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In contrast to the existing literature, the underlying drift term is much more
general and of polynomial growth with respect to the state variable. In addition,

II\{/Ii@;(i(;Zﬁlllasov SDEs with common the idiosyncratic noise is allowed to be of multiplicative type. Most importantly, the
noise theory derived indicates that both the common noise and the idiosyncratic noise
Long time behavior facilitate the exponential ergodicity of the associated measure-valued processes.

Exponential ergodicity © 2025 Elsevier Inc. All rights are reserved, including those for text and data
Asymptotic coupling by reflection mining, Al training, and similar technologies.

1. Introduction and main result
1.1. Background

Consider a mean-field game model with N particles evolving in R¢:

dX} = b(X}, pM)dt + o( X}, aN)dB!, i€ Sy:={l,---,N}, (1.1)
where 7i" := % Z;VZI dx; and BY = (B} )i>0, BY := (B])>0 are mutually independent d-dimensional
Brownian motions on a complete filtered probability space. In (1.12), (B!,---, BY) is referred to as an

idiosyncratic noise. Under appropriate assumptions (e.g., the distribution of the initial particles is ex-
changeable), the classical theory on propagation of chaos (see e.g. [43]) demonstrates that all individual
particles become asymptotically independent when N — oo. So, the random probability measure i)Y con-
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verges to a deterministic distribution and the resulting state of a single particle is described by the following
McKean-Vlasov SDE:

dXt = b(Xt,,LLt)dt-f—U(Xt,,LLt)dBt, (12)

where p; = Lx, stands for the law of X;, and (B;):>0 is a d-dimensional Brownian motion. Initially,
the McKean-Vlasov SDE (1.2) was introduced to explore nonlinear Fokker-Planck equations (FPEs for
brevity) based on Kac’s foundations of kinetic theory [27]. So far, it has been applied widely in various
fields (e.g., stochastic control, mean-field games, and mathematical finance) [6]. In the past few decades,
as far as McKean-Vlasov SDEs are concerned, significant advancements have been made on behaviors in
a finite-time horizon (e.g. strong/weak well-posedness [12,23,26,48] and numerical approximations [13,14]),
and long-time asymptotics (e.g. ergodicity [5,16,32,46,47] and uniform-in-time propagation of chaos (PoC
for abbreviation) [8,15,22,21,40]).

Nevertheless, in some circumstances, the individual particles involved in a mean-field game model are
subject to not only idiosyncratic noises but also random shocks, which are common to all particles. On
this occasion, the evolution of underlying particles cannot be modelled by (1.12) any more, and, in turn, is
characterized by the following mean-field SDEs:

AX; = b(X, At + o(X], A )dB] + o0 (X], AN )AW; i€ Sy, (1.3)

where the quantities (b,0,7i) and (B',---,BY) are defined exactly as in (1.12), and (W;)i>o is a d-
dimensional Brownian motion. In (1.3), (BY,---, B") is also called an idiosyncratic noise (or individual
noise) as in (1.12), and (W;)¢>o is named as a common noise, which accounts for the common environment
associated with all particles. In the aforementioned setting, all particles are not asymptotically independent
any more and the random empirical measure no longer converges to a deterministic distribution as the par-
ticle number goes to infinity. Whereas, under suitable conditions, the phenomenon on conditional PoC (see
e.g. [7, Theorem 2.12]) illustrates that all particles are asymptotically independent and the corresponding
empirical distribution converges to the common conditional distribution of each particle conditioned on the
o-algebra generated by the common noise. Moreover, the subsequent limiting state of each particle can be
governed by the McKean-Vlasov SDE with common noise:

dXy = b(Xy, pe)dt + o (X, e )dBy + 00(Xy, pe) AW, (1.4)

where ji; := Ly, zw (the conditional distribution given the o-algebra FNV = o{W, 5 <t}); (By)i>0 and
(Wi)i>0 are mutually independent d-dimensional Brownian motions. In literature, McKean-Vlasov SDEs
with common noise are also termed as conditional McKean-Vlasov SDEs (see e.g. [7, Chapter 2]). So far,
they have been applied considerably in stochastic optimal control and mean-field games [7,38], and inter-
bank borrowing and lending systems [3,31], to name just a few. In fact, the conditional McKean-Vlasov
SDE (1.4) arises from many practical applications as shown in e.g. [37,45]. In detail, in order to construct
diffusion processes generated by second-order differentiable operators on the Wasserstein space, Wang [45]
introduced an image dependent SDEs, which can indeed be reformulated as a special conditional McKean-
Vlasov SDE (with o = 0 in (1.4)). Moreover, in [37] the authors explored a mean-field game problem with N
players in a random environment, which is delineated by a continuous-time Markov chain in lieu of the usual
diffusions. In particular, they confirmed that the associated mean-field limiting process solves a conditional
McKean-Vlasov SDE, in which the Markov chain involved acts as a common noise.

In contrast to classical McKean-Vlasov SDEs, the research on McKean-Vlasov SDEs with common noise
is not too rich. Yet, in the past few years, there are still some progresses on qualitative and quantitative
analyses; see, for example, [4,24,41] on well-posedness, and [7,9,17,25,41] concerned with conditional PoC in
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finite time. According to [7, p. 110-112], the random distribution flow ()¢~ corresponding to (1.3) solves
the nonlinear FPE:

dp; = ( — div(b(-, pe)pe) + %trace(VQ((UU*)(~7ut)ut))) dt — div( (oo (-, e )dWe) e, (1.5)

which is understood in the weak sense. With regard to well-posedness of (1.5), we refer to e.g. [10,18,
33] and references within. Recently, via establishing the superposition principle, [30] built a one-to-one
correspondence between the conditional McKean-Vlasov SDE (1.4) and the stochastic FPE (1.5). Moreover,
the stochastic PDE (1.5) is also linked closely to the stochastic scalar conservation laws; see e.g. [10,
Appendix] for further details. Additionally, we also would like to mention [11], where, concerning first-
order scalar conservation laws with stochastic forcing, Freidlin—-Wentzell-type large deviation principles
were explored. Based on the viewpoints in [10,30], the research on the long-time behavior of the random
distribution flow corresponding to (1.4) amounts to the investigation on long-term asymptotics of certain
kinds of stochastic FPEs or stochastic scalar conservation laws.

No matter what the conditional McKean-Vlasov SDE (1.4) or the nonlinecar FPE (1.5), most of the
existing literature (mentioned above) focuses on finite-time behaviors (e.g. well-posedness and conditional
PoC in finite time). Nevertheless, the asymptotic analysis in an infinite-time horizon is extremely rare. By
comparing (1.2) with (1.4), one of remarkable distinctness between them lies in that the deterministic flow
(ut)t>o in (1.2) satisfies a deterministic nonlinear FPE whereas the random counterpart in (1.4) fulfils a
stochastic nonlinear FPE. This essential discrepancy brings about major challenges to tackle the long-time
behavior of the measure-valued process (1;)¢~¢ solving (1.5).

Concerning (1.4) with ¢ = 0, [45] treated exponential ergodicity of the Markov process (X, fu)i>0
provided that the drift b is globally dissipative with respect to the state variable. Furthermore, as for a
special form of (1.4) (or (1.5)), [36] handled the long-term asymptotics of the conditional McKean-Vlasov
SDE on R:

dX,; = — (V’(Xt) + / W'(X; — y),ut(dy)> dt + odB; + oodW5, (1.6)
R

where p; 1= Ly, z0, 0,00 € R, and, (B;);>0 and (W});>0 are independent 1-dimensional Brownian mo-
tions. By designing a reflection coupling, exponential ergodicity of the measure-valued process (p)¢>o was
investigated in [36] under L!'-Wasserstein distance. Herein, we would like to stress that V’ and W' in (1.6)
are set to be globally Lipschitz, and moreover that the initial distribution of X is supposed to possess a
finite fourth-order moment. In fact, it is quite natural to assume that the initial distribution has a finite
first-order moment once the L'-Wasserstein ergodicity of (11¢)¢>o is discussed. Hence, the confinement on
a finite fourth-order moment concerning the initial distribution is a little bit strict. As revealed in [36],
the common noise is beneficial to ergodicity and restoration of uniqueness for invariant probability mea-
sures whenever the intensity of the idiosyncratic noise is small enough. In addition, in [36] the synchronous
coupling was applied to the idiosyncratic noise so no contributions were made to investigate the ergodic
behavior of (u:):>0 even though the intensity of the idiosyncratic noise is big enough.

1.2. Main result

Inspired by the aforementioned literature, in the present work, we make an attempt to investigate er-
godicity of the measure-valued process (u¢)i>o associated with the following conditional McKean-Vlasov
SDE:

dXt = b(Xt,ut) dt—|—O'(Xt)dBt+0'0 th (17)



4 J. Bao, J. Wang / J. Math. Anal. Appl. 552 (2025) 129819

Herein,
b:R ZA(R) >R, oc:R—>R, o09€R,

where Z(R) is the family of probability measures on R; (By);>0 and (Wy);>0 are mutually independent
1-dimensional Brownian motions, where the corresponding probability spaces will be specified explicitly
later; py == Ly, zw is the regular conditional distribution of X; given the o-algebra ZW . Throughout
the paper, we assume that (W,;);>o is the solely common source of noise (that is, the initial value X is
excluded).

Regarding the L!-Wasserstein ergodicity of the measure-valued Markov process (pt)¢~o corresponding to

(1.7), we aim to

o allow the drift b to be much more general (rather than the mere convolution form) and of polynomial
growth, and permit specifically the idiosyncratic noise to be of multiplicative type;

e permit the initial distribution to admit a finite first-order moment instead of a higher-order one;

o establish a novel asymptotic coupling by reflection, which is not only applied to the common noise part
but also to the idiosyncratic noise, so that the idiosyncratic noise can also make contributions to the
ergodic behavior of (u¢)¢>o-

The preceding highlights are the important source impelling us to carry out the present work and can also
be regarded as the main contributions of the whole paper.

To proceed, we introduce the underlying probability space we are going to work on, and some notations
involved in the subsequent analysis. Let (Q!, Z1, (Z#});>0,P1) and (Q°, Z°, (Z)i>0,P?) be complete fil-
tered probability spaces, where 1-dimensional Brownian motions (By);>o and (Wy);>0, given in (1.7), are
supported respectively on. In the whole paper, we shall focus on the product probability space (2, %, F,P),
where  := Q% x Q! (Z,P) is the completion of (#° ® #! P’ @ P!), and F is the complete and right-
continuous augmentation of (# ® .%})i>¢. Set for p > 0,

2y i= {u e 2@ (1) = [ lePutan) <o f.

Under the LP-Wasserstein distance:

vp
W, (1, v) = inf / |z — y|Pr(dz, dy) p, p,v € Zy(RY), (1.8)
TEE (1,v) RdxRd

where €(11, ) denotes the set of couplings for p and v, (Z2,(R%), W,) is a Polish space.
Below, we shall assume that

(Hp1) b(-,00) is continuous and locally bounded on R, and there exist constants A1, Az, Az > 0 and ¢y > 1
such that for all x,y € R and p,v € P1(R),

2(x —y) (b(x, ) — b(y, 1)) < (A1 + A2)|@ = yIPLqjamyi<eoy — Aolz — yl?, (1.9)
and

b, 1) — bla,v)| < As Wi (u, ). (1.10)

(Hp2) for any conditionally independent and identically distributed (X})1<i<n under the filtration FWV

)

there exists a function ¢ : [0,00) — [0,00) satisfying lim, o ©(r) = 0 such that for any N > 1,
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max supE[b(X{, ut) — b(X[, il )] < o(N), (1.11)
SiSN >0

i ~N,i ., _ 1 N
where i == Lxjjzw and [iy " = 55 30 s O
(H,) there exist constants Ly, Ko 1,kq,2 > 0 such that for all x,y € R,

lo(z) —o(y)| < Lolz —y| and  kon < 0(2)? < Kop.

In recent years, strong well-posedness of conditional McKean-Vlasov SDEs has been treated in various
scenarios in case the drift and diffusion terms are continuous in the measure argument under the L2-
Wasserstein distance; see e.g. [7, Proposition 2.8] and [29, Theorem 2.1]. Under (Hy 1) and (H,), via the
fixed point iteration method adopted in [29, Theorem 2.1], the SDE (1.7) is strongly well-posed even for
the multidimensional setting (i.e., d > 2), where the drift term involved is uniformly continuous under the
L'-Wasserstein distance.

Below, we make some comments concerned with Assumptions (Hp 1), (Hp2) and (H,).

Remark 1.1. (1.9) and (1.10) show respectively that b is dissipative in long distance with respect to the state
variable, and uniformly (with respect to the state variable) continuous in the measure variable under the
L'-Wasserstein distance. Below, we provide an example to demonstrate that (Hy 1) is valid. Set for some
constant a > 0,

b(x, p) =z —2® +a/ zp(dz), zeR,pe P1(R).
R

It is easy to see that for any z,y € R and u € 1 (R),

(z —y)(b(x, ) — by, ) = (z —y)* (1 — (2% + 2y + 7).

Whence, (1.9) follows readily. On the other hand, for any = € R and u,v € Z2;(R),

|b(x, u) — b(z,v)| < a/ |21 — 2o|m(dz1, d22), (1.12)
RxR

where m € €(u,v). As a result, by taking the infimum over all couplings 7 on both sides of (1.12), (1.10) is
available right now. Another example is taken from in [36], where b is given as below:

b, 1) = —V'() - /R W'(e - yu(dy), =R, e P (R).

Here, V/, W' are Lipschitz continuous with Lipschitz constants Ly and Ly respectively, and V' is dissipative
in long distance (see [36, Assumption (Al)]). Then, by following the arguments above, one can see that
Assumption (Hy 1) is fulfilled for the drift b(x, u) defined above when Ly, is small (which is also required
in the main result [36, Theorem 2]). In this sense, the framework of the present paper is much more general
than [36]; see Remark 3.6 below for further comments. (Hy 1) and (Hjp2) together will be used in handling
the asymptotic PoC in an infinite-time horizon (see Proposition 3.3 below for more details). In particular,

(H,2) is valid when b is of convolution type; that is, b(z, ) = / bo(z—y) p(dy) for all z € R and p € 1 (R)

R
with some Lipschitz continuous function by : R — R. See Lemma 4.1 in the Appendix for more details.
Furthermore, the non-degenerate property of o plays a crucial role in constructing the asymptotic coupling
by reflection, as stated in the second paragraph of Section 3. For example, (H,) holds true obviously for

o(x) = fi—m,x e R.
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Before we present the main result, we introduce some additional notation. Let for p > 1,

L@ ®h) = {ne 2@ : [ vl ) <o
and

Wp(p,v) == inf

/ W, (i, 7) (dfi, dv), v € Ly(P(R)).
TE€E (1,v) J (RA)x 2 (R4)

The main result in this paper is stated as follows.

Theorem 1.2. Assume that (Hy 1), (Hp2) and (H,) hold. Then, there exist positive constants C, Xy and \j
such that for any t > 0 and p,v € 1 (R),

Wi (s, 1) < Ce ™ 0 Wy (, v) (1.13)

provided that A3 in (Hy1) satisfies A3 € (0, A3], where py 1= Lx, | gw and vy == ZLx, gw stand for the
reqular conditional distributions of Xy, determined by (1.7), with the initial distributions Lx, = u and
Lx, = v respectively; and Az > 0 is the Lipschitz constant of b(x, i) with respect to the measure variable,
given in (1.10).

Like the setting concerned with classical McKean-Vlasov SDEs, Theorem 1.2 indicates that there is a
unique invariant probability measure (IPM for short) for the McKean-Vlasov SDE with common noise (1.7)
if the mean-field interaction is not too strong. Indeed, concerning McKean-Vlasov SDEs with common noise,
an interesting phenomenon (that is, restoration of uniqueness for IPMs) emerges due to the introduction of
common noise; see, for example, [36]. So, in some sense, the common noise would play a positive impact on
the long-time behaviors of McKean-Vlasov SDEs with common noise.

In the sequel, let’s explain the roles of the common noise and the idiosyncratic noise via the estimate
for the convergence rate A\§ > 0 given in (1.13). That is, Theorem 1.2 will further demonstrate in a more
convincing way the impact of the common noise.

Remark 1.3. By tracking proofs of Proposition 3.3 and Theorem 1.2 below, A§ given in (1.13) can be
calculated explicitly; see, in particular, (3.7). In Remark 3.4 below, it will be stressed once more that the
non-degeneracy of og and o will facilitate the exponential ergodicity presented in (1.13). Furthermore, it
is easily seen from (3.7) that the smaller ¢y or the larger \s, introduced in (1.9), yields a faster convergence
rate in (1.13). Nevertheless, the larger A;, given in (1.9), deteriorates the convergence rate.

Next, we make an explanation on the alternative of the initial value Xjg.

Remark 1.4. In the present paper, to emphasize that the noise (W;);>0 is the unique common noise, the
initial value X, is set to be supported on the probability space (2!, . Z4,P!). This results in that Wy (u, )
rather than Wy (i1, v) appears on the right hand side of (1.13). When (i) X is defined on (Q°, %, P) (so
Xo = XQ), and (ii) Xy is measurable with respect to o(XJ, X}) with X9 and X{ being defined respectively on
(Q0, 20, PO and (Q, FP, P1), u; is a version of the conditional law of X; given the o-algebra o (X, Wy, s <
t); see e.g. [7, Remark 2.10] for more discussions on various choices of the initial value associated with
McKean-Vlasov SDEs with common noise. For the case (i), (Xo, W) is called the “initial condition-common
noise”; regarding the setting (ii), (X§, W) plays the role of systemic noise. As far as the cases (i) and (ii)
are concerned, the quantity Wi (u, ) on the right hand side of (1.13) can be replaced by Wy (u, v) so (1.13)
can be written in a symmetric form, i.e., Wy (pu, ;) < Ce=20*W; (u, v) for some constants C, Ay > 0.
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To investigate ergodicity of classical McKean-Vlasov SDEs, which are strongly well-posed, one usually
makes very well use of their decoupled versions. However, this routine does not work for the McKean-
Vlasov SDEs with common noise due to the essentially different roles played by the common noise and the
idiosyncratic noise. Instead, we turn to work with the non-interacting particle system and the corresponding
interacting particle system to explore the long-time behaviors of (1.7).

The detailed comparisons between Theorem 1.2 and the counterpart in [36, Section 4] are to be presented
in Remark 3.6. Presently, one might be a little bit confused why we are confined to the 1-dimensional SDE
(1.7) rather than the associated multi-dimensional version. From now on, we go into detail about the
corresponding explanations.

Remark 1.5. Unsatisfactorily, Theorem 1.2 is concerned merely with a kind of 1-dimensional McKean-Vlasov
SDEs with common noise. In terms of Proposition 2.4, we can indeed derive via the asymptotic coupling
by reflection the associated coupling process for the multi-dimensional McKean-Vlasov SDEs with common
noise. Whereas, for the dimension d > 2, the asymptotic coupling by reflection constructed in Subsection 2.2
is determined by the average difference between the component processes (see Remark 3.7 below for more

details). With such a construction at hand, one can derive only an estimate on the quantity E[XY — X V|

provided that b enjoys a very special structure. Hereinbefore, X—iv (resp. XiV’N) indicates the arithmetic
mean of the non-interacting particles (resp. interacting particles). Furthermore, by following the line in [36,
Section 5], to achieve the main result in Theorem 1.2 for the high dimensional setting, one needs to quantify
the difference between each component of the interacting particle system and its averaged process. To this
end, a very strict condition (i.e., o = 0) has to be imposed. When the idiosyncratic noise vanishes (that is,
the McKean-Vlasov SDE under consideration is driven merely by common noise), the corresponding issue
has been treated in [36, Section 5]. On the other hand, one can apply directly the synchronous coupling and
bypass the aforementioned obstacles as long as the coefficients corresponding to the McKean-Vlasov SDEs
with common noise are dissipative; see [36, Section 3] for further details. More interpretations related to
the restriction on the dimension d = 1 will be further elaborated in Remark 2.7 and Remark 3.7.

The rest of this paper is arranged as follows. In Section 2, we address the issue on conditional PoC in a
finite-time horizon for McKean-Vlasov SDEs with common noise, and construct via an asymptotic coupling
by reflection the coupling process for the associated non-interacting particle system and the interacting
particle system. Section 3 is devoted to the proof of Theorem 1.2, which is based on the uniform-in-time
PoC for the conditional McKean-Vlasov SDE (1.7).

2. Preliminaries

Let (B})t>0 and (B})i>0 be d-dimensional Brownian motions defined on (Q', ! (#!);>0,P!), and
(Wi)i>0 a d-dimensional Brownian motion supported on (Q°, 7% (Z#2);>0,P?). Write E, E® and E! as
the expectation operators under P := P% x P!, P® and P!, respectively. In this section, we focus on the
McKean-Vlasov SDE with common noise in the following form:

dX; = b(Xs, e )dt 4+ 01d B} + 7(X;)dB? + oodW, (2.1)
where u; := gxt‘gtw, 00,01 € R,
b:RYx Z(RY) - RY :R?T = RY@RY

and the initial value X, is an .#}-measurable random variable. As the chapter unfolds, the reason why we
prefer the SDE formulated in the framework (2.1) will become more and more transparent; see, in particular,
the introductory part of Section 3 for more details.
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In this section, we suppose that

(Ap) b(-,60) : RY — R is continuous and locally bounded on R?, and there exist constants Ly, Ly > 0 such
that for all z,y € R and p,v € 2 (R%),

2z —y,b(z, 1) — by, p)) < Lalz —y|?, (2.2)

and
[b(2, 1) = b, v)| < Ly Wi (u, v); (2.3)
(Az) there exists a constant Lz > 0 such that
[7() = 7(y)lus < Lsle —yl, ,y € RY, (2.4)
where || - ||lus means the Hilbert-Schmidt norm.

Under (Ap) and (Az), note that for all z,y € R? and p,v € 2, (R?),

2(x —y,b(x, p) — by, v)) < La(lz — yl + Wi(p, v))|z - yl, (2.5)

where Ly := max{Lj,2Ls}. Then, the SDE (2.1) has a unique strong solution; see, for instance, the proof
of [29, Theorem 2.1] for related details.

To handle the issue on PoC concerned with (2.1), we consider the non-interacting particle system and
the interacting particle system associated with (2.1): for any i € Sy,

AX} = b(X}, pd)dt + o1dBy" + 7(X)AB" + ogd W, (2.6)
and
dX;N = (XN YAt + o1d B+ F(XPY)ABE + ood W (2.7)

Herein, ! := ZLxi 17w and Y=+ Z;vzl 5th,N; ((B}")i>0)iesy and ((Bf’i)tzo)iesN are mutually indepen-
dent d-dimensional Brownian motions on (Q, !, (Z!)i>0, P1); (Wi)i>0, carried on (20,70, (#2)i>0, PY),
is kept untouched as in (2.1). In addition, throughout this section, we assume that (X¢, XS’N)ieSN are i.i.d.
Zd-measurable random variables. Note that (2.7) can be reformulated as a classical (R%)"-valued SDE,
where the corresponding coefficients satisfy the locally weak monotonicity and the globally weak coercivity
once (Ap) and (Az) are available. Thus, (2.7) is strongly well-posed; see, for instance, e.g. [39, Theorem
3.1.1].
To proceed, we make some comments concerning Assumptions (Aj) and (Az).

Remark 2.1. In the following subsection, we are concerned merely with behaviors of the SDE (2.1) in a
finite horizon. For this, the one-sided Lipschitz condition (2.2) is enough. That is, the dissipativity in long
distance (see in particular (1.9)), which is dedicated to the long-term analysis, is unnecessary. In addition,
whether o1, @ and o( are degenerate or not does not have impact on the subsequent analysis. Nevertheless,
the non-degeneracy of o1 and oq is indispensable as far as the establishment of long-time behaviors is
concerned.
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2.1. Conditional PoC in finite time

In the past few years, there are some progresses on the issue of PoC for conditional McKean-Vlasov SDEs;
see, for example, [7, Theorem 2.12] and [25, Theorem 2.3], where the coefficients are Lipschitz continuous
with respect to the state variable, and [29, Proposition 2.1], in which the coefficients satisfy the monotone
condition. It is worthy to emphasize that, as for McKean-Vlasov SDEs with common noise investigated
in [7,29,25], the coefficients are L2-Wasserstein Lipschitz continuous with respect to the measure variable.
Yet, in the present paper, the drift part of the conditional McKean-Vlasov SDE we are interested in is
L'-Wasserstein Lipschitz continuous. In addition, by invoking [19, Theorem 1], the convergence rate of
conditional propagation of chaos was provided in [7,29,25] once the initial distribution enjoys the high-order
moment. Whereas, for our purpose, the quantitative convergence rate of conditional PoC is unnecessary so
the high-order moment of the initial distribution is dispensable as shown in the following proposition.

Concerning the McKean-Vlasov SDE with common noise (2.1), the following proposition addresses PoC
in a finite horizon.

Proposition 2.2. Consider the SDEs (2.6) and (2.7) with X;™ = X} for alli € Sy. Assume (Ay) and (Az),
and suppose further E|X}| < oco. Then, for each givent >0 and any i € Sy,

N—oo
where i = Lxijgw and RS Zjvzl Oxi, and

lim E|X; — XN =o0. (2.9)

N —o0

Proof. The proof is split into two parts.
(i) First of all, we show that for each given ¢ > 0 and i € Sy,

. 1 ¢ o
E|Z{N| < 5 Latet /20 /0 EW, (41}, i) ds, (2.10)

where Z/'N .= Xi — X} and L4 was given in (2.5). Once (2.10) is verifiable, by Fatou’s lemma, we deduce
that

. 1 ¢ .
limsup E|ZV| < —L4te(L4+L§/2)tlimsup/ EW, (pi, i) ds
N—oo 2 N— o0 0

1 ‘ o
< —L4te(L4+L§/2)t/ limsupEWl(uls,uiy)ds.
2 0 N—oco

Consequently, (2.9) follows by taking (2.8) into consideration.
In the sequel, we shall fix the index ¢ € Sy. For any 6 € (0, 1], define the function Vs by

Vs:RT =Ry, Vs(z)=(6+ 2|2, zeRY (2.11)
which is a smooth approximation of the function R? > z + |z|. It is ready to see that

B rQx
Vs(x)3’

1
VVs(z) = V;(”I) and  V2Vj(z) = el zeRY, (2.12)

where @z € RY@R? with entries (x®x);,; = xix;, and I means the d x d-identity matrix. Then, applying
Itd’s formula, we deduce from (2.4) and (2.5) that
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dvs(z™) = <VVa(Zi’N) b(XT, up) — b(XPN, ) )de
+5 <V2 Zy™), (@(X]) = a(X; ™)) (@ (X)) = F(XN)) ") ygdt + dM]

Zi,N ; . ;
N (tZJV) (s + IDIZE™| + LW, 7)) dt + A0
o\ 4

IN

IN

1 i i~ i

5 (L + LDIZEN |+ LaWa (i, ) ) dt + M7,
where

dM; = (VVs(ZPY), (3(X)) —a(xY))dB).

Thus, via Fatou’s lemma, in addition to X} = X", we have

) 1 [t , o
BIZN| <5 [ (Lo LDEIZEY| + LEW: (7)) ds. (2.13)
0
Note from the triangle inequality that

i~ N
< Wi (ug, fir ) + NZ\ZJ

Whence, since (X7, X;™);cs, are identically distributed (see e.g. [7, p. 122-123]) by recalling that
(X¢§, XS’N)ieSN are i.i.d. F¢-measurable random variables, we derive from (2.13) that

, 1 [t . .
BIZEY| < 3 [ (RLa+ IBIZI™ |+ LEV (i, ) ds

Accordingly, (2.10) follows from Gronwall’s inequality.
(ii) Next, we prove (2.8). We firstly verify that there exists a constant ¢y > 0 such that for all i € Sy
and all t > 0,
E|X;| < (14 cot + E|X{|)e®". (2.14)

Indeed, applying Itd’s formula to the function Vi, defined in (2.11) with 6 = 1, and taking advantage of
(2.12) with § = 1, we infer from (2.4), (2.5) and V; > 1 that for some constant ¢; > 0,

1 (x Lot 1 — (i —i
< Vi (X)) (<Xta b(X¢, pt)) + 3 ((Uf +od)d+ ||0(Xt)||%{s))dt + dM,
< e (14 |X{] + (|- ) dt + dITy,
where
AN, = (VVi(X}), 1B + 5(X))ABE + oodIVy).

Thus, by invoking the fact that
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E°pi(| - ) = E* (B (1X;]| #Y)) = EIX{],

we conclude that
E|X;| <1+E|X}|+ 2c1/ (1+E|X:|)ds.
0

Therefore, (2.14) is attainable by applying Gronwall’s inequality.
With (2.14) at hand, we proceed to prove (2.8). Since, P%-almost surely, i)Y converges weakly to p, and

P Jim (D) = pi(l D) =1

N—o0

by means of the law of large numbers, [6, Theorem 5.5] yields P%-almost surely
P1< lim Wy (ui, i) = 0) =1
N —o0
Whereafter, owing to
Wi (s i) < pi(l - 1) + 17 (] -1)

and the fact that X} and th are identically distributed given the filtration .#"V | the dominated convergence
theorem yields that

]PO( lim E'W, (i, i) = o) =1
N—o0
Next, in the light of
E'Wi(u, i) < 2u5(] ) and  EWi (g, i7') = E° (B Wi (uy, 717))).

the verification (2.14) and the dominated convergence theorem enable us to derive (2.8). O

At the end of this part, we make a comment on Proposition 2.2.
Remark 2.3. The statement in Proposition 2.2 can be made quantitatively by applying [19, Theorem 1]
provided that the associated initial value has finite moment with order great than 1; see [2, Theorem 4.3]
for the recent study on this topic. Indeed, in this case the associated convergence rates can be established
exactly as those in [19, Theorem 1]. On the other hand, once (Aj;) is strengthened into a version, given
as in (1.9), and (Hpo) is further imposed, Proposition 3.3 below enables us to derive the uniform-in-time

conditional PoC. Indeed, Lemma 4.1 provides a sufficiency to guarantee (Hj3); see Section 3 for more
details.

2.2. Asymptotic coupling by reflection
For any € > 0, define the cut-off function h. by

0, r € [0,¢],
he(r)=q1—exp((r—e)/(r—2¢)), re€e2e), (2.15)
1, r > 2¢.
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Set for any = € R9,

T

n(a:) = m]l{a:;éO} + (L 0; e aO)T]l{xZO}a
where a' means the transpose of the d-dimensional row vector a. Below, let p : (RN — [0,00) and
¢ : (RHN — R?, where their precise expressions are unimportant in this subsection, and will be prescribed
explicitly in Section 3. Define for x := (z1,--- ,zn) € (RN and ¢ > 0,

I (x) := Ia = 2he(p(x))n(d(x)) @ n(P(x)). (2.16)

In particular, for the case d = 1, one has

IL (x) = 1 — 2h. (p(x)).

In order to investigate the issue on uniform-in-time PoC for the SDE (2.1), we construct the asymp-
totic coupling by reflection associated with the non-interacting particle system (2.6) and the corresponding
interacting particle system (2.7). More precisely, we build the following approximate interacting particle
systems: for i € Sy and € > 0,

dX} = b(X}, pd)dt + o1dB} 4+ 5(X})dB>" + ood Wy,
XN = BN i)t + oy (XY = XV N)ABY + 7 (X)) dB], (217)
—|—O’0H5(Xiv - Xi\/’N’E)th,

i,N,e __ WwN ~N,ge _ 1 N
where X" = Xg, Iy = D05 OxjiNe,
XN .— (x! XN XN:Ne . (xLNe X NN.e
t *( ts T t)a t *( t s TNy Ay )a

and (X¢, Xo™N)ies, are iid. .Z-measurable random variables.

To proceed, let’s say a few words on the construction in (2.17). Roughly speaking, for the additive common
noise and the idiosyncratic noise, we employ the asymptotic coupling by reflection. Nevertheless, regarding
the multiplicative noise, we exploit the synchronous coupling. The main thesis in this part is presented as
follows.

Proposition 2.4. Fiz N > 1 and T > 0. Let (X{§ 13, X537 )e0 = (XN )eerory, (X )eeor))eso be the
process determined by (2.17) such that the initial value (XY, X0"™N%).x0 satisfies all properties mentioned
above. Under (Ay) and (A7), (ngﬁT],ng’%’s)wo has a weakly convergent subsequence such that the corre-
sponding weak limit process is the coupling process of Xf&T] and ng:;\[], where X[Igéy] = (XiV’N)te[o)T] with

XiV,N — (th»N,... ,XtN’N) for any t > 0.

For fixed N > 1 and T > 0, we first show that (X[Ig’]TV}’E)DO owns a uniform moment in ¢, which plays a

crucial role in illustrating the tightness of (ng:%’s)wo.

Lemma 2.5. Let Assumptions (Ay) and (As) hold. Fix N > 1 and T > 0. Suppose further E|Xé’N| < 0.
Then, there is a constant Cp > 0 (which is independent of N) such that for any € > 0,

IE( sup |X§V’N’5|) < CrN(1+E|XEN). (2.18)
0<t<T
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Proof. Below, we fix the particle number N > 1 and a finite-time horizon T" > 0. It is easy to see from
he € [0,1] that for all x € (RY)Y

L (%) [s = d + 4he(p(x)) (he(p(x)) = 1) < d. (2.19)

Then, applying Itd’s formula to V7, introduced in (2.11) with § = 1, and making use of V; > 1, we deduce
from (2.2) and (2.4) (see also the arguments below (2.14)) that for some constant ¢; > 0,

1 ; i\Ne ~ i i
AVi (X ™7) € ———= (X 0(X0 5 000) + [5(X ) s + (08 + 07)d) dt + d; e
2Vi (X))
<er (T4 1X0™ +m05() - ])) dt + dd e,
where

AMPNE = (VX9 T (XY — X[ N%) (00d B + 00d W) + (XN 9)d B,
Define the stopping time for any integer n > 1,
=inf{t>0: |XNE| > n}.

Employing BDG’s inequality and taking (2.4) and (2.19) into consideration yields that for some constants
co,c3 > 0,

N = E( sup |X;"N’5|)

0<s<tATYE

t N
BN ratta [ (4 + NZ% ) as
0 :

tar-e ) 9 1/2
+CQ]E</ (14 |X2N2)) ds)
0
¢
1
<EXZN€ t ! zNe ,NE d i,N,e
X et [ (o) Z% s+ o),

where in the last inequality we used the fact that 2ab < n~'a? +nb?, a, b, > 0. This obviously implies that
for some constant ¢4 > 0,

N
Z%Ns <C4<E|X1N+t+ Z/ (s )

since (Xé’N’E)iESN = (Xé’N)iegN are i.i.d. .#4-measurable random variables. Hence, by applying Gronwall’s
inequality and Fatou’s lemma, there exists a constant C'}. > 0 such that

N
1 PN LN
—E ]E( su X0 ’E)SC* 1+ E|Xy .
Ni: OSt£T| t | T( ‘ 0 |)

Thus, the assertion (2.18) follows immediately by noting that
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N

IE( sup |XNN6|) SZE( sup |Xti’N’8|). O
0<t<T =1 0<t<T

Lemma 2.6. Let Assumptions (Ay) and (Az) hold. Fix N > 1 and T > 0. Suppose further IE|X&’N| < 0.
Then, (ng’jj\f]’s)oo is tight.

Proof. In the subsequent analysis, we shall fix N > 1 and T > 0. According to [1, Theorem 1], for the sake
of tightness of (X[0 ) “)e>0, it amounts to establishing that

(i) for each t € [0, 7], (X)"™'%).0 is tight;
(ii) XN’N ° — XN:N2 — 0 in probability as € — 0, where, for each ¢ > 0, 7. € [0,7] is a stopping time and
Je € [0 1] is a constant such that 6. — 0 as e — 0.

In the sequel, we aim to verify the two statements above, one by one.

For any r > 0, let B, = B, x B,.--- x B, C (R")" where B, := {z € R%: |z| < r}. Let B¢ and B¢ be
the respective complements of B, and B,.. By the Chebyshev inequality, in addition to (2.18), we find that
for any t € [0,T] and R > 0,

P (XN e BE) < (2V —1) fggﬁp(x”vg € BY)

IN
=]

@2V —1)CrN(1+E|XyN).

Whence, the statement (i) is valid right now.
For any 8 > 0, it is easy to notice that

N .
]P)(‘XN,N@ _XN,N,e’ > §) < Z / =0 ‘b(Xi,N,a ave) ’ds > B
Ts+5s Te — P s = 4N
T N N,N 1, B
P I (XY — X ®)dB* —
2 (ll] [y - xpant| > 1)
Te+0c B
TEJF(S N 2, ﬂ
P Xl €)dBs i
w2(| [ ya| > 4N)

N 4
DD
i=1j=1

In the event of 01,00 = 0, 1"?’8 = 1"?’8 = 0 holds true trivially for any i € Sy so we shall prescribe 01,0 # 0
in the analysis below. Applying Chebyshev’s inequality followed by (2.18) yields that for Ry > 0,

1
P( sup | XNVE| > Ro) < —CraN(1 +E|X§’N|).
0<t<T+1 Ry

Hence, for any 9 > 0, we can take R} = R(g9) > 0 large enough satisfying

N,N
IP( sup X ¢| >
0<t<T+1

) < £o. (2.20)
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For R > 0 stipulated above, we define the stopping time

70"¢ = inf {t>0: XN > R;}.

Whereafter, the term F}’E,i € Sy, can be estimated as below:
Te+0e ) ) 8
e ([T o e s ) as 2 )

Te+0e . B
1,1V ,€ > =
HP(/TE |b(X! 750)|d58N>

Te+0e
. 8 N
S]P(/TE Wl(u’s 8760)d828NL2>+]P<T0 E§T+1)

Te+0e iNe ﬁ Ne
+P |b(X2NE,80)|ds > —, 79" > T +1

8N
1 N Te+0e . 6 N
<Pl — Xg’ “lds > —I—P( su xV.Ne ZR*)
(N;/T | | 8NL2) OSthHI N.Ne| > Re
Te+0¢ N B
+]P’(/T Ly e (8)[b(XEN,80)] ds > S_N),

where the second inequality holds true due to (2.3). As a consequence, by taking (2.18) and (2.20) into
account and retrospecting that b(-, o) is continuous and locally bounded on R? (see the Assumption (Ay))
and lim, o 6. = 0, we conclude that lim. o I‘;’E =0.

On the one hand, by applying Chebyshev’s inequality and It6’s isometry, along with (2.4) and (2.19), it
follows that for any i € Sy,

2.e 3c _ 16N? 2 2 Tt N N,N,ev |2
L7 +T; S ;o (05 +07)E [T (X3 = X2) [ geds

=

16N>

32
On the other hand, in terms of [20, Lemma 2.3], concerning ¢g > 0 given in (2.20), we find that for any
1 E SN,

< (02 4 0})do...

T5+65 . §
P <o, +P( / ||a(X;’N’€>||§Ist‘ = 156;02>

=

Te+0¢ ) ﬁ2€
< P XNVNe s Re) L p / 1, we(s)||F(XEN)]]2 ds| > 220
ceune(, g, 12 ) ([ [ 2 2

Te+0e i N ]2 ﬂ250
< 2e0 4+ P Ljg ey ()[F(XEN ) [y ds| > 16775 )

where the second inequality is obtained by following the line to deal with the term 1"11 €. and the last
display is owing to (2.20). Consequently, with the aid of lim. o J. = 0 and the Lipschitz property of & (so
it is continuous and locally bounded on R¢), the conclusion Z?:z lim. o I/’ = 0 is reachable for arbitrary

i € Sy. At length, the statement (ii) is verifiable by recalling lim, o I‘}’E =0foranyie Sy. O

With Lemma 2.6 at hand, we intend to complete the proof of Proposition 2.4.
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Proof of Proposition 2.4. Let €5, = C([0, 00); (R%)™) be the collection of continuous functions 1 : [0, c0) —
(R%)N. Define the projection operator 7 : o — (RN by m1p = () for ¢ € € and t > 0, and write
Fi = o(ms : s < t) as the g-algebra on €., induced by the projections w4 for s € [0, ¢].

With the help of Lemma 2.6, the Prohorov theorem yields, for fixed N > 1 and T > 0, that

(va 7 ng”Tv] )eso0 has a weakly convergent subsequence (X[o AL ng ol “')i1>0 with the associated weak limit
(ng L ng]) where (g7);>0 is a sequence such that lim;_, ., £; = 0. To demonstrate that (X% 0.7]" fg%) is

indeed a coupling process of X[o 7] and X[0 ) it is sufficient to verify that gy v = Lxn~.~, where Lz n v

and Yxn~,~ are the infinitesimal generators of ()Niiv ’N)tzo and (Xiv ’N)tzo, respectively. In particular, we
have for f € C2((R)V) and x := (z1,--- ,zn) € (RO

(967601, b ) + 503 trace(VE F(x)) + 5 (V2 (<), () @) s

Mz

(fo Nf

i=1

l\')l)—l

f: race V2 )),

where i = % Zj\;l O, -
To realize this goal, we define for any f € C2((R%)V),

~ ~ t ~
MY = fEVN) - RN - / (L ) (XVN) ds.

For any f € C2((RY)N), provided that (M}Y*/);>¢ is a martingale with respect to (F;);>0, i.e., for any
t > s > 0 and Fs-measurable bounded continuous functional F : 5 — R,

E(M FXNNY)) = E(MN RXNYY), (2.21)

Lgn.n = Lxn.n is available by invoking the weak uniqueness of (2.7).

Below, we intend to prove (2.21). For x € (R4, let £Y° be the infinitesimal generator of (XN "),5¢
provided that the Markov process (X, )i>o is known in advance. For f € C2((RH)N), y € (RY)N, and
given x € (RN we find that

N
(L3 1)) = (L ) (3 (a > o(x — ) @ n(d(x — y))us

N
+o? Z (VZf(y) n(¢(x—y)) @n(p(x — Y))>Hs) (2.22)
* he(p(x = y)) (1 — he(p(x — ¥)))
(L ) () = (L) )

By It6’s formula, for any f € C2((R%)V) and t > 0,
t
M = RN — RGN — / (L ) (XN ds
0 s

is a martingale with respect to (;):>o. Therefore, for any ¢ > s > 0 and Fs-measurable bounded continuous
functional F': €5, — R, we obviously have
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E (MtN,f,Ez F(XN’N’EZ )) =F (MSN’f’El F(XN’N’EZ )) X (223)

Next, owing to (2.22), M}"'/" can be rewritten as below

t t
MNE = ) — g - / (Lnn XN ds + / (Lrx XN ds
0 0 e

Whence, the assertion (2.21) is attainable by applying (2.23), [42, Lemma A.2] as well as the dominated
convergence theorem, and using the fact that

lim (£ f)(y) = 0

e—0

by making use of

leifol (hg(r)(l - h6<’“))> = 151118 he(r) leiﬁ)l(l —he(r)) = ]l{r;éo}(l - IL{r;«éo}) =0, r=0.

The proof is therefore complete. O

Before the ending of this section, we make a comment on the asymptotic coupling by reflection constructed
in (2.17).

Remark 2.7.

(i) In terms of (2.16), the asymptotic reflection matrix II. embodies the information concerned with all
particles, which are common for each single particle. Intuitively, such construction is reasonable since
we design the coupling for the system (2.17) determined by all particles rather than the single particle.
Indeed, by a close inspection of the proof for Proposition 2.4, one can see that such an observation
plays an extremely important role in verifying that the weak limit process of (Xf&T], ng:]TV]’E) e>0 is the
coupling process we desire. Once Il contains only partial information associated with all particles, it is

N,N,e

X1y

the involvement of the common noise. In particular, inspired by the reflection coupling constructed in

impossible to examine that the weak limit process of (ngm, )eso is the coupling process due to
[15, Section 3.1] for the independent nonlinear processes and the associated mean-field particle system
with common noise, we can naturally take p(x) = |z;| and ¢(x) = x;/|x;| for x = (z1,--- ,2N).
Whereafter, for the case d > 2, the intractable term: for x;,y;,x;,y; € RY,

he(lzi = yil)n(@i = yi) (@i = y:) " + he(lo; = yil)n(z; - y)(nlr; —y;))"

= 2he(|zi — yilhe(Jzj — y; 1) (n(zi = yi),n(z; — y;)m(e; — yi)(n(z; — ;)

appears naturally in the infinitesimal generator of (Xiv ’N’E)tzo. However, the preceding term might not
converge to zero as ¢ — 0. This definitely brings essential difficulties to identify the weak limit process

of (X:77)e>0-

(ii) In the present framework, the conditional distribution of X; is given under the o-algebra .#}V =
o{Ws,s <t} (i.e., the o-algebra generated by the common noise (W)s>0 up to time t). Motivated by

the work [15] concerning uniform-in-time PoC for McKean-Vlasov SDEs without common noise, one
may decompose formally in the distribution sense the common noise codW; into the sum of

oodW; £ o (ha (p(X} — X?’N’s))%th + (1 — he (p(X} — ertmN’s))) %dAW/t),
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where (Wt)tzo is an independent copy of (W;);>o. In particular, one more common noise (Wt)tzo is
brought into being. Accordingly, this will result in the following problems: (i) under which o-algebra, the
conditional distribution involved in the coupled SDE is defined; (ii) the corresponding measure-valued
process (p)¢>0 might satisfy a different stochastic FPE; see Section 3 for details. In order to bypass
the aforementioned difficulties, we will employ the asymptotic coupling by reflection as indicated by
the approximate interacting particle systems (2.17), which is essentially different from that in [15].

3. Proof of Theorem 1.2

Our goal in this section is to complete the proof of Theorem 1.2. In particular, we herein are only
concerned with the SDE (1.7) with the case d = 1. To this end, there are a series of preparations to be
carried out.

The non-interacting particle system corresponding to (1.7) is governed by the following SDEs: for each
1€ Sn,

dX{ = b(X{, up) dt + o(X]) B} + oo AWy, (3.1)

where yj := Lyijgw; (B')icsy = ((B})i>0)iesy are mutually independent 1-dimensional Brownian mo-
tions on (QY, Z1 (F)i>0,P1); (X{)ies, are i.i.d. Z]-measurable random variables. According to [7,
Proposition 2.11], for any T > 0 and i € Sy,

PO(ut = py forallt €(0,7]) =1

so that we can write y; = ut for all i € Sy. Moreover, as shown in [7, (2.4)], (1)¢>0 solves the nonlinear
stochastic FPE:

d,ult = _am(b(7 Mt)ﬂt) dt + %agz ((02() + U?))Mt) dt — am((UOth)Mt) (32)

The preceding SPDE is understood in the weak sense; namely, for any test function f € C2(R),

1
dpe(f) = pe (F'(b(-s pae)) At + 5/%((0(')2 +05)f"(-)) At + oope (f'(-)AW).

To expound that the idiosyncratic noise might make contributions to ergodicity of the measure-valued
Markov process (p+)>o0 solving (3.2), we decompose the idiosyncratic noise part in the sense of distribution.
Due to ks 1 < o(x)?

which

(see Assumption (H,)), there exists a constant o > 0 such that inf,cr T4 (x) > 0, in

Golr)? i= 0%(7) — ak,1, = €R. (3.3)
Subsequently, we consider the stochastic particle system:

dX, = b(X,, 1) dt + /oy 1 dBY +5,(X,) dB + oo AW,

where 71} = Ly s (BY)icsy == ((BI")iz0)ies and (B>')ics, = ((B)>0)ics, are mutually in-
—i

dependent 1-dimensional Brownian motions on (Q!, #1 (Z!);>0,P); (X)1<i<a are i.i.d. F-measurable
random variables. Once more, applying [7, Proposition 2.11], we find that for any 7' > 0 and i € Sy,

Po(m; =m; forallte[0,7T]) =1


郝佳晴

郝佳晴

郝佳晴
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so we can also write fi, = i for all i € Sy. Satisfactorily, by noting o(z)? = &, (2)? + ak,1 and the
independence between (B'"),cs, and (B?%);csy, (fiy)t>0 also solves the SPDE (3.2). Therefore, to tackle
ergodicity of the measure-valued process (i)¢>0, it is sufficient to work on the McKean-Vlasov SDE with
common noise in the form below:

dX; = b(X ¢, 7iy) dt + J/aFg 1 dB} +Go(X ;) dB? + oo dW;. (3.4)

The previous interpretations explain roughly why we focus on the McKean-Vlasov SDE with common noise
formulated in the form of (2.1).

As pointed out above, in this section, we still take the SDE (2.1) with the dimension d = 1 as our research
object. Besides Assumptions (Hp 1) and (Hp o) presented in the Introduction section, we further assume
that

(HL) there exists a constant Lz > 0 such that
7(z) ()l < Le(L Az —yl), =,y €R.

Under Assumptions (Hy 1), (Hp2) and (HL), Assumptions (Ap) and (Az) hold trivially so that all results
presented in Section 2 are applicable.

Before the proof of Theorem 1.2, we show that the measure-valued process (1t)r>0 associated with (2.1)
has exponential decay, which is stated precisely as below.

Theorem 3.1. Assume (Hp1), (Hp2) and (HZ). Then, there are constants C, A\, N5 > 0 satisfying that for
all A3 € [0, 73], t > 0 and p,v € Z1(R),

Wl(:utv Vt) < Cei)\twl (.u” V)a (35)

where py == Ly, zw and vy == Ly, gw mean the reqular conditional distributions of X;, solving (2.1),
with the indtial distributions Lx, = p and Lx, = v, respectively; g > 0 is the Lipschitz constant of b(x, p)
with respect to the measure variable, given in (1.10).

Prior to the commencement on the proof of Theorem 3.1, some additional work need to be accomplished.
The following lemma shows that, for each i € Sy, (X{)t>0 has finite moment in an infinite-time horizon.

Lemma 3.2. Assume (Hp1) with Ay > 2X\3 and (HL), and suppose further that (X{)iesy are i.i.d. Fg-

g
measurable random variables such that E|X}| < oo. Then, there is a constant Cy > 0 such that for all
1€ SN,

sup E|X/| < E|Xj| + Co, (3.6)
t>0

where ((X{)i>0)iesy solves (2.6).
Proof. According to (1.9), (1.10) and (HZ), it follows that for all z € R and p € 92 (R),

22b(x, 1) +7(x)? = 2x(b(x, 1) — b(0,60)) + 22b(0, 6¢) + 7 (x)?
22(b(x, 1) — b(0, 1)) + 2(b(0, 1) — b(0, 80)) + 2b(0, o) + ()
< = afz? + 203 Wy (1, 6o) ] + 2[b(0, 6o) ||| + (A1 + A2)bo + 2(L3 4+ 7(0)?).

Then, applying 1td’s formula to Vi, defined in (2.11) with § = 1, yields that
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*

d(eMVi(X])) <Mt (A*Vl(Xg') 2X0(X), pt) +7(X))2 + o? + a§)>dt + dM;}

et
2V (X))
< et (Vi(XF) — pi(V)) dt + Cgertdt + dM;

for some constant C§ > 0 and some martingale (M{);>0, where A* := 1(A2—2);3). Since E 1 (V1) = EV4(X}),
and (X{);es, are i.i.d. .Zj-measurable random variables, we derive that

EVi(X]) < EVi(Xg) + C5 /A"
This subsequently implies the desired assertion (3.6). O

Recall that the function p involved in (2.16) is free in Section 2. In the subsequent part, we shall stipulate

2

1
o) =[xl = - D lwgl, xRV

so that I.(x) = 1 — 2h.(|x|1),x € RY, and work with the corresponding stochastic system determined
by (2.17). Note that, in Section 2, Proposition 2.4 and Lemma 2.5 are derived for the fixed horizon T' > 0
and the particle number N > 1, and Proposition 2.2 is concerned with PoC in finite time. Below, we shall
address the asymptotic conditional PoC in an infinite horizon for the conditional McKean-Vlasov SDE (2.1)
with the dimension d = 1. Such a result plays a crucial role in treating ergodicity of the measure-valued
process (ft)¢>0-

The following statement characterizes the uniform-in-time PoC, where the associated convergence rate
with respect to the particle number N is governed by the function ¢, introduced in Assumption (Hp2).

Proposition 3.3. Assume (Hy 1) with Ay > 2X3, (Hp2) and (HL), and suppose

g

« c2lo 1
= — (1 e .
Ao 1—e<lo + coly (>\1 A ()\2/2)) ( + C2))\3 >0, (3.7)

where A1, Aa, A3 > 0 are introduced (Hy 1),

Aido et
= d = crto, 3.8
c1 g an Cy cie (3.8)

Then, there exists a constant Cy > 0 (which is independent of N > 1) such that for any t > 0,

C
—Z]EW XNE| < e Mot OZE|X0 X”VE|+CO< (1+E[Xg]) + (N)+5)7 (3.9)
i=1 j=1

where, for each e >0, (X1)i>0, (X;7™%)i50)ies, solves (2.17).
Below, we make a remark on the decay rate Aj given in (3.7).

Remark 3.4. Plenty of McKean-Vlasov SDEs (e.g., the p*-model [35] and the granular media SDE [34]) can
be regarded as the corresponding perturbation versions of classical SDEs. To avoid the occurrence of phase
transitions, the perturbation/interaction intensity (which, for instance, can be described by the Lipschitz
constant of the drifts with respect to the measure variable) is not strong in general; see e.g. [35, Theorem
3] and [34, Corollary 2.9] for more details. In the same spirit of [34,35], it is quite natural to require the
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Lipschitz constant A3 > 0 involved in (3.7) is small. For this setting, the prerequisite A§ > 0 in (3.7) can be
ensured. Note that

6187618050
1— 67C1Z0 =+ 0250

Ao (M A (A2/2)) = (1 + Z—;)A?)

(3.10)

cilo

= (1 + 6615071> (/\1 A ()\2/2)) — (1 + echO)Ag.

It follows from the increasing property of the functions [0,00) > r — e'”r—1 and ¢; +— e“% on (0, 00) that the
non-degenerate property of og and o; will facilitate ergodicity of the empirical average (i.e., % Ziil | X} —
X}"™*|). On the other hand, it is easily seen from (3.10) that the smaller £, or the larger \y implies a faster
convergence rate in (3.9). Whereas, the larger A; indicates a slower convergence rate in (3.9).

Proof of Proposition 3.3. Below, for notation brevity, we set ZZ’N’E = X} — XZ’N’E fort > 0and i€ Sy. It
is easy to see from (2.17) that for all i € Sy,

AZNE (b ) = B, 7) de 2 (120 ) (o0 dBL + o0 d)
+ (@) — (V) B,

where ZNVNE = (zPNVE .o ZN ) By 1to’s formula, we thus have that for all i € Sy,
d|Zi e P = |22 (b ) = b )
+ 4 (127 |h) (03 + o) + (X)) =7 (X)) at (3.11)
227 20 (1277 | (01 B + 00 dWE) + (5(X)) - (X)) aB?|.
Below, we set
f(r):=1—e"9" 4 cor, r >0,

where ¢y, co > 0 were defined in (3.8). Moreover, we define F(r) = f(r'/2),r > 0. Subsequently, for A} > 0
defined in (3.7), applying It6-Tanaka’s formula (see e.g. [28, Theorem 29.5]) yields that for all ¢ > 0,

e)\gtF(|ZZ,N7€

t
) =FZ5 )+ [ SR ZENR) ds
t t o]
. . . 1 * )
+/O e)\OSF/_(|Z;’N’€|2)dlZ;’N’E2+5/0 e/\Os/0 dL;’N’E’IﬂF(dx),

where F/ means the left derivative of F, (Li™N*%),5¢ is the local time of (|Z/™%[2);>0 at the point z,
and pp denotes the Lebesgue-Stieltjes measure associated with the left derivative F” (i.e., ur([a,b)) =
F' (b) — F’ (a) for a < b). Denote by F” the almost everywhere defined second derivative of the function F.
Since pp(dz) < F”(z)de (thanks to the fact that F” is non-increasing) and t — L7 is increasing, we
infer that

t
SUF(ZPNP) SP(ZP) 4 [ QS R(ZN P as
0 (3.12)
b , , 1 e, [
+/ eAOSF/_(‘Z;,Nng)d|Z;,N,5|2+5/ e)\os/ dLé’N’E’:EFH(ZL‘)dx.
0 0 0


郝佳晴
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Next, by the chain rule and Fubini’s theorem, in addition to the occupation time formula (see e.g. [28,
Theorem 29.5]), we find that

/ / szNsxFl/ d.’I}— < )\s‘szNs:v>F//( )d
oo t
:/ < tLlex )\0/ Lé’N’E’me)\as ds)F”(ax)dx
0 0

t
_ / F// |Zst| <|Zi,N,s|2>s
0

- [ on( / FI(ZE5R) A2 P, )
0
0

t
_e)\gt/o F//(|Z;,N,e|2)d<|Zi,N,6|2>S

t t
_ )\8/ (/ e)\és dS) F//(|Zi’N’E|2) d<|Zi,N,s|2>u
0 u

t
:/ e)\(’;sF//(|Z;‘,N,5|2)d<|Zi,N,E|2>s’

0

where ((|Z%"¢]?);)¢>0 stands for the quadratic variation process of (|ZZ’N’€|2)t20. Plugging the preceding
identity into (3.12) enables us to deduce that

t
F(ZINP) <F(ZVP) 4 [ QS R(ZEN ) s
0
t Lt (3.13)
+/ e)\SFI_(|Z;',N,s|2)d|Z;',N,s|2_1_5/ eASSF//(lng’ElQ)d<‘Zi’N’E|2>S.
0 0

Note that for r > 0,

1

FI(T') — §fl(7”1/2)7“_1/2, F”(T) _ (f”(rl/Q)T_l o f’(’rl/Q)T_?’/Q) _ if//(rl/Q)r—l _ %F’(T)T'_l

N

and lha‘
374’ € 4 ;Z'L s€ 4 :Z ,N.e 2 ol 7 — )(’L — )(27 s€ 2
<| N |2>t ‘ i’N |2( h’e(” 1N ||1) ( : (2]) ( ( i) ( 1 N )) )

Whence, along with (3.11) and (3.13), f” < 0 as well as f’ > 0, we derive that

t
IFZENN) = F1Z5 ) 4 [ 52 s

0

1 [t . . .
v | iz ez
0

1/t . . , ,
+ 5/0 Mo (f(1ZENE) = f1(1ZEN ) 20N

x (4h: (12210203 + 03) + ((X2) — (X)) ds o 2LV

t
i,N,e 58 * i,N,e i,N,e 2
< flzg™ I)Jr/O e <>\of(Zs’N’ )+ 2007 + o) £ (120™ Dhe (| 1) (3.14)
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ZzNe
ZlNE
U2

t
gf(lZ&N’EIH/O e*B‘S(ASf(IZ;"N’EI)+2<o%+o§)f”(|Zi’N’El)hs(|

(b(X, o) = b(Xi’N’E,ﬁév’E))) ds +Mpe

1)

(b(XZ, ) = b(x g™ 6))]1{2;1va5¢0}

st
‘Zz Na‘
+ f,(‘ZZ’,N’E| |b X;aﬁivl) - b(X;vﬁéN)|

(=

+ (122 b(XE, 1l) = b ;,ﬁé\“)|> ds + M

for some martingale (M;"*)y>¢, where z/|z| = sgn(z) = 0 if z = 0,

1 N
Mt- Ndeg and u ::m Z 6Xf'

j=1 j=lij#i

By means of (1.9) and (1.10), it follows that

Zi,N,E PN N
— N ZiN.e 0 t7 - tz EaAt :
D OO ) 088
t
zZpNe i N iNe =N ioNe N BN e
- W]I{ZZ'N’%éo}[(b(Xtv )= BT ) + (X ) = DX ))} (3.15)
t

N
1 i\N, 1 iN A3 N,
< 5()\1 + )2y T gime gy — 5)\2\2,5 Fl+ N E |z
i=1

On the other hand, using the fact that for 4 € &1 (R%) and x € RY,

N -1 1 1
et o) < (4 (] 1),

o

which can be attainable analogously as [44, Lemma 3.1], in addition to (1.10) and

N -1 ;1
~N ~N,i ‘ .
e —Tlllt +N6X;a t>0,i€Sn,
implies that
A 1 &
i~ i ~N,i i o~ 3 % j
bt ) - ot | < e < (I ey X ) e

j=liji

Thus, plugging (3.15) and (3.16) back into (3.14) yields that
* 7 * * i, N, i,N & A 2 , IV,
A 0Z:4D) = 5 (36121 + 02 Dhe (1207 ) + T2 )
N
4, N, 3 N5 4N,
Pz (1) + 3 312 ) di+ ang

Herein,
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Y(r): = %f’(?‘)(@\l + 22) L rcpy — A2) 7+ 2(0f +01) (1), =0

1 i i,N, i,N, N, 2
TiZN) = S22 (O 4+ M) 208 gy = 2l Z0771) (L= e (128Y1)%)

and
A .
3 i j i i i ~N,i
Ji(XY) = N('Xt tN 1 > |X§> dt + |b(X}, pf) — b(X], i)
J=1:j#i
By virtue of
f(r)=cre™ " + co, f(r) = —cie ", r >0,

and the alternatives of ¢; and ¢y given in (3.8), for any r < ¢y, we have

2 —erlo( 2 | 2 2, 2
2 —ciboq 2 2 cie (05 +01) _ cica(og + o1)
1/)(7’) < —cje™ ™ 0(00 +Ul) <- 1_e—cbo T eoly f(?") = —1 e +C2£0f(’f').

On the other hand, for the case r > £y, we infer that

/\2027"
2(1 —e=a7 + cor)
CQ)\QKO
- 2(1 —e—cbo Cgfo)

1
P(r) = 75)\2(6167617‘ + co)r — 263 (02 + 03 )e T < —

where in the last inequality we used the fact that the function r +— is increasing on (0, 00).

- r
l—e~“1"4cor
Therefore, we arrive at

ciez(od + 0?) c2A2bo
1 —e—<cbo 4 colp 2(1 —e—cbo CQEO)

Y(r) < — Fr) = =Xy f(r), r>0.
( )

This, along with ¢ < f'(r) < ¢1 + ¢2, implies that

NES(Z7M) < EF(12™

)+ [ o[- a0z - %iEf(IZ?N’EIO
R (50279 (1= ez 1))
+ (e1 + ) EJ(XY) + ETi(ZiV’N@)} ds,
where Cy := A3(1 4 ¢1/c2). Next, combining with

N
N (i1 '
BRI < 3 (BIX+ oy 30 BN + o) <
Jj=1lg#i

2 (14 E[X3]) + (V)

2R

for some constant Cy > 0, thanks to (1.11) and Lemma 3.2, we deduce that for some C3 > 0,



J. Bao, J. Wang / J. Math. Anal. Appl. 552 (2025) 129819 25

N t
1 i,Na i,N,e g
o ;Ef(IZt ZEf |z |)+03< (1+E[XY) + (N))/O N5 ds

i=1

“3*/ (5 Zf Z%) (1= he (12 1)%) ) ds
b L Z/t AR (ZY N ) ds.
Ni:l 0 )

By invoking co < f/(r) < ¢1 + ¢ and f(0) = 0, in addition to h. € [0,1], we find that for all s > 0,

N
NZ |ZZNE|( (”ZNNE” ) ZT ZNNE

< (e1 4 )2+ M) |ZYNe) (1 —hE(HZi“N’EHl))
2(61 —+ 02)(2 —+ )\1)5,

where in the last display we used the fact that
r(1 — he(r)) < 2e, r>0

by taking the definition of the function h. into consideration. Thus, we derive that for some constant Cy > 0,

N

N
X5 D B2 < Z F(1Z5™) +04(N( +E|X&|)+so<N>+e)e*of
i=1

Consequently, according to ca < f/(r) < ¢1 + ¢5 again and f(0) = 0, there is a constant C5 > 0 so that for
all t > 0,

—)\ t05 Z]E‘ZZNE

1 N
i\N,
~ 2 EIZ| <
=1

and so the desired assertion follows directly. O

( (L+E|X3]) + o(N) +g>,

Before we proceed, we make an additional comment.

Remark 3.5. We turn to the multi-dimensional case (i.e., d > 2). Recall that the functions p and ¢ involved
in II., defined in (2.16), are undetermined. By applying the Ito6-Tanaka formula to the radial process |7, ’N’€|,
it is easy to see that the quadratic variation term:

i\ N, 2 N,N,
TN e Lo e )
t

X (120 Ly = 2™ @ 200 n(9(27)) @ n(¢(Z)))ms

arises naturally, where Z)""° := XN — XMV Due to the appearance of |Z/"" 121, — ZNE @ ZPVE we
cannot choose (b(ZiV ’N’E), which are dependent on the whole particles, to kill the term Ti’N’E. On the other
hand, the proof of Proposition 2.4 is unavailable as soon as we take ¢(Z; ") = ¢(Z™V%) (i.e., dependent
merely on the i-th component); see Remark 2.7 for more explanations. The aforementioned interpretations
further demonstrate why we focus just on the 1-dimensional SDE (1.7) rather than the multi-dimensional
setting.
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Based on the previous warm-up preparations, we start to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. For p,v € Z(R), via existence of optimal couplings, there is 7* € €(u,v) such
that

Wilge) = [ o=yl (do.dy). (3.17)

Let ((X* t>0)ieS, and XENw +>0)icSy be solutions to (2.6) and (2.7), respectively. Furthermore,
t ESN t €SN
(Xo", XN Viesy are set to be ii.d. .Z -measurable random variables such that L x; xiNwy =" There-

fore, Wy (p,v) = E|Xé’“—X8’N’”|, and the common distributions of Xé’“ and Xé’N’” are u and v, respectively.
Via the triangle inequality, it is easy to see that for all t > 0,

Wi (1, 1) < EOW; (g, 1)

1 Y 1Y 1Y
SEO <E1W1 <Mt;ﬁ E 6X{’“>) + EO° (E1W1 (N E 5th,u,ﬁ E (5th,N,u>)
J=1 Jj=1 Jj=1
1 & 1 1 &
o1 § : 2 : , ofml } : .
+E (E Wl(ﬁ p 5th,N,u,N ‘_15X_t7‘u>) +E (]E Wl (Vhﬁj_l 5ng)>

N o o (3.18)
—EW, <ut’ﬁjz X) +EW1(N;5X5,“,N;5X£,N,,>

N 1 N 1 N
+IEW1( ;axg,w,u,ﬁj;axf,u)+Ewl<ytw;5xg,u>

—:Ty(t,N) 4 To(t, N) + Ts(t, N) + Ly(t, N).

In the subsequent analysis, we estimate the terms I';(¢, N),i = 1,2, 3, 4, separately. Obviously, Assump-
tion (H.) implies Assumption (Az). Since (Xg*)icsy (resp. (X5")iesy) are i.i.d. random variables with
E|X,*"| < 0o (resp. E|Xy""| < 00), an application of Proposition 2.2 yields that

N—o0

Next, note that

N
1 j,v j, N, v 1,v 1,N,v
)< LB - X - Bl - )

where the identity is due to the fact that (X", X"V} and (X7, X"} are identically distributed due to
the fact that (Xg", XS’N’”)lgiSN are i.i.d. .Z¢-measurable random variables. Whereafter, applying Propo-
sition 2.2 once more prompts us to derive that

Jim Ts(t,N) = 0.

Consider the system (2.17) associated with the processes (X;*);>o and (XZ’N’”)tZO, which are respec-
tive solutions to (2.6) and (2.7). For each € > 0, denote by (XiV,XiV’N’E)tZO the solution to the system
(2.17). Evidently, Assumptions (Hj 1) and (H%) imply (A;,) and (Az). So, according to Proposition 2.4,

(XN XN,N

0,77 X0 T]’s)g>o has a weakly convergent subsequence such that the corresponding weak limit process is
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the coupling process of X[Ig 7] and ng’év] for any T" > 0. In the following analysis, for the sake of notation

simplicity, we shall still write (X2, Xiv ’N)te[o,T] as the associated weak limit process (which is obtained by
letting € | 0 for fixed T' < oo and 1 < N < 00). Furthermore, it is ready to see that there exists a constant
Aj < A2/2 such that (3.7) is true for any A3 € [0, A5]. Thus, by employing Proposition 3.3, there exists a
constant C* > 0 such that

. , , 1
Pa(t, N) <C* (e MEIXG" = X5M| + 55 (1+ EIXS]) + o(N))
o 1
=0 (& Wa ) + 7 (L4 EIX3) + V),

where the function ¢(N) was introduced in (1.11). The estimate above, together with the prerequisite
limy 00 9(IN) = 0, leads to

lim sup Ty (¢, N) < C*e ™ 0t W, (i, v).

N—o0

At last, by putting together the estimates concerning I';(¢, N), ¢ = 1,--- ,4, we accomplish the proof of
Theorem 3.1. O

We now can present the proof of Theorem 1.2 on the basis of Theorem 3.1.

Proof of Theorem 1.2. As we elaborated in the second paragraph of this section, in order to investigate
ergodicity of the measure-valued process (p)¢>0 associated with (1.7), it is sufficient to consider the McKean-
Vlasov SDE with common noise (3.4). Based on Theorem 3.1, it remains to examine Assumptions imposed in
Theorem 3.1 with 01 = | /aF, 1 and 5(z) = 74 (), separately. Concerning the drift b, the same assumptions
are set in Theorems 1.2 and 3.1. So, the validation on the drift b is trivial.

Define the set

A, = {a >0: xig}%ﬁa(x) > 0},

where 7, (z) = (0(x)? — aky1)'/? (see (3.3) for details). Below, we fix a € A,. By virtue of (H,), we deduce
that for z,y € R,

[7a(2) = 7a(y)] < 2\/Fo2,

and that for =,y € R,

lo(2)? = o()’] _ (lo@)+le@Dlo(z) — o)
Ea(x) + 5a<y h Ea(x) +Ea(y)
< _LovFea

o ianGR Ea (LL’)

Ta(z) —Taly)]

|z —yl.

Therefore, we arrive at

Lo’ V Fao,2

1A |z —1yl|), ,y € R.
infzeREa(m)>( e =ol). =y

Falo) - 7o) < ((2Fra) v
Whence, Assumption (HZ ) holds true with

v La\/HU,Q

inf er 0o ()’

Ll = (2yFo2)
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Furthermore, with 0y = | /@, 1 and 7(x) = 7,(x) at hand, there exists a positive constant A3 < A2/2 such
that A§ > 0 for all A3 € (0, A%], where A\ was introduced in (3.7).

In a word, all of the sufficiency conditions in Theorem 3.1 are fulfilled and therefore the proof of Theo-
rem 1.2 is complete. O

Before the end of this section, we make some further comments on the comparisons between our main
result and [36, Section 4] for the case d = 1, and the approach available for the multi-dimensional setting
(i.e, d > 2).

Remark 3.6. We compare Theorem 1.2 with the counterpart of [36, Section 4] based on the following four
aspects:

 Framework: In [36, Section 4], the drift b(x, n) = —V'(x) + [ W (z — y)u(dy), where both V' and W’
are of linear growth. Whereas, in our setting, the drift b is much more general and is allowed to be
of polynomial growth with respect to the state variable. Moreover, in [36, Section 4], the idiosyncratic
noise is additive. However, in the present work, the idiosyncratic noise is multiplicative.

o Contribution of noises: As shown in Proposition 3.3 and Remark 3.4, not only the common noise but
also the idiosyncratic noise make contributions to ergodicity of the measure-valued process (pt)t>o-
Nevertheless, in [36, Section 4], the common noise makes the sole contribution to ergodicity of (p¢)¢>o-

o Construction of the asymptotic coupling by reflection: In general, we can decompose the noise part in
the sense of distribution to construct (asymptotic) coupling by reflection when the underlying SDEs
(including McKean-Vlasov SDEs) are partially dissipative as indicated in [36, Section 4]. However,
regarding McKean-Vlasov SDEs with common noise, if we adopt the previous procedure, then the
common noise will become not explicit and moreover change drastically so the measure-valued process
(1¢)e>0 might satisfy a different nonlinear stochastic FPE. Moreover, in order to carry out the proof
of [36, Theorem 2], the identity [36, (26)] is vital. Unfortunately, there is a gap to derive [36, (26)] by
invoking the following SDE:

A BN = —ep™ 0 (VI(XP) = V(X)) dt + AN dt + 200ms (BN )ep V0 dBY, (3.19)

where, particularly, 7T5(E£N76)2]1{E2,N,6¢0} # 7r5(EtN’5)2. Herein, E,fv"s = (Etl’N"S,u- ,EtN’N"S) with
BN = X0 XN N e (BPN): s 0 R = [0,1] is a non-decreasing and continuous
= 1 for %Zj\; |z;| > 6 and ws(x) = O for %Zjvﬂ |z;| < 6/2; for each

i € Sy, (Ai’N"S)bO is an adapted non-negative stochastic process given in [36, Proposition 6]. Most

function such that s(x)

importantly, we would like to emphasize that, unlike [15, Lemma 7], the SDE (3.19) cannot be derived
via an approximate strategy as shown in [36, Appendix A.5], where in particular the identity in [36, p.
28] is not valid since the variables involved in functions s and 1, are not consistent. Based on previous
viewpoints, we build a totally novel asymptotic coupling by reflection as demonstrated in (2.17).

o Moment on initial distributions: To investigate ergodicity of (u:)i>o under the Wasserstein distance
Wi, it is quite reasonable to require .£,, € Li(#(R)), which is imposed in Theorem 1.2. However,
Ly, € Li(Z(R)) was set in [36, Corollary 3.

Remark 3.7. The proof for the ergodicity of the measured process (u:)i>o relies on the inequality (3.18),
where the terms T'1(¢, N), T'3(¢t, N) and T'4(¢, N) can be handled similarly for d > 2 due to the fact that
Proposition 2.4 holds for all d > 1. Therefore, the main task is to estimate I'y(¢, V). For this, we still make
use of the asymptotic coupling by reflection constructed in Subsection 2.2. For the case d > 2, we take
p(x) =X = Zj\le xj and p(x) = |X|, which is different from the one-dimensional case. Note that the

averaged process 75’5 =% Z;VZI(X,{ — X7™V%) solves the following SDE:
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1 N
i i,N,e AN €
§ Xth = b(Xy )) dt
l:l

+2h€<|7i“|>n<7i“g>®n<7i“( S0y +aodwt)

=1

Whence, to derive the long-term estimate on the quantity |Z£V’E|, a special structure on b (e.g., b(x, pu) =
—x + bg(x, p) for some by : R? x 2(R%) — R9) need to be enforced. This undoubtedly restrict applications
of the theory derived. Furthermore, to achieve our goal, it is also necessary to quantitatively estimate the
uniform-in-time moment distance between each component process X; (resp. XZ’N"E) and the averaged
process Zjvzl X/ (resp. + Zj\]:l X7"™V%); see [36, Proposition 8] for related details. Unfortunately, such
an estimate necessitates to require o7 = 0. This reduces definitely practical applications of the main result.
Additionally, for the multi-dimensional setup, [36, Theorem 3] derived Theorem 1.2 by setting specifically
b(z,p) = —V'(x) — 2 [ga(x — y)p(dy) for & > 0, and o1 = 0, where V' : R — R is globally Lipschitz.
For more related discussions, one can refer to [36, Section 5].

4. Appendix

This Appendix section is devoted to providing a sufficiency condition to guarantee that Assumption
(Hp 2) is valid.

Lemma 4.1. Let ((X})t>0)ies, be conditionally independent and identically distributed under the filtration

FV and b(z, u) = / bo(x —y) p(dy) for some Lipschitz continuous function by : R — R. Then, there exists
R

a constant Cy > 0 such that for alli € Sy and t > 0,

Co

EIb(X, ) — 0K 1 < 21+ BIXGP), (1)

where Jin" = e Zj-v:l:j# Ox;- In particular, (Hp,2) holds true with

Co i12\1/2
N):= 1+ sup(E|X;[*)"/
o) = Y20 (14 sup(BIXIP) )
in case of supso(E|X{|?)"/? < oo.

Proof. Obviously, Assumption (Hj2) is available provided that (4.1) is attainable plus the validity of
s (BIX[?)! /2 < o

Below, let ((X{)i>0)iesy be conditionally independent and identically distributed under the filtration
ZV and set ut == ZLxi|zw - Since

N
b ) = s S E(bo(X] - X)X 7).
Jj=1lj#i

we thus obtain that
N N

i i i ~N,i 1 ij ij i
E|b<xz,uz>—b<xzw>|2=m( PRI E(%W)),

j=1:j#i g k=1:j,k#i,j#k
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where
Uy = E(bo(X] — X7)| X}, Z0) — bo(X] — X}).
Notice that for any j, k # i and j # k,
E(V/UF) = E(E(V/ U X[, 7)) = E(E(EY|X], 7)E(TF|X], 7)) =0

by taking the conditional independency under .ZV of the sequence (X});cs, into consideration. Subse-
quently, we derive that

N
i i ~Nyi 2 i NE
EIB(X{ ) = XL Y < gy 2 Elbo(X - X7)|
=T
Co & :
< No12 > (EIXT P+ [b0(0)]%),
j=1

where in the second inequality we utilized the Lipschitz property of by and the fact that X} and th are

identically distributed given .#V. Finally, (4.1) follows directly by using again that, for any i,j € Sy, X}

and Xg share the same law. O
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