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Abstract

In this paper, we examine the performance of randomised Euler-Maruyama (EM)
method for additive time-inhomogeneous SDEs with an irregular drift. In particular, the
drift is assumed to be e-Holder continuous in time and bounded S-Holder continuous
in space with «, 8 € (0, 1]. The strong order of convergence of the randomised EM
in L?-norm is shown to be 1/2 4 (@ A (8/2)) — € for an arbitrary € € (0, 1/2), higher
than the one of standard EM, which is o A (1/2 4 B/2 — €). The proofs highly rely
on the stochastic sewing lemma, where we also provide an alternative proof when
handling time irregularity for a comparison.

Keywords Randomised methods - Stochastic differential equations - Stochastic
sewing lemma
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1 Introduction

It is widely known that the uniqueness of the solution to an ordinary differential
equation subject to an Holder continuous drift is not guaranteed. However, when reg-
ularised by Brownian motion (BM), the corresponding additive SDE ensures a unique
solution [4, 21, 22]. Building on existing results regarding solution uniqueness, this
paper focuses on the numerical approximation for the following R“-valued additive
time-inhomogeneous SDE,

dX; = f(t, X)dt +dB;, t€[0,T],

x(0) = xo € RY, (4.

B Yue Wu
yue.wu@strath.ac.uk

Jianhai Bao
jianhaibao@tju.edu.cn

Center for Applied Mathematics, Tianjin University, Tianjin 300072, P.R. China

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

Published online: 17 November 2025 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-025-01091-8&domain=pdf

48  Page2of27 BIT Numerical Mathematics (2025) 65:48

where B = (B;)o<:<r is a d-dimensional BM on a probability space (2p, FB Pp),
and the drift coefficient f : [0, T] x RY — R4 is assumed to be a-Holder continuous
in time and bounded B-Holder continuous in space with «, g € (0, 1], i.e.,

Lf@x) — f(s, %)

I £l oo dway = sup | f(,x)|+ sup
G AOTIXRERD ™ o T )xerd xeRd 541 |t —s|* 12)
+ sup B < 00
1€[0,T], x £y |x — ¥

We will use C;°” for short. For simplicity, let T = 1.
The widely studied scheme for the SDE (1.1) is the Euler-Maruyama method (EM)
on a fixed stepsize 1/n, n € N, with the numerical solution given by

t
x,<">=xo+/ f(kn(s), X)) ds + By, (1.3)
0

Kn (s)

where k, (s) := |ns]/n with |a] representing the largest integer that does not exceed
a. The convergence in probability to X (¢) in (1.1) of X ,(") in (1.3) is established in
[10]. In the case of « € [1/2,1) and B € (0, 1), the strong order of convergence in
LP-norm is first given at 8/2 via a PDE approach [18]. The regularity of the solution
to the associated Kolmogorov equation is leveraged in the proofs of main theorems
in [18] so that Gronwall inequality can be used. The order of convergence merely
depends on the regularity of the numerical scheme X, and the roughness of f through
two types of error terms:

L(X™):=E |: sup

S<u<t

/ ' (£ XM = flen(). X)) dr

P
i| (1.4)
and

L(X™,g) :=E |: sup

S<u<t

/ g0 X (0 X = flin(r), X)) dr

N

|
(1.5)

where g € Cl?’l ([s, 1] x R%; R?) is equipped with the norm

”f”covl([o TIxR4;Rd) = sup |f(t7 )C)| + sup .
b 1€[0,T],xeR? 1€[0,T],x#y lx =l

Because of the boundedness of f, the local regularity of the numerical scheme X ;
is easily bounded in [18] by
IX: — XKn(I)”LP(QB;Rd) <cn 2

@ Springer



BIT Numerical Mathematics (2025) 65:48 Page 3 of 27 48

where C is a generic constant. Thus, for o € [1/2, 1) and 8 € (0, 1), both I; and I,
are estimated via a straightforward calculation as follows

”f(r, )_(r) - f(Kn(r)a )_(K"(r))”LP(QB;Rd)
= I lgge It = kn I + I1X; — Xxn(t)llﬁp(szg;w)) (1.6)
< Clfllpus ™ + 0Py < Cn P2,
b

where the order of convergence /2 shows up. Note that when « € (0, 1/2), the order
of convergence through the method mentioned above would be a A (8/2).

When SDE is time-homogeneous with f being bounded B-Holder, a recent work
[3] shows that the EM method is able to converge to the exact solution at a strong order
(1+B)/2 — €, for an arbitrary € € (0, 1/2), almost optimal in the sense of lower error
bounds [7]. Though the analysis strategy is very different from [18], heavily relying
on stochastic sewing lemma [16], it is still the term I; ()_(' ) that determines the order
of convergence. For this, the authors manage to show that the upper bound of I; (B)
is Cn~(I+P)/2+¢ by utilising heat kernel estimates in stochastic sewing lemma and
then applying Girsanov’s theorem for I; (X). Later, the error analysis strategy for EM
methodin [3]is extended to an additive SDE with a drift of Sobolev regularity [5] and an
additive SDE with distributional drift [9]. In the meanwhile, with the observation that
the error of the EM scheme can be reduced to a quadrature problem (for instance, via
a Zvonkin-type transformation [22]), the same order of convergence as [5] is achieved
via a non-equidistant EM method when f can be decomposed into two parts: one part
is twice differentiable and another one is with Sobolev regularity [17]. Indeed, I; and
I, are two types of quadrature errors.

We want to stress that, the upper bounds for I} and I, are limited to Cn™* for time-
inhomogeneous case, i.e., SDE (1.1). As a consequence, the strong convergence of the
EM method can not exceed «, or more precisely, @ A ((8+1)/2—¢). This motives us to
examine the performance of randomised EM method in this setting, which, to handle
the low convergence due to time-irregular drift, artificially introduces randomness to
the time variable and constructs martingale process from the random time.

In literature, for ODEs with f € C* ! where the boundedness condition is dropped,
certain randomised Euler methods are introduced in [6, 12, 13] that converge with order
(e+1/2) A1, compared to the order « of Euler method. In particular, the key ingredients
for the error analysis of the randomised Euler method in [13] (and Runge-Kutta method
therein) is the randomised quadrature rule inspired by stratified Monte-Carlo method to
approximate 0] /n g(r) dr. The randomised quadrature Q{,n[g] of foj /n g(r)dr with
stepsize 1/n is given by

. iln 1 !
1 alg] :=f gy (r)dr == "g(i +np)/n), jell,...,n}, (L7
0 n

i=0

with Qg’n[g] = 0, where k}(r) = (lnr] + t|ur))/n and (7;);en is an independent
family of standard uniformly-distributed random variables on a probability space
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(27, F*,P;). The important observation here is that the following error sequence
with respectto j € {0, 1,...,n}

i/n il
[0 g(i’)dr—fO gky (r)) dr (1.8)

forms a discrete martingale such that the L? (2;)-moments of the supremum of the
error sequence can be bounded by the moments of its quadratic variation (see [13,
Theorem 3.1]). Thus, if g is «-Ho6lder continuous in time, one is able to gain an order
1/2 4+ o in LP(2;)-sense, compared to an order « achieved by quantifying the error
of

Jjin Jj/n
/O g(r)dr—/o g(ky (r)) dr (1.9)

in the standard Euclidean norm.

In the stochastic setting, inspired by the randomised quadrature rule described
above, both randomised Milstein method and randomised Euler-Maruyama method
have been proposed to approximate solutions of different types of SDEs with time-
irregular drift, including multiplicative SDEs [14], SDEs with jumps [19], stochastic
delay differential equations [20] and McKean-Vlasov SDEs [1]. For the additive SDE
(1.1), it is therefore evident to consider randomised EM method instead of EM method
to achieve a higher order of convergence especially when « € (0, 1/2).

1.1 The randomised Euler-Maruyama method

For the introduction of the resulting randomised Euler-Maruyama method, let (t;) jeN
be an i.i.d. family of ¢/(0, 1)-distributed random variables on an filtered probability
space (Q2;, FT, (f})jeN, P;), where .7-']? is the o -algebra generated by {71, ..., 7;}.
Hereby, U(0, 1) denotes the uniform distribution on the interval (0, 1). The random
variables (7;)jen represent the artificially added random input, which we assume
to be independent of the randomness already present in SDE (1.1). The resulting
numerical method will then yield a discrete-time stochastic process defined on the
product probability space

(Q, F,P) = (Qp x Q, FE @ F", Pp @ P,). (1.10)
Moreover, for each temporal stepsize 1/n, n € N, the time grid for the numeri-

cal scheme is I1, = {t}? = j/n,j = 0,1,...,n}, and a discrete-time filtration

,,,,,

Ty :=f§®f}+], for j €{0,1,...,n}. (1.11)
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We write ¢; instead of " when there is no ambiguity. The randomised Euler-Maruyama
approximation of SDE (1.1) on IT,, is given by

X =X{" 4 (1 +7i/n X)) fn + AYB, (1.12)

where A’}B = By ;= B, i1 with its continuous version

t

x" =xo + / Fr (), X)) ds + By (1.13)
0

Note that continuous version of filtration is

F=FF @ Flyp. forte (0,11, (1.14)

Given the randomised scheme X defined in (1.13), the key quadratic error terms I
and I, become

]If(X(”)) =FE [ sup

S<u<t

/ (£ X — 0. X0, ar

P
} (1.15)

and

|

(1.16)

(X", ¢):=E [ sup

s<u<t

fs g X - (0 X) = flr (), X () dr

1.2 Our contribution and organisation

With the randomised EM defined in (1.13), the strong order of convergence can be
lifted to 1/2 4 y — € for arbitrary € € (0, 1/2), where y = a A (8/2), see Theorem
4.2. The error analysis follows the PDE strategy proposed in [18] but the key terms I}
and I are estimated through two quadratic bounds (Proposition 3.2 and Proposition
3.4) using the stochastic sewing lemma. Our contributions are therefore two-fold:

o the strong order of convergence of randomised EM (Theorem 4.2) is almost optimal
(see Remark 4.3);

e It is the first time the analysis of randomised schemes involving stochastic sewing
lemma (see the proofs of Proposition 3.2, Lemma 3.3 and Proposition 3.4).

For a comparison, we also include in Appendix B an alternative proof for Lemma
3.3, which achieves the same upper bound by constructing a discrete martingale from
the process of quadrature errors and quantifying it through the discrete-time version
of the Burkholder-Davis-Gundy inequality.

The paper is structured as follows: Section 2 outlines the standard notations and
main tools to develop later error analysis, including the discrete-time version of the
Burkholder-Davis-Gundy inequality (Theorem 2.1) and the stochastic sewing lemma

@ Springer



48  Page 6 of 27 BIT Numerical Mathematics (2025) 65:48

(Theorem 2.2). In Section 3, we detail the well-posedness of the numerical solution
(1.13) and derive the upper bounds for I] and I (Proposition 3.2 and Proposition
3.4). Section 4 is devoted to the main error analysis (Theorem 4.2). In Section 5,
a performance comparison between the Randomised EM and classical EM methods
for approximating scalar SDEs with varying irregular drifts is conducted to validate
Theorem 4.2.

2 Notation and preliminaries

In this section we explain the notation that is used throughout this paper. In addition,
we also collect a few notations and standard results from stochastic analysis, which
are needed in later sections.

By N we denote the set of all positive integers, while Ny := N U {0}. As usual
the set R consists of all real numbers. By | - | we denote the Euclidean norm on the
Euclidean space R for any d € N. In particular, if d = 1 then | - | coincides with
taking the absolute value. Moreover, the norm | - (g« denotes the standard matrix

norm on R?*¢ induced by the Euclidean norm. Set

0
x|
0
x4
D? = (2 ) icgand A = YL 2 W Aband a Vv b to denote the th
= (G )1<i.j=d an = 2i=1 32 e use a and a o denote the the
minimum and maximum of @ and b.
In the following we introduce some space of function:

o Cp([s,t] x Rd; R™) with s < t, the set of all bounded functions from [s, ] x R4
to R™, equipped with the norm

lglloo == sup  [g(z,x)].
tel0,1],xeRd

o C f (Rd; R™), B € (0, 1], the set of all functions from R4 to R™ which are bounded
B-Holder continuous functions.

o C([s,1t]; Cf (R?; R9Y) with s < 1, the collection of Cf (R?; R¥)-valued continu-
ous function over time interval [s, ¢], equipped with the norm || - || (st defined

by

(ra x) - (l", )
sup  |g(r,x)|+ sup g gﬁ > l-
rels,t],xeRd rels,il,x#y Ix =yl

Note that C([s, t]; Cf (R4; R?)) coincides with Cg’ﬁ([s, t] x R?; R?) mentioned
in Section 1, where the former one will be adopted in the later analysis.
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o Cl([s,1]; Cf (R?; RY)) with s < t, the collection of Cf (R?; R9)-valued contin-

uous function g over time interval [s, ¢], such that % gr,)ecC 5 (Rd; Rd) exists,
and is continuous for r € [s, f].
° C,%’ﬁ (R%) with g € (0, 1) denotes the space of twice differentiable functions g :

RY — R with Dg € CJ(R?; R®") forany 1 < ¢ < 2. A function g : R? — R
belongs to Cli)’ﬂ(Rd; R?) if each it components is in Cg’ﬁ(Rd) forj=1,...,d.
° Cg’ﬁ([s, t] x RY: Rd) with o, B € (0, 1], the collection of continuous functions g :
[s, ] x R? — R4 which are a-Holder continuous in time and B-Holder continuous
in space, equipped with norm defined in Eqn. (1.2). We will use Cg’ﬁ ([s, 1] x RY)

for CZ’ﬁ ([s, 1] x R4, R) and use CZ’ﬁ when there is no confusion.

e For an arbitrary Banach space (E, || - || g) and for a given measure space (X, A, )
the set LP(Y; E) := LP(Y, A, u; E), p € [1, 00), consists of all (equivalence
classes of) Bochner measurable functions g: ¥ — E with

1

el i= ([ I dum)” < .

If (E,||-lg) = (R,|-]) we use the abbreviation L”(Y) := LP(Y;R). If
Y, A, p) = (2, F,P) is a probability space, we usually write the integral with
respect to the probability measure [P as

E[Z] :=/ Z(w)dP(w), Z e LP(Q; E).
Q

In the case of the product probability space (2, F, P) introduced in (1.10) an
application of Fubini’s theorem shows that

E[Z] = EglE.[Z]] = E-[Ep[Z]], Z € L"(Q; E),

where Ep is the expectation with respect to Pp and E; with respect to P;.

In the following, we will present two important tools, discrete-time version of the
Burkholder-Davis-Gundy inequality and stochastic sewing lemma.

Theorem 2.1 [2] For each p € (1, 00) there exist positive constants ¢, and C, such
that for every discrete-time martingale (Y"),cN, and for every n € Ny we have

1 A 1
cp|[¥ 1 ”LP(Q) <| jer{{)‘f‘.’in} |Y]|||L1'(Q) < Cplr1i ”LP(Q)’

where [Y], = |YO? + 3 7_, 1Y* — Y¥=1|2 is the quadratic variation of (Y"),en,.
Define the simplex Ag 1 :={(s,1)|S <s <t <T}.

Theorem 2.2 [ [16, Theorem 2.4]] Consider a probability space (2, F, {Fi}i>0, P).
Let p > 2,0 <8 <T andlet A.. be a function Ag 7 — LP(Q; ]Rd) such that for
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any (s, t) € As 1 the random vector Ag; is Fi-measurable. Suppose that for some
€1,€x > 0and Cy, Cy the bounds

I As.ill Lo guray < Cilt — |21, @2.1)
”E[(SAS,M,ZL}—S]”LP(Q;Rd) = ”]ES[(SAS,M,I]”LP(Q;R!/) <Gl — S|]+€27 (2.2)
holdforall S <s <u <t <T, where
SAsur = Ast — Asu — At
Then there exists a unique (up to modification) {F;}-adapted process A : [S, T] —
LP(Q; R?) such that As = 0 and the following bounds hold for some positive con-

stants K1, K»:

A = As = AgillLruray < Kilt — s|'2H0 + Kol —s|'T2, (s,1) € As.7,
2.3)

B [Ar — Ay — Asi]lLooerey < Kalt —sI'T2, (s,1) € As.r. (2.4)

Moreover, there exists a positive constant K depending only on €1, €3 and d such that
A satisfies the bound

1A — Asll o quray < KpCilt — s[2F90 + KpColt — 5|72, (s.1) €[S, TR.5)

3 Quadratic estimates

Lemma 3.1 (Well-posedness) Consider the randomised numerical simulation (1.13).
Suppose that f is bounded, i.e., f € Cp([0, 1] x R4, RY). Then (Xt("))og,fl is well-
defined, in the sense that for any p > 0,

sup ||Xt(n)||Lp(Q;Rd) < 0.
0=<r=<l1

Proof Define ¥ := X" — B(t). Then (1.13) becomes
(n) _ ! (n)
Y, =x0+ f(s, Y 4+ Bs)ds
0

It holds from the boundedness of f that |Y,(")| < |xo| + t|| f l|co- Therefore,

IX Lo erty < 1Y N cumay + 1Bell Lo eupay < 0.
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Proposition 3.2 (Quadratic bound 1) Let o, B € (0,1], p > 0, d, m € N, and take
€ € (0,1/2). Then for all g € c;‘*ﬁ([o, 1IxR4GRY), 0<s <t <1,neN, there
exists a constant C_'(p, d, B, €) such that

t
/s (8(r, Br) — gk, (r), By, (r))) dr LP(:Rd) 3.1

< C(p.d. . o)lIglgunlt — s|/HHen 124770,

where y = a A (8/2).

Proof It suffices to prove the bound for p > 2. Define for0 <s <t <1

t
AS,I =F |:/ (g(r, By) — g(Krf(r)’ BK,I(V))) dr] .

Forany0 <s <u <t <1
SAs,u,t = As,t - As,u - Au,t

t
=[S [/ (g(}", B,) — g(K,‘f(l"), BKn(r))) dl’i|

t
- E* [/ (g(r, Br) — gk, (r), Bkn<r)))dr} :

Let us check that all the conditions of the stochastic sewing lemma (Theorem 2.2) are
satisfied.
The condition (2.2) trivially holds with C» = 0 because of

E* [(SAs,u,t] - 07

by the property of conditional expectation.

Denote kp := [tn] € N. To establish (2.1), let s € [k /n, (k1 4+ 1)/n) for some
k1 € {0, ..., ky—1}.Suppose firstthatt € [(k;+2)/n, 1]sothat (k;+2)/n—s > nL.
We write

(k142
Ayl < / )/ [ES[g(r. By) — X (r). Beyr)]| dr

+

t
E* [/( )/n(g(r, Be,r) — 8k (r), Be,()) dr}

ki+2 (3.2)

t

+/ )/n|E*[g(r. By) — g(r, Be,)]| dr
(k142

=L+ DLh+1.
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The bound for I; is straightforward: by conditional Jensen’s inequality and the first
estimate of Proposition A.1 we have

(k1 +2
111 ”LP(Q;]Rd) = f )/nlig(r, By) — glicy (r), BK,,(r))”LP(Q;Rd) dr
N
<2C(p. d. B)lIglgas (1/m) T D) (3.3)

< 2C(p.d, Plgllgup (1/m) 1HHENEII=E — g2,

where the last inequality follows from the fact that 1/n < |t — s].
Regarding I», observe that for each k € {k1 + 2, ..., ko — 1},

(k+1)/n
5 [ et B~ 6500, B
n

(k+1)/n 1
=Ep | E; /k/ g(r, Bryn)dr — ;g((k + T144)/n, Bi/n) 3.4

(k-+1)/n |
=Ej} /k/ g(r, By/n)dr — ;Ei [g((k + T14%)/n, Bijn)] | -
n

For each fixed realisation of B, the second term in the last bracket of (3.4) can be
further written as

1 1
;E‘i [¢(tk + T140)/n, Bin)] ;Er [¢(tk + T140)/n, Biyn)]

1 1
;/0 g((k + h)/n, Biy) dh (3.5)

(k+1)/n
/ g(r, Byp) dr,
k/n

where the first equality is due to the independence of (7;);cn, the second equality
uses the fact that 74; ~ U(0, 1), and the last line is via the change of variable
r := (k + h)/n. Taken together,

(k+1)/n
E* /k/ (8(r, Be,(r)) — 8k (r), Bi,r))) dr | =0, (3.6)
n
and
k21 (k-+1)/n
; / (80 Beyiry) — 8T (r). Beyiry) dr
k=k; 42 k/n 3.7
ko/n
=FE |:/ (g(r’ an(r))—g('f,f(”), BK,,(r)))dr:| =0.
(k1+2)/n
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Thus

I =

t
E* |:/k (g(r, B, ) — g(K,f (r), BKn(r))) der

2/n

t
< [k |E°[(r, Be, () — 8k (r). Be,r))]| dr.

2/n
Similar to the estimate in (3.3),

7(1/2+0(76)|t 1/2+e.

152l iy < Iglgarn™ ) < gl asn — 5| (3.8)
Regarding I3, the argument is exactly the same as the proof of [3, Lemma 4.3] .

Using the first estimate of Proposition A.1, we derive

t
I < f P—s1g(r E'[B,1) — Pl rr—s g E'[B )] dr
(k1+2)/n

4 s s (3.9)
+ f 1Presrrs (2 E°LB,]) — (r. E*[Be, )| dr
(k1+2)/n

=:131 + I5;.

To bound /31, we apply estimate (A.3) of Proposition A.2 with n = 0, = 1 and the
fourth estimate of Proposition A.1. We get

t
15311l o @:rey < Cd, p, BlIgces / (Ir = s1 = liea (r) = s1)|
(k1+2)/n
X kn(r) — 5|2~ Lar
t

<Cd. p. ﬁ)llgllca,ﬁn“/ Ir=1/n=sIP?"1dr (3,10

b (ki+2)/n
_ | t—1/n—s i

=C(d, p, B)lglpsn™ / 71721 dF

b (ki+1)/n—s

<267'n7'C@, p. )lIgllgoslr — 5172,

where (k1 + 1)/n — s > 0, making the last second integral well-defined.
Regarding I35, we use (A.2) of Proposition A.2 with n = 1 and the last estimate of
Proposition A.1. We deduce

t

Ils@imn < Cep. Plighes | IELB,]
b (k1+2)/n

— E*[By, (]l Lr@)ln(r) — 5|22 g
=< 2ﬂ_ln_lé(d’ P, ﬁ)”g“c:ﬁ |t — s|/3/2‘

(3.11)
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Combining (3.10) and (3.11), and taking again into account that n~t < |t —s|, we
get
131l Lo @:rey < €@, p. BlIglcasn™ V2P| —gt/24e - (3.12)

The case of t € [ky/n, (k1 + 2)/n) can be dealt with easily so we omit it here.
Recalling (3.3) and (3.8), we finally conclude

1As il @:rey < C(d, p. PlIglcapn™ V27| — 5|1/2Fe, (3.13)

Thus all the conditions of the stochastic sewing lemma are satisfied. The process

t
A = f (g(r, By) — gk} (r), By, (r))) dr
0
is also J;-adapted, satisfies (2.4) trivially, and
1A, — As — Ag il Lrirey < Cd. p, Plt — 5|72,

which shows that it also satisfies (2.3). Therefore by uniqueness A, = A;, the bound
(2.5) then yields precisely (3.1). O

Lemma 3.3 [Quadratic bound 2] Let a, B € (0,1], p > 0, and take € € (0, 1/2).
Then forall g| € c,‘f’ﬁ([o, 11xRYY and gr € Cp([0, 11xRY),0<s<t<1neN,
there exists an constant C ( p, €) such that

t
| 610 B = 16700, By ) 2600, B 0

Lr@  (3.14)

< C(p, Oligill esllgalloolt — s|"/2Hen=1/2Ta=e),
Cb

Proof Define for s, with0 <s <t <1

t
A, = f (10 Beyry) — 81 (). By ) 8206n (), By )
0
and
t
A = B[ [ (010 Bryi) = 910600 Boyo))g206n0). By ]
S

Similar to the proof of Proposition 3.2, it can be easily verified that E°[§A , ;] = 0
and E°[A; — A; — A, ;] = 0. Thus conditions (2.2) and (2.4) are satisfied. It remains
to check conditions (2.1) and (2.3).
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Whent —s < n™!, it is easy to get

H AsillLr) < Hjlt — Allr @)

< lIg1llges l1g2lloolt — sln ™ G159
= lgtllgeslig2lloclt — 5| 1/2tep—(1/24a—e)

Now let us assume s —s > n~ !, and let s € [k1/n, (ky +1)/n) and t € [ka/n, (ky +
1)/n) forsome ki, kp € {0, ..., n—1}. Applying the similar argument as in (3.4)-(3.7)
yields that fork € {k; + 1, ...,k — 1}

(k+1)/n
]Es[/k/ (81(r, Be,(r) — 810 (1), Be, (1)) 82(kn (r), B, (r) dr] =0,
n

thus

ka/n
B[ (010 B = 016500, By 20600, B dr| = .
(ki+1)/n

Asa consequence,

D/
A =B [ (010 B = @163 0). Buy) 200 (0). B 0
N

t
FB[ [ (010 B = 810650 By i), By b

2/n

As (ki +1D)/n—s < n~landr— ko/n < n~!, each of the two terms falls into the
case considered in (3.15), thus is bounded by [|g1 | o5 1182loo [t — 5] 1/24ep—(1/24a=e)
b
in the L” norm. By now condition (2.1) has been verified.
Finally, let us verify that A. is the sewing of A.. by checking the condition (2.3).
Indeed, condition (2.3) is satisfied given the condition (2.1) and the second line of
(3.15). O

An alternative proof of Lemma 3.3 directly using the martingale argument is presented
in Appendix B.

Proposition 3.4 [Quadratic bound 3] Let o, € (0, 1], p > 0, and take € € (0, 1/2).
Then for all g1 € CyP ([0, 1] x RY) and g, € C([0,1]; CJ(R¥)), 0 <5 <t < 1,
n € N, there exists an constant C_‘(p, d, B, €) such that

t
/ (81(r, By) — g1 (k5 (r), B,(n))g2(r, By) dr HLP(Q) (3.16)

< C(p.d, B, )lgillgas Igallcy o, it = s1'/*Hen™ /27,

where y = o A (8/2).
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Proof Define and divide the process as follows:

~ t ~ ~.
A = /0 (g1(r, By) — g1(k, (r), B, () &2(r, B;)dr := Atl + Atz’
where ,
AL:A@mﬂm—mmmwm&m&Mr

and .
vﬁ:ﬂwmﬁmm—mqmﬁmmmm&Mr

are two J;-adapted processes.
Definefor0 <s <t <1

t
Asl,t =FE |:/ (g1(r, By) — gi1(r, BKn(r)))gZ(Oa By) drj| s
s

and .
Af,, 1=/ (g1(r, Be,(r) — 81(k, (1), Bie, (1)) 82(kn (1), B, () dr.
S

First, let us claim that A! (resp. A?) is the sewing of A!. (resp. A%) by checking
conditions (2.3) and (2.4). These can be easily verified as follows:

1A} — A} — AL llLr @)

t
= HIEY |:/ (gl (r, By) — gi1(r, BK,,(r))) (g2(r, By) — g2(0, By)) dr]

LP(Q)

< C(p. d)lgillgeslg2lloolt — |72,

and

A7 — A2 — AZ,llLr o)

<

t
/ (gl (r, BK,I(V)) — &1 (K;(r), BK,,(r)))(gZ(r: B)) — g2(ky(r), BK,,(r))) dr

LP(Q)

< C(p. Dligillges Igalloolt — 517

Note that the condition (2.4) is automatically satisfied using the estimates above and
Jensen’s inequality for conditional expectation.

Next, let us check that the remaining conditions (2.1) and (2.2) of the stochastic
sewing lemma (Theorem 2.2) are satisfied for both A é , and Ai ,- Because of the fact
E° [51“3,“,;] = 0 and Lemma 3.3, both the conditions are valid for Af’,. It remains to
check the conditions for A § ;- Itis clearly that
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t
E*[84, , ] =E° []E” [/ gi1(r, By) — gi1(r, BK,,m)dr} (82(0, By) — £2(0, Bs))} :
u
To estimate it,

IE [8A; , e
t

]EM [f gl(r,Br)_gl(’" BKn(r))dr}
u

x 1182(0, B.) — 200, By)ll 20 ()
< C@p.d)|gallorlu = sI'"*CQ@p.d. p. gl guplt — ul'FHen= /2770

=

L2p ()

<CQ@p.d,B,e)|t — s|1/2+e+1/2”g2||cg([0’”)||g1||Cz.ﬁn—(1/2+y—e)

=C@p,d, B, )t = 1" N2l go. 1 g1l gapn™ /2,

where we apply Proposition 3.2 with € € (0, 1/2) to derive the last inequality and so
condition (2.2) holds.
Similarly,

llg2(s, Bs)||L2p(gz)
L2r(Q)

< C@p.d. Bl — 51" ligalloollgullgepn™ /7).

1
lAs  Nlr) <

t
E* [/ gi1(r, By) — gi(r, BKn(r))dr:|
s

Thus all the conditions of the stochastic sewing lemma are satisfied. O

Remark 3.5 The quadratic bounds shown in Proposition 3.2 and Proposition 3.4 can
be easily extended to the case when the Brownian motion B is shifted by a constant
x € R4, i.e., the estimates (3.1) and (3.16) still hold if one replaces B with B + x.

Remark 3.6 The quadratic bounds shown in Proposition 3.2 and Proposition 3.4 can be
easily extended to the case of fractional Brownian motion (fBM) using [3, Proposition
3.6, Proposition 3.7].

Lemma3.7 Let p > 0, € € (0,1/2), and X" be the solution of (1.13) with f €
CoP (10, 1] x R, RY). Then for all g € CyP ([0, 1] x R4 RY), 0 < s <1 < 1, there
exists a constant C_‘(p, d, B, €) such that

1
XY — oI (r ,X(n) dr‘
ﬁ(g( r) = 8, (), X)) LP(:RY) (3.17)

< C(p.d, B, ) exp(ll fllgamliglgunlt = 5|2 en= 1277,

where y = o A (B/2). Moreover, for all g1 € CZ”S([O, 11 x RY) and g €
Cc([0, 1]; Cé(Rd)), 0<s <t <1 n €N, there exists an constant C_'(p,d, B, €)
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such that

t
| / (81, X0) = 81065 (0). Xy g Xy ar|

< C(p.d. .y exp(ll fllga) 81 s g2l oIt — 1172 n =207 =),

(3.18)
Proof Fix an arbitrary realisation w; € Q.. Let
' o)
Vw0 = [ Fr 00, X0, o) dr
0
Take v(t, w) = f (k] (1, w7), X,(C'Z)(t)(wf)). Note that for each w;
1 1
Eg [exp (5/ V2 (1, wr)dt)} < exp (||f||éa,,,/2). (3.19)
0 b

Let us apply the Girsanov theorem to the function v, then there exists a probability
measure P equivalent to Pg such that the process B := B + " (w-) is a Brownian
motion on [0, 1] under ]P’B

In the following, we will use Eg[-|F*] or E3[-|F*] to emphasise the expectation

is evaluated under probability Pp or Pg, given a fixed realisation w,, without directly
mentioning w,. We deduce by (3.19) that

B[ S |77 = e (1712y02).

Moreover, for each p, we have

[ (
[ g, X" = gler (), XU, dr ]
< (Eé[ /I (st X = g5 X)) ar| ’ft])m
' 2 12
X(EBK%) 7))
- (1@3[
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2 ’FTDV?

(3.20)

t
< eXP(”f”C;Lﬁ) (EBU/ (e(r, By +x3) — glicy (), By, (r) + x())) dr

Taking expectation with respect to w; on both side of (3.20) and using (3.1) and
Remark 3.5 yield:

E[ /I (g(r, XMy = gl (r), Xiﬁﬂ)) drﬂ

= C@p.d, B, &) explllfllgop) gl gun P2 — | PAZTE,
b

A similar argument leads to Eqn. (3.18).

Applying the Kolmogorov continuity theorem to Lemma 3.7 yields

Corollary3.8 Let p > 0, € € (0, 1/2), and X™ be the solution of (1.13) with f €
CZ"ﬂ([O, 11 x R RY). Then forall g € Cg’ﬂ([o, 1 xRGRY), 0 <1 < 1, there exists
a constant C(p, d, B, €) such that

S
| sup | [ (0, X0 = gor 0, X, ar |

0<s<t JO

< C(p.d. B, &) exp(ll fll o) Igllgapn™ /2477,

LP(@:RY) (3.21)

where y = «a A (B/2). Moreover, for all g1 € Cg’ﬂ([O, 11 x RY) and g» €
C ([0, 17; C;(Rd)), 0 <t <1 n €N, there exists an constant C_’(p, d, B, €) such
that

sup [(g1(r. X;) — g1(kt (1), X, () 82(r, X)) dr|

0<s<t Lre (3.22)
< C(p.d.B.e)exp(| fll pe) g1l pasllg2ll o1 go.1yn~ /277
= 4P e cr Ch (10,11 :
4 Error analysis via a PDE approach
4.1 Some PDE estimate
Lemma4.1 [I8] For any ¢ € (0, 1), there exist m € N and (T;)i=0....m such that

0=Ty<---<Ti<Tiy1<---<T,=1andforanyi =0,...,m — 1,

1
lellep oy Co (Tivn = T2 < eand [ fllp g, Co (T = T2 < 5
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Moreover, for all ¢ € C([0, 17; C,‘f (Rd; Rd)), there exists at least one solution u to
the backward Kolmogorov equation

ou

1
5, T VU [+ SAu=—gonll; Tivi] x RY, u(Tip1,x) =0

of class
e C(T:, Tixrl: G R RY) N CU (T, Tii s CF RE RY)
forall B’ € (0, B) with

| D2ul = Mllg]

cf (n, 140 char, i

for some constant M and
T2
IVulle g1, = CoTint =T N0l cp 7, 7.0

for some constant Cy.

4.2 The strong convergence of randomised EM

Theorem 4.2 Assume that the drift coefficient f € CZ["S([O, 11 x R?: RY). Consider

the solution X (t) of (1.1) over [0, 1] and its numerical approximation X l(") via the ran-
domised numerical scheme (1.12) at a given stepsizen™" € (0, 1). Then for any p > 1
and € € (0, 1/2), there exists a positive constant C depending onm, M, d, p, xo, o, B
and || f ||Cz,ﬁ such that

E [ sup )X(t) - X,(”)

0<r<l

"} < cn—2+r=ep,

withy == o A (B/2).

Proof For a given ¢ € (0, 1), we consider the partition (7;);=o,...» of closed interval
[0, 1] which is considered in Lemma 4.1. For/ =1,...,dandi =1, ..., m, Lemma
4.1 implies that there exists at least one solution u;; to the backward Kolmogorov
equation:

where f; represents the /th coordinate of f, and u; ; satisfies,

Vg il = Co-(Ti = Tifl)l/zllfllcsz,ﬁ <e.

chT.T;
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Following [18], for any ¢ € [T;_1, T;], by Itd’s formula, we have

t

Ji€s, X(s))ds = up i (Ti—1, X(Ti—1)) —upi(t, X(1)) +/ Vuy,i(s, X(s)) dBy,

t

Ti—1 Ti1
4.1
and
t t
fits, XMy ds =up i (T, XY ) — i, X{7) + f Vi i(s, X)) dBy
Ti- Ti-

t
+f Vi (s, X - (filer (0, X)) = fis. X)) ds.
T;

i—1

4.2)
We adopt the notation from [18] that
N
X X
X X"
X(t) := ,l and X,(n) = !
x X
It follows from (4.1) and (4.2) that forany / =1, ..., d,
xh— xmb
1 wh ., [ o)
n, n
= xh - X0 /T (its X0 = fitef ), X)) ds
i—1
l (n,l)
= X7, — X7,
(T R m \Y _ ) . (n)
o (0 (T X)) = i (T, X5 ) = (w00, X0 = w0, X07))
4.3)

t
[ (Funits. X0 = Vuni(s. X)) ab,
T;

i—1

t
+/ Vuy (s, an)) . (f(S, Xé”)) — fk, (s), XI((")@))) ds
T n

;—1
+ /T (fits. X0 = fitei ). X1)) ds.

< ¢, following a similar argument in [18], we have

Since ”V”l’i”q‘g([n T S
p (Ti-1.

X! - X" <A +e) ’XT,-_I - Xy ] e ‘X, —x™

t
- / (Vai (s, Xo) = VG5, X)) st'
T;

i—1
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+

t
[ Vit X (76X = £ 01, X0 ) s
Ti—

+

t
f (it X = Sl (), X)) ds
Ti—1
For p > 2, using Jensen’s and Holder inequalities, we have

p
)X, —x™

SRR

4 gr/2=15p- 12

+ d3p/2—15[7—1 Z
=1

4 3p/2-15p- 12
I=1

p p
[T+ arise=ter [, - X

p

/ (VaiGs, Xo) = Vari(s, X)) dBs
Ti—1

t
/ Vs, X§n)) . (f(s, X§")) _ f(/c,f (s), Xf(:is))) ds
Ti—1

p

/ (fits. X0 = fitei ), X)) ds

(4.4)

Since & > 0 is arbitrary, let us fix € such that c(p, d, &) := dP/?>~15P~1gP < 1,
For the stochastic integral term, for any ¢ € [T;_1, T;], we have from Burkholder-
Davis-Gundy’s inequality that
p:|

< C(p. d)TTIZ/ ‘w,,(s Xs) — Vuy (s, X(’”)‘ ]

Fof o

T <v<t

v
[ (Vunits. %0 = Vunits. %)) a,

Ti—
1 @.5)

where C(p, d) is the constant from Burkholder-Davis-Gundy’s inequality.

Now we will make use of Corollary 3.8 to quantify the last two terms. For the
last term, as f; € Cz"ﬂ([O, 1] x Rd), for any € € (0, 1/2) there exists a constant
C_’(p, d, B, €) that depends on p, 8 and € such that

p]
(4.6)

1
o o | (10— o )
Ti1<u<t |JT;—

<C(p.d, B, e)exp(||f||caﬂ)||f||”aﬂn*<‘/2+yff>lf.
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From Lemma 4.1 we know that du;;/dx* e C([0,1]; C}(RY)) with
||8u1,i/8xkllcl!([0!l]) < Me. Thus applying Corollary 3.8 to f; € CZ”g([O, 1] x R9)
and du; ; /dx* € C([0, 11; C}(RY)) yields

p}

(fets, X0 = Sl 9, X)) ds

u
[ Vulgi(s,Xgn))-(f(s,Xs(n)) Fek(s), Xﬁ")(s))) ds
Ti—1

E sup
Ti—1<u<t

d
ZdP_IIE |: sup

Ti_1<u<t

I A

/ " dup (s, XI)

Ti_, axk

|

4.7)

C(p.d, p.e)dP e’ MP exp<||f||caﬁ)||f||%ﬁn*“/2+y*>1’,

for any € € (0, 1/2).
Taking the supremum and then expectation on both sides of (4.4), the contrain on
&, we have from estimate (4.5) to (4.7) that

P
E| sup
Ti—1=<u<t

dP/25P=1(1 + )P L
- [ -2
(1 - C(pa d? 8))
dr?=15sp=1C(p,d
n (p )Z/
(1 —=c(p,d,e))

Ti-

X, — X"

‘Vull(s Xs) — Vuy (s, X( ))’ ]ds

&P (p.d. poe)(L+ dPe? MP) exp(l £ o) ||f||gg,ﬁdpepM”

(1 - C(P9 d’ 8))
p
j| ds

w |7 ’
<C1EHXT = X7 ]—i—Cz E sup
Ti— Ti—1<us<s
The remaining part follows exactly the same as in the proof of Theorem 2.11 of [18].
O

+

X, — X"

C3

RSy, Revr g

Remark 4.3 Note that the optimal order of convergence for a strong approximation of
SDE (1.1)is 1/2+y. This can be easily derived from two facts: first, the optimal order
of convergence for a strong approximation of an additive SDE with f € C [’f (RY; RY)
is shown to be 1/2 4+ B/2 [7]; secondly, in the ODE case, the maximum order of
convergence of randomized algorithms is known to be equal to 1/2 + « under the
assumption that f € C%!, see [12].
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5 Numerical Examples

In this section, we compare the EM and randomized EM methods through experiments
of an scalar additive SDE (1.1) with varying coefficients f. Indeed, the drift function
is defined as a product of two functions

(e, x) = f'(0) fa(x), (5.1
with f* being the truncated Weierstrass function

Ni—1

fE@) = Z 27" cos (2"xr) (5.2)
n=0

and f> defined by the truncated Takagi function

N>
L) =) 05" (2"x — ¢ (2"x)),
n=0

where ¢ : R — [0, 1] is the function that find the nearest integer for the argument
and N1, N> € N. It is well-known that the full version (N1 = oo) of f¥ is a-Holder
continuous with respect to the temporal variable [11] and the one of f> is nowhere
differentiable with respect to spatial variable [15], and is Lipscthiz globally. Thus
fecel.

In the experiment we take N1 = N = 100 and initial condition x¢o = 3, and test on
a € {0.2,0.3, ..., 0.8}. The reference solution is computed using the randomized EM
method with step size hef = 2716 Foreachh = 27!, 1 =5,...,10, performance
is assessed over 1000 independent simulations. To validate Theorem 4.2, the error
is quantified as the root mean square of the maximum absolute deviation across the
time interval [0, 1]. The two sets of error data are fitted with a linear function via
linear regression respectively, where the slope of the line indicates the average order
of convergence.

The fitted slope against « for both methods are plotted in Figure 1. The theoretical
order of convergence for randomised EMis a A (1/2)40.5—¢; forsome ¢; € (0, 0.5),
and for EM is @ A (1 — €3) for some €, € (0, 0.5). In Figure 1, for both methods, the
slope, or equivalently, the order of convergence, increases with «. In particular, the
classical EM curve forms a roughly 45-degree line over o € [0.2, 0.8], in agreement
with the corresponding theoretical result. For « € (0.2, 0.5], the Randomised EM
method achieves an order of convergence of o + 0.5 — €1, whereas the classical
EM reaches only «; for @ € (0.5, 0.8], the Randomised EM method maintains an
order of convergence close to one, while the classical EM remains at roughly «; both
observations consistent with the theoretical results.

We also present error plots for four different values of « in Figure 2. In all cases,
the Randomised EM method not only achieves a higher order of convergence but also
yields consistently lower error magnitudes compared to the classical EM, with the gap
being more pronounced for smaller values of «.
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Fig. 1 Plot of the fitted slope against the value of  in f{*, used for approximating the scalar SDE with drift

given in (5.1)

e — .
10° L | T -
5
] Y Y.,
B 1071
e
-\_.\\
\\.\
-@- Randomised EM (slope 0.72) e
10-2} —®- EM (slope 0.19) ~~e
275 276 277 278 279 2710
Step size
o -
(a) f{* with o = 0.2.
1071 B
i
.__ it
\\‘~\\ ‘\".'\,
... = ~m.
1 \\\ I~
E “ve. Su
d 10-2 g
.,
! R
-®- Randomised EM (slope 0.98) >
—m- EM (slope 0.57) e
> 5% 557 > 25 -10
Step size

(c) f1* with « = 0.6.

-
=il
————
i
T
10-! B
...
g \\“‘.
E R
5] e
1072 Tre
—-®- Randomised EM (slope 0.92) ‘\\\
—#- EM (slope 0.38) e
> PE] 27 2-8 2-9 210
Step size
a -
(b) f{* with o = 0.4.
"'\-\, -@- Randomised EM (slope 0.99)
®~ T~ m._ =~ EM(slope 0.67)
Sso T~
e -
~ ~.
~ -
Y h
5 ‘\ = ~.
E 102 s L
\-\ ~u
AN
.
\\
\\
n L \.
2-5 2-6 27 2-8 29 -10
Step size

(d) f1* with a =0.7.

Fig.2 Semi-log plots of error versus stepsize for approximating a scalar SDE with drift (5.1), under varying

choices of f{*
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A Useful estimate from heat kernel [3]

Let p;, t > 0, be the density of a d-dimensional vector with independent Gaussian
components each of mean zero and variance ¢:

1 |x|? d
p(x) = Wexp(—7>, x eRY, (A1)

For a measurable function g: R x R? — R we write P:g(r,-) := ps * g(r,-) for
r € R, and occasionally we denote by pg the Dirac delta function. The first statement
provides a number of technical bounds related to the Brownian motion.

Proposition A.1 [3] Let p > 1. The d-dimensional process B has the following prop-

erties:

1. ||B; = Byl poiqray = C(p. d)|t — s|'/%, forall 0 <s <t < 1;

2. E¥[g(r, B)l = Py—ng(r,E*[B;]), forall 0 <s <t < landr € R;

3B B — E*[Bulll o (urey < C(p It —ullt —s|7'/2 forall0 <s <u <t
such that |t — u| < |u — s|;

The next statement gives the heat kernel bounds which are necessary for the proofs
of the quadratic bounds in Section 3.

PropositionA.2 Let g € CZ”g, o, B < landn € [0, 1]. The following hold:
1. There exists C_'(d, B, n) such that

— (B=mA0
1Pig(r. Men@amay < C@d. Bt 2 1Igr. s @a-pay.  (A2)

forallt,r € (0, 1]. B
2. Forall § € (0, 1] with § > g — %, there exists C(d, B, n, 8) such that

Prg(r, ) —Psg(r, ')”cn(Rd;Rd)
~ B_n_
< C(d, B, 1, )80, Mo azays T3 — 9)°, (A3)

forall0 <s <t <landr €[0,1].

B An alternative proof of Lemma 3.3

Proof of Lemma 3.3 Whent — s < n™!, it is easy to get

t
H/ (gl (r, BK,,(r)) — 81 (K;f (r), BK,,(r)))gZ(Kn(r)’ BK,l(r)) dr
s LP ()

- 172 —(1/24a—
< llgllasllgalloolt = s~ < ligill e I galloolt — s|!/2Fen =124,
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Whenn~! < — s, for simplicity, take s = kj/n and t = kp/n, with k1 < k and
ki, kp € N . It suffices to show that

Tk
/ (gl (r, BKn(r)) — 81 (K;(V), BK,,(r))) 82(ky (1), Bkn(r)) dl"’
1,

Ky

kelky,....k2} LP(Q)

—(L
(P Igtll e I galloon™ 2 /1 = .

(@Y

=

(B.1)

Eqn. (3.14) can be derived immediately given estimate (B.1).
Let us therefore fix an arbitrary realization w € Q2p. Then for every k € {k; +
1,..., ko} we obtain

173
E. |:/ gl(K;(r), Bkn(r)) &2(kn(r), BK,l(r)) dr‘]:]:]:|

Ir—1

=E. [”_lgl(fkfl +hn!, B,H(a))) g (tk—1, By, (@)) ‘fkr_]]

| (B.2)
=/ n'g (tkq +on !, Btk_|(60)) g2 (tk=1, By_, (@) dv
0
73
= / 81(r, Be, () (®)) 82(kn(r), Be,(r)(®)) dr,
th—1
due to 7y ~ U(0, 1) and independent of F, kal'
Next, define filtration G} := }"r-'l' o forn € {1, ..., ky —k1}, and define a discrete-
time error process (E™)iic(0.1....k,—k;) by setting E® = O and forn € {1, ...,k —ki}

setting

_ Tky +it
E" = / (810 Beyiy) — 8162 (). Bey)) 820 (r). By dr.
173

1

which is evidently an real-valued random variable on the product probability space
(2, F,P). In particular, (E’_')ﬁe{o,l ,,,,, ka—ky} C LP(K2). Moreover, for each fixed w €
Q2 p we have that Eﬁ(a), 9: Q¢ — Ris gg-measurable. Further, forn € {0, 1, ..., kp—
ki — 1}, it holds true that

E[E" (-, 0)|GF] = E"(-, )
because of Eqn. (B.2). i
Consequently, for every w € Qp the error process (E" (-, ®))ic{0,1,....ka—k;} 1S an

(GD)iici0.1,....ko—k }-adapted LP (25 R?)-martingale. Thus, the discrete-time version
of the Burkholder-Davis-Gundy inequality (see Theorem 2.1) is applicable and yields

_ 1
| PO o 7 o) ”LP(Qr) = CIEC o, 4 | 1oq,, foreveryw e Qp.
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After inserting the quadratic variation [E (w, -)lk,—k, , taking the p-th power and inte-
grating with respect to Py we arrive at

i | P
” ﬁG{O,IIT.l.Z.i,)I(cszl} |E |||LP(Q)

— n P
= /szw ” ﬁe{of}f‘fj{z_kl}IE”(uw)lHu(szf)dPW(“’)

ko i
=< Cg/ H( Z ‘/ (gl(r, By, () — 81(k, (1), BKn(r)))
L

1

N
x &2(kn (1), B, (r)) dr )2 LP(Q)dPW(w)
ko
o _og\P/?
= ChlgiZplgal (DS n )
b

k=k1+1
2, —(1/2
< Chllg1llle pllg2ll Bt — 5)P/2n=/2F0P,
b

For an arbitrary interval [s, 1] satisfying n~! < |t — s|, Eqn. (3.14) follows by inter-
polation. O
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