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Limit theorems for SDEs with irregular drifts
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In this paper, concerning SDEs with Hölder continuous drifts, which are merely dissipative at infinity, and SDEs
with piecewise continuous drifts, we investigate the strong law of large numbers and the central limit theorem for
underlying additive functionals and reveal the corresponding rates of convergence. To establish the limit theorems
under consideration, the exponentially contractive property of solution processes under the (quasi-)Wasserstein
distance plays an indispensable role. In order to achieve such contractive property, which is new and interesting
in its own right for SDEs with Hölder continuous drifts or piecewise continuous drifts, the reflection coupling
method is employed and meanwhile a sophisticated test function is built.
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1. Introduction and main results

The research on limit theorems for Markov processes has a long and rich history. As two typical candi-
dates of limit theorems, the law of large numbers (LLN for short) and the central limit theorem (CLT
for abbreviation), depicting respectively the temporal average convergence to the ergodic limit and
the normalized fluctuations around the ergodic limit, have developed greatly in various settings in a
century; see [6,7,9,11], to name just a few.

For the sake of the establishment on limit theorems concerned with Markov processes, one of the es-
sential ingredients is to investigate the corresponding ergodic property. When the Markov process under
consideration possesses the strong mixing properties (e.g., ergodic in the total variation distance), the
LLN and the CLT associated with the additive functionals can be derived with the respective conver-
gence rates 𝑡−

1
2+𝜀 for any 𝜀 ∈ (0, 1

2 ) and 𝑡−
1
2 ; see, for instance, [19, p.217-218] and [11, Theorem 5.1.2]

for more details. Whereas, in some occasions, the Markov process under investigation does not enjoy
the strong mixing properties; see, for example, [11, Example 5.1.3] concerned with functional SDEs,
which have the so-called reconstruction property. Concerning this setting (e.g., ergodicity under the
(quasi)-Wasserstein distance in lieu of the total variation distance), the study on limit theorems has also
advanced in the past few years. In particular, the weak LLN and the CLT were explored in [10] for
weakly ergodic Markov processes by examining respectively the Feller property, exponential ergodic-
ity under the 1-Wasserstein distance and uniform moment estimates with high order. Additionally, [11,
Theorem 5.3.3] and [11, Theorem 5.3.4] addressed respectively the issues on the LLN and the CLT for
stationary Markov processes with weakly ergodic properties. Subsequently, under the continuous-time
path coupling condition (see [11, (5.3.10)] therein), [11, Proposition 5.3.5] extended the framework
in [11, Theorems 5.3.3 and 5.3.4] to the non-stationary setup. In comparison with the counterparts in
[10,11], Shirikyan [19] provided much more elegant conditions for the validity of the LLN and the CLT.
Particularly, Shirikyan [19] formulated respectively a general criterion to establish the strong LLN and
the CLT for weakly mixing Markov processes and, most importantly, the associated convergence rates
were provided therein. More precisely, [19, Theorem 2.3] shows that the convergence rate of the strong
LLN is 𝑡−

1
2+𝑟𝑣 , where 𝑟𝑣 := 𝑞 ∨ ((1 + 𝑣)/(4𝑝)) for 𝑣 ∈ (0,2𝑝 − 1) and 𝑞 < 1/2. So, from a quantitative

point of view, the appearance of the quantity 𝑞 will attenuate the convergence rate in a certain sense.
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On the other hand, in [19, Theorem 2.8], one of the sufficient conditions for the CLT is concerned
with the requirement on the uniform moment estimates of exponential type (see [19, (2.25)] for related
details) associated with weakly mixing Markov processes. In most of the circumstances, such kind of
exponential estimates (uniform in time) is a formidable task to be implemented; see, for example, [1,
Lemma 2.1] for the functional SDEs as one of representatives with the weakly ergodic property.

As we mentioned above, [10,11,19] have established the LLN and the CLT for weakly ergodic
Markov processes under different scenarios. In addition, the framework formulated in [10,11,19] has
been applied to (functional) SDEs/SPDEs with regular coefficients. Especially, as a byproduct of [2,3]
investigated the strong LLN and the CLT for a range of functional SDEs. Later, [2] was extended in
[22] to treat the setting regarding functional SDEs with infinite memory.

In recent years, the theory on strong/weak well-posedness and distribution properties (e.g., gradient
estimates and Harnack inequalities) of SDEs with irregular drifts has been studied systematically (see
e.g. [20,23]). Yet, the study on limit theorems for SDEs with irregular drifts is still vacant so far. In-
spired by the aforementioned literature [10,11,19] as well as [2,22], in the present work we make an
attempt to investigate the LLN and the CLT for several class of SDEs with irregular drifts (e.g., the
Hölder continuous drifts and the piecewise continuous drifts). Most importantly, besides the establish-
ment of the LLN and the CLT, another main goal in this work is to improve the convergence rate of the
LLN in [19, Theorem 2.3] and weaken the technical condition concerned with uniformly exponential
estimates imposed in [19, Theorem 2.8]. The above can be viewed as some motivations of our present
work.

Another motivation arises from the significant advancements of numerical limit theorems for
SDEs/SPDEs with regular coefficients. Recently, as for SDEs/SPDEs with (semi-)Lipschitz contin-
uous coefficients, there are plenty of literature on the LLN and the CLT; see e.g. [13,17] for SDEs
approximated via the forward Euler-Maruyama scheme, [8] with regard to SDEs discretized by the
backward Euler-Maruyama method, and [4] concerning semilinear SPDEs approximated via the spec-
tral Galerkin method in the spatial direction and the exponential integrator in the temporal direction. To
the best of our knowledge, the study on the LLN and the CLT for numerical schemes corresponding to
SDEs with irregular drifts is still infrequent. So, in this work, we aim to lay the theoretical foundation
on the LLN and the CLT for SDEs with Hölder continuous or piecewise continuous drifts (which are
representative SDEs with irregular drifts) so that we can pave undoubtedly the way to investigating the
LLN and the CLT for the numerical SDEs with irregular drifts.

Inspired by the existing literature mentioned above, in this work we intend to address the LLN and
the CLT for SDEs with Hölder continuous drifts, where one part of drifts is dissipative in the long
distance, and satisfies the monotone and Lyapunov conditions, respectively. Additionally, the LLN and
CLT for SDEs with piecewise continuous drifts will also be explored in detail. The preceding contents
will be elaborated progressively in the following three subsections.

1.1. LLN for SDEs with Hölder continuous drifts: Partial dissipativity

In this subsection, we work on the following SDE on R
𝑑:

d𝑋𝑡 =
(
𝑏0 (𝑋𝑡 ) + 𝑏1 (𝑋𝑡 )

)
d𝑡 + 𝜎(𝑋𝑡 ) d𝑊𝑡 , (1.1)

where 𝑏0, 𝑏1 : R𝑑 → R
𝑑 , 𝜎 : R𝑑 → R

𝑑 ⊗ R
𝑑 , (𝑊𝑡 )𝑡≥0 is a 𝑑-dimensional Brownian motion on the

complete filtered probability space (Ω,F , (F𝑡 )𝑡≥0,P).
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Concerning the drifts 𝑏0 and 𝑏1, we shall assume that

(H𝑏) 𝑏1 : R𝑑 → R
𝑑 is locally Lipschitz and there exist constants 𝜆1, 𝜆2, ℓ0 > 0 such that

2〈𝑥 − 𝑦, 𝑏1(𝑥) − 𝑏1 (𝑦)〉 ≤ 𝜆1 |𝑥 − 𝑦 |21{ |𝑥−𝑦 | ≤ℓ0 } − 𝜆2 |𝑥 − 𝑦 |21{ |𝑥−𝑦 | ≥ℓ0 } , 𝑥, 𝑦 ∈ R
𝑑; (1.2)

𝑏0 ∈ 𝐶𝛼 (R𝑑) for some 𝛼 ∈ (0,1), i.e., there exists a constant 𝐾1 > 0 such that

|𝑏0 (𝑥) − 𝑏0(𝑦) | ≤ 𝐾1 |𝑥 − 𝑦 |𝛼, 𝑥, 𝑦 ∈ R
𝑑 . (1.3)

With regard to the diffusion term 𝜎, we shall suppose that

(H𝜎) 𝜎 : R𝑑 → R
𝑑 ×R

𝑑 is Lipschitz continuous, that is, there is a constant 𝐾2 > 0 such that

‖𝜎(𝑥) − 𝜎(𝑦)‖2
HS ≤ 𝐾2 |𝑥 − 𝑦 |2, 𝑥, 𝑦 ∈ R

𝑑 , (1.4)

and moreover there exists a constant 𝜅 ≥ 1 such that

1
𝜅
|𝑦 |2 ≤ 〈(𝜎𝜎∗)(𝑥)𝑦, 𝑦〉 ≤ 𝜅 |𝑦 |2, 𝑥, 𝑦 ∈ R

𝑑 . (1.5)

Before proceeding, we make some comments on Assumptions (H𝑏) and (H𝜎), respectively.

Remark 1.1. In literature, the Assumption (1.2) is also named as the dissipativity at infinity; see, for
example, [14]. To demonstrate the condition (1.2), we provide an example below. Define for some
parameters 𝑎 > 0 and 𝑛 ≥ 1,

𝑈 (𝑥) = 𝑥2(𝑔𝑛 (𝑥))2 + 𝑎2 − 2𝑎𝑥𝑔𝑛 (𝑥), 𝑥 ∈ R,

where 𝑔𝑛 (𝑥) := (𝑥 ∧ 𝑛) ∨ (−𝑛), 𝑥 ∈ R. Then, 𝑏1 (𝑥) = −𝑈′ (𝑥) satisfies the condition (1.2) (see, for
example, [14]) rather than the global convexity assumption: for some constant 𝐾 > 0,

2〈𝑥 − 𝑦, 𝑏1 (𝑥) − 𝑏1 (𝑦)〉 ≤ −𝐾 |𝑥 − 𝑦 |2, 𝑥, 𝑦 ∈ R.

Since the drift term 𝑏0 is singular (i.e. Hölder continuous), the uniformly elliptic condition in (1.5)
is vitally important in addressing the well-posedness of (1.1). Most importantly, the condition (1.5)
also plays a crucial role in exploring the exponentially contractive property of the SDE (1.1) via the
reflection coupling method; see the proof of Proposition 2.1 for related details.

Under Assumptions (H𝑏) and (H𝜎), the SDE (1.1) admits a unique strong solution (𝑋𝑡 )𝑡≥0. Indeed,
to address the strong well-posedness, we can adopt the routine as follows: first of all, we shall show that
the SDE (1.1) has a unique local solution via the Zvonkin transformation and subsequently claim that
the local solution is indeed a global one. In some occasions, we shall write (𝑋 𝑥

𝑡 )𝑡≥0 instead of (𝑋𝑡 )𝑡≥0
to highlight the dependence on the initial value 𝑋0 = 𝑥 ∈ R

𝑑 . In the following part, we shall denote
𝐶Lip (R𝑑) by the collection of all Lipschitz continuous functions 𝑓 : R𝑑 → R. Moreover, for a function
𝑓 : R𝑑 → R and 𝜈 ∈ P (R𝑑) (i.e., the set of probability measures on R

𝑑), we shall adopt the shorthand
notation 𝜈( 𝑓 ) =

∫
R𝑑 𝑓 (𝑥) 𝜈(d𝑥) in case of the integral 𝜈(| 𝑓 |) <∞.

The following LLN reveals the convergence rate of the additive functional 𝐴 𝑓 ,𝑥
𝑡 := 1

𝑡

∫ 𝑡

0 𝑓 (𝑋 𝑥
𝑠 ) d𝑠 as-

sociated with a range of SDEs, which might be dissipative merely in the long distance and, in particular,
allows one part of the drift terms involved to be Hölder continuous.
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Theorem 1.1. Assume (H𝑏) and (H𝜎). Then, for any 𝑓 ∈ 𝐶Lip (R𝑑) and 𝜀 ∈ (0,1/2), there exist a
random time 𝑇𝜀 ≥ 1 and a constant 𝐶 > 0 (dependent on the Lipschitz constant ‖ 𝑓 ‖Lip and the initial
value 𝑥) such that for all 𝑡 ≥ 𝑇𝜀 , ��𝐴 𝑓 ,𝑥

𝑡 − 𝜇( 𝑓 )
�� ≤ 𝐶𝑡−

1
2+𝜀 , (1.6)

where 𝜇 ∈ P (R𝑑) stands for the unique invariant probability measure of (𝑋 𝑥
𝑡 )𝑡≥0 solving (1.1).

Before the end of this subsection, we make some remarks and comparisons with the existing litera-
ture.

Remark 1.2. With regard to the random time 𝑇𝜀 mentioned in Theorem 1.1, it indeed has any finite
𝑚-th moment; see, for example, [19, Corollary 2.4] for related details. In [19], a general framework was
provided to establish the LLN for mixing-type Markov processes. When the weight function therein
is constant (which corresponds the setup we work on in the present paper), the observable involved
must be bounded. Hence, the general criterion in [19] cannot be applied (at least) directly to handle the
setting we are interested in, where the observable herein is unbounded. We have to refine the proof of
[19, Theorem 2.3]. In addition, in [19, Theorem 2.3], the corresponding convergent rate is 𝑡−

1
2+𝑟𝑣 for

𝑟𝑣 := 𝑞 ∨ ((1 + 𝑣)/(4𝑝)) with any 𝑞 < 1/2 and 𝑣 ∈ (0,2𝑝 − 1). Whereas, in the present scenario, the
associated convergence rate is 𝑡−

1
2+𝑟𝑣 , in which 𝑟𝑣 := (1 + 𝑣)/(2𝑝) for 𝑣 ∈ (0, 𝑝/2 − 1). Consequently,

in a certain sense (in particular, 𝑞 is close enough to 1/2), we drop the redundant parameter 𝑞 < 1/2
and improve accordingly the convergence rate derived in [19, Theorem 2.3].

1.2. CLT for SDEs with Hölder continuous drifts: Monotone and Lyapunov
conditions

In this subsection, we move forward to derive the CLT associated with SDEs with Hölder continuous
drifts.

In the proof of Theorem 1.1, the exponential contractivity under the 1-Wasserstein distance is one
of the important factors. Nevertheless, the function 𝜑 𝑓 , defined in (1.10) below, is merely Lipschitz
continuous under the underlying quasi-metric rather than globally Lipschitz continuous. Hence, the
exponential contractivity under the 1-Wasserstein distance is insufficient to establish the corresponding
CLT via the martingale approach. Conversely, the exponential contractivity under the quasi-Wasserstein
distance (see Proposition 3.1 below) is adequate for our purpose. In this setup, we can further weaken
Assumption (H𝑏).

Throughout this subsection, we are still interested in the SDE (1.1), where Assumption (H𝜎) is the
same as that in Subsection 1.1 whereas Assumption (H𝑏) is substituted with the counterpart (H′

𝑏)
below. More precisely,

(H′
𝑏) 𝑏0 ∈ 𝐶𝛼 (R𝑑) satisfying (1.3) and there exist constants 𝜆,𝜆∗ > 0 such that for all 𝑥, 𝑦 ∈ R

𝑑 ,

2〈𝑥 − 𝑦, 𝑏1 (𝑥) − 𝑏1 (𝑦)〉 ≤ 𝜆 |𝑥 − 𝑦 |2 (1.7)

and

〈𝑥, 𝑏1 (𝑥)〉 ≤ −𝜆∗ |𝑥 |2 +𝐶𝜆∗ . (1.8)

The condition (1.7) shows that the drift term 𝑏1 satisfies the classical monotone condition, which,
in literature, is also called the one-sided Lipschitz condition. Let 𝑏1 (𝑥) = −𝑥 + 𝑓 (𝑥), 𝑥 ∈ R

𝑑 , where the
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bounded function 𝑓 : R𝑑 → R
𝑑 is Lipschitz with Lipschitz constant greater than 1. Obviously, both

(1.7) and (1.8) are satisfied. Nevertheless, the condition (1.2) doesn’t hold any more. (1.8), in addition
to (1.3) and (1.5), indicates that the SDE (1.1) fulfils the Lyapunov condition. Under (H′

𝑏) and (H𝜎),
the SDE (1.1) has a unique strong solution (𝑋 𝑥

𝑡 )𝑡≥0 with 𝑋0 = 𝑥 ∈ R
𝑑 and admits a unique invariant

probability measure 𝜇 (see Proposition 3.1 below).
Before we present the second main result concerning the CLT, we further need to introduce some

additional notation. For 𝑝 ≥ 2 and 𝜃 ∈ (0,1], denote𝐶𝑝,𝜃 (R𝑑) by the family of all continuous functions
𝑓 : R𝑑 → R such that

‖ 𝑓 ‖𝑝,𝜃 := sup
𝑥≠𝑦,𝑥,𝑦∈R𝑑

| 𝑓 (𝑥) − 𝑓 (𝑦) |
𝜓𝑝,𝜃 (𝑥, 𝑦)

<∞,

where for any 𝑥, 𝑦 ∈ R
𝑑 ,

𝜓𝑝,𝜃 (𝑥, 𝑦) := (1 ∧ |𝑥 − 𝑦 |𝜃 )(1 + |𝑥 |𝑝 + |𝑦 |𝑝). (1.9)

As for 𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑), we define the corrector 𝑅 𝑓 as below

𝑅 𝑓 (𝑥) =
∫ ∞

0

(
(𝑃𝑡 𝑓 )(𝑥) − 𝜇( 𝑓 )

)
d𝑡, 𝑥 ∈ R

𝑑 ,

where (𝑃𝑡 𝑓 )(𝑥) := E 𝑓 (𝑋 𝑥
𝑡 ) is the Markov semigroup associated with the solution process (𝑋 𝑥

𝑡 )𝑡≥0.
Moreover, we set

𝜑 𝑓 (𝑥) := E

��� ∫ 1

0
𝑓 (𝑋 𝑥

𝑟 ) d𝑟 + 𝑅 𝑓 (𝑋 𝑥
1 ) − 𝑅 𝑓 (𝑥)

���2, 𝑥 ∈ R
𝑑 . (1.10)

In terms of [2, Lemma 4.1], 0 ≤ 𝜎2
∗ := 𝜇(𝜑 𝑓 ) < ∞ for 𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑). The quantity 𝜎 can be

used to characterize the asymptotic variance of the additive functional 𝐴̄ 𝑓 ,𝑥
𝑡 := 1√

𝑡

∫ 𝑡

0 𝑓 (𝑋 𝑥
𝑠 ) d𝑠 for

𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑).
Next, we present another main result, which is concerned with the convergence rate of the CLT

corresponding the additive functional 𝐴̄ 𝑓 ,𝑥
𝑡 . In detail, we have the following statement.

Theorem 1.2. Assume (H′
𝑏) and (H𝜎). Then, for any 𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑) with 𝜇( 𝑓 ) = 0, 𝜎2

∗ := 𝜇(𝜑 𝑓 ) ≥ 0
and 𝜀 ∈ (0, 1

4 ), there exists a constant 𝐶0 =𝐶0 (‖ 𝑓 ‖𝑝,𝜃 , 𝜎∗, |𝑥 |) > 0 such that

sup
𝑧∈R𝑑

(
𝜃𝜎∗ (𝑧)

��P( 𝐴̄ 𝑓 ,𝑥
𝑡 ≤ 𝑧) −Φ𝜎∗ (𝑧)

��) ≤ 𝐶0𝑡
− 1

4+𝜀 , 𝑡 ≥ 1, (1.11)

where 𝜃𝜎∗ (𝑧) := 1{0<𝜎∗<∞} + (1 ∧ |𝑧 |)1{𝜎∗=0} and Φ𝜎∗ (𝑧) stands for the centered Gaussian distribu-
tion function with variation 𝜎2

∗ .

Before the end of this subsection, we make some further remarks.

Remark 1.3. As Theorem 1.1, Theorem 1.3 is applicable to an SDE with the Hölder continuous drift,
where another part of the drift is monotone and satisfies the Lyapunov condition. In [19, Theorem 2.8], a
general criterion was provided to explore the CLT for uniformly mixing Markov families. In particular,
the uniform moment estimates of exponential type (see [19, (2.25)]), as one of the sufficient conditions,
was imposed therein. However, such a uniform moment estimate is, in general, hard to check; see [2] for



1714 J. Bao and J. Hao

the setting on functional SDEs and numerical SDEs. In lieu of the requirement on the uniform exponent
moment, the uniform moment in the polynomial type, which is much easier to verify, is sufficient for
our purpose as shown in the proof of Theorem 1.3.

1.3. LLN and CLT for SDEs with piecewise continuous drifts

In the previous two subsections, as far as two different setups are concerned, we establish respectively
the strong LLN and the CLT. Whereas, no matter what which setting, the continuity of the drift terms
is necessary.

For the objective in this subsection, we consider an illustrative example:

𝑏(𝑥) := −|𝑥 | − 2, |𝑥 | ≥ 1; 𝑏(𝑥) := 1 − 𝑥2, |𝑥 | < 1

and 𝜎(𝑥) := 1
2 (1 + 1

1+𝑥2 ). Apparently, the drift term 𝑏 above no longer satisfies Assumption (H𝑏) or
(H′

𝑏) due to the appearance of the discontinuous points. Yet, the drift 𝑏 is globally dissipative in the
long distance, the associated SDE should be ergodic under an appropriate probability (quasi-)distance,
which is still vacant to the best of our knowledge. Therefore, intuitively speaking, the corresponding
strong LLN and the CLT should be valid. So, in this subsection, our goal is to deal with the strong LLN
and the CLT for SDEs, where the drifts involved might be discontinuous. So far, the topic mentioned
above is still rare.

To explain the underlying essence to handle the limit theorems for SDEs with discontinuous drifts
and, most importantly, avoid the cumbersome notation, we shall consider the scalar SDE

d𝑋𝑡 = 𝑏(𝑋𝑡 ) d𝑡 + 𝜎(𝑋𝑡 ) d𝑊𝑡 , (1.12)

where 𝑏 : R→ R is piecewise continuous, i.e., there exist finitely many points 𝜉1 < · · · < 𝜉𝑘 such that
𝑏 is continuous respectively on the intervals 𝐼𝑖 := (𝜉𝑖 , 𝜉𝑖+1), 𝑖 ∈ S𝑘 := {0,1, · · · , 𝑘}, where 𝜉0 = −∞
and 𝜉𝑘+1 = ∞; 𝜎 : R → R is continuous; (𝑊𝑡 )𝑡≥0 is a 1-dimensional Brownian motion. So far, the
SDE (1.12) with discontinuous drifts has been applied extensively in e.g. stochastic control theory and
mathematical finance.

Besides Assumption (H𝜎) with 𝑑 = 1, we shall assume that

(A𝑏) For each integer 𝑛 ≥ |𝜉1 | ∨ |𝜉𝑘 |, there exists an increasing function 𝜙 : [0,∞) → [0,∞)

|𝑏(𝑥) − 𝑏(𝑦) | ≤ 𝜙(𝑛) |𝑥 − 𝑦 |, 𝑥, 𝑦 ∈ 𝐼𝑖 ∩ 𝐵𝑛 (0), 𝑖 ∈ S𝑘 , (1.13)

where 𝐵𝑛 (0) := {𝑥 ∈ R : |𝑥 | ≤ 𝑛}, and there exists a constant 𝜆★ > 0 such that

(𝑥 − 𝑦)(𝑏(𝑥) − 𝑏(𝑦)) ≤ 𝜆★(𝑥 − 𝑦)2, 𝑥, 𝑦 ∈ 𝐼𝑖 , 𝑖 ∈ S𝑘 .

Moreover, there are constants 𝜆★,𝐶𝜆★ > 0 and 𝜀★ ∈ (0,1/2] such that

𝜀★|𝑏(𝑥) | (1 + |𝑥 |) + 𝑥𝑏(𝑥) ≤ 𝐶★ − 𝜆★𝑥2, 𝑥 ∈ R. (1.14)

Below, with regard to Assumptions (A𝑏) and (H𝜎) with 𝑑 = 1, we make the following remarks.

Remark 1.4. In contrast to (1.8), the Lyapunov condition (1.14) is a little bit unusual. This condition
is imposed naturally when we handle the ergodicity of the transformed SDE; see the proof of Propo-
sition 4.1 for more details. Most importantly, the appearance of 𝜀★ ∈ (0,1/2] allows 𝑏 to be highly
nonlinear.
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In [16, Lemma 3], the strong well-posedness of (1.12) was treated under the global Lyapunov con-
dition (see (A1) therein), the local monotonicity (see (A2)(i) therein), the locally polynomial growth
condition (see (A2)(ii) therein) as well as the globally polynomial growth condition (see (A3) therein)
concerned with the diffusion term, which is also non-degenerate at the discontinuous points of the drift
term (see (A4) therein). By a close inspection of the argument of [16, Lemma 3], the much weaker
condition (1.13) can indeed take the place of (A2)(ii). Therefore, by following the exact lines of [16,
Lemma 3], the SDE (1.12) is strongly well-posed under Assumptions (A𝑏) and (H𝜎) with 𝑑 = 1. If we
are only concerned with the well-posedness of (1.12), Assumption (H𝜎) with 𝑑 = 1 can be replaced def-
initely by (A3) and (A4). Whereas, the little bit strong condition (H𝜎) with 𝑑 = 1, compared with (A3)
and (A4), is imposed to achieve the exponentially contractive property under the quasi-Wasserstein
distance via the reflection coupling approach.

Our third main result concerned with the strong LLN and the CLT for the SDE (1.12) with piecewise
continuous drifts is stated as follows.

Theorem 1.3. Assume (A𝑏) and (H𝜎) with 𝑑 = 1. Then,

(1) (Strong LLN) For any 𝑓 ∈ 𝐶𝑝,𝜃 (R) and 𝜀 ∈ (0,1/2), there exist a random time 𝑇𝜀 ≥ 1 and a
constant 𝐶 =𝐶 (‖ 𝑓 ‖𝑝,𝜃 , |𝑥 |) > 0 such that for all 𝑡 ≥ 𝑇𝜀 ,

��𝐴 𝑓 ,𝑥
𝑡 − 𝜇( 𝑓 )

�� ≤ 𝐶𝑡−
1
2+𝜀 ,

where 𝜇 ∈ P (R𝑑) is the unique invariant probability measure of (𝑋𝑡 )𝑡≥0 solving (1.12); see
Proposition 4.1 below.

(2) (CLT) For any 𝑓 ∈ 𝐶𝑝,𝜃 (R) with 𝜇( 𝑓 ) = 0, and 𝜀 ∈ (0,1/4), If 𝜎2
∗ := 𝜇(𝜑 𝑓 ) ≥ 0, there exists a

constant 𝐶0 =𝐶0 (‖ 𝑓 ‖𝑝,𝜃 , 𝜎∗, |𝑥 |) > 0 such that

sup
𝑧∈R𝑑

(
𝜃𝜎∗ (𝑧)

��P( 𝐴̄ 𝑓 ,𝑥
𝑡 ≤ 𝑧) −Φ𝜎∗ (𝑧)

��) ≤ 𝐶0𝑡
− 1

4+𝜀 , 𝑡 ≥ 1,

where 𝜃𝜎∗ (𝑧) := 1{0<𝜎∗<∞} + (1 ∧ |𝑧 |)1{𝜎∗=0} .

Before the ending of this subsection, we make some further comments.

Remark 1.5. To finish the proof of Theorem 1.3, the 1-dimensional diffeomorphism transformation
(see (4.6) below) plays a crucial role. For the multidimensional transformation to handle well-posedness
and numerical approximations for SDEs with piecewise continuous drifts, we refer to [12, Theo-
rem 3.14] for more details. With the help of the multidimensional transformation initiated in [12],
Theorem 1.3 can be generalized to the multidimensional SDEs with piecewise continuous drifts. Since
such a generalization will only render the notation more cumbersome without bringing any new insights
into the arguments, in the present work we restrict ourselves to the 1-dimensional setup.

Even though the original SDE under consideration is dissipative in the long distance, the corre-
sponding transformed SDE is no longer dissipative (at infinity). Based on this point of view, the SDE
(1.12) is ergodic under the quasi-Wasserstein distance rather than the genuine Wasserstein distance; see
Proposition 4.1 for more details.

The remainder of this paper is organized as follows. In Section 2, via the reflection coupling, we
investigate the 1-Wasserstein exponential contractivity for SDEs with Hölder continuous drifts, which
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also allow the drifts involved to be dissipative in the long distance. Subsequently, the proof of Theo-
rem 1.1 is complete. Section 3 is devoted to the proof of Theorem 1.1 based on the establishment of
the exponential ergodicity under the quasi-Wasserstein distance, which is interesting in its own right
for SDEs with Hölder continuous drifts, where the other drift parts satisfy the monotone and Lyapunov
condition. In Section 4, we aim to complete the proof of Theorem 1.3 with the aid of the exponential
contractivity under the quasi-Wasserstein distance, which is new for SDEs with piecewise continuous
drifts.

2. Proof of Theorem 1.1

In this section, we aim to complete the proof of Theorem 1.1, which is based on the following 1-
Wasserstein contractive property.

Proposition 2.1. Assume (H𝑏) and (H𝜎). Then, there exist constants 𝐶∗, 𝜆∗ > 0 such that for all 𝑡 ≥ 0
and 𝜇, 𝜈 ∈ P1 (R𝑑) (the set of probability measures on R

𝑑 with finite moments of first order),

W1 (𝜇𝑃𝑡 , 𝜈𝑃𝑡 ) ≤ 𝐶∗e−𝜆∗𝑡
W1 (𝜇, 𝜈), (2.1)

where 𝜇𝑃𝑡 stands for the law of 𝑋𝑡 , the solution to (1.1), with the initial distribution L𝑋0 = 𝜇, and
W1 means the 1-Wasserstein distance. Moreover, (2.1) implies that (𝑋𝑡 )𝑡≥0 has a unique invariant
probability measure 𝜇.

Proof. The proof, based on the reflection coupling approach, of Proposition 2.1 is inspired by the
counterpart of [21, Theorem 3.1], which indeed was traced back to [18]. In [21, Theorem 3.1], an
abstract framework upon exponential ergodicity of McKean-Vlasov SDEs, which are dissipative in the
long distance, was presented. In the present setup, we follow essentially the line in [21, Theorem 3.1]
whereas we refine the corresponding details and provide explicit conditions imposed on the coefficients
so the content is much more readable.

Due to (1.5), for each 𝑥 ∈ R
𝑑 , the matrix (𝜎𝜎∗)(𝑥) − 1

2𝜅 𝐼𝑑×𝑑 is a nonnegative-definite symmetric
matrix so there exists a symmetric 𝑑 × 𝑑-matrix 𝜎̃(𝑥) such that 𝜎̃(𝑥)2 = (𝜎𝜎∗)(𝑥) − 1

2𝜅 𝐼𝑑×𝑑 , where
𝐼𝑑×𝑑 means the 𝑑 × 𝑑-identity matrix. Therefore, we readily have (𝜎𝜎∗)(𝑥) = 𝜎̃(𝑥)2 + 1

2𝜅 𝐼𝑑×𝑑 , 𝑥 ∈ R
𝑑 .

Consider the SDE

d𝑌𝑡 = 𝑏(𝑌𝑡 )d𝑡 + 𝜎̃(𝑌𝑡 )d𝑊̃𝑡 +
1

√
2𝜅

d𝑊̂𝑡 , (2.2)

where (𝑊̃𝑡 )𝑡≥0 and (𝑊̂𝑡 )𝑡≥0 are mutually independent 𝑑-dimensional Brownian motions defined on
the same probability space. To demonstrate that (2.2) has a unique strong solution under Assumptions
(H𝑏) and (H𝜎), we introduce the notations

𝜎̂(𝑥) :=
(
𝜎̃(𝑥), 1

√
2𝜅

𝐼𝑑×𝑑

)
∈ R

𝑑 ⊗ R
2𝑑 , 𝑥 ∈ R

𝑑 , and 𝑊̄𝑡 := (𝑊̃𝑡 , 𝑊̂𝑡 ),

where (𝑊̄𝑡 )𝑡≥0 is a 2𝑑-dimensional Brownian motion. Whereafter, (2.2) can be reformulated as

d𝑌𝑡 = 𝑏(𝑌𝑡 )d𝑡 + 𝜎̂(𝑌𝑡 )d𝑊̄𝑡 .

As a result, in terms of Subsection 1.1, it is sufficient to examine that 𝜎̂ satisfies Assumption (H𝜎̂) so
that (2.2) is strongly well-posed. Below, we aim to check the associated details, one by one. In the first



Limit theorems for SDEs with irregular drifts 1717

place, by invoking (1.4) and (1.5), we derive that

‖𝜎̂(𝑥) − 𝜎̂(𝑦)‖HS ≤ 2(𝐾2𝜅
3)

1
2 |𝑥 − 𝑦 |, 𝑥, 𝑦 ∈ R

𝑑 , (2.3)

where we also used the fact that ‖
√
𝐴−

√
𝐵‖HS ≤ 1

2𝜆 ‖𝐴−𝐵‖HS for 𝑑× 𝑑 symmetric positive matrices 𝐴
and 𝐵 with all eigenvalues greater than 𝜆 > 0 (see, for example, [18, (3.3)] for related details). Therefore,
(2.3) enables us to conclude that the mapping 𝑥 ↦→ 𝜎̂(𝑥) is also Lipschitz. In the next place, it is easy
to see from (1.5) that for all 𝑥, 𝑦 ∈ R

𝑑 ,

1
𝜅
|𝑦 |2 ≤ 〈(𝜎̂𝜎̂∗)(𝑥)𝑦, 𝑦〉 = 〈(𝜎𝜎∗)(𝑥)𝑦, 𝑦〉 ≤ 𝜅 |𝑦 |2.

For 0 ≠ 𝑥 ∈ R
𝑑 , set the normalized vector n(𝑥) := 𝑥/|𝑥 | and define the orthogonal matrix

Π𝑥 = 𝐼𝑑×𝑑 − 2n(𝑥) ⊗ n(𝑥) ∈ R
𝑑 ×R

𝑑 .

To achieve the quantitative estimate (2.1), we work on the SDE

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d𝑌𝑡 = 𝑏(𝑌𝑡 )d𝑡 + 𝜎̃(𝑌𝑡 )d𝑊̃𝑡 +

1
√

2𝜅
Π𝑍𝑡 d𝑊̂𝑡 , 𝑡 < 𝜏,

d𝑌𝑡 = 𝑏(𝑌𝑡 )d𝑡 + 𝜎̃(𝑌𝑡 )d𝑊̃𝑡 +
1

√
2𝜅

d𝑊̂𝑡 , 𝑡 ≥ 𝜏,
(2.4)

where the coupling time 𝜏 := inf
{
𝑡 ≥ 0 : 𝑍𝑡 = 0

}
with 𝑍𝑡 := 𝑌𝑡 − 𝑌̂𝑡 . Since Π· is an orthogonal matrix,

(2.4) is strongly well-posed before the coupling time as shown in the analysis above. Additionally, (2.4)
coincides with (2.2) after the coupling time. Thereby, (2.4) is strongly well-posed.

Owing to the existence of an optimal coupling, in the following context, we can choose the initial
values 𝑌0 and 𝑌0 such that W1 (𝜇, 𝜈) = E|𝑌0 − 𝑌̂0 | for given 𝜇, 𝜈 ∈ P1 (R𝑑). Applying Itô’s formula, we
right now obtain from (2.2) and (2.4) that

d|𝑍𝑡 | ≤
1

2|𝑍𝑡 |
(
2〈𝑍𝑡 , 𝑏(𝑌𝑡 ) − 𝑏(𝑌𝑡 )〉 + ‖𝜎̃(𝑌𝑡 ) − 𝜎̃(𝑌𝑡 )‖2

HS
)

d𝑡

+
〈
n(𝑍𝑡 ), (𝜎̃(𝑌𝑡 ) − 𝜎̃(𝑌𝑡 ))d𝑊̃𝑡

〉
+ 1√

𝜅/2

〈
n(𝑍𝑡 ),d𝑊̂𝑡

〉
, 𝑡 < 𝜏,

(2.5)

where we also utilized the fact that for any 0 ≠ 𝑥 ∈ R
𝑑 ,

〈𝐼𝑑×𝑑 − n(𝑥) ⊗ n(𝑥),n(𝑥) ⊗ n(𝑥)〉HS = 0.

By invoking (2.3), it follows from (1.5) that

‖𝜎̃(𝑥) − 𝜎̃(𝑦)‖HS ≤ 4𝜅
13
8 𝑑

1
8 𝐾

3
8
2 |𝑥 − 𝑦 |

3
4 , 𝑥, 𝑦 ∈ R

𝑑 . (2.6)

With the aid of (1.3) and (1.4), we find from (2.6) that

2〈𝑥 − 𝑦, 𝑏(𝑥) − 𝑏(𝑦)〉 + ‖𝜎̃(𝑥) − 𝜎̃(𝑦)‖2
HS ≤ 𝜙(|𝑥 − 𝑦 |) |𝑥 − 𝑦 |, 𝑥, 𝑦 ∈ R

𝑑 , (2.7)

where for 𝑢 ≥ 0,

𝜙(𝑢) :=
(
(𝜆1 + 𝜆2)𝑢 + 2𝐾1𝑢

𝛼 + 16𝜅
13
4 𝑑

1
4 𝐾

3
4
2 𝑢

1
2
)
1{𝑢≤ħ0 } −

1
2
𝜆2𝑢
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with

ħ0 := ℓ0 ∨
(

8𝐾1

𝜆2

) 1
1−𝛼

∨
(64𝜅

13
4 𝑑

1
4 𝐾

3
4
2

𝜆2

)2

. (2.8)

Consequently, (2.5) yields

d|𝑍𝑡 | ≤
1
2
𝜙(|𝑍𝑡 |) d𝑡 + 〈n(𝑍𝑡 ), (𝜎̃(𝑌𝑡 ) − 𝜎̃(𝑌𝑡 ))d𝑊̃𝑡 〉 +

1√
𝜅/2

〈n(𝑍𝑡 ),d𝑊̂𝑡 〉, 𝑡 < 𝜏.

Define the test function

𝑓 (𝑟) = 𝜅
∫ 𝑟

0
e−

𝜅
2

∫ 𝑢
0 𝜙 (𝑣) d𝑣

∫ ∞

𝑢
𝑠e

𝜅
2

∫ 𝑠
0 𝜙 (𝑣) d𝑣 d𝑠d𝑢, 𝑟 ≥ 0.

Straightforward calculations show that

𝑓 ′ (𝑟) = 𝜅e−
𝜅
2

∫ 𝑟
0 𝜙 (𝑣) d𝑣

∫ ∞

𝑟
𝑠e

𝜅
2

∫ 𝑠
0 𝜙 (𝑣) d𝑣 d𝑠, 𝑟 ≥ 0;

𝑓 ′′ (𝑟) = 𝜅

2
(
− 𝜙(𝑟) 𝑓 ′ (𝑟) − 2𝑟

)
, 𝑟 ∈ [0,ħ0),

and that

𝑓 ′ (𝑟) = 4
𝜆2
, 𝑟 ≥ ħ0; 𝑓 ′′ (𝑟) = 0, 𝑟 > ħ0.

Whence, there exist constants 𝑐∗, 𝑐∗∗ > 0 such that

𝑐∗𝑟 ≤ 𝑓 (𝑟) ≤ 𝑐∗∗𝑟, 𝑟 ≥ 0 (2.9)

and
1
2
𝑓 ′ (𝑟)𝜙(𝑟) + 1

𝜅
𝑓 ′′ (𝑟) = −𝑟, 𝑟 ∈ [0,ħ0) ∪ (ħ0,∞). (2.10)

Note that 𝑓 introduced above is a piecewise 𝐶2-function. Thus, Tanaka’s formula, together with the
continuity of 𝑓 ′, shows that

e
𝑡

𝑐∗∗ 𝑓 (|𝑍𝑡 |) ≤ 𝑓 (|𝑍0 |) +
∫ 𝑡

0
e

𝑠
𝑐∗∗

( 1
𝑐∗∗

𝑓 (|𝑍𝑠 |) +
1
2
𝑓 ′ ( |𝑍𝑠 |)𝜙(|𝑍𝑠 |) +

1
𝜅
𝑓 ′′ ( |𝑍𝑠 |)

)
d𝑠 +𝑀𝑡 , 𝑡 < 𝜏

for some martingale (𝑀𝑡 )𝑡≥0. This, combining (2.9) with (2.10), further gives that

E
(
e
𝑡∧𝜏
𝑐∗∗ 𝑓 (|𝑍𝑡∧𝜏 |)

)
≤ E 𝑓 (|𝑍0 |) + E

( ∫ 𝑡∧𝜏

0
e

𝑠
𝑐∗∗

( 1
𝑐∗∗

𝑓 (|𝑍𝑠 |) +
1
2
𝑓 ′ ( |𝑍𝑠 |)𝜙(|𝑍𝑠 |) +

1
𝜅
𝑓 ′′ ( |𝑍𝑠 |)

)
d𝑠
)

≤ E 𝑓 (|𝑍0 |).

Thanks to 𝑓 (|𝑍𝑡 |) ≡ 0 for all 𝑡 ≥ 𝜏, it is apparent that for all 𝑡 ≥ 0,

e
𝑡

𝑐∗∗ E 𝑓 (|𝑍𝑡 |) = E
(
e
𝑡∧𝜏
𝑐∗∗ 𝑓 (|𝑍𝑡∧𝜏 |)

)
≤ E 𝑓 (|𝑍0 |).

Finally, (2.1) follows immediately by recalling W1 (𝜇, 𝜈) = E|𝑌0 −𝑌0 | and taking (2.9) into considera-
tion.
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Under (1.2), (1.3) and (1.5), there exists a constant 𝑐★ > 0 such that sup𝑡≥0 E|𝑋𝑡 |2 ≤ 𝑐★(1 + E|𝑋0 |2);
see (2.12) below for further details. Whence, the Krylov-Bogoliubov theorem yields that (𝑋𝑡 )𝑡≥0 has an
invariant probability measure. Thus, the contractive property (2.1) implies the uniqueness of invariant
probability measures.

Below, we move to finish the

Proof of Theorem 1.1. In the sequel, we shall assume that 𝑓 ∈ 𝐶Lip (R𝑑) and set 𝜀 ∈ (0,1/2). Ev-
idently, it suffices to verify that (1.6) is valid as long as 𝜇( 𝑓 ) = 0. Accordingly, we shall stipulate
𝜇( 𝑓 ) = 0 in the subsequent analysis. Below, we shall write 𝑋𝑡 instead of 𝑋 𝑥

𝑡 , set 𝐴𝑡 ( 𝑓 ) := 1
𝑡

∫ 𝑡

0 𝑓 (𝑋𝑠) d𝑠
for all 𝑡 ≥ 0, and use the notation 𝑎 ≲ 𝑏 for given 𝑎, 𝑏 ≥ 0 provided that there exists a constant 𝑐0 > 0
such that 𝑎 ≤ 𝑐0𝑏. Note that for any 𝑡 ≥ 0,

|𝐴𝑡 ( 𝑓 ) | ≤
��𝐴�𝑡 � ( 𝑓 )

�� + 1
𝑡

∫ 𝑡

�𝑡 �
| 𝑓 (𝑋𝑠) | d𝑠,

where �𝑡� denotes the integer part of 𝑡 ≥ 0. Whence, to obtain the assertion (1.6), it remains to show
respectively that there exists a random time 𝑇 ≥ 1 (dependent on 𝜀) such that

��𝐴�𝑡 � ( 𝑓 )
��≲ 𝑡−

1
2+𝜀 and

1
𝑡

∫ 𝑡

�𝑡 �
| 𝑓 (𝑋𝑠) | d𝑠≲ 𝑡−

1
2 for all 𝑡 ≥ 𝑇. (2.11)

By (1.2), (1.3) and (1.5), it follows that there exist constants 𝑐1, 𝑐2 > 0 such that for any 𝑝 ≥ 2,

d|𝑋𝑡 |𝑝 ≤
(
− 𝑐1 |𝑋𝑡 |𝑝 + 𝑐2

)
d𝑡 + 𝑝 |𝑋𝑡 |𝑝−2〈𝑋𝑡 , 𝜎(𝑋𝑡 )d𝑊𝑡 〉.

Then, Gronwall’s inequality implies that for all 𝑡 ≥ 0 and 𝑥 ∈ R
𝑑 ,

E|𝑋𝑡 |𝑝 ≤ 𝑐2

𝑐1
+ |𝑥 |𝑝 . (2.12)

For any integer 𝑞 ≥ 2, direct calculations show that

E

��� ∫ 𝑡

0
𝑓 (𝑋𝑠) d𝑠

���𝑞 ≲
( ∫ 𝑡

0

∫ 𝑠

0

(
E
(
| 𝑓 (𝑋𝑢) | ( |𝑃𝑠−𝑢 𝑓 |) (𝑋𝑢)

) 𝑞
2
) 2
𝑞 d𝑢d𝑠

) 𝑞
2
,

see, for instance, [19, (2.22)]. Next, using the invariance of 𝜇 followed by exploiting the Kontorovich
dual and applying Proposition 2.1 yields that for all 𝑡 ≥ 0 and 𝑥 ∈ R

𝑑 ,��(𝑃𝑡 𝑓 )(𝑥) − 𝜇( 𝑓 )
�� ≤ ‖ 𝑓 ‖LipW1 (𝛿𝑥𝑃𝑡 , 𝜇𝑃𝑡 ) ≤ 𝐶∗e−𝜆∗𝑡 (|𝑥 | + 𝜇(| · |)), (2.13)

where ‖ 𝑓 ‖Lip is the Lipschitz constant of the function 𝑓 . The previous estimate, in addition to the
Lipschitz property of 𝑓 , 𝜇(| · |) <∞ as well as (2.12), gives that

E

��� ∫ 𝑡

0
𝑓 (𝑋𝑠) d𝑠

���𝑞 ≲
( ∫ 𝑡

0

∫ 𝑠

0
e−𝜆∗ (𝑠−𝑢) (1 + E|𝑋𝑢 |𝑞

) 2
𝑞 d𝑢d𝑠

) 𝑞
2
≲ 𝑡

𝑞
2 . (2.14)

Subsequently, by means of Hölder’s inequality, we have for any 𝑞 ≥ 2,

E|𝐴𝑡 ( 𝑓 ) |𝑞 ≲ 𝑡−
𝑞
2 . (2.15)
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For any integer 𝑛 ≥ 1, by the Chebyshev inequality, together with (2.15) for 𝑞 = 2
𝜀 > 4, we deduce

that

P
(
|𝐴𝑛 ( 𝑓 ) | > 𝑛−

1
2+𝜀 ) ≤ 𝑛

1
𝜀 −2

E|𝐴𝑛 ( 𝑓 ) |
2
𝜀 ≲ 𝑛−2.

As a consequence, the Borel-Cantelli lemma yields that there exists a random variable 𝑇1 ≥ 1 such that

��𝐴�𝑡 � ( 𝑓 )
�� ≤ �𝑡�−

1
2+𝜀 , a.s., 𝑡 ≥ 𝑇1.

This apparently ensures the first statement.
Next, we proceed to examine the second statement in (2.11). In view of the BDG inequality, we infer

from (1.5) and (2.12) that there exist constants 𝑐3, 𝑐4 > 0 such that for all integer 𝑘 ≥ 0 and any 𝑝 ≥ 2,

E
(

sup
𝑘≤𝑠≤𝑘+1

|𝑋𝑠 |𝑝
)
≤ 𝑐3 + E|𝑋𝑘 |𝑝 + 𝑝E

(
sup

𝑘≤𝑠≤𝑘+1

∫ 𝑠

𝑘
|𝑋𝑢 |𝑝−2〈𝑋𝑢, 𝜎(𝑋𝑢)d𝑊𝑢〉

)

≤ 𝑐4(1 + |𝑥 |𝑝) + 1
2
E
(

sup
𝑘≤𝑠≤𝑘+1

|𝑋𝑠 |𝑝
)

so that for all integer 𝑘 ≥ 0 and any 𝑝 ≥ 2,

E
(

sup
𝑘≤𝑠≤𝑘+1

|𝑋𝑠 |𝑝
)
≲ 1 + |𝑥 |𝑝 . (2.16)

By retrospecting that 𝑓 : R𝑑 → R is of linear growth, there exists a constant 𝑐★ > 0 such that | 𝑓 (𝑥) | ≤
𝑐★(1 + |𝑥 |) for all 𝑥 ∈ R

𝑑 . It is ready to see that for any integer 𝑘 ≥ 16,

P

(
sup

𝑘≤𝑡≤𝑘+1
| 𝑓 (𝑋𝑡 ) | > 𝑐★𝑘

1
4

)
≤ P

(
sup

𝑘≤𝑡≤𝑘+1
|𝑋𝑡 | > 𝑘

1
4 − 1

)
≤ P

(
sup

𝑘≤𝑡≤𝑘+1
|𝑋𝑡 | >

1
2
𝑘

1
4

)
. (2.17)

Then, the Chebyshev inequality, besides (2.16), signifies that

P

(
sup

𝑘≤𝑡≤𝑘+1
| 𝑓 (𝑋𝑡 ) | > 𝑐★𝑘

1
4

)
≤ 32

𝑘
5
4

E
(

sup
𝑘≤𝑡≤𝑘+1

|𝑋𝑡 |5
)
≲ 1

𝑘
5
4

(1 + |𝑥 |5). (2.18)

Once more, applying the Borel-Cantelli lemma enables us to derive that there exists a random variable
𝑇2 ≥ 16 such that | 𝑓 (𝑋𝑡 ) | ≤ 𝑐★𝑡

1
4 , a.s., for all 𝑡 ≥ 𝑇2. Therefore, we obtain that for all 𝑡 ≥ 𝑇2,

1
𝑡

∫ 𝑡

�𝑡 �
| 𝑓 (𝑋𝑠) | d𝑠 ≲

1
�𝑡�

∫ 𝑡

�𝑡 �
𝑠

1
4 d𝑠 ≲ �𝑡�

1
4

( (
1 + 1

�𝑡�
) 5

4 − 1
)
, a.s.

This, combining with the fact that (1 + 𝑟)𝛼 − 1 ≤ 𝛼2𝛼−1𝑟 for any 𝛼 > 1 and 𝑟 ∈ [0,1], guarantees that
for all 𝑡 ≥ 𝑇2,

1
𝑡

∫ 𝑡

�𝑡 �
| 𝑓 (𝑋𝑠) | d𝑠 ≲ �𝑡�−

3
4 ≲ 𝑡−

3
4 , a.s.

As a result, the second statement in (4.14) is verifiable.
Based on the analysis above, we conclude that (1.6) follows for the random time 𝑇 := 𝑇1 +𝑇2.
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3. Proof of Theorem 1.2

Before we start to complete the proof of Theorem 1.2, we provide the following proposition, which
establishes the contractive property of transition kernels under the quasi-Wasserstein distance.

Proposition 3.1. Under the assumptions of Theorem 1.2, for any 𝑝 ≥ 2, 𝜃 ∈ (0,1] and 𝜇, 𝜈 ∈
P𝜓𝑝,𝜃 (R𝑑), there exist constant 𝐶∗ ≥ 1, 𝜆∗ > 0 such that

W𝜓𝑝,𝜃 (𝜇𝑃𝑡 , 𝜈𝑃𝑡 ) ≤ 𝐶∗e−𝜆∗𝑡
W𝜓𝑝,𝜃 (𝜇, 𝜈), 𝑡 ≥ 0, (3.1)

where

P𝜓𝑝,𝜃 (R𝑑) :=
{
𝜇 ∈ P (R𝑑) : 𝜇(𝜓𝑝,𝜃 (·,0)) <∞

}
,

and W𝜓𝑝,𝜃 denotes the quasi-Wasserstein distance (see e.g. [5, (4.3)]) induced by the cost func-
tion 𝜓𝑝,𝜃 , introduced in (1.9). Moreover, (𝑋𝑡 )𝑡≥0 solving (1.1) has a unique invariant measure
𝜇 ∈ P𝜓𝑝,𝜃 (R𝑑).

Proof. Throughout the whole proof to be implemented, we still utilize the coupling constructed in the
proof of Proposition 2.1; see (2.2) and (2.4) for more details. In view of (1.3), (1.5) and (1.8), for any
𝑝 ≥ 2 and 𝑉𝑝 (𝑥) := 1 + |𝑥 |𝑝 , 𝑥 ∈ R

𝑑 , there are constants 𝐶1 (𝑝),𝐶2 (𝑝) > 0 such that

(L𝑉𝑝)(𝑥) ≤ −𝐶1 (𝑝)𝑉𝑝 (𝑥) +𝐶2 (𝑝), 𝑥 ∈ R
𝑑 , (3.2)

where L is the infinitesimal generator of (1.5). For the parameters 𝐶1 (𝑝),𝐶2 (𝑝) above, the set

A𝑝 :=
{
(𝑥, 𝑦) ∈ R

𝑑 ×R
𝑑 :𝐶1 (𝑝)

(
𝑉𝑝 (𝑥) +𝑉𝑝 (𝑦)

)
≤ 4𝐶2 (𝑝)

}
is of finite length since the mapping R

𝑑 � 𝑥 ↦→𝑉𝑝 (𝑥) is compact. Therefore, the quantity

𝑙∗𝑝 := 1 + sup
{
|𝑥 − 𝑦 | : (𝑥, 𝑦) ∈ A𝑝

}
<∞

is well defined.
In order to achieve the exponential contractivity (3.1), it is vital to define two auxiliary functions as

below. Define for 𝜃 ∈ (0,1],

ℎ(𝑟) = 𝜅
∫ 𝑟

0
e−

𝜅
2

∫ 𝑢
0 ( (𝜆+2𝐾2𝜅3 )𝑣+2𝐾1𝑣𝛼 ) d𝑣

∫ 𝑙∗𝑝

𝑢
𝑣 𝜃e

𝜅
2

∫ 𝑣
0 ( (𝜆+2𝐾2𝜅3 )𝑙+2𝐾1𝑙𝛼 ) d𝑙 d𝑣 d𝑢, 𝑟 ≥ 0, (3.3)

where 𝐾1 > 0, 𝜅 > 0 and 𝜆 > 0 were introduced in (1.3), (1.5) and (1.7), respectively, and 𝛼 ∈ (0,1) is
the Hölder index associated with 𝑏0. Moreover, we define for 𝜃 ∈ (0,1],

𝑓 (𝑟) = 𝑐∗(𝑟 ∧ 𝑙∗𝑝) 𝜃 + ℎ(𝑟 ∧ 𝑙∗𝑝), 𝑟 ≥ 0, (3.4)

where

𝑐∗ :=
1

𝜃 (𝜆 + 4𝐾2𝜅3 + 2𝐾1𝑟
𝛼−1
0 )

1(0,1) (𝜃) with 𝑟0 := 1 ∧
( 1 − 𝜃

2𝐾1𝜅

) 1
1+𝛼

. (3.5)
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In the sequel, we shall fix the function 𝑓 defined in (3.4) and choose the tuneable parameter

𝜀 := 1 ∧ 1
16𝐶2 (𝑝)(𝑐∗ + ℎ′ (0)(𝑙∗𝑝)1−𝜃 )

∧ 1(
24+ 4

𝑝 𝑐★((𝑝 − 2)1− 2
𝑝 ∨ (𝑝 − 1)1− 1

𝑝 )(𝑐∗𝜃 + ℎ′ (0)(𝑙∗𝑝)1−𝜃 )
) 𝑝
,

(3.6)

where

𝑐★ :=
(1
𝜅

2(𝑝−2)∨1(𝑝 − 1)
)
∨ (2𝐾

1
2
2 𝜅

2). (3.7)

Note that, for the case 𝑝 = 2, the term (𝑝 − 2)1− 2
𝑝 should be understood in the limit sense, that is,

lim𝑝↓2 (𝑝 − 2)1− 2
𝑝 = 1. Moreover, in the following context, for the sake of convenience, we shall write

Ψ(𝑡) := 𝑓 (|𝑍𝑡 |)
(
1 + 𝜀𝑉𝑝 (𝑌𝑡 ) + 𝜀𝑉𝑝 (𝑌̂𝑡 )

)
, 𝑡 ≥ 0.

By applying Itô’s formula, we deduce from (2.2) and (2.4) that

dΨ(𝑡) = (1 + 𝜀𝑉𝑝 (𝑌𝑡 ) + 𝜀𝑉𝑝 (𝑌̂𝑡 ))1{0< |𝑍𝑡 | ≤𝑙∗𝑝 }d 𝑓 (|𝑍𝑡 |)

+ 𝜀 𝑓 (|𝑍𝑡 |)d(|𝑌𝑡 |𝑝 + |𝑌𝑡 |𝑝) + 𝜀d〈|𝑌· |𝑝 + |𝑌̂· |𝑝 , 𝑓 (|𝑍· |)〉(𝑡), 𝑡 < 𝜏,
(3.8)

in which 𝑍𝑡 := 𝑌𝑡 −𝑌𝑡 and 〈𝜉, 𝜂〉(𝑡) means the quadratic variation of stochastic processes (𝜉𝑡 )𝑡≥0 and
(𝜂𝑡 )𝑡≥0. On the one hand, applying the Itô-Tanaka formula to (2.5), followed by taking (1.3), (1.7), (2.3)
and 𝑓 ′′ ≤ 0 into consideration yields

d 𝑓 (|𝑍𝑡 |) ≤
(1
2
𝑓 ′ ( |𝑍𝑡 |)

(
𝜆 |𝑍𝑡 | + 4𝐾2𝜅

3 |𝑍𝑡 | + 2𝐾1 |𝑍𝑡 |𝛼
)
+ 1
𝜅
𝑓 ′′ ( |𝑍𝑡 |)

)
d𝑡

+ 𝑓 ′ ( |𝑍𝑡 |)
(〈
(𝜎̃(𝑌𝑡 ) − 𝜎̃(𝑌𝑡 ))∗n(𝑍𝑡 ),d𝑊̃𝑡

〉
+ 1√

𝜅/2

〈
n(𝑍𝑡 ),d𝑊̂𝑡

〉)
, 𝑡 < 𝜏.

On the other hand, by applying Itô’s formula once more and making use of the Lyapunov condition
(3.2), we derive that

d
(
|𝑌𝑡 |𝑝 + |𝑌̂𝑡 |𝑝

)
≤
{
−𝐶1 (𝑝)(𝑉𝑝 (𝑌𝑡 ) +𝑉𝑝 (𝑌𝑡 )) + 2𝐶2 (𝑝)

}
d𝑡

+ 𝑝〈|𝑌𝑡 |𝑝−2𝜎̃(𝑌𝑡 )∗𝑌𝑡 + |𝑌̂𝑡 |𝑝−2𝜎̃(𝑌𝑡 )∗𝑌𝑡 ,d𝑊̃𝑡 〉

+ 𝑝
√

2𝜅
〈|𝑌𝑡 |𝑝−2𝑌𝑡 + |𝑌̂𝑡 |𝑝−2Π𝑍𝑡𝑌𝑡 ,d𝑊̂𝑡 〉, 𝑡 < 𝜏.

Consequently, combining the estimates on d 𝑓 (|𝑍𝑡 |) and d
(
|𝑌𝑡 |𝑝 + |𝑌̂𝑡 |𝑝

)
with (3.8) and

1
|𝑥 − 𝑦 | 〈𝑥 − 𝑦, |𝑥 |𝑝−2𝑥 + |𝑦 |𝑝−2Π𝑥−𝑦𝑦〉 =

1
|𝑥 − 𝑦 | 〈𝑥 − 𝑦, |𝑥 |𝑝−2𝑥 − |𝑦 |𝑝−2𝑦〉, 𝑥 ≠ 𝑦

enables us to derive that

dΨ(𝑡) ≤
(
Θ1 +Θ2

)
(𝑌𝑡 ,𝑌𝑡 ) d𝑡 + d𝑀𝑡 , 𝑡 < 𝜏
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for some underlying martingale (𝑀𝑡 ), where for any 𝑥, 𝑦 ∈ R
𝑑 with 𝑥 ≠ 𝑦,

Θ1 (𝑥, 𝑦) : = (1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦))

×
(1
2
𝑓 ′ ( |𝑥 − 𝑦 |)

(
𝜆 |𝑥 − 𝑦 | + 4𝐾2𝜅

3 |𝑥 − 𝑦 | + 2𝐾1 |𝑥 − 𝑦 |𝛼
)
+ 1
𝜅
𝑓 ′′ ( |𝑥 − 𝑦 |)

)
× 1{0< |𝑥−𝑦 | ≤𝑙∗𝑝 } + 𝜀 𝑓 (|𝑥 − 𝑦 |)

(
−𝐶1 (𝑝)

(
𝑉𝑝 (𝑥) +𝑉𝑝 (𝑦)

)
+ 2𝐶2 (𝑝)

)
,

Θ2 (𝑥, 𝑦) : = 𝑝𝜀 𝑓 ′ ( |𝑥 − 𝑦 |)
(1
𝜅

��|𝑥 |𝑝−2𝑥 − |𝑦 |𝑝−2𝑦
��

+
��(𝜎̃(𝑥) − 𝜎̃(𝑦))∗

(
|𝑥 |𝑝−2𝜎̃(𝑥)∗𝑥 + |𝑦 |𝑝−2𝜎̃(𝑦)∗𝑦

) ��) .
In case of

Θ1(𝑥, 𝑦) +Θ2(𝑥, 𝑦) ≤ −𝜆★ 𝑓 (|𝑥 − 𝑦 |)
(
1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)

)
, 𝑥, 𝑦 ∈ R

𝑑 , (3.9)

where

𝜆★ :=
1

4(𝑐∗ + ℎ′ (0)(𝑙∗𝑝)1−𝜃 )
∧ 𝐶1 (𝑝)𝜀

1 + 2𝜀
,

we then at once arrive at

dΨ(𝑡) ≤ −𝜆∗Ψ(𝑡) d𝑡 + d𝑀𝑡 , 𝑡 < 𝜏.

Subsequently, via the Itô formula, the estimate

E
(
e𝜆∗ (𝑡∧𝜏 )Ψ(𝑡 ∧ 𝜏)

)
≤ Ψ(0)

is available so the assertion (3.1) is attainable by taking advantage of the fact that

(
𝑐∗ ∧ 𝑓 (𝑙∗𝑝)

)
(1 ∧ 𝑟 𝜃 ) ≤ 𝑓 (𝑟) ≤

(
𝑓 (𝑙∗𝑝) ∨

(
𝑐∗ + ℎ′ (0)(𝑙∗𝑝)1−𝜃 ) ) (1 ∧ 𝑟 𝜃 ),

and 𝑍𝑡 = 0 for 𝑡 ≥ 𝜏. On the basis of the preceding analysis, it all boils down to the confirmation of
(3.9) in order to achieve (3.1).

In accordance with the definition of the function ℎ introduced in (3.3), a direct calculation reveals
that

1
2
ℎ′ (𝑟)(𝜆𝑟 + 4𝐾2𝜅

3𝑟 + 2𝐾1𝑟
𝛼) + 1

𝜅
ℎ′′ (𝑟) = −𝑟 𝜃 , 𝑟 ∈ (0, 𝑙∗𝑝]

so that for all 𝑟 ∈ (0, 𝑙∗𝑝],

1
2
𝑓 ′ (𝑟)(𝜆𝑟 + 4𝐾2𝜅

3𝑟 + 2𝐾1𝑟
𝛼) + 1

𝜅
𝑓 ′′ (𝑟)

= 𝑐∗𝜃
(1
2
(
𝜆𝑟 𝜃 + 4𝐾2𝜅

3𝑟 𝜃 + 2𝐾1𝑟
𝜃+𝛼−1) − 1

𝜅
(1 − 𝜃)𝑟 𝜃−2) − 𝑟 𝜃 .

(3.10)

By noting that

2𝐾1𝑟
𝜃+𝛼−1 − 1

𝜅
(1 − 𝜃)𝑟 𝜃−2 ≤ 0, 𝑟 ∈ (0, 𝑟0],
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where 𝑟0 > 0 was introduced in (3.5), we right away have

1
2
𝑓 ′ (𝑟)(𝜆𝑟 + 4𝐾2𝜅

3𝑟 + 2𝐾1𝑟
𝛼) + 1

𝜅
𝑓 ′′ (𝑟) ≤ −

(
1 − 1

2
(𝜆 + 4𝐾2𝜅

3)𝑐∗𝜃
)
𝑟 𝜃 , 𝑟 ∈ (0, 𝑟0] .

Furthermore, by invoking (3.10) again, we apparently infer from 𝛼 ∈ (0,1) that for all 𝑟 ∈ [𝑟0, 𝑙
∗
𝑝],

1
2
𝑓 ′ (𝑟)(𝜆𝑟 + 4𝐾2𝜅

3𝑟 + 2𝐾1𝑟
𝛼) + 1

𝜅
𝑓 ′′ (𝑟) ≤ −

(
1 − 1

2
𝑐∗𝜃

(
𝜆 + 4𝐾2𝜅

3 + 2𝐾1𝑟
𝛼−1
0

) )
𝑟 𝜃 .

Consequently, taking the choice of 𝑐∗ > 0 given in (3.5) into consideration yields that

1
2
𝑓 ′ (𝑟)(𝜆𝑟 + 4𝐾2𝜅

3𝑟 + 2𝐾1𝑟
𝛼) + 1

𝜅
𝑓 ′′ (𝑟) ≤ −1

2
𝑟 𝜃 , 𝑟 ∈ (0, 𝑙∗𝑝] .

This definitely implies that

Θ1(𝑥, 𝑦) ≤ −1
2
|𝑥 − 𝑦 |𝜃 (1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦))1{0< |𝑥−𝑦 | ≤𝑙∗𝑝 }

+ 𝜀 𝑓 (|𝑥 − 𝑦 |)
(
−𝐶1 (𝑝)

(
𝑉𝑝 (𝑥) +𝑉𝑝 (𝑦)

)
+ 2𝐶2 (𝑝)

)
, 𝑥, 𝑦 ∈ R

𝑑 .

(3.11)

Next, by means of (1.4), (2.3) and (1.5), in addition to ℎ′ (𝑟) ≤ ℎ′ (0) for any 𝑟 ∈ [0, 𝑙∗𝑝], it follows
from Young’s inequality that for any 𝛼, 𝛽 > 0 and 𝑝 > 2,

Θ2(𝑥, 𝑦) ≤ 𝑝𝜀𝜙(|𝑥 − 𝑦 |)
(1
𝜅

2(𝑝−2)∨1(𝑝 − 1)
(
|𝑥 |𝑝−2 + |𝑦 |𝑝−2) + 2𝐾2

1
2 𝜅2 (|𝑥 |𝑝−1 + |𝑦 |𝑝−1) )

≤ 𝑝𝑐★𝜀𝜙(|𝑥 − 𝑦 |)
(
|𝑥 |𝑝−2 + |𝑦 |𝑝−2 + |𝑥 |𝑝−1 + |𝑦 |𝑝−1)

≤ 𝑐★𝜙(|𝑥 − 𝑦 |)
(
(𝑝 − 2)𝛼

(
𝜀 |𝑥 |𝑝 + 𝜀 |𝑦 |𝑝 + 4

𝑝 − 2
𝛼− 𝑝

2 𝜀
)

+ (𝑝 − 1)𝛽
(
𝜀 |𝑥 |𝑝 + 𝜀 |𝑦 |𝑝 + 2

𝑝 − 1
𝛽−𝑝𝜀

) )
, 𝑥, 𝑦 ∈ R

𝑑 ,

where 𝑐★ > 0 was defined as in (3.7), and 𝜙(𝑟) := 𝑐∗𝜃𝑟 𝜃 + ℎ′ (0)𝑟, 𝑟 ≥ 0. In particular, choosing 𝛼 =(
4𝜀
𝑝−2

) 2
𝑝

and 𝛽 =
(

4𝜀
𝑝−1

) 1
𝑝

, respectively, and taking the alternative of 𝜀 given in (3.7) and 𝑙∗𝑝 ≥ 1 into
account leads to

Θ2(𝑥, 𝑦) ≤ 21+ 4
𝑝 𝑐★

(
(𝑝 − 2)1− 2

𝑝 ∨ (𝑝 − 1)1− 1
𝑝

)
𝜀

1
𝑝 𝜙(|𝑥 − 𝑦 |)

(
1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)

)
≤ 21+ 4

𝑝 𝑐★
(
(𝑝 − 2)1− 2

𝑝 ∨ (𝑝 − 1)1− 1
𝑝

) (
𝑐∗𝜃 + ℎ′ (0)(𝑙∗𝑝)1−𝜃 )𝜀 1

𝑝 |𝑥 − 𝑦 |𝜃

×
(
1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)

)
≤ 1

8
|𝑥 − 𝑦 |𝜃

(
1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)

)
, 𝑥, 𝑦 ∈ R

𝑑 .

(3.12)
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Whereafter, for any 𝑥, 𝑦 ∈ R
𝑑 with |𝑥 − 𝑦 | ≤ 𝑙∗𝑝 , estimates (3.11) and (3.12) yield that

Θ1(𝑥, 𝑦) +Θ2(𝑥, 𝑦) ≤ −3
8
(1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)) |𝑥 − 𝑦 |𝜃 + 2𝐶2(𝑝)𝜀

(
𝑐∗ |𝑥 − 𝑦 |𝜃 + ℎ′ (0) |𝑥 − 𝑦 |

)
≤ −1

4
(1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)) |𝑥 − 𝑦 |𝜃

≤ − 1
4(𝑐∗ + ℎ′ (0)(𝑙∗𝑝)1−𝜃 )

𝑓 (|𝑥 − 𝑦 |) (1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)),

(3.13)

where in the first inequality we also used the fact that ℎ(𝑟) ≤ ℎ′ (0)𝑟 for all 𝑟 ∈ [0, 𝑙∗𝑝], in the second
inequality we employed the choice of 𝜀 provided in (3.6), and in the last inequality we exploited the
fact that

𝑐∗𝑟 𝜃 ≤ 𝑓 (𝑟) ≤
(
𝑐∗ + ℎ′ (0)(𝑙∗𝑝)1−𝜃 )𝑟 𝜃 , 𝑟 ∈ [0, 𝑙∗𝑝] .

For any 𝑥, 𝑦 ∈ R
𝑑 with |𝑥− 𝑦 | > 𝑙∗𝑝 (which obviously indicates (𝑥, 𝑦) ∉A𝑝), with the aid of 𝑓 ′ (𝑟) = 0

for any 𝑟 > 𝑙∗𝑝 , we deduce from the notions of Θ1 and Θ2 that

Θ1(𝑥, 𝑦) +Θ2(𝑥, 𝑦) ≤ −1
2
𝐶1 (𝑝)𝜀 𝑓 (|𝑥 − 𝑦 |)

(
𝑉𝑝 (𝑥) +𝑉𝑝 (𝑦)

)
= −

𝐶1(𝑝)𝜀(𝑉𝑝 (𝑥) +𝑉𝑝 (𝑦))
2(1 + 𝜀(𝑉𝑝 (𝑥) +𝑉𝑝 (𝑦)))

𝑓 (|𝑥 − 𝑦 |)
(
1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)

)

≤ −𝐶1(𝑝)𝜀
1 + 2𝜀

𝑓 (|𝑥 − 𝑦 |)
(
1 + 𝜀𝑉𝑝 (𝑥) + 𝜀𝑉𝑝 (𝑦)

)
,

(3.14)

where the last line is due to 𝑉𝑝 ≥ 1.
At length, (3.9) is verifiable by combining (3.13) with (3.14) concerning the cases |𝑥 − 𝑦 | ≤ 𝑙∗𝑝 and

|𝑥 − 𝑦 | > 𝑙∗𝑝 for all 𝑥, 𝑦 ∈ R
𝑑 , respectively.

Once (3.1) is available, the existence and uniqueness of invariant probability measures in P𝜓𝑝,𝜃 (R𝑑)
can be derived by following exactly the line in [5, Corollary 4.11].

With Proposition 3.1 at hand, we are in position to finish the

Proof of Theorem 1.2. Inspired essentially by the procedure in [19], we shall decompose the additive
functional 𝐴̄ 𝑓 ,𝑥

𝑡 := 1√
𝑡

∫ 𝑡

0 𝑓 (𝑋 𝑥
𝑠 ) d𝑠 for 𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑) with 𝜇( 𝑓 ) = 0 into two parts, where the one part

is concerned with the additive functional of a martingale under consideration, and the other part is
the corresponding remainder term. In order to achieve the desired convergence rate in the CLT for the
additive functional 𝐴̄ 𝑓 ,𝑥

𝑡 , we shall adopt the convergence rate concerning the CLT for martingales (see
e.g. [6, Theorem 3.10]) to treat the martingale part involved, and meanwhile exploit the contractive
property (i.e., (3.1)) to handle the remainder term.

In following proof, we shall fix 𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑) with 𝜇( 𝑓 ) = 0. For 𝑥 ∈ R
𝑑 and 𝑡 ≥ 1, let

𝑀
𝑓 ,𝑥
𝑡 =

∫ 𝑡

0
{ 𝑓 (𝑋 𝑥

𝑠 ) − (𝑃𝑠 𝑓 )(𝑥)} d𝑠 +
∫ ∞

𝑡
{(𝑃𝑠−𝑡 𝑓 )(𝑋 𝑥

𝑡 ) − (𝑃𝑠 𝑓 )(𝑥)} d𝑠.
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It can readily be noted that the additive functional 𝐴̄ 𝑓 ,𝑥
𝑡 can be rewritten as below:

𝐴̄
𝑓 ,𝑥
𝑡 =

1√
�𝑡�

𝑀
𝑓 ,𝑥
�𝑡 � +

( (
�𝑡�−

1
2 − 𝑡−

1
2
)
𝑀

𝑓 ,𝑥
�𝑡 � ,

+ 𝑡−
1
2

( ∫ 𝑡

�𝑡 �
𝑓 (𝑋 𝑥

𝑠 ) d𝑠 +
∫ ∞

0

(
(𝑃𝑠 𝑓 )(𝑥) − (𝑃𝑠 𝑓 )(𝑋 𝑥

�𝑡 � )
)

d𝑠
))

=: 𝑀̄ 𝑓 ,𝑥
𝑡 + 𝑅 𝑓 ,𝑥

𝑡 .

(3.15)

Recall from [19, Lemma 2.9] the basic fact that for any real-valued random variables 𝜉, 𝜂 and any
𝛼 > 0, 𝜎 ≥ 0,

sup
𝑧∈R

��P(𝜉 ≤ 𝑧) −Φ𝜎 (𝑧)
�� ≤ sup

𝑧∈R

��P(𝜂 ≤ 𝑧) −Φ𝜎 (𝑧)
�� + P(|𝜉 − 𝜂 | > 𝛼) + 𝑐𝜎𝛼,

where 𝑐𝜎 := 1
𝜎
√

2𝜋
1{𝜎>0} + 21{𝜎=0} . Thus, the decomposition (3.15) enables us to derive that for any

𝛼 > 0 and 𝜎 ≥ 0,

sup
𝑧∈R𝑑

��P( 𝐴̄ 𝑓 ,𝑥
𝑡 ≤ 𝑧

)
−Φ𝜎 (𝑧)

�� ≤ sup
𝑧∈R𝑑

��P(𝑀̄ 𝑓 ,𝑥
�𝑡 � ≤ 𝑧

)
−Φ𝜎 (𝑧)

�� + P
(
|𝑅 𝑓 ,𝑥

𝑡 | > 𝛼
)
+ 𝑐𝜎𝛼.

Hence, the desired assertion (3.1) follows as soon as, for any 𝜀 ∈ (0,1/4), there exists a constant
𝐶𝜀 (𝑥) > 0 such that

P
(
|𝑅 𝑓 ,𝑥

𝑡 | > 𝑡−
1
4
)
≤ 𝐶𝜀 (𝑥)𝑡−

1
4 , sup

𝑧∈R𝑑

��P(𝑀̄ 𝑓 ,𝑥
�𝑡 � ≤ 𝑧

)
−Φ𝜎 (𝑧)

�� ≤ 𝐶𝜀 (𝑥)𝑡−
1
4+𝜀 . (3.16)

Due to �𝑡�−
1
2 − 𝑡− 1

2 < 𝑡−
1
2 for any 𝑡 ≥ 1, it follows from Chebyshev’s inequality that for 𝑡 ≥ 1,

P
(
|𝑅 𝑓 ,𝑥

𝑡 | > 𝑡−
1
4
)
≤ 𝑡

1
4

( (
�𝑡�−

1
2 − 𝑡−

1
2
)
E

��� ∫ �𝑡 �

0
𝑓 (𝑋 𝑥

𝑠 ) d𝑠
��� + 𝑡− 1

2 Θ𝑝 (𝑡, 𝑥)
)
, (3.17)

where

Θ𝑝 (𝑡, 𝑥) :=
∫ 𝑡

�𝑡 �
E| 𝑓 (𝑋 𝑥

𝑠 ) | d𝑠 + 2
∫ ∞

0

(
| (𝑃𝑠 𝑓 )(𝑥) | + E

��(𝑃𝑠 𝑓 )(𝑋 𝑥
�𝑡 � )

��) d𝑠.

For any 𝑞 ≥ 2, applying Itô’s formula followed by taking advantage of (3.2) yields that for some con-
stant 𝐶1 (𝑞) > 0,

sup
𝑡≥𝑠

E|𝑋 𝑥
𝑡 |𝑞 ≲ 1 + E|𝑋 𝑥

𝑠 |𝑞 , 𝑠 ≥ 0 (3.18)

so that, for 𝑓 ∈ 𝐶𝑝,𝜃 (R𝑑),

sup
𝑡≥𝑠

E 𝑓 (𝑋 𝑥
𝑡 ) ≲ 1 + E|𝑋 𝑥

𝑠 |𝑝 ≲ 1 + |𝑥 |𝑝 , 𝑠 ≥ 0. (3.19)

Accordingly, Proposition 3.1, together with 𝜇( 𝑓 ) = 0, implies that

Θ𝑝 (𝑡, 𝑥) ≲ 1 + |𝑥 |𝑝 + ‖ 𝑓 ‖𝑝,𝜃

∫ ∞

0
e−𝜆∗𝑠 (1 + |𝑥 |𝑝 + E|𝑋 𝑥

�𝑡 � |
𝑝 ) d𝑠≲ 1 + |𝑥 |𝑝 . (3.20)
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Further, owing to the Markov property of (𝑋 𝑥
𝑡 )𝑡≥0, Proposition 3.1 and (3.18), we deduce that

E

��� ∫ �𝑡 �

0
𝑓 (𝑋 𝑥

𝑠 ) d𝑠
���2 = 2

∫ �𝑡 �

0

∫ �𝑡 �

𝑠
E
(
𝑓 (𝑋 𝑥

𝑠 )(𝑃𝑢−𝑠 𝑓 )(𝑋 𝑥
𝑠 )
)

d𝑢d𝑠

≲ ‖ 𝑓 ‖2
𝑝,𝜃

∫ �𝑡 �

0

∫ �𝑡 �

𝑠
e−𝜆∗ (𝑢−𝑠) (1 + E|𝑋 𝑥

𝑠 |2𝑝 ) d𝑢d𝑠

≲ ‖ 𝑓 ‖2
𝑝,𝜃 (1 + |𝑥 |2𝑝) �𝑡� .

This further gives that

(
�𝑡�−

1
2 − 𝑡−

1
2
)
E

��� ∫ �𝑡 �

0
𝑓 (𝑋 𝑥

𝑠 ) d𝑠
���≲ ‖ 𝑓 ‖𝑝,𝜃 (1 + |𝑥 |𝑝)

(
𝑡

1
2 − �𝑡�

1
2
)
𝑡−

1
2 ≲ ‖ 𝑓 ‖𝑝,𝜃 (1 + |𝑥 |𝑝)𝑡−

1
2 , (3.21)

where the second inequality is valid thanks to 𝑡
1
2 − �𝑡� 1

2 ≤ (𝑡− �𝑡�) 1
2 ≤ 1. Subsequently, plugging (3.20)

and (3.21) back into (3.17) guarantees the validity of the first statement in (3.16).
We proceed to verify the second statement in (3.16). In light of Proposition 3.1 and by invoking the

semigroup property of (𝑃𝑡 )𝑡≥0, it is easy to see that (𝑀 𝑓 ,𝑥
𝑡 )𝑡≥0 is a square integrable martingale with

the zero mean. Note that (𝑀 𝑓 ,𝑥
𝑛 )𝑛≥1 can be reformulated as follows: for any integer 𝑛 ≥ 1,

𝑀
𝑓 ,𝑥
𝑛 =

𝑛∑
𝑖=1

𝑍
𝑓 ,𝑥
𝑖 with 𝑍

𝑓 ,𝑥
𝑖 := 𝑀

𝑓 ,𝑥
𝑖 −𝑀

𝑓 ,𝑥
𝑖−1 .

Trivially, according to the definition of 𝑀 𝑓 ,𝑥
𝑛 , we have for 1 ≤ 𝑖 ≤ 𝑛,

𝑍
𝑓 ,𝑥
𝑖 =

∫ 𝑖

𝑖−1
𝑓 (𝑋 𝑥

𝑠 )d𝑠 + 𝑅 𝑓 (𝑋 𝑥
𝑖 ) − 𝑅 𝑓 (𝑋 𝑥

𝑖−1) with 𝑅 𝑓 (𝑥) :=
∫ ∞

0
(𝑃𝑠 𝑓 )(𝑥) d𝑠.

By means of the property of conditional expectation and the flow property of (𝑋 𝑥
𝑡 )𝑡≥0, it follows

readily that
𝑛∑

𝑖=1

E
��𝑍 𝑓 ,𝑥

𝑖

��2 = 𝑛∑
𝑖=1

E(E(|𝑍 𝑓 ,𝑥
𝑖 |2 |F𝑖−1)) =

𝑛∑
𝑖=1

E𝜑 𝑓 (𝑋 𝑥
𝑖−1),

where

𝜑 𝑓 (𝑥) := E

��� ∫ 1

0
𝑓 (𝑋 𝑥

𝑠 ) + 𝑅 𝑓 (𝑋 𝑥
1 ) − 𝑅 𝑓 (𝑥)

���2.
By applying Proposition 3.1 and following exactly the routine of [1, Lemma 4.1& Lemma 4.2], we can
deduce that 𝜑 𝑓 ∈ 𝐶2𝑝,𝜃 (R𝑑) satisfying

0 ≤ 𝜇(𝜑 𝑓 ) = 2𝜇( 𝑓 𝑅 𝑓 ) <∞, ‖𝜑 𝑓 ‖2𝑝,𝜃 ≲ ‖ 𝑓 ‖2
𝑝,𝜃 . (3.22)

In addition, for any 𝑞 > 1
2 and 1 ≤ 𝑖 ≤ 𝑛, we apparently have,

E
��𝑍 𝑓 ,𝑥

𝑖

��4𝑞 ≤ 34𝑞−1 ( ∫ 𝑖

𝑖−1
E| 𝑓 (𝑋 𝑥

𝑠 ) |4𝑞 d𝑠 + E|𝑅 𝑓 (𝑋 𝑥
𝑖 ) |

4𝑞 + E|𝑅 𝑓 (𝑋 𝑥
𝑖−1) |

4𝑞 ) ,
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which, besides the fact that

|𝑅 𝑓 (𝑥) | ≲ ‖ 𝑓 ‖𝑝,𝜃 (1 + |𝑥 |𝑝), 𝑥 ∈ R
𝑑 ,

(3.18), and (3.19), leads to

max
1≤𝑖≤𝑛

E|𝑍 𝑓 ,𝑥
𝑖 |4𝑞 ≲ 1 + |𝑥 |4𝑝𝑞 , 𝑛 ≥ 1.

As a consequence, by applying the Berry-Esseen type estimate associated with martingales (see, for
instance, [2, Theorem 3.10]) we derive that

sup
𝑧∈R

���P(𝑀 𝑓 ,𝑥
𝑛 /

√
𝜇(𝜑 𝑓 )𝑛 ≤ 𝑧

)
−Φ1 (𝑧)

���
≲

(
𝑛−𝑞 + (𝜇(𝜑 𝑓 ))−2𝑞

E

���1
𝑛

𝑛∑
𝑖=1

𝜑 𝑓 (𝑋 𝑥
𝑖−1) − 𝜇(𝜑 𝑓 )

���2𝑞) 1
4𝑞+1

≲ 𝑛
− 𝑞

4𝑞+1 ,

(3.23)

where in the last display we also utilized the fact that

E

���1
𝑛

𝑛∑
𝑖=1

𝜑 𝑓 (𝑋 𝑥
𝑖−1) − 𝜇(𝜑 𝑓 )

���2𝑞
≲ 𝑛−𝑞 (3.24)

by tracing exactly the line to derive (2.14) and taking Proposition 3.1 into account. Concerning or the
case 𝜎2

∗ := 𝜇(𝜑 𝑓 ) > 0, taking advantage of (3.23) gives that

sup
𝑧∈R𝑑

���P(𝑀̄ 𝑓 ,𝑥
𝑛 ≤ 𝑧

)
−Φ𝜎∗ (𝑧)

��� = sup
𝑧∈R𝑑

���P(𝑀 𝑓 ,𝑥
𝑛 /(

√
𝑛𝜎∗) ≤ 𝑧/𝜎∗

)
−Φ𝜎∗ (𝑧)

���
= sup

𝑧∈R𝑑

���P(𝑀 𝑓 ,𝑥
𝑛 /(

√
𝑛𝜎∗) ≤ 𝑧

)
−Φ1 (𝑧)

���≲ 𝑛
− 𝑞

4𝑞+1 .

As a result, the second statement in (3.16) follows directly for the case 𝜇(𝜑 𝑓 ) > 0.
Note from Chebyshev’s inequality that for a random variable 𝜉 and any 0 ≠ 𝑧 ∈ R,

(1 ∧ |𝑧 |)
��P(𝜉 ≤ 𝑧) − 1[0,∞) (𝑧)

�� = (1 ∧ |𝑧 |)
(
P(𝜉 > 𝑧)1{𝑧>0} + P(−𝜉 ≥ −𝑧)1{𝑧<0}

)
≤ E|𝜉 |.

Therefore, with regard to the setting 𝜎2
∗ = 𝜇(𝜑 𝑓 ) = 0, for any integer 𝑛 ≥ 1, we have

sup
𝑧∈R

��P(𝑀̄ 𝑓 ,𝑥
𝑛 ≤ 𝑧

)
−Φ0 (𝑧)

�� ≤ 1
√
𝑛

(
E
��𝑀 𝑓 ,𝑥

𝑛

��2) 1
2 .

This, together with

E|𝑀 𝑓 ,𝑥
𝑛 |2 = 2

𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖

E(𝑍 𝑓 ,𝑥
𝑖 𝑍

𝑓 ,𝑥
𝑗 ) =

𝑛∑
𝑖=1

E|𝑍 𝑓 ,𝑥
𝑖 |2 =

𝑛∑
𝑖=1

E𝜑 𝑓 (𝑋 𝑥
𝑖−1)

by using the fact that E(𝑍 𝑓 ,𝑥
𝑗 |F𝑖) = 0 for 𝑗 > 𝑖, and (3.24) with 𝜎2

∗ = 𝜇(𝜑 𝑓 ) = 0, implies

sup
𝑧∈R

��P(𝑀̄ 𝑓 ,𝑥
𝑛 ≤ 𝑧

)
−Φ0 (𝑧)

��≲ 𝑛−
1
4 .

Whence, the second statement concerned with the case 𝜎2
∗ = 𝜇(𝜑 𝑓 ) = 0 in (3.16) is verifiable.



Limit theorems for SDEs with irregular drifts 1729

4. Proof of Theorem 1.3

By following respectively the procedures to implement the proof of Theorems 1.1 and 1.2, for the
proof of Theorem 1.3, the key ingredient is to demonstrate the contractive property under the quasi-
Wasserstein distance. More precisely, we shall prove the following statement.

Proposition 4.1. Under Assumptions (A𝑏) and (H𝜎), for any 𝑝 ≥ 2, 𝜃 ∈ (0,1] and 𝜇, 𝜈 ∈ P𝜓𝑝,𝜃 (R),
there exist constants 𝐶∗ ≥ 1, 𝜆∗ > 0 such that

W𝜓𝑝,𝜃 (𝜇𝑃𝑡 , 𝜈𝑃𝑡 ) ≤ 𝐶∗e−𝜆∗𝑡
W𝜓𝑝,𝜃 (𝜇, 𝜈), 𝑡 ≥ 0, (4.1)

where 𝜇𝑃𝑡 denotes the law of 𝑋𝑡 solving (1.12) with the initial distribution L𝑋0 = 𝜇. (4.1) further
implies that (𝑋𝑡 )𝑡≥0 solving (1.12) has a unique invariant probability measure in P𝜓𝑝,𝜃 (R).

Compared with the setups treated in Subsections 1.1 and 1.2, the outstanding feature of the frame-
work in Subsection 1.3 is due to the discontinuity of drifts associated with SDEs under investigation.
Thus, the approaches in tackling Propositions 2.1 and 3.1 cannot be applied directly. In view of this, to
handle the difficulty arising from the discontinuity of the drift term 𝑏, we adopt the following transfor-
mation (see, for instance, [15,16])

𝑈 (𝑥) :=
𝑘∑

𝑖=1

𝛼𝑖 (𝑥 − 𝜉𝑖) |𝑥 − 𝜉𝑖 |𝜙((𝑥 − 𝜉𝑖)/𝛿), 𝑥 ∈ R, (4.2)

where

𝛼𝑖 :=
𝑏(𝜉𝑖−) − 𝑏(𝜉𝑖+)

2𝜎(𝜉𝑖)2 , 𝜙(𝑥) := (1 − 𝑥2)41[−1,1] (𝑥),

and

𝛿 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ∧ 𝜀★

32|𝛼1 |
, 𝑘 = 1,

1 ∧ 𝜀★

32 max{|𝛼1 |, · · · , |𝛼𝑘 |}
∧
( 𝜀★

2
min{𝜉2 − 𝜉1, · · · , 𝜉𝑘 − 𝜉𝑘−1}

)
, 𝑘 ≥ 2,

(4.3)

where the quantity 𝜀★ > 0 was introduced in (1.14).
The transformation 𝑈 given in (4.2) enjoys nice properties. In particular, 𝑈 and its derivative can be

sufficiently small by choosing appropriate parameter 𝛿 involved in the definition of 𝑈. In terms of the
definition of 𝛿 given in (4.3) and the prerequisite 𝜀★ ∈ (0,1/2], we have

|𝑈 (𝑥) | ≤ 𝛿2
𝑘∑

𝑖=1

|𝛼𝑖 |1[ 𝜉𝑖−𝛿, 𝜉𝑖+𝛿 ] (𝑥) ≤ 𝛿max{|𝛼1 |, · · · , |𝛼𝑘 |} ≤
𝜀★

1 + 𝜀★
≤ 1

3
, 𝑥 ∈ R. (4.4)

Moreover, a direct calculation shows that the function 𝑈 is differentiable such that

𝑈′ (𝑥) = 2
𝑘∑

𝑖=1

𝛼𝑖 |𝑥 − 𝜉𝑖 |
(
1 − ((𝑥 − 𝜉𝑖)/𝛿)2)3 (1 − 5((𝑥 − 𝜉𝑖)/𝛿)2)21[ 𝜉𝑖−𝛿, 𝜉𝑖+𝛿 ] (𝑥), 𝑥 ∈ R.
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This obviously implies that

|𝑈′ (𝑥) | ≤ 32𝛿
𝑘∑

𝑖=1

|𝛼𝑖 |1[ 𝜉𝑖−𝛿, 𝜉𝑖+𝛿 ] (𝑥) ≤ 32𝛿max{|𝛼1 |, · · · , |𝛼𝑘 |} ≤ 𝜀★ ≤ 1
2
, (4.5)

by taking advantage of the alternative of 𝛿 and 𝜀★ ∈ (0,1/2]. Furthermore, we define the transformation

𝐺 (𝑥) := 𝑥 +𝑈 (𝑥), 𝑥 ∈ R. (4.6)

Apparently, (4.5) yields that

1
2
≤ 1 − |𝑈′ (𝑥) | ≤ 𝐺′ (𝑥) ≤ 1 + |𝑈′ (𝑥) | ≤ 3

2
. (4.7)

Consequently, we conclude that the transformation 𝑥 ↦→𝐺 (𝑥) is a diffeomorphism.
Note that 𝑈′ is differentiable on each interval 𝐼𝑖 , 𝑖 ∈ S𝑘 so 𝑈′ is piecewise differentiable. Then, for

𝑌𝑡 :=𝐺 (𝑋𝑡 ), applying Itô’s formula yields

d𝑌𝑡 = 𝑏̃(𝑌𝑡 ) d𝑡 + 𝜎̃(𝑌𝑡 ) d𝑊𝑡 , (4.8)

where

𝑏̃(𝑥) := (𝐺′𝑏)(𝐺−1 (𝑥)) + 1
2
(𝐺′′𝜎)(𝐺−1 (𝑥)), 𝜎̃(𝑥) := (𝐺′𝜎)(𝐺−1 (𝑥)), 𝑥 ∈ R.

According to [16, Lemma 2], the SDE (4.8) is strongly well-posed via extending 𝑈′′ : ∪𝑘+1
𝑖=1 𝐼𝑖 → R to

𝑈 : R→ R by in particular taking

𝑈′′ (𝜉𝑖) = 2
(
𝛼𝑖 +

𝑏(𝜉𝑖+) − 𝑏(𝜉𝑖−)
𝜎(𝜉𝑖)2

)
, 𝑖 ∈ S𝑘 .

With the preceding preliminaries, we start to complete the

Proof of Proposition 4.1. Below, let (𝑋𝜇
𝑡 )𝑡≥0 and (𝑌 𝜇

𝑡 )𝑡≥0 be the solutions to (1.12) and (4.8) with

L𝑋0 = 𝜇 ∈ P (R) and L𝑌0 = 𝜇 ∈ P (R), respectively. Due to the Kontorovich dual, besides 𝑌 𝜇◦𝐺−1

𝑡 =

𝐺 (𝑋𝜇
𝑡 ) and 𝑌 𝜈◦𝐺−1

𝑡 =𝐺 (𝑋𝜈
𝑡 ) for 𝜇, 𝜈 ∈ P𝜓𝑝,𝜃 (R), we find that

W𝜓𝑝,𝜃 (𝜇𝑃𝑡 , 𝜈𝑃𝑡 ) = sup
‖ 𝑓 ‖𝜓𝑝,𝜃 ≤1

��E( 𝑓 ◦𝐺−1)(𝑌 𝜇◦𝐺−1

𝑡 ) − E( 𝑓 ◦𝐺−1)(𝑌 𝜈◦𝐺−1

𝑡 )
��. (4.9)

Next, by means of the mean value theorem and (4.7), it follows that

��𝐺−1(𝑥) −𝐺−1(𝑦)
�� ≤ 2|𝑥 − 𝑦 |, |𝐺 (𝑥) −𝐺 (𝑦) | ≤ 3

2
|𝑥 − 𝑦 |, 𝑥, 𝑦 ∈ R. (4.10)

This further implies that for any 𝑥, 𝑦 ∈ R,

| ( 𝑓 ◦𝐺−1)(𝑥) − ( 𝑓 ◦𝐺−1)(𝑦) | + |( 𝑓 ◦𝐺)(𝑥) − ( 𝑓 ◦𝐺)(𝑦) | ≤ 𝐶∗
𝑝 ‖ 𝑓 ‖𝜓𝑝,𝜃𝜓𝑝,𝜃 (𝑥, 𝑦), (4.11)

where

𝐶∗
𝑝 :=

(
2𝜃 (22𝑝−1 ∨

(
1 + 2𝑝 |𝐺−1(0) |𝑝)

) )
∨
(
(3/2) 𝜃 ((3𝑝/2) ∨ (1 + 2𝑝 |𝐺 (0) |𝑝)

) )
.
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Subsequently, via the Kontorovich dual once more, along with (4.9) and (4.11), we deduce that

W𝜓𝑝,𝜃 (𝜇𝑃𝑡 , 𝜈𝑃𝑡 ) ≤ 𝐶∗
𝑝W𝜓𝑝,𝜃

(
(𝜇 ◦𝐺−1)𝑃̃𝑡 , (𝜈 ◦𝐺−1)𝑃̃𝑡

)
, 𝜇, 𝜈 ∈ P𝜓𝑝,𝜃 (R) (4.12)

where (𝜇 ◦𝐺−1)𝑃̃𝑡 := L
𝑌

𝜇◦𝐺−1
𝑡

. Provided that there exist constants 𝐶★, 𝜆★ > 0 such that

W𝜓𝑝,𝜃

(
𝜇𝑃̃𝑡 , 𝜈𝑃̃𝑡

)
≤ 𝐶★e−𝜆★𝑡

W𝜓𝑝,𝜃

(
𝜇, 𝜈

)
, 𝜇, 𝜈 ∈ P𝜓𝑝,𝜃 (R) (4.13)

then we derive from (4.12) that

W𝜓𝑝,𝜃 (𝜇𝑃𝑡 , 𝜈𝑃𝑡 ) ≤ 𝐶∗
𝑝𝐶

★e−𝜆★𝑡
W𝜓𝑝,𝜃

(
𝜇 ◦𝐺−1, 𝜈 ◦𝐺−1) ≤ (

𝐶∗
𝑝

)2
𝐶★e−𝜆★𝑡

W𝜓𝑝,𝜃

(
𝜇, 𝜈

)
,

where the second inequality is valid due to the Kontorovich dual again and (4.11).
Based on the analysis above, to achieve (4.1), it remains to claim that (4.13) is verifiable. By applying

Proposition 3.1 with 𝑏0 = 0, for the validity of (4.13), it amounts to proving that

(H𝜎̃) there exist constants 𝐾∗ > 0 and 𝜅∗ ≥ 1 such that for all 𝑥, 𝑦 ∈ R,

1
𝜅∗

≤ 𝜎̃(𝑥) ≤ 𝜅∗, |𝜎̃(𝑥) − 𝜎̃(𝑥) | ≤ 𝐾∗ |𝑥 − 𝑦 |;

(H𝑏̃) there exist constants 𝜆0, 𝜆
∗
0,𝐶𝜆∗

0
> 0 such that for all 𝑥 ∈ R,

2(𝑥 − 𝑦)(𝑏̃(𝑥) − 𝑏̃(𝑦)) ≤ 𝜆0(𝑥 − 𝑦)2, 𝑥 𝑏̃(𝑥) ≤ −𝜆∗0𝑥
2 +𝐶𝜆∗

0
.

By recalling the definition of 𝜎̃, we obtain from (H𝜎) with 𝑑 = 1 and (4.7) that for any 𝑥, 𝑦 ∈ R,

1
4𝜅

≤ 𝜎̃(𝑥)2 ≤ 4𝜅, |𝜎̃(𝑥) − 𝜎̃(𝑦) | ≤
√
𝜅 | (𝐺′ ◦𝐺−1)(𝑥) − (𝐺′ ◦𝐺−1)(𝑦) | + 3

√
𝐾2 |𝑥 − 𝑦 |.

Notice that

𝐺′′ (𝑥) = −2𝛼𝑖𝜓𝑖 (𝑥), 𝑥 ∈ (𝜉𝑖 − 𝜀, 𝜉𝑖); 𝐺′′ (𝑥) = 2𝛼𝑖𝜓𝑖 (𝑥), 𝑥 ∈ (𝜉𝑖 , 𝜉𝑖 + 𝜀),

and that, otherwise, 𝐺′′ (𝑥) = 0. Thus, a straightforward calculation, besides the continuity of 𝐺′ : R→
R, reveals that there exists a constant 𝑐0 > 0 such that

|𝐺′ (𝑥) −𝐺′ (𝑦) | ≤ 𝑐0 |𝑥 − 𝑦 |, 𝑥, 𝑦 ∈ R (4.14)

so by invoking (4.10) there is a constant 𝑐1 > 0 satisfying that

|𝜎̃(𝑥) − 𝜎̃(𝑦) | ≤ 𝑐1 |𝑥 − 𝑦 |, 𝑥, 𝑦 ∈ R.

Therefore, we conclude that the assertion (H𝜎̃) follows.
By following the exact line to derive [16, (A2’)(i)], there exists a constant 𝑐2 > 0 such that

2(𝑥 − 𝑦)(𝑏̃(𝑥) − 𝑏̃(𝑦)) ≤ 𝑐2 |𝑥 − 𝑦 |2, 𝑥, 𝑦 ∈ R.

Next, by taking the definition of 𝑏̃ into consideration, we find readily from (4.5) and (4.4) that for
some constant 𝑐3 > 0,

𝑥𝑏̃(𝑥) =
(
𝐺−1(𝑥) +𝑈 (𝐺−1(𝑥))

) (
𝑏(𝐺−1 (𝑥)) + (𝑈′𝑏)(𝐺−1 (𝑥))

)
+ 1

2
𝑥(𝐺′′𝜎)(𝐺−1 (𝑥))
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≤ 𝐺−1(𝑥)𝑏(𝐺−1(𝑥)) + |𝐺−1 | (𝑥) |𝑈′𝑏 | (𝐺−1(𝑥))

+ |𝑈 | (𝐺−1(𝑥))
(
|𝑏 | (𝐺−1(𝑥)) + |𝑈′𝑏 | (𝐺−1(𝑥))

)
+ 1

2
|𝑥 | · |𝐺′′𝜎 | (𝐺−1(𝑥))

≤ 𝐺−1(𝑥)𝑏(𝐺−1(𝑥)) + 𝜀★ (1 + |𝐺−1(𝑥) |
)
|𝑏 | (𝐺−1(𝑥)) + 𝑐3 |𝑥 |, 𝑥 ∈ R,

where in the identity we used 𝐺 (𝑥) = 𝑥 +𝑈 (𝑥) and in the last inequality we employed (1.5) and (4.14).
Whereafter, (1.14) yields that

𝑥𝑏̃(𝑥) ≤ 𝐶★ − 𝜆∗(𝐺−1(𝑥))2 + 𝑐3 |𝑥 |, 𝑥 ∈ R.

This, together with the fact that

| (𝐺−1(𝑥) |2 = |𝑥 −𝑈 ((𝐺−1(𝑥)) |2 ≥ 1
2
|𝑥2 | − |𝑈 ((𝐺−1(𝑥)) |2 ≥ 1

2
|𝑥2 | − 1

9
, 𝑥 ∈ R,

by making use of the basic inequality: (𝑎 − 𝑏)2 ≥ 1
2𝑎

2 − 𝑏2 for 𝑎, 𝑏 ∈ R and (4.4), leads to

𝑥𝑏̃(𝑥) ≤ 𝑐4 − 𝑐5 |𝑥 |2, 𝑥 ∈ R

for some constants 𝑐4, 𝑐5 > 0. As a consequence, we reach the assertion (H𝑏̃).
Based on the contractivity (4.13), the transformed SDE (4.8) has a unique invariant probability mea-

sure 𝜈 ∈ P𝜓𝑝,𝜃 (R) by following the line of [5, Corollary 4.11]. Note that the transformation 𝐺 con-
structed above is a diffeomorphism. Thus, via integrals with respect to image measures, we conclude
that 𝜇 := 𝜈 ◦𝐺 ∈ P𝜓𝑝,𝜃 (R) is the unique invariant probability measure of (𝑋𝑡 )𝑡≥0 solving (1.12).

Finally, with the aid of Proposition 4.1, we complete

Proof of Theorem 1.3. Applying Proposition 4.1 yields that for any 𝑓 ∈ 𝐶𝑝,𝜃 (R).
��(𝑃𝑡 𝑓 )(𝑥) − 𝜇( 𝑓 )

�� ≤ ‖ 𝑓 ‖𝑝,𝜃W𝜓𝑝,𝜃 (𝛿𝑥𝑃𝑡 , 𝜇𝑃𝑡 ) ≤ 𝐶∗e−𝜆∗𝑡 (|𝑥 |𝑝 + 𝜇(| · |𝑝)), 𝑡 ≥ 0, 𝑥 ∈ R, (4.15)

With this estimate at hand, the strong LLN can be verifiable by tracing the line in the proof of Theo-
rem 1.1 and, in particular, replacing |𝑋𝑡 | in (2.14), (2.17) and (2.18) by |𝑋𝑡 |𝑝 , respectively. Moreover,
with the help of (4.15), the CLT can de derived by following exactly the procedure to tackle Theorem 1.2
so we omit the corresponding details herein.
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