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1 Introduction

McKean-Vlasov stochastic differential equations (SDEs for short) are a class of SDEs
whose coefficients have dependence not only on the state process but also on the law of
the solution process [4]. In the present work, we turn to focus on McKean-Vlasov SDEs
with common noise, which, in literature, are also termed as the conditional McKean-
Vlasov SDEs [10]. As far as such SDEs are concerned, there are two sources of noise
input into the system, in which one is an idiosyncratic source of randomness and the
other is a so-called common noise (i.e., the path (ω0

t )t≥0 driven by the Brownian motion
which we condition upon pathwise). More precisely, in this paper we work on the
following dynamics on Rd:

dXt = b(t,Xt, µt)dt+ σ0(t,Xt, µt)dW
0
t + σ1(t,Xt, µt)dW

1
t , t > 0; X0 = ξ, (1.1)

where b : [0,∞)×Rd ×P(Rd) → Rd, σ0 : [0,∞)×Rd ×P(Rd) → Rd⊗m0 , and σ1 : [0,∞)×
Rd ×P2(R

d) → Rd⊗m, the Brownian motion (W 1
t )t≥0, supported on (Ω1,F1, (F1

t )t≥0,P
1),
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Malliavin differentiability of McKean-Vlasov SDEs with common noise

is referred to as an m-dimensional idiosyncratic noise, the Brownian motion (W 0
t )t≥0,

carried on (Ω0,F0, (F0
t )t≥0,P

0), as an m0-dimensional common noise, and µt := µt(ω
0) =

Law(Xt(ω
0, ·)) for P0-almost ω0 (i.e., µt = P

1◦(E
[
Xt|F0

t

]
)−1). Hereinbefore, P(Rd) is the

space of probability measures over Rd, and µt can be understood as a random variable
mapping (Ω0,F0,P0) to P(Rd); see [5, Section 4.3] or [7] for related details.

As mentioned previously, the drift and diffusion coefficients in (1.1) depend on the
path (ω0

t )t≥0. Thus, one can interpret (1.1) in the light of the theory on rough differential
equations (RDEs for short). One of our contributions lies in extending [3], which
addressed the Malliavin differentiability of standard RDEs, to the mean-field setting,
where the rough path under consideration is a Brownian motion path. According to
[5, p.110-112], the random distribution flow (µt)t>0 corresponding to (1.1) solves the
following SPDE:

dµt =
(
− div

(
b(·, µt)µt

)
+

1

2
trace

(
∇2

(
(σ1(σ1)>)(·, µt)µt

)))
dt− div

((
σ0(·, µt)dW

0
t

)
µt

)
,

where (σ1)> denotes the transpose of σ1, ∇2 means the second-order gradient operator,
and div represents the divergence operator. The aforementioned SPDE, which is also
named as the nonlinear stochastic Fokker-Planck equation, is understood in the weak
sense. It is worthy to stress that the flow (µt) involved in (1.1) is random whereas the
same counterpart associated with the standard McKean-Vlasov SDEs (without common
noise) is deterministic. This discrepancy introduces involved difficulties into the analysis
of the Malliavin differentiability for (Xt)t≥0 governed by (1.1).

In the past few years, the Malliavin differentiability of classical SDEs advanced greatly.
In particular, via a Picard approximation approach, [11, Theorem 2.2.1] handled the case
that the drift term and the diffusion term involved are globally Lipschitz. Nevertheless,
the Malliavin differentiability for SDEs with drifts of super-linear growth is left open for
a long time, which is extremely unexpected. In [9], the issue mentioned above on the
Malliavin differentiability is addressed by the aid of stochastic Gâteaux differentiability
and ray absolute continuity. Recently, the research on the Malliavin differentiability for
McKean-Vlasov SDEs has also made some progress; see, for instance, [14, Proposition
3.5] for the globally Lipschitz setting. Since the distribution variable involved in the
coefficients associated with McKean-Vlasov SDEs is deterministic, there is no additional
term in the linear SDE solved by the Malliavin derivative; see, e.g., [14, (3.26)] or [8,
(2)]. When the coefficients of McKean-Vlasov SDEs under consideration is Lipschitz
continuous in the measure variable under the L2-Wasserstein distance, the Malliavin
differentiability was established in [8, Theorem 3.5] and [8, Proposition 4.8] via the
Picard iteration trick and the interacting particle system (IPS for short) limits when the
underlying drifts satisfy the one-sided Lipschitz condition and fulfil the globally Lipschitz
condition in the spatial variable, respectively.

Our contribution: Malliavin differentiability of McKean-Vlasov SDEs with common
noise under the global Lipschitz assumption. Specially, we extend the classical Malliavin
variational results to McKean-Vlasov SDEs with common noise, where the deterministic
coefficients satisfy a global space-measure Lipschitz condition. To derive the Malliavin
differentiability with respect to the common noise, we adopt a similar approach to that of
[8] by appealing to the celebrated [11, Lemma 1.2.3]. In detail, we employ the following
strategy: we first study the Malliavin differentiability of the underlying IPS followed
by passing to the limit via Propagation of Chaos (PoC for short), and then studying
how the Malliavin regularity transfers across the particle limit to the limiting equation.
Essentially from (1.1), our construction allows one to give meaning to the Malliavin
derivative of the conditional distribution flow µt in relation to W 0; see Theorem 3.1
below.
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With regarding to the McKean-Vlasov SDEs, the Bismut-Elworthy-Li formulae were
provided in [6] for the associated decoupled SDEs with deterministic initial value.
Later on, the Bismut formula for Lions derivatives was initially established in [14] for
distribution dependent SDEs, which the initial value is a random variable. Subsequently,
[14] was extended to distribution-path dependent SDEs, where the associated drift
term satisfies a monotone condition in the spatial variable. In the present paper, as an
application of our main theory derived, we seek to establish a conditional integration
by parts formula (instead of the corresponding Bismut-Elworthy-Li formula, where the
order between the Markov operator and the L-derivative is different).

2 Notation and preliminary results

2.1 Notation and spaces

For M,N ∈ Rm⊗n, define the inner product 〈M,N〉HS = Trace(M>N), which in-
duces the associated Hilbert-Schmidt norm ‖ · ‖HS. For g : Rm → Rn, write g(x) =

(g1(x), . . . , gn(x)), and define ∇xg as the Jacobian matrix (∂ig
j)i,j with ∂i := ∂

∂xi for
1 ≤ i ≤ m, 1 ≤ j ≤ n. For t > 0 and a vector-valued or matrix-valued function f defined
on Rd, we set the uniform ‖f‖0,t := sup0≤s≤t ‖f(s)‖HS. For a given terminal T > 0,
write CT := C([0, T ];Rd), which is endowed with the uniform norm ‖ · ‖CT

, as the path
space of continuous functions ω : [0, T ] → Rd. Throughout the paper, we shall work on
the stochastic basis (Ω,F , (Ft)t≥0,P), where Ω = Ω0 × Ω1, (F ,P) is the completion of
(F0 × F1,P0 × P1), and (Ft)t≥0 is the complete and right continuous augmentation of
(F0

t ×F1
t )t≥0. Let E0, E1 and E denote the expectation operators under the probability

measures P0, P1, and P, respectively. The space of probability measures over Rd with
finite rth moment for r ≥ 1, written as Pr(R

d), is a Polish space under the Wasserstein
distance:

Wr(µ, ν) = inf
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|rπ(dx,dy)
) 1

r

, µ, ν ∈ Pr(R
d),

where Π(µ, ν) (i.e., the family of probability measures on Rd ×Rd) is the set of couplings
for µ and ν (that is, π ∈ Π(µ, ν) satisfying π(· × Rd) = µ(·) and π(Rd × ·) = ν(·)). Let
Supp(µ) denote the support of the probability measure µ.

2.2 Basics on Malliavin calculus

In this subsection, we aim to recall some basics on Malliavin calculus to make the
content self-contained; see e.g. the monographs [11] and [16, pages 8-9]. For T > 0

fixed, denote by H the Cameron-Martin space defined as below:

H =
{
h ∈ CT

∣∣∣h0 = 0, h′
t exists a.e. in t, ‖h‖2H :=

∫ T

0

|h′
t|2dt < ∞

}
,

which is a Hilbert space with the inner product 〈f, g〉H :=
∫ T

0
〈f ′

t , g
′
t〉dt. Let µT be the

distribution of W[0,T ] = (Wt)t∈[0,T ] on the path space CT of paths starting at the origin,
where (Wt)t≥0 is a d-dimensional Brownian motion. In fact, µT is the so-called Wiener
measure so that the coordinate process Wt(ω) = ωt is a d-dimensional Brownian mo-
tion. For F ∈ L2(CT , µT ), F (W[0,T ]) is called Malliavin differentiable along direction
h ∈ H if the directional derivative DhF (W[0,T ]) := limε→0

1
ε (F (W[0,T ] + εh) − F (W[0,T ]))

exists in L2(CT , µT ). If H 3 h 7→ DhF ∈ L2(CT , µT ) is bounded, via the Riesz repre-
sentation theorem, then there exists a unique DF (W[0,T ]) ∈ L2(CT → H, µT ) such that
〈DF (W[0,T ]), h〉 = DhF (W[0,T ]) holds true µT -a.s. In this case, we write F (W[0,T ]) ∈ D(D)

(the domain of D) and call DF (W[0,T ]) the Malliavin gradient (derivative) of F (W[0,T ]).
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The adjoint operator (δ,D(δ)) of (D,D(D)) is called the Malliavin divergence. Via the
integration by parts formula, we have

E(DhF ) = E(Fδ(f)), F ∈ D(D), h ∈ D(δ).

In particular, when h ∈ L2(CT → H, µT ) is an adapted stochastic process, then h ∈ D(δ)

and δ(h) =
∫ T

0
〈h′

t,dWt〉. Otherwise, δ(h) is the Skorokhod stochastic integral.

2.3 Lions differentiability and the empirical projection map

To begin, we recall the notion of the Lions derivative; see e.g. [14, Definition
1.1], which indeed coincides with the one given in [4] via a lift-up approach. The
functional f : P2(R

d) → R is called L-differentiable at µ ∈ P2(R
d) if the functional

L2(Rd → Rd, µ) 3 φ 7→ f(µ ◦ (I + φ)−1) is Fréchet differentiable at 0 ∈ L2(Rd → Rd, µ),
where I means the identity map and µ ◦ (I + φ)−1 is the push-forward measure of µ by
I + φ. Namely, there is (hence, unique) γ ∈ L2(Rd → Rd, µ) such that

lim
µ(|φ|2)→0

f(µ ◦ (I + φ)−1)− f(µ)− µ(〈γ, φ〉)√
µ(|φ|2)

= 0.

In this case, we write ∂µf(µ) = γ and call it the L-derivative of f at µ. For a vector-
valued or matrix-valued function f on Rd, the L-derivative (if it exists) is defined in
the component-wise way. If the L-derivative ∂µf(µ) exists for all µ ∈ P2(R

d), then f

is called L-differentiable. If, moreover, for any µ ∈ P2(R
d) there exists a µ-version

∂µf(µ) such that ∂µf(µ)(x) is jointly continuous in (x, µ) ∈ Rd × P2(R
d), we write

f ∈ C(1,0)(P2(R
d)). g is called differentiable onRd×P2(R

d) if, for any (x, µ) ∈ Rd×P2(R
d),

g(·, µ) is differentiable at x and g(x, ·) is L-differentiable at µ. If moreover, ∇g(·, µ)(x)
and ∂µg(x, ·)(µ)(y) are jointly continuous in (x, y, µ) ∈ Rd × Rd × P2(R

d), where ∇
is the gradient operator on Rd, we write g ∈ C1,(1,0)(Rd × P2(R

d)). In addition, for

g ∈ C1,(1,0)(Rd ×P2(R
d)), we write g ∈ C

1,(1,0)
b (Rd ×P2(R

d)) when the gradient and the
L-derivative are uniformly bounded in all variables.

Below, we retrospect the definition on the empirical project of a map; see, for instance,
[4, Definition 5.34].

Definition 2.1. Given u : P2(R
d) → Rd and N ∈ N, the empirical projection map uN of

u is defined via the following relation:

uN : (Rd)N 3 xN := (x1, . . . , xN ) 7→ u
(
µ̄N

)
with µ̄N (dy) :=

1

N

N∑
i=1

δxi (dy).

Let u : P2(R
d) → Rd be a continuously L-differentiable map and uN be the associated

empirical projection map. Then, according to [4, Proposition 5.35], uN is differentiable
in (Rd)N and satisfies the identity:

(∇ju
N )(xN ) = N−1∂µu(µ̄

N )(xj), xN ∈ (Rd)N , (2.1)

where ∇ju denotes the gradient in the j-th component xj .

2.4 McKean-Vlasov SDEs with common noise and associated IPS

Throughout the paper, we assume the following Assumptions.

(H1) there is a constant L > 0 such that for t ∈ [0, T ], x, y ∈ Rd and µ, ν ∈ P2(R
d),

|b(t, x, µ)− b(t, y, ν)| ∨ ‖σ0(t, x, µ)− σ0(t, y, ν)‖HS ∨ ‖σ1(t, x, µ)− σ1(t, y, ν)‖HS

≤ L
(
|x− y|+W2(µ, ν)

)
.
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(H2) b(t, ·, ·), σ0(t, ·, ·), σ1(t, ·, ·) ∈ C
1,(1,0)
b (Rd)× P2(R

d) for all t ∈ [0, T ].

It is standard that (1.1) is strongly well-posed and has a uniform second-order moment
bound in a finite-time interval; see, for example, [5, Proposition 2.8] and [2, Proposition
2.2] for more details.

Theorem 2.2. Under (H1), there exists a unique solution to (1.1) in L2(CT ;P) for a finite
horizon T > 0, and there is a constantK = K(L, T ) > 0 such that E‖X‖2CT

≤ K
(
1+E|ξ|2

)
as long as the initial value X0 = ξ ∈ L2(Ω,F0,P;R

d).

In the sequel, we copy the dynamics of (Xt)t≥0 solving (1.1) to form a non-interacting
particle system (non-IPS for short) written as below: for any i = 1, . . . , N ,

dXi
t = b(t,Xi

t , µ
i
t)dt+ σ0(t,Xi

t , µ
i
t)dW

0
t + σ1(t,Xi

t , µ
i
t)dW

1,i
t , t > 0; Xi

0 = ξi, (2.2)

where (ξi)1≤i≤N are L2(Ω,F0,P;R
d) i.i.d. random variables with the same distribution as

ξ (all are independent), ((W 1,i
t )t≥0)1≤i≤N are mutually independent Brownian motion on

(Ω1,F1, (F1)t≥0,P
1). In terms of [5, Proposition 2.11], one has µi

t := Law(Xi
t(ω

0, ·)) = µi
t

for P0-almost any ω0, and meanwhile µi
t = µt for any t ≥ 0, where (µt)t≥0 is determined

by (1.1). The dynamics of a corresponding IPS to (2.2) is formulated as follows:

dXi,N
t =b(t,Xi,N

t , µ̄N
t )dt+ σ0(t,Xi,N

t , µ̄N
t )dW 0

t + σ1(t,Xi,N
t , µ̄N

t )dW 1,i
t , (2.3)

for any i = 1, . . . , N , where Xi,N
0 := ξi, and the empirical measure µ̄N

t := 1
N

∑N
j=1 δXj,N

t
.

The following Lemma plays a vital role in analysing the Malliavin differentiability for
McKean-Vlasov SDEs with common noise.

Lemma 2.3. Under (H1), the IPS (2.3) has a unique solution ((Xi,N
t )0≤t≤T )1≤i≤N and

there exists a constant K = K(T,L) > 0 such that max1≤l≤N E‖X l‖2CT
≤ K(1 + E|ξ|2) in

case of ξ ∈ L2(Ω,F0,P;R
d). Moreover, for ((Xi,N

t )0≤t≤N )1≤i≤N the solution to (2.2),

lim
N→∞

(
max

1≤i≤N
E
∥∥Xi,N

· −Xi
·
∥∥2
CT

+ sup
0≤t≤T

EW2(µ̄
N
t , µ1

t )
2

)
= 0. (2.4)

Proof. Note that (2.3) can be rewritten in the state space (Rd)N . Correspondingly, under
(H1), the lift-up drift term and the diffusion term satisfy the global Lipschitz condition;
see e.g. [8, Lemma 4.4]. Therefore, it is more or less standard that (2.3) is strongly
well-posed and the uniform second-order moment estimate is available. The assertion
(2.4) has been established in [5, Theorem 2.12] so we herein omit the details.

Remark 2.4. Concerning the validity of [2, Proposition 2.5], the higher-order (i.e., p > 4)
moment of the initial distribution is necessitated. Nevertheless, for our purpose, we
merely require a qualitative (rather than quantitative) estimate (2.4) so the requirement
on the higher-order moment on the initial distribution is necessary.

3 Malliavin differentiability

In this section, we aim at showing that the Malliavin differentiability of (Xt)t∈[0,T ]

with respect to the common noise and the idiosyncratic noise, one by one.

Theorem 3.1. Assume that (H1) and (H2) hold. Then, the Malliavin derivative of (Xt)t≥0

solving (1.1) with respect to the common Brownian motion W 0, written as D0X, satisfies
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the SDE: for all 0 ≤ s ≤ t ≤ T

D0
sXt = σ0(s,Xs, µs)

+

∫ t

s

(
∇b(r,Xr, µr)D

0
sXrE

1
[
∂µb(r, z, µr)(Xr)D

0
sXr

]∣∣
z=Xr

)
dr

+

∫ t

s

(
∇σ0(r,Xr, µr)D

0
sXrE

1
[
∂µσ

0(r, z, µr)(Xr)D
0
sXr

]∣∣
z=Xr

)
dW 0

r

+

∫ t

s

(
∇σ1(r,Xr, µr)D

0
sXr + E

1
[
∂µσ

1(r, z, µr)(Xr)D
0
sXr

]∣∣
z=Xr

)
dW 1

r .

(3.1)

where D0
sXt = 0d×m0

for s > t. Moreover, there exists a unique solution to (3.1) and a
positive constant K = K(T,L) such that for any

sup
0≤s≤T

E
[∥∥D0

sX·
∥∥2
CT

]
≤ K(1 + E[|ξ|2]). (3.2)

To proceed, we make two comments on Theorem 3.1.

Remark 3.2. Obviously, Theorem 3.1, SDE (3.1) and (3.2) can be written just the same
for the non-IPS (Xi) of (2.2) leading to (D0Xi)i and (3.3): namely, for i = 1, . . . , N ,

D0
sX

i
t = σ0(s,Xi

s, µ
i
s)

+

∫ t

s

(
∇b(r,Xi

r, µ
i
r)D

0
sX

i
r + E

1
[
∂µb(r, z, µ

i
r)(X

i
r)D

0
sX

i
r

]∣∣
z=Xi

r

)
dr

+

∫ t

s

(
∇σ0(r,Xi

r, µ
i
r)D

0
sX

i
r + E

1
[
∂µσ

0(r, z, µi
r)(X

i
r)D

0
sX

i
r

]∣∣
z=Xi

r

)
dW 0

r

+

∫ t

s

(
∇σ1(r,Xi

r, µ
i
r)D

0
sX

i
r + E

1
[
∂µσ

1(r, z, µi
r)(X

i
r)D

0
sX

i
r

]∣∣
z=Xi

r

)
dW 1,i

r .

(3.3)

For each i the process D0Xi of (3.3) shares the same distribution as D0X of (3.1).

As a second observation, in (3.3) the first stochastic integral is equal to

m0∑
j=1

∫ t

s

(
∇σ0

j (r,X
i
r, µ

i
r)D

0
sX

i
r + E

1
[
∂µσ

0
j (r, z, µ

i
r)(X

i
r)D

0
sX

i
r

]∣∣
z=Xi

r

)
dW 0,j

r , (3.4)

where W 0,j denotes the j-th component of W 0, and σ0
i stands for the i-th column vector

of σ0. The second stochastic integral in (3.3) can be understood in the same manner.

Remark 3.3. A close inspection of the proof for Theorem 3.1 reveals that (i) the qualita-
tive conditional PoC and (ii) the uniform (in particle number N ) second-order moment
boundedness of D0Xi,N is essential. Provided that the drift b fulfils a monotone condition
in the spatial variable and is Lipschitz continuous under the L2-Wasserstein distance in
the measure variable, along with the precondition that σ0, σ1 are Lipschitz continuous
in the spatial variable and the measure variable, the essentials (i) and (ii) mentioned
previously can also be established. For the monotone setting, there is much more sophis-
ticated work to be done in order to implement Step 2 and Step 3 in the proof of Theorem
3.1. Nonetheless, in the present work, we aim to reveal the spirit on the exploration of
Malliavin differentiability for McKean-Vlasov SDEs with common noise. So, the extension
of Theorem 3.1 to the setting of the locally Lipschitz coefficients is left for the future
work.

Below, we move on to complete the proof of Theorem 3.1, which is separated into
four steps.
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Proof. The proof’s main argument is that the Malliavin regularity of the IPS (2.3) carries
through to the non-IPS (2.2) in the particle limit N . Thus, we present our proof from the
point of view of the Malliavin differentiability of (2.2) and (3.3) and not (1.1) and (3.1);
the result is, of course, the same.

Step 0. Basic property and well-posedness of the SDE (3.3) and (3.1). Due to (H2),
there exists C > 0 such that for all A ∈ Rd⊗m0 , t ∈ [0, T ] and (x, y, µ) ∈ Rd ×Rd ×P2(R

d),

‖g(t, x, µ)A‖HS ≤ C‖A‖HS and ‖h(t, x, µ, y)A‖HS ≤ C‖A‖HS,

where g = ∇b,∇σ0
i ,∇σ1

i and h(t, x, µ, y) = ∂µb(t, x, µ)(y), ∂µσ
0
i (t, x, µ)(y), ∂µσ

1
i (t, x, µ)(y).

With the previous estimates at hand, (3.2) can be obtained from the Burkholder-Davis-
Gundy inequality and the Gronwall inequality in case (3.3) is strongly well-posed.

Below, we merely show that (3.3) is well-posed for the case s = 0 since the general
case is analogous. To show the strong well-posedness of (3.3) with s = 0, we appeal to
the Banach fixed point approach (similarly to [13, Theorem 1.1]). Define the set

H =
{
f : [0, T ]× Ω → Rd⊗m0 is progressively measurable s.t.

∫ T

0

E‖f(t)‖2HS dt < ∞
}
,

which is a complete metric space under the metric: ρλ(f, g) :=
( ∫ T

0
e−λtE‖ft− gt‖2HSdt

) 1
2 ,

f, g ∈ H, for each λ > 0. Now, we define a map η 3 H 7→ Φ(η) to be the right hand side
of (3.3) with D0Xi therein being replaced by η. Under (H1) and (H2), we can infer that
Φ : H→ H and Φ is a contractive map when λ > 0 is chosen large enough. Subsequently,
the Banach fixed point theorem enables us to conclude well-posedness.

Step 1. L2-boundedness of D0
sX

i,N
t . Starting from the IPS (2.3), as a classical SDE,

take its D0 Malliavin derivative: D0
sX

i,N
t . Clearly, D0

sX
i,N
s = 0 for s > t, while we obtain

from (2.1) (see also [7]) that for 0 ≤ s ≤ t ≤ T < ∞,

dD0
sX

i,N
t =

(
∇b(t,Xi,N

t , µ̄N
t )D0

sX
i,N
t +

1

N

N∑
k=1

∂µb(t,X
i,N
t , µ̄N

t )(Xk,N
t )D0

sX
k,N
t

)
dt

+

m0∑
j=1

(
∇σ0

j (t,X
i,N
t , µ̄N

t )D0
sX

i,N
t

+
1

N

N∑
k=1

∂µσ
0
j (t,X

i,N
t , µ̄N

t )(Xk,N
t )D0

sX
k,N
t

)
dW 0,j

t

+
m∑
j=1

(
∇σ1

j (t,X
i,N
t , µ̄N

t )D0
sX

i,N
t

+
1

N

N∑
k=1

∂µσ
1
j (t,X

i,N
t , µ̄N

t )(Xk,N
t )D0

sX
k,N
t

)
dW 1,i,j

t

=: Ai
s,tdt+

m0∑
j=1

Bi,j
s,tdW

0,j
t +

m∑
j=1

Ci,j
s,tdW

1,i,j
t ,

(3.5)

where D0
sX

i,N
s = σ0(s,Xi,N

s , µ̄N
s ). For any fixed N , (D0Xi,N )s≤t is well-defined and well

posed by the results in [9] and with exploding norms as N → ∞. Next, we show that
such norms do not explode. Indeed, applying Itô’s formula yields that

d‖D0
sX

i,N
t ‖2HS = 2〈D0

sX
i,N
t , Ai

s,t〉HSdt+

m0∑
j=1

∥∥∥Bi,j
s,t

∥∥∥2
HS

dt+

m∑
i=1

∥∥∥Ci,j
s,t

∥∥∥2
HS

dt+ dM i
s,t,

where M i
s,t a martingale term.
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Malliavin differentiability of McKean-Vlasov SDEs with common noise

Initially fixing s, applying the supremum over t and taking said expectation, one
implements the Young and Jensen inequalities and makes use of (H2) to obtain the
existence of some C1 > 0 (independent of N , but dependent on d,m and m0) such that
for all 0 ≤ s ≤ t ≤ T , (with a slight abuse of notation as we write ‖ · ‖Ct

and not ‖ · ‖Cs,t
)

E
[∥∥D0

sX
i,N
·

∥∥2
Ct

]
≤ E

[
‖σ0(s,Xi,N

s , µ̄N
s )‖2HS

]
+ C1E

[ ∫ t

s

(
‖D0

sX
i,N
t ‖2HS +

1

N

N∑
k=1

‖D0
sX

k,N
t ‖2HS

)
dr

]
, (3.6)

where the E
[
sup0≤t≤T |MN (s, t)|

]
was treated using the Burkholder-Davis-Gundy inequal-

ity. By invoking (H1), along with Lemma 2.3, it follows that for some constants C2, C3 > 0

(independent of N ), we have

E
[
‖σ0(s,Xi,N

s , µ̄N
s )‖2HS

]
≤ C2

(
1 + E[|Xi,N

s |2] + 1

N

N∑
k=1

E[|Xk,N
s |2]

)
≤ C3(1 + E[|ξ|2]).

(3.7)

Averaging over the particle index i = 1, . . . , N , we have

1

N

N∑
i=1

E
[∥∥D0

sX
i,N
·

∥∥2
Ct

]
≤ C3(1 + E[|ξ|2]) + 2C1

∫ t

s

[
1

N

N∑
i=1

E‖D0
sX

i,N
r ‖2HS

]
dr.

Subsequently, Gronwall’s inequality enables us to derive that

1

N

N∑
i=1

E
[∥∥D0

sX
i,N
·

∥∥2
CT

]
≤ C3(1 + E[|ξ|2])e2C1T .

Injecting the above estimate back into (3.6) and exploiting (3.7), we obtain

E
[∥∥D0

sX
i,N
s,·

∥∥2
Ct

]
≤ C3(1 + E[|ξ|2])

+ C1

[ ∫ t

s

(
E‖D0

sX
i,N
r ‖2HS + C3(1 + E[|ξ|2])e2C1T

)
dr

]
.

Once more, applying Gronwall’s inequality yields that

sup
N∈N

max
1≤i≤N

sup
0≤s≤T

E
[∥∥D0

sX
i,N
·

∥∥2
CT

]
< ∞.

This, besides Lemma 2.3, implies that Xi ∈ D1,2 and D0
sX

i
t = limN→∞ D0

sX
i,N
t in L2(H)

weakly by applying [11, Lemma 1.2.3 and Proposition 1.5.5]. Two points need to be
remarked. Firstly, we still need to identify the SDE that this limiting object satisfies.
Secondly, for any i = 1, . . . , N P-a.s. the processes Xi

t , X
i,N
t and D0

sX
i
t , D

0
sX

i,N
t are

continuous in time t (given s).
Step 2. Convergence of the measure derivative terms. Fix i. We now prove conver-

gence of the measure derivative terms in (3.5) to the corresponding terms in (3.3) (and
(3.4)). Recall that µi is a Ω0-random variable only. Define the auxiliary quantities

Λb,i
s,t :=

1

N

N∑
k=1

∂µb(t,X
i,N
t , µ̄N

t )(Xk,N
t )D0

sX
k,N
t − E1

[
∂µb(t, z, µ

i
t)(X

i
t)D

0
sX

i
t

]∣∣
z=Xi

t

and similarly, comparing (3.4) to (3.5) and accordingly, define Λ
σ0
j ,i

s,t , Λ
σ1
j ,i

s,t . Note the
quantities in the difference are well defined from the results established in the previous
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Malliavin differentiability of McKean-Vlasov SDEs with common noise

step. Taking the conditional square expectation,

sup
0≤s≤T

E1

[
sup

0≤r≤T

∥∥∥∥ 1

N

N∑
k=1

∂µb(r,X
i,N
r , µ̄N

r )(Xk,N
r )D0

sX
k,N
r

− E1
[
∂µb(r, z, µ

i
r)(X

i
r)D

0
sX

i
r

]∣∣
z=Xi

r

∥∥∥∥2
HS

]
≤ 4 sup

0≤s≤T
E1

[
sup

0≤r≤T

∥∥∥∥ 1

N

N∑
k=1

∂µb(r,X
i,N
r , µ̄N

r )(Xk,N
r )D0

sX
k,N
r

− 1

N

N∑
k=1

∂µb(r,X
i,N
r , µi

r)(X
k,N
r )D0

sX
k,N
r

∥∥∥∥2
HS

]

+ 4 sup
0≤s≤T

E1

[
sup

0≤r≤T

∥∥∥∥ 1

N

N∑
k=1

∂µb(r,X
i,N
r , µi

r)(X
k,N
r )D0

sX
k,N
r

− 1

N

N∑
k=1

∂µb(r,X
i
r, µ

i
r)(X

k
r )D

0
sX

k,N
r

∥∥∥∥2
HS

]

+ 4 sup
0≤s≤T

E1

[
sup

0≤r≤T

∥∥∥∥ 1

N

N∑
k=1

∂µb(r,X
i
r, µ

i
r)(X

k
r )D

0
sX

k,N
r

− 1

N

N∑
k=1

∂µb(r,X
i
r, µ

i
r)(X

k
r )D

0
sX

k
r

∥∥∥∥2
HS

]

+ 4 sup
0≤s≤T

E1

[
sup

0≤r≤T

∥∥∥∥ 1

N

N∑
k=1

∂µb(r,X
i
r, µ

i
r)(X

k
r )D

0
sX

k
r

− E1
[
∂µb(r, z, µ

i
r)(X

i
r)D

0
sX

i
r

]∣∣
z=Xi

r

∥∥∥∥2
HS

]
.

For the first term. Using Lemma 2.3, the joint continuity of ∂µb and Jensen’s In-

equality we bound P0-a.s. this term by 4 sup0≤s≤T E
1
[
sup0≤r≤T | 1N

∑N
k=1 D

0
sX

k
r |2

]
· εN

for some bounded sequence (εN )N≥1 → 0 as N → ∞. The P0-a.s. boundedness of

sup0≤s≤T E
1
[
sup0≤r≤T | 1N

∑N
k=1 D

0
sX

k,N
r |2

]
, which is justified as in Step 1, implies this

converges P0-a.s. to zero in the limit N → ∞.
For the second term: the (conditional) Propagation of Chaos ascertains thatXk,N

r con-
verges P0-a.s. to Xk

r in L2(Ω1) and since, by (H2), ∂µb is jointly continuous and uniformly
bounded then the convergence results follows immediately from the L2(Ω1)-boundedness
of D0

sX
k,N
r (uniformly in N ) from Step 1 and conditional dominated convergence.

For the third term. We also have convergence to zero, P0-a.s. in the limit N → ∞.
This is justified by boundedness and uniform continuity of ∂µb and the already established
fact (in the proof’s Step 1) that D0

sX
i
t = limN→∞ D0

sX
i,N
t in L2(CT )-weakly, before once

again applying conditional dominated convergence.
For the fourth term. For the particle system {(Xk, D0Xk)}k, one observes by strong

symmetry that the particles are exchangeable (and pairwise conditionally independent
with uniformly (in N ) finite second moments). That is,

{(Xπ(1)
r , D0

sX
π(1)
r ), . . . , (Xπ(N)

r , D0
sX

π(N)
r )} Law

= {(X1
r , D

0
sX

1
r ), . . . , (X

N
r , D0

sX
N
r )}

for any permutation π of {1, . . . , N}. By the strong Law of Large Numbers, P0 ⊗ P1-a.s.

lim
N→∞

∣∣∣∣{ 1

N

N∑
k=1

∂µb(r, z, µ
i
r)(X

k
r )D

0
sX

k
r − E1

[
∂µb(r, z, µ

i
r)(X

i
r)D

0
sX

i
r

]]}∣∣∣
z=Xi

r

∣∣∣∣2 = 0,
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Malliavin differentiability of McKean-Vlasov SDEs with common noise

where the case k = i is trivial using the boundedness of ∂µb, the L2-bounds of D0X ·

established earlier and that the weight 1/N is vanishing; the continuity in time of
the processes extends the result uniformly over [s, T ]; the result holds with z = Xi

r

omitted and for any z ∈ Rd. Uniform boundedness of ∂µb, and the L2(Ω1)-uniform
bounds on D0

sX
i
t and D0

sX
i,N
t , justified in Step 1, allow us to apply conditional dominated

convergence and conclude this final term converges to zero P0 ⊗ P1-a.s. Thus for any
fixed i = 1, . . . , N we have P0-a.s.

lim sup
N→∞

E1
[

sup
0≤s≤r≤T

|Λb,i
s,r|2

]
= 0.

Gathering the arguments, an application of the Cauchy-Schwarz inequality then
yields the required convergence

∫ t

s

1

N

N∑
k=1

∂µb(r,X
i,N
r , µ̄N

r )(Xk,N
r )D0

sX
k,N
r dr

−→
∫ t

s

E1
[
∂µb(r, z, µ

i
r)(X

i
r)D

0
sX

i
r

]∣∣∣∣
z=Xi

r

dr as N → ∞ (3.8)

in L2(Ω1) for any t ∈ [s, T ] conditional on a path ω0 P0-a.s. To deal with the corresponding
stochastic integral terms involving the measure derivatives of σ0

j , j = 1, . . . ,m0 and σ1
j ,

j = 1, . . . ,m, we apply the above method, replacing the Cauchy-Schwarz inequality with
an additional Itô Isometry argument, localising and arguing over quadratic variation.

Step 3. Identifying the limiting equation of (3.5). With the results of Step 2 at hand,
the remaining arguments are classical and thus presented in a streamlined fashion. Fix
i. Set for s ∈ [0, T ]

δσ0,i
s := σ0

(
s,Xi,N

s , µ̄N
s

)
− σ0

(
s,Xi

s, µ
i
s

)
,

and compare the McKean-Vlasov SDEs (3.5) and (3.3). We prove next that (3.3) is the
L2-limit equation of (3.5) (for any fixed i as N → ∞):

D0
sX

i,N
t −D0

sX
i
t =δσ0,i

s +

∫ t

s

Âi
s,r dr +

∫ t

s

Λb,i
s,r dr

+

m0∑
j=1

∫ t

s

(
B̂i,j

s,r + Λ
σ0
j ,i

s,r

)
dW 0,j

r +

m∑
j=1

∫ t

s

(
Ĉi,j

s,r + Λ
σ1
j ,i

s,r

)
dW 1,i,j

r ,

where the Λ processes were defined in Step 2 and we define additionally

Âi
s,r := ∇b(r,Xi,N

r , µ̄N
r )D0

sX
i,N
r −∇b(r,Xi

r, µ
i
r)D

0
sX

i
r,

B̂i,j
s,r := ∇σ0

j (r,X
i,N
r , µ̄N

r )D0
sX

i,N
r −∇σ0

j (r,X
i
r, µ

i
r)D

0
sX

i
r, j = 1, . . . ,m0

Ĉi,j
s,r := ∇σ1

j (r,X
i,N
r , µ̄N

r )D0
sX

i,N
r −∇σ1

j (r,X
i
r, µ

i
r)D

0
sX

i
r, j = 1, . . . ,m.

Taking the square expectation, and using the Itô isometry, we obtain that

E
[
‖D0

sX
i,N
t −D0

sX
i
t‖2HS

]
−ΨN = E

[∥∥∥∥∫ t

s

Âi
s,rdr

∥∥∥∥2
HS

]
+ E

m0∑
j=1

∫ t

s

‖B̂i,j
s,r‖2HSdr


+ E

 m∑
j=1

∫ t

s

‖Ĉi,j
s,r‖2HSdr

 ,

(3.9)
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Malliavin differentiability of McKean-Vlasov SDEs with common noise

where

ΨN :=E
[
‖δσ0,i

s ‖2HS

]
+ 2E

[∫ t

s

〈δσ0,i
s , Âi

s,r〉HSdr

]
+ 2E

[∫ t

s

〈δσ0,i
s ,Λb,i

s,r〉HSdr

]

+ 2E

[〈∫ t

s

Âi
s,rdr,

∫ t

s

Λb,i
s,rdr

〉
HS

]
+ 2E

m0∑
j=1

∫ t

s

〈B̂i,j
s,r,Λ

σ0
j ,i

s,r 〉HSdr


+ 2E

 m∑
j=1

∫ t

s

〈Ĉi,j
s,r,Λ

σ1
j ,i

s,r 〉HSdr

+ E

[∥∥∥∥∫ t

s

Λb,i
s,rdr

∥∥∥∥2
HS

]

+ E

m0∑
j=1

∫ t

s

‖Λσ0
j ,i

s,r ‖2HSdr

+ E

 m∑
j=1

∫ t

s

‖Λσ1
j ,i

s,r ‖2HSdr

 ,

noting that since W 0 and W 1,· are independent no cross variation terms appear.
The joint continuity property of σ0 and the (conditional) Propagation of Chaos implies

L2(CT ) and P0-a.s. convergence of δσ0,i
· and E1[ ‖δσ0,i

· ‖2HS] → 0 respectively as N →
∞. The last three terms of ΨN vanish using the results of Step 2 (possibly along a
subsequence if needed). The remaining five terms also vanish in the N limit using
classic arguments: one mimics as needed the arguments used in Step 2, using the tower
property E[·] = E[E1[·]] to draw on the conditional Propagation of chaos (2.4), using the
joint continuity and uniform boundedness of the derivatives ∇b, ∇σ0 and ∇σ1 plus the
L2-convergence (possibly along a subsequence) and L2-bounds of D0Xi,N , D0Xi coupled
with repeated use of the Cauchy-Schwarz and Jensen inequalities and the convergence
of the Λ terms established in Step 2. In conclusion, the LHS of (3.9) converges to zero
(possibly along a subsequence if needed), thus so must its RHS (using additionally the
continuity in time of the processes involved) and it follows that (3.3) is precisely the
L2-limiting equation of the IPS (3.5).

The Malliavin differentiability of (1.1) with respect to the idiosyncraticW 1 is classical.

Theorem 3.4. Assume (H1) and let b, σ0, σ1 be continuously differentiable in space
with uniformly bounded spatial derivatives. Then, the Malliavin derivative of (1.1) with
respect to the idiosyncratic Brownian motion (W 1

t )t≥0 satisfies the linear SDE: for any
t ≥ s,

D1
sXt =σ1(s,Xs, µs) +

∫ t

s

∇b(r,Xr, µr)D
1
sXrdr +

∫ t

s

∇σ0(r,Xr, µr)D
1
sXrdW

0
r

+

∫ t

s

∇σ1(r,Xr, µr)D
1
sXrdW

1
r ,

and D1
sXt = 0d×m for any s > t. Moreover, there is a constant K = K(T, L) > 0 such

that

sup
0≤s≤T

E
[∥∥D1

sX.

∥∥2
CT

]
≤ K(1 + E|ξ|2).

We point that using further approximation arguments, this result holds only under
(H1) (understanding ∇b,∇σ0,∇σ1 in a generalised sense, see [11, Prop. 1.2.4]).

Proof. The Malliavin derivative with respect to the idiosyncratic noise (W 1
t )t≥0 of (Xt)t≥0

(1.1) will ignore the conditional dependence on ω0 ∈ Ω0, in the sense that the Cameron-
Martin perturbations are solely against the Brownian motion that is not being conditioned
upon. Thus, the result follows promptly from the same arguments as in [8, Theorem
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3.4] and [6, Proposition 3.1]. Methodologically: via a Picard iteration argument build a
convenient sequence of standard SDEs that converges to the McKean-Vlasov SDE, apply
a suitable Malliavin differentiability result for regular SDEs [9] to the sequence and then
pass to limit using the closedness of the Malliavin operator [11, Lemma 1.2.3].

4 Conditional integration by parts formula

For a random variable η, we write [η] as its law. For convenience, denote the

solution to (1.1) as (X [ξ]
t )t≥0 to highlight the distribution of ξ, and, for each t ≥ 0, write

µξ
t := Law(X

[ξ]
t (ω0, ·)). Consider the decoupled SDE associated with (1.1):

dX
x,[ξ]
t = b

(
t,X

x,[ξ]
t , µξ

t

)
dt+ σ0

(
t,X

x,[ξ]
t , µξ

t

)
dW 0

t + σ1
(
t,X

x,[ξ]
t , µξ

t

)
dW 1

t , t > 0, (4.1)

with the initial value X
x,[ξ]
0 = x ∈ Rd. The SDE above is a standard one with random

coefficients and is related but decoupled from (1.1) since the measure term is exogenous
(and also independent of x). Its well-posedness follows from [12, Theorem 3.1.1],
observing the integrability of the maps t 7→ b(t, 0, µξ

t ) and t 7→ σl(t, 0, µξ
t ), l = 0, 1. Results

regarding the first variation process with respect to the initial condition follow the almost
identical formulation as the unconditional McKean-Vlasov SDE, as presented in [6]. We
state these for completeness.

Lemma 4.1. Let (H1) and (H2) hold. Then, the map Rd 3 x 7→ X
x,[ξ]
· ∈ L2(CT ,P) is

P-a.s. continuously differentiable and wx
t := (∇X

·,[ξ]
t )(x) satisfies the affine SDE: for any

0 ≤ s ≤ t ≤ T ,

wx
t = Id×d +

∫ t

s

∇b(r, ·, µξ
r)(X

x,[ξ]
r )wx

rdr +

∫ t

s

∇σ0(r, ·, µξ
r)(X

x,[ξ]
r )wx

rdW
0
r (4.2)

+

∫ t

s

∇σ1(r, ·, µξ
r)(X

x,[ξ]
r )wx

rdW
1
r .

Proof. Given Xx,[ξ] and µξ, and knowing ∇b,∇σ0,∇σ1 are uniformly bounded, then the
linear SDE (4.2) is well-posed; see e.g. [12, 9]. For the differentiability statement, recall
that the measure component in (4.1) is independent of the spatial variable x and is
exogenous given with good integrability properties (Theorem 2.2). The differentiability
of x 7→ Xx,[ξ] follows as a particular case of the results from [9]. Refer to [5, Theorem
5.29], which discusses differentiability in a decoupled McKean-Vlasov FBSDE case.

Comparing the SDE in Theorem 3.4 with the SDE (4.2), we note that these are the
same type affine SDEs but with different dimensions and initial conditions. Working
under the (uniform ellipticity) assumption that there exists some δ > 0 such that for all
ζ ∈ Rd and (t, x, µ) ∈ [0, T ]×Rd×P2(R

d), ζ>((σ1(σ1)>)(t, x, µ))ζ ≥ δ|ζ|2, one establishes,
exactly as in [6, Proposition 4.1], the following integration by parts formula. Let f ∈
C∞

b (Rd) and Φ : [0, T ] × Rd × P2(R
d) → D1,2 be a map whose measure derivative and

spatial derivative maps are L1-integrable and of linear growth. Then it holds that

E1
[
∇f(X

·,[ξ]
t )(x)Φ(t, x, [ξ])

]
=

1

t
E1

[
f(X

x,[ξ]
t )δ1

(
r 7→ g(r)>Φ(t, x, [ξ])

)]
,

where g(r) := ((σ1)>(σ1(σ1)>)−1)(r,X
x,[ξ]
r , µξ

r)(∇X
·,[ξ]
r )(x) and δ1 is the Skorokhod oper-

ator with respect to the idiosyncratic Brownian motion.

More of interest is an integration by parts formula for Equation (1.1) with respect to
the measure variable. We first need the following lemma.
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Lemma 4.2. Under (H1) and (H2), there exists a modification of X [ξ]
t such that the

map L2(Ω) 3 ξ 7→ Xξ
· ∈ L2(CT ,P) is P-a.s. Fréchet differentiable in L2(Ω). Hence ∂µX

[ξ]
t

exists and for v ∈ Rd, Γξ
t (v) := ∂µX

[ξ]
t (v) satisfies the dynamics:

Γξ
t (v) = Ψt(X) +

∫ t

0

(
∇b(r, ·, µξ

r)(X
[ξ]
r )Γξ

r(v) + E
1
[
∂µb(r, η)(X

[ξ]
r )Γξ

r(v)
]∣∣∣

η=(X
[ξ]
r ,µξ

r)

)
dr

+

∫ t

0

(
∇σ0(r, ·, µξ

r)(X
[ξ]
r )Γξ

r(v) + E
1
[
∂µσ

0(r, η)(X [ξ]
r )Γξ

r(v)
]∣∣∣

η=(X
[ξ]
r ,µξ

r)

)
dW 0

r

+

∫ t

0

(
∇σ1(r, ·, µξ

r)(X
[ξ]
r )Γξ

r(v) + E
1
[
∂µσ

1(r, η)(X [ξ]
r )Γξ

r(v)
]∣∣∣

η=(X
[ξ]
r ,µξ

r)

)
dW 1

r , (4.3)

where setting Ξr := (r,X
[ξ]
r , µξ

r) for r ≥ 0 we have

Ψt(X) : =

∫ t

0

∂µb(Ξr)(X
v,[ξ]
r )∇xX

v,[ξ]
r dr +

∫ t

0

∂µσ
0(Ξr)(X

v,[ξ]
r )∇xX

v,[ξ]
r dW 0

r

+

∫ t

0

∂µσ
1(Ξr)(X

v,[ξ]
r )∇xX

v,[ξ]
r dW 1

r .

Proof. See [15, Lemma 3.5] and replace their Λµ
t by Λ̃ξ

t := [ξ] ◦ (E
[
X

x,[ξ]
t |F0

t

]
)−1, yielding

their “image-dependent SDE”. See also [5, Lemma 5.27].

We now state the below integration by parts formula that is not covered by [15].

Lemma 4.3. Assume that (H1) and (H2) hold. Suppose further that there exists some δ >

0 such that ζ>((σ0(σ0)>)(t, x, µ))ζ ≥ δ|ζ|2 for all ζ ∈ Rd and (t, x, µ) ∈ [0, T ]×Rd×P2(R
d).

Then, there exists an h ∈ H (given explicitly in the proof) such that the following
integration by parts formula holds: for v ∈ Rd and f ∈ C2

b (R
d),

E1
[
∂µ(f(X

[ξ]
t ))(v)

]
=

1

t
E1

[
f(X

[ξ]
t )δ0

(
r 7→ h(r, v)>

) ]
.

where δ0 denotes the Skorokhod operator with respect to the common Brownian motion;
the L2-adjoint to the Malliavin divergence.

Proof. Compare (3.3) and (4.3): these equations are driven by the same dynamics but
with different dimensions and initial conditions. Arguing as in [6], we have, with Ψt(X)

as above, the P-a.s. representation1

∂µX
[ξ]
t (v) = D0

rX
[ξ]
t h(r, v),

where

h(r, v) :=
(
(σ0)>(σ0(σ0)>)−1

)
(r,X [ξ]

r , µξ
r)
{
Ψt(X)−Ψr(X) + ∂µX

[ξ]
r (v)

}
.

1From (4.3), it is easy to see that Γξ
· (v) can be written with the help of Ψ·(X)

Γξ
t (v) = Γξ

r(v) + Ψt(X)−Ψr(X) +

∫ t

r
· · · “extra terms” · · · .

For the relationship between ∂µX
ξ
t (v) and Γξ

t (v), we formally multiply ((σ0(σ0)>)−1)(r)
(
Γξ
r(v) + Ψt(X)−

Ψr(X)
)
on both sides of (3.3) but as the term is not adapted it cannot be moved inside the stochastic integrals.

Thus, methodologically, the relations between ∂µX
ξ
t (v) and Γξ

t (v) does not follow via strong uniqueness.
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Uniform boundedness of ∂µ
(
f(X

[ξ]
t )

)
follows from [5, Theo. 5.29]. Thus, Malliavin

integration by parts implies that for v ∈ Rd

E1
[
∂µ

(
f(X

[ξ]
t )

)
(v)

]
=

1

t
E1

[ ∫ t

0

D0
rX

[ξ]
t h(r)(∇f)(X

[ξ]
t )dr

]
=

1

t
E1

[ ∫ t

0

h(r)>D0
rf(X

[ξ]
t )dr

]
=

1

t
E1

[
f(X

[ξ]
t )δ0

(
r 7→ h(r, v)>

)]
.
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