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Table 1 Comparison of DNA encoding schemes
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Driven by the rapid growth of the Internet, artificial intelligence, and large-scale models, global data volume is increasing
exponentially, while traditional silicon-based storage is approaching its physical and economic limits in terms of density, energy
consumption, cost, and lifespan. As a novel information storage medium, DNA offers ultra-high storage density, extremely long
preservation lifetime, and low maintenance energy requirements, making it a promising candidate for large-scale data storage in the
future. In recent years, the overall reliability of DNA data storage has been significantly improved, with numerous experiments
achieving zero-error reconstruction. By optimizing encapsulation and storage conditions, the stability of DNA storage can
theoretically reach half-lives of tens of thousands of years. This article systematically reviews the progress of reliability research in
DNA data storage from three perspectives: coding strategies, biochemical processes, and decoding mechanisms. It covers novel
coding schemes such as fountain codes, HEDGES codes, and Yin-Yang codes, synthesis and sequencing technologies suitable for
DNA storage, and encoding/decoding optimizations addressing high error rates and data disorder. Furthermore, it discusses the
potential of deep learning, simulation tools, and system integration in enhancing reliability, and provides a perspective on the future
applications of DNA storage.
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