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ABSTRACT. Let G be a finite abelian group and k£ be an integer not
dividing the exponent of G. We denote by E;(G) the smallest positive
integer [ such that every sequence over GG of length no less than [ has a
zero-sum subsequence of length not divisible by k. In this paper, we focus
on determining Ex(G) for G = C,,, a cyclic group of order n. Specifically,
we prove that

Ek(Cn) = \‘kkl(n— 1)J+1
for k € {3} U([5],n).

1. INTRODUCTION AND MAIN RESULTS

For a positive integer n, we denote by C), a cyclic group of order n. It is
well known that any non-trivial finite abelian group G' can be written as

G:C’nl@...@cnr

with 1 <mny | ng|--- | n,.. We refer to r as the rank of G and to n, = exp(G)
as the exponent of GG. Throughout this paper, let G be a finite abelian
group, written additively, and 0 be its identity element. A sequence S over
G (unordered and repetition is allowed) is called a zero-sum sequence if the
sum of all elements of S is 0.

A typical direct zero-sum problem studies the condition which ensures
that given sequences have non-empty zero-sum subsequences with prescribed
properties. The investigations on the direct zero-sum problems were initi-
ated by P. Erdés, A. Ginzburg and A. Ziv. In 1961 [6], they proved that
s(Cy,) = 2n —1 (see also [2] for some other proofs), where s(G) is defined as
the smallest integer [ such that every sequence of length [ has a zero-sum
subsequence of length exp(G). The result is well known as Erdés-Ginzburg-
Ziv Theorem, which is regarded as a cornerstone of the zero-sum theory,
and the invariant s(G) is called Erdds-Ginzburg-Ziv constant.

A few years later, another zero-sum invariant was introduced by H. Dav-
enport in a famous western conference (cf. [5] and [14] — [15]). He raised the
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question of determining the maximal number of distinct prime ideals that
may appear in the prime ideal decomposition of an irreducible element in
an algebraic number field F'. Let D(G) denote the smallest positive integer
[ such that every sequence S over G of length |S| > [ contains a nonemp-
ty zero-sum subsequence. Davenport pointed out that D(G) is exactly the
maximal number that he asked if the ideal class group of F' is isomorphic to
G. The invariant D(G) is so called the Davenport constant, and it played a
crucial role in the proof of the famous result that there are infinitely many
Carmichael numbers in 1994 [1].

The Erdés-Ginzburg-Ziv constant s(G) and the Davenport constant D(G)
are classical invariants in combinatorial number theory and have received
a great deal of attention in recent years (cf. [3|-[4], [7]-[11] and [16]). To
further study s(G), the first author of this paper introduced the following
invariant in 2000 [9].

Definition 1.1. Let G be a finite abelian group and k be a positive integer
with k 1 exp(G). We denote by Ex(G) the smallest positive integer | such that
every sequence S over G of length |S| > | has a zero-sum subsequence of
length not divided by k.

It was proved in [9] that Eo(G) = 2D(G) — 1, where G = C,, or G is
a p-group for some prime p. Ex(G) for all abelian p-groups was completely
determined by W. Schmid in 2001 [18] and the main result is summarized

in the following lemma.

Lemma 1.2. [18, Theorem 1.2, Lemmas 2.1 and 2.4] Let G = C,, ®
Cry ® ... C,, with1 <ny|...|n, and k be a positive integer not dividing
exp(G).

(1)

D(G) < Ex(G) < s(G).
Specifically, the equality on the left-hand side is valid if k > D(G).

(2)

T

EAG)E{E§T§:Oh—1w+L

i=1
Moreover, the equality holds if G is a p-group and ged(p, k) = 1.

Based on Lemma 1.2 (2), it is natural to give the following conjecture.

Conjecture 1.3. Let n and k be positive integers satisfying that n > 3,
k> 1 and ged(k,n) = 1. Then for any cyclic group C,, we have

Egag:{kflm—1W+L
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Clearly, Ex(C,,) = n for k > n by Lemma 1.2 (1). Therefore, Conjecture 1.3
remains open when k£ < n.

The first main result of this paper verifies this conjecture for £ = 3.

Theorem 1.4. Let n be a positive integer with 31 n. Then

Ey(Ch) = E(n - 1)J .y

We also prove the following related result.

Theorem 1.5. Let n and k be positive integers with k{n. If [§] < k <

n, then

The paper is organized in the following way. In Section 2, we gather some
notations and some preliminary results. Section 3 provides some essential

lemmas. Our main results are proved in Section 4.

2. NOTATION AND PRELIMINARIES

2.1. Notation. We recall some standard notation and terminology. We de-
note by N the set of positive integers, and by Ny the set NU {0}. For any
two integers a,b € Ny, we set [a,0] = {x € Ny | a < z < b}. For a real
number x, we denote by |x| the largest integer that is less than or equals
to x, which is called the floor of . Similarly, we denote by [z] the smallest
integer that is greater than or equals to x, which is called the ceiling of x.

We denote by F(G) the free abelian monoid with basis G under multi-
plication. The elements of F(G) are called sequences over G. The identity
element () € F(G) is called the empty sequence. Every sequence S over G

can be written in the form

S=g-...g=]]g"?
geG

where v,(S) € Ny denotes the multiplicity of g in S. Moreover, we say that
S contains g if vy(S) > 0. A sequence T is called a subsequence of S if
vy(T) <v,(S) for all g € G, and is denoted by T"| S. If T is a subsequence
of S, let ST~! denote the subsequence with T deleted from S. If S; and S,
are two sequences over G, let 5195 denote the sequence over GG satisfying
that v, (S152) = v, (S1)+v, (S2) for all g € G. Two subsequences S; and Sy
of S are called disjoint if Sy | SS;'. We define g+ S = (g+g1)-...-(g+g)
(andg—S=(g—¢g1) ... (g—g¢)) for all g € G.
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We call S| =€ =Y, ;V,4(S) € Ny the length of S, o(S) = 31_, g9; =
> gecVe(S)g € G the sum of S, supp(S) = {g € G | vy(S) > 0} C G
the support of S and h(S) = max{v,(S) | ¢ € G} the maximum of the
multiplicity in S. We denoted by hy(S) the second largest multiplicity in
S. We call that S is a zero-sum sequence if 0(S) =0 € G, S is a zero-sum
free sequence if there is no non-empty zero-sum subsequence of S, and S is
a b-zero-sum free sequence if there is no nonempty zero-sum subsequence T'
of S with length |T'| = b.

Each map f : G — G between finite abelian groups can extend uniquely
to a monoid homomorphism F(G) — F(G'), which is denoted by f as well.
If f is a group homomorphism, then o(f(S)) = f(c(S)) for each S € F(G).

2.2. Some known results. We collect some known results which will be
needed later. First, we introduce a new invariant and state a related result.

Definition 2.1. For each positive integer ¢, we define disc,(G) to be
the smallest positive integer t such that every sequence S over G of length

|S| >t has a nonempty zero-sum subsequence T with |T'| # ¢.

Lemma 2.2. [12, Theorem 1.3| Let ¢ € [2,D(G)—1] and m, n be positive
integers. Then disc,(C,,) =n+ 1 for n > 3.

For the convenience of the reader, we give the following notations.

Definition 2.3. Let g be a generator of C,.
(1) For an element h € C,, we define ind,(h) to be the least positive
integer t such that h = tg.

(2) For a sequence S = gy - ...+ gy over C,, we define
_indy(g1) + - - - +indg(ge)
151y =
ord(g)

to be the g-norm of S.

In 2008, S. Savchev and F. Chen provided a characterization of the n-
zero-sum free sequences over C,, of length greater than 37” — 1, which plays
an important role in the proof of Theorem 1.4.

Lemma 2.4. [17, Theorem 5, Proposition 4] Let S € F(C,) be a se-
quence of length greater than 37" — 1 over C,, and vo(S) = h(S). Then S
s n-zero-sum free if and only if there exists a generator g of C,, such that

S =51 -5 with ||S1]|, <1 and ||g — S2l|; < 1. In this case, we have
vo(S) +vo(S) = 2(]S| —n+1).
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The following two lemmas give some additional properties of the zero-

sum free sequence over C,,.

Lemma 2.5. [12, Lemma 3.2| Let G = C,, withn > 3 and S a zero-sum
free sequence over C,, of length |S| = € > (n+1)/2. Then there is a generator
g9 € G suchthat g | S, |[Slly <1 and 32(5) = {g,29,39,...,nl[S],9}-

Lemma 2.6. [13, Theorem 5.4.5(3)] Let G = C,, withn > 3 and S €
"T“. Then S contains

n+5
5 -

F(G) be a zero-sum free sequence of length |S| >

some element g of order n. Moreover, if n is odd, then v,(S) >
The following useful lemma was provided by Geroldinger et al. in 2006.

Lemma 2.7. [13, Lemma 5.7.10] Let ¢ : G — G be a group epimorphis-
m and k € N. If S € F(G) and |S| > (k — 1) exp(G) +s(G), then S admits
a product decomposition S = Sy -...- S-S, where Sy,...,S, S € F(G)

and, for every i € [1, k], ¢(S;) has sum zero and length |S;| = exp(G).

3. SOME ESSENTIAL LEMMAS

In this section, we provide several essential lemmas that will be used to
prove our main results. For the convenience of the reader, we first introduce

another new concept.

Definition 3.1. A sequence S € F(C,,) is called E-trivial if any one of
the following statements holds.

(1) g4 | S for some g € C,,.

(2) S has a zero-sum subsequence of length n.

(3) S has a zero-sum subsequence of length 2 if n is odd.

We remark that clearly, if S € F(C,) is E-trivial, then for any integer
k > 2 with ged(n, k) = 1, S has a zero-sum subsequence of length not
divisible by k. So we do not need to consider the E-trivial sequences when
discussing Ej(C;,). Furthermore, if |S| = n + 231, then the sum of the two
highest multiplicities of S must be greater than n.

Lemma 3.2. Let S € F(C,) with |S| = n+ "L, If S is not E-trivial,
then h(S) + ha(S) > n + 1. Moreover, if v,(S) = h(S), then g must be a
generator of C,,.

Proof. Let C,, = (g1) and v,(S) = h(S) for some = € (g1) \ {0}. Since S

is n-zero-sum free, —x + S is also n-zero-sum free with vo(—z +.5) = h(9).
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By Lemma 2.4, there exists a generator g of (g;) such that —z+.5 = 515,
IS1]lg, < 1 and ||g2 — S2|lg, < 1, and thus in this case,

1
B(S) + ha(S) > vo(S1Ss) + vy (S185) = 2- ; "
If v4(S) = h(S), then ord(g) > h(S) > 2. It follows from ord(g) | n
that ord(g) = n. O

The following lemmas establish some useful results related to sequences

that contain exactly two different elements.

Lemma 3.3. Let n,k > 2 be integers with ged(n, k) = 1. Let C,, =
(9) and let T* = g™ - (bg)¥* and T** = g¢** - (bg)¥?, where b € [1,n] and
x1,22,Y1,Y2 € [0,n — 1]. Suppose that o(T*) = o(T™) = 0 and |T*| =
|T**| =0 (mod k).

(1) If [|[T*||g or [|T**||4 is coprime to k, then ged((b—1),k) = 1.

(2) If | Ty = IT**||y = m (mod k) for some integer m coprime to k,
then 1 = 29 = —mn(b—1)"' (mod k) and y; = yo = mn(b—1)"" (mod k).

Proof. (1) Without loss of generality, we may assume that ||77|, = m
(mod k) for some integer m coprime to k. Then by ged(n, k) = 1, we have

z1 +byy = n||T*||; =mn  (mod k).

Using the above result together with the hypothesis z1 + y; = [T*] = 0
(mod k), we have

nb—1) =1+ +0—1Dy =mn  (mod k).

Hence ged((b—1),k) = 1.
(2) Since ged(mn, k) =1 and |||, = ||T**]|, = m (mod k), we have

1+ b =20+ b =mn (mod k).
Now |T*| = |T*| =0 (mod k) implies that
r1+yp=r2+y2 =0 (mod k).
It follows from the above two congruences that
yi(b—1)=y2(b—1) =mn (mod k).
Using (1), we obtain

i =-—m=y =y =mnb-1)"" (mod k).
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Lemma 3.4. Let n,k > 2 be integers with ged(n, k) =1 and C,, = (g).
Let

S =g (bg)h2 e F(Cy),

where b € [2,;n — 2] and 2 < hy < hy < n—1. Then S has a zero-sum
subsequence of length not divisible by k if any one of the following conditions
holds.

2,%] and hy +hy > n + 1.

(5.n —h1 — 1] and hy + hy 2n+”T’1.

[n—hl,n—hﬂz] and hy + hy >n + 1.

(n—7n—2] and hy + hy > n+ "2

Proof. If hy + hs > n+ 1, then by 2 < hy < h; < n — 1, we have
n+1

We prove by contradiction. Assume to the contrary that every zero-sum
subsequence T" of S has length |T'| divisible by k.

(1) If b € [2,52], then by the hypothesis 2 < hy < hy < n — 1 and
n+ 1 < hy + hy, we have

Ogn—hgb<n—(h2—1)b§n—h2§h1—1<h1

Then
T]_ — gn—th . (bg)h2 and T2 — gn—(hz—l)b . (bg)h2_1

are zero-sum subsequences of S with ||7} ]|, = || 13||, = 1. By the assumption,
we have |T1| = |T3] = 0 (mod k). Using Lemma 3.3 (2), we obtain hy =
hy —1 (mod k), yielding a contradiction.
If b€ (55, 5], then 3 < [§] < ho, which infers that
0<n-— LEJb<n— PJbergmin{n—%, oy < (=W B
b b 2 2
Then by (3.1),

Ty=g" 10 (bg) B and Ty = g™ 1800 - (bg) ¥

are zero-sum subsequences of S with || T3||, = ||74||; = 1. By the assumption,
we have |T3] = |Ty| = 0 (mod k). It follows from Lemma 3.3 (2) that
3] —1=[%] (mod k), a contradiction.

(2) By the hypothesis of (2), we get

n—l_h1>n+1

Thus b < ”7_3, which contradicts to b € (§5,n — hy — 1].
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(3) We claim that b # n — ;-. Otherwise, ho(n — b) = n implies hob =0
(mod n). Tt follows that ord(bg) < hy and so S is E-trivial, yielding a
contradiction.

Ifbe[n—hy, 5], then 0 <n—2b<n—>b< hy. Thus, by hy > 2,

Ts = g" " (bg) and Tp = g"~*" - (bg)?
are zero-sum subsequences of S with || 75|/, = ||7s||; = 1. By the assumption,
we have |T5| = |Ts] = 0 (mod k). By Lemma (3.3) (2), we obtain 1 = 2
(mod k), a contradiction.

Itbe(5.,n— ) thenset t =n—0be€ (;£,5) and £ = [§]| + 1 € [3, ha].

By (3.1),
0<tt—n=|2|t—n+t<t<Z<n.
Thus,
Ty =g (bg) and Ty = " - (bg)*
are zero-sum subsequences of S with ||77|, = 1 and ||Ts||; = ¢ — 1. By the

assumption, we have
t+1=|T7|=0=|Ts| =4(t+1) —n (mod k)
and so n =0 (mod k), yielding a contradiction to ged(n, k) = 1.
(4) By (3.1) and the hypothesis of (4), hy + by > n + %5, we get

n_l—h12n+1.

th’fl‘{'

Since b < n—2, we obtain hy(n—>b) > 2hy > n, a contradiction to b > n— %
In all cases, we have found contradictions. Therefore, S has a zero-sum

subsequence of length not divisible by k, and we are done. U

Next, we discuss the situation that the sequences may contain more than
two different elements. By Lemmas 3.2 and 3.4, it remains to discuss the
situation when b € (§,n—hi—1] or b € (n— 7=, n—2]. The following lemma
will be used frequently.

Lemma 3.5. Let n, k > 2 be integers with ged(n, k) =1 and C,, = (g).
Let S € F(C,) with 0 1+ S. If every zero-sum subsequence of S has length
divisible by k, then we have the following statements for every x | S.

(1) If vy(S) > n —indy(x), then n —indy(x) = —1 (mod k).

(2) If v,(S) > ind,(x) and x occurs in a zero-sum subsequence of g~¢(9) S,

then indy(x) =1 (mod k).

Proof. (1) If ind,(z) > n — v,(S), then T = ¢g" 4@ . z is a zero-sum
subsequence of S. Thus by the hypothesis, we obtain

n—indy(x)+1=1|T]=0 (mod k).



ON THE EXISTENCE OF ZERO-SUM SUBSEQUENCES WITH LENGTH NOT DIVIDED BY A GIVEN NUMBER

(2) If indy(z) < v,(S) and z occurs in a zero-sum subsequence W of
g~ V99 S then
T — gindg(ac) . ZE_IW

is a zero-sum subsequence of S. Thus by the hypothesis, we get |W| = 0
(mod k), and hence

ind,(z) — 1 =ind,(z) + |W|-1=|T| =0 (mod k).
This completes the proof. Il

We now give a result in the situation when the sequences contain more

than two different elements and b € (3,n — hy — 1].

Lemma 3.6. Let C,, = (g1) with an odd integer n not divisible by k. Set
S = (g0)" - (bg1)"™ - U € F(Cn),
where 1 <h(U) <hy <hi <n-1,b¢€ (3,n—hy —1] and |S| :n+”T_1.

Then S has a zero-sum subsequence of length not divisible by k.

Proof. If S is E-trivial, then we are done. So we only need to deal with
the situation that S is not E-trivial. By Lemma 3.2, we have hy +hy > n+1

and so

1
"L e <n—1. (3.2)

It follows from b € (3,n — hy — 1] that
g<b§n—h1—1§min{h2—2,n;3}<h1. (3.3)

Assume to the contrary that each zero-sum subsequence of S has length
divisible by k. By (3.3), we have

O0<n—2b<b< hy.

Thus Ty = ¢~ - (bg1)? is a zero-sum subsequence of S. It follows from the
assumption that
n—2b+2=|T1/=0 (mod k). (3.4)

Denote g, = bg, and W = ¢h? . U. Since S is not E-trivial, we have
ord(ga) > hy > % (by (3.3)). Note that n is odd and ord(gz) | n. Thus
ord(ga) = n and so gs is also a generator of C,,. We divide the rest of the
proof into two cases.

CASE 1. WV is not zero-sum free.

For any W' | W with o(W’) = 0, if g, | W', then T, = g% - g; "W’ is also
a zero-sum subsequence of S as go = bg; and b < hy. By the assumption,
we have

Wi =0=|Tyl=b—-1+W|=b—-1 (mod k).
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This together with (3.4) includes n = 0 (mod k), yielding a contradiction
to k 1 n. Therefore,

v, (W) = 0. (3.5)
By the hypothesis of this case, there exists a nonempty zero-sum subse-
quence T3 | U. For any ¢’ | T3, note that g, ~indgy (67) ¢ and g;nd” @), g Ty

are both zero-sum. By (3.5), neither of them is a subsequence of W. Thus
he < min{n — ind,,(¢’),ind,,(¢’)}, or equivalently hy < indy,(¢") < n — hs.
By (3.3), we can write

Ts = (y192) - (y292) - - - - (Yq92),

where ¢ > 3 and

Since S is not E-trivial and n is odd, (y192) - (¥292) is not zero-sum and so

Y1+ Y2 £ n.
If y1 +y2 < n, then g5 "% - (y192) - (y292) is a zero-sum sequence. By
(3.5), it should not be a subsequence of W. By (3.6), we get

b+2§h2<n—y1—y2<n—2b,

which contradicts to (3.3).

If 41 4 o > n, then g8 27" . (y192) " (y292) ' Ty is a zero-sum sequence.

Similarly, we get

b+2<hy <y +ys—n<n-—2b—4,

which also contradicts to (3.3).

So Case 1 is proved.

CASE 2. W is zero-sum free.

Now (3.2) infers that [W| = |S|—hy = n+2t—hy > " By Lemma 2.5,
there is a g3 € C,, with ord(gs) = n such that

W =g5" - (2193) - . - (2:93),
where 2 < 2z <--- <z, <n-—2and hg3+ 21 +--- 4+ z, < n. That is,
h3+28§h3+21+"‘+23§n—1.

Since hy +hy +s =S| =n+ 2+ and b <n — hy — 1, we get

n—1

1
s+ hy = +n—h12nT+b+1.

From the above two inequalities, we obtain

2(b+1) < 2(hy + 8) — (n — 1) < hy < h(W) = h,.
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It follows from (3.3) and b <n — hy — 1 that
he >2b+2>n—-b+22>hy + 3,

which contradicts h; > hs.
So Case 2 is proved. O

To deal with the situation when b € (n— -, n—2], we need the following

auxiliary lemma.

Lemma 3.7. Let C,, = (g1) with an odd integer n not divisible by k. Set
S=(g1)" - (bg)" - U € F(C,),

where b € (n—h%,n—Q] and 1 <h({U)<hy <h;<n—1<hy+hy—2.
(1) Suppose that every zero-sum subsequence of S has length divisible by

k. For any g | U, if indy, (g) € [2,n — hy — 1], then ind,, (¢g) =1 (mod k).
(2) Suppose that ind,, (g) € [2,n — hy — 1] for every g | U. If

n|Ullgy = n = b,

then S has a zero-sum subsequence of length not divisible by k.
(3) Suppose that ind,, (g) € [h2(n — b),n — 2| for every g | U. If

n—n||=Ulgy <n—h —1,
then S has a zero-sum subsequence of length not divisible by k.
Proof. Set ¢t = n—b. It follows from hy > 2 and b € (n — 3%, n — 2] that
te [2%) C [2%)
Since hyg < hy <n—1<h;+ hy — 2, we have
n—hy < hy < hot (3.7)

and
n+1

t < <h <n-1 (3'8)

as n is odd. Thus by ¢ € [2, h%),

(n+1—h1)t§h2t<n§n+(t—2)<n2_t> - (n;tJrl)t,

which implies
n+t

<h1§n—1.

Thus
t t h
n_h1<n_n;r :%—t<h1—t<[7ljt.




12 W.D. GAO, X. J, Y.L. LI, AND H.J. QI

By denoting ¢ = min{|% ], hy} and using the above result together with
(3.7), we have
. hl hl

If every zero-sum subsequence of S has length divisible by k, then it
follows from (3.8) and Lemma 3.5 (1) that hy > n — b and

t=n—-b=-1 (mod k). (3.10)
Denote W = (bg;)"2 - U and

U= (xr101) ... (xrq1)

with

2<m <...<z,.<n-—2. (3.11)

(1) If z; € [2,n — hy — 1], then by (3.9),
O<lt+hi+1—n</lt—x; <hy.

It follows from ¢t = n — b that

T = gft_mi ) (bgly - (Tig1)
is a zero-sum subsequence of S. By the hypothesis and (3.10), we have

—r;+1=L0t+1)—x;+1=|T1| =0 (mod k)

as desired.
(2) By the hypothesis of (2), there exists a longest subsequence U; of U
such that
0 <nl|Uillgy £n—hy —1<n|U|,,-

Choose ¢’ | U;*U and denote U, = ¢'U;. By (3.8) and the maximum of the
|U1|, we have

n—hy < nl|Usllg, = nl|Uillg, +indg, (¢') < 2(n— b — 1) <n.

Thus
T, = g?*nIIU2IIgl U,
is a zero-sum subsequence of S.
If every zero-sum subsequence of S has length divisible by k, then by

(1), we have n||Us||4, = |Us| (mod k) and so
0=1Tz] =n—n|Ully + Uzl =n (mod k).

It is impossible since k1 n. So (2) is proved.
(3) Assume to the contrary that every zero-sum subsequence of S has
length divisible by k.
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Using (3.8) and ¢t = n — b, we obtain that b > n — hy, which together
with (3.7) and the hypothesis of (3) gives

indg, (9) >n—h (3.12)

for any g | W = (bgy)" - U.
Let D =n—n|—Ull,,. Then by (3.9) and the hypothesis of (3), we have

We divide the rest of the proof into three cases.
CAseE 1. D > 0.
If hot > hy, then hy > > |%] and so £ = min{[ 2|, ho} = [21| < hy.
It follows from (3.13) that
h
0<lt—D< {%Jtﬁhl.
Thus
Ty =g/""" (bg)" - U
is a zero-sum subsequence of S ast =n — b and
o(T3) = (tt — D+ b+ n||U||, )0
= (nl = Ullg, + nllUllg,)g1 = 0.
Therefore, (3.12) and Lemma 3.5 (1) infer that
nl| =Ullg, = - -Ul=—|U| (mod k).
Using the above result together with the assumption and (3.10), we have
—n=n| = Ullg —n+|U|
=(lt+1)—D+|U|=|T5]=0 (mod k),

yielding a contradiction to k 1 n.
If hot < hy, then by (3.13), we have

O<h2t—D§h1—D<h1

Similarly,
Ty=gi* " (bg)" - U

is a zero-sum subsequence of S and we get a contradiction to k t n. So Case
1 is proved.

CASE 2. D < 0 and W is not zero-sum free.

In this case, there exists a zero-sum subsequence W | W and we assert
that

nf = Willg, = n.
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Otherwise, n|| — Wiy, > 2n. Thus there exists a longest subsequence W5 |
Wi such that

nf = Wallg, <n < nll = Wil
Choose ¢’ | W, 'W,. By the maximum of the |[W,|, we have

nl| = Wallg, <n <nll = (Wa-g)llg = nll = Wallg, +n — indg, (¢)
and so
0<n-— nH - W2||91 <n-— ind{h(g/) < hl
as (3.12). Hence, we have that
T5 — g?_nH_WQHm . W271W1
is also a zero-sum subsequence of S as
o(Ts) = (n = nl| = Wallg, = n[[Wallg, + nl|Willg)g1 =0
By (3.12) and Lemma 3.5(1), we have
nll = Wellg, = —=[ = Wa[ = —=|[W,|  (mod ).
By the assumption, we have
n=n—nl =Wy — [Wa|+ W] = [T5] = [W1| =0 (mod k),

yielding a contradiction to k1 n. So our assertion is proved.

Choose an element w in W;. Thus by our assertion,

n—= ind!h(w) + TLH - Ulel”gl = n” - W1||91 =n.

Using the above result together with (3.12), Lemma 3.5 (1) and the assump-
tion, we have |W;| =0 (mod k) and so
n=indy, (w)—1=nl|—w ' Wi, —1=—(Wi|-1)—1=0 (mod k),
yielding a contradiction to k1 n. And Case 2 is proved.

CASE 3. D < 0 and W is zero-sum free.

Since n|| = Ully, = n— D > n and W is zero-sum free, we can set
Us =[], (x:91) for some d € [1,7 — 1] such that

TLH - U3”91 <n < n” - U3||91 + (n - xd+1) < n” - U||g1'
By denoting D' = n — n|| — Us||,,, we have
0<D <n—wx4,1.

If 0 < D' < hat, then we can use the same argument as in Case 1.

Consider
Ty =gt (bgr)" - Us
when hst > h; and
Ty = g7 - (bg))"™ - Us
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when hot < hy. They both lead to a contradiction to &t n.
Therefore, it remains to deal with the situation D" > hot. Using (3.11)
and (3.12), we have

hot < D' <mn—zgp <n—xq<hy. (3.14)

Next, we divide the proof of Case 3 into the following three subcases.
CASE 3.1. 441 + 24 < n.
Since S is not E-trivial, we have x4,1 + x4 # n.
Using (3.11) and (3.12), we have

hi>n—x3 >n— (xg+ x441) > 0.
Therefore,
Ts=g, """ (2a91) - (Tanign)
is a zero-sum subsequence of S. By (3.14), Lemma 3.5 (1) and the assump-
tion, we have
—n=n—2n+2)+2=n—z4— 2911 +2=1T5| =0 (mod k),

yielding a contradiction to k 1 n.
CASE 3.2. n < Tat+1 + Zq < n + hot.
By (3.14) and the hypothesis of Case 3.2, we have

O<h2t+n—xd+1—xd<h2t<h1.

Thus

T, = gil2t+n7xd+1*xd . (b91>h2 . (xdgl) . ($d+191)
is a zero-sum subsequence of S. By the assumption, (3.10), (3.14) and Lem-

ma 3.5 (1), we get
—n=n—2n+2)+2=h(t+1)+n—zq4— 2441 +2=|T7/ =0 (mod k),

yielding a contradiction to k 1 n.
CASE 3.3. 441 + x4 > n + hot.
Since W is zero-sum free, Lemma (2.6) (3) infers that

By (3.14) and the hypothesis of Case 3.3, we have

2hot < 2n — xg11 — x4 < 2n —n — hat,
which implies hy < 3+ < ¢ as ¢ > 2, yielding a contradiction to hy > "T*‘:’.
So Case 3 is proved.
In all cases, we have found contradictions and thereby we complete the

proof. O



16 W.D. GAO, X. J, Y.L. LI, AND H.J. QI

Finally, we deal with the situation when b € (n — o — 2].

Lemma 3.8. Let k > 3 and C,, = (¢1) with an odd integer n not divisible
by k. Let
S =(g0)" - (bg)" - U € F(Cy),
where b € (n—7-,n—2], 1 <h(U) < hy <hy <n—1 and |S]| =n+ 251
Then S has a zero-sum subsequence of length not divisible by k.

Proof. If S is E-trivial, then we are done. So we may assume that S is

not E-trivial. By Lemma 3.2, we have

h1+h2 Zn+1
and so .
D h<n—t (3.15)
ho
Using (3.15) and b € (n — 7-,n — 2], we get
n—h1<n—h£<b<n—2. (3.16)
2

Set t = n —b. It follows from hy +hy > n+1and b € (n — 7-,n — 2] that

n—hy < hy < hot < n. (317)

Assume to the contrary that each zero-sum subsequence of S has length
divisible by k. It follows from (3.16) and Lemma 3.5 (1) that

t+1=0 (mod k). (3.18)
Let
U= (z101) - ... (x,91)-
We distinguish the four cases according to the interval where x; is located.
CASE 1. n — hy < x; < hot for some i € [1,7].
Then by (3.17), we have
0<n-— €T; S hl
and
O<h2t—$i Shgt—(n—hl) <h1.
Thus T} = ¢ - (w;91) and Ty = ¢ . (bgy)" - (x;91) are zero-um
subsequences of S. By (3.18) and the assumption, we have
n—z;+1=|T1| =0 (mod k),
ho(t+1)—x;+1=|T3| =0 (mod k),
which implies that n = 0 (mod k), yielding a contradiction to k t n. Thus

Case 1 is proved.
CAasE 2.2< ;1 <... <z, <n—hy — 1.
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If n —hy < nl||U||y, then the result follows from Lemma 3.7 (2).
If n||U||g, < n—hy—1, then by h(U) > 1 and the hypothesis of Case 2,
we have
Ul <2/U| <n||U|lg, <n—hy— 1
Since |S| = hy + hy + [U| = n + %5, we have

—1
ho =|S| = hy — Ul =n+ 2

1
—h1—|U|2nT+1.

Thus hot > n (as t > 2), which contradicts to (3.17), and we are done.
CASE 3. ot <y <... <z, <n-—2.
If n—nl||—U||, <n—hy—1,then the result follows from Lemma 3.7 (3).
If n—hy <n—n| —Ul|g < hat, then by (3.17) and denoting D =
n —n|| — Ull,,, we have

O<h2t—DSh2t—<TL—h1) < hy.
Thus Ty = g2 . (bgy)" - U is a zero-sum subsequence of S since
o(Ts) = (hat = D + hob + n[|U[[)g1 = (n||U[| = n +n[| = U[[)gr = 0
(as t =n —b). By (3.17), Lemma 3.5(1) and the hypothesis of Case 3, we
have
nl| =Ully, == Ul=-[U| (mod k).

Using the above result together with (3.18) and the assumption, we have

—n=nl-Ulgyg —n+|U =h(t+1) =D+ |U| =Ty =0 (mod k),

yielding a contradiction to k { n.
If n —nl|| —Ullyg > hot, then by t =n — b, (3.16) and the hypothesis of
Case 3, we have t > 2 and

2hy < hgt <n —nl| =Ully, <n—-2|Ul=n—2r

Thus

r < — — ho.

[\

n
2
By (3.15) and hy + hy + 1 = |S| = n + %, we have

—1 -1
h2+T=nT+n—h12nT+1

and so

—MSTSg—hm

which is impossible. This completes the proof of Case 3.
CASE 4. For some m € [1,r — 1],

2<<... <z, <n—-—Mh—-1<ht<z,1<...<zx,<n-—-2

Let U = UyUs,, where Uy = [[}" (wig1) and Uy =[]}, (zig1).
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If n —hy < n||Uillg, then by 2 < 2z < ... <z, <n—nh —1 and
Lemma 3.7 (2), the result is proved. If n — hy < n —n|| — Us|ly, < hot or
n —nl|| — Uslly, <n— hy — 1, then using the same argument as in Case 3,
the result is proved.

Therefore, it remains to deal with the situation where

0<n||Uillyy, <n—h—1 (3.19)

and
n—n|| — Usllg, > hot.
It follows from t = n — b and (3.16) that ¢t > 2. By the hypothesis of Case
4, we obtain
2hy < hot < n —n| — Uslly, <n—2|Us|
and thus
Us] < 5 = o (3.20)

By the hypothesis of Case 4 and Lemma 3.7 (1), we have z; = 1 (mod k) and
so x; > k+ 1 for every ¢ € [1,m|, which implies that n||U||;, > 4|U1| = 4m
(as the hypothesis k& > 3). Using (3.19) and hy + he + |Uy| + |Uz| = |S| =

n+ "771, we have

n—1
h2+|U2]:T+n—h1—m

n—1 n—+1

+ 1+ n||Ui]ly, —m > + 3m.

>

It follows from (3.20) that
n+1

+3m—h2§|U2|§g—h2,

yielding a contradiction to |U;| = m > 1.
In all cases, we have found contradictions and thereby we complete the
proof. O

4. PROOF OF THE MAIN RESULTS

We now give the proofs of our main results.

Proof of Theorem 1.4. It follows from Lemma 1.2 that E5(C,) >
[2(n—1)] + 1. So it remains to prove E5(C,,) < [3(n—1)] + 1. Further, we
will show the stronger result that E,(C,) < [$(n —1)] + 1 for any integer
k > 3 with k t n.

Let C,, = (g) and S € F(C,) with |S| = [3(n —1)] + 1. We prove that
S has a zero-sum subsequence of length not divisible by £ according to the
following two cases.

CASE 1. n is even.
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Let Cy = (5g) < Cy, and ¢ : C;, = C,,/C; be the natural epimorphism.
Noticing that S| = % +n — 1 and s(C,,/Cs) = n — 1, we apply Lemma 2.7
to get the decomposition

S=5-5-5,
where [S1]| = |S2| = § and 0(S51),0(S2) € ker(p) = Cs.

Each of Sy, S5 and 5155 has length not divisible by k since &k { n. And it
is obviously impossible that 0 # o(S;) = 0(S2) = 0(5152) € Cy. Thus, at
least one of S, Sy or 5195 is a zero-sum subsequence of S with length not
divisible by k, as desired.

CASE 2. n is odd.

If S is E-trivial, then we are done. So we may assume that S is not

E-trivial. By |S] = n + 25! and Lemma 3.2, we can write
S=gi" - (bgr)" - U,

where ord(g;) = n, b € 2,n —2], 0 < h(U) < hy < hy < n—1 and
hi+ hs >n+1.

If b € [2, %], the result follows from Lemma 3.4 (1).

If b € (3,7 — hy — 1], then by Lemmas 3.4 (2) and 3.6, we obtain this
result.

Ifb € [n—hi,n— L], then Lemma 3.4 (3) provides the desired result.

Ifbe (n— oo~ 2], then the result follows immediately from Lemmas
3.4 (4) and 3.8. This completes the proof of Theorem 1.4. O

Proof of Theorem 1.5. It follows from Lemma 1.2 that E.(C,,) > n+1.
So it remains to prove Ex(C,) < n+ 1.

Let S be a sequence of length n+ 1. We need to show that there exists a
subsequence 1" of S with ¢(7T") = 0 such that £ {|T'|. By [5] <k<n-1=
D(C,) — 1 and Lemma 2.2(1), we can find a zero-sum subsequence 7" of S
with |T| # k. If k | |T|, then |T| > 2k > 2([5] +1) > n+2 > |S], a
contradiction. Thus k 1 |T|, so we find the desired subsequence T and we
are done. 0

As a consequence of Theorems 1.4 and 1.5 along with earlier work by the
first author and W. Schmid, we can summarize all known results of Ex(C),)

in the following corollary.

Corollary 4.1. Let n and k be positive integers with k1 n. Then

Lk_1M—1w+1§EAQQ§{;n—UJ+1

for k>3, and

EM&J:Lkﬁlm_lw+l
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ifk=2,3o0rk>[%].
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