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In this paper, by introducing a new type asymptotic coupling by reflection, we 
explore the long-time behavior of random probability measure flows associated 
with a large class of one-dimensional McKean-Vlasov SDEs with common noise. 
In contrast to the existing literature, the underlying drift term is much more 
general and of polynomial growth with respect to the state variable. In addition, 
the idiosyncratic noise is allowed to be of multiplicative type. Most importantly, the 
theory derived indicates that both the common noise and the idiosyncratic noise 
facilitate the exponential ergodicity of the associated measure-valued processes.

© 2025 Elsevier Inc. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction and main result

1.1. Background

Consider a meanfield game model with N particles evolving in Rd:

dXi
t = b(Xi

t , ˆ︁μN
t )dt + σ(Xi

t , ˆ︁μN
t )dBi

t, i ∈ SN := {1, · · · , N}, (1.1)

where ˆ︁μN
t := 1 

N

∑︁N
j=1 δXj

t
and B1 := (B1

t )t≥0, · · · , BN := (BN
t )t≥0 are mutually independent d-dimensional 

Brownian motions on a complete filtered probability space. In (1.12), (B1, · · · , BN ) is referred to as an 
idiosyncratic noise. Under appropriate assumptions (e.g., the distribution of the initial particles is ex
changeable), the classical theory on propagation of chaos (see e.g. [43]) demonstrates that all individual 
particles become asymptotically independent when N → ∞. So, the random probability measure ˆ︁μN

t con
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verges to a deterministic distribution and the resulting state of a single particle is described by the following 
McKean-Vlasov SDE:

dXt = b(Xt, μt)dt + σ(Xt, μt)dBt, (1.2)

where μt := LXt
stands for the law of Xt, and (Bt)t≥0 is a d-dimensional Brownian motion. Initially, 

the McKean-Vlasov SDE (1.2) was introduced to explore nonlinear Fokker-Planck equations (FPEs for 
brevity) based on Kac’s foundations of kinetic theory [27]. So far, it has been applied widely in various 
fields (e.g., stochastic control, meanfield games, and mathematical finance) [6]. In the past few decades, 
as far as McKean-Vlasov SDEs are concerned, significant advancements have been made on behaviors in 
a finite-time horizon (e.g. strong/weak well-posedness [12,23,26,48] and numerical approximations [13,14]), 
and long-time asymptotics (e.g. ergodicity [5,16,32,46,47] and uniform-in-time propagation of chaos (PoC 
for abbreviation) [8,15,22,21,40]).

Nevertheless, in some circumstances, the individual particles involved in a meanfield game model are 
subject to not only idiosyncratic noises but also random shocks, which are common to all particles. On 
this occasion, the evolution of underlying particles cannot be modelled by (1.12) any more, and, in turn, is 
characterized by the following meanfield SDEs:

dXi
t = b(Xi

t , ˆ︁μN
t )dt + σ(Xi

t , ˆ︁μN
t )dBi

t + σ0(Xi
t , ˆ︁μN

t )dWt i ∈ SN , (1.3)

where the quantities (b, σ, ˆ︁μN
t ) and (B1, · · · , BN ) are defined exactly as in (1.12), and (Wt)t≥0 is a d

dimensional Brownian motion. In (1.3), (B1, · · · , BN ) is also called an idiosyncratic noise (or individual 
noise) as in (1.12), and (Wt)t≥0 is named as a common noise, which accounts for the common environment 
associated with all particles. In the aforementioned setting, all particles are not asymptotically independent 
any more and the random empirical measure no longer converges to a deterministic distribution as the par
ticle number goes to infinity. Whereas, under suitable conditions, the phenomenon on conditional PoC (see 
e.g. [7, Theorem 2.12]) illustrates that all particles are asymptotically independent and the corresponding 
empirical distribution converges to the common conditional distribution of each particle conditioned on the 
σ-algebra generated by the common noise. Moreover, the subsequent limiting state of each particle can be 
governed by the McKean-Vlasov SDE with common noise:

dXt = b(Xt, μt)dt + σ(Xt, μt)dBt + σ0(Xt, μt)dWt, (1.4)

where μt := LXt|FW
t

(the conditional distribution given the σ-algebra FW
t := σ{Ws : s ≤ t}); (Bt)t≥0 and 

(Wt)t≥0 are mutually independent d-dimensional Brownian motions. In literature, McKean-Vlasov SDEs 
with common noise are also termed as conditional McKean-Vlasov SDEs (see e.g. [7, Chapter 2]). So far, 
they have been applied considerably in stochastic optimal control and meanfield games [7,38], and inter
bank borrowing and lending systems [3,31], to name just a few. In fact, the conditional McKean-Vlasov 
SDE (1.4) arises from many practical applications as shown in e.g. [37,45]. In detail, in order to construct 
diffusion processes generated by second-order differentiable operators on the Wasserstein space, Wang [45] 
introduced an image dependent SDEs, which can indeed be reformulated as a special conditional McKean
Vlasov SDE (with σ ≡ 0 in (1.4)). Moreover, in [37] the authors explored a meanfield game problem with N
players in a random environment, which is delineated by a continuous-time Markov chain in lieu of the usual 
diffusions. In particular, they confirmed that the associated meanfield limiting process solves a conditional 
McKean-Vlasov SDE, in which the Markov chain involved acts as a common noise.

In contrast to classical McKean-Vlasov SDEs, the research on McKean-Vlasov SDEs with common noise 
is not too rich. Yet, in the past few years, there are still some progresses on qualitative and quantitative 
analyses; see, for example, [4,24,41] on well-posedness, and [7,9,17,25,41] concerned with conditional PoC in 
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finite time. According to [7, p. 110-112], the random distribution flow (μt)t>0 corresponding to (1.3) solves 
the nonlinear FPE:

dμt =
(︂
− div

(︁
b(·, μt)μt

)︁
+ 1

2trace
(︁∇2((σσ∗)(·, μt)μt)

)︁)︂
dt− div

(︁(︁
σ0(·, μt)dWt

)︁
μt

)︁
, (1.5)

which is understood in the weak sense. With regard to well-posedness of (1.5), we refer to e.g. [10,18, 
33] and references within. Recently, via establishing the superposition principle, [30] built a one-to-one 
correspondence between the conditional McKean-Vlasov SDE (1.4) and the stochastic FPE (1.5). Moreover, 
the stochastic PDE (1.5) is also linked closely to the stochastic scalar conservation laws; see e.g. [10, 
Appendix] for further details. Additionally, we also would like to mention [11], where, concerning first
order scalar conservation laws with stochastic forcing, Freidlin–Wentzell-type large deviation principles 
were explored. Based on the viewpoints in [10,30], the research on the long-time behavior of the random 
distribution flow corresponding to (1.4) amounts to the investigation on long-term asymptotics of certain 
kinds of stochastic FPEs or stochastic scalar conservation laws.

No matter what the conditional McKean-Vlasov SDE (1.4) or the nonlinear FPE (1.5), most of the 
existing literature (mentioned above) focuses on finite-time behaviors (e.g. well-posedness and conditional 
PoC in finite time). Nevertheless, the asymptotic analysis in an infinite-time horizon is extremely rare. By 
comparing (1.2) with (1.4), one of remarkable distinctness between them lies in that the deterministic flow 
(μt)t>0 in (1.2) satisfies a deterministic nonlinear FPE whereas the random counterpart in (1.4) fulfils a 
stochastic nonlinear FPE. This essential discrepancy brings about major challenges to tackle the long-time 
behavior of the measure-valued process (μt)t>0 solving (1.5).

Concerning (1.4) with σ = 0, [45] treated exponential ergodicity of the Markov process (Xt, μt)t≥0
provided that the drift b is globally dissipative with respect to the state variable. Furthermore, as for a 
special form of (1.4) (or (1.5)), [36] handled the long-term asymptotics of the conditional McKean-Vlasov 
SDE on R:

dXt = −
(︃
V ′(Xt) +

∫︂
R
W ′(Xt − y)μt(dy)

)︃
dt + σdBt + σ0dWt, (1.6)

where μt := LXt|F0
t
, σ, σ0 ∈ R, and, (Bt)t≥0 and (Wt)t≥0 are independent 1-dimensional Brownian mo

tions. By designing a reflection coupling, exponential ergodicity of the measure-valued process (μt)t>0 was 
investigated in [36] under L1-Wasserstein distance. Herein, we would like to stress that V ′ and W ′ in (1.6)
are set to be globally Lipschitz, and moreover that the initial distribution of X0 is supposed to possess a 
finite fourth-order moment. In fact, it is quite natural to assume that the initial distribution has a finite 
first-order moment once the L1-Wasserstein ergodicity of (μt)t>0 is discussed. Hence, the confinement on 
a finite fourth-order moment concerning the initial distribution is a little bit strict. As revealed in [36], 
the common noise is beneficial to ergodicity and restoration of uniqueness for invariant probability mea
sures whenever the intensity of the idiosyncratic noise is small enough. In addition, in [36] the synchronous 
coupling was applied to the idiosyncratic noise so no contributions were made to investigate the ergodic 
behavior of (μt)t>0 even though the intensity of the idiosyncratic noise is big enough.

1.2. Main result

Inspired by the aforementioned literature, in the present work, we make an attempt to investigate er
godicity of the measure-valued process (μt)t>0 associated with the following conditional McKean-Vlasov 
SDE:

dXt = b(Xt, μt) dt + σ(Xt) dBt + σ0 dWt. (1.7)
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Herein,

b : R⊗ P(R) → R, σ : R → R, σ0 ∈ R,

where P(R) is the family of probability measures on R; (Bt)t≥0 and (Wt)t≥0 are mutually independent 
1-dimensional Brownian motions, where the corresponding probability spaces will be specified explicitly 
later; μt := LXt|FW

t
is the regular conditional distribution of Xt given the σ-algebra FW

t . Throughout 
the paper, we assume that (Wt)t≥0 is the solely common source of noise (that is, the initial value X0 is 
excluded).

Regarding the L1-Wasserstein ergodicity of the measure-valued Markov process (μt)t>0 corresponding to 
(1.7), we aim to

• allow the drift b to be much more general (rather than the mere convolution form) and of polynomial 
growth, and permit specifically the idiosyncratic noise to be of multiplicative type;

• permit the initial distribution to admit a finite first-order moment instead of a higher-order one;
• establish a novel asymptotic coupling by reflection, which is not only applied to the common noise part 

but also to the idiosyncratic noise, so that the idiosyncratic noise can also make contributions to the 
ergodic behavior of (μt)t>0.

The preceding highlights are the important source impelling us to carry out the present work and can also 
be regarded as the main contributions of the whole paper.

To proceed, we introduce the underlying probability space we are going to work on, and some notations 
involved in the subsequent analysis. Let (Ω1,F 1, (F 1

t )t≥0,P 1) and (Ω0,F 0, (F 0
t )t≥0,P 0) be complete fil

tered probability spaces, where 1-dimensional Brownian motions (Bt)t≥0 and (Wt)t≥0, given in (1.7), are 
supported respectively on. In the whole paper, we shall focus on the product probability space (Ω,F ,F ,P ), 
where Ω := Ω0 × Ω1, (F ,P ) is the completion of (F 0 ⊗ F 1,P 0 ⊗ P 1), and F is the complete and right
continuous augmentation of (F 0

t ⊗ F 1
t )t≥0. Set for p > 0,

Pp(Rd) :=
{︃
μ ∈ P(Rd) : μ(| · |p) :=

∫︂
Rd

|x|pμ(dx) < ∞
}︃
.

Under the Lp-Wasserstein distance:

Wp(μ, ν) = inf 
π∈C (μ,ν)

(︃∫︂
Rd×Rd

|x− y|pπ(dx,dy)
)︃ 1 

1∨p

, μ, ν ∈ Pp(Rd), (1.8)

where C (μ, ν) denotes the set of couplings for μ and ν, (Pp(Rd),Wp) is a Polish space.
Below, we shall assume that

(Hb,1) b(·, δ0) is continuous and locally bounded on R, and there exist constants λ1, λ2, λ3 > 0 and ℓ0 ≥ 1
such that for all x, y ∈ R and μ, ν ∈ P1(R),

2(x− y)(b(x, μ) − b(y, μ)) ≤ (λ1 + λ2)|x− y|21{|x−y|≤ℓ0} − λ2|x− y|2, (1.9)

and

|b(x, μ) − b(x, ν)| ≤ λ3W1(μ, ν). (1.10)

(Hb,2) for any conditionally independent and identically distributed (Xi
t)1≤i≤N under the filtration FW

t , 
there exists a function φ : [0,∞) → [0,∞) satisfying limr→∞ φ(r) = 0 such that for any N ≥ 1,
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max 
1≤i≤N

sup
t≥0 

E|b(Xi
t , μ

i
t) − b(Xi

t , ˜︁μN,i
t )| ≤ φ(N), (1.11)

where μi
t := LXi

t |FW
t

and ˜︁μN,i
t := 1 

N−1
∑︁N

j=1,j ̸=i δXj
t
.

(Hσ) there exist constants Lσ, κσ,1, κσ,2 > 0 such that for all x, y ∈ R,

|σ(x) − σ(y)| ≤ Lσ|x− y| and κσ,1 ≤ σ(x)2 ≤ κσ,2.

In recent years, strong well-posedness of conditional McKean-Vlasov SDEs has been treated in various 
scenarios in case the drift and diffusion terms are continuous in the measure argument under the L2
Wasserstein distance; see e.g. [7, Proposition 2.8] and [29, Theorem 2.1]. Under (Hb,1) and (Hσ), via the 
fixed point iteration method adopted in [29, Theorem 2.1], the SDE (1.7) is strongly well-posed even for 
the multidimensional setting (i.e., d ≥ 2), where the drift term involved is uniformly continuous under the 
L1-Wasserstein distance.

Below, we make some comments concerned with Assumptions (Hb,1), (Hb,2) and (Hσ).

Remark 1.1. (1.9) and (1.10) show respectively that b is dissipative in long distance with respect to the state 
variable, and uniformly (with respect to the state variable) continuous in the measure variable under the 
L1-Wasserstein distance. Below, we provide an example to demonstrate that (Hb,1) is valid. Set for some 
constant a > 0,

b(x, μ) := x− x3 + a

∫︂
R
zμ(dz), x ∈ R, μ ∈ P1(R).

It is easy to see that for any x, y ∈ R and μ ∈ P1(R),

(x− y)(b(x, μ) − b(y, μ)) = (x− y)2
(︁
1 − (x2 + xy + y2)

)︁
.

Whence, (1.9) follows readily. On the other hand, for any x ∈ R and μ, ν ∈ P1(R),

|b(x, μ) − b(x, ν)| ≤ a

∫︂
R×R

|z1 − z2|π(dz1,dz2), (1.12)

where π ∈ C (μ, ν). As a result, by taking the infimum over all couplings π on both sides of (1.12), (1.10) is 
available right now. Another example is taken from in [36], where b is given as below:

b(x, μ) = −V ′(x) −
∫︂
R
W ′(x− y)μ(dy), x ∈ R, μ ∈ P1(R).

Here, V ′,W ′ are Lipschitz continuous with Lipschitz constants LV and LW respectively, and V ′ is dissipative 
in long distance (see [36, Assumption (A1)]). Then, by following the arguments above, one can see that 
Assumption (Hb,1) is fulfilled for the drift b(x, μ) defined above when LW is small (which is also required 
in the main result [36, Theorem 2]). In this sense, the framework of the present paper is much more general 
than [36]; see Remark 3.6 below for further comments. (Hb,1) and (Hb,2) together will be used in handling 
the asymptotic PoC in an infinite-time horizon (see Proposition 3.3 below for more details). In particular, 
(Hb,2) is valid when b is of convolution type; that is, b(x, μ) =

∫︂
R
b0(x−y) μ(dy) for all x ∈ R and μ ∈ P1(R)

with some Lipschitz continuous function b0 : R → R. See Lemma 4.1 in the Appendix for more details. 
Furthermore, the non-degenerate property of σ plays a crucial role in constructing the asymptotic coupling 
by reflection, as stated in the second paragraph of Section 3. For example, (Hσ) holds true obviously for 
σ(x) = 2+|x|

1+|x| , x ∈ R.
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Before we present the main result, we introduce some additional notation. Let for p ≥ 1,

Lp(P(Rd)) :=
{︃
μ ∈ P(P(Rd)) :

∫︂
P(Rd)

ν(| · |p)μ(dν) < ∞
}︃
,

and

𝒲p(μ, ν) := inf 
π∈C (μ,ν)

∫︂
P(Rd)×P(Rd)

Wp(˜︁μ, ˜︁ν) π(d˜︁μ,d˜︁ν), μ, ν ∈ Lp(P(Rd)).

The main result in this paper is stated as follows.

Theorem 1.2. Assume that (Hb,1), (Hb,2) and (Hσ) hold. Then, there exist positive constants C, λ∗
0 and λ∗

3
such that for any t > 0 and μ, ν ∈ P1(R),

𝒲1(μt, νt) ≤ Ce−λ∗
0tW1(μ, ν) (1.13)

provided that λ3 in (Hb,1) satisfies λ3 ∈ (0, λ∗
3], where μt := LXt|FW

t
and νt := LXt|FW

t
stand for the 

regular conditional distributions of Xt, determined by (1.7), with the initial distributions LX0 = μ and 
LX0 = ν respectively; and λ3 > 0 is the Lipschitz constant of b(x, μ) with respect to the measure variable, 
given in (1.10).

Like the setting concerned with classical McKean-Vlasov SDEs, Theorem 1.2 indicates that there is a 
unique invariant probability measure (IPM for short) for the McKean-Vlasov SDE with common noise (1.7)
if the meanfield interaction is not too strong. Indeed, concerning McKean-Vlasov SDEs with common noise, 
an interesting phenomenon (that is, restoration of uniqueness for IPMs) emerges due to the introduction of 
common noise; see, for example, [36]. So, in some sense, the common noise would play a positive impact on 
the long-time behaviors of McKean-Vlasov SDEs with common noise.

In the sequel, let’s explain the roles of the common noise and the idiosyncratic noise via the estimate 
for the convergence rate λ∗

0 > 0 given in (1.13). That is, Theorem 1.2 will further demonstrate in a more 
convincing way the impact of the common noise.

Remark 1.3. By tracking proofs of Proposition 3.3 and Theorem 1.2 below, λ∗
0 given in (1.13) can be 

calculated explicitly; see, in particular, (3.7). In Remark 3.4 below, it will be stressed once more that the 
non-degeneracy of σ0 and σ1 will facilitate the exponential ergodicity presented in (1.13). Furthermore, it 
is easily seen from (3.7) that the smaller ℓ0 or the larger λ2, introduced in (1.9), yields a faster convergence 
rate in (1.13). Nevertheless, the larger λ1, given in (1.9), deteriorates the convergence rate.

Next, we make an explanation on the alternative of the initial value X0.

Remark 1.4. In the present paper, to emphasize that the noise (Wt)t≥0 is the unique common noise, the 
initial value X0 is set to be supported on the probability space (Ω1,F 1

0 ,P
1). This results in that W1(μ, ν)

rather than 𝒲1(μ, ν) appears on the right hand side of (1.13). When (i) X0 is defined on (Ω0,F 0
0 ,P

0) (so 
X0 = X0

0 ), and (ii) X0 is measurable with respect to σ(X0
0 , X

1
0 ) with X0

0 and X1
0 being defined respectively on 

(Ω0,F 0
0 ,P

0) and (Ω1,F 0
1 ,P

1), μt is a version of the conditional law of Xt given the σ-algebra σ(X0
0 ,Ws, s ≤

t); see e.g. [7, Remark 2.10] for more discussions on various choices of the initial value associated with 
McKean-Vlasov SDEs with common noise. For the case (i), (X0,W ) is called the ``initial condition-common 
noise''; regarding the setting (ii), (X0

0 ,W ) plays the role of systemic noise. As far as the cases (i) and (ii) 
are concerned, the quantity W1(μ, ν) on the right hand side of (1.13) can be replaced by 𝒲1(μ, ν) so (1.13)
can be written in a symmetric form, i.e., 𝒲1(μt, νt) ≤ Ce−λ∗

0t𝒲1(μ, ν) for some constants C, λ∗
0 > 0.
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To investigate ergodicity of classical McKean-Vlasov SDEs, which are strongly well-posed, one usually 
makes very well use of their decoupled versions. However, this routine does not work for the McKean
Vlasov SDEs with common noise due to the essentially different roles played by the common noise and the 
idiosyncratic noise. Instead, we turn to work with the non-interacting particle system and the corresponding 
interacting particle system to explore the long-time behaviors of (1.7).

The detailed comparisons between Theorem 1.2 and the counterpart in [36, Section 4] are to be presented 
in Remark 3.6. Presently, one might be a little bit confused why we are confined to the 1-dimensional SDE 
(1.7) rather than the associated multi-dimensional version. From now on, we go into detail about the 
corresponding explanations.

Remark 1.5. Unsatisfactorily, Theorem 1.2 is concerned merely with a kind of 1-dimensional McKean-Vlasov 
SDEs with common noise. In terms of Proposition 2.4, we can indeed derive via the asymptotic coupling 
by reflection the associated coupling process for the multi-dimensional McKean-Vlasov SDEs with common 
noise. Whereas, for the dimension d ≥ 2, the asymptotic coupling by reflection constructed in Subsection 2.2
is determined by the average difference between the component processes (see Remark 3.7 below for more 

details). With such a construction at hand, one can derive only an estimate on the quantity E|XN
t −XN,N

t |
provided that b enjoys a very special structure. Hereinbefore, XN

t (resp. XN,N
t ) indicates the arithmetic 

mean of the non-interacting particles (resp. interacting particles). Furthermore, by following the line in [36, 
Section 5], to achieve the main result in Theorem 1.2 for the high dimensional setting, one needs to quantify 
the difference between each component of the interacting particle system and its averaged process. To this 
end, a very strict condition (i.e., σ ≡ 0) has to be imposed. When the idiosyncratic noise vanishes (that is, 
the McKean-Vlasov SDE under consideration is driven merely by common noise), the corresponding issue 
has been treated in [36, Section 5]. On the other hand, one can apply directly the synchronous coupling and 
bypass the aforementioned obstacles as long as the coefficients corresponding to the McKean-Vlasov SDEs 
with common noise are dissipative; see [36, Section 3] for further details. More interpretations related to 
the restriction on the dimension d = 1 will be further elaborated in Remark 2.7 and Remark 3.7.

The rest of this paper is arranged as follows. In Section 2, we address the issue on conditional PoC in a 
finite-time horizon for McKean-Vlasov SDEs with common noise, and construct via an asymptotic coupling 
by reflection the coupling process for the associated non-interacting particle system and the interacting 
particle system. Section 3 is devoted to the proof of Theorem 1.2, which is based on the uniform-in-time 
PoC for the conditional McKean-Vlasov SDE (1.7).

2. Preliminaries

Let (B1
t )t≥0 and (B2

t )t≥0 be d-dimensional Brownian motions defined on (Ω1,F 1, (F 1
t )t≥0,P 1), and 

(Wt)t≥0 a d-dimensional Brownian motion supported on (Ω0,F 0, (F 0
t )t≥0,P 0). Write E, E0 and E1 as 

the expectation operators under P := P 0 × P 1, P 0 and P 1, respectively. In this section, we focus on the 
McKean-Vlasov SDE with common noise in the following form:

dXt = b(Xt, μt)dt + σ1dB1
t + σ(Xt)dB2

t + σ0dWt, (2.1)

where μt := LXt|FW
t

, σ0, σ1 ∈ R,

b : Rd × P(Rd) → Rd, σ : Rd → Rd ⊗Rd,

and the initial value X0 is an F 1
0 -measurable random variable. As the chapter unfolds, the reason why we 

prefer the SDE formulated in the framework (2.1) will become more and more transparent; see, in particular, 
the introductory part of Section 3 for more details.
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In this section, we suppose that

(Ab) b(·, δ0) : Rd → Rd is continuous and locally bounded on Rd, and there exist constants L1, L2 > 0 such 
that for all x, y ∈ Rd and μ, ν ∈ P1(Rd),

2⟨x− y, b(x, μ) − b(y, μ)⟩ ≤ L1|x− y|2, (2.2)

and

|b(x, μ) − b(x, ν)| ≤ L2W1(μ, ν); (2.3)

(Aσ) there exists a constant L3 > 0 such that

∥σ(x) − σ(y)∥HS ≤ L3|x− y|, x, y ∈ Rd, (2.4)

where ∥ · ∥HS means the Hilbert-Schmidt norm.

Under (Ab) and (Aσ), note that for all x, y ∈ Rd and μ, ν ∈ P1(Rd),

2⟨x− y, b(x, μ) − b(y, ν)⟩ ≤ L4
(︁|x− y| + W1(μ, ν)

)︁|x− y|, (2.5)

where L4 := max{L1, 2L2}. Then, the SDE (2.1) has a unique strong solution; see, for instance, the proof 
of [29, Theorem 2.1] for related details.

To handle the issue on PoC concerned with (2.1), we consider the non-interacting particle system and 
the interacting particle system associated with (2.1): for any i ∈ SN ,

dXi
t = b(Xi

t , μ
i
t)dt + σ1dB1,i

t + σ(Xi
t)dB

2,i
t + σ0dWt, (2.6)

and

dXi,N
t = b(Xi,N

t , ˆ︁μN
t )dt + σ1dB1,i

t + σ(Xi,N
t )dB2,i

t + σ0dWt. (2.7)

Herein, μi
t := LXi

t |FW
t

and ˆ︁μN
t := 1 

N

∑︁N
j=1 δXj,N

t
; ((B1,i

t )t≥0)i∈SN
and ((B2,i

t )t≥0)i∈SN
are mutually indepen

dent d-dimensional Brownian motions on (Ω1,F 1, (F 1
t )t≥0,P 1); (Wt)t≥0, carried on (Ω0,F 0, (F 0

t )t≥0,P 0), 
is kept untouched as in (2.1). In addition, throughout this section, we assume that (Xi

0, X
i,N
0 )i∈SN

are i.i.d. 
F 1

0 -measurable random variables. Note that (2.7) can be reformulated as a classical (Rd)N -valued SDE, 
where the corresponding coefficients satisfy the locally weak monotonicity and the globally weak coercivity 
once (Ab) and (Aσ) are available. Thus, (2.7) is strongly well-posed; see, for instance, e.g. [39, Theorem 
3.1.1].

To proceed, we make some comments concerning Assumptions (Ab) and (Aσ).

Remark 2.1. In the following subsection, we are concerned merely with behaviors of the SDE (2.1) in a 
finite horizon. For this, the one-sided Lipschitz condition (2.2) is enough. That is, the dissipativity in long 
distance (see in particular (1.9)), which is dedicated to the long-term analysis, is unnecessary. In addition, 
whether σ1, σ and σ0 are degenerate or not does not have impact on the subsequent analysis. Nevertheless, 
the non-degeneracy of σ1 and σ0 is indispensable as far as the establishment of long-time behaviors is 
concerned.
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2.1. Conditional PoC in finite time

In the past few years, there are some progresses on the issue of PoC for conditional McKean-Vlasov SDEs; 
see, for example, [7, Theorem 2.12] and [25, Theorem 2.3], where the coefficients are Lipschitz continuous 
with respect to the state variable, and [29, Proposition 2.1], in which the coefficients satisfy the monotone 
condition. It is worthy to emphasize that, as for McKean-Vlasov SDEs with common noise investigated 
in [7,29,25], the coefficients are L2-Wasserstein Lipschitz continuous with respect to the measure variable. 
Yet, in the present paper, the drift part of the conditional McKean-Vlasov SDE we are interested in is 
L1-Wasserstein Lipschitz continuous. In addition, by invoking [19, Theorem 1], the convergence rate of 
conditional propagation of chaos was provided in [7,29,25] once the initial distribution enjoys the high-order 
moment. Whereas, for our purpose, the quantitative convergence rate of conditional PoC is unnecessary so 
the high-order moment of the initial distribution is dispensable as shown in the following proposition.

Concerning the McKean-Vlasov SDE with common noise (2.1), the following proposition addresses PoC 
in a finite horizon.

Proposition 2.2. Consider the SDEs (2.6) and (2.7) with Xi,N
0 = Xi

0 for all i ∈ SN . Assume (Ab) and (Aσ), 
and suppose further E|X1

0 | < ∞. Then, for each given t ≥ 0 and any i ∈ SN ,

lim 
N→∞

EW1(μi
t, ˜︁μN

t ) = 0, (2.8)

where μi
t := LXi

t |FW
t

and ˜︁μN
t := 1 

N

∑︁N
j=1 δXj

t
, and

lim 
N→∞

E|Xi
t −Xi,N

t | = 0. (2.9)

Proof. The proof is split into two parts.
(i) First of all, we show that for each given t ≥ 0 and i ∈ SN ,

E|Zi,N
t | ≤ 1

2L4te(L4+L2
3/2)t

∫︂ t

0
EW1(μi

s, ˜︁μN
s ) ds, (2.10)

where Zi,N
t := Xi

t −Xi,N
t and L4 was given in (2.5). Once (2.10) is verifiable, by Fatou’s lemma, we deduce 

that

lim sup
N→∞ 

E|Zi,N
t | ≤ 1

2L4te(L4+L2
3/2)t lim sup

N→∞ 

∫︂ t

0
EW1(μi

s, ˜︁μN
s ) ds

≤ 1
2L4te(L4+L2

3/2)t
∫︂ t

0
lim sup
N→∞ 

EW1(μi
s, ˜︁μN

s ) ds.

Consequently, (2.9) follows by taking (2.8) into consideration.
In the sequel, we shall fix the index i ∈ SN . For any δ ∈ (0, 1], define the function Vδ by

Vδ : Rd → R+, Vδ(x) = (δ + |x|2)1/2, x ∈ Rd, (2.11)

which is a smooth approximation of the function Rd ∋ x ↦→ |x|. It is ready to see that

∇Vδ(x) = x 
Vδ(x) and ∇2Vδ(x) = 1 

Vδ(x)Id −
x⊗ x 
Vδ(x)3 , x ∈ Rd, (2.12)

where x⊗x ∈ Rd⊗Rd with entries (x⊗x)i,j = xixj , and Id means the d×d-identity matrix. Then, applying 
Itô’s formula, we deduce from (2.4) and (2.5) that
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dVδ(Zi,N
t ) =

⟨︁∇Vδ(Zi,N
t ), b(Xi

t , μ
i
t) − b(Xi,N

t , ˆ︁μN
t )
⟩︁
dt

+ 1
2
⟨︁∇2Vδ(Zi,N

t ), (σ(Xi
t) − σ(Xi,N

t ))(σ(Xi
t) − σ(Xi,N

t ))∗
⟩︁
HSdt + dM i

t

≤ |Zi,N
t | 

2Vδ(Zi,N
t )

(︁
(L4 + L2

3)|Zi,N
t | + L4W1(μi

t, ˆ︁μN
t )
)︁
dt + dM i

t

≤ 1
2
(︁
(L4 + L2

3)|Zi,N
t | + L4W1(μi

t, ˆ︁μN
t )
)︁
dt + dM i

t ,

where

dM i
t :=

⟨︁∇Vδ(Zi,N
t ),

(︁
σ(Xi

t) − σ(Xi,N
t )

)︁
dB2,i

t

⟩︁
.

Thus, via Fatou’s lemma, in addition to Xi
0 = Xi,N

0 , we have

E|Zi,N
t | ≤ 1

2

∫︂ t

0

(︁
(L4 + L2

3)E|Zi,N
s | + L4EW1(μi

s, ˆ︁μN
s )
)︁
ds. (2.13)

Note from the triangle inequality that

W1(μi
t, ˆ︁μN

t ) ≤ W1(μi
t, ˜︁μN

t ) + W1(˜︁μN
t , ˆ︁μN

t )

≤ W1(μi
t, ˜︁μN

t ) + 1 
N

N∑︂
j=1 

|Zj,N
t |.

Whence, since (Xi
t , X

i,N
t )i∈SN

are identically distributed (see e.g. [7, p. 122--123]) by recalling that 
(Xi

0, X
i,N
0 )i∈SN

are i.i.d. F 1
0 -measurable random variables, we derive from (2.13) that

E|Zi,N
t | ≤ 1

2

∫︂ t

0

(︁
(2L4 + L2

3)E|Zi,N
s | + L4EW1(μi

s, ˜︁μN
s )
)︁
ds.

Accordingly, (2.10) follows from Gronwall’s inequality.
(ii) Next, we prove (2.8). We firstly verify that there exists a constant c0 > 0 such that for all i ∈ SN

and all t > 0,

E|Xi
t | ≤

(︁
1 + c0t + E|Xi

0|
)︁
ec0t. (2.14)

Indeed, applying Itô’s formula to the function V1, defined in (2.11) with δ = 1, and taking advantage of 
(2.12) with δ = 1, we infer from (2.4), (2.5) and V1 ≥ 1 that for some constant c1 > 0,

dV1(Xi
t) = ⟨∇V1(Xi

t), b(Xi
t , μ

i
t)⟩dt + 1

2 ⟨∇
2V1(Xi

t), (σ2
1 + σ2

0)Id + σ(Xi
t)(σ(Xi

t))∗⟩HSdt + dM i

t

≤ 1 
V1(Xi

t)

(︂
⟨Xi

t , b(Xi
t , μ

i
t)⟩ + 1

2
(︁
(σ2

1 + σ2
0)d + ∥σ(Xi

t)∥2
HS
)︁)︂

dt + dM i

t

≤ c1
(︁
1 + |Xi

t | + μi
t(| · |)

)︁
dt + dM i

t,

where

dM i

t :=
⟨︁∇V1(Xi

t), σ1dB1,i
t + σ(Xi

t)dB
2,i
t + σ0dWt

⟩︁
.

Thus, by invoking the fact that
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E0μi
t(| · |) = E0(︁E1(︁|Xi

t |
⃓⃓
FW

t

)︁)︁
= E|Xi

t |,

we conclude that

E|Xi
t | ≤ 1 + E|Xi

0| + 2c1
∫︂ t

0
(1 + E|Xi

s|)ds.

Therefore, (2.14) is attainable by applying Gronwall’s inequality.
With (2.14) at hand, we proceed to prove (2.8). Since, P 0-almost surely, ˜︁μN

t converges weakly to μi
t, and

P 1
(︂

lim 
N→∞

˜︁μN
t (| · |) = μi

t(| · |)
)︂

= 1

by means of the law of large numbers, [6, Theorem 5.5] yields P 0-almost surely

P 1
(︂

lim 
N→∞

W1(μi
t, ˜︁μN

t ) = 0
)︂

= 1.

Whereafter, owing to

W1(μi
t, ˜︁μN

t ) ≤ μi
t(| · |) + ˜︁μN

t (| · |)

and the fact that Xi
t and Xj

t are identically distributed given the filtration FW
t , the dominated convergence 

theorem yields that

P 0
(︂

lim 
N→∞

E1W1(μi
t, ˜︁μN

t ) = 0
)︂

= 1.

Next, in the light of

E1W1(μi
t, ˜︁μN

t ) ≤ 2μi
t(| · |) and EW1(μi

t, ˜︁μN
t ) = E0(︁E1W1(μi

t, ˜︁μN
t )
)︁
,

the verification (2.14) and the dominated convergence theorem enable us to derive (2.8). □
At the end of this part, we make a comment on Proposition 2.2.

Remark 2.3. The statement in Proposition 2.2 can be made quantitatively by applying [19, Theorem 1] 
provided that the associated initial value has finite moment with order great than 1; see [2, Theorem 4.3] 
for the recent study on this topic. Indeed, in this case the associated convergence rates can be established 
exactly as those in [19, Theorem 1]. On the other hand, once (Ab) is strengthened into a version, given 
as in (1.9), and (Hb,2) is further imposed, Proposition 3.3 below enables us to derive the uniform-in-time 
conditional PoC. Indeed, Lemma 4.1 provides a sufficiency to guarantee (Hb,2); see Section 3 for more 
details.

2.2. Asymptotic coupling by reflection

For any ε > 0, define the cut-off function hε by

hε(r) =

⎧⎪⎪⎨⎪⎪⎩
0, r ∈ [0, ε],
1 − exp

(︁
(r − ε)/(r − 2ε)

)︁
, r ∈ (ε, 2ε),

1, r ≥ 2ε.
(2.15)
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Set for any x ∈ Rd,

n(x) := x 
|x|1{x̸=0} + (1, 0, · · · , 0)⊤1{x=0},

where a⊤ means the transpose of the d-dimensional row vector a. Below, let ρ : (Rd)N → [0,∞) and 
ϕ : (Rd)N → Rd, where their precise expressions are unimportant in this subsection, and will be prescribed 
explicitly in Section 3. Define for x := (x1, · · · , xN ) ∈ (Rd)N and ε > 0,

Πε(x) := Id − 2hε(ρ(x))n(ϕ(x)) ⊗ n(ϕ(x)). (2.16)

In particular, for the case d = 1, one has

Πε(x) = 1 − 2hε(ρ(x)).

In order to investigate the issue on uniform-in-time PoC for the SDE (2.1), we construct the asymp
totic coupling by reflection associated with the non-interacting particle system (2.6) and the corresponding 
interacting particle system (2.7). More precisely, we build the following approximate interacting particle 
systems: for i ∈ SN and ε > 0,⎧⎪⎪⎨⎪⎪⎩

dXi
t = b(Xi

t , μ
i
t)dt + σ1dB1,i

t + σ(Xi
t)dB

2,i
t + σ0dWt,

dXi,N,ε
t = b(Xi,N,ε

t , ˆ︁μN,ε
t )dt + σ1Πε(XN

t − XN,N,ε
t )dB1,i

t + σ
(︁
Xi,N,ε

t

)︁
dB2,i

t ,

+σ0Πε(XN
t − XN,N,ε

t )dWt,

(2.17)

where Xi,N,ε
0 = Xi,N

0 , ˆ︁μN,ε
t := 1 

N

∑︁N
j=1 δXj,N,ε

t
,

XN
t :=

(︁
X1

t , · · · , XN
t

)︁
, XN,N,ε

t :=
(︁
X1,N,ε

t , · · · , XN,N,ε
t

)︁
,

and (Xi
0, X

i,N
0 )i∈SN

are i.i.d. F 1
0 -measurable random variables.

To proceed, let’s say a few words on the construction in (2.17). Roughly speaking, for the additive common 
noise and the idiosyncratic noise, we employ the asymptotic coupling by reflection. Nevertheless, regarding 
the multiplicative noise, we exploit the synchronous coupling. The main thesis in this part is presented as 
follows.

Proposition 2.4. Fix N ≥ 1 and T > 0. Let (XN
[0,T ],X

N,N,ε
[0,T ] )ε>0 := ((XN

t )t∈[0,T ], (XN,N,ε
t )t∈[0,T ])ε>0 be the 

process determined by (2.17) such that the initial value (XN
0 ,XN,N,ε

0 )ε>0 satisfies all properties mentioned 
above. Under (Ab) and (Aσ), (XN

[0,T ],X
N,N,ε
[0,T ] )ε>0 has a weakly convergent subsequence such that the corre

sponding weak limit process is the coupling process of XN
[0,T ] and XN,N

[0,T ], where XN,N
[0,T ] := (XN,N

t )t∈[0,T ] with 

XN,N
t :=

(︁
X1,N

t , · · · , XN,N
t

)︁
for any t ≥ 0.

For fixed N ≥ 1 and T ≥ 0, we first show that (XN,N,ε
[0,T ] )ε>0 owns a uniform moment in ε, which plays a 

crucial role in illustrating the tightness of (XN,N,ε
[0,T ] )ε>0.

Lemma 2.5. Let Assumptions (Ab) and (Aσ) hold. Fix N ≥ 1 and T > 0. Suppose further E|X1,N
0 | < ∞. 

Then, there is a constant CT > 0 (which is independent of N) such that for any ε > 0,

E
(︂

sup 
0≤t≤T

|XN,N,ε
t |

)︂
≤ CTN

(︁
1 + E|X1,N

0 |)︁. (2.18)
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Proof. Below, we fix the particle number N ≥ 1 and a finite-time horizon T > 0. It is easy to see from 
hε ∈ [0, 1] that for all x ∈ (Rd)N ,

∥Πε(x)∥2
HS = d + 4hε(ρ(x))(hε(ρ(x)) − 1) ≤ d. (2.19)

Then, applying Itô’s formula to V1, introduced in (2.11) with δ = 1, and making use of V1 ≥ 1, we deduce 
from (2.2) and (2.4) (see also the arguments below (2.14)) that for some constant c1 > 0,

dV1(Xi,N,ε
t ) ≤ 1 

2V1(Xi,N,ε
t )

(︁
2⟨Xi,N,ε

t , b(Xi,N,ε
t , ˆ︁μN,ε

t )⟩ + ∥σ(Xi,N,ε
t )∥2

HS + (σ2
0 + σ2

1)d
)︁
dt + dM i,N,ε

t

≤ c1
(︁
1 + |Xi,N,ε

t | + ˆ︁μN,ε
t (| · |))︁dt + dM i,N,ε

t ,

where

dM i,N,ε
t : =

⟨︁∇V1(Xi,N,ε
t ),Πε(XN

t − XN,N,ε
t )(σ1dB1,i

t + σ0dWt) + σ(Xi,N,ε
t )dB2,i

t

⟩︁
.

Define the stopping time for any integer n ≥ 1,

τN,ε
n = inf

{︁
t ≥ 0 : |XN,N,ε

t | ≥ n
}︁
.

Employing BDG’s inequality and taking (2.4) and (2.19) into consideration yields that for some constants 
c2, c3 > 0,

γi,N,ε
n (t) : = E

(︃
sup 

0≤s≤t∧τN,ε
n

|Xi,N,ε
s |

)︃

≤ E|Xi,N,ε
0 | + c2t + c2

∫︂ t

0

(︃
γi,N,ε
n (s) + 1 

N

N∑︂
j=1 

γj,N,ε
n (s)

)︃
ds

+ c2E

(︃∫︂ t∧τN,ε
n

0

(︁
1 + |Xi,N,ε

s |)︁2 ds
)︃1/2

≤ E|Xi,N,ε
0 | + c3t + c3

∫︂ t

0

(︃
γi,N,ε
n (s) + 1 

N

N∑︂
j=1 

γj,N,ε
n (s)

)︃
ds + 1

2γ
i,N,ε
n (t),

where in the last inequality we used the fact that 2ab ≤ η−1a2 + ηb2, a, b, η > 0. This obviously implies that 
for some constant c4 > 0,

1 
N

N∑︂
i=1 

γi,N,ε
n (t) ≤ c4

(︃
E|X1,N

0 | + t + 1 
N

N∑︂
j=1 

∫︂ t

0
γj,N,ε
n (s) ds

)︃
,

since (Xi,N,ε
0 )i∈SN

= (Xi,N
0 )i∈SN

are i.i.d. F 1
0 -measurable random variables. Hence, by applying Gronwall’s 

inequality and Fatou’s lemma, there exists a constant C∗
T > 0 such that

1 
N

N∑︂
i=1 

E
(︂

sup 
0≤t≤T

|Xi,N,ε
t |

)︂
≤ C∗

T

(︁
1 + E|X1,N

0 |)︁.
Thus, the assertion (2.18) follows immediately by noting that
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E
(︂

sup 
0≤t≤T

|XN,N,ε
t |

)︂
≤

N∑︂
i=1 

E
(︂

sup 
0≤t≤T

|Xi,N,ε
t |

)︂
. □

Lemma 2.6. Let Assumptions (Ab) and (Aσ) hold. Fix N ≥ 1 and T > 0. Suppose further E|X1,N
0 | < ∞. 

Then, (XN,N,ε
[0,T ] )ε>0 is tight.

Proof. In the subsequent analysis, we shall fix N ≥ 1 and T > 0. According to [1, Theorem 1], for the sake 
of tightness of (XN,N,ε

[0,T ] )ε>0, it amounts to establishing that

(i) for each t ∈ [0, T ], (XN,N,ε
t )ε>0 is tight;

(ii) XN,N,ε
τε+δε

− XN,N,ε
τε → 0 in probability as ε → 0, where, for each ε > 0, τε ∈ [0, T ] is a stopping time and 

δε ∈ [0, 1] is a constant such that δε → 0 as ε → 0.

In the sequel, we aim to verify the two statements above, one by one.
For any r > 0, let Br = Br × Br · · · × Br ⊂ (Rd)N , where Br := {x ∈ Rd : |x| ≤ r}. Let Bc

r and Bc
r be 

the respective complements of Br and Br. By the Chebyshev inequality, in addition to (2.18), we find that 
for any t ∈ [0, T ] and R > 0,

P
(︁
XN,N,ε

t ∈ Bc
R

)︁ ≤ (2N − 1) max 
i∈SN

P
(︁
Xi,N,ε

t ∈ Bc
R

)︁
≤ 1 

R
(2N − 1)CTN

(︁
1 + E|X1,N

0 |)︁.
Whence, the statement (i) is valid right now.

For any β > 0, it is easy to notice that

P
(︁⃓⃓

XN,N,ε
τε+δε

− XN,N,ε
τε

⃓⃓ ≥ β
)︁ ≤ N∑︂

i=1 

(︄
P

(︃∫︂ τε+δε

τε

⃓⃓
b(Xi,N,ε

s , ˆ︁μN,ε
s )

⃓⃓
ds ≥ β

4N

)︃

+ P

(︃
|σ1|

⃓⃓⃓⃓ ∫︂ τε+δε

τε

Πε(XN
s − XN,N,ε

s ) dB1,i
s

⃓⃓⃓⃓
≥ β

4N

)︃
+ P

(︃
|σ0|

⃓⃓⃓⃓ ∫︂ τε+δε

τε

Πε(XN
s − XN,N,ε

s ) dWs

⃓⃓⃓⃓
≥ β

4N

)︃

+ P

(︃⃓⃓⃓⃓ ∫︂ τε+δε

τε

σ(Xi,N,ε
s ) dB2,i

s

⃓⃓⃓⃓
≥ β

4N

)︃)︄

=:
N∑︂
i=1 

4 ∑︂
j=1 

Γj,ε
i .

In the event of σ1, σ0 = 0, Γ2,ε
i = Γ3,ε

i = 0 holds true trivially for any i ∈ SN so we shall prescribe σ1, σ ̸= 0
in the analysis below. Applying Chebyshev’s inequality followed by (2.18) yields that for R0 > 0,

P

(︃
sup 

0≤t≤T+1
|XN,N,ε

t | ≥ R0

)︃
≤ 1 

R0
CT+1N

(︁
1 + E|X1,N

0 |)︁.
Hence, for any ε0 > 0, we can take R∗

0 = R∗
0(ε0) > 0 large enough satisfying

P

(︃
sup 

0≤t≤T+1
|XN,N,ε

t | ≥ R∗
0

)︃
≤ ε0. (2.20)



J. Bao, J. Wang / J. Math. Anal. Appl. 552 (2025) 129819 15

For R∗
0 > 0 stipulated above, we define the stopping time

τN,ε
0 = inf

{︁
t ≥ 0 : |XN,N,ε

t | ≥ R∗
0
}︁
.

Whereafter, the term Γ1,ε
i , i ∈ SN , can be estimated as below:

Γ1,ε
i ≤ P

(︃∫︂ τε+δε

τε

⃓⃓
b(Xi,N,ε

s , ˆ︁μN,ε
s ) − b(Xi,N,ε

s , δ0)
⃓⃓
ds ≥ β

8N

)︃
+ P

(︃∫︂ τε+δε

τε

⃓⃓
b(Xi,N,ε

s , δ0)
⃓⃓
ds ≥ β

8N

)︃
≤ P

(︃∫︂ τε+δε

τε

W1(ˆ︁μN,ε
s , δ0) ds ≥ β

8NL2

)︃
+ P

(︁
τN,ε
0 ≤ T + 1

)︁
+ P

(︃∫︂ τε+δε

τε

⃓⃓
b(Xi,N,ε

s , δ0)
⃓⃓
ds ≥ β

8N , τN,ε
0 > T + 1

)︃

≤ P

(︃
1 
N

N∑︂
j=1 

∫︂ τε+δε

τε

|Xj,N,ε
s | ds ≥ β

8NL2

)︃
+ P

(︃
sup 

0≤t≤T+1
|XN,N,ε

t | ≥ R∗
0

)︃

+ P

(︃∫︂ τε+δε

τε

1[0,τN,ε
0 ](s)

⃓⃓
b(Xi,N,ε

s , δ0)
⃓⃓
ds ≥ β

8N

)︃
,

where the second inequality holds true due to (2.3). As a consequence, by taking (2.18) and (2.20) into 
account and retrospecting that b(·, δ0) is continuous and locally bounded on Rd (see the Assumption (Ab)) 
and limε↓0 δε = 0, we conclude that limε↓0 Γ1,ε

i = 0.
On the one hand, by applying Chebyshev’s inequality and Itô’s isometry, along with (2.4) and (2.19), it 

follows that for any i ∈ SN ,

Γ2,ε
i + Γ3,ε

i ≤ 16N2

β2

(︃
(σ2

0 + σ2
1)E

(︃∫︂ τε+δε

τε

⃦⃦
Πε(XN

s − XN,N,ε
s )

⃦⃦2
HSds

)︃)︃
≤ 16N2

β2 (σ2
0 + σ2

1)dδε.

On the other hand, in terms of [20, Lemma 2.3], concerning ε0 > 0 given in (2.20), we find that for any 
i ∈ SN ,

Γ4,ε
i ≤ ε0 + P

(︃⃓⃓⃓⃓ ∫︂ τε+δε

τε

⃦⃦
σ(Xi,N,ε

s )
⃦⃦2

HSds
⃓⃓⃓⃓
≥ β2ε0

16N2

)︃
≤ ε0 + P

(︃
sup 

0≤t≤T+1
|XN,N,ε

t | ≥ R∗
0

)︃
+ P

(︃⃓⃓⃓⃓ ∫︂ τε+δε

τε

1[0,τN,ε
0 ](s)

⃦⃦
σ(Xi,N,ε

s )
⃦⃦2

HSds
⃓⃓⃓⃓
≥ β2ε0

16N2

)︃

≤ 2ε0 + P

(︃⃓⃓⃓⃓ ∫︂ τε+δε

τε

1[0,τN,ε
0 ](s)

⃦⃦
σ(Xi,N,ε

s )
⃦⃦2

HSds
⃓⃓⃓⃓
≥ β2ε0

16N2

)︃
,

where the second inequality is obtained by following the line to deal with the term Γ1,ε
i , and the last 

display is owing to (2.20). Consequently, with the aid of limε↓0 δε = 0 and the Lipschitz property of σ (so 
it is continuous and locally bounded on Rd), the conclusion 

∑︁4
j=2 limε↓0 Γj,ε

i = 0 is reachable for arbitrary 

i ∈ SN . At length, the statement (ii) is verifiable by recalling limε↓0 Γ1,ε
i = 0 for any i ∈ SN . □

With Lemma 2.6 at hand, we intend to complete the proof of Proposition 2.4.



16 J. Bao, J. Wang / J. Math. Anal. Appl. 552 (2025) 129819 

Proof of Proposition 2.4. Let C∞ = C([0,∞); (Rd)N ) be the collection of continuous functions ψ : [0,∞) →
(Rd)N . Define the projection operator π : C∞ → (Rd)N by πtψ = ψ(t) for ψ ∈ C∞ and t ≥ 0, and write 
ℱt = σ(πs : s ≤ t) as the σ-algebra on C∞ induced by the projections πs for s ∈ [0, t].

With the help of Lemma 2.6, the Prohorov theorem yields, for fixed N ≥ 1 and T > 0, that 
(XN

[0,T ],X
N,N,ε
[0,T ] )ε>0 has a weakly convergent subsequence (XN

[0,T ],X
N,N,εl
[0,T ] )l≥0 with the associated weak limit 

(XN
[0,T ],

˜︁XN,N
[0,T ]), where (εl)l≥0 is a sequence such that liml→∞ εl = 0. To demonstrate that (XN

[0,T ],
˜︁XN,N

[0,T ]) is 
indeed a coupling process of XN

[0,T ] and XN,N
[0,T ], it is sufficient to verify that L ˜︁XN,N = LXN,N , where L ˜︁XN,N

and LXN,N are the infinitesimal generators of (˜︁XN,N
t )t≥0 and (XN,N

t )t≥0, respectively. In particular, we 
have for f ∈ C2

c ((Rd)N ) and x := (x1, · · · , xN ) ∈ (Rd)N ,

(︁
LXN,N f

)︁
(x) =

N∑︂
i=1 

(︂
⟨∇if(x), b(xi, ˆ︁μN

x )⟩ + 1
2σ

2
1 trace(∇2

iif(x)) + 1
2 ⟨∇

2
iif(x), σ(xi)(σ(xi))∗⟩HS

+ 1
2σ

2
0

N∑︂
j=1 

trace
(︁∇2

ijf(x)
)︁)︂

,

where ˆ︁μN
x := 1 

N

∑︁N
j=1 δxj

.
To realize this goal, we define for any f ∈ C2

c ((Rd)N ),

MN,f
t = f(˜︁XN,N

t ) − f(˜︁XN,N
0 ) −

∫︂ t

0

(︁
LXN,N f

)︁
(˜︁XN,N

s ) ds.

For any f ∈ C2
c ((Rd)N ), provided that (MN,f

t )t≥0 is a martingale with respect to (ℱt)t≥0, i.e., for any 
t ≥ s ≥ 0 and ℱs-measurable bounded continuous functional F : C∞ → R,

E
(︁
MN,f

t F (˜︁XN,N )
)︁

= E
(︁
MN,f

s F (˜︁XN,N )
)︁
, (2.21)

L ˜︁XN,N = LXN,N is available by invoking the weak uniqueness of (2.7).
Below, we intend to prove (2.21). For x ∈ (Rd)N , let L N,ε

x be the infinitesimal generator of (XN,N,ε
t )t≥0

provided that the Markov process (XN,N
t )t≥0 is known in advance. For f ∈ C2((Rd)N ), y ∈ (Rd)N , and 

given x ∈ (Rd)N , we find that

(︁
L N,ε

x f
)︁
(y) =

(︁
LXN,N f

)︁
(y) − 2

(︃
σ2

1

N∑︂
i=1 

⟨∇2
iif(y),n(ϕ(x − y)) ⊗ n(ϕ(x − y))⟩HS

+ σ2
0

N∑︂
i,j=1

⟨∇2
ijf(y),n(ϕ(x − y)) ⊗ n(ϕ(x − y))⟩HS

)︃
× hε(ρ(x − y))

(︁
1 − hε(ρ(x − y))

)︁
=:

(︁
LXN,N f

)︁
(y) − (︁

L N,ε,∗
x f

)︁
(y).

(2.22)

By Itô’s formula, for any f ∈ C2
c ((Rd)N ) and t ≥ 0,

MN,f,εl
t := f(XN,N,εl

t ) − f(XN,N,εl
0 ) −

∫︂ t

0

(︁
L N,εl

XN
s

f
)︁
(XN,N,εl

s ) ds

is a martingale with respect to (ℱt)t≥0. Therefore, for any t ≥ s ≥ 0 and ℱs-measurable bounded continuous 
functional F : C∞ → R, we obviously have
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E
(︁
MN,f,εl

t F (XN,N,εl)
)︁

= E
(︁
MN,f,εl

s F (XN,N,εl)
)︁
. (2.23)

Next, owing to (2.22), MN,f,εl
t can be rewritten as below

MN,f,εl
t = f(XN,N,εl

t ) − f(XN,N,εl
0 ) −

∫︂ t

0
(LXN,N f)(XN,N,εl

s ) ds +
∫︂ t

0

(︁
L N,εl,∗

XN
s

f
)︁
(XN,N,εl

s ) ds

Whence, the assertion (2.21) is attainable by applying (2.23), [42, Lemma A.2] as well as the dominated 
convergence theorem, and using the fact that

lim 
ε→0

(︁
L N,ε,∗

x f
)︁
(y) = 0

by making use of

lim
ε↓0 

(︁
hε(r)(1 − hε(r))

)︁
= lim

ε↓0 
hε(r) lim

ε↓0 
(1 − hε(r)) = 1{r ̸=0}(1 − 1{r ̸=0}) = 0, r ≥ 0.

The proof is therefore complete. □
Before the ending of this section, we make a comment on the asymptotic coupling by reflection constructed 

in (2.17).

Remark 2.7. 

(i) In terms of (2.16), the asymptotic reflection matrix Πε embodies the information concerned with all 
particles, which are common for each single particle. Intuitively, such construction is reasonable since 
we design the coupling for the system (2.17) determined by all particles rather than the single particle. 
Indeed, by a close inspection of the proof for Proposition 2.4, one can see that such an observation 
plays an extremely important role in verifying that the weak limit process of (XN

[0,T ],X
N,N,ε
[0,T ] )ε>0 is the 

coupling process we desire. Once Πε contains only partial information associated with all particles, it is 
impossible to examine that the weak limit process of (XN

[0,T ],X
N,N,ε
[0,T ] )ε>0 is the coupling process due to 

the involvement of the common noise. In particular, inspired by the reflection coupling constructed in 
[15, Section 3.1] for the independent nonlinear processes and the associated meanfield particle system 
with common noise, we can naturally take ρ(x) = |xi| and ϕ(x) = xi/|xi| for x = (x1, · · · , xN ). 
Whereafter, for the case d ≥ 2, the intractable term: for xi, yi, xj , yj ∈ Rd,

hε(|xi − yi|)n(xi − yi)(n(xi − yi))⊤ + hε(|xj − yj |)n(xj − yj)(n(xj − yj))⊤

− 2hε(|xi − yi|)hε(|xj − yj |)⟨n(xi − yi),n(xj − yj)⟩n(xi − yi)(n(xj − yj))⊤

appears naturally in the infinitesimal generator of (XN,N,ε
t )t≥0. However, the preceding term might not 

converge to zero as ε → 0. This definitely brings essential difficulties to identify the weak limit process 
of (XN,N,ε

[0,T ] )ε>0.
(ii) In the present framework, the conditional distribution of Xt is given under the σ-algebra FW

t :=
σ{Ws, s ≤ t} (i.e., the σ-algebra generated by the common noise (Ws)s≥0 up to time t). Motivated by 
the work [15] concerning uniform-in-time PoC for McKean-Vlasov SDEs without common noise, one 
may decompose formally in the distribution sense the common noise σ0dWt into the sum of

σ0dWt
d = σ0

(︂
hε

(︁
ρ(XN

t − XN,N,ε
t )

)︁ 1
2 dWt +

(︁
1 − hε

(︁
ρ(XN

t − XN,N,ε
t )

)︁)︁ 1
2 d˜︂Wt

)︂
,
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where (˜︂Wt)t≥0 is an independent copy of (Wt)t≥0. In particular, one more common noise (˜︂Wt)t≥0 is 
brought into being. Accordingly, this will result in the following problems: (i) under which σ-algebra, the 
conditional distribution involved in the coupled SDE is defined; (ii) the corresponding measure-valued 
process (μt)t≥0 might satisfy a different stochastic FPE; see Section 3 for details. In order to bypass 
the aforementioned difficulties, we will employ the asymptotic coupling by reflection as indicated by 
the approximate interacting particle systems (2.17), which is essentially different from that in [15].

3. Proof of Theorem 1.2

Our goal in this section is to complete the proof of Theorem 1.2. In particular, we herein are only 
concerned with the SDE (1.7) with the case d = 1. To this end, there are a series of preparations to be 
carried out.

The non-interacting particle system corresponding to (1.7) is governed by the following SDEs: for each 
i ∈ SN ,

dXi
t = b(Xi

t , μ
i
t) dt + σ(Xi

t) dBi
t + σ0 dWt, (3.1)

where μi
t := LXi

t |FW
t

; (Bi)i∈SN
:= ((Bi

t)t≥0)i∈SN
are mutually independent 1-dimensional Brownian mo

tions on (Ω1,F 1, (F 1
t )t≥0,P 1); (Xi

0)i∈SN
are i.i.d. F 1

0 -measurable random variables. According to [7, 
Proposition 2.11], for any T > 0 and i ∈ SN ,

P 0(︁μi
t = μ1

t for all t ∈ [0, T ]
)︁

= 1

so that we can write μt = μi
t for all i ∈ SN . Moreover, as shown in [7, (2.4)], (μt)t>0 solves the nonlinear 

stochastic FPE:

dμt = −∂x(b(·, μt)μt) dt + 1
2∂

2
xx

(︁
(σ2(·) + σ2

0)μt

)︁
dt− ∂x

(︁
(σ0dWt)μt

)︁
. (3.2)

The preceding SPDE is understood in the weak sense; namely, for any test function f ∈ C2
c (R),

dμt(f) = μt

(︁
f ′(·)b(·, μt)

)︁
dt + 1

2μt

(︁
(σ(·)2 + σ2

0)f ′′(·))︁ dt + σ0μt

(︁
f ′(·)dWt

)︁
.

To expound that the idiosyncratic noise might make contributions to ergodicity of the measure-valued 
Markov process (μt)t>0 solving (3.2), we decompose the idiosyncratic noise part in the sense of distribution. 
Due to κσ,1 ≤ σ(x)2 (see Assumption (Hσ)), there exists a constant α > 0 such that infx∈R σα(x) > 0, in 
which

σα(x)2 := σ2(x) − ακσ,1, x ∈ R. (3.3)

Subsequently, we consider the stochastic particle system:

dXi

t = b(Xi

t, μ
i
t) dt + √

ακσ,1 dB1,i
t + σα(Xi

t) dB
2,i
t + σ0 dWt,

where μi
t := L

X
i
t|FW

t
; (B1,i)i∈SN

:= ((B1,i
t )t≥0)i∈SN

and (B2,i)i∈SN
:= ((B2,i

t )t≥0)i∈SN
are mutually in

dependent 1-dimensional Brownian motions on (Ω1,F 1, (F 1
t )t≥0,P 1); (Xi

0)1≤i≤d are i.i.d. F 1
0 -measurable 

random variables. Once more, applying [7, Proposition 2.11], we find that for any T > 0 and i ∈ SN ,

P 0(︁μi
t = μ1

t for all t ∈ [0, T ]
)︁

= 1

郝佳晴

郝佳晴

郝佳晴
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so we can also write μt = μi
t for all i ∈ SN . Satisfactorily, by noting σ(x)2 = σα(x)2 + ακσ,1 and the 

independence between (B1,i)i∈SN
and (B2,i)i∈SN

, (μt)t≥0 also solves the SPDE (3.2). Therefore, to tackle 
ergodicity of the measure-valued process (μt)t>0, it is sufficient to work on the McKean-Vlasov SDE with 
common noise in the form below:

dXt = b(Xt, μt) dt + √
ακσ,1 dB1

t + σα(Xt) dB2
t + σ0 dWt. (3.4)

The previous interpretations explain roughly why we focus on the McKean-Vlasov SDE with common noise 
formulated in the form of (2.1).

As pointed out above, in this section, we still take the SDE (2.1) with the dimension d = 1 as our research 
object. Besides Assumptions (Hb,1) and (Hb,2) presented in the Introduction section, we further assume 
that

(H′
σ) there exists a constant Lσ > 0 such that

|σ(x) − σ(y)| ≤ Lσ

(︁
1 ∧ |x− y|)︁, x, y ∈ R.

Under Assumptions (Hb,1), (Hb,2) and (H′
σ), Assumptions (Ab) and (Aσ) hold trivially so that all results 

presented in Section 2 are applicable.
Before the proof of Theorem 1.2, we show that the measure-valued process (μt)t>0 associated with (2.1)

has exponential decay, which is stated precisely as below.

Theorem 3.1. Assume (Hb,1), (Hb,2) and (H′
σ). Then, there are constants C, λ, λ∗

3 > 0 satisfying that for 
all λ3 ∈ [0, λ∗

3], t > 0 and μ, ν ∈ P1(R),

𝒲1(μt, νt) ≤ Ce−λtW1(μ, ν), (3.5)

where μt := LXt|FW
t

and νt := LXt|FW
t

mean the regular conditional distributions of Xt, solving (2.1), 
with the initial distributions LX0 = μ and LX0 = ν, respectively; λ3 > 0 is the Lipschitz constant of b(x, μ)
with respect to the measure variable, given in (1.10).

Prior to the commencement on the proof of Theorem 3.1, some additional work need to be accomplished. 
The following lemma shows that, for each i ∈ SN , (Xi

t)t≥0 has finite moment in an infinite-time horizon.

Lemma 3.2. Assume (Hb,1) with λ2 > 2λ3 and (H′
σ), and suppose further that (Xi

0)i∈SN
are i.i.d. F 1

0
measurable random variables such that E|X1

0 | < ∞. Then, there is a constant C0 > 0 such that for all 
i ∈ SN ,

sup
t≥0 

E|Xi
t | ≤ E|X1

0 | + C0, (3.6)

where ((Xi
t)t>0)i∈SN

solves (2.6).

Proof. According to (1.9), (1.10) and (H′
σ), it follows that for all x ∈ R and μ ∈ P1(R),

2xb(x, μ) + σ(x)2 = 2x(b(x, μ) − b(0, δ0)) + 2xb(0, δ0) + σ(x)2

= 2x(b(x, μ) − b(0, μ)) + 2x(b(0, μ) − b(0, δ0)) + 2xb(0, δ0) + σ(x)2

≤ −λ2|x|2 + 2λ3W1(μ, δ0)|x| + 2|b(0, δ0)||x| + (λ1 + λ2)ℓ0 + 2
(︁
L2
σ + σ(0)2

)︁
.

Then, applying Itô’s formula to V1, defined in (2.11) with δ = 1, yields that
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d
(︁
eλ

∗tV1(Xi
t)
)︁ ≤ eλ

∗t
(︃
λ∗V1(Xi

t) + 1 
2V1(Xi

t)
(︁
2Xi

tb(Xi
t , μ

i
t) + σ(Xi

t)2 + σ2
1 + σ2

0
)︁)︃

dt + dM i
t

≤ −λ3eλ
∗t(︁V1(Xi

t) − μi
t(V1)

)︁
dt + C∗

0 eλ
∗t dt + dM i

t

for some constant C∗
0 > 0 and some martingale (M i

t )t≥0, where λ∗ := 1
2(λ2−2λ3). Since E μi

t(V1) = EV1(Xi
t), 

and (Xi
0)i∈SN

are i.i.d. F 1
0 -measurable random variables, we derive that

EV1(Xi
t) ≤ EV1(X1

0 ) + C∗
0/λ

∗.

This subsequently implies the desired assertion (3.6). □
Recall that the function ρ involved in (2.16) is free in Section 2. In the subsequent part, we shall stipulate

ρ(x) = ∥x∥1 := 1 
N

N∑︂
j=1 

|xj |, x ∈ RN

so that Πε(x) = 1 − 2hε(∥x∥1),x ∈ RN , and work with the corresponding stochastic system determined 
by (2.17). Note that, in Section 2, Proposition 2.4 and Lemma 2.5 are derived for the fixed horizon T > 0
and the particle number N ≥ 1, and Proposition 2.2 is concerned with PoC in finite time. Below, we shall 
address the asymptotic conditional PoC in an infinite horizon for the conditional McKean-Vlasov SDE (2.1)
with the dimension d = 1. Such a result plays a crucial role in treating ergodicity of the measure-valued 
process (μt)t>0.

The following statement characterizes the uniform-in-time PoC, where the associated convergence rate 
with respect to the particle number N is governed by the function φ, introduced in Assumption (Hb,2).

Proposition 3.3. Assume (Hb,1) with λ2 > 2λ3, (Hb,2) and (H′
σ), and suppose

λ∗
0 := c2ℓ0

1 − e−c1ℓ0 + c2ℓ0

(︁
λ1 ∧ (λ2/2)

)︁− (︂
1 + c1

c2

)︂
λ3 > 0, (3.7)

where λ1, λ2, λ3 > 0 are introduced (Hb,1),

c1 := λ1ℓ0
σ2

0 + σ2
1

and c2 := c1e−c1ℓ0 . (3.8)

Then, there exists a constant C0 > 0 (which is independent of N ≥ 1) such that for any t ≥ 0,

1 
N

N∑︂
i=1 

E|Xi
t −Xi,N,ε

t | ≤ e−λ∗
0t
C0

N

N∑︂
j=1 

E|Xi
0 −Xi,N,ε

0 | + C0

(︃
1 
N

(︁
1 + E|X1

0 |
)︁

+ φ(N) + ε

)︃
, (3.9)

where, for each ε > 0, ((Xi
t)t≥0, (Xi,N,ε

t )t≥0)i∈SN
solves (2.17).

Below, we make a remark on the decay rate λ∗
0 given in (3.7).

Remark 3.4. Plenty of McKean-Vlasov SDEs (e.g., the φ4-model [35] and the granular media SDE [34]) can 
be regarded as the corresponding perturbation versions of classical SDEs. To avoid the occurrence of phase 
transitions, the perturbation/interaction intensity (which, for instance, can be described by the Lipschitz 
constant of the drifts with respect to the measure variable) is not strong in general; see e.g. [35, Theorem 
3] and [34, Corollary 2.9] for more details. In the same spirit of [34,35], it is quite natural to require the 
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Lipschitz constant λ3 > 0 involved in (3.7) is small. For this setting, the prerequisite λ∗
0 > 0 in (3.7) can be 

ensured. Note that

λ∗
0 = c1e−c1ℓ0ℓ0

1 − e−c1ℓ0 + c2ℓ0

(︁
λ1 ∧ (λ2/2)

)︁− (︂
1 + c1

c2

)︂
λ3

=
(︃

1 + ec1ℓ0 − 1
c1ℓ0

)︃−1 (︁
λ1 ∧ (λ2/2)

)︁− (1 + ec1ℓ0)λ3.

(3.10)

It follows from the increasing property of the functions [0,∞) ∋ r ↦→ er−1
r and c1 ↦→ ec1ℓ0 on (0,∞) that the 

non-degenerate property of σ0 and σ1 will facilitate ergodicity of the empirical average (i.e., 1 
N

∑︁N
i=1 |Xi

t −
Xi,N,ε

t |). On the other hand, it is easily seen from (3.10) that the smaller ℓ0 or the larger λ2 implies a faster 
convergence rate in (3.9). Whereas, the larger λ1 indicates a slower convergence rate in (3.9).

Proof of Proposition 3.3. Below, for notation brevity, we set Zi,N,ε
t := Xi

t −Xi,N,ε
t for t ≥ 0 and i ∈ SN . It 

is easy to see from (2.17) that for all i ∈ SN ,

dZi,N,ε
t =

(︁
b(Xi

t , μ
i
t) − b(Xi,N,ε

t , ˆ︁μN,ε
t )

)︁
dt + 2hε

(︁∥ZN,N,ε
t ∥1

)︁(︁
σ1 dB1,i

t + σ0 dWt

)︁
+
(︁
σ(Xi

t) − σ(Xi,N,ε
t )

)︁
dB2,i

t ,

where ZN,N,ε
t := (Z1,N,ε

t , · · · , ZN,N,ε
t ). By Itô’s formula, we thus have that for all i ∈ SN ,

d|Zi,N,ε
t |2 =

[︂
2Zi,N,ε

t

(︁
b(Xi

t , μ
i
t) − b(Xi,N,ε

t , ˆ︁μN,ε
t )

)︁
+ 4hε

(︁∥ZN,N,ε
t ∥1

)︁2(σ2
1 + σ2

0) +
(︁
σ(Xi

t) − σ(Xi,N,ε
t )

)︁2]︂ dt

+ 2Zi,N,ε
t

[︂
2hε

(︁∥ZN,N,ε
t ∥1

)︁(︁
σ1 dB1,i

t + σ0 dWt

)︁
+
(︁
σ(Xi

t) − σ(Xi,N,ε
t )

)︁
dB2,i

t

]︂
.

(3.11)

Below, we set

f(r) := 1 − e−c1r + c2r, r ≥ 0,

where c1, c2 > 0 were defined in (3.8). Moreover, we define F (r) = f(r1/2), r ≥ 0. Subsequently, for λ∗
0 > 0

defined in (3.7), applying Itô-Tanaka’s formula (see e.g. [28, Theorem 29.5]) yields that for all t > 0,

eλ
∗
0tF (|Zi,N,ε

t |2) =F (|Zi,N,ε
0 |2) + λ∗

0

∫︂ t

0
eλ

∗
0sF (|Zi,N,ε

s |2) ds

+
∫︂ t

0
eλ

∗
0sF ′

−(|Zi,N,ε
s |2) d|Zi,N,ε

s |2 + 1
2

∫︂ t

0
eλ

∗
0s

∫︂ ∞

0
dLi,N,ε,x

s μF (dx),

where F ′
− means the left derivative of F , (Li,N,ε,x

t )t≥0 is the local time of (|Zi,N,ε
t |2)t≥0 at the point x, 

and μF denotes the Lebesgue-Stieltjes measure associated with the left derivative F ′
− (i.e., μF ([a, b)) =

F ′
−(b)−F ′

−(a) for a ≤ b). Denote by F ′′ the almost everywhere defined second derivative of the function F . 
Since μF (dx) ≤ F ′′(x) dx (thanks to the fact that F ′

− is non-increasing) and t ↦→ Li,N,ε,x
t is increasing, we 

infer that

eλ
∗
0tF (|Zi,N,ε

t |2) ≤F (|Zi,N,ε
0 |2) + λ∗

0

∫︂ t

0
eλ

∗
0sF (|Zi,N,ε

s |2) ds

+
∫︂ t

0
eλ

∗
0sF ′

−(|Zi,N,ε
s |2) d|Zi,N,ε

s |2 + 1
2

∫︂ t

0
eλ

∗
0s

∫︂ ∞

0
dLi,N,ε,x

s F ′′(x) dx.
(3.12)

郝佳晴
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Next, by the chain rule and Fubini’s theorem, in addition to the occupation time formula (see e.g. [28, 
Theorem 29.5]), we find that∫︂ t

0
eλ

∗
0s

∫︂ ∞

0
dLi,N,ε,x

s F ′′(x) dx =
∫︂ ∞

0

(︃∫︂ t

0
eλ

∗
0s dLi,N,ε,x

s

)︃
F ′′(x) dx

=
∫︂ ∞

0

(︃
eλ

∗
0tLi,N,ε,x

t − λ∗
0

∫︂ t

0
Li,N,ε,x
s eλ

∗
0s ds

)︃
F ′′(x) dx

= eλ
∗
0t

∫︂ t

0
F ′′(|Zi,N,ε

s |2) d⟨|Zi,N,ε|2⟩s

− λ∗
0

∫︂ t

0
eλ

∗
0s

(︃ s ∫︂
0 

F ′′(|Zi,N,ε
u |2) d⟨|Zi,N,ε|2⟩u

)︃
ds

= eλ
∗
0t

∫︂ t

0
F ′′(|Zi,N,ε

s |2) d⟨|Zi,N,ε|2⟩s

− λ∗
0

∫︂ t

0

(︃∫︂ t

u

eλ
∗
0s ds

)︃
F ′′(|Zi,N,ε

u |2) d⟨|Zi,N,ε|2⟩u

=
∫︂ t

0
eλ

∗
0sF ′′(|Zi,N,ε

s |2) d⟨|Zi,N,ε|2⟩s,

where (⟨|Zi,N,ε|2⟩t)t≥0 stands for the quadratic variation process of (|Zi,N,ε
t |2)t≥0. Plugging the preceding 

identity into (3.12) enables us to deduce that

eλ
∗
0tF (|Zi,N,ε

t |2) ≤F (|Zi,N,ε
0 |2) + λ∗

0

∫︂ t

0
eλ

∗
0sF (|Zi,N,ε

s |2) ds

+
∫︂ t

0
eλ

∗
0F ′

−(|Zi,N,ε
s |2) d|Zi,N,ε

s |2 + 1
2

∫︂ t

0
eλ

∗
0sF ′′(|Zi,N,ε

s |2) d⟨|Zi,N,ε|2⟩s.
(3.13)

Note that for r > 0,

F ′(r) = 1
2f

′(r1/2)r−1/2, F ′′(r) = 1
4
(︁
f ′′(r1/2)r−1 − f ′(r1/2)r−3/2)︁ = 1

4f
′′(r1/2)r−1 − 1

2F
′(r)r−1

and that

⟨|Zi,N,ε|2⟩t = 4|Zi,N,ε
t |2

(︂
4hε

(︁∥ZN,N,ε
t ∥1

)︁2(σ2
1 + σ2

0) +
(︁
σ(Xi

t) − σ(Xi,N,ε
t )

)︁2)︂
.

Whence, along with (3.11) and (3.13), f ′′ < 0 as well as f ′ > 0, we derive that

eλ
∗
0tf(|Zi,N,ε

t |) = f(|Zi,N,ε
0 |) + λ∗

0

∫︂ t

0
eλ

∗
0sf(|Zi,N,ε

s |) ds

+ 1
2

∫︂ t

0
eλ

∗
0sf ′(|Zi,N,ε

s |)|Zi,N,ε
s |−1 d|Zi,N,ε

s |2

+ 1
2

∫︂ t

0
eλ

∗
0s
(︁
f ′′(|Zi,N,ε

s |) − f ′(|Zi,N,ε
s |)|Zi,N,ε

s |−1)︁
× (︁

4hε

(︁∥ZN,N,ε
s ∥1

)︁2(σ2
1 + σ2

0) +
(︁
σ(Xi

s) − σ(Xi,N,ε
s )

)︁2)︁ds + M i,N,ε
t

≤ f(|Zi,N,ε
0 |) +

∫︂ t

0
eλ

∗
0s

(︃
λ∗

0f(|Zi,N,ε
s |) + 2(σ2

1 + σ2
0)f ′′(|Zi,N,ε

s |)hε

(︁∥ZN,N,ε
s ∥1

)︁2 (3.14)
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+ f ′(|Zi,N,ε
s |) Zi,N,ε

s

|Zi,N,ε
s |

(︁
b(Xi

s, μ
i
s) − b(Xi,N,ε

s , ˆ︁μN,ε
s )

)︁)︃
ds + M i,N,ε

t

≤ f(|Zi,N,ε
0 |) +

∫︂ t

0
eλ

∗
0s

(︃
λ∗

0f(|Zi,N,ε
s |) + 2(σ2

1 + σ2
0)f ′′(|Zi,N,ε

s |)hε

(︁∥ZN,N,ε
s ∥1

)︁2
+ f ′(|Zi,N,ε

s |) Zi,N,ε
s

|Zi,N,ε
s |

(︁
b(Xi

s, ˜︁μN
s ) − b(Xi,N,ε

s , ˆ︁μN,ε
s )

)︁
1{Zi,N,ε

s ̸=0}

+ f ′(|Zi,N,ε
s |)⃓⃓b(Xi

s, ˜︁μN,i
s ) − b(Xi

s, ˜︁μN
s )
⃓⃓

+ f ′(|Zi,N,ε
s |)⃓⃓b(Xi

s, μ
i
s) − b(Xi

s, ˜︁μN,i
s )

⃓⃓)︃
ds + M i,N,ε

t

for some martingale (M i,N,ε
t )t≥0, where x/|x| = sgn(x) = 0 if x = 0,

˜︁μN
t := 1 

N

N∑︂
j=1 

δXj
t

and ˜︁μN,i
t := 1 

N − 1

N∑︂
j=1:j ̸=i

δXj
t
.

By means of (1.9) and (1.10), it follows that

Zi,N,ε
t

|Zi,N,ε
t |1{Zi,N,ε

t ̸=0}
(︁
b(Xi

t , ˜︁μN
t ) − b(Xi,N,ε

t , ˆ︁μN,ε
t )

)︁
= Zi,N,ε

t

|Zi,N,ε
t |1{Zi,N,ε

t ̸=0}
[︂(︁
b(Xi

t , ˜︁μN
t ) − b(Xi,N,ε

t , ˜︁μN
t )
)︁

+
(︁
b(Xi,N,ε

t , ˜︁μN
t ) − b(Xi,N,ε

t , ˆ︁μN,ε
t )

)︁]︂
≤ 1

2(λ1 + λ2)|Zi,N,ε
t |1{|Zi,N,ε

t |≤ℓ0} −
1
2λ2|Zi,N,ε

t | + λ3

N

N∑︂
j=1 

|Zj,N,ε
t |.

(3.15)

On the other hand, using the fact that for μ ∈ P1(Rd) and x ∈ Rd,

W1

(︂N − 1
N

μ + 1 
N

δx, μ
)︂
≤ 1 

N

(︁|x| + μ(| · |))︁,
which can be attainable analogously as [44, Lemma 3.1], in addition to (1.10) and

˜︁μN
t = N − 1

N
˜︁μN,i
t + 1 

N
δXi

t
, t ≥ 0, i ∈ SN ,

implies that

⃓⃓
b(Xi

t , ˜︁μN
t ) − b(Xi

t , ˜︁μN,i
t )

⃓⃓ ≤ λ3W1(˜︁μN,i
t , ˜︁μN

t ) ≤ λ3

N

(︃
|Xi

t | +
1 

N − 1

N∑︂
j=1:j ̸=i

|Xj
t |
)︃
. (3.16)

Thus, plugging (3.15) and (3.16) back into (3.14) yields that

d
(︁
eλ

∗
0tf(|Zi,N,ε

t |))︁ ≤ eλ
∗
0t

(︃
λ∗

0f(|Zi,N,ε
t |) + ψ(|Zi,N,ε

t |)hε

(︁∥ZN,N,ε
t ∥1

)︁2 + Υi(ZN,N,ε
t )

+ f ′(|Zi,N,ε
t |)

(︂
Ji(XN

t ) + λ3

N

N∑︂
j=1 

|Zj,N,ε
t |

)︂)︃
dt + dM i,N,ε

t .

Herein,
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ψ(r) : = 1
2f

′(r)
(︁
(λ1 + λ2)1{r≤ℓ0} − λ2

)︁
r + 2(σ2

0 + σ2
1)f ′′(r), r ≥ 0

Υi(ZN,N,ε
t ) : = 1

2f
′(|Zi,N,ε

t |)
(︂
(λ1 + λ2)|Zi,N,ε

t |1{|Zi,N,ε
t |≤ℓ0} − λ2|Zi,N,ε

t |
)︂(︁

1 − hε

(︁∥ZN,N,ε
t ∥1

)︁2)︁
and

Ji(XN
t ) : = λ3

N

(︃
|Xi

t | +
1 

N − 1

N∑︂
j=1:j ̸=i

|Xj
t |
)︃

dt +
⃓⃓
b(Xi

t , μ
i
t) − b(Xi

t , ˜︁μN,i
t )

⃓⃓
.

By virtue of

f ′(r) = c1e−c1r + c2, f ′′(r) = −c21e−c1r, r ≥ 0,

and the alternatives of c1 and c2 given in (3.8), for any r ≤ ℓ0, we have

ψ(r) ≤ −c21e−c1ℓ0(σ2
0 + σ2

1) ≤ −c21e−c1ℓ0(σ2
0 + σ2

1)
1 − e−c1ℓ0 + c2ℓ0

f(r) = − c1c2(σ2
0 + σ2

1) 
1 − e−c1ℓ0 + c2ℓ0

f(r).

On the other hand, for the case r ≥ ℓ0, we infer that

ψ(r) = −1
2λ2(c1e−c1r + c2)r − 2c21(σ2

0 + σ2
1)e−c1r ≤ − λ2c2r 

2(1 − e−c1r + c2r)
f(r)

≤ − c2λ2ℓ0
2(1 − e−c1ℓ0 + c2ℓ0)

f(r),

where in the last inequality we used the fact that the function r ↦→ r
1−e−c1r+c2r

is increasing on (0,∞). 
Therefore, we arrive at

ψ(r) ≤ −
(︃

c1c2(σ2
0 + σ2

1) 
1 − e−c1ℓ0 + c2ℓ0

∧ c2λ2ℓ0
2(1 − e−c1ℓ0 + c2ℓ0)

)︃
f(r) =: −λ∗∗

0 f(r), r ≥ 0.

This, along with c2 ≤ f ′(r) ≤ c1 + c2, implies that

eλ
∗
0tEf(|Zi,N,ε

t |) ≤ Ef(|Zi,N,ε
0 |) +

∫︂ t

0
eλ

∗
0s

[︃
− C1

(︃
Ef(|Zi,N,ε

s |) − 1 
N

N∑︂
j=1 

Ef(|Zj,N,ε
s |)

)︃

+ λ∗∗
0 E

(︃
f(|Zi,N,ε

s |)
(︂
1 − hε

(︁∥ZN,N,ε
s ∥1

)︁2)︂)︃
+ (c1 + c2)EJi(XN

s ) + EΥi(ZN,N,ε
s )

]︃
ds,

where C1 := λ3(1 + c1/c2). Next, combining with

EJi(XN
t ) ≤ λ3

N

(︃
E|Xi

t | +
1 

N − 1

N∑︂
j=1:j ̸=i

E|Xj
t |
)︃

+ φ(N) ≤ C2

N

(︁
1 + E|X1

0 |
)︁

+ φ(N)

for some constant C2 > 0, thanks to (1.11) and Lemma 3.2, we deduce that for some C3 > 0,
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eλ
∗
0t

1 
N

N∑︂
i=1 

Ef(|Zi,N,ε
t |) ≤ 1 

N

N∑︂
i=1 

Ef(|Zi,N,ε
0 |) + C3

(︃
1 
N

(︁
1 + E|X1

0 |
)︁

+ φ(N)
)︃∫︂ t

0
eλ

∗
0s ds

+ λ∗∗
0

∫︂ t

0
eλ

∗
0sE

(︃
1 
N

N∑︂
i=1 

f(|Zi,N,ε
s |)

(︂
1 − hε

(︁∥ZN,N,ε
s ∥1

)︁2)︂)︃ ds

+ 1 
N

N∑︂
i=1 

∫︂ t

0
eλ

∗
0sEΥi(ZN,N,ε

s ) ds.

By invoking c2 ≤ f ′(r) ≤ c1 + c2 and f(0) = 0, in addition to hε ∈ [0, 1], we find that for all s > 0,

1 
N

N∑︂
i=1 

f(|Zi,N,ε
s |)

(︂
1 − hε

(︁∥ZN,N,ε
s ∥1

)︁2)︂+ 1 
N

N∑︂
i=1 

Υi(ZN,N,ε
s )

≤ (c1 + c2)(2 + λ1)∥ZN,N,ε
s ∥1

(︁
1 − hε

(︁∥ZN,N,ε
s ∥1

)︁)︁
≤ 2(c1 + c2)(2 + λ1)ε,

where in the last display we used the fact that

r(1 − hε(r)) ≤ 2ε, r ≥ 0

by taking the definition of the function hε into consideration. Thus, we derive that for some constant C4 > 0,

eλ
∗
0t

1 
N

N∑︂
i=1 

Ef(|Zi,N,ε
t |) ≤ 1 

N

N∑︂
i=1 

Ef(|Zi,N,ε
0 |) + C4

(︃
1 
N

(︁
1 + E|X1

0 |
)︁

+ φ(N) + ε

)︃
eλ

∗
0t.

Consequently, according to c2 ≤ f ′(r) ≤ c1 + c2 again and f(0) = 0, there is a constant C5 > 0 so that for 
all t > 0,

1 
N

N∑︂
i=1 

E|Zi,N,ε
t | ≤ e−λ∗

0t
C5

N

N∑︂
i=1 

E|Zi,N,ε
0 | + C5

(︃
1 
N

(︁
1 + E|X1

0 |
)︁

+ φ(N) + ε

)︃
,

and so the desired assertion follows directly. □
Before we proceed, we make an additional comment.

Remark 3.5. We turn to the multi-dimensional case (i.e., d ≥ 2). Recall that the functions ρ and ϕ involved 
in Πε, defined in (2.16), are undetermined. By applying the Itô-Tanaka formula to the radial process |Zi,N,ε

t |, 
it is easy to see that the quadratic variation term:

Υi,N,ε
t := 2 

|Zi,N,ε
t |31{Zi,N,ε

t ̸=0}hε(ρ(ZN,N,ε
t )))2

× ⟨|Zi,N,ε
t |2Id − Zi,N,ε

t ⊗ Zi,N,ε
t ,n(ϕ(ZN,N,ε

t )) ⊗ n(ϕ(ZN,N,ε
t ))⟩HS

arises naturally, where ZN,N,ε
t := XN

t − XN,N,ε
t . Due to the appearance of |Zi,N,ε

t |2Id − Zi,N,ε
t ⊗ Zi,N,ε

t , we 
cannot choose ϕ(ZN,N,ε

t ), which are dependent on the whole particles, to kill the term Υi,N,ε
t . On the other 

hand, the proof of Proposition 2.4 is unavailable as soon as we take ϕ(ZN,N,ε
t ) = ϕ(Zi,N,ε

t ) (i.e., dependent 
merely on the i-th component); see Remark 2.7 for more explanations. The aforementioned interpretations 
further demonstrate why we focus just on the 1-dimensional SDE (1.7) rather than the multi-dimensional 
setting.
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Based on the previous warm-up preparations, we start to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. For μ, ν ∈ P1(R), via existence of optimal couplings, there is π∗ ∈ C (μ, ν) such 
that

W1(μ, ν) =
∫︂
R×R

|x− y|π∗(dx,dy). (3.17)

Let ((Xi,μ
t )t>0)i∈SN

and ((Xi,N,ν
t )t>0)i∈SN

be solutions to (2.6) and (2.7), respectively. Furthermore, 
(Xi,μ

0 , Xi,N,ν
0 )i∈SN

are set to be i.i.d. F 1
0 -measurable random variables such that L(Xi

0,X
i,N,ν
0 ) = π∗. There

fore, W1(μ, ν) = E|Xi,μ
0 −Xi,N,ν

0 |, and the common distributions of Xi,μ
0 and Xi,N,ν

0 are μ and ν, respectively.
Via the triangle inequality, it is easy to see that for all t > 0,

𝒲1(μt, νt) ≤ E0W1(μt, νt)

≤ E0
(︃
E1W1

(︃
μt,

1 
N

N∑︂
j=1 

δXj,μ
t

)︃)︃
+ E0

(︃
E1W1

(︃
1 
N

N∑︂
j=1 

δXj,μ
t

,
1 
N

N∑︂
j=1 

δXj,N,ν
t

)︃)︃

+ E0
(︃
E1W1

(︃
1 
N

N∑︂
j=1 

δXj,N,ν
t

,
1 
N

N∑︂
j=1 

δXj,ν
t

)︃)︃
+ E0

(︃
E1W1

(︃
νt,

1 
N

N∑︂
j=1 

δXj,ν
t

)︃)︃

= EW1

(︃
μt,

1 
N

N∑︂
j=1 

δXj,μ
t

)︃
+ EW1

(︃
1 
N

N∑︂
j=1 

δXj,μ
t

,
1 
N

N∑︂
j=1 

δXj,N,ν
t

)︃

+ EW1

(︃
1 
N

N∑︂
j=1 

δXj,N,ν
t

,
1 
N

N∑︂
j=1 

δXj,ν
t

)︃
+ EW1

(︃
νt,

1 
N

N∑︂
j=1 

δXj,ν
t

)︃
=: Γ1(t,N) + Γ2(t,N) + Γ3(t,N) + Γ4(t,N).

(3.18)

In the subsequent analysis, we estimate the terms Γi(t,N), i = 1, 2, 3, 4, separately. Obviously, Assump
tion (H′

σ) implies Assumption (Aσ). Since (Xi,μ
0 )i∈SN

(resp. (Xi,ν
0 )i∈SN

) are i.i.d. random variables with 
E|X1,μ

0 | < ∞ (resp. E|X1,ν
0 | < ∞), an application of Proposition 2.2 yields that

lim 
N→∞

(︁
Γ1(t,N) + Γ4(t,N)

)︁
= 0.

Next, note that

Γ3(t,N) ≤ 1 
N

N∑︂
j=1 

E|Xj,ν
t −Xj,N,ν

t | = E|X1,ν
t −X1,N,ν

t |,

where the identity is due to the fact that (Xi,ν
t , Xi,N,ν

t ) and (Xj,ν
t , Xj,N,ν

t ) are identically distributed due to 
the fact that (Xi,μ

0 , Xi,N,ν
0 )1≤i≤N are i.i.d. F 1

0 -measurable random variables. Whereafter, applying Propo
sition 2.2 once more prompts us to derive that

lim 
N→∞

Γ3(t,N) = 0.

Consider the system (2.17) associated with the processes (Xi,μ
t )t≥0 and (Xi,N,ν

t )t≥0, which are respec
tive solutions to (2.6) and (2.7). For each ε > 0, denote by (XN

t ,XN,N,ε
t )t≥0 the solution to the system 

(2.17). Evidently, Assumptions (Hb,1) and (H′
σ) imply (Ab) and (Aσ). So, according to Proposition 2.4, 

(XN
[0,T ],X

N,N,ε
[0,T ] )ε>0 has a weakly convergent subsequence such that the corresponding weak limit process is 
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the coupling process of XN
[0,T ] and XN,N

[0,T ] for any T > 0. In the following analysis, for the sake of notation 

simplicity, we shall still write (XN
t ,XN,N

t )t∈[0,T ] as the associated weak limit process (which is obtained by 
letting ε ↓ 0 for fixed T < ∞ and 1 ≤ N < ∞). Furthermore, it is ready to see that there exists a constant 
λ∗

3 < λ2/2 such that (3.7) is true for any λ3 ∈ [0, λ∗
3]. Thus, by employing Proposition 3.3, there exists a 

constant C⋆ > 0 such that

Γ2(t,N) ≤C⋆
(︂
e−λ∗

0tE|Xi,μ
0 −Xi,N,ν

0 | + 1 
N

(︁
1 + E|X1

0 |
)︁

+ φ(N)
)︂

=C⋆
(︂
e−λ∗

0tW1(μ, ν) + 1 
N

(︁
1 + E|X1

0 |
)︁

+ φ(N)
)︂
,

where the function φ(N) was introduced in (1.11). The estimate above, together with the prerequisite 
limN→∞ φ(N) = 0, leads to

lim sup
N→∞ 

Γ2(t,N) ≤ C⋆e−λ∗
0tW1(μ, ν).

At last, by putting together the estimates concerning Γi(t,N), i = 1, · · · , 4, we accomplish the proof of 
Theorem 3.1. □

We now can present the proof of Theorem 1.2 on the basis of Theorem 3.1.

Proof of Theorem 1.2. As we elaborated in the second paragraph of this section, in order to investigate 
ergodicity of the measure-valued process (μt)t>0 associated with (1.7), it is sufficient to consider the McKean
Vlasov SDE with common noise (3.4). Based on Theorem 3.1, it remains to examine Assumptions imposed in 
Theorem 3.1 with σ1 = √

ακσ,1 and σ(x) = σα(x), separately. Concerning the drift b, the same assumptions 
are set in Theorems 1.2 and 3.1. So, the validation on the drift b is trivial.

Define the set

Λσ =
{︂
α > 0 : inf 

x∈R
σα(x) > 0

}︂
,

where σα(x) = (σ(x)2−ακσ,1)1/2 (see (3.3) for details). Below, we fix α ∈ Λσ. By virtue of (Hσ), we deduce 
that for x, y ∈ R,

|σα(x) − σα(y)| ≤ 2√κσ,2,

and that for x, y ∈ R,

|σα(x) − σα(y)| = |σ(x)2 − σ(y)2|
σα(x) + σα(y) ≤

(|σ(x)| + |σ(y)|)|σ(x) − σ(y)|
σα(x) + σα(y) 

≤ Lσ
√
κσ,2

infx∈R σα(x) |x− y|.

Therefore, we arrive at

|σα(x) − σα(y)| ≤
(︃(︁

2√κσ,2
)︁ ∨ Lσ

√
κσ,2

infx∈R σα(x)

)︃(︁
1 ∧ |x− y|)︁, x, y ∈ R.

Whence, Assumption (H′
σα

) holds true with

L′
σα

=
(︁
2√κσ,2

)︁ ∨ Lσ
√
κσ,2

infx∈R σα(x) .
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Furthermore, with σ1 = √
ακσ,1 and σ(x) = σα(x) at hand, there exists a positive constant λ∗

3 < λ2/2 such 
that λ∗

0 > 0 for all λ3 ∈ (0, λ∗
3], where λ∗

0 was introduced in (3.7).
In a word, all of the sufficiency conditions in Theorem 3.1 are fulfilled and therefore the proof of Theo

rem 1.2 is complete. □
Before the end of this section, we make some further comments on the comparisons between our main 

result and [36, Section 4] for the case d = 1, and the approach available for the multi-dimensional setting 
(i.e., d ≥ 2).

Remark 3.6. We compare Theorem 1.2 with the counterpart of [36, Section 4] based on the following four 
aspects:

• Framework: In [36, Section 4], the drift b(x, μ) = −V ′(x) +
∫︁
RW ′(x− y)μ(dy), where both V ′ and W ′

are of linear growth. Whereas, in our setting, the drift b is much more general and is allowed to be 
of polynomial growth with respect to the state variable. Moreover, in [36, Section 4], the idiosyncratic 
noise is additive. However, in the present work, the idiosyncratic noise is multiplicative.

• Contribution of noises: As shown in Proposition 3.3 and Remark 3.4, not only the common noise but 
also the idiosyncratic noise make contributions to ergodicity of the measure-valued process (μt)t>0. 
Nevertheless, in [36, Section 4], the common noise makes the sole contribution to ergodicity of (μt)t>0.

• Construction of the asymptotic coupling by reflection: In general, we can decompose the noise part in 
the sense of distribution to construct (asymptotic) coupling by reflection when the underlying SDEs 
(including McKean-Vlasov SDEs) are partially dissipative as indicated in [36, Section 4]. However, 
regarding McKean-Vlasov SDEs with common noise, if we adopt the previous procedure, then the 
common noise will become not explicit and moreover change drastically so the measure-valued process 
(μt)t>0 might satisfy a different nonlinear stochastic FPE. Moreover, in order to carry out the proof 
of [36, Theorem 2], the identity [36, (26)] is vital. Unfortunately, there is a gap to derive [36, (26)] by 
invoking the following SDE:

d|Ei,N,δ
t | = −ei,N,δ

t

(︁
V ′(Xi,δ

t ) − V ′(Xi,N,δ
t )

)︁
dt + Ai,N,δ

t dt + 2σ0πδ(EN,δ
t )ei,N,δ

t dB0
t , (3.19)

where, particularly, πδ(EN,δ
t )21{Ei,N,δ

t ̸=0} ̸= πδ(EN,δ
t )2. Herein, EN,δ

t := (E1,N,δ
t , · · · , EN,N,δ

t ) with 

Ei,N,δ
t := Xi,δ

t − Xi,N,δ
t ; ei,N,δ

t := sign(Ei,N,δ
t ); πδ : R → [0, 1] is a non-decreasing and continuous 

function such that πδ(x) = 1 for 1 
N

∑︁N
j=1 |xj | ≥ δ and πδ(x) = 0 for 1 

N

∑︁N
j=1 |xj | ≤ δ/2; for each 

i ∈ SN , (Ai,N,δ
t )t>0 is an adapted non-negative stochastic process given in [36, Proposition 6]. Most 

importantly, we would like to emphasize that, unlike [15, Lemma 7], the SDE (3.19) cannot be derived 
via an approximate strategy as shown in [36, Appendix A.5], where in particular the identity in [36, p. 
28] is not valid since the variables involved in functions πδ and ψa are not consistent. Based on previous 
viewpoints, we build a totally novel asymptotic coupling by reflection as demonstrated in (2.17).

• Moment on initial distributions: To investigate ergodicity of (μt)t>0 under the Wasserstein distance 
𝒲1, it is quite reasonable to require Lμ0 ∈ L1(P(R)), which is imposed in Theorem 1.2. However, 
Lμ0 ∈ L4(P(R)) was set in [36, Corollary 3].

Remark 3.7. The proof for the ergodicity of the measured process (μt)t>0 relies on the inequality (3.18), 
where the terms Γ1(t,N), Γ3(t,N) and Γ4(t,N) can be handled similarly for d ≥ 2 due to the fact that 
Proposition 2.4 holds for all d ≥ 1. Therefore, the main task is to estimate Γ2(t,N). For this, we still make 
use of the asymptotic coupling by reflection constructed in Subsection 2.2. For the case d ≥ 2, we take 
φ(x) = x := 1 

N

∑︁N
j=1 xj and ρ(x) = |x|, which is different from the one-dimensional case. Note that the 

averaged process ZN,ε

t := 1 
N

∑︁N
j=1(X

j
t −Xj,N,ε

t ) solves the following SDE:
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dZN,ε

t = 1 
N

N∑︂
i=1 

(︁
b(Xi

t , μ
i
t) − b(Xi,N,ε

t , ˆ︁μN,ε
t )

)︁
dt

+ 2hε(|ZN,ε

t |)n(ZN,ε

t ) ⊗ n(ZN,ε

t )
(︃

1 
N

N∑︂
i=1 

σ1 dB1,i
t + σ0 dWt

)︃
.

Whence, to derive the long-term estimate on the quantity |ZN,ε

t |, a special structure on b (e.g., b(x, μ) =
−x+ b0(x, μ) for some b0 : Rd ×P(Rd) → Rd) need to be enforced. This undoubtedly restrict applications 
of the theory derived. Furthermore, to achieve our goal, it is also necessary to quantitatively estimate the 
uniform-in-time moment distance between each component process Xi

t (resp. Xi,N,ε
t ) and the averaged 

process 1 
N

∑︁N
j=1 X

j
t (resp. 1 

N

∑︁N
j=1 X

j,N,ε
t ); see [36, Proposition 8] for related details. Unfortunately, such 

an estimate necessitates to require σ1 = 0. This reduces definitely practical applications of the main result. 
Additionally, for the multi-dimensional setup, [36, Theorem 3] derived Theorem 1.2 by setting specifically 
b(x, μ) := −V ′(x) − 2α

∫︁
Rd(x − y)μ(dy) for α > 0, and σ1 = 0, where V ′ : Rd → Rd is globally Lipschitz. 

For more related discussions, one can refer to [36, Section 5].

4. Appendix

This Appendix section is devoted to providing a sufficiency condition to guarantee that Assumption 
(Hb,2) is valid.

Lemma 4.1. Let ((Xi
t)t≥0)i∈SN

be conditionally independent and identically distributed under the filtration 

FW
t and b(x, μ) =

∫︂
R
b0(x−y) μ(dy) for some Lipschitz continuous function b0 : R → R. Then, there exists 

a constant C0 > 0 such that for all i ∈ SN and t ≥ 0,

E|b(Xi
t , μ

i
t) − b(Xi

t , ˜︁μN,i
t )|2 ≤ C0

N

(︁
1 + E|Xi

t |2
)︁
, (4.1)

where ˜︁μN,i
t := 1 

N−1
∑︁N

j=1:j ̸=i δXj
t
. In particular, (Hb,2) holds true with

φ(N) :=
√
C0√
N

(︂
1 + sup

t≥0 
(E|Xi

t |2)1/2
)︂

in case of supt≥0(E|Xi
t |2)1/2 < ∞.

Proof. Obviously, Assumption (Hb,2) is available provided that (4.1) is attainable plus the validity of 
supt≥0(E|Xi

t |2)1/2 < ∞.
Below, let ((Xi

t)t≥0)i∈SN
be conditionally independent and identically distributed under the filtration 

FW
t and set μi

t := LXi
t |FW

t
. Since

b(Xi
t , μ

i
t) = 1 

N − 1

N∑︂
j=1:j ̸=i

E
(︁
b0(Xi

t −Xj
t )
⃓⃓
Xi

t ,F
W
t

)︁
,

we thus obtain that

E|b(Xi
t , μ

i
t) − b(Xi

t , ˜︁μN,i)|2 = 1 
(N − 1)2

(︃ N∑︂
j=1:j ̸=i

E|Ψij
t |2 +

N∑︂
j,k=1:j,k ̸=i,j ̸=k

E
(︁
Ψij

t Ψik
t

)︁)︃
,
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where

Ψij
t := E

(︁
b0(Xi

t −Xj
t )
⃓⃓
Xi

t ,F
0
t

)︁− b0(Xi
t −Xj

t ).

Notice that for any j, k ̸= i and j ̸= k,

E
(︁
Ψij

t Ψik
t

)︁
= E

(︁
E
(︁
Ψij

t Ψik
t

⃓⃓
Xi

t ,F
0
t

)︁)︁
= E

(︁
E
(︁
E(Ψij

t |Xi
t ,F

0
t )E(Ψik

t |Xi
t ,F

0
t )
)︁)︁

= 0

by taking the conditional independency under FW
t of the sequence (Xi

t)i∈SN
into consideration. Subse

quently, we derive that

E|b(Xi
t , μ

i
t) − b(Xi

t , ˜︁μN,i)|2 ≤ 2 
(N − 1)2

N∑︂
j=1:j ̸=i

E
⃓⃓
b0(Xi

t −Xj
t )
⃓⃓2

≤ C0

(N − 1)2
N∑︂
j=1 

(︁
E|Xj

t |2 + |b0(0)|2)︁,
where in the second inequality we utilized the Lipschitz property of b0 and the fact that Xi

t and Xj
t are 

identically distributed given FW
t . Finally, (4.1) follows directly by using again that, for any i, j ∈ SN , Xi

t

and Xj
t share the same law. □
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