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Abstract
In this paper, we examine the performance of randomised Euler-Maruyama (EM)
method for additive time-inhomogeneousSDEswith an irregular drift. In particular, the
drift is assumed to be α-Hölder continuous in time and bounded β-Hölder continuous
in space with α, β ∈ (0, 1]. The strong order of convergence of the randomised EM
in L p-norm is shown to be 1/2+ (α ∧ (β/2))− ε for an arbitrary ε ∈ (0, 1/2), higher
than the one of standard EM, which is α ∧ (1/2 + β/2 − ε). The proofs highly rely
on the stochastic sewing lemma, where we also provide an alternative proof when
handling time irregularity for a comparison.

Keywords Randomised methods · Stochastic differential equations · Stochastic
sewing lemma

Mathematics Subject Classification Primary 65C30 · 65C05 · 60H10 · 60H35 · 60L90

1 Introduction

It is widely known that the uniqueness of the solution to an ordinary differential
equation subject to an Hölder continuous drift is not guaranteed. However, when reg-
ularised by Brownian motion (BM), the corresponding additive SDE ensures a unique
solution [4, 21, 22]. Building on existing results regarding solution uniqueness, this
paper focuses on the numerical approximation for the following R

d -valued additive
time-inhomogeneous SDE,

{
dXt = f (t, Xt )dt + dBt , t ∈ [0, T ],
x(0) = x0 ∈ R

d ,
(1.1)
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where B = (Bt )0≤t≤T is a d-dimensional BM on a probability space (�B,F B,PB),
and the drift coefficient f : [0, T ]×R

d → R
d is assumed to be α-Hölder continuous

in time and bounded β-Hölder continuous in space with α, β ∈ (0, 1], i.e.,

‖ f ‖Cα,β
b ([0,T ]×Rd ;Rd )

:= sup
t∈[0,T ],x∈Rd

| f (t, x)| + sup
x∈Rd ,s �=t

| f (t, x) − f (s, x)|
|t − s|α

+ sup
t∈[0,T ],x �=y

| f (t, x) − f (t, y)|
|x − y|β < ∞.

(1.2)

We will use Cα,β
b for short. For simplicity, let T = 1.

The widely studied scheme for the SDE (1.1) is the Euler-Maruyama method (EM)
on a fixed stepsize 1/n, n ∈ N, with the numerical solution given by

X̄ (n)
t = x0 +

∫ t

0
f
(
κn(s), X̄

(n)
κn(s)

)
ds + Bt , (1.3)

where κn(s) := 	ns
/n with 	a
 representing the largest integer that does not exceed
a. The convergence in probability to X(t) in (1.1) of X̄ (n)

t in (1.3) is established in
[10]. In the case of α ∈ [1/2, 1) and β ∈ (0, 1), the strong order of convergence in
L p-norm is first given at β/2 via a PDE approach [18]. The regularity of the solution
to the associated Kolmogorov equation is leveraged in the proofs of main theorems
in [18] so that Grönwall inequality can be used. The order of convergence merely
depends on the regularity of the numerical scheme X̄t and the roughness of f through
two types of error terms:

I1(X̄
(n)) := E

[
sup

s≤u≤t

∣∣∣∣
∫ u

s

(
f (r , X̄ (n)

r ) − f (κn(r), X̄
(n)
κn(r)

)
)
dr

∣∣∣∣
p]

(1.4)

and

I2(X̄
(n), g) := E

[
sup

s≤u≤t

∣∣∣∣
∫ u

s
g(r , X̄ (n)

r ) ·
(
f (r , X̄ (n)

r ) − f (κn(r), X̄
(n)
κn(r)

)
)
dr

∣∣∣∣
p]

,

(1.5)

where g ∈ C0,1b ([s, t] × R
d;Rd) is equipped with the norm

‖ f ‖C0,1
b ([0,T ]×Rd ;Rd )

:= sup
t∈[0,T ],x∈Rd

| f (t, x)| + sup
t∈[0,T ],x �=y

| f (t, x) − f (t, y)|
|x − y| .

Because of the boundedness of f , the local regularity of the numerical scheme X̄t

is easily bounded in [18] by

‖X̄t − X̄κn(t)‖L p(�B ;Rd ) ≤ Cn−1/2,
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where C is a generic constant. Thus, for α ∈ [1/2, 1) and β ∈ (0, 1), both I1 and I2
are estimated via a straightforward calculation as follows

‖ f (r , X̄r ) − f (κn(r), X̄κn(r))‖L p(�B ;Rd )

≤ ‖ f ‖Cα,β
b

(|t − κn(t)|α + ‖X̄t − X̄κn(t)‖β

L p(�B ;Rd )
)

≤ C‖ f ‖Cα,β
b

(n−α + n−β/2) ≤ Cn−β/2,

(1.6)

where the order of convergence β/2 shows up. Note that when α ∈ (0, 1/2), the order
of convergence through the method mentioned above would be α ∧ (β/2).

When SDE is time-homogeneous with f being bounded β-Hölder, a recent work
[3] shows that the EMmethod is able to converge to the exact solution at a strong order
(1+β)/2− ε, for an arbitrary ε ∈ (0, 1/2), almost optimal in the sense of lower error
bounds [7]. Though the analysis strategy is very different from [18], heavily relying
on stochastic sewing lemma [16], it is still the term I1(X̄) that determines the order
of convergence. For this, the authors manage to show that the upper bound of I1(B)

is Cn−(1+β)/2+ε by utilising heat kernel estimates in stochastic sewing lemma and
then applying Girsanov’s theorem for I1(X̄). Later, the error analysis strategy for EM
method in [3] is extended to an additiveSDEwith adrift of Sobolev regularity [5] and an
additive SDE with distributional drift [9]. In the meanwhile, with the observation that
the error of the EM scheme can be reduced to a quadrature problem (for instance, via
a Zvonkin-type transformation [22]), the same order of convergence as [5] is achieved
via a non-equidistant EMmethod when f can be decomposed into two parts: one part
is twice differentiable and another one is with Sobolev regularity [17]. Indeed, I1 and
I2 are two types of quadrature errors.

We want to stress that, the upper bounds for I1 and I2 are limited to Cn−α for time-
inhomogeneous case, i.e., SDE (1.1). As a consequence, the strong convergence of the
EMmethod can not exceed α, or more precisely, α∧((β+1)/2−ε). Thismotives us to
examine the performance of randomised EM method in this setting, which, to handle
the low convergence due to time-irregular drift, artificially introduces randomness to
the time variable and constructs martingale process from the random time.

In literature, for ODEswith f ∈ Cα,1, where the boundedness condition is dropped,
certain randomisedEulermethods are introduced in [6, 12, 13] that convergewith order
(α+1/2)∧1, compared to the orderα ofEulermethod. In particular, the key ingredients
for the error analysis of the randomisedEulermethod in [13] (andRunge-Kuttamethod
therein) is the randomised quadrature rule inspired by stratifiedMonte-Carlomethod to
approximate

∫ j/n
0 g(r) dr . The randomised quadrature Q j

τ,n[g] of
∫ j/n
0 g(r) dr with

stepsize 1/n is given by

Q j
τ,n[g] :=

∫ j/n

0
g(kτ

n (r)) dr = 1

n

j−1∑
i=0

g((i + τi+1)/n), j ∈ {1, . . . , n}, (1.7)

with Q0
τ,n[g] = 0, where kτ

n (r) = (	nr
 + τ	nr
)/n and (τi )i∈N is an independent
family of standard uniformly-distributed random variables on a probability space

123



   48 Page 4 of 27 BIT Numerical Mathematics            (2025) 65:48 

(�τ ,F τ ,Pτ ). The important observation here is that the following error sequence
with respect to j ∈ {0, 1, . . . , n}

∫ j/n

0
g(r) dr −

∫ j/n

0
g(kτ

n (r)) dr (1.8)

forms a discrete martingale such that the L p(�τ )-moments of the supremum of the
error sequence can be bounded by the moments of its quadratic variation (see [13,
Theorem 3.1]). Thus, if g is α-Hölder continuous in time, one is able to gain an order
1/2 + α in L p(�τ )-sense, compared to an order α achieved by quantifying the error
of

∫ j/n

0
g(r) dr −

∫ j/n

0
g(kn(r)) dr (1.9)

in the standard Euclidean norm.
In the stochastic setting, inspired by the randomised quadrature rule described

above, both randomised Milstein method and randomised Euler-Maruyama method
have been proposed to approximate solutions of different types of SDEs with time-
irregular drift, including multiplicative SDEs [14], SDEs with jumps [19], stochastic
delay differential equations [20] and McKean-Vlasov SDEs [1]. For the additive SDE
(1.1), it is therefore evident to consider randomised EMmethod instead of EMmethod
to achieve a higher order of convergence especially when α ∈ (0, 1/2).

1.1 The randomised Euler-Maruyamamethod

For the introduction of the resulting randomised Euler-Maruyamamethod, let (τ j ) j∈N
be an i.i.d. family of U(0, 1)-distributed random variables on an filtered probability
space (�τ ,F τ , (F τ

j ) j∈N,Pτ ), where F τ
j is the σ -algebra generated by {τ1, . . . , τ j }.

Hereby, U(0, 1) denotes the uniform distribution on the interval (0, 1). The random
variables (τ j ) j∈N represent the artificially added random input, which we assume
to be independent of the randomness already present in SDE (1.1). The resulting
numerical method will then yield a discrete-time stochastic process defined on the
product probability space

(�,F ,P) := (�B × �τ ,F B ⊗ F τ ,PB ⊗ Pτ ). (1.10)

Moreover, for each temporal stepsize 1/n, n ∈ N, the time grid for the numeri-
cal scheme is 	n := {tnj := j/n, j = 0, 1, . . . , n}, and a discrete-time filtration
(Fn

j ) j∈{0,...,n} on (�,F ,P) is defined as

Fn
j := F B

tnj
⊗ F τ

j+1, for j ∈ {0, 1, . . . , n}. (1.11)

123



BIT Numerical Mathematics            (2025) 65:48 Page 5 of 27    48 

Wewrite t j instead of tnj when there is no ambiguity. The randomised Euler-Maruyama
approximation of SDE (1.1) on 	n is given by

X (n)
t j = X (n)

t j−1
+ f

(
t j−1 + τ j/n, X (n)

t j−1

)
/n + 
n

j B, (1.12)

where 
n
j B := Bt j − Bt j−1 , with its continuous version

X (n)
t = x0 +

∫ t

0
f
(
κτ
n (s), X (n)

κn(s)

)
ds + Bt . (1.13)

Note that continuous version of filtration is

Fn
t := F B

t ⊗ F τ	tn
+1, for t ∈ (0, 1]. (1.14)

Given the randomised scheme X defined in (1.13), the key quadratic error terms I1
and I2 become

I
τ
1(X

(n)) := E

[
sup

s≤u≤t

∣∣∣∣
∫ u

s

(
f (r , X (n)

r ) − f (κτ
n (r), X (n)

κn(r)
)
)
dr

∣∣∣∣
p]

(1.15)

and

I
τ
2(X

(n), g) := E

[
sup

s≤u≤t

∣∣∣∣
∫ u

s
g(r , X (n)

r ) ·
(
f (r , X (n)

r ) − f (κτ
n (r), X (n)

κn(r)
)
)
dr

∣∣∣∣
p]

.

(1.16)

1.2 Our contribution and organisation

With the randomised EM defined in (1.13), the strong order of convergence can be
lifted to 1/2 + γ − ε for arbitrary ε ∈ (0, 1/2), where γ = α ∧ (β/2), see Theorem
4.2. The error analysis follows the PDE strategy proposed in [18] but the key terms Iτ1
and I

τ
2 are estimated through two quadratic bounds (Proposition 3.2 and Proposition

3.4) using the stochastic sewing lemma. Our contributions are therefore two-fold:

• the strong order of convergence of randomisedEM(Theorem4.2) is almost optimal
(see Remark 4.3);

• It is the first time the analysis of randomised schemes involving stochastic sewing
lemma (see the proofs of Proposition 3.2, Lemma 3.3 and Proposition 3.4).

For a comparison, we also include in Appendix B an alternative proof for Lemma
3.3, which achieves the same upper bound by constructing a discrete martingale from
the process of quadrature errors and quantifying it through the discrete-time version
of the Burkholder-Davis-Gundy inequality.

The paper is structured as follows: Section 2 outlines the standard notations and
main tools to develop later error analysis, including the discrete-time version of the
Burkholder-Davis-Gundy inequality (Theorem 2.1) and the stochastic sewing lemma
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(Theorem 2.2). In Section 3, we detail the well-posedness of the numerical solution
(1.13) and derive the upper bounds for Iτ1 and I

τ
2 (Proposition 3.2 and Proposition

3.4). Section 4 is devoted to the main error analysis (Theorem 4.2). In Section 5,
a performance comparison between the Randomised EM and classical EM methods
for approximating scalar SDEs with varying irregular drifts is conducted to validate
Theorem 4.2.

2 Notation and preliminaries

In this section we explain the notation that is used throughout this paper. In addition,
we also collect a few notations and standard results from stochastic analysis, which
are needed in later sections.

By N we denote the set of all positive integers, while N0 := N ∪ {0}. As usual
the set R consists of all real numbers. By | · | we denote the Euclidean norm on the
Euclidean space R

d for any d ∈ N. In particular, if d = 1 then | · | coincides with
taking the absolute value. Moreover, the norm | · |L(Rd ) denotes the standard matrix
norm on R

d×d induced by the Euclidean norm. Set

∇ ≡ D =
⎡
⎣

∂
∂x1
. . .
∂

∂xd

⎤
⎦ ,

D2 = ( ∂2

∂xi x j
)1≤i, j≤d and 
 = ∑d

i=1
∂2

∂x2i
. We use a ∧ b and a ∨ b to denote the the

minimum and maximum of a and b.
In the following we introduce some space of function:

• Cb([s, t] ×R
d ;Rm) with s < t , the set of all bounded functions from [s, t] ×R

d

to Rm , equipped with the norm

‖g‖∞ := sup
t∈[0,1],x∈Rd

|g(t, x)|.

• Cβ
b (Rd ;Rm), β ∈ (0, 1], the set of all functions fromR

d toRm which are bounded
β-Hölder continuous functions.

• C([s, t];Cβ
b (Rd ;Rd)) with s < t , the collection of Cβ

b (Rd;Rd)-valued continu-
ous function over time interval [s, t], equipped with the norm ‖ · ‖

Cβ
b ([s,t]) defined

by

‖g‖
Cβ
b ([s,t]) := sup

r∈[s,t],x∈Rd
|g(r , x)| + sup

r∈[s,t],x �=y

|g(r , x) − g(r , y)|
|x − y|β .

Note that C([s, t];Cβ
b (Rd;Rd)) coincides with C0,βb ([s, t] × R

d ;Rd) mentioned
in Section 1, where the former one will be adopted in the later analysis.
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• C1([s, t];Cβ
b (Rd ;Rd)) with s < t , the collection of Cβ

b (Rd;Rd)-valued contin-

uous function g over time interval [s, t], such that ∂
∂r g(r , ·) ∈ Cβ

b (Rd ;Rd) exists,
and is continuous for r ∈ [s, t].

• C2,β
b (Rd) with β ∈ (0, 1) denotes the space of twice differentiable functions g :

R
d → R with D
g ∈ Cβ

b (Rd ;R⊗
) for any 1 ≤ 
 ≤ 2. A function g : Rd → R
d

belongs to Ci,β
b (Rd;Rd) if each it components is in C2,β

b (Rd) for j = 1, . . . , d.

• Cα,β
b ([s, t]×R

d;Rd)with α, β ∈ (0, 1], the collection of continuous functions g :
[s, t]×R

d → R
d which areα-Hölder continuous in time andβ-Hölder continuous

in space, equipped with norm defined in Eqn. (1.2). We will use Cα,β
b ([s, t] ×R

d)

for Cα,β
b ([s, t] × R

d;R) and use Cα,β
b when there is no confusion.

• For an arbitrary Banach space (E, ‖ ·‖E ) and for a given measure space (X ,A, μ)

the set L p(Y ; E) := L p(Y ,A, μ; E), p ∈ [1,∞), consists of all (equivalence
classes of) Bochner measurable functions g : Y → E with

‖g‖L p(Y ;E) :=
( ∫

Y
‖g(y)‖p

E dμ(y)
) 1

p
< ∞.

If (E, ‖ · ‖E ) = (R, | · |) we use the abbreviation L p(Y ) := L p(Y ;R). If
(Y ,A, μ) = (�,F ,P) is a probability space, we usually write the integral with
respect to the probability measure P as

E[Z ] :=
∫

�

Z(ω) dP(ω), Z ∈ L p(�; E).

In the case of the product probability space (�,F ,P) introduced in (1.10) an
application of Fubini’s theorem shows that

E[Z ] = EB[Eτ [Z ]] = Eτ [EB[Z ]], Z ∈ L p(�; E),

where EB is the expectation with respect to PB and Eτ with respect to Pτ .

In the following, we will present two important tools, discrete-time version of the
Burkholder-Davis-Gundy inequality and stochastic sewing lemma.

Theorem 2.1 [2] For each p ∈ (1,∞) there exist positive constants cp and Cp such
that for every discrete-time martingale (Yn)n∈N0 and for every n ∈ N0 we have

cp
∥∥[Y ]

1
2
n
∥∥
L p(�)

≤ ∥∥ max
j∈{0,...,n} |Y

j |∥∥L p(�)
≤ Cp

∥∥[Y ]
1
2
n
∥∥
L p(�)

,

where [Y ]n = |Y 0|2 + ∑n
k=1 |Y k − Y k−1|2 is the quadratic variation of (Yn)n∈N0 .

Define the simplex 
S,T := {(s, t)|S ≤ s ≤ t ≤ T }.
Theorem 2.2 [ [16, Theorem 2.4]] Consider a probability space (�,F , {Ft }t≥0,P).
Let p ≥ 2, 0 ≤ S ≤ T and let A·,· be a function 
S,T → L p(�;Rd) such that for
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any (s, t) ∈ 
S,T the random vector As,t is Ft -measurable. Suppose that for some
ε1, ε2 > 0 and C1,C2 the bounds

‖As,t‖L p(�;Rd ) ≤ C1|t − s|1/2+ε1, (2.1)

‖E[δAs,u,t |Fs]‖L p(�;Rd ) =: ‖Es[δAs,u,t ]‖L p(�;Rd ) ≤ C2|t − s|1+ε2 , (2.2)

hold for all S ≤ s ≤ u ≤ t ≤ T , where

δAs,u,t := As,t − As,u − Au,t .

Then there exists a unique (up to modification) {Ft }-adapted process A : [S, T ] →
L p(�;Rd) such that AS = 0 and the following bounds hold for some positive con-
stants K1, K2:

‖At − As − As,t‖L p(�;Rd ) ≤ K1|t − s|1/2+ε1 + K2|t − s|1+ε2 , (s, t) ∈ 
S,T ,

(2.3)

‖Es[At − As − As,t
]‖L p(�;Rd ) ≤ K2|t − s|1+ε2 , (s, t) ∈ 
S,T . (2.4)

Moreover, there exists a positive constant K depending only on ε1, ε2 and d such that
A satisfies the bound

‖At − As‖L p(�;Rd ) ≤ KpC1|t − s|1/2+ε1 + KpC2|t − s|1+ε2 , (s, t) ∈ [S, T ].(2.5)

3 Quadratic estimates

Lemma 3.1 (Well-posedness) Consider the randomised numerical simulation (1.13).
Suppose that f is bounded, i.e., f ∈ Cb([0, 1] × R

d ;Rd). Then (X (n)
t )0≤t≤1 is well-

defined, in the sense that for any p > 0,

sup
0≤t≤1

‖X (n)
t ‖L p(�;Rd ) < ∞.

Proof Define Y (n)
t := X (n)

t − B(t). Then (1.13) becomes

Y (n)
t = x0 +

∫ t

0
f (s,Y (n)

s + Bs) ds

It holds from the boundedness of f that |Y (n)
t | ≤ |x0| + t‖ f ‖∞. Therefore,

‖X (n)
t ‖L p(�;Rd ) ≤ ‖Y (n)

t ‖L p(�;Rd ) + ‖Bt‖L p(�;Rd ) < ∞.

��
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Proposition 3.2 (Quadratic bound 1) Let α, β ∈ (0, 1], p > 0, d,m ∈ N, and take
ε ∈ (0, 1/2). Then for all g ∈ Cα,β

b ([0, 1] × R
d ;Rd), 0 ≤ s ≤ t ≤ 1, n ∈ N, there

exists a constant C̄(p, d, β, ε) such that

∥∥∥∫ t

s
(g(r , Br ) − g(κτ

n (r), Bκn(r))) dr
∥∥∥
L p(�;Rd )

≤ C̄(p, d, β, ε)‖g‖Cα,β
b

|t − s|1/2+εn−(1/2+γ−ε),

(3.1)

where γ = α ∧ (β/2).

Proof It suffices to prove the bound for p ≥ 2. Define for 0 ≤ s ≤ t ≤ 1

As,t := E
s
[∫ t

s
(g(r , Br ) − g(κτ

n (r), Bκn(r))) dr

]
.

For any 0 ≤ s ≤ u ≤ t ≤ 1

δAs,u,t = As,t − As,u − Au,t

= E
s
[∫ t

u
(g(r , Br ) − g(κτ

n (r), Bκn(r))) dr

]

− E
u
[∫ t

u
(g(r , Br ) − g(κτ

n (r), Bκn(r))) dr

]
.

Let us check that all the conditions of the stochastic sewing lemma (Theorem 2.2) are
satisfied.

The condition (2.2) trivially holds with C2 = 0 because of

E
s[δAs,u,t ] = 0,

by the property of conditional expectation.
Denote k2 := 	tn
 ∈ N. To establish (2.1), let s ∈ [k1/n, (k1 + 1)/n) for some

k1 ∈ {0, . . . , k2−1}. Suppose first that t ∈ [(k1+2)/n, 1] so that (k1+2)/n−s > n−1.
We write

|As,t | ≤
∫ (k1+2

s
)/n

∣∣Es[g(r , Br ) − g(κτ
n (r), Bκn(r))

]∣∣ dr
+

∣∣∣∣Es
[∫ t

(k1+2
)/n

(
g(r , Bκn(r)) − g(κτ

n (r), Bκn(r))
)
dr

]∣∣∣∣
+

∫ t

(k1+2
)/n

∣∣Es[g(r , Br ) − g(r , Bκn(r))
]∣∣ dr

=: I1 + I2 + I3.

(3.2)
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The bound for I1 is straightforward: by conditional Jensen’s inequality and the first
estimate of Proposition A.1 we have

‖I1‖L p(�;Rd ) ≤
∫ (k1+2

s
)/n‖g(r , Br ) − g(κτ

n (r), Bκn(r))‖L p(�;Rd ) dr

≤ 2C̄(p, d, β)‖g‖Cα,β
b

(1/n)1+(α∧(β/2))

≤ 2C̄(p, d, β)‖g‖Cα,β
b

(1/n)(1/2+(α∧(β/2))−ε |t − s|1/2+ε,

(3.3)

where the last inequality follows from the fact that 1/n ≤ |t − s|.
Regarding I2, observe that for each k ∈ {k1 + 2, . . . , k2 − 1},

E
s

[∫ (k+1)/n

k/n

(
g(r , Bκn(r)) − g(κτ

n (r), Bκn(r))
)
dr

]

= E
s
B

[
E
s
τ

[∫ (k+1)/n

k/n
g(r , Bk/n) dr − 1

n
g
(
(k + τ1+k)/n, Bk/n

)]]

= E
s
B

[∫ (k+1)/n

k/n
g(r , Bk/n) dr − 1

n
E
s
τ

[
g
(
(k + τ1+k)/n, Bk/n

)]]
.

(3.4)

For each fixed realisation of B, the second term in the last bracket of (3.4) can be
further written as

1

n
E
s
τ

[
g
(
(k + τ1+k)/n, Bk/n

)] = 1

n
Eτ

[
g
(
(k + τ1+k)/n, Bk/n

)]
= 1

n

∫ 1

0
g
(
(k + h)/n, Bk/n

)
dh

=
∫ (k+1)/n

k/n
g(r , Bk/n) dr ,

(3.5)

where the first equality is due to the independence of (τi )i∈N, the second equality
uses the fact that τ1+k ∼ U(0, 1), and the last line is via the change of variable
r := (k + h)/n. Taken together,

E
s

[∫ (k+1)/n

k/n

(
g(r , Bκn(r)) − g(κτ

n (r), Bκn(r))
)
dr

]
= 0, (3.6)

and

k2−1∑
k=k1+2

E
s

[∫ (k+1)/n

k/n

(
g(r , Bκn(r)) − g(κτ

n (r), Bκn(r))
)
dr

]

= E
s
[∫ k2/n

(k1+2)/n

(
g(r , Bκn(r)) − g(κτ

n (r), Bκn(r))
)
dr

]
= 0.

(3.7)
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Thus

I2 =
∣∣∣∣Es

[∫ t

k2/n

(
g(r , Bκn(r)) − g(κτ

n (r), Bκn(r))
)
dr

]∣∣∣∣
≤

∫ t

k2/n

∣∣Es[g(r , Bκn(r)) − g(κτ
n (r), Bκn(r))

]∣∣ dr .
Similar to the estimate in (3.3),

‖I2‖L p(�;Rd ) ≤ ‖g‖Cα,β
b

n−(1+α) ≤ ‖g‖Cα,β
b

n−(1/2+α−ε)|t − s|1/2+ε . (3.8)

Regarding I3, the argument is exactly the same as the proof of [3, Lemma 4.3] .
Using the first estimate of Proposition A.1, we derive

I3 ≤
∫ t

(k1+2)/n
|P|r−s|g(r ,Es[Br ]) − P|κn(r)−s|g(r ,Es[Br ])| dr

+
∫ t

(k1+2)/n

∣∣P|κn(r)−s|
(
g(r ,Es[Br ]) − g(r ,Es[Bκn(r)])

)∣∣ dr
=:I31 + I32.

(3.9)

To bound I31, we apply estimate (A.3) of Proposition A.2 with η = 0, δ = 1 and the
fourth estimate of Proposition A.1. We get

‖I31‖L p(�;Rd ) ≤ C̄(d, p, β)‖g‖Cα,β

∫ t

(k1+2)/n

(|r − s| − |κn(r) − s|)|
× κn(r) − s|β/2−1 dr

≤ C̄(d, p, β)‖g‖Cα,β
b

n−1
∫ t

(k1+2)/n
|r − 1/n − s|β/2−1 dr

= C̄(d, p, β)‖g‖Cα,β
b

n−1
∫ t−1/n−s

(k1+1)/n−s
|r̄ |β/2−1 dr̄

≤ 2β−1n−1C̄(d, p, β)‖g‖Cα,β
b

|t − s|β/2,

(3.10)

where (k1 + 1)/n − s > 0, making the last second integral well-defined.
Regarding I32, we use (A.2) of Proposition A.2 with η = 1 and the last estimate of

Proposition A.1. We deduce

‖I32‖L p(�;Rd ) ≤ C̄(d, p, β)‖g‖Cα,β
b

∫ t

(k1+2)/n
‖Es[Br ]

− E
s[Bκn(r)]‖L p(�)|κn(r) − s|β/2−1/2 dr

≤ 2β−1n−1C̄(d, p, β)‖g‖Cα,β
b

|t − s|β/2.

(3.11)
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Combining (3.10) and (3.11), and taking again into account that n−1 ≤ |t − s|, we
get

‖I3‖L p(�;Rd ) ≤ C̄(d, p, β)‖g‖Cα,βn−(1/2+β/2−ε)|t − s|1/2+ε . (3.12)

The case of t ∈ [k1/n, (k1 + 2)/n) can be dealt with easily so we omit it here.
Recalling (3.3) and (3.8), we finally conclude

‖As,t‖L p(�;Rd ) ≤ C̄(d, p, β)‖g‖Cα,βn−(1/2+γ−ε)|t − s|1/2+ε . (3.13)

Thus all the conditions of the stochastic sewing lemma are satisfied. The process

Ãt :=
∫ t

0
(g(r , Br ) − g(κτ

n (r), Bκn(r))) dr

is also Ft -adapted, satisfies (2.4) trivially, and

‖Ãt − Ãs − As,t‖L p(�;Rd ) ≤ C̄(d, p, β)|t − s|1/2+ε,

which shows that it also satisfies (2.3). Therefore by uniqueness At = Ãt , the bound
(2.5) then yields precisely (3.1). ��
Lemma 3.3 [Quadratic bound 2] Let α, β ∈ (0, 1], p > 0, and take ε ∈ (0, 1/2).
Then for all g1 ∈ Cα,β

b ([0, 1]×R
d) and g2 ∈ Cb([0, 1]×R

d), 0 ≤ s ≤ t ≤ 1, n ∈ N,
there exists an constant C̄(p, ε) such that

∥∥∥∫ t

s

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

∥∥∥
L p(�)

≤ C̄(p, ε)‖g1‖Cα,β
b

‖g2‖∞|t − s|1/2+εn−(1/2+α−ε).

(3.14)

Proof Define for s, t with 0 ≤ s ≤ t ≤ 1

Ãt :=
∫ t

0

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

and

As,t := E
s
[ ∫ t

s

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

]
.

Similar to the proof of Proposition 3.2, it can be easily verified that Es[δAs,u,t ] = 0
and Es[Ãt − Ãs − As,t ] = 0. Thus conditions (2.2) and (2.4) are satisfied. It remains
to check conditions (2.1) and (2.3).
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When t − s < n−1, it is easy to get∥∥∥As,t‖L p(�) ≤
∥∥∥Ãt − Ãs‖L p(�)

≤ ‖g1‖Cα,β
b

‖g2‖∞|t − s|n−α

≤ ‖g1‖Cα,β
b

‖g2‖∞|t − s|1/2+εn−(1/2+α−ε).

(3.15)

Now let us assume t − s ≥ n−1, and let s ∈ [k1/n, (k1 + 1)/n) and t ∈ [k2/n, (k2 +
1)/n) for some k1, k2 ∈ {0, . . . , n−1}. Applying the similar argument as in (3.4)-(3.7)
yields that for k ∈ {k1 + 1, . . . , k2 − 1}

E
s
[ ∫ (k+1)/n

k/n

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

]
= 0,

thus

E
s
[ ∫ k2/n

(k1+1)/n

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

]
= 0.

As a consequence,

As,t =E
s
[ ∫ (k1+1)/n

s

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

]

+ E
s
[ ∫ t

k2/n

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

]
.

As (k1 + 1)/n − s < n−1 and t − k2/n < n−1, each of the two terms falls into the
case considered in (3.15), thus is bounded by ‖g1‖Cα,β

b
‖g2‖∞|t − s|1/2+εn−(1/2+α−ε)

in the L p norm. By now condition (2.1) has been verified.
Finally, let us verify that Ã· is the sewing of A·,· by checking the condition (2.3).

Indeed, condition (2.3) is satisfied given the condition (2.1) and the second line of
(3.15). ��
An alternative proof of Lemma 3.3 directly using themartingale argument is presented
in Appendix B.

Proposition 3.4 [Quadratic bound 3] Let α, β ∈ (0, 1], p > 0, and take ε ∈ (0, 1/2).
Then for all g1 ∈ Cα,β

b ([0, 1] × R
d) and g2 ∈ C([0, 1];C1

b(R
d)), 0 ≤ s ≤ t ≤ 1,

n ∈ N, there exists an constant C̄(p, d, β, ε) such that

∥∥∥∫ t

s
(g1(r , Br ) − g1(κ

τ
n (r), Bκn(r)))g2(r , Br ) dr

∥∥∥
L p(�)

≤ C̄(p, d, β, ε)‖g1‖Cα,β
b

‖g2‖C1
b ([0,1])|t − s|1/2+εn−(1/2+γ−ε),

(3.16)

where γ = α ∧ (β/2).
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Proof Define and divide the process as follows:

Ãt :=
∫ t

0
(g1(r , Br ) − g1(κ

τ
n (r), Bκn(r)))g2(r , Br ) dr := Ã1

t + Ã2
t ,

where

Ã1
t :=

∫ t

0
(g1(r , Br ) − g1(r , Bκn(r)))g2(r , Br ) dr

and

Ã2
t :=

∫ t

0
(g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r)))g2(r , Br ) dr

are two Ft -adapted processes.
Define for 0 ≤ s ≤ t ≤ 1

A1
s,t := E

s
[∫ t

s
(g1(r , Br ) − g1(r , Bκn(r)))g2(0, Bs) dr

]
,

and

A2
s,t :=

∫ t

s
(g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r)))g2(κn(r), Bκn(r)) dr .

First, let us claim that Ã1· (resp. Ã2· ) is the sewing of A1·,· (resp. A2·,·) by checking
conditions (2.3) and (2.4). These can be easily verified as follows:

‖Ã1
t − Ã1

s − A1
s,t‖L p(�)

=
∥∥∥∥Es

[∫ t

s

(
g1(r , Br ) − g1(r , Bκn(r))

)
(g2(r , Br ) − g2(0, Bs)) dr

]∥∥∥∥
L p(�)

≤ C̄(p, d)‖g1‖Cα,β
b

‖g2‖∞|t − s|1+β/2.

and

‖Ã2
t − Ã2

s − A2
s,t‖L p(�)

≤
∥∥∥∥
∫ t

s

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)(
g2(r , Br ) − g2(κn(r), Bκn(r))

)
dr

∥∥∥∥
L p(�)

≤ C̄(p, d)‖g1‖Cα,β
b

‖g2‖∞|t − s|1+γ .

Note that the condition (2.4) is automatically satisfied using the estimates above and
Jensen’s inequality for conditional expectation.

Next, let us check that the remaining conditions (2.1) and (2.2) of the stochastic
sewing lemma (Theorem 2.2) are satisfied for both A1

s,t and A2
s,t . Because of the fact

E
s[δA2

s,u,t ] = 0 and Lemma 3.3, both the conditions are valid for A2
s,t . It remains to

check the conditions for A1
s,t . It is clearly that
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E
s[δA1

s,u,t ] = E
s
[
E
u
[∫ t

u
g1(r , Br ) − g1(r , Bκn(r))dr

]
(g2(0, Bu) − g2(0, Bs))

]
.

To estimate it,

‖Es[δA1
s,u,t ]‖L p(�)

≤
∥∥∥∥Eu

[∫ t

u
g1(r , Br ) − g1(r , Bκn(r)) dr

]∥∥∥∥
L2p(�)

× ‖g2(0, Bu) − g2(0, Bs)‖L2p(�)

≤ C̄(2p, d)‖g2‖C0,1
b

|u − s|1/2C̄(2p, d, β, ε)‖g1‖Cα,β
b

|t − u|1/2+εn−(1/2+γ−ε)

≤ C̄(2p, d, β, ε)|t − s|1/2+ε+1/2‖g2‖C1
b ([0,1])‖g1‖Cα,β

b
n−(1/2+γ−ε)

= C̄(2p, d, β, ε)|t − s|1+ε‖g2‖C1
b ([0,1])‖g1‖Cα,β

b
n−(1/2+γ−ε),

where we apply Proposition 3.2 with ε ∈ (0, 1/2) to derive the last inequality and so
condition (2.2) holds.

Similarly,

‖A1
s,t‖L p(�) ≤

∥∥∥∥Es
[∫ t

s
g1(r , Br ) − g1(r , Bκn(r)) dr

]∥∥∥∥
L2p(�)

‖g2(s, Bs)‖L2p(�)

≤ C̄(2p, d, β, ε)|t − s|1/2+ε‖g2‖∞‖g1‖Cα,β
b

n−(1/2+γ−ε).

Thus all the conditions of the stochastic sewing lemma are satisfied. ��
Remark 3.5 The quadratic bounds shown in Proposition 3.2 and Proposition 3.4 can
be easily extended to the case when the Brownian motion B is shifted by a constant
x ∈ R

d , i.e., the estimates (3.1) and (3.16) still hold if one replaces B with B + x .

Remark 3.6 The quadratic bounds shown in Proposition 3.2 and Proposition 3.4 can be
easily extended to the case of fractional Brownian motion (fBM) using [3, Proposition
3.6, Proposition 3.7].

Lemma 3.7 Let p > 0, ε ∈ (0, 1/2), and X (n) be the solution of (1.13) with f ∈
Cα,β
b ([0, 1] × R

d;Rd). Then for all g ∈ Cα,β
b ([0, 1] × R

d ;Rd), 0 ≤ s ≤ t ≤ 1, there
exists a constant C̄(p, d, β, ε) such that

∥∥∥∫ t

s
(g(r , X (n)

r ) − g(κτ
n (r), X (n)

κn(r)
)) dr

∥∥∥
L p(�;Rd )

≤ C̄(p, d, β, ε) exp(‖ f ‖Cα,β
b

)‖g‖Cα,β
b

|t − s|1/2+εn−(1/2+γ−ε),

(3.17)

where γ = α ∧ (β/2). Moreover, for all g1 ∈ Cα,β
b ([0, 1] × R

d) and g2 ∈
C([0, 1];C1

b(R
d)), 0 ≤ s ≤ t ≤ 1, n ∈ N, there exists an constant C̄(p, d, β, ε)

123



   48 Page 16 of 27 BIT Numerical Mathematics            (2025) 65:48 

such that

∥∥∥∫ t

s
(g1(r , Xr ) − g1(κ

τ
n (r), Xκn(r)))g2(r , Xr ) dr

∥∥∥
L p(�)

≤ C̄(p, d, β, ε) exp(‖ f ‖Cα,β
b

)‖g1‖Cα,β
b

‖g2‖C1
b ([0,1])|t − s|1/2+εn−(1/2+γ−ε).

(3.18)

Proof Fix an arbitrary realisation ωτ ∈ �τ . Let

ψn(t, ωτ ) :=
∫ t

0
f (κτ

n (r , ωτ ), X
(n)
κn(r)

(ωτ )) dr .

Take v(t, ωτ ) = f
(
κτ
n (t, ωτ ), X

(n)
κn(t)

(ωτ )
)
. Note that for each ωτ

EB

[
exp

(1
2

∫ 1

0
v2(t, ωτ ) dt

)]
≤ exp

(‖ f ‖2Cα,β
b

/2
)
. (3.19)

Let us apply the Girsanov theorem to the function v, then there exists a probability
measure P̃B equivalent to PB such that the process B̃ := B + ψn(ωτ ) is a Brownian
motion on [0, 1] under P̃B .

In the following, we will use EB[·|F τ ] or EB̃[·|F τ ] to emphasise the expectation
is evaluated under probability PB or P̃B , given a fixed realisation ωτ , without directly
mentioning ωτ . We deduce by (3.19) that

EB

[dPB

dP̃B

∣∣∣F τ
]

≤ exp
(‖ f ‖2Cα,β

b

/2
)
.

Moreover, for each p, we have

EB

[∣∣∣∫ t

s

(
g(r , X (n)

r ) − g(κτ
n (r), X (n)

κn(r)
)
)
dr

∣∣∣p ∣∣∣Fτ

]

= EB̃

[∣∣∣∫ t

s

(
g(r , X (n)

r ) − g(κτ
n (r), X (n)

κn(r)
)
)
dr

∣∣∣p dPB

dP̃B

∣∣∣Fτ

]

≤
(
EB̃

[∣∣∣∫ t

s

(
g(r , X (n)

r ) − g(κτ
n (r), X (n)

κn(r)
)
)
dr

∣∣∣2p ∣∣∣Fτ

])1/2

×
(
EB̃

[(dPB

dP̃B

)2 ∣∣∣Fτ
])1/2

=
(
EB

[∣∣∣∫ t

s

(
g(r , Br + xn0 ) − g(κτ

n (r), Bκn(r) + xn0 )
)
dr

∣∣∣2p ∣∣∣Fτ

])1/2
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×
(
EB

[dPB

dP̃B

∣∣∣Fτ
])1/2

≤ exp(‖ f ‖Cα,β
b

)

(
EB

[∣∣∣∫ t

s

(
g(r , Br + xn0 ) − g(κτ

n (r), Bκn(r) + xn0 )
)
dr

∣∣∣2p ∣∣∣Fτ

])1/2

.

(3.20)

Taking expectation with respect to ωτ on both side of (3.20) and using (3.1) and
Remark 3.5 yield:

E

[∣∣∣∫ t

s

(
g(r , X (n)

r ) − g(κτ
n (r), X (n)

κn(r)
)
)
dr

∣∣∣p]
≤ C̄(2p, d, β, ε) exp(‖ f ‖Cα,β

b
)‖g‖p

Cα,β
b

n−p(1/2+γ−ε)|t − s|p(1/2+ε).

A similar argument leads to Eqn. (3.18).
��

Applying the Kolmogorov continuity theorem to Lemma 3.7 yields

Corollary 3.8 Let p > 0, ε ∈ (0, 1/2), and X (n) be the solution of (1.13) with f ∈
Cα,β
b ([0, 1]×R

d ;Rd). Then for all g ∈ Cα,β
b ([0, 1]×R

d ;Rd), 0 ≤ t ≤ 1, there exists
a constant C̄(p, d, β, ε) such that

∥∥∥ sup
0≤s≤t

∣∣ ∫ s

0
(g(r , X (n)

r ) − g(κτ
n (r), X (n)

κn(r)
)) dr

∣∣∥∥∥
L p(�;Rd )

≤ C̄(p, d, β, ε) exp(‖ f ‖Cα,β
b

)‖g‖Cα,β
b

n−(1/2+γ−ε),

(3.21)

where γ = α ∧ (β/2). Moreover, for all g1 ∈ Cα,β
b ([0, 1] × R

d) and g2 ∈
C([0, 1];C1

b(R
d)), 0 ≤ t ≤ 1, n ∈ N, there exists an constant C̄(p, d, β, ε) such

that ∥∥∥ sup
0≤s≤t

∣∣(g1(r , Xr ) − g1(κ
τ
n (r), Xκn(r)))g2(r , Xr ) dr

∣∣∥∥∥
L p(�)

≤ C̄(p, d, β, ε) exp(‖ f ‖Cα,β
b

)‖g1‖Cα,β
b

‖g2‖C1
b ([0,1])n

−(1/2+γ−ε).

(3.22)

4 Error analysis via a PDE approach

4.1 Some PDE estimate

Lemma 4.1 [18] For any ε ∈ (0, 1), there exist m ∈ N and (Ti )i=0,...,m such that
0 = T0 < · · · < Ti < Ti+1 < · · · < Tm = 1 and for any i = 0, . . . ,m − 1,

‖ϕ‖
Cβ
b ([0,1])C0 · (Ti+1 − Ti )

1/2 ≤ ε and ‖ f ‖
Cβ
b ([0,1])C0 · (Ti+1 − Ti )

1/2 ≤ 1

4
.
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Moreover, for all ϕ ∈ C([0, 1];Cβ
b (Rd;Rd)), there exists at least one solution u to

the backward Kolmogorov equation

∂u

∂t
+ ∇u · f + 1

2

u = −ϕ on [Ti , Ti+1] × R

d , u(Ti+1, x) = 0

of class

u ∈ C([Ti , Ti+1];C2,β ′
b (Rd ;Rd)) ∩ C1([Ti , Ti+1];Cβ ′

b (Rd;Rd))

for all β ′ ∈ (0, β) with

‖D2u‖
Cβ′
b ([Ti ,Ti+1]) ≤ M‖ϕ‖

Cβ
b ([Ti ,Ti+1])

for some constant M and

‖∇u‖
Cβ
b ([Ti ,Ti+1]) ≤ C0(Ti+1 − Ti )

1/2‖ϕ‖
Cβ
b ([Ti ,Ti+1])

for some constant C0.

4.2 The strong convergence of randomised EM

Theorem 4.2 Assume that the drift coefficient f ∈ Cα,β
b ([0, 1] × R

d;Rd). Consider

the solution X(t) of (1.1) over [0, 1] and its numerical approximation X (n)
t via the ran-

domised numerical scheme (1.12) at a given stepsize n−1 ∈ (0, 1). Then for any p ≥ 1
and ε ∈ (0, 1/2), there exists a positive constant C depending on m, M, d, p, x0, α, β

and ‖ f ‖Cα,β
b

such that

E

[
sup

0≤t≤1

∣∣∣X(t) − X (n)
t

∣∣∣p
]

≤ Cn−(1/2+γ−ε)p,

with γ := α ∧ (β/2).

Proof For a given ε ∈ (0, 1), we consider the partition (Ti )i=0,...,m of closed interval
[0, 1] which is considered in Lemma 4.1. For l = 1, . . . , d and i = 1, . . . ,m, Lemma
4.1 implies that there exists at least one solution ul,i to the backward Kolmogorov
equation:

∂ul,i
∂t

+ ∇ul,i · f + 1

2

ul,i = − fl on [Ti−1, Ti ] × R

d , ul,i (Ti , x) = 0,

where fl represents the lth coordinate of f , and ul,i satisfies,

‖∇ul,i‖Cβ
b [Ti−1,Ti ] ≤ C0 · (Ti − Ti−1)

1/2‖ f ‖Cα,β
b

≤ ε.
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Following [18], for any t ∈ [Ti−1, Ti ], by Itô’s formula, we have

∫ t

Ti−1

fl(s, X(s)) ds = ul,i (Ti−1, X(Ti−1)) − ul,i (t, X(t)) +
∫ t

Ti−1

∇ul,i (s, X(s)) dBs,

(4.1)

and∫ t

Ti−1

fl(s, X
(n)
s ) ds = ul,i (Ti−1, X

(n)
Ti−1

) − ul,i (t, X
(n)
t ) +

∫ t

Ti−1

∇ul,i (s, X
(n)
s ) dBs

+
∫ t

Ti−1

∇ul,i (s, X
(n)
s ) ·

(
fl(κ

τ
n (s), X (n)

κn(s)
) − fl(s, X

(n)
s )

)
ds.

(4.2)

We adopt the notation from [18] that

X(t) :=

⎡
⎢⎢⎢⎣
X1
t

X2
t
...

Xd
t

⎤
⎥⎥⎥⎦ and X (n)

t :=

⎡
⎢⎢⎢⎢⎣
X (n,1)
t

X (n,2)
t
...

X (n,d)
t

⎤
⎥⎥⎥⎥⎦ .

It follows from (4.1) and (4.2) that for any l = 1, . . . , d,

Xl
t − X (n,l)

t

= Xl
Ti−1

− X (n,l)
Ti−1

+
∫ t

Ti−1

(
fl(s, Xs) − fl(κ

τ
n (s), X (n)

κn(s)
)
)
ds

= Xl
Ti−1

− X (n,l)
Ti−1

+
(
ul,i (Ti−1, XTi−1) − ul,i (Ti−1, X

(n)
Ti−1

)
)

−
(
ul,i (t, Xt ) − ul,i (t, X

(n)
t )

)
+

∫ t

Ti−1

(
∇ul,i (s, Xs) − ∇ul,i (s, X

(n)
s )

)
dBs

+
∫ t

Ti−1

∇ul,i (s, X
(n)
s ) ·

(
f (s, X (n)

s ) − f (κτ
n (s), X (n)

κn(s)
)
)
ds

+
∫ t

Ti−1

(
fl(s, X

(n)
s ) − fl(κ

τ
n (s), X (n)

κn(s)
)
)
ds.

(4.3)

Since ‖∇ul,i‖Cβ
b ([Ti−1,Ti ]) ≤ ε, following a similar argument in [18], we have

|Xl
t − X (n,l)

t | ≤ (1 + ε)

∣∣∣XTi−1 − X (n)
Ti−1

∣∣∣ + ε

∣∣∣Xt − X (n)
t

∣∣∣
+

∣∣∣∣
∫ t

Ti−1

(
∇ul,i (s, Xs) − ∇ul,i (s, X

(n)
s )

)
dBs

∣∣∣∣
123
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+
∣∣∣∣
∫ t

Ti−1

∇ul,i (s, X
(n)
s ) ·

(
f (s, X (n)

s ) − f (κτ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣
+

∣∣∣∣
∫ t

Ti−1

(
fl(s, X

(n)
s ) − fl(κ

τ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣ .
For p ≥ 2, using Jensen’s and Hölder inequalities, we have

∣∣∣Xt − X (n)
t

∣∣∣p
≤ d p/25p−1(1 + ε)p

∣∣∣XTi−1 − X (n)
Ti−1

∣∣∣p + d p/25p−1ε p
∣∣∣Xt − X (n)

t

∣∣∣p

+ d p/2−15p−1
d∑

l=1

∣∣∣∣
∫ t

Ti−1

(
∇ul,i (s, Xs) − ∇ul,i (s, X

(n)
s )

)
dBs

∣∣∣∣
p

+ d3p/2−15p−1
d∑

l=1

∣∣∣∣
∫ t

Ti−1

∇ul,i (s, X
(n)
s ) ·

(
f (s, X (n)

s ) − f (κτ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣
p

+ d3p/2−15p−1
d∑

l=1

∣∣∣∣
∫ t

Ti−1

(
fl(s, X

(n)
s ) − fl(κ

τ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣
p

.

(4.4)

Since ε > 0 is arbitrary, let us fix ε such that c(p, d, ε) := d p/2−15p−1ε p < 1.
For the stochastic integral term, for any t ∈ [Ti−1, Ti ], we have from Burkholder-

Davis-Gundy’s inequality that

d∑
i=1

E

[
sup

Ti−1≤v≤t

∣∣∣∣
∫ v

Ti−1

(
∇ul,i (s, Xs) − ∇ul,i (s, X

(n)
s )

)
dBs

∣∣∣∣
p
]

≤ C(p, d)T
p
2 −1

d∑
i=1

∫ t

Ti−1

E

[∣∣∣∇ul,i (s, Xs) − ∇ul,i (s, X
(n)
s )

∣∣∣p] ds,

(4.5)

where C(p, d) is the constant from Burkholder-Davis-Gundy’s inequality.
Now we will make use of Corollary 3.8 to quantify the last two terms. For the

last term, as fl ∈ Cα,β
b ([0, 1] × R

d), for any ε ∈ (0, 1/2) there exists a constant
C̄(p, d, β, ε) that depends on p, β and ε such that

E

[
sup

Ti−1≤u≤t

∣∣∣∣
∫ t

Ti−1

(
fl(s, X

(n)
s ) − fl(κ

τ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣
p
]

≤ C̄(p, d, β, ε) exp(‖ f ‖Cα,β
b

)‖ f ‖p

Cα,β
b

n−(1/2+γ−ε)p.

(4.6)
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From Lemma 4.1 we know that ∂ul,i/∂xk ∈ C([0, 1];C1
b(R

d)) with

‖∂ul,i/∂xk‖C1
b ([0,1]) ≤ Mε. Thus applying Corollary 3.8 to fk ∈ Cα,β

b ([0, 1] × R
d)

and ∂ul,i/∂xk ∈ C([0, 1];C1
b(R

d)) yields

E

[
sup

Ti−1≤u≤t

∣∣∣∣∣
∫ u

Ti−1

∇ul,i (s, X
(n)
s ) ·

(
f (s, X (n)

s ) − f (κτ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣∣
p]

≤
d∑

k=1

d p−1
E

[
sup

Ti−1≤u≤t

∣∣∣∣∣
∫ u

Ti−1

∂ul,i (s, X
(n)
s )

∂xk

(
fk(s, X

(n)
s ) − fk(κ

τ
n (s), X (n)

κn(s)
)
)
ds

∣∣∣∣∣
p]

≤ C̄(p, d, β, ε)d pε pM p exp(‖ f ‖Cα,β
b

)‖ f ‖pCα,β
b

n−(1/2+γ−ε)p,

(4.7)

for any ε ∈ (0, 1/2).
Taking the supremum and then expectation on both sides of (4.4), the contrain on

ε, we have from estimate (4.5) to (4.7) that

E

[
sup

Ti−1≤u≤t

∣∣∣Xu − X (n)
u

∣∣∣p
]

≤ d p/25p−1(1 + ε)p

(1 − c(p, d, ε))
E

[∣∣∣XTi−1 − X (n)
Ti−1

∣∣∣p]

+ d p/2−15p−1C(p, d)

(1 − c(p, d, ε))

d∑
i=1

∫ t

Ti−1

E

[∣∣∣∇ul,i (s, Xs) − ∇ul,i (s, X
(n)
s )

∣∣∣p] ds

+
d3p/2−15p−1C̄(p, d, β, ε)(1 + d pε pM p) exp(‖ f ‖Cα,β

b
) ‖ f ‖p

Cα,β
b

d pε pM p

(1 − c(p, d, ε))

≤ C1E

[∣∣∣XTi−1 − X (n)
Ti−1

∣∣∣p] + C2

∫ t

Ti−1

E

[
sup

Ti−1≤u≤s

∣∣∣Xu − X (n)
u

∣∣∣p
]
ds

+ C3

n p(1/2+γ−ε)
.

The remaining part follows exactly the same as in the proof of Theorem 2.11 of [18].
��

Remark 4.3 Note that the optimal order of convergence for a strong approximation of
SDE (1.1) is 1/2+γ . This can be easily derived from two facts: first, the optimal order
of convergence for a strong approximation of an additive SDE with f ∈ Cβ

b (Rd;Rd)

is shown to be 1/2 + β/2 [7]; secondly, in the ODE case, the maximum order of
convergence of randomized algorithms is known to be equal to 1/2 + α under the
assumption that f ∈ Cα,1, see [12].
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5 Numerical Examples

In this section, we compare the EM and randomized EMmethods through experiments
of an scalar additive SDE (1.1) with varying coefficients f . Indeed, the drift function
is defined as a product of two functions

f (t, x) := f α
1 (t) f2(x), (5.1)

with f α
1 being the truncated Weierstrass function

f α
1 (t) :=

N1−1∑
n=0

2−αn cos
(
2nπ t

)
(5.2)

and f2 defined by the truncated Takagi function

f2(x) =
N2∑
n=0

0.5n (2nx − φ(2nx)),

where φ : R → [0, 1] is the function that find the nearest integer for the argument
and N1, N2 ∈ N. It is well-known that the full version (N1 = ∞) of f α

1 is α-Hölder
continuous with respect to the temporal variable [11] and the one of f2 is nowhere
differentiable with respect to spatial variable [15], and is Lipscthiz globally. Thus
f ∈ Cα,1.
In the experiment we take N1 = N2 = 100 and initial condition x0 = 3, and test on

α ∈ {0.2, 0.3, . . . , 0.8}. The reference solution is computed using the randomized EM
method with step size href = 2−16. For each h = 2−l , l = 5, . . . , 10, performance
is assessed over 1000 independent simulations. To validate Theorem 4.2, the error
is quantified as the root mean square of the maximum absolute deviation across the
time interval [0, 1]. The two sets of error data are fitted with a linear function via
linear regression respectively, where the slope of the line indicates the average order
of convergence.

The fitted slope against α for both methods are plotted in Figure 1. The theoretical
order of convergence for randomised EM isα∧(1/2)+0.5−ε1 for some ε1 ∈ (0, 0.5),
and for EM is α ∧ (1 − ε2) for some ε2 ∈ (0, 0.5). In Figure 1, for both methods, the
slope, or equivalently, the order of convergence, increases with α. In particular, the
classical EM curve forms a roughly 45-degree line over α ∈ [0.2, 0.8], in agreement
with the corresponding theoretical result. For α ∈ (0.2, 0.5], the Randomised EM
method achieves an order of convergence of α + 0.5 − ε1, whereas the classical
EM reaches only α; for α ∈ (0.5, 0.8], the Randomised EM method maintains an
order of convergence close to one, while the classical EM remains at roughly α; both
observations consistent with the theoretical results.

We also present error plots for four different values of α in Figure 2. In all cases,
the Randomised EMmethod not only achieves a higher order of convergence but also
yields consistently lower error magnitudes compared to the classical EM, with the gap
being more pronounced for smaller values of α.
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Fig. 1 Plot of the fitted slope against the value of α in f α
1 , used for approximating the scalar SDE with drift

given in (5.1)

Fig. 2 Semi-log plots of error versus stepsize for approximating a scalar SDEwith drift (5.1), under varying
choices of f α

1
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A Useful estimate from heat kernel [3]

Let pt , t > 0, be the density of a d-dimensional vector with independent Gaussian
components each of mean zero and variance t :

pt (x) = 1

(2π t)d/2 exp
(
−|x |2

2t

)
, x ∈ R

d . (A.1)

For a measurable function g : R × R
d → R we write Pt g(r , ·) := pt ∗ g(r , ·) for

r ∈ R, and occasionally we denote by p0 the Dirac delta function. The first statement
provides a number of technical bounds related to the Brownian motion.

Proposition A.1 [3] Let p ≥ 1. The d-dimensional process B has the following prop-
erties:

1. ‖Bt − Bs‖L p(�;Rd ) = C̄(p, d)|t − s|1/2, for all 0 ≤ s ≤ t ≤ 1;
2. Es[g(r , Bt )] = P|s−t |g(r ,Es[Bt ]), for all 0 ≤ s ≤ t ≤ 1 and r ∈ R;
3. ‖Es[Bt ] − E

s[Bu]‖L p(�;Rd ) ≤ C̄(p, d)|t − u||t − s|−1/2, for all 0 ≤ s ≤ u ≤ t
such that |t − u| ≤ |u − s|;
The next statement gives the heat kernel bounds which are necessary for the proofs

of the quadratic bounds in Section 3.

Proposition A.2 Let g ∈ Cα,β
b , α, β ≤ 1 and η ∈ [0, 1]. The following hold:

1. There exists C̄(d, β, η) such that

‖Pt g(r , ·)‖Cη(Rd ;Rd ) ≤ C̄(d, β, η)t
(β−η)∧0

2 ‖g(r , ·)‖Cβ(Rd ;Rd ), (A.2)

for all t, r ∈ (0, 1].
2. For all δ ∈ (0, 1] with δ ≥ β

2 − η
2 , there exists C̄(d, β, η, δ) such that

‖Pt g(r , ·) − Psg(r , ·)‖Cη(Rd ;Rd )

≤ C̄(d, β, η, δ)‖g(r , ·)‖Cβ (Rd ;Rd )s
β
2 − η

2−δ(t − s)δ, (A.3)

for all 0 ≤ s ≤ t ≤ 1 and r ∈ [0, 1].

B An alternative proof of Lemma 3.3

Proof of Lemma 3.3 When t − s < n−1, it is easy to get

∥∥∥∫ t

s

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

∥∥∥
L p(�)

≤ ‖g1‖Cα,β
b

‖g2‖∞|t − s|n−α ≤ ‖g1‖Cα,β
b

‖g2‖∞|t − s|1/2+εn−(1/2+α−ε).
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When n−1 ≤ t − s, for simplicity, take s = k1/n and t = k2/n, with k1 ≤ k2 and
k1, k2 ∈ N . It suffices to show that

∥∥∥ sup
k∈{k1,...,k2}

∣∣∣ ∫ tk

tk1

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr

∣∣∣ ∥∥∥
L p(�)

≤ C̄(p)‖g1‖Cα,β
b

‖g2‖∞n−( 12+α)
√
t − s.

(B.1)

Eqn. (3.14) can be derived immediately given estimate (B.1).
Let us therefore fix an arbitrary realization ω ∈ �B . Then for every k ∈ {k1 +

1, . . . , k2} we obtain

Eτ

[∫ tk

tk−1

g1(κ
τ
n (r), Bκn(r)) g2(κn(r), Bκn(r)) dr

∣∣∣F τ
k−1

]

= Eτ

[
n−1g1

(
tk−1 + τkn

−1, Btk−1(ω)
)
g2

(
tk−1, Btk−1(ω)

) ∣∣∣F τ
k−1

]
=

∫ 1

0
n−1g1

(
tk−1 + vn−1, Btk−1(ω)

)
g2

(
tk−1, Btk−1(ω)

)
dv

=
∫ tk

tk−1

g1
(
r , Bκn(r)(ω)

)
g2

(
κn(r), Bκn(r)(ω)

)
dr ,

(B.2)

due to τk ∼ U(0, 1) and independent of F τ
k−1.

Next, define filtration Gn
n̄ := Fn

n̄+k1
for n̄ ∈ {1, . . . , k2 − k1}, and define a discrete-

time error process (En̄)n̄∈{0,1,...,k2−k1} by setting E0 ≡ 0 and for n̄ ∈ {1, . . . , k2 − k1}
setting

En̄ :=
∫ tk1+n̄

tk1

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)
g2(κn(r), Bκn(r)) dr ,

which is evidently an real-valued random variable on the product probability space
(�,F ,P). In particular, (En̄)n̄∈{0,1,...,k2−k1} ⊂ L p(�). Moreover, for each fixed ω ∈
�B wehave that En̄(ω, ·) : �τ → R isGτ

n̄ -measurable. Further, for n̄ ∈ {0, 1, . . . , k2−
k1 − 1}, it holds true that

Eτ [En̄+1(·, ω)|Gτ
n̄ ] = En̄(·, ω)

because of Eqn. (B.2).
Consequently, for every ω ∈ �B the error process (En̄(·, ω))n̄∈{0,1,...,k2−k1} is an

(Gτ
n̄ )n̄∈{0,1,...,k2−k1}-adapted L p(�τ ;Rd)-martingale. Thus, the discrete-time version

of the Burkholder-Davis-Gundy inequality (see Theorem 2.1) is applicable and yields

∥∥ max
n̄∈{0,1,...,k2−k1}

|En̄(·, ω)|∥∥L p(�τ )
≤ Cp

∥∥[E(·, ω)]
1
2
k2−k1

∥∥
L p(�τ )

for every ω ∈ �B .
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After inserting the quadratic variation [E(ω, ·)]k2−k1 , taking the p-th power and inte-
grating with respect to PW we arrive at

∥∥ max
n̄∈{0,1,...,k2−k1}

|En̄|∥∥p
L p(�)

=
∫

�W

∥∥ max
n̄∈{0,1,...,k2−k1}

|En̄(·, ω)|∥∥p
L p(�τ )

dPW (ω)

≤ C p
p

∫
�W

∥∥∥( k2∑
k=k1+1

∣∣∣ ∫ tk

tk−1

(
g1(r , Bκn(r)) − g1(κ

τ
n (r), Bκn(r))

)

× g2(κn(r), Bκn(r)) dr
∣∣∣2) 1

2
∥∥∥p

L p(�τ )
dPW (ω)

≤ C p
p‖g1‖p

Cα,β
b

‖g2‖p∞
( k2∑
k=k1+1

n−2n−2α
)p/2

≤ C p
p‖g1‖p

Cα,β
b

‖g2‖p∞(t − s)p/2n−(1/2+α)p.

For an arbitrary interval [s, t] satisfying n−1 ≤ |t − s|, Eqn. (3.14) follows by inter-
polation. ��
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