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Abstract

Via constructing an asymptotic coupling by reflection, in this paper we establish uniform-in-time esti-
mates on probability distributions for mean-field type SDEs, where the drift terms under consideration are
dissipative merely in the long distance. As applications, we (i) explore the long time estimate on probabil-
ity distributions associated with an SDE and its delay version; (ii) investigate the issue on uniform-in-time
propagation of chaos for McKean-Vlasov SDEs, where the drifts might be singular with respect to the
spatial variables; (iii) tackle the discretization error bounds in an infinite-time horizon for stochastic al-
gorithms (e.g. backward/tamed/adaptive Euler-Maruyama schemes as three typical candidates) associated
with McKean-Vlasov SDEs.
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1. Introduction, main result and applications
1.1. Introduction
In this paper, we work on the mean-field type SDEs: fori € Sy :={1,---, N},
dX! =b(X!, £ ;)dt+odW,i+ao(X§)dBf (1.1)
and
axiN =b(x} N,ﬁév)dt—i-adW,i +oo(X"N)dB! (1.2)
i\N

with the initial datum (X m 0] , X [Air](\: ’0]) for some rg > 0, where, foreachi € Sy, X [=r0.0]
is a C([—ro, 0]: RY)-valued random variable. In (1.1) and (1.2), b,b : R? x 2(R?) — R4
with Z(R9) being the set of probability measures on R%; o € R and op : RY - RY @ R™;
Zyi stands for the law of X5 the maps 6 : [0, 00) — [—rp,00) and @ : [0, 00) — [0, 00),
where concrete expressions will be specified later concerning respective settings; i
% Z?’zl (Sth,N means the empirical measure associated with particles X}’N, cee ,X,N’N; wl =
(WhHiso, -+ WN = (WN)»0 (resp. B! = (B}):>0, -+, BN = (B));>0) are mutually indepen-
dent d-dimensional (resp m-dimensional) Brownian motions supported on the same filtered
probability space (2, %, (%);>0, P); Furthermore, wh ..., whyis supposed to be indepen-
dent of (Bl, ,BN).

Regarding the objects (X!, --- ,XtN),zo and (X,I’N, ,XIN’N),EO solving (1.1) and (1.2),
respectively, the central goal in the present paper is to establish the quantitative estimate:

Wi(Lyi Zyiv) <@t N), 120, i€Sy, (1.3)

where Wi denotes the L'-Wasserstein distance and ¢ : [0, 00) x [0, 00) — (0, 00) is a decreasing
function with respect to the first variable and the second argument, respectively. For the explicit
form of ¢, we would like to refer to (1.20) below for more details. Hereinafter, we attempt
to elaborate why we focus on the framework (1.1) and (1.2), and explore the uniform-in-time
estimate (1.3). The interpretations will be expounded based on the following three perspectives.

1.1.1. Uniform-in-time propagation of chaos
In (1.2), once we take b= b,ro=0and 6, =6, =t¢, (1.2) subsequently becomes

dXiN =X GV dr 4+ 0dWi 4 og(XEV) dB! . (1.4)

As we know, (1.1) and (1.4) are the respective non-interacting particle system and interacting
particle system corresponding to the following McKean-Vlasov SDE:

dX; = b(X;, Zx,)dt + cdW, + 0o(X,) dB;, (1.5)

where (W;);>0 is a d-dimensional Brownian motion (a copy of (Wf)tzo for eac_:h i € Sy), which
is independent of the m-dimensional Brownian motion (B;);>¢ (a copy of (B/);>o for each i €
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Sn). Since the landmark work [29] due to Sznitman, the theory on propagation of chaos in
a finite-time horizon has achieved great advancements for various scenarios; see, for instance,
[5,14] for McKean-Vlasov SDEs with regular coefficients, and [1] regarding McKean-Vlasov
SDEs with irregular drifts or diffusions. Recently, for weakly interacting mean-field particle
systems with possibly non-convex confinement and interaction potentials, the uniform-in-time
propagation of chaos: for some constants ¢, A > 0 (independent of t > 0 and i € Sy),

Wi (Lyins Lyinn) <c (e Wi(u,v) + N72), 1>0, i €Sy (1.6)

was established in the remarkable work [7], where .Zix and Zyin.v stand respectively for the
. t t
distributions of X! and X i’N with .Z, P= R and Zyin = v. For great progress on the uniform-in-
0

time propagation of chaos concerning Langevin dynamics with regular potentials and stochastic
particle systems with mean-field singular interactions, we refer to [11,12,27] and references
within. As an immediate by-product of the quantitative estimate (see Theorem 1.3 below) de-
rived in this paper, the uniform-in-time propagation of chaos (1.6) will be reproduced right away,
where the underlying drift terms might be singular with respect to the spatial variables (see Corol-
lary 1.5 for more details). The proceeding explanations can be viewed as one of our motivations
to consider (1.1) and (1.2), and study the estimate (1.3).

1.1.2. Uniform-in-time probability distance between an SDE and its delay version
Consider a semi-linear SDE:

dX; = p(a — X;)dt + odW; + oo(X;) dB;, 1.7

where « e R?, >0, 0 € R, 09 : R? = R? @ R?, (W,),>0 and (B,),>0 are mutually indepen-
dent d-dimensional Brownian motions. In case of op(x) = 0yxgq (d X d zero matrix), (1.7) is
a linear SDE solved by the Ornstein—Uhlenbeck (O-U for abbreviation) process. As we know,
the O-U process has been applied considerably in financial mathematics and the other related
research fields. Whilst, in the real world, the price of an asset or the evolution of population
dynamics is influenced inevitably by major events that took place. In turn, the viewpoint above
motivates us to consider a memory-dependent version of (1.7) which is described as follows:

dY; = B(a — Y;—p)dt +odW; +oo(X;)dB;, >0 (1.8)

with the initial datum Y|, 0. In (1.8), (o, B, (W)s=0, (B;)r>0) is kept untouched as in (1.7), and
the positive rg is the length of the time lag. Apparently, (1.7) and (1.8) are fit into the framework
(1.1) and (1.2) by setting N =1, th = W;, and Bt] = By, and taking 6; =t — r¢ and b=h.
Indeed, the quantity r¢ can be regarded as a perturbation. Intuitively speaking, the probability
distance between £, and %y, with Ly, = £y, should be very small in case that the perturba-
tion intensity ro is tiny. So, the issue on how to quantify the probability distance between %%,
and %y, encourages us to pursue the topic (1.3). The above can be regarded as another inspiration
to implement the present work.

1.1.3. Uniform-in-time discretization error bounds for stochastic algorithms
Our third motivation arises from the long time analysis on stochastic algorithms for McKean-

Vlasov SDEs, where the drifts need not to be uniformly dissipative with respect to the spatial
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variables. As is known to all, the Euler-Maruyama (EM for short) scheme is the simplest and
succinctest method to discretize the McKean-Vlasov SDE (1.5) with og(x) = 044, that is,

dX; =b(X;, Lx,)dt +o0dW;, t>0. (1.9)

Nonetheless, the EM scheme works merely for SDEs with coefficients of linear growth; see, for
instance, [16, Theorem 2.1] and [20, Lemma 6.3] for a theoretical support and a counterexam-
ple, respectively. Based on this, plenty of variants of the EM scheme were proposed to cope
with numerical approximations for SDEs with non-globally Lipschitz continuous coefficients.
The finite-time strong convergence of the backward EM scheme, as a typical candidate of EM’s
variant, related to the McKean-Vlasov SDE (1.9): for a step size § > 0,

dxP N =px LY Ny dt +odW), >0, ieSy (1.10)

was explored in [6], where t5 := [¢/6]6 with |[#/§] being the integer part of ¢/§, and ﬁfN =
% Zi-v:l 8 s~ . Transparently, (1.9) and (1.10) with ro = 0 and o¢(x) = 044 are included in
! ~ f—
(1.1) and (1.2) by taking b = b, 6; = t5 + 5, and 9, = t5, separately.
Next, inspired by e.g. [15,26], [6] put forward the tamed EM scheme: for « € (0, 1/2],
b(Xa,i,N ~8,N)

ts ’ Mtl;

dx2iN = dt +odW!, t>0,ieSy (1.11)

Lo b (X, ™)l
to simulate the McKean-Vlasov SDE (1.9) in a finite time interval. Since, for a fixed step size
8 > 0, the modified drift is uniformly bounded, the distribution of (X f ’i’N) >0 solving the tamed
EM scheme (1.11) is not adequate to approximate the distribution of (X;);>¢ determined by (1.9)
in an infinite-time horizon. Enlightened by e.g. [4,18,19], to derive a uniform-in-time estimate
between the distributions of the exact solution and the numerical counterpart, we construct the
following tamed EM scheme for the McKean-Vlasov SDE (1.9):

b(XS,i,N ﬁB,N)

ts s Mt

dx®iN = ,
1+ 8<VBX N N s

12}

dt +odW!, t>0,icSy, (1.12)

where, for each fixed u € PR, x > blx, w)isaC _function, V means the weak gradient
operator with respect to the spatial variables, and || - ||gs stipulates the Hilbert-Schmidt norm.
Compared (1.12) with (1.11), the tamed drift in (1.12) might not be bounded any more and is at
most of linear growth with respect to the spatial variables. Obviously, (1.1) and (1.2) with ro =0
and og(x) = 044 can cover (1.9) and (1.12) once we choose 6, = 6, = t5 and set

b(x, )
14+ 84| Vb(x, ) lns

5(x, W) =

No matter what the backward EM scheme (1.10) or the tamed EM algorithm (1.12), the un-
derlying time step is a uniform constant. In [9], a refined EM scheme with an adaptive step size
was initiated to approximate SDEs with super-linear drifts. In the spirit of [9], [24] constructed
an adaptive EM scheme associated with (1.9), which is described as below:
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Xyt = X0 b(x)N NV + o AW, n>0, i €Sy, (1.13)
wherp Int1 :=1n + hg for an adaptive time step hfl (see (1.33) below for an alternative of hfl), and
AWy = thn+1 — W . In contrast to (1.10) and (1.12), the time step in (1.13) is not a constant
any more but an adaptive process, which is determined by the current approximate solution. Let

t = max{t, : t, <t}. Then, the continuous version of (1.13) can be formulated as
dx)"N =p(x)"N, 50N dr + o dW, >0, i eSy. (1.14)

Therefore, (1.9) and (1.14) can be incorporated into the framework (1.1) and (1.2) by setting
0;=6;,=t,00(x) =044, and b = b.

With regard to the backward/tamed/adaptive EM scheme for classical SDEs and McKean-
Vlasov SDEs, there is a huge amount of literature concerned with strong/weak convergence in
a finite-time interval; see [9,13,17,24,26], to name just a few. Meanwhile, there are still plenty
of work handling long time behavior of numerical algorithms when (McKean-Vlasov) SDEs
involved are uniformly dissipative with respect to the spatial variables; see e.g. [3,9,21,32,33]
and references therein. In the aforementioned papers, the synchronous coupling was employed
to analyze the convergence property (in an infinite-time horizon) of the underlying algorithms.
Whereas, such an approach does not work any more to deal with the long time behavior
of stochastic algorithms when (McKean-Vlasov) SDEs under investigation are not globally
dissipative. In the present work, as another direct application of the main result (see Theo-
rem 1.3), concerning McKean-Vlasov SDEs, we quantify the uniform-in-time estimate on the
distribution distance between laws of exact solutions and numerical solutions derived via back-
ward/tamed/adaptive EM schemes. Once more, the elaborations above urge us to work on the
frameworks (1.1) and (1.2), and conduct a further study on (1.3).

1.2. Main result
Below, we assume that for x € R? and nueP (Rd),
b(x, ) =b1(x) + (bo* w)(x)  with  (bo* pu)(x) := / bo(x —y) pu(dy).  (1.15)
R
For such setting, we shall assume that the corresponding SDEs (1.1) and (1.2) are strongly well-
posed in order to establish a much more general result (i.e., Theorem 1.3). In the sequel, for
SDEs under consideration, we shall present explicit conditions on the coefficients to guarantee

the strong well-posedness. We further suppose that

(A1) bi(x) is continuous and locally bounded in R? and there exist constants fo>0and A >0
such that for x, y € R4,

(x =y, b1(x) = b1()) < |x = YId(Ix — YD L{jxmy|<to) — AMx — Y Lu—y=te),  (1.16)

where ¢ : [0, 0c0) — [0, 00) with ¢ (0) = 0 is increasing and continuous. Moreover, there
exists a constant K > 0 such that for all x, y € RY,

lbo(x) —bo(y)| < K'|x — y|. (1.17)
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(A2) o #0, and there is a constant L > 0 such that for all x, y € R,

lloo(x) — oo llfs < Llx — yI*. (1.18)
To proceed, we make some comments on Assumptions (A1) and (A»).

Remark 1.1. In terms of (1.16), b; is dissipative merely in the long range. Particularly, as re-
vealed in Corollary 1.5 below, (1.16) allows the drift term b; to be singular. For example,
b1(x) =by(x) + 171 (x), in which 51 is Dini continuous (see Assumption (H) below for details),
and there exist constants 17, A5, £, > 0 such that for any x, y € R,

(x =y, b1(x) = b1()) < Ajlx — )’|2]1{\x_y\546} —Mlx — y|2]l{|x—y|>26}'

Concerned with the diffusion terms, the additive part is set to be non-degenerate (which plays a
crucial role in constructing the asymptotic coupling by reflection), and the multiplicative counter-
part might be degenerate. Herein, we would like to stress that the additive intensity o considered
in the present work is a non-zero constant in lieu of a non-degenerate matrix to write merely the
prerequisite (1.16) and the asymptotic coupling by reflection (see (1.19) below for more details)
in a simple way.

For classical SDEs (with the same drifts and diffusions), it is enough to construct the reflection
coupling before the coupling time since two SDEs will merge together afterwards due to strong
well-posedness (provided it exists). However, as far as two SDEs with different coefficients are
concerned, the coupled processes can diverge once again even though they meet at the coupling
time. Therefore, the classical reflection coupling approach no longer works to estimate the prob-
ability distance between laws of solutions corresponding to SDEs with different coefficients.

Inspired by [31], where gradient/Holder estimates as well as the exponential convergence were
derived for nonlinear monotone SPDEs, we shall design an asymptotic coupling by reflection to
achieve the qualitative estimate (1.3). To describe the asymptotic coupling by reflection, we need
to introduce some additional notations. For ¢ > 0, let k. : [0,00) — [0,1] be a C !_function
satisfying

0, 0<r=<e,

and & : [0, 00) — [0, 1] be defined by h¥*(r) = /1 — hZ(r),r > 0. Set

M(x) = lyxa — 2e(x) @ e(x), xeRY,

where I;4 is the d x d identity matrix, e(x) := |;_|]1{X#0}’ and e(x) ® e(x) means the tensor
between e(x) and e(x). Thus, I defined above is an orthogonal matrix. Furthermore, we shall as-
sume that Wh!:= (W,l’l),zo, ce , WEN = (W,I’N),Zo (resp. wl.— (W,z’l)tzo, ce, WEN =
(W,Z’N )s>0) are mutually independent d-dimensional (resp. m-dimensional) Brownian motions
carried on the same probability space as that of B!, ..., BN. In addition, we suppose that
whl .. o whNy (w2l ... W2N)and (B',---, BY) are mutually independent.
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With the proceeding notations at hand, we can write down the asymptotic coupling by re-
flection associated with (1.1) and (1.2). More precisely, we consider the following coupled
interacting particle system: for any i € Sy and ¢ > 0,

Ayj e = bV @Y dt 4+ o he (|ZENEDAWM 4 ohx (1 20V ) AW 4 o0(YF) dB!

ay; M =By ™ ) dr + o THZE Y he (12 DA,
t

+oh*(1Z0NENAWE + oY) N F) dBI
o o (1.19)
with the initial condition (Yg*, ¥["750)) cs . = (X6, X[\ 0);cs, - Which are i.i.d. random vari-

~I,&

ables. In (1.19), the quantities ;" Zf’N ¢, and ﬁiv ¢ are defined respectively by
N
~i, i,N, 3 i,N, ~N,
A A I T ~ Xgaytj,N,g.
j:

Now, we present some comments on the coupling constructed in (1.19).

Remark 1.2. Note obviously that the noise in (1.1) includes two parts, namely, the additive part
and the multiplicative part. In terms of (1.19), for the additive part, which is also non-degenerate,
we adopt the asymptotic coupling by reflection; Whereas, for the multiplicative part (might be
degenerate), we employ the synchronous coupling, which, in literature, is also named as the
coupling of marching soldiers. Moreover, we would like to emphasize that, for the construction
of the asymptotic coupling by reflection, the drift term b can be much more general rather than
the form in (1.15) as demonstrated in Lemma 2.1.

Furthermore, for the notational brevity, we set for any ¢ > 0,
N ._ (vl N N.N ._ (v1.N N.,N
XN o= (x/, - X)), XN e=(xN x0T
and
N,e . l,e N,e N,N,e . 1,N,e N,N,e
Y, = (Y ), Y, =Y ).

As claimed in Lemma 2.1 below, for any ¢ > 0, (YﬁV‘S,Y;V’N’E),Zo is a coupling of
XN, X"N),20. Additionally, for any ¢ > 0, u € Z(R?), and v € P(€) with € :=
C([—ro, O]; Rd) (i.e., the set of continuous R<-valued functions on [—rg, 0]), denote u} and

vf’N by the laws of X! and Xi’N with ., P =M and Zyin =v, separately.
[=r.0]
With the aid of previous preliminaries, the quantitative estimate (1.3) can be portrayed pre-

cisely as stated in the following theorem.

Theorem 1.3. Assume Assumptions (A1) and (Ay). Then, there are constants C, K*, L*, 1* > 0
such that for any K € [0, K*1, L € (0, L*], u € 2>, (R%), and v € P1(¥),
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. % 1
Wi (1, vy < C(e_A "Wi (i, v0) + N2 1k 0

t
+/emtS)E|b(X§'N,ﬁ§V)—Z(Xé;N,ﬁéV)|ds), t>0, ieSy,

0
(1.20)

where vo(dx) :=v({n € €} : no € dx).
Before we proceed, let’s make some remarks on Theorem 1.3.

Remark 1.4. Error bounds. From (1.20), it is easy to see that W (/,L;, vli’N) is dominated by
three terms, where the first term is concerned with the L!-Wasserstein distance between the
initial (projection) distributions with the decay prefactor e*", the second one is related to the
decay rate with respect to the particle number, and the third part involves the error among b and
b, which, in particular, embodies the dependence of the initial segment and the length of time lag
when (1.2) is an SDE with memory; see Theorem 1.6 below for more details. At first sight, the
right hand side of (1.20) is not elegant since the third term in the big parenthesis is not explicit.
Nevertheless, the third term is much more tractable for applications we shall carry out.

Initial moments. When the drift term is written in the form (1.15) and the associated ini-
tial distribution has a finite second-order moment, Theorem 1.3 shows that the decay speed of

Wy (/L;, v,i’N) with respect to the particle number is N =2 In some scenarios, the drift terms
can be allowed to be much more general so the initial distribution necessitates merely a finite
lower-order moment. Whereas, for this setting, the decay rate of W (,ui, v;"N ) with respect to
the particle number will be dependent on the dimension d and become dramatically worse when,
in particular, (2.16) below is tackled by taking advantage of [10, Theorem 1]. Therefore, in the
present work, we prefer the former framework rather than the latter one.

Coupling construction. It is worthy to point out that, in [28], another kind of asymptotic cou-
pling by reflection (which was called an approximate reflection coupling therein) was deployed
to investigate bounds on the discretization error for Langevin dynamics, where the potential term
is a C!-function and is of linear growth. Compared the asymptotic coupling by reflection in [28]
with (1.19), we find that the weak limit process of the coupled process constructed in [28] is
a coupling process while, for any ¢ > 0, the coupled process (Y;v € va N “#)>0 determined by
(1.19) is a coupling process we desire. It is also worthy to emphasize that in [28] a series of work
on tightness need to be implemented in order to examine that the associated weak limit process
is a coupling process. Therefore, the asymptotic coupling by reflection built in (1.19) has its own
advantages.

Noise terms. It seems to be slightly weird that the noise term in (1.1) encompasses two
parts (i.e., the additive part and the multiplicative counterpart). Nevertheless, as long as the
diffusive term of the non-interacting particle system under investigation is multiplicative and
non-degenerate, we can adopt the noise-decomposition trick (see e.g. [22]) so it can be decom-
posed equally in the sense of distribution into the format of (1.1). Based on point of view above,
the framework (1.1) can make sense very well.

Lipschitz constants. In Theorem 1.3, the constants K* and L* are the respective upper bounds
of Lipschitz constants concerning by and o¢. Via a close inspection of the proof for Theorem 1.3,
the explicit forms concerning K* and L* can be tracked. As far as McKean-Vlasov SDEs are
concerned, the Lipschitz constant K is generally small otherwise the phase phenomenon can
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occur. Furthermore, the multiplicative intensity oy is regarded as a perturbation of o so the cor-
responding Lipschitz constant L should also be small provided that one wants to handle through
the asymptotic coupling by reflection the uniform-in-time estimate for SDEs with partially dissi-
pative drifts.

As an immediate by-product of Theorem 1.3, we present the following statement, which is
concerned with uniform-in-time propagation of chaos for McKean-Vlasov SDEs, where one part
of the drifts might be singular in the spatial variables.

Corollary 1.5. Assume Assumptions (A1) and (Ay). Then, there are constants C, K*, L*, \* > 0
such that for any K € (0, K*], L € [0, L*], u € 2>(RY), v e 221 (RY), and t > 0,

max W, (i, 1Y) < C(e ™" Wy (i, v) + N72). (1.21)

LESN

In particular, (1.21) holds true for the McKean-Viasov SDE (1.5) with by = b+ E] provided that

(H) bo satisfies (1.17); by is Lipschitz in R¢ and satisfies (1.16) with ¢(r) = Aor for some
Ao > 0; by is uniformly bounded and fulfills that

B1() b1 <@(x =y, x,yeRY
for some ¢ € D with lim,_, oo ¢(r)/r = 0. Herein,
1
) ] . . . p(s)
P = {gz) Ry — Ry |@(0) =0, ¢ is increasing, continuous, concave and | ——ds < oo}
s
0
Below, we move forward to dwell on applications of Theorem 1.3, and answer the remaining

questions proposed in the introductory subsections, one by one.
1.3. Applications
1.3.1. Uniform-in-time distribution distance between an SDE and its delay version

For convenience, we first recall SDEs (1.7) and (1.8). In this subsection, we focus on the
following SDE:

dX; = B(a — X;)dt + 0dW; + 09(X;)dB;, t>0 (1.22)
with the initial value X¢ € LI(Q — RY: 0y, P), where o € RY, B>00€eR, oy: R4 —
RY ® RY, which satisfies (1.18); (Wy)i=0 and (B;);>0 are independent d-dimensional Brown-

ian motions. Let (¥;);~¢ be the delay version of (X;);>0, which is determined by the SDE with
memory:

dYt = ,3(0[ — thro)dt + O'th + O'()(Yt) dBt, t>0 (123)
with the initial value Y|, 0) = & € L'(Q — ; F0, P) satisfying that for some Cg > 0,

9
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E|§ — &l < Celt —sl, 1,5 €[—ro,0]. (1.24)

Evidently, both (1.22) and (1.23) are strongly well-posed.

The following statement shows that the distributions (Z%,);>0 and (%%, )s>0 associated with
(1.22) and (1.23) respectively close to each other when the time lag ry approaches zero, and most
importantly, provides a quantitative characterization upon the distribution deviation.

Theorem 1.6. Assume that oq satisfies (1.18) and suppose further o # 0 and > 0. Then, there
exist constants C*, L*, \* > 0 such that for all L € [0, L*] and t > 0,

Wi (Zx,0 21,) < CF (7 Wi (Lo, Zho) + (L +10) (1 + Ellello)rg ). (125)

Remark 1.7. Since the distribution of (Y;);>0 is dependent on the segment & € LI(Q —
€; %y, P), it is reasonable that the error bound on the right hand side of (1.25) depends on
E||£ || rather than E|&p|.

1.3.2. Uniform-in-time discretization error bounds for stochastic algorithms

In this subsection, we focus on the McKean-Vlasov SDE (1.9), where the drift term is of
super-linear growth and dissipative in the long distance with respect to the spatial variables. As
direct applications of Theorem 1.3, we shall tackle uniform-in-time discretization error bounds
for the backward EM scheme, the tamed EM scheme, and the adaptive EM scheme, which are
constructed in (1.10), (1.12), and (1.14), respectively.

In addition to Assumption (A1), we further need to suppose that the drift term b; is smooth
and locally Lipschitz, which is stated precisely as below.

(A3) R? 5 x > by (x) is a C!-function and there exist constants /* > 0, K* > 0 such that

b1(x) — b1 < K*(1+ 1xI” +1y17)1x —yl,  x,yeR7. (1.26)

Under Assumption (A1) with ¢(r) = Agr for some iy > 0, (1.9) admits a unique strong
solution for Xy € LI(Q — RY: F0, P); see, for example, [30, Theorem 2.1] for more details.
Moreover, note that the discrete time version of (1.10) is indeed an implicit equation. Whereas,
under (1.16) with ¢ (r) = Aor and (1.17), the algorithm (1.10) is well defined as long as the step
size § € (0, 1/(2(Ao + K))); see, for instance, [13, Lemma 3.4] for related details.

With regard to the backward EM scheme, given in (1.10), the long time error bound under the
L'-Wasserstein distance can be presented as follows.

Theorem 1.8. Assume (A1) with ¢ (r) = Aor for some Ly > 0 and A > 2K, and suppose further
o # 0 and (A3). Then, there exist constants C*, \* > 0 such that for all i € Sy, t > 0, and
8 € (0, 6*],

iy 1
Wi (D?X;,fx;s,i,zv) < C*{e A W, (‘i’pr)’ XXSJ,N) + \/—N]I{K>O}

(1*+1)2)5%}

(1.27)

+ (1 +E|x5N

10
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8,i,N | (I*+1)?

in case 0fIE|Xf)|2 < ooandIE|XO < 0. In the above,

U B 3(h —2K)
T 20+ K) T AL VDA 4 19)] + D(1 4 K)LAVIDHAH T

*

Remark 1.9. Consider the SDE (1.9) with b(x, 1) = b(x) (so (1.9) is indeed a distribution-
independent SDE). For this setting, via the Banach fixed point theorem, [8, Corollary 2.3] implies
that the corresponding solution process (X;);>0 has a unique invariant probability measure (IPM
for short), written as w. Once the time-homogeneous Markov chain (X,‘z s)k>0 (which is deter-
mined by the backward EM scheme) possesses a unique IPM, denoted by ), Theorem 1.8

1 . .
enables us to deduce that W (i, n(a)) < ¢ 2 for some constant ¢ > 0. This reveals the quantita-
tive estimate between the exact IPM and its numerical version for SDEs with partially dissipative
drifts.

Next, we apply Theorem 1.3 to the tamed EM scheme. Furthermore, we suppose that
(A’l) there exist constants Ay, ,')'Cbl , Cpy, 6[71 > 0 such that for any x € R4,

(2. b1(0)) < —Ap, |x[2 - IVB1 () ls + Coyo 161(0)] < Ay x| - VD1 () [l + Co,
(1.28)
Moreover, for some constant « > 0, there is an Ry, > 0 such that for x € R? with |x] > Ry,

Vb1 (x)|las > a. (1.29)

Remark 1.10. The second prerequisite in (1.28) is evidently satisfied when b; is of polynomial
growth. Obviously, for by(x) = x — x! x € R, with ¢ being an odd number ¢ > 1, the first
technical condition in (1.28) and the one in (1.29) are valid, separately. Moreover, in Assumption
(A)), the gradient of by is involved based on the construction of the tamed EM scheme presented
below.

The tamed EM scheme associated with (1.9) is constructed as follows: for § > 0,

dxP N = B30 4 (bo x IO NYXSPN)) dr +0dW,  ieSy, >0,  (1.30)

ts 15
where for any x € R,

b1 (x)
1 .
1+682)IVbi(x)llns

bl (x) ==

Moreover, for brevity, we set for k > 0 and p :=4K (K —i—/):bl ),

)»il K2 1

= AN = VAN .
Ay, QeQK+p(l+1/a)+4;)? k/4+K+p

(1.31)

Concerning the tamed EM scheme (1.30), we have the following discretization error bounds
in an infinite-time horizon.

11
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Theorem 1.11. Assume Assumptions (A1) with ¢ (r) = ,or for some Lo > 0 and (A/l), and sup-
pose further k :=aip, —2K >0, A > 2K, 0 #0, as well as (A3z). Then, there exist constants
C*, A* > 0 such that for all § € (0,57], i € Sy, and t > 0,

Wi (Lys Lyoin) = c*{e”’\w1 (Lyge Lysin) + %1{K>0} +(1+ E|X3"*N|2’*“)5é}
(132)

as long as E|X}|* < oo andE|Xg,i,N|21*+] o
Finally, we apply Theorem 1.3 to the adaptive EM scheme (1.13) with the adaptive step size

1 1
S,LN ~8,N\o’' S,N.N ~8.N
E1T0 ¢S TERS B 110 o i

e :=8min{ )|2}, §€(0,1). (1.33)

Since, in this paper, we are interested in the error analysis in an infinite-time horizon, the time
grid t,11 = t, + h3 should go to infinity almost surely. This can be examined in Lemma 4.3
below.

As far as the continuous-time version of (1.13), defined accordingly in (1.14), is concerned,
the uniform discretization error bound is revealed as follows.

Theorem 1.12. Assume Assumptions (A1) with ¢ (r) = Aor and ) > 2K, and suppose further
(A3) and o # 0. Then, there exist constants C*, \* > 0 such that for all § € (0, 1), i € Sy, and
t>0,

* 1 . *
Wi ( Ly Lypan) < C*{e_A W (Lrgs Lgon) + Lo+ (L E[XGT)a :
(1.34)

4 N VT
aslongasE|X6|2<ooand]E’X8’l’N’ <0

Remark 1.13. Since the discretization error is investigated under the L!-Wasserstein distance,
it is logical to require that the initial distribution for the algorithm under consideration has a
finite moment of the first order. This indeed takes place in case of [* = 0 (which corresponds
to the globally Lipschitz case for the drift involved) as demonstrated in Theorems 1.8, 1.11
and 1.12. Nevertheless, concerning stochastic algorithms associated with McKean-Vlasov SDEs
with drifts of super-linear growth with respect to spatial variables, it is quite natural to enhance
the moment order for initial distributions. With contrast to the tamed/adaptive EM scheme, higher
order moments need to be imposed on the initial distributions for the backward EM scheme due
to the fact that the tamed drift or adaptive step size can offset growth of the original drift in a
certain sense.

Furthermore, we would like to say a few words on the noise term og in (1.1). Once o does
not vanish, the non-interacting particle system and the corresponding numerical version enjoy
different noise terms. For this setup, the asymptotic coupling by reflection will no longer work to
investigate long time error bounds for stochastic algorithms. Based on this, in the present work,
we focus merely on the additive noise case in lieu of the multiplicative noise setting.

The remainder part of this paper is organized as follows. Based on some preliminaries, in
Section 2, we complete the proof of Theorem 1.3 by constructing an appropriate asymptotic

12
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coupling by reflection, and meanwhile finish the proof of Corollary 1.5. Section 3 is devoted
to the proof of Theorem 1.6, where the variation-of-constants formula for semi-linear SDEs
with memory plays a crucial role. In the final section, with the aid of uniform-in-time moment
estimates for backward/tamed/adaptive EM schemes (where the underlying proofs are rather
tricky), we aim to implement proofs of Theorems 1.8, 1.11 and 1.12, respectively.

2. Proofs of Theorem 1.3 and Corollary 1.5

Before the proof of Theorem 1.3, we prepare some warm-up lemmas.
Lemma 2.1. Assume that the SDEs (1.1) and (1.2) are weakly well-posed. Then, for any ¢ > 0,
the path-valued processes YN-¢ and YN-N-¢ share the common distributions as those of X" and
XNN on the path spaces C ([0, 00); RY) and C([—rg, 00); RY), respectively.
Proof. Fori € Sy and r > 0, let

—1,i
Wt

t
= f m(ziN-eydwH.
0

With this shorthand notation, the SDE solved by (Yti’N )ies  can be reformulated as

~

dy Mo =p(yyhe ~N€)dz+oh (ZENEDAW) + oh* (1 ZEN 2 DAWR + oo (YN 0) d B

‘ ‘ 2.1
with the initial value Y[l’_jf(fo] =X Ef\;o,O]‘ Observe that the SDE (2.1) has the same weak solu-
tion as that of the SDE solved by (Y,I’N’S, - Y N.N, *);>0. Therefore, to complete the proof of

Lemma 2.1, it is sufficient to show that the distributions of (Yt )t20 and (va ):>0 are identical.
Setfori € Sy and ¢ > 0,

t t
Wi :=/h€(|Z§’N'8|)dWS1’i +/h;‘(|Z§'N'8|)dW32”'.
0 0
Since W is independent of W2i besides h,(r)? + h*(r)2 =1,r> 0 Lévy’s characterization

shows that W' is still a Brownian motion. Then, the SDE solved by (Y #)>0 can be rewritten as
an SDE driven by Wi. More precisely, we have

Ay} F = b(Y e, mh ) dt + odW +oo(Y)dB!, ieSy, 1> 0. (2.2)

In order to prove that, for any & > 0, the distribution of (Y “)i>0 is equal to that of (X )1>0,
it remains to verify that, for any i # j, Wi and W/ are mutually independent. Indeed, by applying
1t6’s formula, it follows that for u, v € RY, i, j €Sy withi # j,andt >0,

~ 7

d((u, Wy, W) = (o, Wyd(u, W) + u, W)d(v, W/) + d[(u, W), (v, W/)]

o . - o (2.3)
= (v, W)Yd{u, W}) + (u, W )d(v, W/),

13
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where the second identity holds true due to the quadratic variation [(u, W; ), (v, VT/,j y]1 =0, which
is valid since Wh1 ... wlN (resp. wl ... Wz'N) are independent and (Wl’l, e, WI'N)
is also independent of (W21 ... w2Ny, Obviously, (2.3) manifests that ({u, Wi>(v W D=0

is a martingale. This results in that the covariance matrix IE(W’ ® WJ ),i # j,isad x d zero
matrix. Hence, we conclude that, for any i # j, Wi and W/ are mutually independent. Next,
by following an analogous procedure above, we deduce that (WL WV is independent of
(Bl, .-, BM). Subsequently, thanks to the weak uniqueness of (1.1), we conclude that (X{V )i>0

and (Y,{V *)¢>0 possess the same distribution. O

Lemma 2.2. Assume (A) and (Ay) with A > 2K + %(1 +(p—2)")L for some p > 2. Then, for
any i € Sy, there exists a constant C; > 0 (independent of i) such that

supE|Y,*|” < C5(1 + E|¥5°|") (2.4)

10
as long as E|Y6’8|P < 00.
Proof. For any p > 1, let
V,)=(+x2, xeR?
Performing a direct calculation shows that for any x € R?,
VV,(x) = p(1+x[>)5 'x and
V2V, @) = p(L+ ¥ ga + p(p =20+ xP) 2 (x @ ).
Next, by virtue of (1.16) and (1.17), it follows that for all x € RY and 1 € 21 (RY),
(x,b(x, 1)) < Lod (Lo) + A5 — (h — K)|xI> + |x](Ibo(0)| + b1 (0)| + K u(| - ). (2.5)
Then, applying 1t6’s formula to the SDE (2.2), we derive from (1.18) that
AV, (1)
= (p(1 419 P) 7 Y b 7))
+ %paz(l + |Y,""”‘|2)5*1 d+p-20+ 7 P! |Y;"8|2)) dt

P
21

" %” (14 1 P) 2 (oo (V) s + (p = (1 + 1% og (7)Y ) de + ]
=(p(1+ VI R) 27 (0o (€0) + 183 — (= KDIYE 2+ 1Y/ (Ibo(0)] + |1 (0)] + KE[Y])
Fop( 1) 02+ (-2
+ lloo (¥ *)lifs + (p = 2 lloo(F©)I3,) ) de + by

14
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where (Mtp 'l)tzo is a martingale and | - [lop means the operator norm. For any « > 0, it can
readily be seen from (1.18) that there exists a constant C, > 0 such that

loo()lIfs < (L +)|x* +Ce,  xeR%

Set A* := 2 (A — 2K — $(1 4 (p —2)")L), which is positive due to A > 2K + 3 (1+ (p —2)")L.
Again, by applying 1t6’s formula, there exists a positive constant C, = C(A*) such that

* ; * ; ; Loy ; *, —p.i
d(ep)» Z‘VP(YIZ,S)) Se]))» t(C*_pKVp(Yll,é‘)_i_pK(l +|Ytl,8|2)2(p ])E|Ytl,8|)dt+ep)n Ide*l

<eP1(Cy — KV, (Y)F) + KEV,(Y))) dr + P ' dM! ™,

(2.6)
where we utilized Young’s inequality in the first inequality and the second inequality, as well
as Jensen’s inequality in the second inequality. Next, integrating from O to ¢ followed by taking
expectations on both sides of (2.6) yields that

t
EV,(¥/*) <e P*'EV,(¥5") + / e M IIE(— KV, (Y[F) + KEV, (Y1) ds
0
t

e ferimg

0
t

=e PMIEV,(Y)F) + C, / e M=) s,
0

where the identity is valid due to the fact that IE(—VP(Yf’S) + IEVP(Y;’E)) =0,5€[0,¢]. As a
consequence (2.4) is available immediately. O

With preliminary Lemmas 2.1 and 2.2 at hand, we are in position to complete the proof of
Theorem 1.3.

Proof of Theorem 1.3. Recall that, for all r > 0, (Y%, ¥"V*%); s, solves (1.19) with the initial
value (Y, Y[l’—I:”,(fO])iESN = (X, XE;I\:O,O])ieSN’ which are i.i.d. randqm variables. For any 1 €
P21(RY) and v € P (€), in the following analysis, we choose (X, XE)—]\}]’O,O])iESN such that

Wi (u, vo) =E|Xy— Xg"|, i€Sy, @7

in which vg(dx) :=v({n € €} : no € dx).
Note that

(Igxd —e(x) @ e(x), e(x) ® e(x))HS =0 and (e(x)Rex))ex)==e(x), x#0.
Next, we shall fix the index i € Sy. For any 5 € (0, 1], define the function V,, by
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V) =0+ xHY?, xeRY,

which is indeed a smooth approximation of the function R 5 x > |x|. Applying Itd’s formula
and utilizing the facts:

X 5 1 X®x
an(x):m and \Y% Vn(x):m]dxd—m,

it follows from the (1.19) that

. 1 : 1
v (ZZ,N,(S)) < : \Ijz,N,s dr + ( Zl N.,e O’()(Yl 6) _ O’()(Yl N, s) de
ni=t Vn(Z;’N’(g)) t Vn(Zl N, (5)) ( ( ) )

+20he(1Z) VD2 (2P @ ez ))aw! )

N, N, N,
t 4o 2 he (z¢ gl)z( _ ziNe gz e eZ"V) ® e(Zi,N,s)> dr
V (Zl N (5)) IV,?(Z; N, (5))|2 ! d HS
(2.8)
where (-, -)gs stands for the Hilbert-Schmidt inner product, and
) - 1 ) )
W= (2 b ) = O™ g )+ S oo () — o0 (V) s,
Note that for any x € RY,
X 50 X he(x)? X®X n 7—0
—1x20; and ( dxd—i,e(x)(g)e(x)) — — 0.
Vy) kT Vy (x) Vi ()12 Hs = (1 +£2)3
Therefore, approaching n — 0 in (2.8) leads to the estimates below:
) 1 ) )
N, N, N, N, 1,
d|zy™"f < W]l zive 0 Y VN dr 4 20 h (120 5|)]1{Z§,N,E#0}(e(z; ), dw, ')
! . (2.9)
Wn (zive a2 (00(Y) ) — oo (¥ ) dBY).
t

By splitting the quantity b(Y,", ii¥) — b(Yl Noe ﬁg’ ®) into three terms followed by taking

(1.16), (1.17) as well as (1.18) into c0n51derat10n, we obtam that
W < (Zp N b () = b () g
A2 o T ) = ox i) 0)) (2N g ) %uz;*’vﬂz
< (@Uzi™ D + a1z Ze N

i,N.,e 2
1z 1<t — O K= L/2)1Z7]

H1ZP VR W @S ) + 1N+ ),
(2.10)

—N,e .1 N )
where 71, 1= 5 30 SY,"S’
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Ui = (o 1) (Y — (bo + 71, ) (V) and

i,N,e . i,N,e ~N,e >~/ vi,N,e ~N,e
1/’; = b(Ytl 7:u/[ )_b(ygl 1/~'L§t )

Inserting (2.10) back into (2.9) yields the estimate below:

AZ" 0 <L give g (@AZEN D + M ZEN DL v ) — = K = L/2)IZ7M

#0)
+ KW )+ 1 ) de

+20he (12N D1 (e(ziN5), dw,M) (2.11)
1

+ 7|Z5’N’8| ]l{z;'-N~E¢o}<

(" 20)
ZPMF (oo (YF) — oo(Y) %)) dBi).
Next, we define the C2-function

f=1—e" +cor, r=>0,

where

o= 2(¢ (o) + (L +2K)¢/2)

—c1ép
0-2

and c¢;:=cje
Applying It6’s formula, we derive from (2.11) and f” < 0 that

dfze Mo < ((¢<|Z;*N*8|> +202 " 1Ze N D) he (120N DL e gy
+o(ZIN D (1 = he (12N 1))

+7AZEN DKW G ) + 15+ ) ) de o+ av e
for some martingale (Mti ’5),20, where the function ¢ : [0, o0) — R is defined by
o) = f'O(@ ) + ) Ly<g) — O — K = L/2)r).
Below, for the case 0 <r < {( and the case r > £, we aim to verify respectively that

0 (r) = () + 207 f"(r) < =¥ f(r), =0, (2.12)

where for A > K 4+ L/2,

e (2d(Lo) + LLo) AN(A— K — L/2))ca
T 1 —e—<1t 4 ¢y8 ’

By virtue of
flry=cie™ +¢; and f'(r)=—cle ", r=>0,
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it is easy to ready that for any r > 0,

@*(r) = (c1e™ " + ) ((p(r) + Ar)Ljp<pg) — (A — K — L/2)r) — 202 cie™ ",

For the case 0 <r < £y, in view of ¢cr» = cre—10 < ¢1e=C1" and the increasing property of ¢, we
find that

¢*(r) < —(20%c2 = 2¢1 (¢ (Lo) + (L +2K)€o/2))e 1"

_ 2.2 —cibp
=-oce (2.13)
2

C1C20

1 —e*cleo +C2£()f(r)’
where the second inequality is verifiable owing to crch = 2c1(¢p(Ly) + L€p/2), and the last
display is valid due to the fact that  — f () is increasing on [0, c0). On the other hand, once

A > K + L/2, we derive that for r > £,

2 —K —L/2)

*rY<—co(A—K—Ljyr<——2—— ==
¢ () < —ea s e

AR (2.14)

where the second inequality is provable since, for « > 0, r — is increasing on the

—r
1—e= %" +r

interval [0, co) by taking the fundamental inequality: 1 —e™ >re™", r > 0, into consideration.

Consequently, (2.12) follows by combining (2.13) with (2.14).
In the sequel, invoking (2.12) and taking ¢ < f'(r) <c¢1 + ¢3,r >0, and f(0) = 0 into
account leads to

drzin = (=25 r0zi" DheziN D2 + (i D (1 = he (20 )?)
(e e (KW TV + 5]+ 1y 1) ) de + dag

<dM}© + ( — W LAZEVED + (W FAZEYED 4+ 0(ZEV D) (1= he (120N

N
~ . K ;
+ e+ e (1T 1w+ > f<|z,”’“|>)> dr.
N o
(2.15)
Because (Wi)ieg v are independent, as demonstrated in the proof of Lemma 2.1, and (2.2) is
strongly well-posed, (Y");cs,, are also independent. As a consequence, by following the line to

drive [7, (22), p. 5396], we deduce from Lemma 2.2 with p =2 (in case of A > 2K + L/2) that
for some constant C > 0,

E[gi N < CIN kg, 120, (2.16)
Substituting this estimate into (2.15) yields for some constant C, > 0,
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N N
1 i Ne AEE .
ﬁZd]Ef(IZ;/’N’ )< (— —Z]Ef(|Z’N |)+C2EAN£> dr,

Jj=1 j=I1

where A** := A* — K(1 4 c1/c3), and

N
-1 1 i i }:
Aiv'g _ LT Z A f(|ZlJ’N’8|)+(,0(|ZZJ’N’S|))( —h, (|Z/N£ Hﬁth

J:1

Obviously, there is a positive constant K* such that A** > 0 for any K € [0, K*]. In what
follows, we shall take K € [0, K*] so that A** > 0. Whereafter, an application of Gronwall’s
inequality yields that

N t

1 'N —A¥* ) Kk —

5 L EFUZ T <7 fEf<|Zé’N'f|)+Cz/e MU= AN-€ gy,
j=1 J

where we also explored the prerequisite that (XO , X0 A;OSO])leSN (Yl Y[i;l:‘fo,O])iGSN are dis-
tributed identically. Once more, with the help of cr < f(r) < (c1 + ¢2)r, 7 > 0, along with

(2.7), there is a constant C3 > 0 such that

N t

1 i *k kK

NE ‘Bz 5C3(e—A f\wl(u,vo)Jr/e—A ”“Y)IEAﬁv’Sds) (2.17)
j=1

Next, according to the definition of &, in addition to f(0) =0 and ¢; < f'(r) < ¢1 + ¢, for
r > 0, it follows readily that

(A fr)+ o) (1 - ha(f’)2) <2(ci1+ ) (W + K +L/2r +¢(r))(1 — he(r))
<2ci + )20 + K + L/2)e + ¢(26)) := p(e).

Whence, we infer that for some constant C4 > 0,

N
1 i o kk 1
NZE|Z§*N*E|SC4(e MW (1 v0) + p(e) + N™ 21k o)
Jj=1

N (2.18)
1 *k i
N “‘”EIW’N’ﬂds).
J=1y
By the aid of Lemma 2.1, /,Li = fY, ¢ and vtl N yiNe for each fixed i € Sy and any

j € Sy. Moreover, recall that (Y Y’ Ifogo])leg,v (X5, XEfY’O,O])iESN are independent and

identically distributed. Therefore, we derlve that
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N
. 1 .
Wiy vy < - D EIZINL viesy.
j=1

Thus, (2.18) enables us to derive that
Wi (uf, vp™)

N t
o kk _1 1 gk (g i N
§C4(e MW (s, v0) + ple) + N 2]1{K>0}+ﬁ E /e AR |y ’€|ds>.
J=1y

Subsequently, rnakmg use of Lemma 2.1 followed by approaching ¢ |, 0, and applying the pre-
requisite that (X Zro. o))ieSy are independent and identically distributed yields that

t
- ; Kk 1 *k .
Wlwi,v;”)sa‘(ek "Wi(u, vo) + N™ 2Lk =0y + / e <”>E|w;”|ds>,
0

in which
i\N i\N ~N\ 7 yi,N ~N
v =N Y =BG ).

Finally, the whole proof is complete by choosing K*, L* > 0 such that A*, A** > 0 and A >
2K +L/2forall K € [0, K*]and L €[0,L*]. O

Proof of Corollary 1.5. In terms of Theorem 1.3, (1.21) follows immediately by taking ro =0,
b= b,and 6, =0, = t. To show (1.21) for the McKean-Vlasov SDE (1.5) provided that Assump-
tion (H) is imposed, it is sufficient to prove the strong well-posedness and check respectively
Assumptions (A1) and (Aj).

Under Assumption (H), (1.5) is strongly well-posed once Xo € L' (2 — R¥; %, P); see, for
instance, [25, Theorem 4.1]. Trivially, Assumptlon (A2) holds true. Next, by virtue of (1.16) with
¢ (r) = Aor and by being replaced by by, it follows readily that for x, y € R? and u € 22, (R9),

(x —y,b1(x) = b1(3) = (x — ,b1(x) —b1(»)) + (x — y, b1 (x) — b1 ()
< Ix = ylo(x — yD) + (Ao + M Ljn—y|<te) — A)Ix — ¥I2

o)

Owing to lim,_, o :

=0, there is an ro > £¢ such that ¢(r) < Ar r > ro. Thus, we derive that

1
(x =y, b1(x) = b1(») < |x = yl(@(x = yD) + Aolx = Y1) Ljjx—y|<rp) — S - VP yi5r0)-

Therefore, (1.16) is verifiable for ¢ (r) = ¢ (r) + Agr, which obviously is increasing and satisfies
¢ (0) = 0. This, together with Lipschitz property of by, ensures Assumption (A1). O
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3. Proof of Theorem 1.6

First of all, we demonstrate that the moment of the displacement for (Y;);>0, determined by
(1.23), can be bounded by the length of time lag.

Lemma 3.1. Assume (1.18) and B > 0. Then, there exist constants C*, L* > 0 such that for all
Le[0,L*landt >0,

1
E|Y, = Y| < C*(L + 1) (1 + El€ ]l o) rg - (3.1

Proof. To achieve (3.1), we first show that there are constants Cj, L* > 0 such that for all L €
[0, L*] and £ > 0,

E(1Y 12| %0) < C§(1 + (1 +ro)lIE1%). (3.2)

According to the variation-of-constants formula (see e.g. [23, Theorem 3.1]), we have for all
t>0,

t

0 t t
Y, =ik — B f Fyryosky ds + B / Fysads + f FysodWy + f [y so0(¥)dBs,  (3.3)
0 0

—To 0

where (I';);>0 solves the linear ODE with memory
dI'y =—-BI_,,dt, >0
with the initial condition 'y = Ijxg and ', = 0444, 7 € [—ro, 0). By Holder’s inequality and

1t6’s isometry, it follows that for any ¢ > 0 and 7 > 0,

t
E(IY:*|-%0) < (1 + ) / T 5 13,E (lloo(Ys) s Fo) ds
0

0
+8(1+ 1/e><||r,||§p|a§o|2 +Bro / T —ry—sllop &5 1> ds

ro

t t
2
+ 80P ([ Irops) +||o||%s/||rs||§pds).
0 0

Let
A* =sup{Re(d) : 1 € C, A+ e =0}.

It is easy to see that A* < O thanks to 8 > 0. By invoking [2, Proposition A.1], for 19 € (0, —1*),
there exists a constant Cy, > 0 such that
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T llop < Croe™™', t>0. (3.4)
This, together with (1.18), enables us to deduce that there exists a constant C} > 0 such that

t
E(1v:1*|%) < (14+&)*Cr L [ e IR (Y, 2| Fo)ds + CE(1 + (1 +ro)lIENI,)-
0

Subsequently, the Gronwall inequality yields that

2

t
_ _ 2 _
E(IY, %] %) 5c;;(l+(1+ro)||€||§O)<1+(1+e)zc§0L/e @ho=(I+e)°c; D) t=9) ds).

Since there exists an L* > 0 such that 21y — C)%OL >0 s0 24 — (1 + 8)2C)%OL > 0 for all
L € [0, L*], the assertion (3.2) follows directly.
By invoking Holder’s inequality and It6’s isometry, we infer that for any ¢ > 0,

E(1Y; = Yi—rl | Z0) <E(1Y: = Y—rgy+1|-F0) + [&1—r — S0l 110,11 (0)

<& —ry — &olLj0,r0) (@) + || Bro + B / (1¥s—rol|F0) ds

(t=ro)t

t

+|O'”E(|W[—W(t_,0)+||90)+E(‘ /

(t=ro)t

1
<& —ry — &olLi0,ro1 () + || Bro + |o | (dro) 2

,%)

t
+8 f (1%, m||Jo)ds+( / E(||oo<m||as|%)ds)2.

(t—rg)* (r—ro)*

Thus, by taking the Lipschitz property of og, along with (1.24) and (3.2), into account, we find
from Holder’s inequality that for some constant ¢* > 0 and any ¢ > 0,

1
E(1Y; = Yirol|-0) < 1&i—ry — &0l 10,701 () + " (1 4+ ro) (1 + 1§ llo0)rg -
Consequently, (3.1) is available by taking advantage of (1.24). O
By invoking Lemma 3.1, it is ready to carry out the

Proof of Theorem 1.6. To apply Theorem 1.3, we set N = 1, W} = W, B = By, and b(x) =
b(x)=B(a—x),x € R?, and take 6, = t — ry to fit in the framework (1.1) and (1.2). In this case,
b(Yy) — b(Yy,) = B(Y; — Yi—y,). Whereafter, by leveraging Theorem 1.3, there exist constants
C*, A* > 0 such that
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t
Wy (fxt, fyt) <C* <CA*ZW1 (fxo,gyo) —i—/ei)”*(tix)lmys — Ys—r0| ds).
0

Whence, (1.25) is attainable by making use of (3.1) so the proof of Theorem 1.6 is complete. O
4. Proofs of Theorems 1.8, 1.11 and 1.12

In this section, we aim to complete proofs of Theorems 1.8, 1.11 and 1.12, respectively.
4.1. Proof of Theorem 1.8

To finish the proof of Theorem 1.8, we first show that, for any p > 1, the p-th moment of
(Xﬁ;sl’N, S X‘S N.N )n>1, solving (1.10), is uniformly bounded.

Lemma 4.1. Assume (A1) with ¢ (r) = hor for some Ao > 0 and ). > 2K. Then, for any p > 1
and 8 € (0, 8,] with

L 3G-2K)
200+ K)  4p(1+ K)lp/2I+17

8p:=1A A.1)

there exists a constant C; > 0 such that foralln > 0 and i € Sy,
E’ '3181]\/‘[7<e—)» nSIE‘XBIN‘I’_l_C* (42)

in case ofIE|X3 g N|p

< 00, where

. _ 30.-2K)
204+ 3% —4K)

Proof. In the sequel, we would like to emphasize that all underlying constants are entirely unre-
lated to the step size, and let f({\' be the o -algebra generated by X(])’N, s Xév N For any even
integer p > 2 and § € (0, §,], provided that there exists a constant C;; > 0 such that

E(1 X5 17|70 <e iGN P+ € ieSynz 1, 43)

then, from Holder’s inequality and the inequality: (a + b)? <a? +b? fora,b>0and 6 € (0, 1],
we obtain that for any p € [1, 2],

) P « . P
]E(lXS i, N|p| mN) < (E(|X231’N|2|3Z(§V)> z _ e‘%/\ n8|Xg,z,N|p + (C;)g,

and that for p > 2 which is not an even number,

i P
(x5 1737) = (B(x 0| 75) T

A*né

8,i,N |p
<e~ Z(p/zw |X0’ |P +(C2r /2])2rp/21,
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where [-] means the ceiling function. Hence, (4.3) is still valid for the other setting, where the
constants A, and C;; might be different accordingly. Thus, (4.2) follows from (4.3) and the
property of conditional expectation.

Let AW, = W(’n s W, 5. Based on the preceding analysis, it remains to demonstrate (4.3).
It is easy to see (1.10) that

|X((S;’1i4}}},)8‘2 = |szlsi'N|2 - |X?;;iir]}/)s - X;ilsi’N|2 + Z(X?;llﬁ)a - Xibi’N’ X?ﬂ)a>
= | X0V [x0 — XS P 20(b X o) X5 )
+20(AWL, Xf,;ﬁr’lv)a — XN 120 (AW, x00N)

SN ~8N\ 8,0, N
), X

v .
= |X251’N| +26(b(X(n+1)8’Mn8 (n+1)8 S'I’N)v

)+ 02| AWl [P + 20 (aWis, X2
(4.4)

where in the second identity we exploited the fact that

5,0,N SN SN ~8N ;
Xoins — X5 =0b(X (150 Hys )+ 0 AW,

and the last display is valid by making use of the fundamental inequality: 2ab < a® + b? for any
a, b € R. Next, by means of (2.5), it follows that

1 1
(x, bx, ) = Co— 31— 4K)|x* + SKnd- ?),  xeRYue?RY, 45)

for some constant Co > 0. Hence, we deduce from (4.4) and Jensen’s inequality that

8,i,N |2 8,i,N |2 1 8,i,N 2 1 ~8,N 2
[ Xeihsl = X" +25<C0_Z(3’\_4K)|X(nl+1)5| + 5 Kiys (- )>
+ 02| AW + 20 (AW, X5V,

This obviously implies that

i 2 i,N|2 ~ 2 j
A+ 2k 8| X557 < X0 M 7+ K8 (1 1P) +2C08 + 02| AWas|” +20(AWas, X, Y),
(4.6)
in which A g := 3L —4K)/2.
According to (4.6), the binomial theorem gives that for any integer p > 1,
N, . - o - 1
A ax®)? G = (105" [ KT - )+ p (105 [+ Ko™ (- 1) Uy

p—2
1 2 ~, k i _
+ gz Y CH(|Xs V" + KT (1 1)) (W) F
k=0
= Th (X0 + T, (X0 + T, X0,
where
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Ung 7=2C08 + 02| AW "+ 20 {aWyy, XpY) - and - X05% o= (Y, X0 Y).
4.7

Below, we attempt to estimate the terms Fn 5 Fn s-aswell as I‘n s» one by one. First of all, applying
the binomial theorem and invoking Jensen’s inequality and Young’s inequality yields that

2k S —k
T X" >—ZC"|X‘“N Ko,y (1)
kb K X3V Pk sn, 2
= Y ChEeP (XN Y 1) ).

k=0 p p

So, by utilizing the fact that X 2;;’]\/ and X ,%j N are identically distributed given ﬁé\’ , we conclude
E(Is X2 2Y) < (1 + K)PE(1XN 2P| 2.
Next, notice that
o~ ~ -1 i |2
E(Fs 00| 7) = pE((1X050Y 12 + Koy (- )" (2C08 + 02 [ aW,s )] 7).

Whence, it is apparent that there exists a constant C, > 0 such that

E(T (X2 )|j(§v)< g0~ 2K)pSE(IX2N 2P| ZN) + Cps.

Once again, via Young’s inequality and by utilizing the fact that X ﬁg’N and X 2;3/ N are identically
distributed given ﬁév , we infer that for some constant C; >0,

1 .
E (T (X3 [20') < 5 0. = 2K)pS E(1 X357 PP 70Y) + €,

where the underlying moment of the polynomial with respect to |AWr’; s| provides at least the
i '

order 8. Now, summing up the previous estimates on I': s

Ax8)? > 14 pAg$, enables us to derive that

s and F:“;, in addition to (1 +

(14 prxOE(X NP | 207) < (L4 K8)P +30— 2K) ps/8)E(1X5V 12 | Z0) + C,8.
The mean value theorem, beside the definition of §,, given in (4.1), shows that for any 6 € (0, §),
1
A+K8&)P <1+ pKs+ S+ K)?2p(p — 1)K>58?

3

<1+ pKé+ g(k —2K)ps.
As a consequence, for
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1 3
Ay =———|1 K§+—-(A—=2K)pé 0,1
= g (1 H PR+ 30— 2K0p8) € 0.1

based on the prerequisite A > 2K, via an inductive argument, we arrive at

*

‘ . C
(XG0P 170) = 03)"1X0™ " PP 4+ —E
8

Subsequently, by invoking the inequality: a” < e~~97 for a,r > 0, we derive from & € (0, 1)
that

*

. . C
8,i,N |2 N —A*né | y0,i,N |2 )4
IE(|X(n+l)8| p’ﬁo )fe b |XO | P+ AE
p

’

where )\;‘, = %. Consequently, the assertion (4.3) is available by noting that p — A;‘,

is increasing. O
With the help of Lemma 4.1, the proof of Theorem 1.8 can be implemented.

Proof of Theorem 1.8. Below, for nonnegative numbers a, b, we use the shorthand notation a <
b if there exists a constant ¢ > 0 such that @ < cb. Combining (1.17) with (A3) and § € (0, 1),
we derive from (1.10) that for any ¢ > 0,

IE(|X;S,i,N|21*

FY) ST+ E(XEV P 20) + E(pxN w7

S TR B(XG P )+ E(XSEPC|)

N
! 8.j,N 2r*
+y LB

) 4.8)

ST+E(XN P2 + B(X) L P2

5 1+ |Xg’i’N|21*(l*+1),

where in the penultimate inequality we used the fact that (X f J ’N) jesy are identically distributed
given ﬁév , and in the last display we applied Lemma 4.1. Again, by taking (1.17) and (A3) into
consideration, along with § € (0, 1), it follows from Lemma 4.1 that

8,i, 8,i, 8,1, * 8,i,
E(jx N X3 N|2|g~é\’) < (1 +]E(|thjrlfg\/|2(l +1)|g‘é\’) +E(1X;' N|2|§(§V))5
< (1 T |X8,i,N|2(l*+1))5
and subsequently from (4.8) and Holder’s inequality that

8,i,N ~§,N 8,i,N ~46,N
E(1bX, N ™) = b(X, vy DI

yé\’))% + (E(|X<S,i,N|21*

< (14 Qe

7)?)
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x sup (E(XPHN = X3V 2| Z0))2 (4.9)
§—1<28

+— ZE |XSJN_X8/N|| 0)
]1

<+ |X‘“N|(l +1)2)5%_

Next, applying Theorem 1.3 with 7o =0, 6, =t5 + 8, 6, = t5, and b=b yields that for some
constant A* > 0,

W (EX; , .,%X;Sj,N) < e_)‘*tW] (.iﬂxé'), Q?XS.LN) + N_%
t

_i_/e—)u*(t—s)]E|b(X§,i,N ~§, N) _ b(X;ssq,Igv INL?SN)| ds.

0

Whence, the desired assertion (1.27) follows from (4.9). O
4.2. Proof of Theorem 1.11

By following the line to handle the proof of Theorem 1.8, it is necessary to verify that

(Xﬁ;sl’N, e X‘S N, N)n>1, determined by (1.30), is uniformly bounded in the moment sense.

Lemma 4.2. Assume Assumptions (A1) with ¢ (r) = Agr for some Ly > 0 and (A’1 ), and suppose
further k := akp, — 2K > 0 and A > 2K. Then, for any p > 1 and § € (0, 5] with 8 being
defined in (1.31), there is a constant C; > 0 such that

E[xp " < C(1+E[xg"Y]F), n=1. 4.10)

Proof. By tracing the proof of Lemma 4.1, it suffices to verify that, for any integer p > 3 and
8 € (0, 8], there exists a constant C;* > 0 such that

E(X550177|20) = A= 8/10E(1X5 " 2P| Z0) + €38 @.11)

in order to achieve (4.10).
From (1.30), it can be seen readily that

XS = (XY P e B OGN + (bo #0303 + 8[b] (x ™) )
+((bo* s ) X3 ™) + 267 (X5 ™), (bo % i ) (X ™)) 82
+ (2| AWy [* + 20 (X2 + B3O8 + (b # 1103V ) (X058, AWL))
= [ X5V P 4 AR XM + AP ()82 + A (XM,

where Xi’&N was defined as in (4.7).
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For any x := (x1,---,xn) € (Rd)N let Mx v Z/ 1 x/ By invoking (1.17) and (1.28),
we derive that for any é € (0, 571,

1 8|b1(x;)|?
A (x) < (2<x,-,b1(x,-)>+ 1' 1)l )+2|x,-|u£5<|bo(x,-—.>|>
1+52||Vb1(x1)||Hs 14+682(|Vbi(x;)|lus
2IVb (xi)llns

1
- - (Apy — 3,82 1xi|> +2(Cp, + C7,)
14+62||Vbi(x;)|lns

+ K (3lxi [+ pd (|- 1) + 2lxi ] - 1bo(0))]
and that there exists a constant Ca‘ > 0 such that
2(b1(xi), ul (bo(x; — )))

1467 Vbi (x)llus
<4K>(1xi1> + uy (|- 1)) + 21bo(0)?

A3 x) = [ (bo(xi — )| +

! .
+2(Rey 87 1%l 4 Coy ) (K xi ) + Kt (1 1) + 150 (0)])

1
<4K (K +hp, 877 ) (Il 4 0 (- 1)) + Co1+677).

Thus, combining (1.29) with é € (0, 1), in addition to the local boundedness of Vb1, yields that
for some constant C I‘ > 0,
i INRTRY Y] 2a 1 !
A (x)8 + A (x)82 < 7(%1 — — (3K +p8)(1+8%a) = 75,87 — —>|x,|
1458%a 2o o

1
(K + syl |2)>5 e

20 3k
=< 2K+ p(1+1/a)+ X5 )52 |x|
( 1+82a(4 ( 8 / b) ) l

1
K+ psH () - |xl-|2)>a Lo,
where p :=4K (K +/):;,] ). In terms of the definition of &, we right now have for any 6 € (0, §7],

QK +p(1+1/a) +7,)87 < 5.
Whence, owing to 8%01 € (0, 1) for § € (0, ], we infer that

AP )8+ A (0087 < (= (/4 + B)lil* + By (|- 19)8 + C18,
where Bs := K + pé 2, Whereafter, the preceding estimate enables us to deduce that
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1 2 ~
| XEEN P < (1= (/a4 B)8) X0 N P 4 sl (1 )8 + Ca + K (XDy), (4.12)

where the factor 1 — (k /4 + B5)$ is positive by taking § € (0, §;7] into consideration.
With (4.12) at hand, we obtain that for any integer p > 3,

X017 < (U= Ge/a+ )s) | X2 P+ Bsiidy (1 19)8)”

+ p((1= Ge/4+ B)8) XN P 4 B2 N (- 12)8) 77! (€8 + A0 (X3)
p—2

+ 3 CH((1 = Ge/a+ B)d) [ XN P+ Bl (- P)8) (Ca + A (X2y))" ™
k=0

ThsX05Y) + Ths (X 8)+Tn5( .

In the sequel, we aim to estimate separately the conditional expectations of Y’ Y s> as well as

né> " n
TL s given the o -algebra which is generated by X 3.1, N XS’N’N.

In the first place, the binornlal theorem and the Young 1nequality yield that

yN

CH(1— (/4 + B5)8) (Bs)P ¥ |25V (2N a1 - 11y) P

2
i
v

I
M
w»

E (X, (X5

p
<> k(1= /4 + B)s) (Brd)"
k=0 (4.13)

k i -k~
(GEOX P17 + =B - P 7))

X

= (1 —«8/HPE(IX25N 12| 7

<1 —«8/HE(XNPr|ZY),
where in the second identity we used the fact that Xfus'N and sz;;j N are identically distributed
given ,/ , and the last display is evident thanks to 1 — «§/4 € (0, 1). In the next place, due to

IE(AW‘(;L?N) =0and IE(|AW’5| |9N) =dJ, it follows from Young’s inequality that there is
a constant C5 > 0 such that

E(T,5(X03 [ 20) < pCISE(((1 = (e/4+ B)8) [ X5 N * + BsTy ' (- 8)" ' | 7)

8 .
< II—6]E(|X2§’N|21’ FN) +C3.
(4.14)

Furthermore, note from (1.28) and (1.17) that
|3 (xi) + ud (bo(xi — )8 < (b15_7|xz|+Cb1 + K (Ixil + 18 (|- 1) + 1bo(0)])8.

This, together with the fact that the conditional expectation (given ﬁé\' ) of the increment AW,i 5
contributes at least the order §, and the Young inequality, leads to
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K$
E (T, (| 7) = SSE(XGV | 7) + 3 @15)
for some constant C3 > 0. Ultimately, (4.11) is reachable by pulling together (4.13), (4.14) and
4.15). O

Based on Lemma 4.2, it’s turn to carry out the

Proof of Theorem 1.11. Applying Theorem 1.3 with ro = 0, 6; = 9, = t5, and i;(x, n) =
b‘lS (x) + (bo * ) (x), respectively, enables us to derive that for some A* > 0 and any ¢ > 0,

* 1
Wl (fxg, fx;s,i,zv) 5 6:7)L th (XX{)’ fxg,i,N) + Nfﬂl{K>0}
o _ (4.16)
+~/&ei)\ (t7X>E|b(X§‘l’N, ﬁg,N) b(x(s i, N’ ﬁ?aN)| ds.
0

Next, by using (1.17), and (1.26), it is easy to find that for x, y € R? and p, v € 21 (RY),

1bCx. 1) — By )] < [51() — b1 |+ 161 () — B + 1(bo # 10 () — (o % V) ()|
1
ffﬁwwy+ﬂx—w%x—wds
0
+ K (Wi (e, v) + |x — yl)

52 b1 (W] - IVh1(Y) l1s
1+52||Vb1(y)||Hs

* * * 1
S 17+ 117 ) e = v+ Wiu, v) + (4 [y 8.
This, together with (4.16), implies that
Wi (XX; , fxﬁ,i,zv)

« _1
Se MW, (gxé,fxg,iw) + N 21(k>0
t
+/e_“(’—s)IE<IE((1 + IX?,i,N|l* " IX?{;i,N|l*)IXf,i,N . Xféi,N”yéV)) ds
0
t

_I_\/‘e—)»*(t—S)E’X(S,l',N —Xi;l’N|dS+ Zf —A¥(t— S)E‘X 5] N|dS
j=1y

4.17)

e —A*(t—s) 1+E|X61N|21*+1)ds,

O\

SN 8.N.N

where o -algebra .7, N s generated by Xy . 6 . Moreover, due to Ethi - W,§| =
d(t —t5) and [p(x)] S 1+ 573 |x|,x € ]R" , by invoking (1.28), it holds from Lemma 4.2 that
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(X = X NP S (L E(XG Y PL200)8 S (L IXG Y 2)8

and
8,i,N |20* 8,i,N 2I* 8,i,N 21*
E(1x;"Y 7 170) ST+E(X, N PP1270) S 1+ 1xg" Y 1P

As a consequence, the assertion (1.32) is verifiable so the proof of Theorem 1.11 is finished from
(4.17) and Holder’s inequality. O

4.3. Proof of Theorem 1.12

The following lemma addresses the issue that the time grid associated with the adaptive EM
scheme tends to infinity almost surely.

Lemma 4.3. Under Assumptions (A1) and (A3),

PlweQ: lim #,(w) =+oo}=1. (4.18)
n—oo
Proof. Let for all x € RY and u € Z(RY),

h(x, ) = (14 |b(x, w)»H) 7"

Then, it is easy to see that for x € R9 and u € 2(RY),

|b(x, | (14 [b(x, w)Dh(x, u) <3/2.
Next, from (1.17) and (A3), there is a constant C; > 0 such that for all x € R and u € 2, (RY),

he, ) (1+ 122+ u( - D) < €
Furthermore, note that Assumption (T2) in [21, Proposition 4.1] can be weakened as below:

(0, b, ) <CL(L+ x4+ (- D), xeRY pe 2 RY.
Consequently, the assertion (4.18) follows from [21, Proposition 4.1] and (4.5). O
Unlike the backward/tamed EM scheme, the step size involved is a constant so an inductive

argument can be used to establish the uniform moment bound. Nevertheless, with regard to the
adaptive EM scheme (1.14), the underlying step size is an adaptive stochastic process. Hence,
the approach adopted in treating Lemmas 4.1 and 4.2 no longer works to handle the uniform

moment bound of the adaptive EM scheme (1.14), which is stated as a lemma below.

Lemma 4.4. Assume (A1) with ¢ (r) = ,or for some Ao > 0 and . > 2K. Then, for any p > 1,
i €Sy and § € (0, 1), there is a constant C;‘, > 0 such that

E| XN < o (14 E[xg"N|P), 1= 0. (4.19)
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Proof. By following partly the proof of Lemma 4.1, for each integer p > 3, it is sufficient to
show that there exist constants A ,, C ;‘, > 0 such that

E(XPN PP 7)) < (1 4+ e XN PP), ieSy, 120 (4.20)

for the sake of validity of (4.19).
Applying 1t6’s formula, we obtain from (1.14) that for A, :== p(A —2K)/6 and integer p > 3,

d(eHrt | XN PPY = ot (ap | XDEN 2P ol P (XN e | XDEN PPD)dr 4 dM P, (4.21)

where (M,(p)),zo is a martingale, ¢, := o?p(d +2(p—1)), and
q)i,p(X(tS,N) — 2p|X;S,i,N|2(p—l)<X;3,i,N7 b(XzS,i,N, ﬁi,N))'

By taking the structure of the adaptive step size defined in (1.33) into consideration, besides
8 € (0, 1), it is easy to see that

b2 @M - <87 -1 <1. (4.22)

Whence, by making use of the strong Markov property of (W,i),zo and the tower property of

conditional expectations, in addition to t — ¢t < 1, there exist constants C f,’l, C ;’2 > ( such that

. 3 . . .
B(X0Y P | 7)) = SEQXEN PR FY) + O (1 EQWS - Wi 7))
3 s . .
= 51@(|XL’”V|2"IﬁON) +C I+ EE(W - W/ |2 7)))
3 8,i,N2p| N 2
< EIE(|X,_’ IP|.75") + C32,

(4.23)
where ﬁgv is the o-algebra of t-past with (#),>o being the o-algebra generated by
(XS’I’N, e XS’N’N) and (W}, ..., WIN),EO. Then, provided that we claim that there is a con-
stant C;’3 > 0 satisfying

. 1 .
8N 8,i,N
E(@" (X)) Fy') = =5 p0 = 2K)E(1X, 1?P176") + C3, 4.24)

combining (4.21) with (4.23) yields that for some positive constants C;A, C;’S,
13
SE(XPNPPLEY) < |xgUY [+ f v (20, B (X2 7))
0
1 )
— 3P0 = 20OE (XN PP ZY) + C;*“) ds
i 2
<[Xg"N[ et - 1.

Therefore, (4.20) follows directly.
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Below, we attempt to verify (4.24). By invoking (1.14) once more, it is apparent to see that

|Xt5,l,N|2([7 D _ ’X;_S,l,N _i_b(X;_S,z,N’ Mf N)(t . +U(W,’ . Wl_l)| (p—1

8,i,N|12(p—1) =2 8,i,N |12k (1 ~8,N\\P—1—k (4.25)
= x| +ZC£—1|XZ_J' (v ™)’
k=0
and that
(XN oY ) = (XY b )+ r ™), (4.26)
where

\I,i(Xg,N) - |b(X5,i,N,ﬁ;S N)| (t —L)2 +02|Wti _ Wi|2
+2{xp N b)Y ) — 0 + 20 (XN, W — W)
+ za<b(x;“’”, aNy, wi—wila - o),
YNy = oSN N P — 0 o (W - W b ).
Now, plugging (4.25) and (4.26) back into (4.21) gives that

i §,N 8,i,N|2(p—1 §,i,N 8,i,N ~8N 8,i,N|2(p—1 1 8,N
cbl,p(Xt_ ):2P|X,_l | (p )<Xt_l ,b(XLI ,//Lt )+2p|Xt_l | (p )Tl(Xt )

p—2
+ 217« 8 i, N’ b(X;_S’i’N, ﬁi,N))_i_Ti (XfN)) Z C;—l |X§’i’N|2k(\yi (X;S,N))p—l—k
k=0

=07 X} + 0 X)) +87 (X)),
By utilizing (4.5), the leading term @7 (Xi’N) can be tackled as follows:

]E(@i’p(Xi’N)|fo)<2p<——(3)» 4KYE(1 XN e | ZN)
+;KE(|X51N|2(1; 1)~5N (- P)|ZY) + CoE(IX 61N|2(p 1)|y/v)>

<—p(—2K)E(IX)"NPP|FY) + €
4.27)

8,i,N

for some constant C,7 > 0, where we also employed that X, and Xf’j N are distributed

identically given .7 N . Subsequently, in view of
E(|X61N|2(p 1)<W th,b(XBIN ~6N )’ng())
the Young inequality implies that for some constant C}","7 > 0,
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E(0"? X)) 7)) < p(x 2KE(XV P2 + x> 0. (4.28)

Furthermore, by virtue of (4.22), we obviously obtain that

V) <t =140 (W= W 426 - XN 2001 (14 XY ) W - W
and

T XYY <1 +1o] [bxp™N, ™| - |wi - wi.

Thus, we find that

E©"" M F) < 2p (04 (X7 |+ I W] = W) oy, 7))

XZC XN 2"( =1+ W — W2+ 281X0V |t —1)2

. . . —1—k
+ 200 (141X V ) Wi — W£|>p

(4.29)

Notice that the degree of the polynomial (on the right hand side of (4.29)) with respect to |X 8.3, }

is 2(p — 1). In addition, the conditional expectation of the polynomial with respect to | W} — W£‘|

glven the o-algebra .%; N offers at least the order (1 — t)2 so that the term |b(X 8.5, N, /7,8 N)|(t —

1) > can be uniformly bounded by taking advantage of (4.22). Once again, with the aid of Young’s
inequality, there exists a constant C ;’8 > 0 such that

1
E@"" x| 7)) < - PO 2KE(X NP + CF > 0.
This, together with (4.27) and (4.28), enables us to achieve (4.24). O

Before the end of this work, we accomplish the

Proqf of Theorem 1.12. Once again, an application of Theorem 1.3 with ry =0, 6, = 9, = t,
and b = b, respectively, yields that for some A* > 0 and any 7 > 0,

(fxz,f StN) A*twl(gxl,g SzN)+N 21{K>0}

L _ 4 (4.30)
Jr/erA COR|bx PN, m0 Ny — b(xX20N TN | ds.

0

Next, from (1.17) and (A3), it is easy to see that
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B[N ) = b M SE((1+ x0T [t 0N - X))
1@ 8 B
8,i,N 8,i,N N N
+E[xY - x7 |+N;E|Xt DD e}
(4.31)
Moreover, by taking the definition of 4° given in (1.33) into account, one has
X0 = XN < XN P ONE = 0+ o (W] = W) <8+ o (W) — W)[.(4.32)
Note that from Holder’s inequality, we deduce that
E((1+ X7

i * 1 i i 1
SE((1+ @XPP| ) ) (XY X 2Y)?).

XN _ XizND .

Whereafter, the assertion (1.34) can be attainable by plugging (4.31) back into (4.30) followed
by combining (4.32) and (4.33) with Lemma 4.4. Consequently, the proof of Theorem 1.12 is
complete. O
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