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Limit theorems for SDEs with irregular drifts

JIANHAI BAO? and JIAQING HAOP

Center for Applied Mathematics, Tianjin University, 300072 Tianjin, P.R. China, ®jianhaibao @tju.edu.cn,
bhjg_0227@tju.edu.cn

In this paper, concerning SDEs with Holder continuous drifts, which are merely dissipative at infinity, and SDEs
with piecewise continuous drifts, we investigate the strong law of large numbers and the central limit theorem for
underlying additive functionals and reveal the corresponding rates of convergence. To establish the limit theorems
under consideration, the exponentially contractive property of solution processes under the (quasi-)Wasserstein
distance plays an indispensable role. In order to achieve such contractive property, which is new and interesting
in its own right for SDEs with Holder continuous drifts or piecewise continuous drifts, the reflection coupling
method is employed and meanwhile a sophisticated test function is built.

Keywords: Central limit theorem; dissipativity at infinity; Holder continuous drift; piecewise continuous drift;
strong law of large numbers

1. Introduction and main results

The research on limit theorems for Markov processes has a long and rich history. As two typical candi-
dates of limit theorems, the law of large numbers (LLN for short) and the central limit theorem (CLT
for abbreviation), depicting respectively the temporal average convergence to the ergodic limit and
the normalized fluctuations around the ergodic limit, have developed greatly in various settings in a
century; see [6,7,9,11], to name just a few.

For the sake of the establishment on limit theorems concerned with Markov processes, one of the es-
sential ingredients is to investigate the corresponding ergodic property. When the Markov process under
consideration possesses the strong mixing properties (e.g., ergodic in the total variation distance), the
LLN and the CLT associated with the additive functionals can be derived with the respective conver-

gence rates t_%” for any ¢ € (0, %) and t_%; see, for instance, [19, p.217-218] and [11, Theorem 5.1.2]
for more details. Whereas, in some occasions, the Markov process under investigation does not enjoy
the strong mixing properties; see, for example, [11, Example 5.1.3] concerned with functional SDEs,
which have the so-called reconstruction property. Concerning this setting (e.g., ergodicity under the
(quasi)-Wasserstein distance in lieu of the total variation distance), the study on limit theorems has also
advanced in the past few years. In particular, the weak LLN and the CLT were explored in [10] for
weakly ergodic Markov processes by examining respectively the Feller property, exponential ergodic-
ity under the 1-Wasserstein distance and uniform moment estimates with high order. Additionally, [11,
Theorem 5.3.3] and [11, Theorem 5.3.4] addressed respectively the issues on the LLN and the CLT for
stationary Markov processes with weakly ergodic properties. Subsequently, under the continuous-time
path coupling condition (see [11, (5.3.10)] therein), [11, Proposition 5.3.5] extended the framework
in [11, Theorems 5.3.3 and 5.3.4] to the non-stationary setup. In comparison with the counterparts in
[10,11], Shirikyan [19] provided much more elegant conditions for the validity of the LLN and the CLT.
Particularly, Shirikyan [19] formulated respectively a general criterion to establish the strong LLN and
the CLT for weakly mixing Markov processes and, most importantly, the associated convergence rates
were provided therein. More precisely, [19, Theorem 2.3] shows that the convergence rate of the strong
LLN is t‘%”V, where r, :=q VvV ((1+v)/(4p)) forv € (0,2p — 1) and ¢ < 1/2. So, from a quantitative
point of view, the appearance of the quantity g will attenuate the convergence rate in a certain sense.
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On the other hand, in [19, Theorem 2.8], one of the sufficient conditions for the CLT is concerned
with the requirement on the uniform moment estimates of exponential type (see [19, (2.25)] for related
details) associated with weakly mixing Markov processes. In most of the circumstances, such kind of
exponential estimates (uniform in time) is a formidable task to be implemented; see, for example, [1,
Lemma 2.1] for the functional SDEs as one of representatives with the weakly ergodic property.

As we mentioned above, [10,11,19] have established the LLN and the CLT for weakly ergodic
Markov processes under different scenarios. In addition, the framework formulated in [10,11,19] has
been applied to (functional) SDEs/SPDEs with regular coefficients. Especially, as a byproduct of [2,3]
investigated the strong LLN and the CLT for a range of functional SDEs. Later, [2] was extended in
[22] to treat the setting regarding functional SDEs with infinite memory.

In recent years, the theory on strong/weak well-posedness and distribution properties (e.g., gradient
estimates and Harnack inequalities) of SDEs with irregular drifts has been studied systematically (see
e.g. [20,23]). Yet, the study on limit theorems for SDEs with irregular drifts is still vacant so far. In-
spired by the aforementioned literature [10,11,19] as well as [2,22], in the present work we make an
attempt to investigate the LLN and the CLT for several class of SDEs with irregular drifts (e.g., the
Holder continuous drifts and the piecewise continuous drifts). Most importantly, besides the establish-
ment of the LLN and the CLT, another main goal in this work is to improve the convergence rate of the
LLN in [19, Theorem 2.3] and weaken the technical condition concerned with uniformly exponential
estimates imposed in [19, Theorem 2.8]. The above can be viewed as some motivations of our present
work.

Another motivation arises from the significant advancements of numerical limit theorems for
SDEs/SPDEs with regular coefficients. Recently, as for SDEs/SPDEs with (semi-)Lipschitz contin-
uous coefficients, there are plenty of literature on the LLN and the CLT; see e.g. [13,17] for SDEs
approximated via the forward Euler-Maruyama scheme, [8] with regard to SDEs discretized by the
backward Euler-Maruyama method, and [4] concerning semilinear SPDEs approximated via the spec-
tral Galerkin method in the spatial direction and the exponential integrator in the temporal direction. To
the best of our knowledge, the study on the LLN and the CLT for numerical schemes corresponding to
SDEs with irregular drifts is still infrequent. So, in this work, we aim to lay the theoretical foundation
on the LLN and the CLT for SDEs with Holder continuous or piecewise continuous drifts (which are
representative SDEs with irregular drifts) so that we can pave undoubtedly the way to investigating the
LLN and the CLT for the numerical SDEs with irregular drifts.

Inspired by the existing literature mentioned above, in this work we intend to address the LLN and
the CLT for SDEs with Holder continuous drifts, where one part of drifts is dissipative in the long
distance, and satisfies the monotone and Lyapunov conditions, respectively. Additionally, the LLN and
CLT for SDEs with piecewise continuous drifts will also be explored in detail. The preceding contents
will be elaborated progressively in the following three subsections.

1.1. LLN for SDEs with Holder continuous drifts: Partial dissipativity
In this subsection, we work on the following SDE on R¢:
dXt = (b()(X[)"‘b](X[)) dt+O'(Xt)th, (ll)

where b, b : R — R4, o :RY 5> R @ RY, (Wy)s>0 is a d-dimensional Brownian motion on the
complete filtered probability space (Q, %, (Z;);>0,P).
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Concerning the drifts b and b, we shall assume that

(Hp) by :RY —>R% s locally Lipschitz and there exist constants Ay, 15, £y > 0 such that
20 = y,b1(x) = b1 () < lx = P amyi<apy — A2l = YL (x—y 540} x,yeR? (12)
b € C¥(R?) for some « € (0, 1), i.e., there exists a constant K; > 0 such that
|bo(x) = bo(y)| < Kile =y|%,  x,yeR?, (13)

With regard to the diffusion term o, we shall suppose that

(Hy) o :R? = R x R4 is Lipschitz continuous, that is, there is a constant K, > 0 such that
2 2 d
llo(x) —o)llgs < Kalx = |, x,y €RY, (1.4)

and moreover there exists a constant « > 1 such that
1 .
“P < ((eo) 0y y) <klyl’, xyeR” (15)
Before proceeding, we make some comments on Assumptions (Hp) and (H,), respectively.

Remark 1.1. In literature, the Assumption (1.2) is also named as the dissipativity at infinity; see, for
example, [14]. To demonstrate the condition (1.2), we provide an example below. Define for some
parameters a >0 and n > 1,

U(x) =x*(gn(0))* +a” = 2axgn(x),  x€R,

where g,(x) := (x An) V (-n), x € R. Then, bj(x) = -U’(x) satisfies the condition (1.2) (see, for
example, [14]) rather than the global convexity assumption: for some constant K > 0,

2=y, b1(x) =b1(M))y <-Klx =y, xyeR.

Since the drift term by is singular (i.e. Holder continuous), the uniformly elliptic condition in (1.5)
is vitally important in addressing the well-posedness of (1.1). Most importantly, the condition (1.5)
also plays a crucial role in exploring the exponentially contractive property of the SDE (1.1) via the
reflection coupling method; see the proof of Proposition 2.1 for related details.

Under Assumptions (Hp) and (H,-), the SDE (1.1) admits a unique strong solution (X;);>¢. Indeed,
to address the strong well-posedness, we can adopt the routine as follows: first of all, we shall show that
the SDE (1.1) has a unique local solution via the Zvonkin transformation and subsequently claim that
the local solution is indeed a global one. In some occasions, we shall write (X;),»¢ instead of (X;);>0
to highlight the dependence on the initial value Xy = x € R?. In the following part, we shall denote
CLiP(Rd ) by the collection of all Lipschitz continuous functions f : R? — R. Moreover, for a function
f:R? = Rand v e Z(R?) (i.e., the set of probability measures on R?), we shall adopt the shorthand
notation v(f) = fRd f(x) v(dx) in case of the integral v(|f]) < co.

The following LLN reveals the convergence rate of the additive functional A{ = % fot (X)) ds as-
sociated with a range of SDEs, which might be dissipative merely in the long distance and, in particular,
allows one part of the drift terms involved to be Holder continuous.
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Theorem 1.1. Assume (Hp) and (Hy). Then, for any f € CLip(Rd) and € € (0,1/2), there exist a
random time T > 1 and a constant C > 0 (dependent on the Lipschitz constant || f||Lip and the initial
value x) such that for all t > T,

|Af> ()| < crate, (1.6)

where 1 € 2 (R?) stands for the unique invariant probability measure of (X7)i>0 solving (1.1).

Before the end of this subsection, we make some remarks and comparisons with the existing litera-
ture.

Remark 1.2. With regard to the random time 7. mentioned in Theorem 1.1, it indeed has any finite
m-th moment; see, for example, [19, Corollary 2.4] for related details. In [19], a general framework was
provided to establish the LLN for mixing-type Markov processes. When the weight function therein
is constant (which corresponds the setup we work on in the present paper), the observable involved
must be bounded. Hence, the general criterion in [19] cannot be applied (at least) directly to handle the
setting we are interested in, where the observable herein is unbounded. We have to refine the proof of

[19, Theorem 2.3]. In addition, in [19, Theorem 2.3], the corresponding convergent rate is 17347 for
ry:=qV ((1+v)/(4p)) with any g < 1/2 and v € (0,2p — 1). Whereas, in the present scenario, the

associated convergence rate is ¢~ %*'rv, in which r,, := (1+v)/(2p) for v € (0, p/2 — 1). Consequently,
in a certain sense (in particular, ¢ is close enough to 1/2), we drop the redundant parameter g < 1/2
and improve accordingly the convergence rate derived in [19, Theorem 2.3].

1.2. CLT for SDEs with Holder continuous drifts: Monotone and Lyapunov
conditions

In this subsection, we move forward to derive the CLT associated with SDEs with Holder continuous
drifts.

In the proof of Theorem 1.1, the exponential contractivity under the 1-Wasserstein distance is one
of the important factors. Nevertheless, the function ¢ ¢, defined in (1.10) below, is merely Lipschitz
continuous under the underlying quasi-metric rather than globally Lipschitz continuous. Hence, the
exponential contractivity under the 1-Wasserstein distance is insufficient to establish the corresponding
CLT via the martingale approach. Conversely, the exponential contractivity under the quasi-Wasserstein
distance (see Proposition 3.1 below) is adequate for our purpose. In this setup, we can further weaken
Assumption (Hp).

Throughout this subsection, we are still interested in the SDE (1.1), where Assumption (H,) is the
same as that in Subsection 1.1 whereas Assumption (Hp) is substituted with the counterpart (H))
below. More precisely,

(H}) bo € C(R4) satisfying (1.3) and there exist constants A, A* > 0 such that for all x, y € R<,

2(x = y,b1(x) = b1(y)) < Ax - y[? (1.7)
and
(¢, b1(x)) < =2 |x|* + Cas. (1.8)

The condition (1.7) shows that the drift term b, satisfies the classical monotone condition, which,
in literature, is also called the one-sided Lipschitz condition. Let b (x) = —x + f(x),x € R?, where the
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bounded function f : R¢ — R? is Lipschitz with Lipschitz constant greater than 1. Obviously, both
(1.7) and (1.8) are satisfied. Nevertheless, the condition (1.2) doesn’t hold any more. (1.8), in addition
to (1.3) and (1.5), indicates that the SDE (1.1) fulfils the Lyapunov condition. Under (HZ)) and (H,),
the SDE (1.1) has a unique strong solution (X;*);»0 with Xo=x € R4 and admits a unique invariant
probability measure p (see Proposition 3.1 below).

Before we present the second main result concerning the CLT, we further need to introduce some
additional notation. For p > 2 and 6 € (0, 1], denote C}, ¢ (R9) by the family of all continuous functions
f:R? — R such that

o sup MOS0

x#y,x,yeRd lﬂp,g(X, y)

where for any x,y € Rd,

Up,o(x,y) = (LA = y1")(1+1x]P +1yIP). (1.9)

Asfor feCp g (RY), we define the corrector R  as below

Ry(x) = /0 ((Pef)(x) = u(f)) dr. xR,

where (P;f)(x) :=Ef(X;) is the Markov semigroup associated with the solution process (X;);>o0.
Moreover, we set

1 2
07 (x) ::E’/O f(x;‘)dr+Rf(Xf)—Rf(x)’, xeR4, (1.10)

In terms of [2, Lemma 4.1], 0 < o2 := u(py) < oo for f e Cp’g(Rd). The quantity o can be
used to characterize the asymptotic variance of the additive functional A{ = Lt fot F(X{)ds for
feCpo(RY).

Next, we present another main result, which is concerned with the convergence rate of the CLT
corresponding the additive functional A{ **_In detail, we have the following statement.

Theorem 1.2. Assume (H)) and (H, ). Then, for any f € Cp,g(Rd) with u(f) =0, o2 := u(py) 20
and € € (0, %), there exists a constant Cy = Co(|| f1l p, 6, O, |x|) > O such that

- 1
sup (0o (D)[P(AT* <2) =@, (2)|) < Cor™7%2, 121, (1.11)

zeR4

where 0, (2) =1 (o<, <0} + (1 A|2)) 15, =0y and @, (z) stands for the centered Gaussian distribu-

tion function with variation 2.

Before the end of this subsection, we make some further remarks.

Remark 1.3. As Theorem 1.1, Theorem 1.3 is applicable to an SDE with the Holder continuous drift,
where another part of the drift is monotone and satisfies the Lyapunov condition. In [19, Theorem 2.8], a
general criterion was provided to explore the CLT for uniformly mixing Markov families. In particular,
the uniform moment estimates of exponential type (see [19, (2.25)]), as one of the sufficient conditions,
was imposed therein. However, such a uniform moment estimate is, in general, hard to check; see [2] for
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the setting on functional SDEs and numerical SDEs. In lieu of the requirement on the uniform exponent
moment, the uniform moment in the polynomial type, which is much easier to verify, is sufficient for
our purpose as shown in the proof of Theorem 1.3.

1.3. LLN and CLT for SDEs with piecewise continuous drifts

In the previous two subsections, as far as two different setups are concerned, we establish respectively
the strong LLN and the CLT. Whereas, no matter what which setting, the continuity of the drift terms
is necessary.

For the objective in this subsection, we consider an illustrative example:

b(x):=—|x|-2, |x|>1; bx):=1-x% |x|<1
and o (x) := %(1 + 1+1x2). Apparently, the drift term b above no longer satisfies Assumption (Hp) or
(Hj})) due to the appearance of the discontinuous points. Yet, the drift b is globally dissipative in the
long distance, the associated SDE should be ergodic under an appropriate probability (quasi-)distance,
which is still vacant to the best of our knowledge. Therefore, intuitively speaking, the corresponding
strong LLN and the CLT should be valid. So, in this subsection, our goal is to deal with the strong LLN
and the CLT for SDEs, where the drifts involved might be discontinuous. So far, the topic mentioned
above is still rare.

To explain the underlying essence to handle the limit theorems for SDEs with discontinuous drifts
and, most importantly, avoid the cumbersome notation, we shall consider the scalar SDE

dX; = b(X,) dt + o (X;) dW,, (1.12)

where b : R — R is piecewise continuous, i.e., there exist finitely many points &1 < - -+ < & such that
b is continuous respectively on the intervals I; := (&;,&;41), i € S :={0,1,--- ,k}, where &) = —o0
and &gy = o0; 0 : R — R is continuous; (W;);>0 is a 1-dimensional Brownian motion. So far, the
SDE (1.12) with discontinuous drifts has been applied extensively in e.g. stochastic control theory and
mathematical finance.

Besides Assumption (H) with d = 1, we shall assume that

(Ap) For each integer n > |&1| V |£x|, there exists an increasing function ¢ : [0, c0) — [0, c0)
1b(x) —bW)| <p(m)lx—yl, x,yelinBu(0), i€Sy, (1.13)
where B, (0) := {x e R: |x| < n}, and there exists a constant A, > 0 such that
(x=y)(b(x)=b() <Ax(x—-y)% x,yel;, ie€S.
Moreover, there are constants A*, Cy« > 0 and £* € (0, 1/2] such that
¥ b(xX)|(1+ |x]) +xb(x) < Cx —A1*x>, x€R. (1.14)
Below, with regard to Assumptions (Aj) and (H, ) with d = 1, we make the following remarks.

Remark 1.4. In contrast to (1.8), the Lyapunov condition (1.14) is a little bit unusual. This condition
is imposed naturally when we handle the ergodicity of the transformed SDE; see the proof of Propo-
sition 4.1 for more details. Most importantly, the appearance of &* € (0,1/2] allows b to be highly
nonlinear.
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In [16, Lemma 3], the strong well-posedness of (1.12) was treated under the global Lyapunov con-
dition (see (A1) therein), the local monotonicity (see (A2)(i) therein), the locally polynomial growth
condition (see (A2)(ii) therein) as well as the globally polynomial growth condition (see (A3) therein)
concerned with the diffusion term, which is also non-degenerate at the discontinuous points of the drift
term (see (A4) therein). By a close inspection of the argument of [16, Lemma 3], the much weaker
condition (1.13) can indeed take the place of (A2)(ii). Therefore, by following the exact lines of [16,
Lemma 3], the SDE (1.12) is strongly well-posed under Assumptions (Ap) and (Hy) with d = 1. If we
are only concerned with the well-posedness of (1.12), Assumption (H-) with d = 1 can be replaced def-
initely by (A3) and (A4). Whereas, the little bit strong condition (H,) with d = 1, compared with (A3)
and (A4), is imposed to achieve the exponentially contractive property under the quasi-Wasserstein
distance via the reflection coupling approach.

Our third main result concerned with the strong LLN and the CLT for the SDE (1.12) with piecewise
continuous drifts is stated as follows.

Theorem 1.3. Assume (Ap) and (Hy ) with d = 1. Then,

(1) (Strong LLN) For any f € Cp, ¢(R) and & € (0,1/2), there exist a random time Tg > 1 and a
constant C =C(|| fll p,, |x|) > O such that for all t > T,

Al — ()| s crrire,

where p € P (R9) is the unique invariant probability measure of (X;);o solving (1.12); see
Proposition 4.1 below.

(2) (CLT) Forany f € Cp g(R) with u(f) =0, and £ € (0,1/4), If o2 =u(eyr) 20, there exists a
constant Co = Co(|| fl p,6, 0, |x]) > O such that

— 1
sup (6o, (D)[P(A <2) D (2)]) < Cot™T*2, 121,
zeRd

where 05,(2) = 1{0<o, <co} + (1 A |z]) L5, =0}-
Before the ending of this subsection, we make some further comments.

Remark 1.5. To finish the proof of Theorem 1.3, the 1-dimensional diffeomorphism transformation
(see (4.6) below) plays a crucial role. For the multidimensional transformation to handle well-posedness
and numerical approximations for SDEs with piecewise continuous drifts, we refer to [12, Theo-
rem 3.14] for more details. With the help of the multidimensional transformation initiated in [12],
Theorem 1.3 can be generalized to the multidimensional SDEs with piecewise continuous drifts. Since
such a generalization will only render the notation more cumbersome without bringing any new insights
into the arguments, in the present work we restrict ourselves to the 1-dimensional setup.

Even though the original SDE under consideration is dissipative in the long distance, the corre-
sponding transformed SDE is no longer dissipative (at infinity). Based on this point of view, the SDE
(1.12) is ergodic under the quasi-Wasserstein distance rather than the genuine Wasserstein distance; see
Proposition 4.1 for more details.

The remainder of this paper is organized as follows. In Section 2, via the reflection coupling, we
investigate the 1-Wasserstein exponential contractivity for SDEs with Holder continuous drifts, which



1716 J. Bao and J. Hao

also allow the drifts involved to be dissipative in the long distance. Subsequently, the proof of Theo-
rem 1.1 is complete. Section 3 is devoted to the proof of Theorem 1.1 based on the establishment of
the exponential ergodicity under the quasi-Wasserstein distance, which is interesting in its own right
for SDEs with Holder continuous drifts, where the other drift parts satisfy the monotone and Lyapunov
condition. In Section 4, we aim to complete the proof of Theorem 1.3 with the aid of the exponential
contractivity under the quasi-Wasserstein distance, which is new for SDEs with piecewise continuous
drifts.

2. Proof of Theorem 1.1

In this section, we aim to complete the proof of Theorem 1.1, which is based on the following 1-
Wasserstein contractive property.

Proposition 2.1. Assume (Hp) and (Hy ). Then, there exist constants C*, 1* > 0 such that for all t > 0
and p1,v € 21 (R%) (the set of probability measures on R? with finite moments of first order),

Wi (P, vPy) < Ce W (1, v), @.1)

where (P, stands for the law of X;, the solution to (1.1), with the initial distribution £x, = u, and
W1 means the 1-Wasserstein distance. Moreover, (2.1) implies that (X;);>0 has a unique invariant
probability measure p.

Proof. The proof, based on the reflection coupling approach, of Proposition 2.1 is inspired by the
counterpart of [21, Theorem 3.1], which indeed was traced back to [18]. In [21, Theorem 3.1], an
abstract framework upon exponential ergodicity of McKean-Vlasov SDEs, which are dissipative in the
long distance, was presented. In the present setup, we follow essentially the line in [21, Theorem 3.1]
whereas we refine the corresponding details and provide explicit conditions imposed on the coefficients
so the content is much more readable.

Due to (1.5), for each x € R, the matrix (co*)(x) — ildxd is a nonnegative-definite symmetric
matrix so there exists a symmetric d X d-matrix & (x) such that & (x)? = (co*) (x) — ildxd, where
I1xq means the d x d-identity matrix. Therefore, we readily have (oo*)(x) = & (x)? + ildxd, xeR4,
Consider the SDE

. - 1 .
dY[ = b(Yt)dt + U-(Y[)dW[ + EdW[, (22)
where (Wt)tZO and (Wt)tzo are mutually independent d-dimensional Brownian motions defined on

the same probability space. To demonstrate that (2.2) has a unique strong solution under Assumptions
(Hp) and (H, ), we introduce the notations

1 - U
o(x) = (&(x), —Idxd) eRI@R¥™, xeRY, and W, :=(W,W,),
V2«
where (W;);>0 is a 2d-dimensional Brownian motion. Whereafter, (2.2) can be reformulated as

dY[ = b(Yt)dt + &(Yt)th

As a result, in terms of Subsection 1.1, it is sufficient to examine that & satisfies Assumption (Hgs) so
that (2.2) is strongly well-posed. Below, we aim to check the associated details, one by one. In the first
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place, by invoking (1.4) and (1.5), we derive that
1
16-(x) = (3 llus < 2(Kak)2|x =y, x,yeRY, (23)
where we also used the fact that || VA - VB||us < ﬁ ||A — B||ugs for d X d symmetric positive matrices A
and B with all eigenvalues greater than A > 0 (see, for example, [18, (3.3)] for related details). Therefore,

(2.3) enables us to conclude that the mapping x > & (x) is also Lipschitz. In the next place, it is easy
to see from (1.5) that for all x, y € RY,

1
DI < (G (@3, = () (X)y.y) < alyl

For 0 # x € R¥, set the normalized vector n(x) := x/|x| and define the orthogonal matrix
I, = Igxq —20(x) @ n(x) e RY x RY.

To achieve the quantitative estimate (2.1), we work on the SDE

X N P 1 A
dYt = b(Yt)dt + &(Yt)th + \/?Hztth, t<T,

K (2.4)
- 1 A :
dYtZb(Yt)dt+5'(Yt)th+—th, t>T,
V2k

where the coupling time 7 := inf{t >0:7,= 0} with Z, :=Y; — ¥;. Since II. is an orthogonal matrix,
(2.4) is strongly well-posed before the coupling time as shown in the analysis above. Additionally, (2.4)
coincides with (2.2) after the coupling time. Thereby, (2.4) is strongly well-posed.

Owing to the existence of an optimal coupling, in the following context, we can choose the initial
values Yy and ¥y such that W (u, v) = E|Yy — Yo for given u,v € 2, (R4). Applying Itd’s formula, we
right now obtain from (2.2) and (2.4) that

d1Z/] < =2 (220 b (%) = b(T)) + |7 (V) — (P g

~ 2|7
| (2.5)
+(n(Z,), (5(Y;) — o (¥;))dW; ) + 7 (n(Zy),dW;), t<r,
K
where we also utilized the fact that for any 0 # x € R9,
(laxa —n(x) @ n(x),n(x) ® n(x))us =0.
By invoking (2.3), it follows from (1.5) that
3
I (x) = & (3)llus < 4T dSK [x = yI%, x,y R, (2.6)
With the aid of (1.3) and (1.4), we find from (2.6) that
2(x = y,b(x) = b)) + 157(x) =T (V)Ilfs < d(Ix = yDIx—yl, x,y€RY, (2.7

where for u > 0,

B o131 1
d(u) :=((/ll+/12)u+2K1ua+16K4d4K24u2)]l{u550}—E/lzu
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with
1 31 3
8K \To (64kTdiK] 2
=V |— V{————=| . 2.8
=ty (5) v (S e8)
Consequently, (2.5) yields
1 N - 1 A
diz:| < 5¢(1Z:)) dr + (n(Z,), (5. () = & (¥1))dWr) + 7 m(Z;),dW), 1<t
K

Define the test function

T o
f(r)zx/ e 5k ¢(V)dv/ se? b P qedy, 1> 0.
0

u

Straightforward calculations show that

Fry=ke il ¢(V)dV/ sef b oMb gg s

-
44 K 4
f(r) = 5( —¢(r)f'(r)=2r), rel0,ho),
and that
4
f(r)= o 7 >ho; f'(r)=0, r>Hhy.
2
Whence, there exist constants c., ¢** > 0 such that
cir < f(r) <c™r, r>0 (2.9)
and
1 ! 1 44
SF OO0+ 21" =7, r€[0,h0) U (o, 0). (2.10)

Note that f introduced above is a piecewise C2-function. Thus, Tanaka’s formula, together with the
continuity of f’, shows that

' sl 1 1
e F12i1) < £020) + [ e (o PUZD) + 31 (ZDSZD + s (2 ds+ i, 1<

c**
for some martingale (M;);>¢. This, combining (2.9) with (2.10), further gives that

s

AT InT S
E(e<™ f(1ZircD) <Ef(1Z0)) +E(/0 ec

AR CATCAR LAY
c K

<Ef(12).

Thanks to f(|Z;]) =0 for all ¢ > 7, it is apparent that for all 7 > 0,

AT

< f(1ZirD) <Ef(1Zo)).

Finally, (2.1) follows immediately by recalling W (u,v) = E|Yy — ¥y and taking (2.9) into considera-
tion.

e Ef(1Z]) =E(e
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Under (1.2), (1.3) and (1.5), there exists a constant c, > 0 such that sup, . E|X;|> < cx (1 +E|Xo|?);
see (2.12) below for further details. Whence, the Krylov-Bogoliubov theorem yields that (X;);>0 has an
invariant probability measure. Thus, the contractive property (2.1) implies the uniqueness of invariant
probability measures. O

Below, we move to finish the

Proof of Theorem 1.1. In the sequel, we shall assume that f € CLip(Rd) and set € € (0,1/2). Ev-
idently, it suffices to verify that (1.6) is valid as long as u(f) = 0. Accordingly, we shall stipulate
#(f) =0in the subsequent analysis. Below, we shall write X, instead of X}*, set A;(f) := % foz f(Xs)ds
for all # > 0, and use the notation a < b for given a, b > 0 provided that there exists a constant ¢g > 0
such that a < cob. Note that for any ¢ > 0,

1 t
a1l [ ireolas

where |7] denotes the integer part of + > 0. Whence, to obtain the assertion (1.6), it remains to show
respectively that there exists a random time 7 > 1 (dependent on ¢) such that

1 t
AL (H|S* and 7/ If(X)|ds <12 forallr>T. 2.11)
Lt

By (1.2), (1.3) and (1.5), it follows that there exist constants c{, ¢ > 0 such that for any p > 2,
dIX|? < (=1l Xe|P +c2) de + pIXe [P 72X, 07 (Xe) AW, ).
Then, Gronwall’s inequality implies that for all # > 0 and x € R<,

EIX,|P < <2 +|x|P. (2.12)
ci

For any integer ¢ > 2, direct calculations show that

2
)%duds ,

(S]]

B /0 e < ( /O t /O B Kl (Ps—f) (X))

see, for instance, [19, (2.22)]. Next, using the invariance of u followed by exploiting the Kontorovich
dual and applying Proposition 2.1 yields that for all # > 0 and x € R?,

(P f)(x) = ()] < 1 FllLipW1 (8x Pr, ePr) < Cre™ VT (x| + (] - ), (2.13)

where || f|Lip is the Lipschitz constant of the function f. The previous estimate, in addition to the
Lipschitz property of f, u(|-|) < oo as well as (2.12), gives that

t q t N N 2 % q
E(/ f(Xs)ds| 5(/ / eV "W (1 4 B|X,|9) 4 duds| <2, (2.14)
0 0 0

Subsequently, by means of Holder’s inequality, we have for any g > 2,

q

E[A, (N1 St 2. (2.15)
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For any integer n > 1, by the Chebyshev inequality, together with (2.15) for g = % > 4, we deduce
that

P(|An(f)] > n~2%) <ne 2E|A, (f)|F Sn2.

As a consequence, the Borel-Cantelli lemma yields that there exists a random variable 77 > 1 such that

_1
|ALtJ(f)|§ [£]72%%, s, t>T).

This apparently ensures the first statement.
Next, we proceed to examine the second statement in (2.11). In view of the BDG inequality, we infer
from (1.5) and (2.12) that there exist constants c3, c4 > 0 such that for all integer k > 0 and any p > 2,

S
B( sup IXIP) ses+ Bl +pE( swp [P ()
k

k<s<k+1 k<s<k+1

1
<ca(1+x|P)+ zE( sup |X|P)
2 k<s<k+l

so that for all integer £ > 0 and any p > 2,

E( sup [XsP) S 1+x|P. (2.16)

k<s<k+1

By retrospecting that f : RY — R is of linear growth, there exists a constant ¢* > 0 such that | f(x)| <
c* (1 +|x|) for all x € R9. It is ready to see that for any integer k > 16,

P( sup |f(xt)|>c*k%)sp( sup |Xt|>k%—1)sp( sup |Xt|>%k%). @.17)

k<t<k+1 k<t<k+1 k<t<k+1

Then, the Chebyshev inequality, besides (2.16), signifies that

B swp 170> k) < 2B sup 1Xf) S (14 P, @18

5
k<t<k+1 k4 k<t<k+1

=
N R

Once more, applying the Borel-Cantelli lemma enables us to derive that there exists a random variable
T, > 16 such that | f(X;)| < c*t%, a.s., for all ¢+ > T,. Therefore, we obtain that for all ¢ > 75,

t

1 1 1 1.3
— sids <|t]*((1+—)* -1}, as.
o), st ((1+—)-1)

1 t
_ § <
/L ISR "

t

This, combining with the fact that (1+7)® — 1 < @2% ' for any @ > 1 and r € [0, 1], guarantees that
forallt > T»,

1 [ 3 3
- lf(X)|ds S )73 Se74,  as.
rJ1e)

As a result, the second statement in (4.14) is verifiable.
Based on the analysis above, we conclude that (1.6) follows for the random time 7 :=T} + 7. O
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3. Proof of Theorem 1.2

Before we start to complete the proof of Theorem 1.2, we provide the following proposition, which
establishes the contractive property of transition kernels under the quasi-Wasserstein distance.

Proposition 3.1. Under the assumptions of Theorem 1.2, for any p > 2, 0 € (0,1] and u,v €
le/,p’e (RY), there exist constant C* > 1,1* > 0 such that

Wy, o (UPVP) <Ce VWY (1), 120, (3.1)
where
Py, oRY) = {ue PRY) : p(Wp.0(-,0)) < oo},
and Wy, , denotes the quasi-Wasserstein distance (see e.g. [5, (4.3)]) induced by the cost func-

tion Y p g, introduced in (1.9). Moreover, (X;);>0 solving (1.1) has a unique invariant measure
UE gzlﬁpﬁ (RY).

Proof. Throughout the whole proof to be implemented, we still utilize the coupling constructed in the
proof of Proposition 2.1; see (2.2) and (2.4) for more details. In view of (1.3), (1.5) and (1.8), for any
p22andV,(x) =1+x[P,x € R4, there are constants C;(p), C2(p) > 0 such that

(LVp)(x) < =Ci(p)Vp(x) + Ca(p), x€RY, (3.2)
where . is the infinitesimal generator of (1.5). For the parameters Cy(p), C2(p) above, the set
Ap ={(x,y) eRIXRL: C1(p) (Vp(x) +V,p () <4Ca(p) }
is of finite length since the mapping R¢ 5 x - Vp, (x) is compact. Therefore, the quantity
I, =1 +sup{|x—y| c(x,y) eﬂp} < o0
is well defined.

In order to achieve the exponential contractivity (3.1), it is vital to define two auxiliary functions as
below. Define for 6 € (0, 1],

"ok (42K 63)v+2K v ) d p 0.5 [V ((A4+2K&3) 1+2K,1%) dI
h(r)ZK/ e 5l 267) V42K v V/ vOes o 22K AL gy 4y r >0, (3.3)
0 u

where K| > 0, k > 0 and A > 0 were introduced in (1.3), (1.5) and (1.7), respectively, and @ € (0, 1) is
the Holder index associated with by. Moreover, we define for 6 € (0, 1],

fr)=c*(r ALY +h(r AL, 720, (3.4)

where
N 1
c =
0(A+4Ky 63 + 2K r§1)

Lon(@)  with  ro:=1A ( (3.5)
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In the sequel, we shall fix the function f defined in (3.4) and choose the tuneable parameter

=1A !
16C>(p) (c* + h’(0)(15)' )

] (3.6)
" @ P (p=2)"F vV (p- 1B+ h'(O)(l};)l“g))”’
where
c* = (%2(1’_2)V1(p -1))v (21(2%;2). (3.7

2
Note that, for the case p =2, the term (p — 2)1_F should be understood in the limit sense, that is,

2
lim, 12PE-2) =5 =1, Moreover, in the following context, for the sake of convenience, we shall write
P(t) = F1Z ) (1 + &V (Yy) + eV, (Fr), t20.
By applying It6’s formula, we deduce from (2.2) and (2.4) that

d¥ (1) = (1+ 8V (Vo) + &V (V) Lj0<)z, <13,y A (1Z:])

. R (3.8)
+ef(1Z DAY P + 1Y |P) + ed(|Y.|P + Y|P, fF(IZ.D))(0), t<7,

in which Z; :=Y; — ¥; and (¢,7)(r) means the quadratic variation of stochastic processes (&;);s0 and
(7¢)¢>0- On the one hand, applying the 1t6-Tanaka formula to (2.5), followed by taking (1.3), (1.7), (2.3)
and f”’ <0 into consideration yields

1 1
Af(1Zi]) < (3£ 1ZDAIZi]+ 4Kk )+ 2K Z4]) + £ (124])) di

1
Vi/2

+ f,(|Zt|)(<(5-(Yt) - &(?t))*n(zt)sdwt> + <11(Zt),th>), r<r.

On the other hand, by applying It6’s formula once more and making use of the Lyapunov condition
(3.2), we derive that

d(I%: 17 +1¥1P) < { = Ci(p) (Vp (Y1) +V}p (V1)) +2Ca(p) } dt
+P<|Yt|p_25'(Yt)*Yt + |?t|p_25'(?t)*?t,th>

14 -2 O 1P-21T. V. dii
+ —= (Y|P + Y|P Yy, AWy, 1<,
V2« !

Consequently, combining the estimates on df(|Z;|) and d(|Y;|? + |7, |”) with (3.8) and

1 _ _
Fyl(x—y,lxlp Zx + [y|? 2Hx—y)’>=

PRIt [P 2x =y 2y), x#y

enables us to derive that

d¥(1) < (01 +8,)(Y;, V) dt +dM,, t<t
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for some underlying martingale (M;), where for any x, y € R? with x # y,
O1(x,y) :=(1+&V,(x) +eVp(y))
x (3 (b= v (Abe = y1+ 4Koxe = ¥+ 2K e =31%) + = 77 (e = )
X Lio<x-yi<iz} + (X =y (= C1(p) (Vp (x) + Vp () +2C2(p)),
O2(5,3) 1= pe" (1 = ) (]l 2 = 1y17 2]
+ (& (x) = ()" (IxlP 7?7 () "x + Iylp_sz(y)*y)\)-
In case of
©1(x,y) +02(x.y) < =A*f(lx =y (1 +Vp(x) +£Vp (1)), xyeR?, (3.9)

where

ﬂ*.: 1 C](p)g
T A0 0) " Tr2e

we then at once arrive at
d¥(r) < -A"P(r)dr +dM,, t<T.
Subsequently, via the Itd formula, the estimate
E(eV "W( A 7)) < W(0)

is available so the assertion (3.1) is attainable by taking advantage of the fact that

(AT A AT < F(r) < (FU) V(S +R 0 9) (A Ar?),

and Z; =0 for ¢t > 7. On the basis of the preceding analysis, it all boils down to the confirmation of
(3.9) in order to achieve (3.1).

In accordance with the definition of the function /% introduced in (3.3), a direct calculation reveals
that

1 1
Eh'(r)(/lr +4K K + 2Kir®) + —h"(r)=-r", r€ (0, l;]
K
so that for all r € (0,7,],
1 ’ 3 a 1 77
Ef (N(Ar +4Kx°r + 2K 1) + ;f (r)

(3.10)

=c*0(5 (Arf + 4K 3rf + 2K 04 - l(1 —-0)rf=2) —r?.
K

| =

By noting that

1
2K1r6'+a—1 __(I—G)rg_ZSO, re (0,ro],
K
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where ry > 0 was introduced in (3.5), we right away have
1 ’ 3 @ 1 ’” 1 3y 0
Ef (NAr +4Kc°r + 2K r%) + = f"(r) < —(1 - E(/l+4K2K )c G)r , re(0,rg].
K
Furthermore, by invoking (3.10) again, we apparently infer from « € (0, 1) that for all r € [ro, [ ],
1 ’ 3 a 1 7 1 * 3 a-1 0
Ef (r)(Ar +4K2r + 2K 1Y) + = f'(r) < = (1 - 3¢ O(A+4Krk” + 2K r§ ™ ))r.
K
Consequently, taking the choice of ¢* > 0 given in (3.5) into consideration yields that
1 ’ 3 @ 1 17 1 6 *
Ef (r)(Ar +4K°r +2K1r®) + — f (r)s—ir , re(0,7,].
K
This definitely implies that

1
O1(x,y) < —Elx —y?(1+&V,(x) +&Vp (V) Ljo<|x-y|<is)

+ef(lx =y (= C1(p)(Vp(x) +Vp(»)) +2C2(p)),  x,yeR™

@3.11)

Next, by means of (1.4), (2.3) and (1.5), in addition to A’ (r) < h’(0) for any r € [0,1},], it follows
from Young’s inequality that for any @, 8 > 0 and p > 2,

L (p- - - 1 - -
©2(5,3) < peg(b = y) (<2772 (p = D) (172 + 1317 72) + 2653 (1P~ + 3|

< pe*ed(lx—y) (IlP =2+ [y1P 72+ [x [P~ 4 1P 7Y

4 2(1/_78)

< c*g(lx = yD((p = 2)a(elel?” + 1yl +

2
+(p = DB(ell? +elyl” + =—=pP5)).  xyeR.
o

where ¢* > 0 was defined as in (3.7), and ¢(r) := c*0r% + ' (0)r,r > 0. In particular, choosing a =
1

2 1
(%) " and B = (%) " respectively, and taking the alternative of & given in (3.7) and [*, > 1 into

account leads to

02(x,) <20 ((p =277 v (p = 1)'7P )T g(x =y (14 8V, (x) + £V, (1)

< 21+%c*((p —) v (p- 1)1_%)(0*“ WO 0)e7 b - 3]
(3.12)
X (1+&V,(x)+eVp(y))

1

< <lx =y (1+eV,(x) +&V, (1)), x,y €RY.

oo
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Whereafter, for any x, y € R? with |x — y| < [*, estimates (3.11) and (3.12) yield that

O1(x,y) +02(x,y) < —%(1 +&Vp (x) + 8V (1)) x = y1? +2Ca(p)e(c*lx = 3|7 + 1 (0)|x - y])

1
s—Z(l+8Vp(x)+an(y))lx—yI9 (3.13)

1
=T+ (O)1)10)

Fx=yD(A+&Vp(x) +£Vp(y),

where in the first inequality we also used the fact that A(r) < &’ (0)r for all r € [0, [},], in the second
inequality we employed the choice of & provided in (3.6), and in the last inequality we exploited the
fact that

< fr) < (RO )0 rel00].

For any x, y € R? with |x — y| > [}, (which obviously indicates (x,y) ¢ Aj), with the aid of f’(r) =0
for any r > 7, we deduce from the notions of ®; and ®, that

O1(x,y) +0,(x,y) < _%Cl (P)ef(lx =y (Vp(x) + V()
__C@eVp() +Vp(y))
2(1+&(Vp(x) +Vp(¥))

S_CI(P)S
1+42¢

FUx=yD(1+&Vp(x) +Vp(y)) (3.14)

Flx=yD(1+&V,(x) + eV (),

where the last line is due to V), > 1.

At length, (3.9) is verifiable by combining (3.13) with (3.14) concerning the cases |x — y| </}, and
|x —y[>1} forallx,y € R4, respectively.

Once (3.1) is available, the existence and uniqueness of invariant probability measures in Zy, , , (R9)
can be derived by following exactly the line in [5, Corollary 4.11]. O

With Proposition 3.1 at hand, we are in position to finish the

Proof of Theorem 1.2. Inspired essentially by the procedure in [19], we shall decompose the additive
functional A{’x = Lt fot f(XF)ds for f e Cp,g(Rd) with u(f) =0 into two parts, where the one part
is concerned with the additive functional of a martingale under consideration, and the other part is
the corresponding remainder term. In order to achieve the desired convergence rate in the CLT for the
additive functional A{ **, we shall adopt the convergence rate concerning the CLT for martingales (see
e.g. [6, Theorem 3.10]) to treat the martingale part involved, and meanwhile exploit the contractive
property (i.e., (3.1)) to handle the remainder term.

In following proof, we shall fix f € Cp’g(Rd) with u(f) =0. Forx e R? and 1 > 1, let

Mif’x=/0 {f(ng)—(Psf)(X)}dH/ {(Ps—t IX) = (Ps f)(x)} ds.
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It can readily be noted that the additive functional A{ "* can be rewritten as below:

Tfx _ 1 f.x ( _1 _1 fix
AT = —M T+ (]2 -2 )M,
SN ( M

S ¥ ” x (3.15)
+1 2(/szf(XS)ds+/o ((Psf)(x)—(Psf)(Xm))ds))

= Mtf’x +Rtf’x.

Recall from [19, Lemma 2.9] the basic fact that for any real-valued random variables &, and any
a>0,02>0,

sup [P(£ < 2) = @y (2)| < sup[P(n < 2) = @ (2)| + P(I€ =] > @) + e,
zeR z€eR

where ¢ = #51{1»0} + 21 { 5=0} . Thus, the decomposition (3.15) enables us to derive that for any

a>0and o >0,

sup [P(A] <2) = @¢ (2)] < sup [P(M/)" <2) = @0 ()| +B(IR] ™| > @) + coar
zeR4d zeRd

Hence, the desired assertion (3.1) follows as soon as, for any € € (0, 1/4), there exists a constant
C<(x) > 0 such that

PR/ >174) <Colayr™d,  sup [P(M/)) <2) — @0 (2)] < Cola)i™5+e. (3.16)

zeRd

Due to | ] “3_17h <17 for any ¢t > 1, it follows from Chebyshev’s inequality that for > 1,

o o 1]
PR/ >17%) < tZ((LtJ‘j —f_f)E|/0 F(X5)ds

+1750, (1,1)), (3.17)
where

0, (1,x) = /L Bl ds2 [ tenisslean g ) os

For any g > 2, applying It6’s formula followed by taking advantage of (3.2) yields that for some con-
stant Cy(g) > 0,

supE(X|? S1+E[XF|9, 520 (3.18)
125
so that, for f € Cp,g(Rd),
supEf (X)) ST+EIXT)P <1+ x?, s=0. (3.19)

t=s

Accordingly, Proposition 3.1, together with u(f) =0, implies that

0,(t,x) <1 +|x|1’+||f||,,,9/ e (1 x|? +EIXS [P) ds 1+ [x]P. (3.20)
0
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Further, owing to the Markov property of (X;*);>0, Proposition 3.1 and (3.18), we deduce that
[7] 2 el plel
Bl [ romaf =2 [ [ RO (Paan (x) duds
S

L] el
SR, /0 [ e B e) duds
S

SIAI, (1 + ) L]

This further gives that
1 1 I‘tJ 1 1 1 1
(L7 =2 [ FO0) 85| S Ul 1+ = L) S Uf o1+ 1170, (32D

where the second inequality is valid thanks to 17— LtJ% <(t— LtJ)% < 1. Subsequently, plugging (3.20)
and (3.21) back into (3.17) guarantees the validity of the first statement in (3.16).

We proceed to verify the second statement in (3.16). In light of Proposition 3.1 and by invoking the
semigroup property of (P;);>0, it is easy to see that (Mtf ");s0 is a square integrable martingale with
the zero mean. Note that (M,{ "")p>1 can be reformulated as follows: for any integer n > 1,

i

n
fox _ N\ pfx ~ Fox o gpfex _ ppd
M =7, with  z/ =M/ Ml
i=1

Trivially, according to the definition of M{’x, we have for 1 <i <n,

Z;.f’xz'/l FXH)ds+Rp(XF) = Rp(X ) with Ry(x) :=/00(Pxf)(x)ds.
i-1 0

By means of the property of conditional expectation and the flow property of (X;*);0, it follows
readily that

Bz P = Y EEZ S PIF) = D Bep (X)),
i=1 i= -

i=1 i=1

where

or:=2| [ O+ Ry~ Ry

By applying Proposition 3.1 and following exactly the routine of [1, Lemma 4.1& Lemma 4.2], we can
deduce that ¢ ¢ € Czp’g(Rd) satisfying

0<pu(ps)=2u(fRy) <o, lloflzp.o SIFIG 6 (3.22)

In addition, for any g > % and 1 <i < n, we apparently have,

i
]E|Zif’x|4q < 3%l (/ Elf(XD)|* ds +E[R ¢ (X)[* +E|R (X" )[*),
[ —1

i—
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which, besides the fact that
IRp()| S fllp.o(1+1xP), xeR?,
(3.18), and (3.19), leads to
max E|Z/ % <1+ x4, nx1.

1<i<n
As a consequence, by applying the Berry-Esseen type estimate associated with martingales (see, for
instance, [2, Theorem 3.10]) we derive that
sup

P M,{’x ul@r)n -0
ve ( /'\’ ( 1) < Z) I(Z))
2g, 1 ., (3.23)

S (n-‘f+(u(gof>>-2‘1E(%wa(X;‘_l) ~ uley)| ) <n
i=1

where in the last display we also utilized the fact that
(3.24)

1 v 2q
Bl 2 er(i) —miep| " S

by tracing exactly the line to derive (2.14) and taking Proposition 3.1 into account. Concerning or the

case o := u(¢ys) > 0, taking advantage of (3.23) gives that
P(M,{’x <z) - Do, (z)| = sup:i P(M,{’x/(\/ﬁo;) <z/oy) - @, (Z))
z€eR

sup
zeRd

(M /(Vror.) < 2) = @y (2)| S 507

= sup P
ZERLI

As aresult, the second statement in (3.16) follows directly for the case p(¢ ) >0
Note from Chebyshev’s inequality that for a random variable ¢ and any 0 # z € R
0.00) ()| = (L A l2]) (P(€ > 2)L {50y +P(—€ > —2) 1 ;<o) <EI¢]

(1A lzD[P(¢ <2) -
Therefore, with regard to the setting 072 = u(¢ ) =0, for any integer n > 1, we have

i} 1
sup [P - <z) - Doy(z)| < T ]E|fo| 7

z€R

This, together with
E|M; |2 _22215(21‘ fo Xy = ZE|fo

i=1 j=i
)=0for j > i, and (3.24) with 02 = (¢ ) =0, implies

ZE‘/’f(X, D

by using the fact that ]E(Zf ]
— 1
sup \P(M,{’x <z) = Dy(z)| Snw.

zeR
=u(¢r) =0in (3.16) is verifiable.

Whence, the second statement concerned with the case 0'
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4. Proof of Theorem 1.3

By following respectively the procedures to implement the proof of Theorems 1.1 and 1.2, for the
proof of Theorem 1.3, the key ingredient is to demonstrate the contractive property under the quasi-
Wasserstein distance. More precisely, we shall prove the following statement.

Proposition 4.1. Under Assumptions (Ap) and (Hy), forany p =2, 0 € (0,1] and u,v € ﬁwp’g (R),
there exist constants C* > 1,1* > 0 such that

Wy, o (UPVP) <Ce VW L (ny), 120, 4.1)

where [P; denotes the law of X; solving (1.12) with the initial distribution £k, = p. (4.1) further
implies that (X;);>0 solving (1.12) has a unique invariant probability measure in Py, ,(R).

Compared with the setups treated in Subsections 1.1 and 1.2, the outstanding feature of the frame-
work in Subsection 1.3 is due to the discontinuity of drifts associated with SDEs under investigation.
Thus, the approaches in tackling Propositions 2.1 and 3.1 cannot be applied directly. In view of this, to
handle the difficulty arising from the discontinuity of the drift term b, we adopt the following transfor-
mation (see, for instance, [15,16])

k
UG =Y aile— &)l —&ld((x—£)/6).  xeE, “42)
i=1
where
b(&i—) — b(&;+)
i = W, (Z)(x) = (1 _x2)4]l[—1,1](x)7
and
8*
IA—=—, k=1,
5= 32]aq| - . (4.3)
A 32max{|aq|,---, ok} " (Tmm{fz IR _fk_l}), =2

where the quantity £* > 0 was introduced in (1.14).

The transformation U given in (4.2) enjoys nice properties. In particular, U and its derivative can be
sufficiently small by choosing appropriate parameter ¢ involved in the definition of U. In terms of the
definition of § given in (4.3) and the prerequisite * € (0, 1/2], we have

k * 1

&
|U(x)| < 52; lai|l{g-s,6+51(x) < omax{lag], -, |akl} < iox >3 YR 4.4

Moreover, a direct calculation shows that the function U is differentiable such that

k
U’ (x) :22(11'|x &1 - ((x —fi)/5)2)3(1 =5((x _fi)/5)2)21[.§i—6, &+o](x), x€R.
im1
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This obviously implies that

k
U (x)| < 3252 il l[g-6,5+51(X) <326 max{lay],- -, |ax|} <&* <
izl

1
7 (4.5)

by taking advantage of the alternative of 6 and £* € (0, 1/2]. Furthermore, we define the transformation
G(x):=x+U(x), xeR. (4.6)

Apparently, (4.5) yields that

3

%Sl—lU’(x)ISG'(x)Sl+|U'(x)|S§. 4.7

Consequently, we conclude that the transformation x — G (x) is a diffeomorphism.
Note that U’ is differentiable on each interval I;,i € Sy so U’ is piecewise differentiable. Then, for
Y; := G(X;), applying Itd’s formula yields

dY, = b(Y;)dt + & (Y;) dW,, (4.8)

where
E(x):=(G’b)(G_1(x))+%(G"U)(G_l(x)), F(x):=(G'o)(G ' (x)), xeR.

According to [16, Lemma 2], the SDE (4.8) is strongly well-posed via extending U"’ : Uf.‘:*ll I; > Rto
U : R — R by in particular taking

b(éi+) = b(&i-)
o (&)?

With the preceding preliminaries, we start to complete the

U"({-’i)=2(ai+ ) €St

Proof of Proposition 4.1. Below, let (X'),50 and (Y"),50 be the solutions to (1.12) and (4.8) with

oG-!
Zx, = p € Z(R) and Ly, = p € Z(R), respectively. Due to the Kontorovich dual, besides Y,” G =
G(X!) and Yt"°G71 =G(XY) for u,v € Py, ,(R), we find that

— oG™! — oG-!
Fupo(uPryP)= s [B(f0G DI BT 4
l//p,gS

Next, by means of the mean value theorem and (4.7), it follows that
_ _ 3
G @ -G <2k -y, 160 -GI<Sk -yl xyeR. (4.10)

This further implies that for any x,y € R,

[(foG™(x) = (f e GTHWI+I(f 2 G)x) = (f 0 GYWI < ChlI flly,y 0 ¥p,6(x. Y, (4.11)

where

Cy = (272277 v (1+2P|G7H0)|P))) v ((3/2)7((37/2) v (1+2P|G D |P))).
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Subsequently, via the Kontorovich dual once more, along with (4.9) and (4.11), we deduce that
Wy, o (P, VP) SCoWy, (Lo GTYP, (voGT)P,), pve Py, ,(R) (4.12)

where (o G~ 1P, := fY“"G*' . Provided that there exist constants C*, 1* > 0 such that
t

Wy, o (1P vPy) < C* eV Wy (1Y), wve Py, ,(R) (4.13)

then we derive from (4.12) that
Wy, o (1P, vPy) < C;C*e_/l*tW%,g (mo G lvo G_l) < (C;)ZC*e_/l*th,,p,g (1,v),

where the second inequality is valid due to the Kontorovich dual again and (4.11).
Based on the analysis above, to achieve (4.1), it remains to claim that (4.13) is verifiable. By applying
Proposition 3.1 with by = 0, for the validity of (4.13), it amounts to proving that

(Hg) there exist constants K* > 0 and «* > 1 such that for all x, y € R,

1

*

<d(x) <«", |o7(x) = (x)| < K*|x - yl;
K

(Hp) there exist constants Ag, A, C 2> 0 such that for all x € R,
2 -y (B b)) < dolx =% xb(x) < -Ax® +Ce.

By recalling the definition of &, we obtain from (H, ) with d = 1 and (4.7) that for any x,y € R,

<0 <4 1000 -0 S VRIG 06700 - (670 GTH )1+ 3Kal .

Notice that
G"(x) ==2aii(x), xe€(&-eé); G"(x)=2aii(x), xe(&,&+e),

and that, otherwise, G’/ (x) = 0. Thus, a straightforward calculation, besides the continuity of G’ : R —
R, reveals that there exists a constant ¢y > 0 such that

IG"(x) =G" (M| <colx—yl, x,yeR (4.14)
so by invoking (4.10) there is a constant ¢ > 0 satisfying that
o) -l <cilx—yl.  xyeR.

Therefore, we conclude that the assertion (Hg ) follows.
By following the exact line to derive [16, (A2’)(i)], there exists a constant ¢, > 0 such that

2(x = y)(b(x) = b(y)) < calx —y|*, x,yeR.

Next, by taking the definition of 5 into consideration, we find readily from (4.5) and (4.4) that for
some constant c3 > 0,

xb(x) = (G (x) + UG (0)) (b(G™H () + (U'B) (G (1)) + %x(G"a)(G‘l(x»
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<G b(GT (x) +IGT(WIU'BIG™ (x)
+[UI(G™ () (161G () + [U'BI(G ™ (x))) + %le 1G" (G (x))
<G BGT @) +e*(1+IGT'WN)BIGT (x) +e3lx],  x€eR,

where in the identity we used G (x) = x + U(x) and in the last inequality we employed (1.5) and (4.14).
Whereafter, (1.14) yields that

xb(x) < Cp =2 (G (X)) +c3lx|,  xeR.
This, together with the fact that

1

(G WP =l - UG )P 2 312~ WG )P 2 312~ 5, xeE,

by making use of the basic inequality: (a — b)* > %az — b? for a, b € R and (4.4), leads to
xb(x) <cs—cslx]?, xeR
for some constants c4,cs > 0. As a consequence, we reach the assertion (Hj).

Based on the contractivity (4.13), the transformed SDE (4.8) has a unique invariant probability mea-
sure v € 9%’ o (R) by following the line of [5, Corollary 4.11]. Note that the transformation G con-
structed above is a diffeomorphism. Thus, via integrals with respect to image measures, we conclude
that u:=vo G € Zy,, ,(R) is the unique invariant probability measure of (X;);>o solving (1.12). [

Finally, with the aid of Proposition 4.1, we complete

Proof of Theorem 1.3. Applying Proposition 4.1 yields that for any f € C, 6(R).

[P ) @) = ()| < N llp.o Wy, o (6xPruPr) < Ce™V (x|P + (] |P), 120, xeR, (4.15)

With this estimate at hand, the strong LLN can be verifiable by tracing the line in the proof of Theo-
rem 1.1 and, in particular, replacing | X;| in (2.14), (2.17) and (2.18) by | X;|?, respectively. Moreover,
with the help of (4.15), the CLT can de derived by following exactly the procedure to tackle Theorem 1.2
so we omit the corresponding details herein. O
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