S over G
can be written in the form

S = g1 · . . . · g` =
∏
g∈G

gvg(S),

where vg(S) ∈ N0 denotes the multiplicity of g in S. Moreover, we say that
S contains g if vg(S) > 0. A sequence T is called a subsequence of S if
vg(T ) ≤ vg(S) for all g ∈ G, and is denoted by T | S. If T is a subsequence
of S, let ST−1 denote the subsequence with T deleted from S. If S1 and S2

are two sequences over G, let S1S2 denote the sequence over G satisfying
that vg (S1S2) = vg (S1)+vg (S2) for all g ∈ G. Two subsequences S1 and S2

of S are called disjoint if S1 | SS−12 . We define g+S = (g+ g1) · . . . · (g+ g`)
(and g − S = (g − g1) · . . . · (g − g`)) for all g ∈ G.
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We call |S| = ` =
∑

g∈G vg(S) ∈ N0 the length of S, σ(S) =
∑`

i=1 gi =∑
g∈G vg(S)g ∈ G the sum of S, supp(S) = {g ∈ G | vg(S) > 0} ⊂ G

the support of S and h(S) = max {vg(S) | g ∈ G} the maximum of the
multiplicity in S. We denoted by h2(S) the second largest multiplicity in
S. We call that S is a zero-sum sequence if σ(S) = 0 ∈ G, S is a zero-sum
free sequence if there is no non-empty zero-sum subsequence of S, and S is
a b-zero-sum free sequence if there is no nonempty zero-sum subsequence T
of S with length |T | = b.

Each map f : G→ G
′ between finite abelian groups can extend uniquely

to a monoid homomorphism F(G)→ F(G′
), which is denoted by f as well.

If f is a group homomorphism, then σ(f(S)) = f(σ(S)) for each S ∈ F(G).

2.2. Some known results. We collect some known results which will be
needed later. First, we introduce a new invariant and state a related result.

Definition 2.1. For each positive integer `, we define disc`(G) to be
the smallest positive integer t such that every sequence S over G of length
|S| ≥ t has a nonempty zero-sum subsequence T with |T | 6= `.

Lemma 2.2. [12, Theorem 1.3] Let ` ∈ [2,D(G)−1] and m, n be positive
integers. Then disc`(Cn) = n+ 1 for n ≥ 3.

For the convenience of the reader, we give the following notations.

Definition 2.3. Let g be a generator of Cn.
(1) For an element h ∈ Cn, we define indg(h) to be the least positive

integer t such that h = tg.
(2) For a sequence S = g1 · . . . · g` over Cn, we define

‖S‖g =
indg(g1) + · · ·+ indg(g`)

ord(g)

to be the g-norm of S.

In 2008, S. Savchev and F. Chen provided a characterization of the n-
zero-sum free sequences over Cn of length greater than 3n

2
− 1, which plays

an important role in the proof of Theorem 1.4.

Lemma 2.4. [17, Theorem 5, Proposition 4] Let S ∈ F(Cn) be a se-
quence of length greater than 3n

2
− 1 over Cn and v0(S) = h(S). Then S

is n-zero-sum free if and only if there exists a generator g of Cn such that
S = S1 · S2 with ‖S1‖g < 1 and ‖g − S2‖g < 1. In this case, we have

vg(S) + v0(S) ≥ 2(|S| − n+ 1).
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The following two lemmas give some additional properties of the zero-
sum free sequence over Cn.

Lemma 2.5. [12, Lemma 3.2] Let G = Cn with n ≥ 3 and S a zero-sum
free sequence over Cn of length |S| = ` ≥ (n+1)/2. Then there is a generator
g ∈ G such that g | S, ‖S‖g < 1 and

∑
(S) = {g, 2g, 3g, . . . , n‖S‖gg}.

Lemma 2.6. [13, Theorem 5.4.5(3)] Let G = Cn with n ≥ 3 and S ∈
F(G) be a zero-sum free sequence of length |S| ≥ n+1

2
. Then S contains

some element g of order n. Moreover, if n is odd, then vg(S) ≥ n+5
6
.

The following useful lemma was provided by Geroldinger et al. in 2006.

Lemma 2.7. [13, Lemma 5.7.10] Let ϕ : G → G be a group epimorphis-
m and k ∈ N. If S ∈ F(G) and |S| ≥ (k− 1) exp(G) + s(G), then S admits
a product decomposition S = S1 · . . . · Sk · S

′, where S1, . . . , Sk, S
′ ∈ F(G)

and, for every i ∈ [1, k], ϕ(Si) has sum zero and length |Si| = exp(G).

3. Some Essential Lemmas

In this section, we provide several essential lemmas that will be used to
prove our main results. For the convenience of the reader, we first introduce
another new concept.

Definition 3.1. A sequence S ∈ F(Cn) is called E-trivial if any one of
the following statements holds.

(1) gord(g) | S for some g ∈ Cn.
(2) S has a zero-sum subsequence of length n.
(3) S has a zero-sum subsequence of length 2 if n is odd.

We remark that clearly, if S ∈ F(Cn) is E-trivial, then for any integer
k ≥ 2 with gcd(n, k) = 1, S has a zero-sum subsequence of length not
divisible by k. So we do not need to consider the E-trivial sequences when
discussing Ek(Cn). Furthermore, if |S| = n + n−1

2
, then the sum of the two

highest multiplicities of S must be greater than n.

Lemma 3.2. Let S ∈ F(Cn) with |S| = n + n−1
2
. If S is not E-trivial,

then h(S) + h2(S) ≥ n + 1. Moreover, if vg(S) = h(S), then g must be a
generator of Cn.

Proof. Let Cn = 〈g1〉 and vx(S) = h(S) for some x ∈ 〈g1〉 \{0}. Since S
is n-zero-sum free, −x+ S is also n-zero-sum free with v0(−x+ S) = h(S).
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By Lemma 2.4, there exists a generator g2 of 〈g1〉 such that −x+S = S1S2,
‖S1‖g2 < 1 and ‖g2 − S2‖g2 < 1, and thus in this case,

h(S) + h2(S) ≥ v0(S1S2) + vg2(S1S2) ≥ 2 · n+ 1

2
= n+ 1.

If vg(S) = h(S), then ord(g) > h(S) ≥ n+1
2
. It follows from ord(g) | n

that ord(g) = n. �

The following lemmas establish some useful results related to sequences
that contain exactly two different elements.

Lemma 3.3. Let n, k ≥ 2 be integers with gcd(n, k) = 1. Let Cn =

〈g〉 and let T ∗ = gx1 · (bg)y1 and T ∗∗ = gx2 · (bg)y2, where b ∈ [1, n] and
x1, x2, y1, y2 ∈ [0, n − 1]. Suppose that σ(T ∗) = σ(T ∗∗) = 0 and |T ∗| ≡
|T ∗∗| ≡ 0 (mod k).

(1) If ‖T ∗‖g or ‖T ∗∗‖g is coprime to k, then gcd((b− 1), k) = 1.
(2) If ‖T ∗‖g ≡ ‖T ∗∗‖g ≡ m (mod k) for some integer m coprime to k,

then x1 ≡ x2 ≡ −mn(b−1)−1 (mod k) and y1 ≡ y2 ≡ mn(b−1)−1 (mod k).

Proof. (1) Without loss of generality, we may assume that ‖T ∗‖g ≡ m

(mod k) for some integer m coprime to k. Then by gcd(n, k) = 1, we have

x1 + by1 = n‖T ∗‖g ≡ mn (mod k).

Using the above result together with the hypothesis x1 + y1 = |T ∗| ≡ 0

(mod k), we have

y1(b− 1) ≡ x1 + y1 + (b− 1)y1 ≡ mn (mod k).

Hence gcd((b− 1), k) = 1.
(2) Since gcd(mn, k) = 1 and ‖T ∗‖g ≡ ‖T ∗∗‖g ≡ m (mod k), we have

x1 + y1b ≡ x2 + y2b ≡ mn (mod k).

Now |T ∗| ≡ |T ∗∗| ≡ 0 (mod k) implies that

x1 + y1 ≡ x2 + y2 ≡ 0 (mod k).

It follows from the above two congruences that

y1(b− 1) ≡ y2(b− 1) ≡ mn (mod k).

Using (1), we obtain

−x1 ≡ −x2 ≡ y1 ≡ y2 ≡ mn(b− 1)−1 (mod k).

�
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Lemma 3.4. Let n, k ≥ 2 be integers with gcd(n, k) = 1 and Cn = 〈g〉.
Let

S = gh1 · (bg)h2 ∈ F(Cn),

where b ∈ [2, n − 2] and 2 ≤ h2 ≤ h1 ≤ n − 1. Then S has a zero-sum
subsequence of length not divisible by k if any one of the following conditions
holds.

(1) b ∈ [2, n
3
] and h1 + h2 ≥ n+ 1.

(2) b ∈ (n
3
, n− h1 − 1] and h1 + h2 ≥ n+ n−1

2
.

(3) b ∈ [n− h1, n− n
h2
] and h1 + h2 ≥ n+ 1.

(4) b ∈ (n− n
h2
, n− 2] and h1 + h2 ≥ n+ n−1

2
.

Proof. If h1 + h2 ≥ n+ 1, then by 2 ≤ h2 ≤ h1 ≤ n− 1, we have
n+ 1

2
≤ h1 ≤ n− 1. (3.1)

We prove by contradiction. Assume to the contrary that every zero-sum
subsequence T of S has length |T | divisible by k.

(1) If b ∈ [2, n
h2
], then by the hypothesis 2 ≤ h2 ≤ h1 ≤ n − 1 and

n+ 1 ≤ h1 + h2, we have

0 ≤ n− h2b < n− (h2 − 1)b ≤ n− h2 ≤ h1 − 1 < h1.

Then

T1 = gn−h2b · (bg)h2 and T2 = gn−(h2−1)b · (bg)h2−1

are zero-sum subsequences of S with ‖T1‖g = ‖T2‖g = 1. By the assumption,
we have |T1| ≡ |T2| ≡ 0 (mod k). Using Lemma 3.3 (2), we obtain h2 ≡
h2 − 1 (mod k), yielding a contradiction.

If b ∈ ( n
h2
, n
3
], then 3 ≤ bn

b
c < h2, which infers that

0 ≤ n−
⌊n
b

⌋
b < n−

⌊n
b

⌋
b+ b ≤ min{n− 2b, 2b} ≤ (n− 2b) + 2b

2
=
n

2
.

Then by (3.1),

T3 = gn−b
n
b
cb+b · (bg)b

n
b
c−1 and T4 = gn−b

n
b
cb · (bg)b

n
b
c

are zero-sum subsequences of S with ‖T3‖g = ‖T4‖g = 1. By the assumption,
we have |T3| ≡ |T4| ≡ 0 (mod k). It follows from Lemma 3.3 (2) that
bn
b
c − 1 ≡ bn

b
c (mod k), a contradiction.

(2) By the hypothesis of (2), we get

n− b− 1 ≥ h1 ≥ h2 ≥ n+
n− 1

2
− h1 ≥

n+ 1

2
+ b.

Thus b ≤ n−3
4
, which contradicts to b ∈ (n

3
, n− h1 − 1].
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(3) We claim that b 6= n− n
h2
. Otherwise, h2(n− b) = n implies h2b ≡ 0

(mod n). It follows that ord(bg) ≤ h2 and so S is E-trivial, yielding a
contradiction.

If b ∈ [n− h1, n2 ], then 0 ≤ n− 2b < n− b ≤ h1. Thus, by h2 ≥ 2,

T5 = gn−b · (bg) and T6 = gn−2b · (bg)2

are zero-sum subsequences of S with ‖T5‖g = ‖T6‖g = 1. By the assumption,
we have |T5| ≡ |T6| ≡ 0 (mod k). By Lemma (3.3) (2), we obtain 1 ≡ 2

(mod k), a contradiction.
If b ∈ (n

2
, n− n

h2
), then set t = n− b ∈ ( n

h2
, n
2
) and ` = bn

t
c+ 1 ∈ [3, h2].

By (3.1),
0 < `t− n =

⌊n
t

⌋
t− n+ t ≤ t <

n

2
< h1.

Thus,
T7 = gt · (bg) and T8 = g`t−n · (bg)`

are zero-sum subsequences of S with ‖T7‖g = 1 and ‖T8‖g = `− 1. By the
assumption, we have

t+ 1 = |T7| ≡ 0 ≡ |T8| = `(t+ 1)− n (mod k)

and so n ≡ 0 (mod k), yielding a contradiction to gcd(n, k) = 1.
(4) By (3.1) and the hypothesis of (4), h2 + h1 ≥ n+ n−1

2
, we get

h2 ≥ n+
n− 1

2
− h1 ≥

n+ 1

2
.

Since b ≤ n−2, we obtain h2(n−b) ≥ 2h2 > n, a contradiction to b > n− n
h2
.

In all cases, we have found contradictions. Therefore, S has a zero-sum
subsequence of length not divisible by k, and we are done. �

Next, we discuss the situation that the sequences may contain more than
two different elements. By Lemmas 3.2 and 3.4, it remains to discuss the
situation when b ∈ (n

3
, n−h1−1] or b ∈ (n− n

h2
, n−2]. The following lemma

will be used frequently.

Lemma 3.5. Let n, k ≥ 2 be integers with gcd(n, k) = 1 and Cn = 〈g〉.
Let S ∈ F(Cn) with 0 - S. If every zero-sum subsequence of S has length
divisible by k, then we have the following statements for every x | S.

(1) If vg(S) ≥ n− indg(x), then n− indg(x) ≡ −1 (mod k).
(2) If vg(S) ≥ indg(x) and x occurs in a zero-sum subsequence of g−vg(S)S,

then indg(x) ≡ 1 (mod k).

Proof. (1) If indg(x) ≥ n− vg(S), then T = gn−indg(x) · x is a zero-sum
subsequence of S. Thus by the hypothesis, we obtain

n− indg(x) + 1 = |T | ≡ 0 (mod k).
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(2) If indg(x) ≤ vg(S) and x occurs in a zero-sum subsequence W of
g−vg(S)S, then

T = gindg(x) · x−1W
is a zero-sum subsequence of S. Thus by the hypothesis, we get |W | ≡ 0

(mod k), and hence

indg(x)− 1 ≡ indg(x) + |W | − 1 = |T | ≡ 0 (mod k).

This completes the proof. �

We now give a result in the situation when the sequences contain more
than two different elements and b ∈ (n

3
, n− h1 − 1].

Lemma 3.6. Let Cn = 〈g1〉 with an odd integer n not divisible by k. Set

S = (g1)
h1 · (bg1)h2 · U ∈ F(Cn),

where 1 ≤ h(U) ≤ h2 ≤ h1 ≤ n− 1, b ∈ (n
3
, n− h1 − 1] and |S| = n+ n−1

2
.

Then S has a zero-sum subsequence of length not divisible by k.

Proof. If S is E-trivial, then we are done. So we only need to deal with
the situation that S is not E-trivial. By Lemma 3.2, we have h1+h2 ≥ n+1

and so
n+ 1

2
≤ h1 ≤ n− 1. (3.2)

It follows from b ∈ (n
3
, n− h1 − 1] that

n

3
< b ≤ n− h1 − 1 ≤ min

{
h2 − 2,

n− 3

2

}
< h1. (3.3)

Assume to the contrary that each zero-sum subsequence of S has length
divisible by k. By (3.3), we have

0 < n− 2b < b < h1.

Thus T1 = gn−2b1 · (bg1)2 is a zero-sum subsequence of S. It follows from the
assumption that

n− 2b+ 2 = |T1| ≡ 0 (mod k). (3.4)

Denote g2 = bg1 and W = gh2
2 · U . Since S is not E-trivial, we have

ord(g2) > h2 >
n
3
(by (3.3)). Note that n is odd and ord(g2) | n. Thus

ord(g2) = n and so g2 is also a generator of Cn. We divide the rest of the
proof into two cases.

Case 1. W is not zero-sum free.
For any W ′ | W with σ(W ′) = 0, if g2 | W ′, then T2 = gb1 · g−12 W ′ is also

a zero-sum subsequence of S as g2 = bg1 and b < h1. By the assumption,
we have

|W ′| ≡ 0 ≡ |T2| = b− 1 + |W ′| ≡ b− 1 (mod k).
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This together with (3.4) includes n ≡ 0 (mod k), yielding a contradiction
to k - n. Therefore,

vg2(W
′) = 0. (3.5)

By the hypothesis of this case, there exists a nonempty zero-sum subse-
quence T3 | U . For any g′ | T3, note that gn−indg2 (g

′)
2 · g′ and gindg2 (g

′)
2 · g′−1T3

are both zero-sum. By (3.5), neither of them is a subsequence of W . Thus
h2 < min{n− indg2(g

′), indg2(g
′)}, or equivalently h2 < indg2(g

′) < n− h2.
By (3.3), we can write

T3 = (y1g2) · (y2g2) · . . . · (yqg2),

where q ≥ 3 and

b+ 2 ≤ h2 < y1 ≤ . . . ≤ yq < n− h2 ≤ h1 − 1 ≤ n− b− 2. (3.6)

Since S is not E-trivial and n is odd, (y1g2) · (y2g2) is not zero-sum and so
y1 + y2 6= n.

If y1 + y2 < n, then gn−y1−y22 · (y1g2) · (y2g2) is a zero-sum sequence. By
(3.5), it should not be a subsequence of W . By (3.6), we get

b+ 2 ≤ h2 < n− y1 − y2 < n− 2b,

which contradicts to (3.3).
If y1 + y2 > n, then gy1+y2−n

2 · (y1g2)−1(y2g2)−1T4 is a zero-sum sequence.
Similarly, we get

b+ 2 ≤ h2 < y1 + y2 − n < n− 2b− 4,

which also contradicts to (3.3).
So Case 1 is proved.
Case 2. W is zero-sum free.
Now (3.2) infers that |W | = |S|−h1 = n+n−1

2
−h1 ≥ n+1

2
. By Lemma 2.5,

there is a g3 ∈ Cn with ord(g3) = n such that

W = gh3
3 · (z1g3) · . . . · (zsg3),

where 2 ≤ z1 ≤ · · · ≤ zs ≤ n− 2 and h3 + z1 + · · ·+ zs < n. That is,

h3 + 2s ≤ h3 + z1 + · · ·+ zs ≤ n− 1.

Since h1 + h3 + s = |S| = n+ n−1
2

and b ≤ n− h1 − 1, we get

s+ h3 =
n− 1

2
+ n− h1 ≥

n− 1

2
+ b+ 1.

From the above two inequalities, we obtain

2(b+ 1) ≤ 2(h3 + s)− (n− 1) ≤ h3 ≤ h(W ) = h2.
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It follows from (3.3) and b ≤ n− h1 − 1 that

h2 ≥ 2b+ 2 > n− b+ 2 ≥ h1 + 3,

which contradicts h1 ≥ h2.
So Case 2 is proved. �

To deal with the situation when b ∈ (n− n
h2
, n−2], we need the following

auxiliary lemma.

Lemma 3.7. Let Cn = 〈g1〉 with an odd integer n not divisible by k. Set

S = (g1)
h1 · (bg1)h2 · U ∈ F(Cn),

where b ∈ (n− n
h2
, n− 2] and 1 ≤ h(U) ≤ h2 ≤ h1 ≤ n− 1 ≤ h1 + h2 − 2.

(1) Suppose that every zero-sum subsequence of S has length divisible by
k. For any g | U , if indg1(g) ∈ [2, n− h1 − 1], then indg1(g) ≡ 1 (mod k).

(2) Suppose that indg1(g) ∈ [2, n− h1 − 1] for every g | U . If

n‖U‖g1 ≥ n− h1,

then S has a zero-sum subsequence of length not divisible by k.
(3) Suppose that indg1(g) ∈ [h2(n− b), n− 2] for every g | U . If

n− n‖ − U‖g1 ≤ n− h1 − 1,

then S has a zero-sum subsequence of length not divisible by k.

Proof. Set t = n− b. It follows from h2 ≥ 2 and b ∈ (n− n
h2
, n− 2] that

t ∈
[
2,
n

h2

)
⊆
[
2,
n

2

)
.

Since h2 ≤ h1 ≤ n− 1 ≤ h1 + h2 − 2, we have

n− h1 < h2 < h2t (3.7)

and

t <
n+ 1

2
≤ h1 ≤ n− 1 (3.8)

as n is odd. Thus by t ∈ [2, n
h2
),

(n+ 1− h1)t ≤ h2t < n ≤ n+ (t− 2)
(n− t

2

)
=
(n− t

2
+ 1
)
t,

which implies
n+ t

2
< h1 ≤ n− 1.

Thus

n− h1 < n− n+ t

2
=
n+ t

2
− t < h1 − t < b

h1
t
ct.
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By denoting ` = min{bh1

t
c, h2} and using the above result together with

(3.7), we have

n− h1 < min
{⌊h1

t

⌋
t, h2t

}
= `t ≤

⌊h1
t

⌋
t ≤ h1. (3.9)

If every zero-sum subsequence of S has length divisible by k, then it
follows from (3.8) and Lemma 3.5 (1) that h1 > n− b and

t = n− b ≡ −1 (mod k). (3.10)

Denote W = (bg1)
h2 · U and

U = (x1g1) · . . . · (xrg1)

with
2 ≤ x1 ≤ . . . ≤ xr ≤ n− 2. (3.11)

(1) If xi ∈ [2, n− h1 − 1], then by (3.9),

0 < `t+ h1 + 1− n ≤ `t− xi < h1.

It follows from t = n− b that

T1 = g`t−xi
1 · (bg1)` · (xig1)

is a zero-sum subsequence of S. By the hypothesis and (3.10), we have

−xi + 1 ≡ `(t+ 1)− xi + 1 = |T1| ≡ 0 (mod k)

as desired.
(2) By the hypothesis of (2), there exists a longest subsequence U1 of U

such that
0 < n‖U1‖g1 ≤ n− h1 − 1 < n‖U‖g1 .

Choose g′ | U−11 U and denote U2 = g′U1. By (3.8) and the maximum of the
|U1|, we have

n− h1 ≤ n‖U2‖g1 = n‖U1‖g1 + indg1(g
′) ≤ 2(n− h1 − 1) < n.

Thus
T2 = g

n−n‖U2‖g1
1 · U2

is a zero-sum subsequence of S.
If every zero-sum subsequence of S has length divisible by k, then by

(1), we have n‖U2‖g1 ≡ |U2| (mod k) and so

0 ≡ |T2| = n− n‖U2‖g1 + |U2| ≡ n (mod k).

It is impossible since k - n. So (2) is proved.
(3) Assume to the contrary that every zero-sum subsequence of S has

length divisible by k.
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Using (3.8) and t = n − b, we obtain that b > n − h1, which together
with (3.7) and the hypothesis of (3) gives

indg1(g) > n− h1 (3.12)

for any g | W = (bg1)
h2 · U .

Let D = n−n‖−U‖g1 . Then by (3.9) and the hypothesis of (3), we have

D ≤ n− h1 − 1 < `t ≤ h2t. (3.13)

We divide the rest of the proof into three cases.
Case 1. D ≥ 0.
If h2t > h1, then h2 > h1

t
≥ bh1

t
c and so ` = min{bh1

t
c, h2} = bh1

t
c < h2.

It follows from (3.13) that

0 < `t−D ≤
⌊h1
t

⌋
t ≤ h1.

Thus
T3 = g`t−D1 · (bg1)` · U

is a zero-sum subsequence of S as t = n− b and

σ(T3) = (`t−D + `b+ n‖U‖g1)g1
= (n‖ − U‖g1 + n‖U‖g1)g1 = 0.

Therefore, (3.12) and Lemma 3.5 (1) infer that

n‖ − U‖g1 ≡ −| − U | = −|U | (mod k).

Using the above result together with the assumption and (3.10), we have

−n ≡ n‖ − U‖g1 − n+ |U |

≡ `(t+ 1)−D + |U | = |T3| ≡ 0 (mod k),

yielding a contradiction to k - n.
If h2t ≤ h1, then by (3.13), we have

0 < h2t−D ≤ h1 −D < h1.

Similarly,
T4 = gh2t−D

1 · (bg1)h2 · U

is a zero-sum subsequence of S and we get a contradiction to k - n. So Case
1 is proved.

Case 2. D < 0 and W is not zero-sum free.
In this case, there exists a zero-sum subsequence W1 | W and we assert

that
n‖ −W1‖g1 = n.
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Otherwise, n‖ −W1‖g1 ≥ 2n. Thus there exists a longest subsequence W2 |
W1 such that

n‖ −W2‖g1 ≤ n < n‖ −W1‖g1 .
Choose g′ | W−1

2 W1. By the maximum of the |W2|, we have

n‖ −W2‖g1 ≤ n < n‖ − (W2 · g
′
)‖g1 = n‖ −W2‖g1 + n− indg1(g

′)

and so
0 ≤ n− n‖ −W2‖g1 < n− indg1(g

′) < h1

as (3.12). Hence, we have that

T5 = g
n−n‖−W2‖g1
1 ·W−1

2 W1

is also a zero-sum subsequence of S as

σ(T5) = (n− n‖ −W2‖g1 − n‖W2‖g1 + n‖W1‖g1)g1 = 0

By (3.12) and Lemma 3.5(1), we have

n‖ −W2‖g1 ≡ −| −W2| = −|W2| (mod k).

By the assumption, we have

n ≡ n− n‖ −W2‖g1 − |W2|+ |W1| = |T5| ≡ |W1| ≡ 0 (mod k),

yielding a contradiction to k - n. So our assertion is proved.
Choose an element w in W1. Thus by our assertion,

n− indg1(w) + n‖ − w−1W1‖g1 = n‖ −W1‖g1 = n.

Using the above result together with (3.12), Lemma 3.5 (1) and the assump-
tion, we have |W1| ≡ 0 (mod k) and so

n ≡ indg1(w)− 1 = n‖ − w−1W1‖g1 − 1 ≡ −(|W1| − 1)− 1 ≡ 0 (mod k),

yielding a contradiction to k - n. And Case 2 is proved.
Case 3. D < 0 and W is zero-sum free.
Since n‖ − U‖g1 = n − D > n and W is zero-sum free, we can set

U3 =
∏d

i=1(xig1) for some d ∈ [1, r − 1] such that

n‖ − U3‖g1 < n < n‖ − U3‖g1 + (n− xd+1) ≤ n‖ − U‖g1 .

By denoting D′ = n− n‖ − U3‖g1 , we have

0 < D′ < n− xd+1.

If 0 < D′ < h2t, then we can use the same argument as in Case 1.
Consider

T ′3 = g`t−D
′

1 · (bg1)` · U3

when h2t > h1 and
T ′4 = gh2t−D′

1 · (bg1)h2 · U3
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when h2t ≤ h1. They both lead to a contradiction to k - n.
Therefore, it remains to deal with the situation D′ ≥ h2t. Using (3.11)

and (3.12), we have

h2t ≤ D′ ≤ n− xd+1 ≤ n− xd < h1. (3.14)

Next, we divide the proof of Case 3 into the following three subcases.
Case 3.1. xd+1 + xd ≤ n.
Since S is not E-trivial, we have xd+1 + xd 6= n.
Using (3.11) and (3.12), we have

h1 > n− x1 > n− (xd + xd+1) > 0.

Therefore,
T6 = g

n−xd−xd+1

1 · (xdg1) · (xd+1g1)

is a zero-sum subsequence of S. By (3.14), Lemma 3.5 (1) and the assump-
tion, we have

−n ≡ n− (2n+ 2) + 2 ≡ n− xd − xd+1 + 2 = |T6| ≡ 0 (mod k),

yielding a contradiction to k - n.
Case 3.2. n < xd+1 + xd ≤ n+ h2t.
By (3.14) and the hypothesis of Case 3.2, we have

0 < h2t+ n− xd+1 − xd < h2t < h1.

Thus
T7 = g

h2t+n−xd+1−xd

1 · (bg1)h2 · (xdg1) · (xd+1g1)

is a zero-sum subsequence of S. By the assumption, (3.10), (3.14) and Lem-
ma 3.5 (1), we get

−n ≡ n− (2n+ 2) + 2 ≡ h2(t+ 1) + n− xd − xd+1 + 2 = |T7| ≡ 0 (mod k),

yielding a contradiction to k - n.
Case 3.3. xd+1 + xd > n+ h2t.

Since W is zero-sum free, Lemma (2.6) (3) infers that

h2 ≥
n+ 5

6
.

By (3.14) and the hypothesis of Case 3.3, we have

2h2t ≤ 2n− xd+1 − xd < 2n− n− h2t,

which implies h2 < n
3t
≤ n

6
as t ≥ 2, yielding a contradiction to h2 ≥ n+5

6
.

So Case 3 is proved.
In all cases, we have found contradictions and thereby we complete the

proof. �
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Finally, we deal with the situation when b ∈ (n− n
h2
, n− 2].

Lemma 3.8. Let k ≥ 3 and Cn = 〈g1〉 with an odd integer n not divisible
by k. Let

S = (g1)
h1 · (bg1)h2 · U ∈ F(Cn),

where b ∈ (n− n
h2
, n− 2], 1 ≤ h(U) ≤ h2 ≤ h1 ≤ n− 1 and |S| = n + n−1

2
.

Then S has a zero-sum subsequence of length not divisible by k.

Proof. If S is E-trivial, then we are done. So we may assume that S is
not E-trivial. By Lemma 3.2, we have

h1 + h2 ≥ n+ 1

and so
n

h2
<
n+ 1

2
≤ h1 ≤ n− 1. (3.15)

Using (3.15) and b ∈ (n− n
h2
, n− 2], we get

n− h1 < n− n

h2
< b < n− 2. (3.16)

Set t = n− b. It follows from h1 + h2 ≥ n+ 1 and b ∈ (n− n
h2
, n− 2] that

n− h1 < h2 < h2t < n. (3.17)

Assume to the contrary that each zero-sum subsequence of S has length
divisible by k. It follows from (3.16) and Lemma 3.5 (1) that

t+ 1 ≡ 0 (mod k). (3.18)

Let
U = (x1g1) · . . . · (xrg1).

We distinguish the four cases according to the interval where xi is located.
Case 1. n− h1 ≤ xi < h2t for some i ∈ [1, r].
Then by (3.17), we have

0 < n− xi ≤ h1

and
0 < h2t− xi ≤ h2t− (n− h1) < h1.

Thus T1 = gn−xi
1 · (xig1) and T2 = gh2t−xi

1 · (bg1)h2 · (xig1) are zero-um
subsequences of S. By (3.18) and the assumption, we have{

n− xi + 1 = |T1| ≡ 0 (mod k),

h2(t+ 1)− xi + 1 = |T2| ≡ 0 (mod k),

which implies that n ≡ 0 (mod k), yielding a contradiction to k - n. Thus
Case 1 is proved.

Case 2. 2 ≤ x1 ≤ . . . ≤ xr ≤ n− h1 − 1.
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If n− h1 ≤ n‖U‖g1 , then the result follows from Lemma 3.7 (2).
If n‖U‖g1 ≤ n− h1 − 1, then by h(U) ≥ 1 and the hypothesis of Case 2,

we have
|U | < 2|U | ≤ n‖U‖g1 ≤ n− h1 − 1.

Since |S| = h1 + h2 + |U | = n+ n−1
2
, we have

h2 = |S| − h1 − |U | = n+
n− 1

2
− h1 − |U | ≥

n− 1

2
+ 1.

Thus h2t > n (as t ≥ 2), which contradicts to (3.17), and we are done.
Case 3. h2t ≤ x1 ≤ . . . ≤ xr ≤ n− 2.
If n−n‖−U‖g1 ≤ n−h1−1, then the result follows from Lemma 3.7 (3).
If n − h1 ≤ n − n‖ − U‖g1 < h2t, then by (3.17) and denoting D =

n− n‖ − U‖g1 , we have

0 < h2t−D ≤ h2t− (n− h1) < h1.

Thus T3 = gh2t−D
1 · (bg1)h2 · U is a zero-sum subsequence of S since

σ(T3) = (h2t−D + h2b+ n‖U‖)g1 = (n‖U‖ − n+ n‖ − U‖)g1 = 0

(as t = n − b). By (3.17), Lemma 3.5(1) and the hypothesis of Case 3, we
have

n‖ − U‖g1 ≡ −| − U | = −|U | (mod k).

Using the above result together with (3.18) and the assumption, we have

−n ≡ n‖ − U‖g1 − n+ |U | ≡ h2(t+ 1)−D + |U | = |T4| ≡ 0 (mod k),

yielding a contradiction to k - n.
If n− n‖ − U‖g1 ≥ h2t, then by t = n− b, (3.16) and the hypothesis of

Case 3, we have t ≥ 2 and

2h2 ≤ h2t ≤ n− n‖ − U‖g1 ≤ n− 2|U | = n− 2r.

Thus
r ≤ n

2
− h2.

By (3.15) and h1 + h2 + r = |S| = n+ n−1
2
, we have

h2 + r =
n− 1

2
+ n− h1 ≥

n− 1

2
+ 1

and so
n+ 1

2
− h2 ≤ r ≤ n

2
− h2,

which is impossible. This completes the proof of Case 3.
Case 4. For some m ∈ [1, r − 1],

2 ≤ x1 ≤ . . . ≤ xm ≤ n− h1 − 1 < h2t ≤ xm+1 ≤ . . . ≤ xr ≤ n− 2.

Let U = U1U2, where U1 =
∏m

i=1(xig1) and U2 =
∏r

m+1(xig1).
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If n − h1 ≤ n‖U1‖g1 , then by 2 ≤ x1 ≤ . . . ≤ xm ≤ n − h1 − 1 and
Lemma 3.7 (2), the result is proved. If n − h1 ≤ n − n‖ − U2‖g1 < h2t or
n − n‖ − U2‖g1 ≤ n − h1 − 1, then using the same argument as in Case 3,
the result is proved.

Therefore, it remains to deal with the situation where

0 < n‖U1‖g1 ≤ n− h1 − 1 (3.19)

and
n− n‖ − U2‖g1 ≥ h2t.

It follows from t = n − b and (3.16) that t ≥ 2. By the hypothesis of Case
4, we obtain

2h2 ≤ h2t ≤ n− n‖ − U2‖g1 ≤ n− 2|U2|
and thus

|U2| ≤
n

2
− h2. (3.20)

By the hypothesis of Case 4 and Lemma 3.7 (1), we have xi ≡ 1 (mod k) and
so xi ≥ k+1 for every i ∈ [1,m], which implies that n‖U1‖g1 ≥ 4|U1| = 4m

(as the hypothesis k ≥ 3). Using (3.19) and h1 + h2 + |U1| + |U2| = |S| =
n+ n−1

2
, we have

h2 + |U2| =
n− 1

2
+ n− h1 −m

≥ n− 1

2
+ 1 + n‖U1‖g1 −m ≥

n+ 1

2
+ 3m.

It follows from (3.20) that
n+ 1

2
+ 3m− h2 ≤ |U2| ≤

n

2
− h2,

yielding a contradiction to |U1| = m ≥ 1.
In all cases, we have found contradictions and thereby we complete the

proof. �

4. Proof of the Main Results

We now give the proofs of our main results.
Proof of Theorem 1.4. It follows from Lemma 1.2 that E3(Cn) ≥

b3
2
(n− 1)c+1. So it remains to prove E3(Cn) ≤ b32(n− 1)c+1. Further, we

will show the stronger result that Ek(Cn) ≤ b32(n − 1)c + 1 for any integer
k ≥ 3 with k - n.

Let Cn = 〈g〉 and S ∈ F(Cn) with |S| = b32(n− 1)c + 1. We prove that
S has a zero-sum subsequence of length not divisible by k according to the
following two cases.

Case 1. n is even.
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Let C2 = 〈n2g〉 C Cn and ϕ : Cn → Cn/C2 be the natural epimorphism.
Noticing that |S| = n

2
+ n− 1 and s(Cn/C2) = n− 1, we apply Lemma 2.7

to get the decomposition
S = S1 · S2 · S

′
,

where |S1| = |S2| = n
2
and σ(S1), σ(S2) ∈ ker(ϕ) = C2.

Each of S1, S2 and S1S2 has length not divisible by k since k - n. And it
is obviously impossible that 0 6= σ(S1) = σ(S2) = σ(S1S2) ∈ C2. Thus, at
least one of S1, S2 or S1S2 is a zero-sum subsequence of S with length not
divisible by k, as desired.

Case 2. n is odd.
If S is E-trivial, then we are done. So we may assume that S is not

E-trivial. By |S| = n+ n−1
2

and Lemma 3.2, we can write

S = gh1
1 · (bg1)h2 · U,

where ord(g1) = n, b ∈ [2, n − 2], 0 ≤ h(U) ≤ h2 ≤ h1 ≤ n − 1 and
h1 + h2 ≥ n+ 1.

If b ∈ [2, n
3
], the result follows from Lemma 3.4 (1).

If b ∈ (n
3
, n − h1 − 1], then by Lemmas 3.4 (2) and 3.6, we obtain this

result.
If b ∈ [n− h1, n− n

h2
], then Lemma 3.4 (3) provides the desired result.

If b ∈ (n− n
h2
, n− 2], then the result follows immediately from Lemmas

3.4 (4) and 3.8. This completes the proof of Theorem 1.4. �

Proof of Theorem 1.5. It follows from Lemma 1.2 that Ek(Cn) ≥ n+1.
So it remains to prove Ek(Cn) ≤ n+ 1.

Let S be a sequence of length n+1. We need to show that there exists a
subsequence T of S with σ(T ) = 0 such that k - |T |. By dn

2
e < k ≤ n− 1 =

D(Cn) − 1 and Lemma 2.2(1), we can find a zero-sum subsequence T of S
with |T | 6= k. If k | |T |, then |T | ≥ 2k ≥ 2(dn

2
e + 1) ≥ n + 2 > |S|, a

contradiction. Thus k - |T |, so we find the desired subsequence T and we
are done. �

As a consequence of Theorems 1.4 and 1.5 along with earlier work by the
first author and W. Schmid, we can summarize all known results of Ek(Cn)

in the following corollary.

Corollary 4.1. Let n and k be positive integers with k - n. Then⌊ k

k − 1
(n− 1)

⌋
+ 1 ≤ Ek(Cn) ≤

⌊3
2
(n− 1)

⌋
+ 1

for k ≥ 3, and

Ek(Cn) =
⌊ k

k − 1
(n− 1)

⌋
+ 1
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if k = 2, 3 or k > dn
2
e.
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