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Abstract

Via constructing an asymptotic coupling by reflection, in this paper we establish uniform-in-time esti
mates on probability distributions for meanfield type SDEs, where the drift terms under consideration are 
dissipative merely in the long distance. As applications, we (i) explore the long time estimate on probabil
ity distributions associated with an SDE and its delay version; (ii) investigate the issue on uniform-in-time 
propagation of chaos for McKean-Vlasov SDEs, where the drifts might be singular with respect to the 
spatial variables; (iii) tackle the discretization error bounds in an infinite-time horizon for stochastic al
gorithms (e.g. backward/tamed/adaptive Euler-Maruyama schemes as three typical candidates) associated 
with McKean-Vlasov SDEs.
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1. Introduction, main result and applications

1.1. Introduction

In this paper, we work on the meanfield type SDEs: for i ∈ SN := {1, · · · ,N},

dXi
t = b(Xi

t ,LXi
t
) dt + σdWi

t + σ0(X
i
t ) dBi

t (1.1)

and

dX
i,N
t = b̃(X

i,N
θt

, μ̃N

θt
) dt + σdWi

t + σ0(X
i,N
t ) dBi

t (1.2)

with the initial datum (X1,N
[−r0,0], · · · ,X

N,N
[−r0,0]) for some r0 ≥ 0, where, for each i ∈ SN , Xi,N

[−r0,0]
is a C([−r0,0];Rd)-valued random variable. In (1.1) and (1.2), b, b̃ : Rd × P(Rd) → Rd

with P(Rd) being the set of probability measures on Rd ; σ ∈ R and σ0 : Rd → Rd ⊗ Rm; 
LXi

t
stands for the law of Xi

t ; the maps θ : [0,∞) → [−r0,∞) and θ : [0,∞) → [0,∞), 

where concrete expressions will be specified later concerning respective settings; μ̃N
t :=

1 
N

∑N
j=1 δ

X
j,N
t

means the empirical measure associated with particles X1,N
t , · · · ,X

N,N
t ; W 1 =

(W 1
t )t≥0, · · · ,WN = (WN

t )t≥0 (resp. B1 = (B1
t )t≥0, · · · ,BN = (BN

t )t≥0) are mutually indepen
dent d-dimensional (resp. m-dimensional) Brownian motions supported on the same filtered 
probability space (Ω,F , (Ft )t≥0,P ); Furthermore, (W 1, · · · ,WN) is supposed to be indepen
dent of (B1, · · · ,BN).

Regarding the objects (X1
t , · · · ,XN

t )t≥0 and (X1,N
t , · · · ,X

N,N
t )t≥0 solving (1.1) and (1.2), 

respectively, the central goal in the present paper is to establish the quantitative estimate:

W1
(
LXi

t
,L

X
i,N
t

) ≤ ϕ(t,N), t ≥ 0, i ∈ SN, (1.3)

where W1 denotes the L1-Wasserstein distance and ϕ : [0,∞)×[0,∞) → (0,∞) is a decreasing 
function with respect to the first variable and the second argument, respectively. For the explicit 
form of ϕ, we would like to refer to (1.20) below for more details. Hereinafter, we attempt 
to elaborate why we focus on the framework (1.1) and (1.2), and explore the uniform-in-time 
estimate (1.3). The interpretations will be expounded based on the following three perspectives.

1.1.1. Uniform-in-time propagation of chaos
In (1.2), once we take ̃b = b, r0 = 0 and θt = θ t = t , (1.2) subsequently becomes

dX
i,N
t = b(X

i,N
t , μ̃N

t ) dt + σdWi
t + σ0(X

i,N
t ) dBi

t . (1.4)

As we know, (1.1) and (1.4) are the respective non-interacting particle system and interacting 
particle system corresponding to the following McKean-Vlasov SDE:

dXt = b(Xt ,LXt )dt + σdWt + σ0(Xt ) dBt , (1.5)

where (Wt)t≥0 is a d-dimensional Brownian motion (a copy of (Wi
t )t≥0 for each i ∈ SN ), which 

is independent of the m-dimensional Brownian motion (Bt)t≥0 (a copy of (Bi)t≥0 for each i ∈
t

2 
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SN ). Since the landmark work [29] due to Sznitman, the theory on propagation of chaos in 
a finite-time horizon has achieved great advancements for various scenarios; see, for instance, 
[5,14] for McKean-Vlasov SDEs with regular coefficients, and [1] regarding McKean-Vlasov 
SDEs with irregular drifts or diffusions. Recently, for weakly interacting meanfield particle 
systems with possibly non-convex confinement and interaction potentials, the uniform-in-time 
propagation of chaos: for some constants c,λ > 0 (independent of t > 0 and i ∈ SN ),

W1
(
L

X
i,μ
t

,L
X

i,N,ν
t

) ≤ c 
(
e−λtW1(μ, ν) + N− 1

2
)
, t > 0, i ∈ SN (1.6)

was established in the remarkable work [7], where L
X

i,μ
t

and L
X

i,N,ν
t

stand respectively for the 

distributions of Xi
t and Xi,N

t with LXi
0
= μ and L

X
i,N
0

= ν. For great progress on the uniform-in

time propagation of chaos concerning Langevin dynamics with regular potentials and stochastic 
particle systems with meanfield singular interactions, we refer to [11,12,27] and references 
within. As an immediate by-product of the quantitative estimate (see Theorem 1.3 below) de
rived in this paper, the uniform-in-time propagation of chaos (1.6) will be reproduced right away, 
where the underlying drift terms might be singular with respect to the spatial variables (see Corol
lary 1.5 for more details). The proceeding explanations can be viewed as one of our motivations 
to consider (1.1) and (1.2), and study the estimate (1.3).

1.1.2. Uniform-in-time probability distance between an SDE and its delay version
Consider a semi-linear SDE:

dXt = β(α − Xt)dt + σdWt + σ0(Xt ) dBt , (1.7)

where α ∈ Rd , β > 0, σ ∈ R, σ0 : Rd → Rd ⊗ Rd , (Wt )t≥0 and (Bt )t≥0 are mutually indepen
dent d-dimensional Brownian motions. In case of σ0(x) ≡ 0d×d (d × d zero matrix), (1.7) is 
a linear SDE solved by the Ornstein–Uhlenbeck (O-U for abbreviation) process. As we know, 
the O-U process has been applied considerably in financial mathematics and the other related 
research fields. Whilst, in the real world, the price of an asset or the evolution of population 
dynamics is influenced inevitably by major events that took place. In turn, the viewpoint above 
motivates us to consider a memory-dependent version of (1.7) which is described as follows:

dYt = β(α − Yt−r0)dt + σdWt + σ0(Xt ) dBt , t > 0 (1.8)

with the initial datum Y[−r0,0]. In (1.8), (α,β, (Wt )t≥0, (Bt )t≥0) is kept untouched as in (1.7), and 
the positive r0 is the length of the time lag. Apparently, (1.7) and (1.8) are fit into the framework 
(1.1) and (1.2) by setting N = 1, W 1

t = Wt , and B1
t = Bt , and taking θt = t − r0 and b̃ = b. 

Indeed, the quantity r0 can be regarded as a perturbation. Intuitively speaking, the probability 
distance between LXt and LYt with LX0 = LY0 should be very small in case that the perturba
tion intensity r0 is tiny. So, the issue on how to quantify the probability distance between LXt

and LYt encourages us to pursue the topic (1.3). The above can be regarded as another inspiration 
to implement the present work.

1.1.3. Uniform-in-time discretization error bounds for stochastic algorithms
Our third motivation arises from the long time analysis on stochastic algorithms for McKean

Vlasov SDEs, where the drifts need not to be uniformly dissipative with respect to the spatial 
3 
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variables. As is known to all, the Euler-Maruyama (EM for short) scheme is the simplest and 
succinctest method to discretize the McKean-Vlasov SDE (1.5) with σ0(x) ≡ 0d×d , that is,

dXt = b(Xt ,LXt ) dt + σ dWt, t > 0. (1.9)

Nonetheless, the EM scheme works merely for SDEs with coefficients of linear growth; see, for 
instance, [16, Theorem 2.1] and [20, Lemma 6.3] for a theoretical support and a counterexam
ple, respectively. Based on this, plenty of variants of the EM scheme were proposed to cope 
with numerical approximations for SDEs with non-globally Lipschitz continuous coefficients. 
The finite-time strong convergence of the backward EM scheme, as a typical candidate of EM’s 
variant, related to the McKean-Vlasov SDE (1.9): for a step size δ > 0,

dX
δ,i,N
t = b(X

δ,i,N
tδ+δ , μ̃

δ,N
tδ

) dt + σ dWi
t , t > 0, i ∈ SN (1.10)

was explored in [6], where tδ := 
t/δ�δ with 
t/δ� being the integer part of t/δ, and μ̃δ,N
t :=

1 
N

∑N
j=1 δ

X
δ,i,N
t

. Transparently, (1.9) and (1.10) with r0 = 0 and σ0(x) ≡ 0d×d are included in 

(1.1) and (1.2) by taking ̃b = b, θt = tδ + δ, and θt = tδ , separately.
Next, inspired by e.g. [15,26], [6] put forward the tamed EM scheme: for κ ∈ (0,1/2],

dX
δ,i,N
t = b(X

δ,i,N
tδ

, μ̃
δ,N
tδ

) 

1 + δκ |b(X
δ,i,N
tδ

, μ̃
δ,N
tδ

)| dt + σ dWi
t , t > 0, i ∈ SN (1.11)

to simulate the McKean-Vlasov SDE (1.9) in a finite time interval. Since, for a fixed step size 
δ > 0, the modified drift is uniformly bounded, the distribution of (Xδ,i,N

t )t≥0 solving the tamed 
EM scheme (1.11) is not adequate to approximate the distribution of (Xt)t≥0 determined by (1.9)
in an infinite-time horizon. Enlightened by e.g. [4,18,19], to derive a uniform-in-time estimate 
between the distributions of the exact solution and the numerical counterpart, we construct the 
following tamed EM scheme for the McKean-Vlasov SDE (1.9):

dX
δ,i,N
t = b(X

δ,i,N
tδ

, μ̃
δ,N
tδ

) 

1 + δκ‖∇b(X
δ,i,N
tδ

, μ̃
δ,N
tδ

)‖HS
dt + σ dWi

t , t > 0, i ∈ SN, (1.12)

where, for each fixed μ ∈ P(Rd), x �→ b(x,μ) is a C1-function, ∇ means the weak gradient 
operator with respect to the spatial variables, and ‖ · ‖HS stipulates the Hilbert-Schmidt norm. 
Compared (1.12) with (1.11), the tamed drift in (1.12) might not be bounded any more and is at 
most of linear growth with respect to the spatial variables. Obviously, (1.1) and (1.2) with r0 = 0
and σ0(x) ≡ 0d×d can cover (1.9) and (1.12) once we choose θt = θ t = tδ and set

b̃(x,μ) := b(x,μ) 
1 + δκ‖∇b(x,μ)‖HS

.

No matter what the backward EM scheme (1.10) or the tamed EM algorithm (1.12), the un
derlying time step is a uniform constant. In [9], a refined EM scheme with an adaptive step size 
was initiated to approximate SDEs with super-linear drifts. In the spirit of [9], [24] constructed 
an adaptive EM scheme associated with (1.9), which is described as below:
4 
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X
δ,i,N
tn+1

= X
δ,i,N
tn

+ b
(
X

δ,i,N
tn

, μ̃
δ,N
tn

)
hδ

n + σ�Wi
tn
, n ≥ 0, i ∈ SN, (1.13)

where tn+1 := tn +hδ
n for an adaptive time step hδ

n (see (1.33) below for an alternative of hδ
n), and 

�Wi
tn

:= Wi
tn+1

− Wi
tn

. In contrast to (1.10) and (1.12), the time step in (1.13) is not a constant 
any more but an adaptive process, which is determined by the current approximate solution. Let 
t = max{tn : tn ≤ t}. Then, the continuous version of (1.13) can be formulated as

dX
δ,i,N
t = b

(
X

δ,i,N
t , μ̃

δ,N
t

)
dt + σ dWi

t , t > 0, i ∈ SN. (1.14)

Therefore, (1.9) and (1.14) can be incorporated into the framework (1.1) and (1.2) by setting 
θ t = θt = t , σ0(x) ≡ 0d×d , and b = b̃.

With regard to the backward/tamed/adaptive EM scheme for classical SDEs and McKean
Vlasov SDEs, there is a huge amount of literature concerned with strong/weak convergence in 
a finite-time interval; see [9,13,17,24,26], to name just a few. Meanwhile, there are still plenty 
of work handling long time behavior of numerical algorithms when (McKean-Vlasov) SDEs 
involved are uniformly dissipative with respect to the spatial variables; see e.g. [3,9,21,32,33] 
and references therein. In the aforementioned papers, the synchronous coupling was employed 
to analyze the convergence property (in an infinite-time horizon) of the underlying algorithms. 
Whereas, such an approach does not work any more to deal with the long time behavior 
of stochastic algorithms when (McKean-Vlasov) SDEs under investigation are not globally 
dissipative. In the present work, as another direct application of the main result (see Theo
rem 1.3), concerning McKean-Vlasov SDEs, we quantify the uniform-in-time estimate on the 
distribution distance between laws of exact solutions and numerical solutions derived via back
ward/tamed/adaptive EM schemes. Once more, the elaborations above urge us to work on the 
frameworks (1.1) and (1.2), and conduct a further study on (1.3).

1.2. Main result

Below, we assume that for x ∈Rd and μ ∈ P(Rd),

b(x,μ) = b1(x) + (b0 ∗ μ)(x) with (b0 ∗ μ)(x) :=
∫
Rd

b0(x − y) μ(dy). (1.15)

For such setting, we shall assume that the corresponding SDEs (1.1) and (1.2) are strongly well
posed in order to establish a much more general result (i.e., Theorem 1.3). In the sequel, for 
SDEs under consideration, we shall present explicit conditions on the coefficients to guarantee 
the strong well-posedness. We further suppose that

(A1) b1(x) is continuous and locally bounded in Rd and there exist constants �0 ≥ 0 and λ > 0
such that for x, y ∈ Rd ,

〈x − y, b1(x) − b1(y)〉 ≤ |x − y|φ(|x − y|)1{|x−y|≤�0} − λ|x − y|21{|x−y|>�0}, (1.16)

where φ : [0,∞) → [0,∞) with φ(0) = 0 is increasing and continuous. Moreover, there 
exists a constant K > 0 such that for all x, y ∈ Rd ,

|b0(x) − b0(y)| ≤ K|x − y|. (1.17)
5 
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(A2) σ �= 0, and there is a constant L > 0 such that for all x, y ∈Rd ,

‖σ0(x) − σ0(y)‖2
HS ≤ L|x − y|2. (1.18)

To proceed, we make some comments on Assumptions (A1) and (A2).

Remark 1.1. In terms of (1.16), b1 is dissipative merely in the long range. Particularly, as re
vealed in Corollary 1.5 below, (1.16) allows the drift term b1 to be singular. For example, 
b1(x) = b1(x) + b̃1(x), in which ̃b1 is Dini continuous (see Assumption (H) below for details), 
and there exist constants λ′

1, λ
′
2, �

′
0 > 0 such that for any x, y ∈Rd ,

〈x − y, b1(x) − b1(y)〉 ≤ λ′
1|x − y|21{|x−y|≤�′

0} − λ′
2|x − y|21{|x−y|>�′

0}.

Concerned with the diffusion terms, the additive part is set to be non-degenerate (which plays a 
crucial role in constructing the asymptotic coupling by reflection), and the multiplicative counter
part might be degenerate. Herein, we would like to stress that the additive intensity σ considered 
in the present work is a non-zero constant in lieu of a non-degenerate matrix to write merely the 
prerequisite (1.16) and the asymptotic coupling by reflection (see (1.19) below for more details) 
in a simple way.

For classical SDEs (with the same drifts and diffusions), it is enough to construct the reflection 
coupling before the coupling time since two SDEs will merge together afterwards due to strong 
well-posedness (provided it exists). However, as far as two SDEs with different coefficients are 
concerned, the coupled processes can diverge once again even though they meet at the coupling 
time. Therefore, the classical reflection coupling approach no longer works to estimate the prob
ability distance between laws of solutions corresponding to SDEs with different coefficients.

Inspired by [31], where gradient/Hölder estimates as well as the exponential convergence were 
derived for nonlinear monotone SPDEs, we shall design an asymptotic coupling by reflection to 
achieve the qualitative estimate (1.3). To describe the asymptotic coupling by reflection, we need 
to introduce some additional notations. For ε ≥ 0, let hε : [0,∞) → [0,1] be a C1-function 
satisfying

hε(r) =
{

0, 0 ≤ r ≤ ε,

1, r ≥ 2ε,

and h∗
ε : [0,∞) → [0,1] be defined by h∗

ε(r) = √
1 − h2

ε(r), r ≥ 0. Set

Π(x) := Id×d − 2e(x) ⊗ e(x), x ∈Rd ,

where Id×d is the d × d identity matrix, e(x) := x
|x|1{x �=0}, and e(x) ⊗ e(x) means the tensor 

between e(x) and e(x). Thus, Π defined above is an orthogonal matrix. Furthermore, we shall as
sume that W 1,1 := (W

1,1
t )t≥0, · · · ,W 1,N := (W

1,N
t )t≥0 (resp. W 2,1 := (W

2,1
t )t≥0, · · · ,W 2,N :=

(W
2,N
t )t≥0) are mutually independent d-dimensional (resp. m-dimensional) Brownian motions 

carried on the same probability space as that of B1, · · · , BN . In addition, we suppose that 
(W 1,1, · · · ,W 1,N ), (W 2,1, · · · ,W 2,N ) and (B1, · · · ,BN) are mutually independent.
6 
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With the proceeding notations at hand, we can write down the asymptotic coupling by re
flection associated with (1.1) and (1.2). More precisely, we consider the following coupled 
interacting particle system: for any i ∈ SN and t > 0,

⎧⎪⎨⎪⎩
dY

i,ε
t = b(Y

i,ε
t , μ̂

i,ε
t ) dt + σhε(|Zi,N,ε

t |)dW
1,i
t + σh∗

ε(|Zi,N,ε
t |)dW

2,i
t + σ0(Y

i,ε
t ) dBi

t ,

dY
i,N,ε
t = b̃(Y

i,N,ε
θt

, μ̃
N,ε

θt
) dt + σΠ(Z

i,N,ε
t )hε(|Zi,N,ε

t |)dW
1,i
t

+σh∗
ε(|Zi,N,ε

t |)dW
2,i
t + σ0(Y

i,N,ε
t ) dBi

t

(1.19)
with the initial condition 

(
Y

i,ε
0 , Y

i,N,ε
[−r0,0]

)
i∈SN

= (
Xi

0,X
i,N
[−r0,0]

)
i∈SN

, which are i.i.d. random vari

ables. In (1.19), the quantities μ̂i,ε
t ,Z

i,N,ε
t , and μ̃N,ε

t are defined respectively by

μ̂
i,ε
t = L

Y
i,ε
t

, Z
i,N,ε
t = Y

i,ε
t − Y

i,N,ε
t and μ̃

N,ε
t = 1 

N

N∑
j=1 

δ
Y

j,N,ε
t

.

Now, we present some comments on the coupling constructed in (1.19).

Remark 1.2. Note obviously that the noise in (1.1) includes two parts, namely, the additive part 
and the multiplicative part. In terms of (1.19), for the additive part, which is also non-degenerate, 
we adopt the asymptotic coupling by reflection; Whereas, for the multiplicative part (might be 
degenerate), we employ the synchronous coupling, which, in literature, is also named as the 
coupling of marching soldiers. Moreover, we would like to emphasize that, for the construction 
of the asymptotic coupling by reflection, the drift term b can be much more general rather than 
the form in (1.15) as demonstrated in Lemma 2.1.

Furthermore, for the notational brevity, we set for any t ≥ 0,

XN
t := (

X1
t , · · · ,XN

t

)
, XN,N

t := (
X

1,N
t , · · · ,X

N,N
t

)
and

YN,ε
t := (

Y
1,ε
t , · · · , Y

N,ε
t

)
, YN,N,ε

t := (
Y

1,N,ε
t , · · · , Y

N,N,ε
t

)
.

As claimed in Lemma 2.1 below, for any ε > 0, (YN,ε
t ,YN,N,ε

t )t≥0 is a coupling of 
(XN

t ,XN,N
t )t≥0. Additionally, for any t ≥ 0, μ ∈ P(Rd), and ν ∈ P(C ) with C := 

C([−r0,0];Rd) (i.e., the set of continuous Rd -valued functions on [−r0,0]), denote μi
t and 

ν
i,N
t by the laws of Xi

t and Xi,N
t with LXi

0
= μ and L

X
i,N
[−r0,0]

= ν, separately.

With the aid of previous preliminaries, the quantitative estimate (1.3) can be portrayed pre
cisely as stated in the following theorem.

Theorem 1.3. Assume Assumptions (A1) and (A2). Then, there are constants C,K∗,L∗, λ∗ > 0
such that for any K ∈ [0,K∗], L ∈ (0,L∗], μ ∈ P2(Rd), and ν ∈ P1(C ),
7 
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W1(μ

i
t , ν

i,N
t ) ≤ C e−λ∗tW1(μ, ν0) + N− 1

2 1{K>0}

+
t∫

0 

e−λ∗(t−s)E
∣∣b(Xi,N

s , μ̃N
s ) − b̃(X

i,N
θs

, μ̃N

θs
)
∣∣ds

)
, t > 0, i ∈ SN,

(1.20)

where ν0(dx) := ν({η ∈ C } : η0 ∈ dx).

Before we proceed, let’s make some remarks on Theorem 1.3.

Remark 1.4. Error bounds. From (1.20), it is easy to see that W1(μ
i
t , ν

i,N
t ) is dominated by 

three terms, where the first term is concerned with the L1-Wasserstein distance between the 
initial (projection) distributions with the decay prefactor e−λ∗t , the second one is related to the 
decay rate with respect to the particle number, and the third part involves the error among b and 
b̃, which, in particular, embodies the dependence of the initial segment and the length of time lag 
when (1.2) is an SDE with memory; see Theorem 1.6 below for more details. At first sight, the 
right hand side of (1.20) is not elegant since the third term in the big parenthesis is not explicit. 
Nevertheless, the third term is much more tractable for applications we shall carry out.

Initial moments. When the drift term is written in the form (1.15) and the associated ini
tial distribution has a finite second-order moment, Theorem 1.3 shows that the decay speed of 
W1(μ

i
t , ν

i,N
t ) with respect to the particle number is N− 1

2 . In some scenarios, the drift terms 
can be allowed to be much more general so the initial distribution necessitates merely a finite 
lower-order moment. Whereas, for this setting, the decay rate of W1(μ

i
t , ν

i,N
t ) with respect to 

the particle number will be dependent on the dimension d and become dramatically worse when, 
in particular, (2.16) below is tackled by taking advantage of [10, Theorem 1]. Therefore, in the 
present work, we prefer the former framework rather than the latter one.

Coupling construction. It is worthy to point out that, in [28], another kind of asymptotic cou
pling by reflection (which was called an approximate reflection coupling therein) was deployed 
to investigate bounds on the discretization error for Langevin dynamics, where the potential term 
is a C1-function and is of linear growth. Compared the asymptotic coupling by reflection in [28] 
with (1.19), we find that the weak limit process of the coupled process constructed in [28] is 
a coupling process while, for any ε > 0, the coupled process (YN,ε

t ,YN,N,ε
t )t≥0 determined by 

(1.19) is a coupling process we desire. It is also worthy to emphasize that in [28] a series of work 
on tightness need to be implemented in order to examine that the associated weak limit process 
is a coupling process. Therefore, the asymptotic coupling by reflection built in (1.19) has its own 
advantages.

Noise terms. It seems to be slightly weird that the noise term in (1.1) encompasses two 
parts (i.e., the additive part and the multiplicative counterpart). Nevertheless, as long as the 
diffusive term of the non-interacting particle system under investigation is multiplicative and 
non-degenerate, we can adopt the noise-decomposition trick (see e.g. [22]) so it can be decom
posed equally in the sense of distribution into the format of (1.1). Based on point of view above, 
the framework (1.1) can make sense very well.

Lipschitz constants. In Theorem 1.3, the constants K∗ and L∗ are the respective upper bounds 
of Lipschitz constants concerning b0 and σ0. Via a close inspection of the proof for Theorem 1.3, 
the explicit forms concerning K∗ and L∗ can be tracked. As far as McKean-Vlasov SDEs are 
concerned, the Lipschitz constant K is generally small otherwise the phase phenomenon can 
8 
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occur. Furthermore, the multiplicative intensity σ0 is regarded as a perturbation of σ so the cor
responding Lipschitz constant L should also be small provided that one wants to handle through 
the asymptotic coupling by reflection the uniform-in-time estimate for SDEs with partially dissi
pative drifts.

As an immediate by-product of Theorem 1.3, we present the following statement, which is 
concerned with uniform-in-time propagation of chaos for McKean-Vlasov SDEs, where one part 
of the drifts might be singular in the spatial variables.

Corollary 1.5. Assume Assumptions (A1) and (A2). Then, there are constants C,K∗,L∗, λ∗ > 0
such that for any K ∈ (0,K∗], L ∈ [0,L∗], μ ∈ P2(Rd), ν ∈ P1(Rd), and t ≥ 0,

max 
i∈SN

W1(μ
i
t , ν

i,N
t ) ≤ C

(
e−λ∗tW1(μ, ν) + N− 1

2
)
. (1.21)

In particular, (1.21) holds true for the McKean-Vlasov SDE (1.5) with b1 = b1 + b̃1 provided that

(H) b0 satisfies (1.17); b1 is Lipschitz in Rd and satisfies (1.16) with φ(r) = λ0r for some 
λ0 > 0; ̃b1 is uniformly bounded and fulfills that

|̃b1(x) − b̃1(y)| ≤ ϕ(|x − y|), x, y ∈Rd

for some ϕ ∈ D with limr→∞ ϕ(r)/r = 0. Herein,

D :=
{
ϕ : R+ → R+

∣∣∣ϕ(0) = 0, ϕ is increasing, continuous, concave and

1 ∫
0 

ϕ(s)

s
ds < ∞

}
.

Below, we move forward to dwell on applications of Theorem 1.3, and answer the remaining 
questions proposed in the introductory subsections, one by one.

1.3. Applications

1.3.1. Uniform-in-time distribution distance between an SDE and its delay version
For convenience, we first recall SDEs (1.7) and (1.8). In this subsection, we focus on the 

following SDE:

dXt = β(α − Xt)dt + σdWt + σ0(Xt ) dBt , t > 0 (1.22)

with the initial value X0 ∈ L1(Ω → Rd ;F0,P ), where α ∈ Rd, β > 0, σ ∈ R, σ0 : Rd →
Rd ⊗ Rd , which satisfies (1.18); (Wt)t≥0 and (Bt )t≥0 are independent d-dimensional Brown
ian motions. Let (Yt )t>0 be the delay version of (Xt)t≥0, which is determined by the SDE with 
memory:

dYt = β(α − Yt−r0)dt + σdWt + σ0(Yt ) dBt , t > 0 (1.23)

with the initial value Y[−r ,0] = ξ ∈ L1(Ω → C ;F0,P ) satisfying that for some Cξ > 0,
0

9 
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E|ξt − ξs | ≤ Cξ |t − s|, t, s ∈ [−r0,0]. (1.24)

Evidently, both (1.22) and (1.23) are strongly well-posed.
The following statement shows that the distributions (LXt )t≥0 and (LYt )t≥0 associated with 

(1.22) and (1.23) respectively close to each other when the time lag r0 approaches zero, and most 
importantly, provides a quantitative characterization upon the distribution deviation.

Theorem 1.6. Assume that σ0 satisfies (1.18) and suppose further σ �= 0 and β > 0. Then, there 
exist constants C∗,L∗, λ∗ > 0 such that for all L ∈ [0,L∗] and t ≥ 0,

W1
(
LXt ,LYt

) ≤ C∗(e−λ∗tW1
(
LX0,LY0

) + (1 + r0)
(
1 +E‖ξ‖∞

)
r

1
2

0

)
. (1.25)

Remark 1.7. Since the distribution of (Yt )t≥0 is dependent on the segment ξ ∈ L1(Ω →
C ;F0,P ), it is reasonable that the error bound on the right hand side of (1.25) depends on 
E‖ξ‖∞ rather than E|ξ0|.

1.3.2. Uniform-in-time discretization error bounds for stochastic algorithms
In this subsection, we focus on the McKean-Vlasov SDE (1.9), where the drift term is of 

super-linear growth and dissipative in the long distance with respect to the spatial variables. As 
direct applications of Theorem 1.3, we shall tackle uniform-in-time discretization error bounds 
for the backward EM scheme, the tamed EM scheme, and the adaptive EM scheme, which are 
constructed in (1.10), (1.12), and (1.14), respectively.

In addition to Assumption (A1), we further need to suppose that the drift term b1 is smooth 
and locally Lipschitz, which is stated precisely as below.

(A3) Rd � x �→ b1(x) is a C1-function and there exist constants l∗ ≥ 0,K� > 0 such that

|b1(x) − b1(y)| ≤ K�
(
1 + |x|l∗ + |y|l∗)|x − y|, x, y ∈Rd . (1.26)

Under Assumption (A1) with φ(r) = λ0r for some λ0 > 0, (1.9) admits a unique strong 
solution for X0 ∈ L1(Ω → Rd;F0,P ); see, for example, [30, Theorem 2.1] for more details. 
Moreover, note that the discrete time version of (1.10) is indeed an implicit equation. Whereas, 
under (1.16) with φ(r) = λ0r and (1.17), the algorithm (1.10) is well defined as long as the step 
size δ ∈ (0,1/(2(λ0 + K))); see, for instance, [13, Lemma 3.4] for related details.

With regard to the backward EM scheme, given in (1.10), the long time error bound under the 
L1-Wasserstein distance can be presented as follows.

Theorem 1.8. Assume (A1) with φ(r) = λ0r for some λ0 > 0 and λ > 2K , and suppose further 
σ �= 0 and (A3). Then, there exist constants C∗, λ∗ > 0 such that for all i ∈ SN , t ≥ 0, and 
δ ∈ (0, δ∗],

W1
(
LXi

t
,L

X
δ,i,N
t

) ≤ C∗
{

e−λ∗tW1
(
LXi

0
,L

X
δ,i,N
0

) + 1 √
N
1{K>0}

+
(

1 +E
∣∣Xδ,i,N

0

∣∣(l∗+1)2)
δ

1
2

} (1.27)
10 



J. Bao and J. Hao Journal of Differential Equations 440 (2025) 113445 
in case of E|Xi
0|2 < ∞ and E

∣∣Xδ,i,N
0

∣∣(l∗+1)2
< ∞. In the above,

δ∗ := 1 ∧ 1 
2(λ0 + K)

∧ 3(λ − 2K) 
4(
(1 ∨ l∗)(1 + l∗)� + 1)(1 + K)
(1∨l∗)(1+l∗)�+1

.

Remark 1.9. Consider the SDE (1.9) with b(x,μ) = b(x) (so (1.9) is indeed a distribution
independent SDE). For this setting, via the Banach fixed point theorem, [8, Corollary 2.3] implies 
that the corresponding solution process (Xt)t≥0 has a unique invariant probability measure (IPM 
for short), written as π . Once the time-homogeneous Markov chain (Xδ

kδ)k≥0 (which is deter
mined by the backward EM scheme) possesses a unique IPM, denoted by π(δ), Theorem 1.8

enables us to deduce that W1(π,π(δ)) ≤ c δ
1
2 for some constant c > 0. This reveals the quantita

tive estimate between the exact IPM and its numerical version for SDEs with partially dissipative 
drifts.

Next, we apply Theorem 1.3 to the tamed EM scheme. Furthermore, we suppose that

(A′
1) there exist constants λb1, λ̂b1,Cb1 , Ĉb1 > 0 such that for any x ∈Rd ,

〈x, b1(x)〉 ≤ −λb1 |x|2 · ‖∇b1(x)‖HS + Cb1 , |b1(x)| ≤ λ̂b1 |x| · ‖∇b1(x)‖HS + Ĉb1 .

(1.28)
Moreover, for some constant α > 0, there is an Rα > 0 such that for x ∈ Rd with |x| ≥ Rα ,

‖∇b1(x)‖HS ≥ α. (1.29)

Remark 1.10. The second prerequisite in (1.28) is evidently satisfied when b1 is of polynomial 
growth. Obviously, for b1(x) = x − x�, x ∈ R, with � being an odd number � ≥ 1, the first 
technical condition in (1.28) and the one in (1.29) are valid, separately. Moreover, in Assumption 
(A′

1), the gradient of b1 is involved based on the construction of the tamed EM scheme presented 
below.

The tamed EM scheme associated with (1.9) is constructed as follows: for δ > 0,

dX
δ,i,N
t = (

bδ
1(X

δ,i,N
tδ

) + (b0 ∗ μ̃
δ,N
tδ

)(X
δ,i,N
tδ

)
)

dt + σdWi
t , i ∈ SN, t > 0, (1.30)

where for any x ∈ Rd ,

bδ
1(x) := b1(x) 

1 + δ
1
2 ‖∇b1(x)‖HS

.

Moreover, for brevity, we set for κ ≥ 0 and ρ := 4K(K + λ̂b1),

δ∗
κ := 1 ∧ α− 1

2 ∧ λ2
b1

λ̂4
b1

∧ κ2

(2α(2K + ρ(1 + 1/α) + λ̂2
b1

)2
∧ 1 

κ/4 + K + ρ
. (1.31)

Concerning the tamed EM scheme (1.30), we have the following discretization error bounds 
in an infinite-time horizon.
11 
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Theorem 1.11. Assume Assumptions (A1) with φ(r) = λ0r for some λ0 > 0 and (A′
1), and sup

pose further κ := αλb1 − 2K > 0, λ > 2K , σ �= 0, as well as (A3). Then, there exist constants 
C∗, λ∗ > 0 such that for all δ ∈ (0, δ∗

κ ], i ∈ SN , and t ≥ 0,

W1
(
LXi

t
,L

X
δ,i,N
t

) ≤ C∗
{

e−λ∗tW1
(
LXi

0
,L

X
δ,i,N
0

) + 1 √
N
1{K>0} + (

1 +E
∣∣Xδ,i,N

0

∣∣2l∗+1)
δ

1
2

}
(1.32)

as long as E|Xi
0|2 < ∞ and E

∣∣Xδ,i,N
0

∣∣2l∗+1
< ∞.

Finally, we apply Theorem 1.3 to the adaptive EM scheme (1.13) with the adaptive step size

hδ
n := δ min

{
1 

1 + |b(X
δ,1,N
tn

, μ̃
δ,N
tn

)|2 , · · · ,
1 

1 + |b(X
δ,N,N
tn

, μ̃
δ,N
tn

)|2
}
, δ ∈ (0,1). (1.33)

Since, in this paper, we are interested in the error analysis in an infinite-time horizon, the time 
grid tn+1 = tn + hδ

n should go to infinity almost surely. This can be examined in Lemma 4.3
below.

As far as the continuous-time version of (1.13), defined accordingly in (1.14), is concerned, 
the uniform discretization error bound is revealed as follows.

Theorem 1.12. Assume Assumptions (A1) with φ(r) = λ0r and λ > 2K , and suppose further 
(A3) and σ �= 0. Then, there exist constants C∗, λ∗ > 0 such that for all δ ∈ (0,1), i ∈ SN , and 
t ≥ 0,

W1
(
LXi

t
,L

X
δ,i,N
t

) ≤ C∗
{

e−λ∗tW1
(
LXi

0
,L

X
δ,i,N
0

) + 1 √
N
1{K>0} + (

1 +E
∣∣Xδ,i,N

0

∣∣l∗)δ 1
2

}
(1.34)

as long as E|Xi
0|2 < ∞ and E

∣∣Xδ,i,N
0

∣∣1∨l∗
< ∞.

Remark 1.13. Since the discretization error is investigated under the L1-Wasserstein distance, 
it is logical to require that the initial distribution for the algorithm under consideration has a 
finite moment of the first order. This indeed takes place in case of l∗ = 0 (which corresponds 
to the globally Lipschitz case for the drift involved) as demonstrated in Theorems 1.8, 1.11
and 1.12. Nevertheless, concerning stochastic algorithms associated with McKean-Vlasov SDEs 
with drifts of super-linear growth with respect to spatial variables, it is quite natural to enhance 
the moment order for initial distributions. With contrast to the tamed/adaptive EM scheme, higher 
order moments need to be imposed on the initial distributions for the backward EM scheme due 
to the fact that the tamed drift or adaptive step size can offset growth of the original drift in a 
certain sense.

Furthermore, we would like to say a few words on the noise term σ0 in (1.1). Once σ0 does 
not vanish, the non-interacting particle system and the corresponding numerical version enjoy 
different noise terms. For this setup, the asymptotic coupling by reflection will no longer work to 
investigate long time error bounds for stochastic algorithms. Based on this, in the present work, 
we focus merely on the additive noise case in lieu of the multiplicative noise setting.

The remainder part of this paper is organized as follows. Based on some preliminaries, in 
Section 2, we complete the proof of Theorem 1.3 by constructing an appropriate asymptotic 
12 
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coupling by reflection, and meanwhile finish the proof of Corollary 1.5. Section 3 is devoted 
to the proof of Theorem 1.6, where the variation-of-constants formula for semi-linear SDEs 
with memory plays a crucial role. In the final section, with the aid of uniform-in-time moment 
estimates for backward/tamed/adaptive EM schemes (where the underlying proofs are rather 
tricky), we aim to implement proofs of Theorems 1.8, 1.11 and 1.12, respectively.

2. Proofs of Theorem 1.3 and Corollary 1.5

Before the proof of Theorem 1.3, we prepare some warm-up lemmas.

Lemma 2.1. Assume that the SDEs (1.1) and (1.2) are weakly well-posed. Then, for any ε > 0, 
the path-valued processes YN,ε and YN,N,ε share the common distributions as those of XN and 
XN,N on the path spaces C([0,∞);Rd) and C([−r0,∞);Rd), respectively.

Proof. For i ∈ SN and t ≥ 0, let

W
1,i

t =
t∫

0 

Π(Zi,N,ε
s )dW 1,i

s .

With this shorthand notation, the SDE solved by (Y i,N,ε
t )i∈SN

can be reformulated as

dY
i,N,ε
t = b̃

(
Y

i,N,ε
θt

, μ̃
N,ε

θt

)
dt + σhε(|Zi,N,ε

t |)dW
1,i

t + σh∗
ε(|Zi,N,ε

t |)dW
2,i
t + σ0(Y

i,N,ε
t ) dBi

t

(2.1)
with the initial value Y i,N,ε

[−r0,0] = X
i,N
[−r0,0]. Observe that the SDE (2.1) has the same weak solu

tion as that of the SDE solved by (Y 1,N,ε
t , · · · , Y

N,N,ε
t )t≥0. Therefore, to complete the proof of 

Lemma 2.1, it is sufficient to show that the distributions of (YN,ε
t )t≥0 and (XN

t )t≥0 are identical.
Set for i ∈ SN and t ≥ 0,

W̃ i
t :=

t∫
0 

hε(|Zi,N,ε
s |) dW 1,i

s +
t∫

0 

h∗
ε(|Zi,N,ε

s |) dW 2,i
s .

Since W 1,i is independent of W 2,i , besides hε(r)
2 + h∗

ε(r)
2 = 1, r ≥ 0, Lévy’s characterization 

shows that W̃ i is still a Brownian motion. Then, the SDE solved by (Y i,ε
t )t≥0 can be rewritten as 

an SDE driven by W̃ i . More precisely, we have

dY
i,ε
t = b(Y

i,ε
t , μ̂

i,ε
t ) dt + σdW̃ i

t + σ0(Y
i,ε
t ) dBi

t , i ∈ SN, t > 0. (2.2)

In order to prove that, for any ε > 0, the distribution of (YN,ε
t )t≥0 is equal to that of (XN

t )t≥0, 
it remains to verify that, for any i �= j , W̃ i and W̃ j are mutually independent. Indeed, by applying 
Itô’s formula, it follows that for u,v ∈ Rd , i, j ∈ SN with i �= j , and t > 0,

d
(〈u, W̃ i

t 〉〈v, W̃
j
t 〉) = 〈v, W̃

j
t 〉d〈u, W̃ i

t 〉 + 〈u, W̃ i
t 〉d〈v, W̃

j
t 〉 + d[〈u, W̃ i

t 〉, 〈v, W̃
j
t 〉]˜j ˜ i ˜ i ˜j

(2.3)

= 〈v,Wt 〉d〈u,Wt 〉 + 〈u,Wt 〉d〈v,Wt 〉,

13 
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where the second identity holds true due to the quadratic variation [〈u, W̃ i
t 〉, 〈v, W̃

j
t 〉] = 0, which 

is valid since W 1,1, · · · ,W 1,N (resp. W 2,1, · · · ,W 2,N ) are independent and (W 1,1, · · · ,W 1,N )

is also independent of (W 2,1, · · · ,W 2,N ). Obviously, (2.3) manifests that (〈u, W̃ i
t 〉〈v, W̃

j
t 〉)t≥0

is a martingale. This results in that the covariance matrix E(W̃ i
t ⊗ W̃

j
t ), i �= j , is a d × d zero 

matrix. Hence, we conclude that, for any i �= j , W̃ i and W̃ j are mutually independent. Next, 
by following an analogous procedure above, we deduce that (W̃ 1, · · · , W̃N) is independent of 
(B1, · · · ,BN). Subsequently, thanks to the weak uniqueness of (1.1), we conclude that (XN

t )t≥0

and (YN,ε
t )t≥0 possess the same distribution. �

Lemma 2.2. Assume (A1) and (A2) with λ > 2K + 1
2 (1 + (p − 2)+)L for some p ≥ 2. Then, for 

any i ∈ SN , there exists a constant C∗
p > 0 (independent of i) such that

sup
t≥0 

E
∣∣Y i,ε

t

∣∣p ≤ C∗
p

(
1 +E

∣∣Y i,ε
0

∣∣p)
(2.4)

as long as E|Y i,ε
0 |p < ∞.

Proof. For any p ≥ 1, let

Vp(x) = (1 + |x|2) p
2 , x ∈ Rd .

Performing a direct calculation shows that for any x ∈Rd ,

∇Vp(x) = p(1 + |x|2) p
2 −1x and

∇2Vp(x) = p(1 + |x|2) p
2 −1Id×d + p(p − 2)(1 + |x|2) p

2 −2(x ⊗ x).

Next, by virtue of (1.16) and (1.17), it follows that for all x ∈ Rd and μ ∈ P1(Rd),

〈x, b(x,μ)〉 ≤ �0φ(�0) + λ�2
0 − (λ − K)|x|2 + |x|(|b0(0)| + |b1(0)| + Kμ(| · |)). (2.5)

Then, applying Itô’s formula to the SDE (2.2), we derive from (1.18) that

dVp(Y
i,ε
t )

=
(
p
(
1 + |Y i,ε

t |2) p
2 −1〈

Y
i,ε
t , b(Y

i,ε
t , μ̂

i,ε
t )

〉
+ 1

2
pσ 2(1 + |Y i,ε

t |2) p
2 −1(

d + (p − 2)(1 + |Y i,ε
t |2)−1|Y i,ε

t |2))dt

+ 1

2
p
(
1 + |Y i,ε

t |2) p
2 −1(‖σ0(Y

i,ε
t )‖2

HS + (p − 2)(1 + |Y i,ε
t |2)−1|σ ∗

0 (Y
i,ε
t )Y

i,ε
t |2)dt + dM

p,i

t

≤
(
p
(
1 + |Y i,ε

t |2) p
2 −1(

�0φ(�0) + λ�2
0 − (λ − K)|Y i,ε

t |2 + |Y i,ε
t |(|b0(0)| + |b1(0)| + KE|Y i,ε

t |))
+ 1

2
p
(
1 + |Y i,ε

t |2) p
2 −1(

σ 2(d + (p − 2)+)

+ ‖σ0(Y
i,ε
t )‖2

HS + (p − 2)+‖σ0(Y
i,ε
t )‖2

op

))
dt + dM

p,i

t ,
14 
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where (M
p,i

t )t≥0 is a martingale and ‖ · ‖op means the operator norm. For any κ > 0, it can 
readily be seen from (1.18) that there exists a constant Cκ > 0 such that

‖σ0(x)‖2
HS ≤ (L + κ)|x|2 + Cκ, x ∈ Rd .

Set λ� := 1
2 (λ− 2K − 1

2 (1 + (p − 2)+)L), which is positive due to λ > 2K + 1
2 (1 + (p − 2)+)L. 

Again, by applying Itô’s formula, there exists a positive constant C� = C(λ�) such that

d
(
epλ�tVp(Y

i,ε
t )

) ≤ epλ�t
(
C� − pKVp(Y

i,ε
t ) + pK

(
1 + |Y i,ε

t |2) 1
2 (p−1)

E|Y i,ε
t |)dt + epλ�tdM

p,i

t

≤ epλ�t
(
C� − KVp(Y

i,ε
t ) + KEVp(Y

i,ε
t )

)
dt + epλ�tdM

p,i

t ,

(2.6)
where we utilized Young’s inequality in the first inequality and the second inequality, as well 
as Jensen’s inequality in the second inequality. Next, integrating from 0 to t followed by taking 
expectations on both sides of (2.6) yields that

EVp(Y
i,ε
t ) ≤ e−pλ�tEVp(Y

i,ε
0 ) +

t∫
0 

e−λ�(t−s)E
( − KVp(Y i,ε

s ) + KEVp(Y i,ε
s )

)
ds

+ C�

t∫
0 

e−λ�(t−s) ds

= e−pλ�tEVp(Y
i,ε
0 ) + C�

t∫
0 

e−λ�(t−s) ds,

where the identity is valid due to the fact that E(−Vp(Y
i,ε
s ) + EVp(Y

i,ε
s )) = 0, s ∈ [0, t]. As a 

consequence (2.4) is available immediately. �
With preliminary Lemmas 2.1 and 2.2 at hand, we are in position to complete the proof of 

Theorem 1.3.

Proof of Theorem 1.3. Recall that, for all t ≥ 0, (Y i,ε
t , Y

i,N,ε
t )i∈SN

solves (1.19) with the initial 
value 

(
Y

i,ε
0 , Y

i,N,ε
[−r0,0]

)
i∈SN

= (
Xi

0,X
i,N
[−r0,0]

)
i∈SN

, which are i.i.d. random variables. For any μ ∈
P1(Rd) and ν ∈ P1(C ), in the following analysis, we choose (Xi

0,X
i,N
[−r0,0])i∈SN

such that

W1(μ, ν0) = E|Xi
0 − X

i,N
0 |, i ∈ SN, (2.7)

in which ν0(dx) := ν({η ∈ C } : η0 ∈ dx).
Note that

〈Id×d − e(x) ⊗ e(x), e(x) ⊗ e(x)
〉
HS = 0 and (e(x) ⊗ e(x))e(x) = e(x), x �= 0.

Next, we shall fix the index i ∈ SN . For any η ∈ (0,1], define the function Vη by
15 
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Vη(x) = (η + |x|2)1/2, x ∈ Rd,

which is indeed a smooth approximation of the function Rd � x �→ |x|. Applying Itô’s formula 
and utilizing the facts:

∇Vη(x) = x

Vη(x)
and ∇2Vη(x) = 1 

Vη(x)
Id×d − x ⊗ x 

Vη(x)3 ,

it follows from the (1.19) that

dVη(Z
i,N,(ε)
t ) ≤ 1 

Vη(Z
i,N,(ε)
t )

Ψ
i,N,ε
t dt + 1 

Vη(Z
i,N,(ε)
t )

(〈
Z

i,N,ε
t ,

(
σ0(Y

i,ε
t ) − σ0(Y

i,N,ε
t )

)
dBi

t

〉
+ 2σhε(|Zi,N,ε

t |)〈Zi,N,ε
t ,

(
e(Zi,N,ε

t ) ⊗ e(Zi,N,ε
t )

)
dW

1,i
t

〉)
+ 4σ 2 hε(|Zi,N,ε

t |)2

Vη(Z
i,N,(ε)
t ) 

〈
Id×d − Z

i,N,ε
t ⊗ Z

i,N,ε
t

|Vη(Z
i,N,(ε)
t )|2

, e(Zi,N,ε
t ) ⊗ e(Zi,N,ε

t )
〉
HS

dt,

(2.8)
where 〈·, ·〉HS stands for the Hilbert-Schmidt inner product, and

Ψ
i,N,ε
t := 〈

Z
i,N,ε
t , b(Y

i,ε
t , μ̂

i,ε
t ) − b̃(Y

i,N,ε
θt

, μ̃
N,ε

θt
)
〉 + 1

2
‖σ0(Y

i,ε
t ) − σ0(Y

i,N,ε
t )‖2

HS.

Note that for any x ∈ Rd ,

x

Vη(x)

η→0 −→ x

|x|1{x �=0} and 
hε(x)2

Vη(x) 

〈
Id×d − x ⊗ x 

|Vη(x)|2 , e(x) ⊗ e(x)
〉
HS ≤ η

(η + ε2)
3
2

η→0 −→ 0.

Therefore, approaching η → 0 in (2.8) leads to the estimates below:

d|Zi,N,ε
t | ≤ 1 

|Zi,N,ε
t |1{Zi,N,ε

t �=0}Ψ
i,N,ε
t dt + 2σhε(|Zi,N,ε

t |)1{Zi,N,ε
t �=0}

〈
e(Zi,N,ε

t ),dW
1,i
t

〉
+ 1 

|Zi,N,ε
t |1{Zi,N,ε

t �=0}
〈
Z

i,N,ε
t ,

(
σ0(Y

i,ε
t ) − σ0(Y

i,N,ε
t )

)
dBi

t

〉
.

(2.9)

By splitting the quantity b(Y
i,ε
t , μ̂

i,ε
t ) − b̃(Y

i,N,ε
θt

, μ̃
N,ε

θt
) into three terms followed by taking 

(1.16), (1.17) as well as (1.18) into consideration, we obtain that

Ψ
i,N,ε
t ≤ 〈Zi,N,ε

t , (b1(Y
i,ε
t ) − b1(Y

i,N,ε
t ) + ψ̃

i,N,ε
t 〉

+ 〈Zi,N,ε
t , (b0 ∗ μ

N,ε
t )(Y

i,ε
t ) − (b0 ∗ μ̃

N,ε
t )(Y

i,N,ε
t )〉 + 〈Zi,N,ε

t ,ψ
i,N,ε
t 〉 + 1

2
L|Zi,N,ε

t |2

≤ (
φ(|Zi,N,ε

t |) + λ|Zi,N,ε
t |)|Zi,N,ε

t |1{|Zi,N,ε
t |≤�0} − (λ − K − L/2)|Zi,N,ε

t |2

+ |Zi,N,ε
t |(KW1(μ

N,ε
t , μ̃

N,ε
t ) + |ψ̃ i,N,ε

t | + |ψi,N,ε
t |),

(2.10)

where μN,ε
t := 1 ∑N

j=1 δ j,ε ,

N Yt

16 
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ψ̃
i,N,ε
t := (b0 ∗ μ̂

i,ε
t )(Y

i,ε
t ) − (b0 ∗ μ

N,ε
t )(Y

i,ε
t ) and

ψ
i,N,ε
t := b(Y

i,N,ε
t , μ̃

N,ε
t ) − b̃(Y

i,N,ε
θt

, μ̃
N,ε

θt
).

Inserting (2.10) back into (2.9) yields the estimate below:

d|Zi,N,ε
t | ≤ 1{Zi,N,ε

t �=0}
(
(φ(|Zi,N,ε

t |) + λ|Zi,N,ε
t |)1{|Zi,N,ε

t |≤�0} − (λ − K − L/2)|Zi,N,ε
t |

+ KW1(μ
N,ε
t , μ̃

N,ε
t ) + |ψ̃ i,N,ε

t | + |ψi,N,ε
t |)dt

+ 2σhε(|Zi,N,ε
t |)1{Zi,N,ε

t �=0}
〈
e(Zi,N,ε

t ),dW
1,i
t

〉
+ 1 

|Zi,N,ε
t |1{Zi,N,ε

t �=0}
〈
Z

i,N,ε
t ,

(
σ0(Y

i,ε
t ) − σ0(Y

i,N,ε
t )

)
dBi

t

〉
.

(2.11)

Next, we define the C2-function

f (r) = 1 − e−c1r + c2r, r ≥ 0,

where

c1 := 2(φ(�0) + (L + 2K)�/2)

σ 2 and c2 := c1e−c1�0 .

Applying Itô’s formula, we derive from (2.11) and f ′′ < 0 that

df (|Zi,N,ε
t |) ≤

((
ϕ(|Zi,N,ε

t |) + 2σ 2f ′′(|Zi,N,ε
t |))hε(|Zi,N,ε

t |)21{Zi,N,ε
t �=0}

+ ϕ(|Zi,N,ε
t |)(1 − hε(|Zi,N,ε

t |)2)
+ f ′(|Zi,N,ε

t |)(KW1(μ
N,ε
t , μ̃

N,ε
t ) + |ψ̃ i,N,ε

t | + |ψi,N,ε
t |))dt + dM

i,ε
t

for some martingale (Mi,ε
t )t≥0, where the function ϕ : [0,∞) →R is defined by

ϕ(r) = f ′(r)
(
(φ(r) + λr)1{r≤�0} − (λ − K − L/2)r

)
.

Below, for the case 0 ≤ r ≤ �0 and the case r > �0, we aim to verify respectively that

ϕ∗(r) := ϕ(r) + 2σ 2f ′′(r) ≤ −λ∗f (r), r ≥ 0, (2.12)

where for λ > K + L/2,

λ∗ := ((2φ(�0) + L�0) ∧ (λ − K − L/2))c2

1 − e−c1�0 + c2�0
.

By virtue of

f ′(r) = c1e−c1r + c2 and f ′′(r) = −c2
1e−c1r , r ≥ 0,
17 



J. Bao and J. Hao Journal of Differential Equations 440 (2025) 113445 
it is easy to ready that for any r ≥ 0,

ϕ∗(r) = (c1e−c1r + c2)
(
(φ(r) + λr)1{r≤�0} − (λ − K − L/2)r

) − 2σ 2c2
1e−c1r .

For the case 0 ≤ r ≤ �0, in view of c2 = c1e−c1�0 ≤ c1e−c1r and the increasing property of φ, we 
find that

ϕ∗(r) ≤ −(
2σ 2c2

1 − 2c1(φ(�0) + (L + 2K)�0/2)
)
e−c1r

≤ −σ 2c2
1e−c1�0

≤ − c1c2σ
2

1 − e−c1�0 + c2�0
f (r),

(2.13)

where the second inequality is verifiable owing to σ 2c2
1 = 2c1(φ(�0) + L�0/2), and the last 

display is valid due to the fact that r �→ f (r) is increasing on [0,∞). On the other hand, once 
λ > K + L/2, we derive that for r > �0,

ϕ∗(r) ≤ −c2(λ − K − L/2)r ≤ − c2(λ − K − L/2) 
1 − e−c1�0 + c2�0

f (r), (2.14)

where the second inequality is provable since, for α > 0, r �→ r
1−e−αr+r

is increasing on the 
interval [0,∞) by taking the fundamental inequality: 1 − e−r ≥ re−r , r ≥ 0, into consideration. 
Consequently, (2.12) follows by combining (2.13) with (2.14).

In the sequel, invoking (2.12) and taking c2 ≤ f ′(r) ≤ c1 + c2, r ≥ 0, and f (0) = 0 into 
account leads to

df (|Zi,N,ε
t |) ≤

(
− λ∗f (|Zi,N,ε

t |)hε(|Zi,N,ε
t |)2 + ϕ(|Zi,N,ε

t |)(1 − hε(|Zi,N,ε
t |)2)

+ (c1 + c2)
(
KW1(μ

N,ε
t , μ̃

N,ε
t ) + |ψ̃ i,N,ε

t | + |ψi,N,ε
t |))dt + dM

i,ε
t

≤ dM
i,ε
t +

(
− λ∗f (|Zi,N,ε

t |) + (
λ∗f (|Zi,N,ε

t |) + ϕ(|Zi,N,ε
t |))(1 − hε(|Zi,N,ε

t |)2)
+ (c1 + c2)

(
|ψ̃ i,N,ε

t | + |ψi,N,ε
t | + K

c2N

N∑
j=1 

f (|Zj,N,ε
t |)

))
dt.

(2.15)

Because (W̃ i)i∈SN
are independent, as demonstrated in the proof of Lemma 2.1, and (2.2) is 

strongly well-posed, (Y i,ε)i∈SN
are also independent. As a consequence, by following the line to 

drive [7, (22), p. 5396], we deduce from Lemma 2.2 with p = 2 (in case of λ > 2K + L/2) that 
for some constant C1 > 0,

E|ψ̃ i,N,ε
t | ≤ C1N

− 1
2 1{K>0}, t ≥ 0. (2.16)

Substituting this estimate into (2.15) yields for some constant C2 > 0,
18 
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1 
N

N∑
j=1 

dEf (|Zj,N,ε
t |) ≤

(
− λ∗∗

N

N∑
j=1 

Ef (|Zj,N,ε
t |) + C2EΛ

N,ε
t

)
dt,

where λ∗∗ := λ∗ − K(1 + c1/c2), and

Λ
N,ε
t := N− 1

2 + 1 
N

N∑
j=1 

(
λ∗f (|Zj,N,ε

t |) + ϕ(|Zj,N,ε
t |))(1 − hε(|Zj,N,ε

t |)2) + 1 
N

N∑
j=1 

|ψi,N,ε
t |.

Obviously, there is a positive constant K∗ such that λ∗∗ > 0 for any K ∈ [0,K∗]. In what 
follows, we shall take K ∈ [0,K∗] so that λ∗∗ > 0. Whereafter, an application of Gronwall’s 
inequality yields that

1 
N

N∑
j=1 

Ef (|Zj,N,ε
t |) ≤ e−λ∗∗tEf (|Z1,N,ε

0 |) + C2

t∫
0 

e−λ∗∗(t−s)EΛN,ε
s ds,

where we also explored the prerequisite that (Xi,ε
0 ,X

i,N,ε
[−r0,0])i∈SN

= (Y i
0, Y

i,N
[−r0,0])i∈SN

are dis
tributed identically. Once more, with the help of c2r ≤ f (r) ≤ (c1 + c2)r, r ≥ 0, along with 
(2.7), there is a constant C3 > 0 such that

1 
N

N∑
j=1 

E|Zj,N,ε
t | ≤ C3

(
e−λ∗∗tW1(μ, ν0) +

t∫
0 

e−λ∗∗(t−s)EΛN,ε
s ds

)
. (2.17)

Next, according to the definition of hε, in addition to f (0) = 0 and c2 ≤ f ′(r) ≤ c1 + c2 for 
r ≥ 0, it follows readily that

(
λ∗f (r) + ϕ(r)

)(
1 − hε(r)

2) ≤ 2(c1 + c2)
(
(λ∗ + K + L/2)r + φ(r)

)
(1 − hε(r)

)
≤ 2(c1 + c2)

(
2(λ∗ + K + L/2)ε + φ(2ε)

) := ρ(ε).

Whence, we infer that for some constant C4 > 0,

1 
N

N∑
j=1 

E|Zj,N,ε
t | ≤ C4

(
e−λ∗∗tW1(μ, ν0) + ρ(ε) + N− 1

2 1{K>0}

+ 1 
N

N∑
j=1 

t∫
0 

e−λ∗∗(t−s)E|ψj,N,ε
s | ds

)
.

(2.18)

By the aid of Lemma 2.1, μi
t = L

Y
j,ε
t

and νi,N
t = L

Y
j,N,ε
t

for each fixed i ∈ SN and any 

j ∈ SN . Moreover, recall that (Y i,ε
0 , Y

i,N,ε
[−r0,0])i∈SN

= (Xi
0,X

i,N
[−r0,0])i∈SN

are independent and 
identically distributed. Therefore, we derive that
19 
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W1(μ
i
t , ν

i,N
t ) ≤ 1 

N

N∑
j=1 

E|Zj,N,ε
t |, ∀ i ∈ SN.

Thus, (2.18) enables us to derive that

W1(μ
i
t , ν

i,N
t )

≤ C4

(
e−λ∗∗tW1(μ, ν0) + ρ(ε) + N− 1

2 1{K>0} + 1 
N

N∑
j=1 

t∫
0 

e−λ∗∗(t−s)E|ψj,N,ε
s | ds

)
.

Subsequently, making use of Lemma 2.1 followed by approaching ε ↓ 0, and applying the pre
requisite that (Xi,N

[−r0,0])i∈SN
are independent and identically distributed yields that

W1(μ
i
t , ν

i,N
t ) ≤ C4

(
e−λ∗∗tW1(μ, ν0) + N− 1

2 1{K>0} +
t∫

0 

e−λ∗∗(t−s)E
∣∣ψi,N

s

∣∣ds

)
,

in which

ψi,N
s = b(Xi,N

s , μ̃N
s ) − b̃(X

i,N
θs

, μ̃N

θs
).

Finally, the whole proof is complete by choosing K∗,L∗ > 0 such that λ∗, λ∗∗ > 0 and λ >

2K + L/2 for all K ∈ [0,K∗] and L ∈ [0,L∗]. �
Proof of Corollary 1.5. In terms of Theorem 1.3, (1.21) follows immediately by taking r0 = 0, 
b̃ = b, and θt = θ t = t . To show (1.21) for the McKean-Vlasov SDE (1.5) provided that Assump
tion (H) is imposed, it is sufficient to prove the strong well-posedness and check respectively 
Assumptions (A1) and (A2).

Under Assumption (H), (1.5) is strongly well-posed once X0 ∈ L1(Ω →Rd ;F0,P ); see, for 
instance, [25, Theorem 4.1]. Trivially, Assumption (A2) holds true. Next, by virtue of (1.16) with 
φ(r) = λ0r and b1 being replaced by b1, it follows readily that for x, y ∈Rd and μ ∈ P1(Rd),

〈x − y, b1(x) − b1(y)〉 = 〈x − y, b1(x) − b1(y)〉 + 〈x − y, b̃1(x) − b̃1(y)〉
≤ |x − y|ϕ(|x − y|) + (

(λ0 + λ)1{|x−y|≤�0} − λ
)|x − y|2.

Owing to limr→∞ ϕ(r)
r

= 0, there is an r0 > �0 such that ϕ(r) ≤ 1
2λr, r ≥ r0. Thus, we derive that

〈x − y, b1(x) − b1(y)〉 ≤ |x − y|(ϕ(|x − y|) + λ0|x − y|)1{|x−y|≤r0} − 1

2
λ|x − y|21{|x−y|>r0}.

Therefore, (1.16) is verifiable for φ(r) = ϕ(r) + λ0r , which obviously is increasing and satisfies 
φ(0) = 0. This, together with Lipschitz property of b0, ensures Assumption (A1). �
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3. Proof of Theorem 1.6

First of all, we demonstrate that the moment of the displacement for (Yt)t≥0, determined by 
(1.23), can be bounded by the length of time lag.

Lemma 3.1. Assume (1.18) and β > 0. Then, there exist constants C∗,L∗ > 0 such that for all 
L ∈ [0,L∗] and t ≥ 0,

E
∣∣Yt − Yt−r0

∣∣ ≤ C∗(1 + r0)
(
1 +E‖ξ‖∞

)
r

1
2

0 . (3.1)

Proof. To achieve (3.1), we first show that there are constants C∗
0 ,L∗ > 0 such that for all L ∈

[0,L∗] and t ≥ 0,

E
(|Yt |2

∣∣F0
) ≤ C∗

0

(
1 + (1 + r0)‖ξ‖2∞

)
. (3.2)

According to the variation-of-constants formula (see e.g. [23, Theorem 3.1]), we have for all 
t ≥ 0,

Yt = Γtξ0 − β

0 ∫
−r0

Γt−r0−sξs ds + β

t∫
0 

Γt−sα ds +
t∫

0 

Γt−sσdWs +
t∫

0 

Γt−sσ0(Ys)dBs, (3.3)

where (Γt )t≥0 solves the linear ODE with memory

dΓt = −βΓt−r0 dt, t > 0

with the initial condition Γ0 = Id×d and Γr = 0d×d, r ∈ [−r0,0). By Hölder’s inequality and 
Itô’s isometry, it follows that for any ε > 0 and t ≥ 0,

E
(|Yt |2

∣∣F0
) ≤ (1 + ε)

t∫
0 

‖Γt−s‖2
opE

(‖σ0(Ys)‖2
HS

∣∣F0
)
ds

+ 8(1 + 1/ε)

(
‖Γt‖2

op|ξ0|2 + β2r0

0 ∫
−r0

‖Γt−r0−s‖2
op|ξs |2 ds

+ β2|α|2
( t∫

0 

‖Γs‖op ds
)2 + ‖σ‖2

HS

t∫
0 

‖Γs‖2
opds

)
.

Let

λ� = sup
{
Re(λ) : λ ∈C, λ + βe−λr0 = 0

}
.

It is easy to see that λ� < 0 thanks to β > 0. By invoking [2, Proposition A.1], for λ0 ∈ (0,−λ�), 
there exists a constant Cλ > 0 such that
0
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‖Γt‖op ≤ Cλ0 e−λ0t , t ≥ 0. (3.4)

This, together with (1.18), enables us to deduce that there exists a constant C�
ε > 0 such that

E
(|Yt |2

∣∣F0
) ≤ (1 + ε)2C2

λ0
L

t∫
0 

e−2λ0(t−s)E
(|Ys |2

∣∣F0
)
ds + C�

ε

(
1 + (1 + r0)‖ξ‖2∞

)
.

Subsequently, the Gronwall inequality yields that

E
(|Yt |2

∣∣F0
) ≤ C�

ε

(
1 + (1 + r0)‖ξ‖2∞

)(
1 + (1 + ε)2C2

λ0
L

t∫
0 

e
−(2λ0−(1+ε)2c2

λ0
L)(t−s)

ds

)
.

Since there exists an L∗ > 0 such that 2λ0 − C2
λ0

L > 0 so 2λ0 − (1 + ε)2C2
λ0

L > 0 for all 
L ∈ [0,L∗], the assertion (3.2) follows directly.

By invoking Hölder’s inequality and Itô’s isometry, we infer that for any t ≥ 0,

E
(|Yt − Yt−r0 |

∣∣F0
) ≤ E

(|Yt − Y(t−r0)
+|∣∣F0

) + |ξt−r0 − ξ0|1[0,r0](t)

≤ |ξt−r0 − ξ0|1[0,r0](t) + |α|βr0 + β

t∫
(t−r0)

+
E

(|Ys−r0 |
∣∣F0

)
ds

+ |σ |E(|Wt − W(t−r0)
+|∣∣F0

) +E
(∣∣∣ t∫

(t−r0)
+

σ0(Ys) dBs

∣∣∣∣∣∣F0

)

≤ |ξt−r0 − ξ0|1[0,r0](t) + |α|βr0 + |σ |(dr0)
1
2

+ β

t∫
(t−r0)

+
E

(|Ys−r0 |
∣∣F0

)
ds +

( t∫
(t−r0)

+
E

(‖σ0(Ys)‖2
HS

∣∣F0
)

ds

) 1
2

.

Thus, by taking the Lipschitz property of σ0, along with (1.24) and (3.2), into account, we find 
from Hölder’s inequality that for some constant c� > 0 and any t ≥ 0,

E
(|Yt − Yt−r0 |

∣∣F0
) ≤ |ξt−r0 − ξ0|1[0,r0](t) + c�(1 + r0)(1 + ‖ξ‖∞)r

1
2

0 .

Consequently, (3.1) is available by taking advantage of (1.24). �
By invoking Lemma 3.1, it is ready to carry out the

Proof of Theorem 1.6. To apply Theorem 1.3, we set N = 1, W 1
t = Wt , B1

t = Bt , and b̃(x) =
b(x) = β(α −x), x ∈ Rd , and take θt = t − r0 to fit in the framework (1.1) and (1.2). In this case, 
b(Yt ) − b̃(Yθt ) = β(Yt − Yt−r0). Whereafter, by leveraging Theorem 1.3, there exist constants 
C∗, λ∗ > 0 such that
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W1
(
LXt ,LYt

) ≤ C∗
(

e−λ∗tW1
(
LX0,LY0

) +
t∫

0 

e−λ∗(t−s)E
∣∣Ys − Ys−r0

∣∣ds

)
.

Whence, (1.25) is attainable by making use of (3.1) so the proof of Theorem 1.6 is complete. �
4. Proofs of Theorems 1.8, 1.11 and 1.12

In this section, we aim to complete proofs of Theorems 1.8, 1.11 and 1.12, respectively.

4.1. Proof of Theorem 1.8

To finish the proof of Theorem 1.8, we first show that, for any p ≥ 1, the p-th moment of 
(X

δ,1,N
nδ , · · · ,X

δ,N,N
nδ )n≥1, solving (1.10), is uniformly bounded.

Lemma 4.1. Assume (A1) with φ(r) = λ0r for some λ0 > 0 and λ > 2K . Then, for any p ≥ 1
and δ ∈ (0, δp] with

δp := 1 ∧ 1 
2(λ0 + K)

∧ 3(λ − 2K) 
4p(1 + K)
p/2�+1 , (4.1)

there exists a constant C�
p > 0 such that for all n ≥ 0 and i ∈ SN ,

E
∣∣Xδ,i,N

nδ

∣∣p ≤ e−λ∗nδE
∣∣Xδ,i,N

0

∣∣p + C∗
p (4.2)

in case of E
∣∣Xδ,i,N

0

∣∣p < ∞, where

λ∗ := 3(λ − 2K) 
2(4 + 3λ − 4K)

.

Proof. In the sequel, we would like to emphasize that all underlying constants are entirely unre
lated to the step size, and let FN

0 be the σ -algebra generated by X1,N
0 , · · · ,X

N,N
0 . For any even 

integer p ≥ 2 and δ ∈ (0, δp], provided that there exists a constant C∗
p > 0 such that

E
(|Xδ,i,N

nδ |p∣∣FN
0

) ≤ e−λ∗nδ|Xδ,i,N
0 |p + C∗

p, i ∈ SN, n ≥ 1, (4.3)

then, from Hölder’s inequality and the inequality: (a + b)θ ≤ aθ + bθ for a, b > 0 and θ ∈ (0,1], 
we obtain that for any p ∈ [1,2],

E
(|Xδ,i,N

nδ |p∣∣FN
0

) ≤
(
E

(|Xδ,i,N
nδ |2∣∣FN

0

)) p
2 ≤ e− p

2 λ∗nδ|Xδ,i,N
0 |p + (

C∗
2

) p
2 ,

and that for p > 2 which is not an even number,

E
(∣∣Xδ,i,N

nδ

∣∣p∣∣FN
0

) ≤
(
E

(∣∣Xδ,i,N
nδ

∣∣2�p/2�)∣∣FN
0

)) p
2�p/2�

≤ e− p
2�p/2� λ∗nδ|Xδ,i,N

0 |p + (
C∗

2�p/2�
) p

2�p/2� ,
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where �·� means the ceiling function. Hence, (4.3) is still valid for the other setting, where the 
constants λp and C∗

p might be different accordingly. Thus, (4.2) follows from (4.3) and the 
property of conditional expectation.

Let �Wi
nδ = Wi

(n+1)δ −Wi
nδ . Based on the preceding analysis, it remains to demonstrate (4.3). 

It is easy to see (1.10) that

∣∣Xδ,i,N
(n+1)δ

∣∣2 = ∣∣Xδ,i,N
nδ

∣∣2 − ∣∣Xδ,i,N
(n+1)δ − X

δ,i,N
nδ

∣∣2 + 2
〈
X

δ,i,N
(n+1)δ − X

δ,i,N
nδ ,X

δ,i,N
(n+1)δ

〉
= ∣∣Xδ,i,N

nδ

∣∣2 − ∣∣Xδ,i,N
(n+1)δ

− X
δ,i,N
nδ

∣∣2 + 2δ
〈
b(X

δ,i,N
(n+1)δ

, μ̃
δ,N
nδ ),X

δ,i,N
(n+1)δ

〉
+ 2σ

〈�Wi
nδ,X

δ,i,N
(n+1)δ − X

δ,i,N
nδ

〉 + 2σ
〈�Wi

nδ,X
δ,i,N
nδ

〉
≤ ∣∣Xδ,i,N

nδ

∣∣2 + 2δ
〈
b(X

δ,i,N
(n+1)δ, μ̃

δ,N
nδ ),X

δ,i,N
(n+1)δ

〉 + σ 2
∣∣�Wi

nδ

∣∣2 + 2σ
〈�Wi

nδ,X
δ,i,N
nδ

〉
,

(4.4)

where in the second identity we exploited the fact that

X
δ,i,N
(n+1)δ − X

δ,i,N
nδ = δb(X

δ,i,N
(n+1)δ, μ̃

δ,N
nδ ) + σ�Wi

nδ,

and the last display is valid by making use of the fundamental inequality: 2ab ≤ a2 + b2 for any 
a, b ∈ R. Next, by means of (2.5), it follows that

〈x, b(x,μ)〉 ≤ C0 − 1

4
(3λ − 4K)|x|2 + 1

2
Kμ(| · |2), x ∈Rd ,μ ∈ P1(R

d), (4.5)

for some constant C0 > 0. Hence, we deduce from (4.4) and Jensen’s inequality that

∣∣Xδ,i,N
(n+1)δ

∣∣2 ≤ ∣∣Xδ,i,N
nδ

∣∣2 + 2δ
(
C0 − 1

4
(3λ − 4K)|Xδ,i,N

(n+1)δ|2 + 1

2
Kμ̃

δ,N
nδ (| · |2)

)
+ σ 2

∣∣�Wi
nδ

∣∣2 + 2σ
〈�Wi

nδ,X
δ,i,N
nδ

〉
.

This obviously implies that

(1 + λKδ)
∣∣Xδ,i,N

(n+1)δ

∣∣2 ≤ ∣∣Xδ,i,N
nδ

∣∣2 + Kδμ̃
δ,N
nδ (| · |2) + 2C0δ + σ 2

∣∣�Wnδ

∣∣2 + 2σ
〈�Wnδ,X

δ,i,N
nδ

〉
,

(4.6)
in which λK := (3λ − 4K)/2.

According to (4.6), the binomial theorem gives that for any integer p ≥ 1,

(1 + λKδ)p
∣∣Xδ,i,N

(n+1)δ

∣∣2p = (∣∣Xδ,i,N
nδ

∣∣2 + Kδμ̃
δ,N
nδ (| · |2))p + p

(∣∣Xδ,i,N
nδ

∣∣2 + Kδμ̃
δ,N
nδ (| · |2))p−1

Ui
nδ

+ 1{p≥2}
p−2∑
k=0 

Ck
p

(∣∣Xδ,i,N
nδ

∣∣2 + Kδμ̃
δ,N
nδ (| · |2))k

(Ui
nδ)

p−k

=: Γi
nδ(X

δ,N
nδ ) + Γ̂i

nδ(X
δ,N
nδ ) + Γ

i

nδ(X
δ,N
nδ ),

where
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Ui
nδ := 2C0δ + σ 2

∣∣�Wi
nδ

∣∣2 + 2σ
〈�Wi

nδ,X
δ,i,N
nδ

〉
and Xδ,N

nδ := (
X

δ,1,N
nδ , · · · ,X

δ,N,N
nδ

)
.

(4.7)

Below, we attempt to estimate the terms Γi
nδ , ̂Γi

nδ , as well as Γ
i

nδ , one by one. First of all, applying 
the binomial theorem and invoking Jensen’s inequality and Young’s inequality yields that

Γi
nδ(X

δ,N
nδ ) =

p∑
k=0 

Ck
p

∣∣Xδ,i,N
nδ

∣∣2k(
Kδμ̃

δ,N
nδ (| · |2))p−k

≤
p∑

k=0 
Ck

p(Kδ)p−k

(
k

p

∣∣Xδ,i,N
nδ

∣∣2p + p − k

p
μ̃

δ,N
nδ (| · |2p)

)
.

So, by utilizing the fact that Xδ,i,N
nδ and Xδ,j,N

nδ are identically distributed given FN
0 , we conclude

E
(
Γi

nδ(X
δ,N
nδ )

∣∣FN
0

) ≤ (1 + Kδ)pE
(|Xδ,i,N

nδ |2p
∣∣FN

0

)
.

Next, notice that

E
(
Γ̂i

nδ(X
δ,N
nδ )

∣∣FN
0

) = pE
((|Xδ,i,N

nδ |2 + Kδμ̃
δ,N
nδ (| · |2))p−1(2C0δ + σ 2

∣∣�Wi
nδ

∣∣2)∣∣FN
0

)
.

Whence, it is apparent that there exists a constant Cp > 0 such that

E
(
Γ̂i

nδ(X
δ,N
nδ )

∣∣FN
0

) ≤ 1

8
(λ − 2K)pδ E

(|Xδ,i,N
nδ |2p

∣∣FN
0

) + Cpδ.

Once again, via Young’s inequality and by utilizing the fact that Xδ,i,N
nδ and Xδ,j,N

nδ are identically 
distributed given FN

0 , we infer that for some constant C�
p > 0,

E
(
Γ

i

nδ(X
δ,N
nδ )

∣∣FN
0

) ≤ 1

4
(λ − 2K)pδ E

(|Xδ,i,N
nδ |2p

∣∣FN
0

) + C�
pδ,

where the underlying moment of the polynomial with respect to |�Wi
nδ| provides at least the 

order δ. Now, summing up the previous estimates on Γi
nδ , Γ̂i

nδ , and Γ
i

nδ , in addition to (1 +
λKδ)p ≥ 1 + pλKδ, enables us to derive that

(1 + pλKδ)E
(|Xδ,i,N

(n+1)δ|2p
∣∣FN

0

) ≤ (
(1 + Kδ)p + 3(λ − 2K)pδ/8

)
E

(|Xδ,i,N
nδ |2p

∣∣FN
0

) + Cpδ.

The mean value theorem, beside the definition of δp given in (4.1), shows that for any δ ∈ (0, δp),

(1 + Kδ)p ≤ 1 + pKδ + 1

2
(1 + K)p−2p(p − 1)K2δ2

≤ 1 + pKδ + 3

8
(λ − 2K)pδ.

As a consequence, for
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λ�
δ := 1 

1 + pλKδ

(
1 + pKδ + 3

4
(λ − 2K)pδ

)
∈ (0,1)

based on the prerequisite λ > 2K , via an inductive argument, we arrive at

E
(|Xδ,i,N

(n+1)δ|2p
∣∣FN

0

) ≤ (
λ�

δ

)n|Xδ,i,N
0 |2p + C�

p

1 − λ�
δ

.

Subsequently, by invoking the inequality: ar ≤ e−(1−a)r for a, r > 0, we derive from δ ∈ (0,1)

that

E
(|Xδ,i,N

(n+1)δ|2p
∣∣FN

0

) ≤ e−λ∗
pnδ|Xδ,i,N

0 |2p + C�
p

λ∗
p

,

where λ∗
p := 3p(λ−2K) 

2(2+p(3λ−4K))
. Consequently, the assertion (4.3) is available by noting that p �→ λ∗

p

is increasing. �
With the help of Lemma 4.1, the proof of Theorem 1.8 can be implemented.

Proof of Theorem 1.8. Below, for nonnegative numbers a, b, we use the shorthand notation a ≲
b if there exists a constant c > 0 such that a ≤ cb. Combining (1.17) with (A3) and δ ∈ (0,1), 
we derive from (1.10) that for any t ≥ 0,

E
(|Xδ,i,N

t |2l∗ ∣∣FN
0

)
≲ 1 +E

(|Xδ,i,N
tδ

|2l∗ ∣∣FN
0

) +E
(∣∣b(X

δ,i,N
tδ+δ , μ̃

δ,N
tδ

)
∣∣2l∗ ∣∣FN

0

)
≲ 1 +E

(|Xδ,i,N
tδ

|2l∗ ∣∣FN
0

) +E
(|Xδ,i,N

tδ+δ |2l∗(l∗+1)
∣∣FN

0

)
+ 1 

N

N∑
j=1 

E
(|Xδ,j,N

tδ
|2l∗ ∣∣FN

0

)
≲ 1 +E

(|Xδ,i,N
tδ

|2l∗ ∣∣FN
0

) +E
(|Xδ,i,N

tδ+δ |2l∗(l∗+1)
∣∣FN

0

)
≲ 1 + |Xδ,i,N

0 |2l∗(l∗+1),

(4.8)

where in the penultimate inequality we used the fact that (Xδ,j,N
t )j∈SN

are identically distributed 
given FN

0 , and in the last display we applied Lemma 4.1. Again, by taking (1.17) and (A3) into 
consideration, along with δ ∈ (0,1), it follows from Lemma 4.1 that

E
(|Xδ,i,N

t − X
δ,i,N
tδ

|2∣∣FN
0

)
≲

(
1 +E

(|Xδ,i,N
tδ+δ |2(l∗+1)

∣∣FN
0

) +E
(|Xδ,i,N

tδ
|2∣∣FN

0

))
δ

≲
(
1 + |Xδ,i,N

0 |2(l∗+1)
)
δ

and subsequently from (4.8) and Hölder’s inequality that

E
(|b(X

δ,i,N
t , μ̃

δ,N
t ) − b(X

δ,i,N
tδ+δ , μ̃

δ,N
tδ

)|∣∣FN
0

)
≲

(
1 + (

E
(|Xδ,i,N

t |2l∗ ∣∣FN
0

)) 1
2 + (

E
(|Xδ,i,N

t +δ |2l∗ ∣∣FN
0

)) 1
2
)

δ
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× sup 
s−t≤2δ

(
E

(|Xδ,i,N
t − Xδ,i,N

s |2∣∣FN
0

)) 1
2 (4.9)

+ 1 
N

N∑
j=1 

E
(|Xδ,j,N

t − X
δ,j,N
tδ

|∣∣FN
0

)
≲

(
1 + ∣∣Xδ,i,N

0

∣∣(l∗+1)2)
δ

1
2 .

Next, applying Theorem 1.3 with r0 = 0, θt = tδ + δ, θ t = tδ , and b̃ = b yields that for some 
constant λ∗ > 0,

W1
(
LXi

t
,L

X
δ,i,N
t

)
≲ e−λ∗tW1

(
LXi

0
,L

X
δ,i,N
0

) + N− 1
2

+
t∫

0 

e−λ∗(t−s)E
∣∣b(Xδ,i,N

s , μ̃δ,N
s ) − b(X

δ,i,N
sδ+δ , μ̃δ,N

sδ
)
∣∣ds.

Whence, the desired assertion (1.27) follows from (4.9). �
4.2. Proof of Theorem 1.11

By following the line to handle the proof of Theorem 1.8, it is necessary to verify that 
(X

δ,1,N
nδ , · · · ,X

δ,N,N
nδ )n≥1, determined by (1.30), is uniformly bounded in the moment sense.

Lemma 4.2. Assume Assumptions (A1) with φ(r) = λ0r for some λ0 > 0 and (A′
1), and suppose 

further κ := αλb1 − 2K > 0 and λ > 2K . Then, for any p ≥ 1 and δ ∈ (0, δ∗
κ ] with δ∗

κ being 
defined in (1.31), there is a constant C�

p > 0 such that

E
∣∣Xδ,i,N

nδ

∣∣p ≤ C�
p

(
1 +E

∣∣Xδ,i,N
0

∣∣p)
, n ≥ 1. (4.10)

Proof. By tracing the proof of Lemma 4.1, it suffices to verify that, for any integer p ≥ 3 and 
δ ∈ (0, δ∗

κ ], there exists a constant C��
p > 0 such that

E
(|Xδ,i,N

(n+1)δ|2p
∣∣FN

0

) ≤ (1 − δ/16)E
(|Xδ,i,N

nδ |2p
∣∣FN

0

) + C��
p δ (4.11)

in order to achieve (4.10).
From (1.30), it can be seen readily that∣∣Xδ,i,N

(n+1)δ

∣∣2 = ∣∣Xδ,i,N
nδ

∣∣2 + (
2〈Xδ,i,N

nδ , bδ
1(X

δ,i,N
nδ ) + (

b0 ∗ μ̃
δ,N
nδ

)
(X

δ,i,N
nδ )〉 + δ

∣∣bδ
1(X

δ,i,N
nδ )

∣∣2)
δ

+ 〈(
b0 ∗ μ̃

δ,N
nδ

)
(X

δ,i,N
nδ ) + 2bδ

1(X
δ,i,N
nδ ),

(
b0 ∗ μ̃

δ,N
nδ

)
(X

δ,i,N
nδ )

〉)
δ2

+ (
σ 2

∣∣�Wi
nδ

∣∣2 + 2σ
〈
X

δ,i,N
nδ + bδ

1(X
δ,i,N
nδ )δ + (

b0 ∗ μ̃
δ,N
nδ

)
(X

δ,i,N
nδ )δ,�Wi

nδ

〉)
=: ∣∣Xδ,i,N

nδ

∣∣2 + Λi,δ(Xδ,N
nδ )δ + Λ̂i,δ(Xδ,N

nδ )δ2 + Λ
i,δ

(Xδ,N
nδ ),

where Xδ,N was defined as in (4.7).
nδ
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For any x := (x1, · · · , xN) ∈ (Rd)N , let μN
x = 1 

N

∑N
j=1 δxj

. By invoking (1.17) and (1.28), 
we derive that for any δ ∈ (0, δ∗

κ ],

Λi,δ(x) ≤ 1 

1 + δ
1
2 ‖∇b1(xi)‖HS

(
2〈xi, b1(xi)〉 + δ|b1(xi)|2

1 + δ
1
2 ‖∇b1(xi)‖HS

)
+ 2|xi | μN

x (|b0(xi − ·)|)

≤ − 2‖∇b1(xi)‖HS

1 + δ
1
2 ‖∇b1(xi)‖HS

(
λb1 − λ̂2

b1
δ

1
2
)|xi |2 + 2

(
Cb1 + Ĉ2

b1

)
+ K

(
3|xi |2 + μN

x (| · |2)) + 2|xi | · |b0(0)|

and that there exists a constant C∗
0 > 0 such that

Λ̂i,δ(x) = ∣∣μN
x (b0(xi − ·))∣∣2 + 2〈b1(xi),μ

N
x (b0(xi − ·))〉

1 + δ
1
2 ‖∇b1(xi)‖HS

≤ 4K2(|xi |2 + μN
x (| · |2)) + 2|b0(0)|2

+ 2
(̂
λb1δ

− 1
2 |xi | + Ĉb1

)(
K|xi | + KμN

x (| · |) + |b0(0)|)
≤ 4K

(
K + λ̂b1δ

− 1
2 )(|xi |2 + μN

x (| · |2)) + C∗
0 (1 + δ− 1

2
).

Thus, combining (1.29) with δ ∈ (0,1), in addition to the local boundedness of ∇b1, yields that 
for some constant C∗

1 > 0,

Λi,δ(x)δ + Λ̂i,δ(x)δ2 ≤
(

− 2α 

1 + δ
1
2 α

(
λb1 − 1 

2α

(
3K + ρδ

1
2
)
(1 + δ

1
2 α) − λ̂2

b1
δ

1
2 − κ

4α

)
|xi |2

+ (K + ρδ
1
2 )μN

x (| · |2)
)

δ + C∗
1δ

≤
(

− 2α 

1 + δ
1
2 α

(3κ 
4α

− (
2K + ρ(1 + 1/α) + λ̂2

b1

)
δ

1
2

)
|xi |2

+ (K + ρδ
1
2 )

(
μN

x (| · |2) − |xi |2
))

δ + C∗
1δ,

where ρ := 4K(K + λ̂b1). In terms of the definition of δ∗
κ , we right now have for any δ ∈ (0, δ∗

κ ],

(2K + ρ(1 + 1/α) + λ̂2
b1

)δ
1
2 ≤ κ

2α
.

Whence, owing to δ
1
2 α ∈ (0,1) for δ ∈ (0, δ∗

κ ], we infer that

Λi,δ(x)δ + Λ̂i(x)δ2 ≤ ( − (κ/4 + βδ)|xi |2 + βδμ
N
x (| · |2))δ + C∗

1δ,

where βδ := K + ρδ
1
2 . Whereafter, the preceding estimate enables us to deduce that
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∣∣Xδ,i,N
(n+1)δ

∣∣2 ≤ (
1 − (κ/4 + βδ)δ

)∣∣Xδ,i,N
nδ

∣∣2 + βδμ̃
δ,N
nδ (| · |2)δ + C∗

1δ + Λ
i,δ

(Xδ
nδ), (4.12)

where the factor 1 − (κ/4 + βδ)δ is positive by taking δ ∈ (0, δ∗
κ ] into consideration.

With (4.12) at hand, we obtain that for any integer p ≥ 3,∣∣Xδ,i,N
(n+1)δ

∣∣2p ≤ ((
1 − (κ/4 + βδ)δ

)∣∣Xδ,i,N
nδ

∣∣2 + βδμ̃
δ,N
nδ (| · |2)δ)p

+ p
((

1 − (κ/4 + βδ)δ
)∣∣Xδ,i,N

nδ

∣∣2 + βδμ̃
δ,N
nδ (| · |2)δ)p−1(

C∗
1δ + Λ

i,δ
(Xδ

nδ)
)

+
p−2∑
k=0 

Ck
p

((
1 − (κ/4 + βδ)δ

)∣∣Xδ,i,N
nδ

∣∣2 + βδμ̃
δ,N
nδ (| · |2)δ)k(

C∗
1δ + Λ

i,δ
(Xδ

nδ)
)p−k

=: ϒi
nδ(X

δ,N
nδ ) + ϒ̂i

nδ(X
δ,N
nδ ) + ϒ

i

nδ(X
δ,N
nδ ).

In the sequel, we aim to estimate separately the conditional expectations of ϒi
nδ, ϒ̂i

nδ , as well as 

ϒ
i

nδ given the σ -algebra FN
0 , which is generated by Xδ,1,N

0 , · · · , Xδ,N,N
0 .

In the first place, the binomial theorem and the Young inequality yield that

E
(
ϒi

nδ(X
δ,N
nδ )

∣∣FN
0

) =
p∑

k=0 
Ck

p

(
1 − (κ/4 + βδ)δ

)k
(βδδ)

p−k
∣∣Xδ,i,N

nδ

∣∣2k(
μ̃

δ,N
nδ (| · |2))(p−k)

≤
p∑

k=0 
Ck

p

(
1 − (κ/4 + βδ)δ

)k
(βδδ)

p−k

×
( k

p
E

(|Xδ,i,N
nδ |2p

∣∣FN
0

) + p − k

p
E

(
μ̃

δ,N
nδ (| · |2p)

∣∣FN
0

))
= (1 − κδ/4)pE

(|Xδ,i,N
nδ |2p

∣∣FN
0

)
≤ (1 − κδ/4)E

(|Xδ,i,N
nδ |2p

∣∣FN
0

)
,

(4.13)

where in the second identity we used the fact that Xδ,i,N
nδ and Xδ,j,N

nδ are identically distributed 
given FN

0 , and the last display is evident thanks to 1 − κδ/4 ∈ (0,1). In the next place, due to 
E(�Wi

nδ|FN
0 ) = 0 and E(|�Wi

nδ|2|FN
0 ) = dδ, it follows from Young’s inequality that there is 

a constant C∗
2 > 0 such that

E
(
ϒ̂i

nδ(X
δ,N
nδ )

∣∣FN
0

) ≤ pC∗
2δE

(((
1 − (κ/4 + βδ)δ

)∣∣Xδ,i,N
nδ

∣∣2 + βδμ̃
δ,N
nδ (| · |2)δ)p−1∣∣FN

0

)
≤ κδ

16 
E

(|Xδ,i,N
nδ |2p

∣∣FN
0

) + C∗
2δ.

(4.14)

Furthermore, note from (1.28) and (1.17) that∣∣bδ
1(xi) + μN

x (b0(xi − ·))∣∣δ ≤ (̂
λb1δ

− 1
2 |xi | + Ĉb1 + K(|xi | + μN

x (| · |)) + |b0(0)|)δ.
This, together with the fact that the conditional expectation (given FN

0 ) of the increment �Wi
nδ

contributes at least the order δ, and the Young inequality, leads to
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E
(
ϒ

i

nδ(X
δ,N
nδ )

∣∣FN
0

) ≤ κδ

16 
E

(|Xδ,i,N
nδ |2p

∣∣FN
0

) + C∗
3δ (4.15)

for some constant C∗
3 > 0. Ultimately, (4.11) is reachable by pulling together (4.13), (4.14) and 

(4.15). �
Based on Lemma 4.2, it’s turn to carry out the

Proof of Theorem 1.11. Applying Theorem 1.3 with r0 = 0, θt = θ t = tδ , and b̃(x,μ) =
bδ

1(x) + (b0 ∗ μ)(x), respectively, enables us to derive that for some λ∗ > 0 and any t ≥ 0,

W1
(
LXi

t
,L

X
δ,i,N
t

)
≲ e−λ∗tW1

(
LXi

0
,L

X
δ,i,N
0

) + N− 1
2 1{K>0}

+
t∫

0 

e−λ∗(t−s)E
∣∣b(Xδ,i,N

s , μ̃δ,N
s ) − b̃(Xδ,i,N

sδ
, μ̃δ,N

sδ
)
∣∣ds.

(4.16)

Next, by using (1.17), and (1.26), it is easy to find that for x, y ∈ Rd and μ,ν ∈ P1(Rd),

|b(x,μ) − b̃(y, ν)| ≤ |b1(x) − b1(y)| + |b1(y) − bδ
1(y)| + |(b0 ∗ μ)(x) − (b0 ∗ ν)(y)|

≤
1 ∫

0 

〈∇b1(y + s(x − y)), x − y〉 ds + δ
1
2 |b1(y)| · ‖∇b1(y)‖HS

1 + δ
1
2 ‖∇b1(y)‖HS

+ K
(
W1(μ, ν) + |x − y|)

≲
(
1 + |x|l∗ + |y|l∗)|x − y| +W1(μ, ν) + (1 + |y|2l∗+1)δ

1
2 .

This, together with (4.16), implies that

W1
(
LXi

t
,L

X
δ,i,N
t

)
≲ e−λ∗tW1

(
LXi

0
,L

X
δ,i,N
0

) + N− 1
2 1{K>0}

+
t∫

0 

e−λ∗(t−s)E
(
E

(
(1 + |Xδ,i,N

s |l∗ + |Xδ,i,N
sδ

|l∗)|Xδ,i,N
s − Xδ,i,N

sδ
|∣∣FN

0

))
ds

+
t∫

0 

e−λ∗(t−s)E
∣∣Xδ,i,N

s − Xδ,i,N
sδ

∣∣ds + 1 
N

N∑
j=1 

t∫
0 

e−λ∗(t−s)E
∣∣Xδ,j,N

s − X
δ,j,N
sδ

∣∣ds

+ δ
1
2

t∫
0 

e−λ∗(t−s)
(
1 +E|Xδ,i,N

sδ
|2l∗+1)ds,

(4.17)

where σ -algebra FN
0 is generated by Xδ,1,N

0 , · · · , Xδ,N,N
0 . Moreover, due to E|Wi

t − W 2
tδ
| =

d(t − tδ) and |bδ(x)| ≲ 1 + δ− 1
2 |x|, x ∈ Rd , by invoking (1.28), it holds from Lemma 4.2 that
1
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E
(|Xδ,i,N

t − X
δ,i,N
tδ

|2∣∣FN
0

)
≲

(
1 +E

(|Xδ,i,N
tδ

|2∣∣FN
0

))
δ ≲

(
1 + |Xδ,i,N

0 |2)δ
and

E
(|Xδ,i,N

t

∣∣2l∗ |FN
0

)
≲ 1 +E

(|Xδ,i,N
tδ

|2l∗ |FN
0

)
≲ 1 + |Xδ,i,N

0 |2l∗ .

As a consequence, the assertion (1.32) is verifiable so the proof of Theorem 1.11 is finished from 
(4.17) and Hölder’s inequality. �
4.3. Proof of Theorem 1.12

The following lemma addresses the issue that the time grid associated with the adaptive EM 
scheme tends to infinity almost surely.

Lemma 4.3. Under Assumptions (A1) and (A3),

P
{
ω ∈ Ω : lim 

n→∞ tn(ω) = +∞} = 1. (4.18)

Proof. Let for all x ∈Rd and μ ∈ P(Rd),

h(x,μ) = (1 + |b(x,μ)|2)−1.

Then, it is easy to see that for x ∈Rd and μ ∈ P(Rd),

|b(x,μ)|(1 + |b(x,μ)|)h(x,μ) ≤ 3/2.

Next, from (1.17) and (A3), there is a constant C1 > 0 such that for all x ∈Rd and μ ∈ P1(Rd),

h(x,μ)
(
1 + |x|2l∗+1 + μ(| · |)2) ≤ C.

Furthermore, note that Assumption (T2) in [21, Proposition 4.1] can be weakened as below:

〈x, b(x,μ)〉 ≤ C1
(
1 + |x|2 + μ(| · |)2), x ∈Rd, μ ∈ P1(R

d).

Consequently, the assertion (4.18) follows from [21, Proposition 4.1] and (4.5). �
Unlike the backward/tamed EM scheme, the step size involved is a constant so an inductive 

argument can be used to establish the uniform moment bound. Nevertheless, with regard to the 
adaptive EM scheme (1.14), the underlying step size is an adaptive stochastic process. Hence, 
the approach adopted in treating Lemmas 4.1 and 4.2 no longer works to handle the uniform 
moment bound of the adaptive EM scheme (1.14), which is stated as a lemma below.

Lemma 4.4. Assume (A1) with φ(r) = λ0r for some λ0 > 0 and λ > 2K . Then, for any p ≥ 1, 
i ∈ SN and δ ∈ (0,1), there is a constant C∗

p > 0 such that

E
∣∣Xδ,i,N

t

∣∣p ≤ C∗
p

(
1 +E

∣∣Xδ,i,N
∣∣p)

, t ≥ 0. (4.19)
0
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Proof. By following partly the proof of Lemma 4.1, for each integer p ≥ 3, it is sufficient to 
show that there exist constants λp,C∗

p > 0 such that

E
(|Xδ,i,N

t |2p
∣∣FN

0

) ≤ C∗
p

(
1 + e−λpt

∣∣Xδ,i,N
0

∣∣2p)
, i ∈ SN, t ≥ 0 (4.20)

for the sake of validity of (4.19).
Applying Itô’s formula, we obtain from (1.14) that for λp := p(λ− 2K)/6 and integer p ≥ 3,

d
(
eλpt |Xδ,i,N

t |2p
) = eλpt

(
λp|Xδ,i,N

t |2p + Φi,p(Xδ,N
t ) + cp|Xδ,i,N

t |2(p−1)
)
dt + dM

(p)
t , (4.21)

where (M(p)
t )t≥0 is a martingale, cp := σ 2p(d + 2(p − 1)), and

Φi,p
(
Xδ,N

t

) := 2p|Xδ,i,N
t |2(p−1)

〈
X

δ,i,N
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉
.

By taking the structure of the adaptive step size defined in (1.33) into consideration, besides 
δ ∈ (0,1), it is easy to see that∣∣b(X

δ,i,N
t , μ̃

δ,N
t )

∣∣(t − t) ≤ δ
1
2 (t − t)

1
2 ≤ 1. (4.22)

Whence, by making use of the strong Markov property of (Wi
t )t≥0 and the tower property of 

conditional expectations, in addition to t − t ≤ 1, there exist constants C∗,1
p ,C

∗,2
p > 0 such that

E
(|Xδ,i,N

t |2p
∣∣FN

0

) ≤ 3

2
E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,1
p

(
1 +E

(|Wi
t − Wi

t |2p
∣∣FN

0

))
= 3

2
E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,1
p

(
1 +E

(
E

(|Wi
t − Wi

t |2p
∣∣FN

t

)∣∣FN
0

))
≤ 3

2
E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,2
p ,

(4.23)

where FN
t is the σ -algebra of t-past with (FN

t )t≥0 being the σ -algebra generated by 

(X
δ,1,N
0 , · · · ,X

δ,N,N
0 ) and (W 1

t , · · · ,WN
t )t≥0. Then, provided that we claim that there is a con

stant C∗,3
p > 0 satisfying

E
(
Φi,p(Xδ,N

t )
∣∣FN

0

) ≤ −1

2
p(λ − 2K)E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,3
p , (4.24)

combining (4.21) with (4.23) yields that for some positive constants C∗,4
p ,C

∗,5
p ,

eλptE
(|Xδ,i,N

t |2p
∣∣FN

0

) ≤ ∣∣Xδ,i,N
0

∣∣2p +
t∫

0 

eλps
(

2λpE
(|Xδ,i,N

s |2p
∣∣FN

0

)
− 1

2
p(λ − 2K)E

(|Xδ,i,N
s |2p

∣∣FN
0

) + C∗,4
p

)
ds

≤ ∣∣Xδ,i,N
0

∣∣2p + C∗,5
p (eλpt − 1).

Therefore, (4.20) follows directly.
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Below, we attempt to verify (4.24). By invoking (1.14) once more, it is apparent to see that

|Xδ,i,N
t |2(p−1) = ∣∣Xδ,i,N

t + b(X
δ,i,N
t , μ̃

δ,N
t )(t − t) + σ(Wi

t − Wi
t )

∣∣2(p−1)

= ∣∣Xδ,i,N
t

∣∣2(p−1) +
p−2∑
k=0 

Ck
p−1

∣∣Xδ,i,N
t

∣∣2k(
Ψi(Xδ,N

t )
)p−1−k

(4.25)

and that

〈
X

δ,i,N
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉 = 〈
X

δ,i,N
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉 + ϒi(Xδ,N
t ), (4.26)

where

Ψi(Xδ,N
t ) : = ∣∣b(X

δ,i,N
t , μ̃

δ,N
t )

∣∣2
(t − t)2 + σ 2

∣∣Wi
t − Wi

t

∣∣2

+ 2
〈
X

δ,i,N
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉
(t − t) + 2σ

〈
X

δ,i,N
t ,W i

t − Wi
t

〉
+ 2σ

〈
b(X

δ,i,N
t , μ̃

δ,N
t ),W i

t − Wi
t

〉
(t − t),

ϒi(Xδ,N
t ) : = ∣∣b(X

δ,i,N
t , μ̃

δ,N
t )

∣∣2
(t − t) + σ

〈
Wi

t − Wi
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉
.

Now, plugging (4.25) and (4.26) back into (4.21) gives that

Φi,p(Xδ,N
t ) = 2p

∣∣Xδ,i,N
t

∣∣2(p−1)〈
X

δ,i,N
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉 + 2p
∣∣Xδ,i,N

t

∣∣2(p−1)
ϒi(Xδ,N

t )

+ 2p
(〈
X

δ,i,N
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉+ϒi(Xδ,N
t )

)p−2∑
k=0 

Ck
p−1

∣∣Xδ,i,N
t

∣∣2k(
Ψi(Xδ,N

t )
)p−1−k

=: Θi,p(Xδ,N
t ) + Θ̂i,p(Xδ,N

t ) + Θ
i,p

(Xδ,N
t ).

By utilizing (4.5), the leading term Θi,p(Xδ,N
t ) can be tackled as follows:

E
(
Θi,p(Xδ,N

t )
∣∣FN

0

) ≤ 2p
(

− 1

4
(3λ − 4K)E

(|Xδ,i,N
t |2p

∣∣FN
0

)
+ 1

2
KE

(|Xδ,i,N
t |2(p−1)μ̃

δ,N
t (| · |2)∣∣FN

0

) + C0E
(|Xδ,i,N

t |2(p−1)
∣∣FN

0

))
≤ −p(λ − 2K)E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,6
p

(4.27)

for some constant C∗,6
p > 0, where we also employed that Xδ,i,N

t and Xδ,j,N
t are distributed 

identically given FN
0 . Subsequently, in view of

E
(|Xδ,i,N

t |2(p−1)
〈
Wi

t − Wi
t , b(X

δ,i,N
t , μ̃

δ,N
t )

〉∣∣FN
0

) = 0,

the Young inequality implies that for some constant C∗,7
p > 0,
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E
(
Θ̂i,p(Xδ,N

t )
∣∣FN

0

) ≤ 1

4
p(λ − 2K)E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,7
p > 0. (4.28)

Furthermore, by virtue of (4.22), we obviously obtain that

Ψi(Xδ,N
t ) ≤ t − t + σ 2

∣∣Wi
t − Wi

t

∣∣2 + 2(t − t )
1
2
∣∣Xδ,i,N

t

∣∣ + 2|σ |(1 + ∣∣Xδ,i,N
t

∣∣)∣∣Wi
t − Wi

t

∣∣
and

ϒi(Xδ,N
t ) ≤ 1 + |σ | · ∣∣b(X

δ,i,N
t , μ̃

δ,N
t )

∣∣ · ∣∣Wi
t − Wi

t

∣∣.
Thus, we find that

E
(
Θ

i,p
(Xδ,N

t )
∣∣FN

0

) ≤ 2p
(
1 + (|Xδ,i,N

t

∣∣ + |σ ||Wi
t − Wi

t |
)∣∣b(X

δ,i,N
t , μ̃

δ,N
t )

∣∣)
×

p−2∑
k=0 

Ck
p−1

∣∣Xδ,i,N
t

∣∣2k
(
t − t + σ 2|Wi

t − Wi
t |2 + 2δ|Xδ,i,N

t |(t − t )
1
2

+ 2|σ |(1 + |Xδ,i,N
t |)∣∣Wi

t − Wi
t

∣∣)p−1−k

.

(4.29)

Notice that the degree of the polynomial (on the right hand side of (4.29)) with respect to 
∣∣Xδ,i,N

t

∣∣
is 2(p − 1). In addition, the conditional expectation of the polynomial with respect to |Wi

t −Wi
t |

given the σ -algebra FN
t offers at least the order (t − t )

1
2 so that the term |b(X

δ,i,N
t , μ̃

δ,N
t )|(t −

t )
1
2 can be uniformly bounded by taking advantage of (4.22). Once again, with the aid of Young’s 

inequality, there exists a constant C∗,8
p > 0 such that

E
(
Θ

i,p
(Xδ,N

t )
∣∣FN

0

) ≤ 1

4
p(λ − 2K)E

(|Xδ,i,N
t |2p

∣∣FN
0

) + C∗,8
p > 0.

This, together with (4.27) and (4.28), enables us to achieve (4.24). �
Before the end of this work, we accomplish the

Proof of Theorem 1.12. Once again, an application of Theorem 1.3 with r0 = 0, θt = θ t = t , 
and ̃b = b, respectively, yields that for some λ∗ > 0 and any t ≥ 0,

W1
(
LXi

t
,L

X
δ,i,N
t

)
≲ e−λ∗tW1

(
LXi

0
,L

X
δ,i,N
0

) + N− 1
2 1{K>0}

+
t∫

0 

e−λ∗(t−s)E
∣∣b(Xδ,i,N

s , μ̃δ,N
s ) − b(Xδ,i,N

s , μ̃δ,N
s )

∣∣ds.

(4.30)

Next, from (1.17) and (A3), it is easy to see that
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E
∣∣b(X

δ,i,N
t , μ̃

δ,N
t ) − b(X

δ,i,N
t , μ̃

δ,N
t )

∣∣≲E
((

1 + ∣∣Xδ,i,N
t

∣∣l∗ + ∣∣Xδ,i,N
t

∣∣l∗)∣∣Xδ,i,N
t − X

δ,i,N
t

∣∣)
+E

∣∣Xδ,i,N
t − X

δ,i,N
t

∣∣ + 1 
N

N∑
j=1 

E
∣∣Xδ,j,N

t − X
δ,j,N
t

∣∣.
(4.31)

Moreover, by taking the definition of hδ given in (1.33) into account, one has

|Xδ,i,N
t − X

δ,i,N
t | ≤ |b(X

δ,i,N
t , μ̃

δ,N
t )|(t − t) + |σ(Wi

t − Wi
t )| ≤ δ + |σ(Wi

t − Wi
t )|.(4.32)

Note that from Hölder’s inequality, we deduce that

E
(
(1 + |Xδ,i,N

t |l∗)∣∣Xδ,i,N
t − X

δ,i,N
t

∣∣)
≲E

((
1 + (

E
(|Xδ,i,N

t |2l∗ ∣∣FN
0

)) 1
2
)(
E

(∣∣Xδ,i,N
t − X

δ,i,N
t

∣∣2∣∣FN
0

)) 1
2
)
.

(4.33)

Whereafter, the assertion (1.34) can be attainable by plugging (4.31) back into (4.30) followed 
by combining (4.32) and (4.33) with Lemma 4.4. Consequently, the proof of Theorem 1.12 is 
complete. �
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