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Abstract

In this paper, we investigate the regularities for a class of distribution dependent
SDEs driven by two independent fractional noises B¥ and BY with Hurst param-
eters H € (0,1) and H € (1/2,1). We establish the log-Harnack inequalities and
Bismut formulas for the Lions derivative to this type of equations with distribution
dependent noise, in both non-degenerate and degenerate cases. Our proofs consist
of utilizing coupling arguments which are indeed backward couplings introduced by
F.-Y. Wang [29], together with a careful analysis of fractional derivative operator.
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1 Introduction

Let Z(R%) be the space of all probability measures on R? equipped with the weak topology.
For any 6 > 1, set Zp(R?) := {u € LR : u(] - %)Y} < co. In this article, we are
concerned with a distribution dependent stochastic differential equations (DDSDEs) of
the form

(1.1) AX; = b(X,, Lx,)dt + o d BY + 6,( %y, )dBE, Xo=¢,
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where .Zx, denotes the law of X;, b: [0,T] x R x Z(R?) - R% 0 :[0,7] - RI®@R% 5 :
0, T] x Z(R?) — RIQRY, £ is an Re%-valued random variable, and BY BH are respectively
two independent fractional Brownian motions (FBMs) with Hurst parameters H € (0, 1)
and H € (1/2,1) independent of €.

The FBM is commonly viewed as the simplest stochastic process modelling time corre-
lated noise. A d-dimensional FBM (B/")ico1) = (B ... ,Bfl’d)te[o,;p] with Hurst param-
eter H € (0,1) is a centered, H-self similar Gaussian process with the covariance function
E(B/"BI7) = Ry(t, 5); ;, where

1
(1.2) Ry(t,s) == 3 (7 + 2 — |t —sP"), t,s€[0,T).

This implies that the FBM generalizes the standard Wiener process (H = 1/2) and has
stationary increments. However, the increments are correlated with a power law correlation
decay, which asserts the FBM is a non-Markovian process that is the dominant feature of
equation (1.1). This means that the techniques based on the It6 calculus are not applicable
and then substantial new difficulties will appear in this setting.

DDSDE is also called McKean-Vlasov or mean-field SDE, which was first introduced
in the pioneering work [21] to model plasma dynamics. The importance of DDSDEs is due
to their description of limiting behaviours of individual particles which interact with each
other in a mean-field sense, when the number of particles tends to infinity. Another impor-
tant feature of DDSDEs is their intrinsic link with nonlinear Fokker-Planck equations that
characterize the evolution of the marginal laws of DDSDEs. For these reasons, DDSDEs
appear widely in applications, including fluid dynamics, mean-field games, biology and
mathematical finance etc, and then have received increasing attentions, see [5, 8, 17, 18]
and the references therein. Recently, DDSDEs have been applied in [6, 9, 19, 25] to study
smoothness of associated PDE which involves the Lions derivative introduced by P.-L.
Lions in his lectures [7]. Moreover, Bismut formula for the Lions derivative, Harnack type
inequality, gradient estimate and exponential ergodicity have been studied, see for instance
[4, 24, 28, 30].

Contrary to the previously mentioned works, here we aim to investigate the regularities
of equation (1.1) perturbed by two independent fractional noises. That is, we study the
regularity of the maps

p— Pru, tel0,T],

where Pfu = Zx, for X; solving (1.1) with initial distribution Ly, = u € Z,(R?).
Observe that a probability measure is determined by integrals of f € %,(R%), the collection
of all bounded measurable functions on R?, it suffices to investigate the regularity of the
functionals

pes (RN = [ AP, 1 €A@Y te 0.T)
R
More precisely, with regards to equation (1.1), we address the following question:
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(Q) Under what conditions does the functional P,f have dimensional-free Harnack
inequalities and Bismut formulas?

Our main reasons for doing so are the following.

(i) As pointed out in [3] which investigated the sensitivity of prices of options with
respect to the initial value of the underlying asset price, the Bismut formula gives a
better approximation of the sensitivity. In addition, the Harnack inequality may imply
the gradient estimate and entropy estimate.

(ii) It was shown in our previous work [11] that for distribution-free noise (6 = 0
in equation (1.1)), Bismut formulas for P,f are established by using Malliavin calculus.
However, for distribution dependent noise, these formulas are still open due to technical
difficulty (see the reason at the beginning of Section 4 in [11]).

In contrast with Brownian motion case, DDSDEs driven by FBM have been much less
studied. In addition to [11] mentioned above, we also established the large and moderate
deviation principles for DDSDE driven by a FBM (o = 0 in equation (1.1)). See also the
article [14] for the well-posedness result to DDSDE driven by a FBM (¢ = 1,6 = 0 in
equation (1.1)) with irregular, possibly distributional drift via some stability estimates. To
our best knowledge, none of the questions we ask here for equation (1.1) with distribution-
dependent and possibly degenerate noise have been addressed so far. It appears that they
require a novel set of tools and ideas. Our strategy in this paper builds on the work of
the second author and Wang [16], which handled DDSDEs driven by a standard Brownian
motion

(13) dXt = bt(XtagXt)dt + O't(D%XJdBE, t e [0, T]

Therein the authors introduced a noise decomposition argument to the equation, which
allows to obtain the Harnack inequality, Bismut formula and exponential ergodicity for
equation (1.3). In this paper, we first show the well-posedness of equation (1.1). Then,
instead of appealing to Malliavin calculus, we establish the log-Harnack inequalities and
Bismut formula for the Lions derivative to equation (1.1) in both non-degenerate and
degenerate cases, in which our proofs are based entirely on a combination of coupling
argument and a careful analysis of fractional derivative operator. Let us stress here that
in our proofs, the invertible condition imposed on ¢ is essential, and the constructed
couplings are indeed backward couplings which were first introduced in [29].

We conclude this introduction with the structure of the paper. In Section 2, we recall
some well-known facts on fractional calculus, FBM and the Lions derivative. Section 3
contains the well-posedness result of DDSDE driven by FBM. In Section 4, we state and
prove our main results concerning the regularities for DDSDEs with distribution-dependent
and possibly degenerate fractional noise.

2 Preliminaries

In this section, we recall some basic elements of fractional calculus, fractional Brownian
motion and the Lions derivative.



2.1 Fractional calculus

Let a,b € R with a < b. For f € L'([a,b],R) and « > 0, the left-sided (respectively
right-sided) fractional Riemann-Liouville integral of f of order a on [a, b] is defined as

(2.1) 12 110) = /x( W),

IN(e! x—y)l-«

(respectively o f(x) = (;a;a / b 0 ] %)l_ady).

Here z € (a,b) a.e., (—1)7* = e ™ and I stands for the Gamma function. In particular,
when o = n € N, they are consistent with the usual n-order iterated integrals.

Fractional differentiation can be defined as an inverse operation. Let o € (0,1) and p >
L. If f e I$ (LP([a,b],R)) (respectively It* (LP([a,b],R))), then the function g satisfying
I g = f (respectively I;* g = f) is unique in LP([a, ], R) and it coincides with the left-
sided (respectively right-sided) Riemann-Liouville derivative of f of order a given by

o 1 d [t fly)
Das m‘m—am/a TR

_1\l+a b
(respectively Dy f(x) = 13(11—)—04)% / (yf_(—y;)ady) )

The corresponding Weyl representation is of the form

22 Dis) = e (2 v [ 110,
<respect1vely Dy f(x )—r&_a)(b—x /f - a+1 >)

where the convergence of the integrals at the singularity y = = holds pointwise for almost
all x if p =1 and in the LP sense if p > 1. For in-depth treatments, we refer the reader to
26].

2.2 Fractional Brownian motion

Let (2,.#,P) be a probability space carrying a d-dimensional FBM B with Hurst pa-
rameter H € (0,1) on the interval [0,7]. We suppose that there is a sufficiently rich
sub-o-algebra %, C % independent of BY such that for any u € 22,(R?) there exists
a random variable £ € LP(Q — R? %), P) with distribution p. Let {%}ep01] be the
filtration generated by B, completed and augmented by %.

Let & be the set of step functions on [0,7] and H the Hilbert space defined as the
closure of & with respect to the scalar product

d

(Mo~ M)y Tosa)s > L)) )y = D Rt 52).

i=1



Recall here that Ry (-, -) is given in (1.2). The mapping (Ljo4,1, - -+, Ijo,r,) — Zle BtHZ can
be extended to an isometry between #H (also called the reproducing kernel Hilbert space)
and the Gaussian space H; associated with B¥. Denote this isometry by ¢ — B (¢).
Besides, by [10] we know that Ry(t,s) has an integral representation of the form

Ry (t,s) :/0 Ky(t,r)Kg(s,r)dr,

where Ky is a square integrable kernel defined by

! 11 1 t
Kyp(t,s)=T(H+ = t—s)12F (H—Z -—HH 1—-
nt) = (H+3) (-9 ir (- g G- 1Y),
in which F(-,-,-,) is the Gauss hypergeometric function. See, e.g., [10, 22] for further
details.
Next, we define the linear operator K} : & — L2([0, T],R%) as follows

(50)(5) = Kn(T9)0s) + [ (010) = w(s) 25 29

Owing to [1], the relation (K7, K50) r2(o1,re) = (¥, @)% holds for all ,¢ € &, and
then by the bounded linear transform theorem, K7, can be extended to an isometry be-
tween H and L?([0,T],R?). As a consequence, by [1] again, there exists a d-dimensional
Wiener process W defined on (Q,.%,P) such that B has the following Volterra-type
representation

t
(2.3) BY — / Kult,s)dW,, ¢ € [0,T].
0
In addition, define the operator Ky : L2([0, T],R%) — I27*(L2([0, T, R%)) by

(Kgf)(t / Kpy(t,s)
According to [10], we obtain that Kj is an isomorphism and for any f € L?([0, 7], R?),
I sH12 I Pl e (1/2,1),
)] = RHH 2 H2 T e (0,1/2).
Then for each h € l'(irfl/Q(LQ([O7 T],R%)), the inverse operator K is of the form

=12 pl=12 g1ty H e (1/2,1),
(2.4) (K3'h)(s) =
sl/2—H 1/2 H_H-1/22H
D, s Dgih, He (0,1/2).

In particular, when A is absolutely continuous, we get

(2.5) (K h)(s) = s"— 312" s3 1R H € (0,1/2).



2.3 The Lions derivative

For p > 1, define the LP-Wasserstein distance on Z2,(R?) as follows

1
W, (u,v) ;== inf (/ |z — y\%r(dx,dy)) ’ , v € Zy(RY,
R4 x R4

TEE (1,v)
where €' (u, v) is the set of all couplings of  and v. It is well-known that (£2,(R%), W,) is
a Polish space. Throughout this paper, denote |- | and (-, -) respectively for the Euclidean
norm and inner product, and for a matrix, denote by || -|| the operator norm. ||- ||z stands
for the norm of the space LP(R? — R? u) and for a random variable 7, %, denotes its
distribution.

Now, we present the definition of the Lions derivative, see, e.g., [4, 7, 15] for further
details.

Definition 2.1. Let p € (1, 00).

(1) A continuous function f on Z,(RY) is called intrinsically differentiable, if for any
€ Zy(RY.

eR

is a well defined bounded linear operator. In this case, the norm of the intrinsic
derivative D* f(u) is given by

IDEf ()l e = sup |Dgf (),

<1

where p* = %1.

(2) fis called L-differentiable on 22,(R%), if it is intrinsically differentiable and

- |f(po (Id+¢)™") — f(u) — DL f ()]

6l —0 0]l

=0, pec Z,RY.

If f is L-differentiable on Z2,(R?) such that D*f(u)(x) has a jointly continuous
version in (i1, 7) € Z,(R?) x R, we denote f € C1O(2,(RY)).

(3) g is called differentiable on R? x 92,(R%), if for any (z,pu) € R? x Z,(R%), g(-, p)
is differentiable and g(z,-) is L-differentiable. Moreover, if D¥g(z,-)(u)(y) and

Vg(-,p)(z) are jointly continuous in (x,y,pu) € R? x R? x 2, (R?), we denote
g € CHIO(RY x 22, (RY).



For a vector-valued function f = (f;) or a matrix-valued function f = (f;;) with
L-differentiable components, we simply write

D" f(u) = (D" fi(n)) or D"f(u) = (D" fij(n)).
Let us finish this part by giving a formula for the L-derivative that are needed later on.

Lemma 2.1. ([4, Theorem 2.1]) Let (2, #,P) be an atomless probability space and {,n €
LP(Q — RYP) with p € (1,00). If f € CLO(Z,(RY)), then

o (Ferer) = [(Z)

el0 € - E<DLf("%><£)7 77>

3 Well-posedness of DDSDE by fractional noises

In this section, we fix H € (0,1), H € (1/2,1) and consider the following DDSDE driven
by fractional Brownian motions:

(3.1) AX; = by(X,, Lx,)dt + o d BY + 64( %y, )dBE, Xo=¢,

where the coefficients b : [0,7] x R? x 2(R%) — Ré, o : [0,T] - RE@ R, 5 ¢ [0,T] x
P (R?) — R?® R? are measurable functions, (B});cp,r and (BA )iclo,r] are two inde-
pendent fractional Brownian motions with Hurst parameters H and H , respectively, and
€€ LP(Q — RY .y, P) with p > 1. To show the well-posedness of (3.1), we introduce the
following hypothesis.

(H1) There exists a non-decreasing function k. such that for every ¢t € [0,7],z,y €
RY, p,v € Z,(RY),

be(, 1) = by, v)| < Rl =yl + Wy, v)), loe(p) — oe()]| < £ Wy (1, v),
and

16:(0,00)| + lloell + [|5: (o) | < £ir-

Now, for every p > 1, let S*([0,T]) be the space of R-valued, continuous (%)iejo7)-
adapted processes ¢ on [0, 7] such that

1/p
lllse = (E sup w) < oo,

te[0,7

and let the letter C' with or without indices denote generic constants, whose values may
change from line to line.



Definition 3.1. A stochastic process X = (X;)o<it<r on R? is called a solution of (3.1),
if X € §7([0,7]) and P-a.s.,

t t t _
Xt:§+/ bs(Xs,.,%Xs)ds+/ asdBer/ 5,(ZLx)ABY, t € [0,T).
0 0 0

Remark 3.1. Note that 0. and 6.(Lx.) are both deterministic functions, then fot o, dBH

and f(f 5S($Xs)déf can be regarded as Wiener integrals with respect to fractional Brownian
motions.

Theorem 3.2. Suppose that & € LP(Q — R4, Z,, P) with p > 1 and one of the following
conditions:

(I) H € (1/2,1), b,0,5 satisfy (H1) and p > max{1/H,1/H};
(II) H € (0,1/2),b,¢ satisfies (H1), oy does not depend ont and p > 1/H.

Then Eq. (3.1) has a unique solution X € SP([0,T]). Moreover, let (X{)icjor) be the
solution to (3.1) with Lx, = p € P,(R?) and denote Piu = Lyp,t € [0,T]. Then it
holds

(3.2) W, (P, Piv) < C T,n,I:IWP(:ua V), WV E @p(Rd)-

- D,

Proof. Since the case of H € (0,1/2) is easier, we only handle the case of H € (1/2,1)
and provide a sketch. For any u € C([0,T], &,), consider

AX; = by(Xy, pe)dt + o, dBE 4 6,(u)dB, t€10,T], Xy = €.

Denote its solution as X/*. We first assert that E(supte[gﬂ |Xt”’§|p> < oo with p >
max{1/H,1/H}. Indeed, by (H1) and the Hélder inequality, we deduce that

E( sup rxmf’)
te[0,7)

1 T
<APTIR|EP 4 12°7 Y (Thp)? <1 + sup (|- 7))+ —E/ sup |X§"£|pdt)
0

te[0,1] T s€[0,4]
t p
/ o, dBH .
0

P
+4P71E [ sup
te[0,7

By a similar analysis of [11, Step 1], we derive that for any p > max{1/H,1/H},

t p p
E | sup / asdBf +E | sup
tefo,1] |Jo t€[0,7]

8

(3.3) +4P7'E ( sup

te[0,7)

t ~
/ 6. (1) A BT
0

t -
/ s (NS)dBf
0




<Cprm,iit (1 + ( S[Up}/ltﬂ : |p))> '
te[0.T

This, together with (3.3), implies E(supte[o,ﬂ ]Xf’§|p) < 00.
Now, define the mapping ®¢ : C([0, 7], 2,(R?%)) — C([0,T], Z,(R?)) as

®f (1) = Lype, t€[0,T].

By (H1), we have

p

~ ~ t ~
E|X! — X[H|P <3P 'E|€ — £ 4+ 37 'E / (bs (X115, 1) — by( X2, ) ds
0

+ 3Pk

t -
<y B~ 8 + (007 [ (BIXES — X0 4 W ) d
0
~ t
+3p_10p’gﬁft”H_1/ W, (s, vs)Pds,
0

where we use [11, (3.8) in the proof of Theorem 3.1] and p > 1/H in the last inequality.
Then, we get

~ R t ~
E|X}€ — XPEP <3 Ele — P 1O,y p / E|X"E — X7]pds
0

t
+ O}xT,mﬁ / WP(MS’ VS)pdS7
0

which, together with the Gronwall lemma, implies
. ~ t
(3.4) E|X!" = X{5P < Cpr o gBIE—EP +Cop it / Wy (s, vs)Pds.
0

Therefore, for any A > 0, we have

Corii
sup e W, (05 (1), B (v))P < p’i’ 2 sup e W, (g, v1)P.
t€[0,T] t€[0,T]

Take \g satisfying C”TT“H < 55 and let E* := {p € C([0,T]; Z,(RY)) : o = Z} equipped

with the complete metric

p)\O(V“LL) ‘= Sup e_)\OtWP(Vh/“Lt)’ w, v € E§
t€[0,T



Hence, it holds

1
Pro (D5 (), @4 (v)) < 3Px(isv), v € ES.

Using the Banach fixed point theorem, we conclude that
O (1) = e, t € [0,7]

has a unique solution p € E®, which means that (3.1) has a unique strong solution on
[0, 7] with initial value &. .
Next, applying (3.4) for iy = P;u, vy = Pv, and taking £, & satisfying % = p, £ = v

and E|¢ — £|P = W, (1, v)?, there exists a constant C,1..a > 0 such that

t
Sup Wp(Ps*p” Ps*y)p < Cp,T,H,fIWp(M7 V)p + Op,T,mH/O WP<PS*M’ PS*I/)pd(S’ te [07 T]

s€[0,t]
So, by the Gronwall inequality, we complete the proof. n
Remark 3.3. Under the same conditions as Theorem 8.2, we obtain that for anyt € [0, T],

E( sup |0 — gz|p) < C, o W (1 ).

s€[0,t]

Here we have set ¥ = [; G, (Prp)dBH for all s € [0,T] and p € P(RY). Indeed,
combining [11, (3.8) in the proof of Theorem 3.1] with (3.2) yields
)

E( sup |0} — QZI”) = E( sup
s€[0,4] s€[0,4]

_ t ~
SCP’HﬁftpH_l / W, (P p, Prv)Pdr < Op,T,n,PItpHWp(M, g
0

[ @z - (P

4 Regularities of DDSDEs by fractional noises

The main objective of this section concerns the regularities for (3.1). More precisely, for
any t € [0,T],u € Z,(R?) and f € %,(R?), let

(1.1 )0 = [ s

with Py := Lxp for X{' solving (3.1) with initial distribution x, and then introduce the
functionals

PR 5 e (Pf)(p), t€l0,T), fe B(RY.

Based on the coupling argument and a careful analysis of fractional derivative operator, we
shall establish the log-Harnack inequalities and the Bismut formulas for these functionals
in both non-degenerate and degenerate cases.
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4.1 The non-degenerate case

This part is devoted to the regularities for the non-degenerate case of (3.1). We begin
with the following assumption.

(H1’) For every t € [0,T], by(-,-) € CHLO(R? x 2,(R?)). Moreover, there exists a non-
decreasing function x. such that for any ¢t € [0,7], x,y € RY, u,v € Z,(R?),

V0, i) (@) + [D"e(, ) (1) ()] < e, N1Ge() = G ()] < ke Wy (1, v),
and [b;(0,d0)| + [lowl + [|5¢ (o) [| < £ir-

Observe that with the help of the fundamental theorem for Bochner integral (see, for
instance, [20, Proposition A.2.3]) and the definitions of L-derivative and the Wasserstein
distance, (H1’) implies that for each p > 1,

1bc (2, 1) — b (y, V)| < kel|lz — y| + Wp(p,v), t€[0,T], z,y € RY p,ve Z2,(RY).

So, according to Theorem 3.2, (3.1) admits a unique solution. To investigate the regular-
ities, in additional to (H1’), we also need the following condition.

(H2) There exists a constant £ > 0 such that
(i) for any t,s € [0,T), z,y, 21,22 € RY, pu,v € Z,(RY),
VB, 1) () = Vs () W) + [ D be(, ) (1) (21) — D*bs(y, ) (V) (22)]
< Rt = s+ w =yl + [z — 2l + Wy (i, v)),
where o € (H —1/2,1] and 5,y € (1 —1/(2H), 1].
(ii) o is invertible and o~ is Holder continuous of order § € (H — 1/2,1]:

o= (t) — o Y(s)|| < &lt — 5], t,s€[0,T].
4.1.1 Log-Harnack inequality
Our main goal in the current part is to prove the following log-Harnack inequality.
Theorem 4.1. Consider Eq. (3.1). If one of the two following assumptions holds:
(I) H € (1/2,1), b,0,6 satisfy (H1’), (H2) and p > 2(1 + 5);
(II) H € (0,1/2),b,6 satisfies (H1), oy does not depend on t and p > 2.
Then for any t € (0,T],u,v € Z,(RY) and 0 < f € B(R?),

(4.2) (P log f)(v) <log(P:f)(n) + w(H),
where
(H) = { Cro o, 07 (1 + Wy (p,v)* + ﬁLH) W, (p,v)?, H e (1/2,1),
Crpmi (1+ @) Wp(u, v)?, H € (0,1/2).

11



Remark 4.2. The log-Harnack inequality obtained above is equivalent to the following
entropy-cost estimate

Ent(Pv|Pp) < w(H), te(0,T),p,ve P,(RY,

where Ent(Pfv| P} ) is the relative entropy of Pv with respect to Pju and p is given as
in Theorem 4.1.

Proof of Theorem 4.1. For every u,v € Z,(R?), choose Fy-measurable X} and X¥
such that Zyu = p, Lxy = v and

(4.3) EIXY — X{P = W, (1,0

Let X} and X} be two solutions to (3.1) such that XX(;; = p and Zxy = v, respectively,
which yields that Zx» = Pu and Zxy = Fjv.
For fixed toy € (0,7, we first consider the following coupling DDSDE:

1
dY; = |b(X}, P/ p) + —(X§ — X§ + o — o )| dt

to
(4.4) + odBY + 6,(Prv)dBE, t €0, t)
with Y5 = X{§. Recall that o = [ G, (P*p)dBH (s, 1) € [0,T] x 2,(R%) is defined in

Remark 3.3. Taking into account of this and (3.1) for (X}, P;u) replacing (X, Zx,), we
obtain

(45) Y- Xl -

t_to 1% t 1Z Z
(XSL—Xo)th (0h — 01,) +0f — 0f, te[0,tg].

0 0
In particular, one has Y;, = X} .

Next, we intend to express Py, f(v) in terms of Y;,. To this end, we first rewrite Eq.
(4.4) as

(4.6) aY; = b,(Y;, Prv)dt + o, d BY + 6,(Pv)dBE, t € [0, ],

Bf .= B — /t o, (ds = /t Kyt s) <dWs - K (/ arlgdr) (s)ds)
0 0 0

1 1% vV
(X — Xo + o — o1,)-

0
Kyt ([ ocar) o

where

with
CS = bs(}/s,P:V) - bS(XéL7P;M) -

Set

| [ ([ -1

12

2
ds] .



On one hand, with the help of Remark 4.4 (i) below and the fractional Girsanov the-

orem (see, e.g., [10, Theorem 4.9] or [23, Theorem 2]), we know that (B[ )iz is a

d-dimensional fractional Brownian motion under the conditional probability R¥dPH#:0.
Here and in the sequel, we use P-* and E”* to denote the conditional probability and
the conditional expectation given both B and .%, i.e.

PO —P(. |B7, F), EFO=E(-|B", %)
On the other hand, let Y; = Y; — ¢/ and then (4.6) can be written as
AY, = b, (Y, + o/, Prv)dt + o d B, t € [0,t0], Yo=Y, = XV.
Note that X" := X” — o satisfies SDE of the same form
dX}! = b(X}! + o/, Pfv)dt + o, dBf, t € [0,ty], X§ = X}.

Therefore, by the weak uniqueness of the solution we derive that the law of Y;, under
RHEOIPHO ig the same as that of X7 under PO, Consequently, we conclude that the law
of Yy, = Vi, + o, under RTOAP0 is also the same as one of X} = X} + o/, under P9
due to the fact that o is deterministic given BH. This, along with Y;, = X/, yields that
for any f € %,(RY),

(4.7) (P F)(XE) = ETOF(X}) = Eparopinof (Yie) = Epopo f(XE).
Now, owing to (4.1) and (4.7), we deduce that for every 0 < f € %,(R?),
(Pylog f)(v) = E [EF(1og f(X))| = E (P log f)(Xy)]
—E [Eaopino log f(X[)] = B [E70 (R7log f(X£))]

<E [log 7 £(X};) + B0 (R7010g R70) ]

o ([ [ o] )]

where we use the Young inequality (see, e.g., [2, Lemma 2.4]) in the inequality.
Using the Jensen inequality and Lemma 4.3 below, we have

48)  =E[loa(PI°f)(xp)] + 5B

(P log )(v) <logE ((PEO1)(X2)) + SEI(H)
(4.9) = 108(P f) (1) + 5EV(H), 1o € (0,T], 1,0 € PR

Consequently, using Remark 4.4 (ii), we obtain the desired relations. Our proof is now

finished. OJ
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The following lemma and Remark 4.4 below consist of estimates on the function
Ky (J; 071¢dr) (s), which may contribute to the study of the Girsanov transformation
for the fractional Brownian motion case and then the log-Harnack inequality (4.2). Before
going on, for any given continuous function f : [0, 7] — R¢ and Hélder continuous function
g:[0,T] — R? of order a € (0, 1), we put

g(t) —g(s
Il = s 5], gl o= sup WO Z90)
t€[0,T] o<s<t<T  (t—5)

Lemma 4.3. Let the assumptions in Theorem 4.1 hold, then for any p,v € P,(R?) with
p>21+6) if He(1/2,1) orp>2if He (0,1/2)

E™0 ( /0 ) Ky ( /0 | a:lgdr) (s)

2ds> < 9(H),

where
(
Cr e e i1 [Wp(m v)* + (tzH +lle s+ el + v (X, Q))@DQ(XO, 0)
S(H) = (1 IXEP 4 02+ et ) (Wi ) + 02(Xo, 0))
2
+ft° 2H-1 (fo Qs—fsrﬁgi;m_)rszr) ds|, He (1/2,1),
L CT,K/,H,FI (¢2§§§?79) +WP(M7 V) ) ) He (0, 1/2),

with (Xo, 0) := | X§ — X{| + supseio o) |05 —

S

o4 and ¢; € (0,1/2),i=1,2,3.

Proof. We start by dealing with the case H € (1/2,1) By (2.4) and (2.2), we get

(s —r)atH
H-1 TG —G o lrs—Hqy
+s /o(s—r)éJ“Hr d]
H -1
(4.10) Zir(g—_;{)[h( s) + Io(s) + I5(s) + 1a(s)]

14



From (H1), (4.5) and Theorem 3.2, it follows that

ks(to —s) +1 ks + 1
t

Gl <
(411) +/€s (’Qg_QZ’+CT,HWP(M7V))'

Besides, we have

| Xo — Xo| + ol — o} |

D=

s 1 1 1
/—r il Hdr:sl_zH/l—rzH 1d7“<<>o
o (s—r)ztH o (1—r)att

These, along with (H2)(ii), lead to

3

> L)) <Cra (s + sP 721 ()2

i=1

— — wQ X07 49)
SCT,K,R,H,I:I(Sl Ay g2l <<T + W, (1, v)? ),

where we put 1(Xo, 0) := | Xg' = Xg| + sup,ep 1) [0F —
Then, we get

@23 [ < O (P ).

As for I, using (H1’) and Lemma 2.1, we deduce that for every s € [0, 7],

0%| for simplicity.

bs(Ye, PYv) = bs(XY, Pp)

td, L
_ / by (X" + 0(Y, — XP), Prv)df + / b (X Lp o)) 6
0 0

/1 V)(XE 4+ 0(Ys — XM)(Y, — XF)do

/ (BUDH b, (L) XL 0)), XY = XEY) e,

0

where for any 0 € [0, 1], X*¥(0) := X! + 0(XY — XH).
Then by (H1’), (H2)(i) and (4.5), we have

|Cs - C’f‘l = |bS(YS’Ps*V) - bS(XLéLaPs*:U’) - (bT()/Ta‘P:V) - br(X#,P:M))l

S—7T s—r B
SCT,H,R,HJ}{ [(8 —r)*+ + W, (Plv, P'v) + ( g ) VP (Xo, 0)
0 0

+ ot — o = (0f — )| + | Xt — XE)P | 0(Xo, 0)
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+ | (5 — ) + (E[XE — XPP)e + (BIXY — XP|P)»

+ (EIXY = XEP)P + (BIXY — X2P)» + |X2 — X2 (BIXE - X2P)»
+ [0l — ok — (o — )| + E[(X{ — X}) — (Xs,”—XJf)I}-

Following respectively the same arguments as Theorem 3.2, we derive that for any s,r €
0, 7] and p,v € Z,(R?) with p > max{1/H,1/H},

EIX! = XU < Cr g als — P40
and
EJ(XY = Xf) = (X! = X\)P < Cop s = )W (. )"
Consequently, combining these with (3.4) leads to
[ 14(s)[?

<Crprmii [ (82(a7H)+1 | QAHNA-H)+1 82((H/\}~I)'ny)+1> W, (1, v)?

N §3—2H  G2(B—H)+1
+ (82(a—H)+1 +S2(H/\H—H)+1 + - + % ¢25(X07Q)) T/JQ(XO,Q)
0 0
o v 2
L 2H / 0% — @ — (?r — ol 1-ny,
—r)2tH

2
— oMt — 1
+ SQH—I / |Qs Q (QQJrH )| TZ_HdT> ¢2<X07 Q)

0

1 A 2 Hdr) (W, (1, v)? + ¥*(Xo, Q))]

<Coprmi [ (SQ(a—H)+1 | QHNA-H)+1 4 SQ((HAFI)y—H)-i—l) W, (4, V)2

3—2H

t2

Gl H2(H—c)f—2H 2 i) 28 2
e (Xo,g))w(xo,g)
0

2
2H 1 / |Qs QM_ _Qr)| é Hd?"
8—7"
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(4.13)
2H 1 (/ |)S(u_—TX“|ﬁ HdT’) (Wp(:uv y)2 —|—1/}2(X07Q))]7

where the last inequality is due to the Holder continuity of ¢/ and ¢” of order H—¢ and
H — ¢ with ¢; € (0,1/2),i = 1,2, respectively.
Observe that there hold
/ o dB}?
0

sup |XF) <Croo (1 - (EIXEP)E + X8+ \

t€[0,T)

; ||@.ﬂ||oo)
::CT,H,H,ﬁTH

and

E( sup |X“rp) Cro i (1 EIXEPP).

t€[0,T)]

Then, by (H1’) we get

1
1+ sup |X/|+ (IE sup |X,fﬁ|2>2 (s =)
te[0,7) te[0,T7]

r

<Cr i Tuls =7).

As a consequence, we obtain

2
G2H-1 TXE — X”‘B PA-H g,
o (s—r)2 y+H

o u 2 B L 2
<3521 1(/ o b X i)t Hdr) +332H1( "L odBP dr)
0

(s —1)2 y+H

(s —r) 2+H

S | |8 2
+382H1</ |0k — o] Hd,r>
0 (s —7“)2+H

/ UtdBtH
0

Ol s,

28

142(H—c3)8—2H

<CT ~T25 1+2(8— H)+OH s

H—g3

Here we have used the Hélder continuity of [ o;dB/ of order H — ¢35 with ¢3 € (0,1/2).
Substituting this into (4.13) and integrating on the interval [0, ¢o] yields

to
JRCRE
0
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SCT,H,R,H,H [ (tQ(a H+1) n t2(H/\H H4+1) Tt ((H/\H)'y—H—f—l)) W, (1, V)g

n (t(Q)(a—H-i—l) +t3(H/\H—H+1) —I—t(z)( ) 4 I H”H K 1+(H s1)B—H)

Tl O 202 g>)w2<Xo, 0

H—¢

2
/ </ |Qs Os — B Qr>|réHdr> ds
S — T
. 28
+ (Tfﬁtﬁ(“ﬁm + / o dB}!
0

(4.14) + el tQ““H‘“’B‘H)) (W (1, v)? + *(Xo, g>>] .

t2(1+(H7<3)67H)
0

H—¢3

This, together with (4.12) and (4.10), implies

E™0 /0 ’ Ky ( /0 | a;lcrdv) (s)

2

ds

SCT,/@,R,H,I:I (1 +t2(a H+1) _'_tO(H/\H H+1) 4 2((HAH)y— H+1)) W, (4, V)g
1 2a—H+1 HAH—H+1 2 (4+(A—c)B—H
+ (tQ—HHJ '+t el 14 A

+ HQ ||H QtO 1+(H @)f H) +t 20~ H)¢2B(XO7 Q)) ¢2(X07 Q)

/ (/ ot - gﬂ— o)l _HdT)QdS

+ ( (L+ (X + 1)) té“*ﬁ‘ﬂ’ g T

[l e H)>(Wp(u, u)2+¢2(Xo,9))]

1
<Crurmi [W (1, v)* + (tQH + ||Q“|| o ||Q-V||§§6_g2 +¢*(Xo, Q))@bz(Xoa 0)

(11X 4 12+ 1117, ) (Wl v)? + ¥3(Xo, 0))

C [ ( = iﬂ_—r —gr>|T;_HdT>2dS]
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Then we get the desired claim.
We now move on to the case H € (0,1/2). According to (2.5) and (2.1), we get

'K;f ( /0 | a;lcrdr) (s)

1 H-1

o st /5 r%’HQ
= il T—dr
L(5—-H)Jo (s—r)ztH

2

(4.15) <C(THHH87_H (w + W (1, )) ;

= ‘ H“]TH [%‘Ha‘l } (s)‘

where the last inequality is due to (4.11).

Then, we obtain
K (/ oglgdr> (s)
0

_ to
]EH,O /
0

which is the desired relation. Our proof is now complete. O]

2
V*(Xo, 0
dS<CTnHH( <t213 )+Wp(MaV)2 )

Remark 4.4. (i) With the help of the Fernique theorem (see, e.g., [13, Theorem 1.5.2] or
[27, Lemma 8]), by (4.12), (4.14) and (4.15) we can conclude that

g0 (exp{%/oto K (/0 arlgrdr> (s) st}) < 00.

(ii) Under the assumptions in Lemma 4.3, we have
Crmn (15 Woli ) + e ) Wy v, He (1/2,1),

EY(H) <

Cronarir (1 77 ) Waln, v)2, He(0,1/2).
Indeed, first observe that by Remark 3.3 and (4.3), we derive that for any 1 < q < p,
(4.16) EG(Xo, 0) < Crpgi (14 t6™) W1, v)" < Crp Wi (1,0

If H € (0,1/2), then it is easy to see that for any p > 2,

BO(H) < i (14 27 ) Wl

If H € (1/2,1), using the same lines as in Remark (3.3) in the second inequality leads to

2
H_ — 1
/ / |Qs Os Q’r>| §_Hd7“ ds
8—7“

19
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to s 1-2H s v v 2
2H-1 r Eloy — o — (o7 — o)l
<[ o ([ aoimmem) ([ FE ) e
to S ~
SO)\O,T,K,H,g / SZ(AO_H) (/ (S - T)2(H_>\0)d7’) ds - WP(M’ V>2
0 0
(417) SC)\O,T,K,H,HWI)(/“’L? V)27

where we take \o such that H < \g < H 4+ 1/2 and remark that Cyornar.a GbOvE May

depend only on T, k, H, H by choosing proper \g.
Then, by (4.16) and (4.17) one can verify that for any p > 2(1+ 5),

1
BO(H) < Coyn (1+ W00 + o ) Wy
0

4.1.2 Bismut formula

In this part, we focus on establishing a Bismut formula for the L-derivative of (3.1). That
is, for every t € (0,T],u € Z,(R?) and ¢ € LP(R? — R? 1), we are to find an integrable
random variable M;(u, ¢) such that

Dg(Pf) (1) = E (f(X{) M. 0)), f € By(RY).

Recall that for any u € Z2,(R?), let (X{')ic(o,r) is the solution to (3.1) with Lys = y and
Prp = Zxyp for every t € [0,T]. For any ¢ € [0,1] and ¢ € LP(R? — R? ), let X;°°
denote the solution of (3.1) with X;*¢ = (Id + £¢)(X}). In order to ease notations, we

simply write fic g = L{1a4eq)(xt)-
Next, we first consider the spatial derivative of X} along ¢:

Xleo _ xH
VX[ = lim LTt te[0,T), ¢ € LP(RY — RY, p).
e—> IS5

To this end, we impose the following assumption.

(H3) There exists a non-decreasing function «. such that

|D 64 (p) ()| < Ky, t€[0,T], v €RY e Z,(RY.

Lemma 4.5. Assume that (H1’), (H3) hold and o, does not depend on t if H € (0,1/2).
For any u € Z,(R%) and ¢ € LP(RY — R?, p) with p > max{1/H,1/H} if H € (1/2,1)
orp>1/H if H € (0,1/2), then the following assertions hold.

(i) VX" exists in LP(Q — C([0, T]; R?),P) such that V4,X* is the unique solution of the
following linear SDE

AGY = |V by, Lyp) (XL + (E<Dth<y, -)(fxng#),G%) !y:xﬂ dt
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(4.18) +E(DY6,(Ly) (X[, GIYABE, GY = o(XY),

and

IE( s |v¢,XM|p> C, e ill Sl

t€[0,T)

(i) It holds

limE ( sup

el s€[0,t]

where A. is defined as

Ai= [ (BUD 6P (X2), VX0 ABE), s € [0.7).

Proof. (i) We first set

Xlee _ XH
==t "%t ¢+c[0,T],e>0.
g

By Lemma 2.1, we deduce that for any ¢t € [0, 7],
bt(X#E’qb?ngg,d)) —bt(X#,gxéL) 6t<$ Hs,¢) —6t<gxu) - o

dIE = - dt + —— - 4B
[ [ (wab gz
(B0, ) L) (X 0). T ) 0
(4.19) +| [ B0 ma) aBf. 15 = ox)

where X2(0) := X}' +0(X;** — X["),0 € [0,1].
On the other hand, it is easy to see that under (H1’), (4.18) has a unique solution.
Combining (4.18) with (4.19) implies that for any ¢ € [0, T7,
AT = GF) = (Ve obele, L) (XF) + W5(0))
+ [ (B(D by, ) (L )XE). T = GO ) |, + W(0)]
+ (E(D 60 (Lp ) (XE),TT; = GF) + W5(0)) B, 05— G =0,
where

W0 = [ (Tighle 2o OXEO) — T L) (X)) 00,
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W5(t) = / (E(D bu(, ) (L 0)) (XE(0)) — Dby, ) L) (XE), D) |y,
W5 (1) = / E(D*6,(Lye0)) (X0 (6)) — D ar(Lip) (X1, )6,

Then, using (H1’) we have
1T — G7I”

t t
<Cpir. [ / (5 )P + W5 () [P)ds + / (I — GO + EJITE — G2JP) ds
0 0

p

(4.20) + / t (E(D 6,(Lxu)(X1), TIE — G2) + U5(s)) dBY

S

By [11, (3.5) in the proof of Theorem 3.1] and (H3), we get

P
E | sup
te[0,T)

T
<C T,g/o (IE(D G (L )(XL),TIE = GO + [ W5(s)[”) ds

/ | (E(D"G(Lxr)(X4), I = G2) + W5(s)) dB.

S

i 2

T
A20)  <Cppay [ (B =GP+ U(5)IP) s
0

i 2

Additional, similar to [11, Lemma 4.1 and (4.9)], one has

sup 5 sup 157} + B sup [G7P) < Cyalolg

e€(0,1] te[0,7 te[0,7

Consequently, combining this with (4.20)-(4.21) and applying the Gronwall lemma, we
obtain

T
E( sup |11 —Gf!”> < Cp,T,ﬂ,g/O E([5(s)[” + [T5(s)[" + [[T5(s)[[”) ds.

te[0,7)

Then, following the argument to derive the assertion of [11, Proposition 4.2] from [11,
(4.10) in the proof of Proposition 4.2], we conclude that

lim]E( sup |IIf — Gf|p> =0,
el0 te[0,7T)
which is exactly the first claim.

(ii) From [11, (3.5) in the proof of Theorem 3.1] again, it follows that

P
E < sup )
s€[0,t]

:U's,qb
0s % — of

3

— A,
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~ P* . _ Nr P* p
T Epes) ZOE) gy pr, (P (g, VXt ar

i ¢
-1

<C, at" /

0

Observe that by (H1’) and Theorem 3.2, we get

|G (P pieg) — 0r(Brn)| < ke Wo (P e gy Prpt) < Cpp g Wp(pe g 1) < Cpp e g€l @l Lo ()

Then, using (H3) and the assertion (i), and applying the dominated convergence theorem
and Lemma 2.1, we derive the second claim. O

Our main result in this part is the following.
Theorem 4.6. Consider Eq. (3.1). If one of the two following assumptions holds:
(I) H € (1/2,1), b,0,¢ satisfy (H1’), (H2) and (H3);
(II) H € (0,1/2),b,6 satisfies (H1’), (H3) and o, does not depend on t,

then for anyt € (0,T), f € By(RY), u € Z,(RY) and ¢ € LP(RY — R?, p) withp > 2(1+4)
if He (1/2,1) orp>2if H € (0,1/2), DJ(P.f)(1) exists and satisfies

az oy =& (5o [ (k0 ([ o) an)),

where Y. . is given by

d(XE) + Ay t—r

FE[D b, (2, ) (PLu)(XE), Vo Xt lpoxp, 0<r<t<T

with A. defined in Lemma 4.5.

Proof. Let ty € (0,7] be fixed. For ¢ € (0,1], let Y*© solve (4.4) with v = p., and
Yo = Y5 = (Id + £¢)(X{'). Correspondingly, (4.5) turns into

t—t, ¢ ] )
T P(XE) + %(@é‘o — 07+ 07 — o, tEe[0,t],

(4.23) Y- X =—¢

which implies that Y;; = X', Put

RO .= oxp [/Oto <K];1 (/0 U;1<fdr) (s),dW8> _ %/Oto

with

it ([ o) o

ep(XE) + 0i® — o).

2
ds]

e € * * L
gs = bs(Y; 7Ps :ue,¢) - bS(X57Ps /L) + %(
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Similar to (4.7), one has
(PEOF)(Xye) = ERO (RECF(XE))

Then, we arrive at

PH,O XU€,¢ _ PH,O X;,L - [:[’0_1
(424) 151151( to f)( 0 )g ( to f)( 0) :l‘gl\%lEH@ f(Xéé)Rs . )

Note that we have

g0 = 1
€l0 £

o (Kit (oo Gar) (), dWs) — 5 )" [ (Jy o "G (s)|" ds
el0 e

(4.25)  =limE"0 o (K (Jy o t¢edr) (s), W)
el0 c s

where the last equality is due to Remark 4.4 (ii) for j. , replacing v and the fact that

Wp(/lyﬂs,aﬁ) < 6HQSHL”(M)'
Next, we handle the case H € (1/2,1) and H € (0,1/2) slightly.

The case H € (1/2,1). In view of (2.4) and (2.2), one has

to .
/ <KI}1 (/ ar_lg‘?dr> (s),dWs>
0 0
_ s /to 210G aw,
womh

N |—

pa— H_

M[Jl(to) + Jg(t[)) + Jg(t[)) + J4(t0)]'

(4.26)
Note that by our hypotheses, (4.23) and Lemma 4.5, it is readily verified that for any
r,s € [0, to],

t() — S

€ H
lim & :—(b(XO) + A, .
0

elo € 0

Vb Pr)(XE) ( $08) ~ i+ As>
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(4.27) +E[(D"bs(w, ) (Prp) (XE), Vo XD lomxs =t T,

and
: Cf _ Cf _ * w to—s py S
lslﬁ)l c _Vbs( ’ ‘Ps :U’)(Xs ) tO gb(XO ) to Ato + As
. to—r " r
_Vbr('7pr M)(X#) —¢(XO) - %Ato +AT‘
+ E[(D"bs (2, -) (P ) (XE), Ve X2
- E[<DLbr<y7 )(P:/L) (X#)v V¢X7{L>]|y=Xﬁ
(4.28) =Tt0 — Trto-

Then, applying the dominated convergence theorem, we obtain that as e | 0, J;(t9)/e,i =
1,---,4, converge to

to s%_Hangst
/ <T1’°7dws )
0 2
1

and

t Y- T
_1 to T to _—1 L
/ st 2/ SO—ITHOUT Lea=Har dw, ) .
0 o (s—r)zt

in L'(PH9), respectively. Consequently, combining these with (4.24), (4.25) and (4.26),
we conclude that

(PO f)(X4=*) — (PR py(X1)

lim
el0

; H—3 to [ga=Hgoly
RO f(XxXHy. 2 57 9s Tsito g
(f( to) F(% . H) [/(; < H _% ) Ws>

™



+/0t0 <3H—§/OS —](:t_ ;)3;;00—1 ra-Har, dW>D
(4.29) :Eﬁﬂ(ﬂxngM<A;1(A}g*nmm>(@4wn>).

Here we have used (2.4) and (2.2) in the last relation. )
Now, let fngp be the conditional distribution of a random variable Y under P#:0.
According to the Pinsker inequality, we have

2 2
= sup

[ fllo<1

<2Ent (fxtuos,ﬂpﬁ,o‘gxﬁ) |1pﬁ,o) .

(PEOF)(x4=) — (B0 ) (x4)

sup
[l flloe<1

g “s ¢|PHO(f) - XX%WHD(JC)

Then, using the equivalence between the log-Harnack inequality and the entropy-cost
estimate (see Remark 4.2), it follows from (4.8) and Lemma 4.3 that

sup [(PEOF)(xteo) — (PO gy (x|

lfllo<1

< 20(H),

where v of ¥(H) is replaced by fi. 4.
Consequently, this, along with the expression of ¥(H) and Theorem 3.2, leads to

(PEO ) (X4*) — (PR F) (X1

1
<Crp i il flloo lllcbllm(u) + (to + el + e

o (X0 0) )UKo )

(1 IXEP + eI + 1115, ) (19l + $(Xo, 0))

N Tl — ok = (o — )| s AN
(4.30) + / g1 / = a7 Hdr | ds
0 0 (s —r)2tH

with ¢(Xo, o) := |O(XE)|+8uDycio 1 |04 — 0577 | /e, Therefore, taking into account of (4.29)
and Remark 3.3, applying the dominated convergence theorem yields

PH,O xHesy) _ Pﬁ,o X
DEP 1) =g D8~ (P DD

=K (lim (ng’of)(xgs’db) - (Ptlj’of) (Xg>>

el0 9

(4.31) _E < X /0 ! <KH1 ( /0 | JTleOdr) (s),dWs>> |
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The case H € (0,1/2). Using (2.5) and (2.1), we first have

/ ’ <K1§1 ( | a;1<fdr) (S),dW8>: /Oto <Fa<—%IS_H;> [ . _:;Ciﬂ o dW>

Reasoning as in (4.29) and (4.30) , it can be shown that

i (P D) = (B (X)
el0 £

- to -1 H-1 S l_HT
_E#0 f(Xfé)-/ A / T rho gy gy,
o \I'(G—H)Jo (s—r)§+H

(4.32) —Ef0 ( FXE) /0 ! <K,;1 ( /0 | o;lrmdr> (s),dW5>) .

and

(PO F)(X8=) — (PEOF) (X))
9

h(X
< Cpitlf 1 (% n ||¢|rm<m> -

So, by Remark 3.3 and the dominated convergence theorem again, we deduce

L (PO (X — (PO (X8
Dy (P f) (1) =lmE 8

(4.33) =E ( X2 /0 ! <K;11 ( /0 | a;lTr,todr> (s),dW5>) :

Our proof is now finished. O

Remark 4.7. (i) Due to (2.4) and (2.5), we can rewrite the term K" ([, 07Ty pdr) (s)
on the right-hand side of (4.22) as follows

Ky ( /O | afTr,tdr) (s)

.
1
(H—%)SH—j sI2Hooly 1y s S%—H_T%—Hd
I(3-H) H-1 +os st o (s—r)3+H r+
T v fp e g g e e | e (3
St 0 (s— 7")2+H r 0 (s—r)%*’H ik 2 ’
o—1lgH— 2 S 7"2 Trt 1
2 f (s—r) 2+Hdr He (O’ 5)'
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(ii) Using Theorem 4.6 and the Hélder inequality and following the similar argument
as in Lemma 4.3, we obtain

ID“EDg < o (14 7 ) (P

1
*

) (m)?

with any t € (0,T], f € By(R?) and p € Pp(RY), where Cy,, &y g s a positive constant
which is independent of & when H € (0,1/2), andp >2(1+5) if H € (1/2,1) orp > 2 if
H e (0,1/2).

4.2 The degenerate case

Let A and B be two matrices of order m x m and m x [, we now consider the following
distribution dependent degenerate SDE:

(.34 {dXt(l) — (AX"Y + BX?)at,

AX) = by( Xy, Lx,)dt + o d BE + 5,(Ly,)ABH

where X, = (X, X b : [0,T] x R x 22, (R™+) — R o(t) is an invertible [ x [-
matrix for every t € [0,77], 5 : [0,T] x Z,(R™") — R’ @ R are measurable. It is worth
pointing out that as in the Brownian motion case (see, e.g., [4, 24]), the above model is a
distribution dependent stochastic Hamiltonian system with fractional noise.

4.2.1 Log-Harnack inequality
To establish the log-Harnack inequality, we let

t S(t - S) A A*
(4.35) Uy :/ t—26’S BB e ds > {(t)Lxm, t € (0,7,
0

where ¢ € C([0,T]) satisfies £(t) > 0 for any ¢ € (0,7] and I« is the m x m identity
matrix. It is obvious that U is invertible with ||U; || < 1/£(t) for every ¢ € (0,T]. Then,
our main result in the part can be stated in the following theorem.

Theorem 4.8. Consider Eq. (4.34). Assume (4.35) and if one of the two following
assumptions holds:

(I) H e (1/2,1), b,o,6 satisfy (H1’) and (H2) withd=m+1, and p > 2(1+ 5);
(II) H € (0,1/2),b,6 satisfies (H1) with d = m + 1, o, does not depend on t and p > 2.

Then for any t € (0,T], u,v € Z,(R™™) and 0 < f € LB(R™),

(Pilog f)(v) < log(Puf)(p) + x(H),
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CT,R,F@,H,ﬁ' (1 +W ( ) + LH ) + tQHgQ( )> Wp(:ua V)27 H € (1/2, 1),
X(H) =

_l’_
CTK,HH (1 + t2H + [2(15 tZHgQ ) H e (0,1/2)

Proof. For any u,v € Z,(R?), let X} and X} be Fy-measurable satisfying Lxp =
p, ZLxy = v and

(4.36) E[Xg = Xg1" = Wy(p,v)",

and let X} and X} solve respectively (4.34) with Zxp = pand Lyy = v, which implies
Zxr = Pfpand Lxy = Pjv.
Fix to € (0,7]. We first introduce the following coupling DDSDE: for t € [0, o],

(4.37) {dYé” = (A" + BY,?)dt,

4Y;”) = (b(X., Prp) + o ()ddt + o d B + G(Prv)d B

with Yy = X, where the differentiable function g : [0, t] — R will be determinated below.
Combining (4.34) with (4.37) yields that for each t € [0, ¢,],

(4.38) Y = X = et Az 4 [1et=IAB(Z5Y + g(s) — 9(0) + of — ol)ds,
. 2 ,(2 2 v
Y& - X1 = 7 4 g(t) — g(0) + of — o,

where Zo = (25", Z7) == Yo — X} = (Vg) — x4 v — x5,
To construct a coupling (X}, Y;) by change of measure for them such that X =Y}, we
take g as follows:

t t(t . e
0
t(to —t . fo - s
(139) Mol peta Utgl/ B |27 2 (g — o)+ ol — o[ ds.

Next, we rewrite (4.37) as

(4.40)

in(l) — (A}/t(l) + B}/t(Q))dt, ) B
AY,” = by(Y;, Pyv)dt + oy d B + 6(Pv)dBE, t € [0,1),

where

t t :
Bt .— Bl —/ o, (ds = / Kpy(t,s) <dWS — K (/ O'T_ICTdT) (s)ds)
0 0 0
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with

és = bS(Y;,P:I/> - bS(st Ps*:u) - g/(S).

E,l},o - [/Oto <KH1 (/O ar_lé’"dr) (s),dWs> _ %/Oto Kﬁl </0 ar_lCArdr> (s)

By a direct calculation, we can have

2
ds] .

CT,H
{(to)

Y, — XF| < <|Zo| + sup |of — QZ|>

s€[0,to]

and

R 1 1 1
Gl < Cpeir | Wl v) + (— + + ) (IZol + sup |0} — Qil)
tol(to)

to  £(to) se[0,4o]

Then, in the sprit of the proofs of Lemma 4.3 and Remark 4.4, we conclude that (B{{ )teo,to]
is a [-dimensional fractional Brownian motion under the conditional probability RZ°dPH-0,

and there holds
to . R
E / K;f (/ arlgdr) (s)
0 0

CT,H,FC,H,H (1 + Wp(l% V)2/B + t(z)LH + 62(1t0) + t%H;Q(to)> Wp(:u7 V)27 H e (1/2, 1)7

2 ds) < x(H)

CT,H,H,f{ (1 + ,%LH + 52(1,50) + tnglz(tO)> Wp(,u, V)Q, H € (0, 1/2)
Now, let Y; = Y; — (0, o¥) and then it is easy to see that Y. satisfies

(4.41) v,V = (A" + BY” + Bey)dt,
' AV, = by (Vs 4 (0, 00), Prv)dt + o d B, ¢ € [0,40], Yo = Y.

Observe that X = X” — (0, ¢*) solves SDE of the same form as (4.41) with B replaced by
B So, along the same lines as in (4.7), (4.8) and (4.9), we get the desired assertion. [
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4.2.2 Bismut formula

In this part, we aim to establish the Bismut formula for the L-derivative of (4.34). For
every u € Z,(R™™), let X! be Fy-measurable satisfying Lxp = p, and let (X{')iepm
be the solution to (4.34) with initial value X{'. For any ¢ € [0 1] and ¢ € LP(R™ —
R™* 1), denote X;* by the solution of (4.34) with X§=¢ = (Id + e¢)(X{) and denote
Py = ,?Xtuw for every t € [0,7]. We set for each 0 < s <t < T,

Rsy 1= <esA¢<1>(Xg)+ /0 C=AB (0PN (XE) + Eolr) + A,) dr, ¢ (XE) + Eu(s )+A)

where

=)= = 2P + a0 - L e s )

t— o t—
. ( . 3) A7) Bre —sA* U / 77“AB |: . r(b(Q)(X(l;) _ tLAt + Ar‘| dr.
0 0 0

Theorem 4.9. Consider Eq. (4.34). Assume (4.35) and if one of the two following
assumptions holds:

(I) H € (1/2,1), b,o,6 satisfy (H1’), (H2) and (H3);
(II) H € (0,1/2),b,6 satisfies (H1”), (H3) with d =m +1, oy does not depend on t,

then for any t € (0,T), f € B(R™), ¢ € LP(R™ — R™ 1) and p € Z,(R™) with
p>2(1+p3)if He (1/2,1) orp>2if H € (0,1/2), DL(Prf)(p) exists and satisfies

Dy == (50 [ (507t ([ o enar) enam))

where ©.. 1s defined as
Oy = Vbs(r, P p) (X4 s + E[(D by (, ) (P ) (XL), VX Lomxr — (E0)'(5)-

Proof. Let tyg € (0,7] be fixed. For € € (0,1], let Y* solve (4.37) with v = p., and
Yo = Y5 = (Id + £¢)(X{). Then, (4.38) becomes

VoW = X0 = et gM(XE) + [Lelt=94B(ep® (XE) + g(s) + ob=* — o4)ds,
£, 2 5 2 €,
Yo — X1 = g (XE) + g(t) + o — ol

Here we recall that g(0) = 0 due to (4.39) in which v and (Z", Z{*) is replaced by e.b
and (e¢™M (X)), e0® (X)), respectively. In particular, there holds Y = X!

2

ds]

Set
HHO . _ fo -1 o O . 1 fo -1 R e
R:" :=exp [/0 <KH (/0 o, C,,dr) (S),dWs> 2/0 Ky </0 o, Crdr> (s)
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with
é§:b (Y5, Pl peg) — bs (XL Prp) — g'(s).
Observe that as in (4.27) and (4.28), we obtain that for each r,s € [0, o],

i & VB, P2 (X g, + ELDHb 0. (P (X2), T X2 s
- (Eto),<8) =: @S,to
and
gg@ . b P2 ) Xty — bl P
FEID b, (r, (B2 p) (X2), T X Loy
~ Dby, ) (L) (X), VX0
~ [Eu) () ~ (E0) ()]
:@s,to - @r,to-

Then, resorting to the same techniques as in (4.29) and (4.31) as well as (4.32) and (4.33),
we derive that for each H € (1/2,1) U (0,1/2),

DBy f) () = E (f(Xéé) / ) <K;,1 ( | oﬁ@ntodr) (s), dws>) |

We conclude this part with a remark.

Remark 4.10. Similar to Remarks 4.2 and 4.7(ii), it follows from Theorems 4.8 and 4.9
that the following entropy-cost and intrinsic derivative estimates

Ent(F;v|F/p) < x(H)

P*

—~~

and

DD < Crna (1+ 5+ 155+ gy ) (PP )0

hold for any t € (0,T],p,v € PH(R?) and f € By(RY), where Cp, ; y 15 a positive
constant which is independent of k when H € (0,1/2), andp > 2(14+5) if H € (1/2,1) or
p>2if H € (0,1/2). In addititon, to guarantee (4.35) holds, one needs to impose some
non-degeneracy condition on the matriz B. For instance, assume the following Kalman
rank condition:

4.42 Rank[B, AB,--- ,A*B] =
(4.42)

holds for some integer number k € [0,m — 1] (in particular, if k = 0, (4.42) reduces to
Rank[B] = m), then (4.35) is satisfied with ((t) = C(t A 1)***1 for positive constant C
(see, e.g., [31, Proof of Theorem 4.2]).

1
P
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