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Abstract

In this paper, we investigate the regularities for a class of distribution dependent
SDEs driven by two independent fractional noises BH and B̃H̃ with Hurst param-
eters H ∈ (0, 1) and H̃ ∈ (1/2, 1). We establish the log-Harnack inequalities and
Bismut formulas for the Lions derivative to this type of equations with distribution
dependent noise, in both non-degenerate and degenerate cases. Our proofs consist
of utilizing coupling arguments which are indeed backward couplings introduced by
F.-Y. Wang [29], together with a careful analysis of fractional derivative operator.
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1 Introduction

Let P(Rd) be the space of all probability measures on Rd equipped with the weak topology.
For any θ ≥ 1, set Pθ(Rd) := {µ ∈ P(Rd) : µ(| · |θ)1/θ} < ∞. In this article, we are
concerned with a distribution dependent stochastic differential equations (DDSDEs) of
the form

(1.1) dXt = bt(Xt,LXt)dt+ σtdB
H
t + σ̃t(LXt)dB̃

H̃
t , X0 = ξ,
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X. Huang is supported in part by National Key R&D Program of China (2022YFA1006000), the National
Natural Science Foundation of China (No. 12271398).
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where LXt denotes the law of Xt, b : [0, T ]× Rd ×P(Rd)→ Rd, σ : [0, T ]→ Rd ⊗ Rd, σ̃ :

[0, T ]×P(Rd)→ Rd⊗Rd, ξ is an Rd-valued random variable, and BH , B̃H̃ are respectively
two independent fractional Brownian motions (FBMs) with Hurst parameters H ∈ (0, 1)
and H̃ ∈ (1/2, 1) independent of ξ.

The FBM is commonly viewed as the simplest stochastic process modelling time corre-
lated noise. A d-dimensional FBM (BH

t )t∈[0,T ] = (BH,1
t , · · · , BH,d

t )t∈[0,T ] with Hurst param-
eter H ∈ (0, 1) is a centered, H-self similar Gaussian process with the covariance function
E(BH,i

t BH,j
s ) = RH(t, s)δi,j, where

(1.2) RH(t, s) :=
1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ [0, T ].

This implies that the FBM generalizes the standard Wiener process (H = 1/2) and has
stationary increments. However, the increments are correlated with a power law correlation
decay, which asserts the FBM is a non-Markovian process that is the dominant feature of
equation (1.1). This means that the techniques based on the Itô calculus are not applicable
and then substantial new difficulties will appear in this setting.

DDSDE is also called McKean-Vlasov or mean-field SDE, which was first introduced
in the pioneering work [21] to model plasma dynamics. The importance of DDSDEs is due
to their description of limiting behaviours of individual particles which interact with each
other in a mean-field sense, when the number of particles tends to infinity. Another impor-
tant feature of DDSDEs is their intrinsic link with nonlinear Fokker-Planck equations that
characterize the evolution of the marginal laws of DDSDEs. For these reasons, DDSDEs
appear widely in applications, including fluid dynamics, mean-field games, biology and
mathematical finance etc, and then have received increasing attentions, see [5, 8, 17, 18]
and the references therein. Recently, DDSDEs have been applied in [6, 9, 19, 25] to study
smoothness of associated PDE which involves the Lions derivative introduced by P.-L.
Lions in his lectures [7]. Moreover, Bismut formula for the Lions derivative, Harnack type
inequality, gradient estimate and exponential ergodicity have been studied, see for instance
[4, 24, 28, 30].

Contrary to the previously mentioned works, here we aim to investigate the regularities
of equation (1.1) perturbed by two independent fractional noises. That is, we study the
regularity of the maps

µ 7→ P ∗t µ, t ∈ [0, T ],

where P ∗t µ := LXt for Xt solving (1.1) with initial distribution LX0 = µ ∈ Pp(Rd).
Observe that a probability measure is determined by integrals of f ∈ Bb(Rd), the collection
of all bounded measurable functions on Rd, it suffices to investigate the regularity of the
functionals

µ 7→ (Ptf)(µ) :=

∫
Rd
fd(P ∗t µ), f ∈ Bb(Rd), t ∈ [0, T ].

More precisely, with regards to equation (1.1), we address the following question:
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(Q) Under what conditions does the functional Ptf have dimensional-free Harnack
inequalities and Bismut formulas?

Our main reasons for doing so are the following.
(i) As pointed out in [3] which investigated the sensitivity of prices of options with

respect to the initial value of the underlying asset price, the Bismut formula gives a
better approximation of the sensitivity. In addition, the Harnack inequality may imply
the gradient estimate and entropy estimate.

(ii) It was shown in our previous work [11] that for distribution-free noise (σ̃ = 0
in equation (1.1)), Bismut formulas for Ptf are established by using Malliavin calculus.
However, for distribution dependent noise, these formulas are still open due to technical
difficulty (see the reason at the beginning of Section 4 in [11]).

In contrast with Brownian motion case, DDSDEs driven by FBM have been much less
studied. In addition to [11] mentioned above, we also established the large and moderate
deviation principles for DDSDE driven by a FBM (σ = 0 in equation (1.1)). See also the
article [14] for the well-posedness result to DDSDE driven by a FBM (σ = 1, σ̃ = 0 in
equation (1.1)) with irregular, possibly distributional drift via some stability estimates. To
our best knowledge, none of the questions we ask here for equation (1.1) with distribution-
dependent and possibly degenerate noise have been addressed so far. It appears that they
require a novel set of tools and ideas. Our strategy in this paper builds on the work of
the second author and Wang [16], which handled DDSDEs driven by a standard Brownian
motion

(1.3) dXt = bt(Xt,LXt)dt+ σt(LXt)dB
1
2
t , t ∈ [0, T ].

Therein the authors introduced a noise decomposition argument to the equation, which
allows to obtain the Harnack inequality, Bismut formula and exponential ergodicity for
equation (1.3). In this paper, we first show the well-posedness of equation (1.1). Then,
instead of appealing to Malliavin calculus, we establish the log-Harnack inequalities and
Bismut formula for the Lions derivative to equation (1.1) in both non-degenerate and
degenerate cases, in which our proofs are based entirely on a combination of coupling
argument and a careful analysis of fractional derivative operator. Let us stress here that
in our proofs, the invertible condition imposed on σ is essential, and the constructed
couplings are indeed backward couplings which were first introduced in [29].

We conclude this introduction with the structure of the paper. In Section 2, we recall
some well-known facts on fractional calculus, FBM and the Lions derivative. Section 3
contains the well-posedness result of DDSDE driven by FBM. In Section 4, we state and
prove our main results concerning the regularities for DDSDEs with distribution-dependent
and possibly degenerate fractional noise.

2 Preliminaries

In this section, we recall some basic elements of fractional calculus, fractional Brownian
motion and the Lions derivative.
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2.1 Fractional calculus

Let a, b ∈ R with a < b. For f ∈ L1([a, b],R) and α > 0, the left-sided (respectively
right-sided) fractional Riemann-Liouville integral of f of order α on [a, b] is defined as

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(y)

(x− y)1−αdy(2.1) (
respectively Iαb−f(x) =

(−1)−α

Γ(α)

∫ b

x

f(y)

(y − x)1−αdy

)
.

Here x ∈ (a, b) a.e., (−1)−α = e−iαπ and Γ stands for the Gamma function. In particular,
when α = n ∈ N, they are consistent with the usual n-order iterated integrals.

Fractional differentiation can be defined as an inverse operation. Let α ∈ (0, 1) and p ≥
1. If f ∈ Iαa+(Lp([a, b],R)) (respectively Iαb−(Lp([a, b],R))), then the function g satisfying
Iαa+g = f (respectively Iαb−g = f) is unique in Lp([a, b],R) and it coincides with the left-
sided (respectively right-sided) Riemann-Liouville derivative of f of order α given by

Dα
a+f(x) =

1

Γ(1− α)

d

dx

∫ x

a

f(y)

(x− y)α
dy(

respectively Dα
b−f(x) =

(−1)1+α

Γ(1− α)

d

dx

∫ b

x

f(y)

(y − x)α
dy

)
.

The corresponding Weyl representation is of the form

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
(2.2) (

respectively Dα
b−f(x) =

(−1)α

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

))
,

where the convergence of the integrals at the singularity y = x holds pointwise for almost
all x if p = 1 and in the Lp sense if p > 1. For in-depth treatments, we refer the reader to
[26].

2.2 Fractional Brownian motion

Let (Ω,F ,P) be a probability space carrying a d-dimensional FBM BH with Hurst pa-
rameter H ∈ (0, 1) on the interval [0, T ]. We suppose that there is a sufficiently rich
sub-σ-algebra F0 ⊂ F independent of BH such that for any µ ∈ Pp(Rd) there exists
a random variable ξ ∈ Lp(Ω → Rd,F0,P) with distribution µ. Let {Ft}t∈[0,T ] be the
filtration generated by BH , completed and augmented by F0.

Let E be the set of step functions on [0, T ] and H the Hilbert space defined as the
closure of E with respect to the scalar product

〈
(I[0,t1], · · ·, I[0,td]), (I[0,s1], · · ·, I[0,sd])

〉
H =

d∑
i=1

RH(ti, si).
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Recall here that RH(·, ·) is given in (1.2). The mapping (I[0,t1], · · ·, I[0,td]) 7→
∑d

i=1B
H,i
ti can

be extended to an isometry between H (also called the reproducing kernel Hilbert space)
and the Gaussian space H1 associated with BH . Denote this isometry by ψ 7→ BH(ψ).
Besides, by [10] we know that RH(t, s) has an integral representation of the form

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel defined by

KH(t, s) = Γ

(
H +

1

2

)−1

(t− s)H−
1
2F

(
H − 1

2
,
1

2
−H,H +

1

2
, 1− t

s

)
,

in which F (·, ·, ·, ·) is the Gauss hypergeometric function. See, e.g., [10, 22] for further
details.

Next, we define the linear operator K∗H : E → L2([0, T ],Rd) as follows

(K∗Hψ)(s) = KH(T, s)ψ(s) +

∫ T

s

(ψ(r)− ψ(s))
∂KH

∂r
(r, s)dr.

Owing to [1], the relation 〈K∗Hψ,K∗Hφ〉L2([0,T ],Rd) = 〈ψ, φ〉H holds for all ψ, φ ∈ E , and
then by the bounded linear transform theorem, K∗H can be extended to an isometry be-
tween H and L2([0, T ],Rd). As a consequence, by [1] again, there exists a d-dimensional
Wiener process W defined on (Ω,F ,P) such that BH has the following Volterra-type
representation

BH
t =

∫ t

0

KH(t, s)dWs, t ∈ [0, T ].(2.3)

In addition, define the operator KH : L2([0, T ],Rd)→ I
H+1/2
0+ (L2([0, T ],Rd)) by

(KHf)(t) =

∫ t

0

KH(t, s)f(s)ds.

According to [10], we obtain that KH is an isomorphism and for any f ∈ L2([0, T ],Rd),

(KHf)(s) =

 I1
0+s

H−1/2I
H−1/2
0+ s1/2−Hf, H ∈ (1/2, 1),

I2H
0+ s

1/2−HI
1/2−H
0+ sH−1/2f, H ∈ (0, 1/2).

Then for each h ∈ IH+1/2
0+ (L2([0, T ],Rd)), the inverse operator K−1

H is of the form

(2.4) (K−1
H h)(s) =

 sH−1/2D
H−1/2
0+ s1/2−Hh′, H ∈ (1/2, 1),

s1/2−HD
1/2−H
0+ sH−1/2D2H

0+h, H ∈ (0, 1/2).

In particular, when h is absolutely continuous, we get

(K−1
H h)(s) = sH−

1
2 I

1
2
−H

0+ s
1
2
−Hh′, H ∈ (0, 1/2).(2.5)
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2.3 The Lions derivative

For p > 1, define the Lp-Wasserstein distance on Pp(Rd) as follows

Wp(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|pπ(dx, dy)

) 1
p

, µ, ν ∈Pp(Rd),

where C (µ, ν) is the set of all couplings of µ and ν. It is well-known that (Pp(Rd),Wp) is
a Polish space. Throughout this paper, denote | · | and 〈·, ·〉 respectively for the Euclidean
norm and inner product, and for a matrix, denote by ‖·‖ the operator norm. ‖·‖Lpµ stands

for the norm of the space Lp(Rd → Rd, µ) and for a random variable η, Lη denotes its
distribution.

Now, we present the definition of the Lions derivative, see, e.g., [4, 7, 15] for further
details.

Definition 2.1. Let p ∈ (1,∞).

(1) A continuous function f on Pp(Rd) is called intrinsically differentiable, if for any
µ ∈Pp(Rd).

Lp(Rd → Rd, µ) 3 φ 7→ DL
φf(µ) := lim

ε↓0

f(µ ◦ (Id + εφ)−1)− f(µ)

ε
∈ R

is a well defined bounded linear operator. In this case, the norm of the intrinsic
derivative DLf(µ) is given by

‖DLf(µ)‖
Lp
∗
µ

= sup
‖φ‖

L
p
µ
≤1

|DL
φf(µ)|,

where p∗ = p−1
p

.

(2) f is called L-differentiable on Pp(Rd), if it is intrinsically differentiable and

lim
‖φ‖

L
p
µ
→0

|f(µ ◦ (Id + φ)−1)− f(µ)−DL
φf(µ)|

‖φ‖Lpµ
= 0, µ ∈Pp(Rd).

If f is L-differentiable on Pp(Rd) such that DLf(µ)(x) has a jointly continuous
version in (µ, x) ∈Pp(Rd)× Rd, we denote f ∈ C(1,0)(Pp(Rd)).

(3) g is called differentiable on Rd ×Pp(Rd), if for any (x, µ) ∈ Rd ×Pp(Rd), g(·, µ)
is differentiable and g(x, ·) is L-differentiable. Moreover, if DLg(x, ·)(µ)(y) and
∇g(·, µ)(x) are jointly continuous in (x, y, µ) ∈ Rd × Rd × Pp(Rd), we denote
g ∈ C1,(1,0)(Rd ×Pp(Rd).
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For a vector-valued function f = (fi) or a matrix-valued function f = (fij) with
L-differentiable components, we simply write

DLf(µ) = (DLfi(µ)) or DLf(µ) = (DLfij(µ)).

Let us finish this part by giving a formula for the L-derivative that are needed later on.

Lemma 2.1. ([4, Theorem 2.1]) Let (Ω,F ,P) be an atomless probability space and ξ, η ∈
Lp(Ω→ Rd,P) with p ∈ (1,∞). If f ∈ C(1,0)(Pp(Rd)), then

lim
ε↓0

f(Lξ+εη)− f(Lξ)

ε
= E〈DLf(Lξ)(ξ), η〉.

3 Well-posedness of DDSDE by fractional noises

In this section, we fix H ∈ (0, 1), H̃ ∈ (1/2, 1) and consider the following DDSDE driven
by fractional Brownian motions:

(3.1) dXt = bt(Xt,LXt)dt+ σtdB
H
t + σ̃t(LXt)dB̃

H̃
t , X0 = ξ,

where the coefficients b : [0, T ] × Rd ×P(Rd) → Rd, σ : [0, T ] → Rd ⊗ Rd, σ̃ : [0, T ] ×
P(Rd) → Rd ⊗ Rd are measurable functions, (BH

t )t∈[0,T ] and (B̃H̃
t )t∈[0,T ] are two inde-

pendent fractional Brownian motions with Hurst parameters H and H̃, respectively, and
ξ ∈ Lp(Ω→ Rd,F0,P) with p ≥ 1. To show the well-posedness of (3.1), we introduce the
following hypothesis.

(H1) There exists a non-decreasing function κ· such that for every t ∈ [0, T ], x, y ∈
Rd, µ, ν ∈Pp(Rd),

|bt(x, µ)− bt(y, ν)| ≤ κt(|x− y|+ Wp(µ, ν)), ‖σ̃t(µ)− σ̃t(ν)‖ ≤ κtWp(µ, ν),

and

|bt(0, δ0)|+ ‖σt‖+ ‖σ̃t(δ0)‖ ≤ κt.

Now, for every p ≥ 1, let Sp([0, T ]) be the space of Rd-valued, continuous (Ft)t∈[0,T ]-
adapted processes ψ on [0, T ] such that

‖ψ‖Sp :=

(
E sup
t∈[0,T ]

|ψt|p
)1/p

<∞,

and let the letter C with or without indices denote generic constants, whose values may
change from line to line.
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Definition 3.1. A stochastic process X = (Xt)0≤t≤T on Rd is called a solution of (3.1),
if X ∈ Sp([0, T ]) and P-a.s.,

Xt = ξ +

∫ t

0

bs(Xs,LXs)ds+

∫ t

0

σsdB
H
s +

∫ t

0

σ̃s(LXs)dB̃
H̃
s , t ∈ [0, T ].

Remark 3.1. Note that σ· and σ̃·(LX·) are both deterministic functions, then
∫ t

0
σsdB

H
s

and
∫ t

0
σ̃s(LXs)dB̃

H̃
s can be regarded as Wiener integrals with respect to fractional Brownian

motions.

Theorem 3.2. Suppose that ξ ∈ Lp(Ω → Rd,F0,P) with p ≥ 1 and one of the following
conditions:

(I) H ∈ (1/2, 1), b, σ, σ̃ satisfy (H1) and p > max{1/H, 1/H̃};

(II) H ∈ (0, 1/2), b, σ̃ satisfies (H1), σt does not depend on t and p > 1/H̃.

Then Eq. (3.1) has a unique solution X ∈ Sp([0, T ]). Moreover, let (Xµ
t )t∈[0,T ] be the

solution to (3.1) with LX0 = µ ∈ Pp(Rd) and denote P ∗t µ = LXµ
t
, t ∈ [0, T ]. Then it

holds

Wp(P
∗
t µ, P

∗
t ν) ≤ Cp,T,κ,H̃Wp(µ, ν), µ, ν ∈Pp(Rd).(3.2)

Proof. Since the case of H ∈ (0, 1/2) is easier, we only handle the case of H ∈ (1/2, 1)
and provide a sketch. For any µ ∈ C([0, T ],Pp), consider

dXt = bt(Xt, µt)dt+ σtdB
H
t + σ̃t(µt)dB̃

H̃
t , t ∈ [0, T ], X0 = ξ.

Denote its solution as Xµ,ξ
t . We first assert that E

(
supt∈[0,T ] |X

µ,ξ
t |p

)
< ∞ with p >

max{1/H, 1/H̃}. Indeed, by (H1) and the Hölder inequality, we deduce that

E
(

sup
t∈[0,T ]

|Xµ,ξ
t |p

)
≤4p−1E|ξ|p + 12p−1(TκT )p

(
1 + sup

t∈[0,T ]

µt(| · |p) +
1

T
E
∫ T

0

sup
s∈[0,t]

|Xµ,ξ
s |pdt

)
+ 4p−1E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σsdB
H
s

∣∣∣∣p
)

+ 4p−1E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σ̃s(µs)dB̃
H̃
s

∣∣∣∣p
)
.(3.3)

By a similar analysis of [11, Step 1], we derive that for any p > max{1/H, 1/H̃},

E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σsdB
H
s

∣∣∣∣p
)

+ E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σ̃s(µs)dB̃
H̃
s

∣∣∣∣p
)
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≤Cp,T,κ,H,H̃

(
1 +

(
sup
t∈[0,T ]

µt(| · |p)
))

.

This, together with (3.3), implies E
(

supt∈[0,T ] |X
µ,ξ
t |p

)
<∞.

Now, define the mapping Φξ : C([0, T ],Pp(Rd))→ C([0, T ],Pp(Rd)) as

Φξ
t (µ) = LXµ,ξ

t
, t ∈ [0, T ].

By (H1), we have

E|Xµ,ξ
t −X

ν,ξ̃
t |p ≤3p−1E|ξ − ξ̃|p + 3p−1E

∣∣∣∣∫ t

0

(bs(X
µ,ξ
s , µs)− bs(Xν,ξ̃

s , νs))ds

∣∣∣∣p
+ 3p−1E

∣∣∣∣∫ t

0

(σ̃s(µs)− σ̃s(νs))dB̃H̃
s

∣∣∣∣p
≤3p−1E|ξ − ξ̃|p + (6t)p−1κpt

∫ t

0

(
E|Xµ,ξ

s −Xν,ξ̃
s |p + Wp(µs, νs)

p
)

ds

+ 3p−1Cp,H̃κ
p
t t
pH̃−1

∫ t

0

Wp(µs, νs)
pds,

where we use [11, (3.8) in the proof of Theorem 3.1] and p > 1/H̃ in the last inequality.
Then, we get

E|Xµ,ξ
t −X

ν,ξ̃
t |p ≤3p−1E|ξ − ξ̃|p + Cp,T,κ,H̃

∫ t

0

E|Xµ,ξ
s −Xν,ξ̃

s |pds

+ Cp,T,κ,H̃

∫ t

0

Wp(µs, νs)
pds,

which, together with the Gronwall lemma, implies

E|Xµ,ξ
t −X

ν,ξ̃
t |p ≤ Cp,T,κ,H̃E|ξ − ξ̃|

p + Cp,T,κ,H̃

∫ t

0

Wp(µs, νs)
pds.(3.4)

Therefore, for any λ > 0, we have

sup
t∈[0,T ]

e−λptWp(Φ
ξ
t (µ),Φξ

t (ν))p ≤
Cp,T,κ,H̃

λ
sup
t∈[0,T ]

e−λptWp(µt, νt)
p.

Take λ0 satisfying
Cp,T,κ,H̃

λ
< 1

2p
and let Eξ := {µ ∈ C([0, T ]; Pp(Rd)) : µ0 = Lξ} equipped

with the complete metric

ρλ0(ν, µ) := sup
t∈[0,T ]

e−λ0tWp(νt, µt), µ, ν ∈ Eξ.
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Hence, it holds

ρλ0(Φ
ξ(µ),Φξ(ν)) <

1

2
ρλ0(µ, ν), µ, ν ∈ Eξ.

Using the Banach fixed point theorem, we conclude that

Φξ
t (µ) = µt, t ∈ [0, T ]

has a unique solution µ ∈ Eξ, which means that (3.1) has a unique strong solution on
[0, T ] with initial value ξ.

Next, applying (3.4) for µt = P ∗t µ, νt = P ∗t ν, and taking ξ, ξ̃ satisfying Lξ = µ,Lξ̃ = ν

and E|ξ − ξ̃|p = Wp(µ, ν)p, there exists a constant Cp,T,κ,H̃ > 0 such that

sup
s∈[0,t]

Wp(P
∗
s µ, P

∗
s ν)p ≤ Cp,T,κ,H̃Wp(µ, ν)p + Cp,T,κ,H̃

∫ t

0

Wp(P
∗
s µ, P

∗
s ν)pds, t ∈ [0, T ].

So, by the Gronwall inequality, we complete the proof.

Remark 3.3. Under the same conditions as Theorem 3.2, we obtain that for any t ∈ [0, T ],

E
(

sup
s∈[0,t]

|%µs − %νs |p
)
≤ Cp,T,κ,H̃t

pH̃Wp(µ, ν)p.

Here we have set %µs :=
∫ s

0
σ̃r(P

∗
r µ)dB̃H̃

r for all s ∈ [0, T ] and µ ∈ P(Rd). Indeed,
combining [11, (3.8) in the proof of Theorem 3.1] with (3.2) yields

E
(

sup
s∈[0,t]

|%µs − %νs |p
)

= E
(

sup
s∈[0,t]

∣∣∣∣∫ s

0

(σ̃r(P
∗
r µ)− σ̃r(P ∗r ν))dB̃H̃

r

∣∣∣∣p)
≤Cp,H̃κ

p
t t
pH̃−1

∫ t

0

Wp(P
∗
r µ, P

∗
r ν)pdr ≤ Cp,T,κ,H̃t

pH̃Wp(µ, ν)p.

4 Regularities of DDSDEs by fractional noises

The main objective of this section concerns the regularities for (3.1). More precisely, for
any t ∈ [0, T ], µ ∈Pp(Rd) and f ∈ Bb(Rd), let

(Ptf)(µ) =

∫
Rd
fd(P ∗t µ)(4.1)

with P ∗t µ := LXµ
t

for Xµ
t solving (3.1) with initial distribution µ, and then introduce the

functionals

Pp(Rd) 3 µ 7→ (Ptf)(µ), t ∈ [0, T ], f ∈ Bb(Rd).

Based on the coupling argument and a careful analysis of fractional derivative operator, we
shall establish the log-Harnack inequalities and the Bismut formulas for these functionals
in both non-degenerate and degenerate cases.
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4.1 The non-degenerate case

This part is devoted to the regularities for the non-degenerate case of (3.1). We begin
with the following assumption.

(H1’) For every t ∈ [0, T ], bt(·, ·) ∈ C1,(1,0)(Rd ×Pp(Rd)). Moreover, there exists a non-
decreasing function κ· such that for any t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈Pp(Rd),

‖∇bt(·, µ)(x)‖+ |DLbt(x, ·)(µ)(y)| ≤ κt, ‖σ̃t(µ)− σ̃t(ν)‖ ≤ κtWp(µ, ν),

and |bt(0, δ0)|+ ‖σt‖+ ‖σ̃t(δ0)‖ ≤ κt.

Observe that with the help of the fundamental theorem for Bochner integral (see, for
instance, [20, Proposition A.2.3]) and the definitions of L-derivative and the Wasserstein
distance, (H1’) implies that for each p ≥ 1,

|bt(x, µ)− bt(y, ν)| ≤ κt(|x− y|+ Wp(µ, ν)), t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈Pp(Rd).

So, according to Theorem 3.2, (3.1) admits a unique solution. To investigate the regular-
ities, in additional to (H1’), we also need the following condition.

(H2) There exists a constant κ̃ > 0 such that

(i) for any t, s ∈ [0, T ], x, y, z1, z2 ∈ Rd, µ, ν ∈Pp(Rd),

‖∇bt(·, µ)(x)−∇bs(·, ν)(y)‖+ |DLbt(x, ·)(µ)(z1)−DLbs(y, ·)(ν)(z2)|
≤ κ̃(|t− s|α + |x− y|β + |z1 − z2|γ + Wp(µ, ν)),

where α ∈ (H − 1/2, 1] and β, γ ∈ (1− 1/(2H), 1].

(ii) σ is invertible and σ−1 is Hölder continuous of order δ ∈ (H − 1/2, 1]:

‖σ−1(t)− σ−1(s)‖ ≤ κ̃|t− s|δ, t, s ∈ [0, T ].

4.1.1 Log-Harnack inequality

Our main goal in the current part is to prove the following log-Harnack inequality.

Theorem 4.1. Consider Eq. (3.1). If one of the two following assumptions holds:

(I) H ∈ (1/2, 1), b, σ, σ̃ satisfy (H1’), (H2) and p ≥ 2(1 + β);

(II) H ∈ (0, 1/2), b, σ̃ satisfies (H1), σt does not depend on t and p ≥ 2.

Then for any t ∈ (0, T ], µ, ν ∈Pp(Rd) and 0 < f ∈ Bb(Rd),

(Pt log f)(ν) ≤ log(Ptf)(µ) +$(H),(4.2)

where

$(H) =

{
CT,κ,κ̃,H,H̃

(
1 + Wp(µ, ν)2β + 1

t2H

)
Wp(µ, ν)2, H ∈ (1/2, 1),

CT,κ,H,H̃
(
1 + 1

t2H

)
Wp(µ, ν)2, H ∈ (0, 1/2).

11



Remark 4.2. The log-Harnack inequality obtained above is equivalent to the following
entropy-cost estimate

Ent(P ∗t ν|P ∗t µ) ≤ $(H), t ∈ (0, T ], µ, ν ∈Pp(Rd),

where Ent(P ∗t ν|P ∗t µ) is the relative entropy of P ∗t ν with respect to P ∗t µ and p is given as
in Theorem 4.1.

Proof of Theorem 4.1. For every µ, ν ∈ Pp(Rd), choose F0-measurable Xµ
0 and Xν

0

such that LXµ
0

= µ,LXν
0

= ν and

E|Xµ
0 −Xν

0 |p = Wp(µ, ν)p.(4.3)

Let Xµ
t and Xν

t be two solutions to (3.1) such that LXµ
0

= µ and LXν
0

= ν, respectively,
which yields that LXµ

t
= P ∗t µ and LXν

t
= P ∗t ν.

For fixed t0 ∈ (0, T ], we first consider the following coupling DDSDE:

dYt =

[
bt(X

µ
t , P

∗
t µ) +

1

t0
(Xµ

0 −Xν
0 + %µt0 − %

ν
t0

)

]
dt

+ σtdB
H
t + σ̃t(P

∗
t ν)dB̃H̃

t , t ∈ [0, t0](4.4)

with Y0 = Xν
0 . Recall that %µs =

∫ s
0
σ̃r(P

∗
r µ)dB̃H̃

r , (s, µ) ∈ [0, T ] ×Pp(Rd) is defined in
Remark 3.3. Taking into account of this and (3.1) for (Xµ

t , P
∗
t µ) replacing (Xt,LXt), we

obtain

Yt −Xµ
t =

t− t0
t0

(Xµ
0 −Xν

0 ) +
t

t0
(%µt0 − %

ν
t0

) + %νt − %
µ
t , t ∈ [0, t0].(4.5)

In particular, one has Yt0 = Xµ
t0 .

Next, we intend to express Pt0f(ν) in terms of Yt0 . To this end, we first rewrite Eq.
(4.4) as

dYt = bt(Yt, P
∗
t ν)dt+ σtdB̄

H
t + σ̃t(P

∗
t ν)dB̃H̃

t , t ∈ [0, t0],(4.6)

where

B̄H
t := BH

t −
∫ t

0

σ−1
s ζsds =

∫ t

0

KH(t, s)

(
dWs −K−1

H

(∫ ·
0

σ−1
r ζrdr

)
(s)ds

)
with

ζs := bs(Ys, P
∗
s ν)− bs(Xµ

s , P
∗
s µ)− 1

t0
(Xµ

0 −Xν
0 + %µt0 − %

ν
t0

).

Set

RH̃,0 := exp

[∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s), dWs

〉
− 1

2

∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣2 ds

]
.
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On one hand, with the help of Remark 4.4 (i) below and the fractional Girsanov the-
orem (see, e.g., [10, Theorem 4.9] or [23, Theorem 2]), we know that (B̄H

t )t∈[0,t0] is a

d-dimensional fractional Brownian motion under the conditional probability RH̃,0dPH̃,0.
Here and in the sequel, we use PH̃,0 and EH̃,0 to denote the conditional probability and
the conditional expectation given both B̃H̃ and F0, i.e.

PH̃,0 = P( · |B̃H̃ ,F0), EH̃,0 = E( · |B̃H̃ ,F0).

On the other hand, let Ȳt = Yt − %νt and then (4.6) can be written as

dȲt = bt(Ȳt + %νt , P
∗
t ν)dt+ σtdB̄

H
t , t ∈ [0, t0], Ȳ0 = Y0 = Xν

0 .

Note that X̄ν
· := Xν

· − %ν· satisfies SDE of the same form

dX̄ν
t = bt(X̄

ν
t + %νt , P

∗
t ν)dt+ σtdB

H
t , t ∈ [0, t0], X̄ν

0 = Xν
0 .

Therefore, by the weak uniqueness of the solution we derive that the law of Ȳt0 under

RH̃,0dPH̃,0 is the same as that of X̄ν
t0

under PH̃,0. Consequently, we conclude that the law

of Yt0 = Ȳt0 + %νt0 under RH̃,0dPH̃,0 is also the same as one of Xν
t0

= X̄ν
t0

+ %νt0 under PH̃,0

due to the fact that %νt0 is deterministic given B̃H̃ . This, along with Yt0 = Xµ
t0 , yields that

for any f ∈ Bb(Rd),

(P H̃,0
t0 f)(Xν

0 ) := EH̃,0f(Xν
t0

) = ERH̃,0PH̃,0f(Yt0) = ERH̃,0PH̃,0f(Xµ
t0).(4.7)

Now, owing to (4.1) and (4.7), we deduce that for every 0 < f ∈ Bb(Rd),

(Pt0 log f)(ν) = E
[
EH̃,0(log f(Xν

t0
))
]

= E
[
(P H̃,0

t0 log f)(Xν
0 )
]

=E
[
ERH̃,0PH̃,0 log f(Xµ

t0)
]

= E
[
EH̃,0

(
RH̃,0 log f(Xµ

t0)
)]

≤E
[
logEH̃,0f(Xµ

t0) + EH̃,0
(
RH̃,0 logRH̃,0

)]
=E

[
log(P H̃,0

t0 f)(Xµ
0 )
]

+
1

2
E

[
EH̃,0

(∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣2 ds

)]
,(4.8)

where we use the Young inequality (see, e.g., [2, Lemma 2.4]) in the inequality.
Using the Jensen inequality and Lemma 4.3 below, we have

(Pt0 log f)(ν) ≤ logE
(

(P H̃,0
t0 f)(Xµ

0 )
)

+
1

2
Eϑ(H)

= log(Pt0f)(µ) +
1

2
Eϑ(H), t0 ∈ (0, T ], µ, ν ∈Pp(Rd).(4.9)

Consequently, using Remark 4.4 (ii), we obtain the desired relations. Our proof is now
finished.
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The following lemma and Remark 4.4 below consist of estimates on the function
K−1
H

(∫ ·
0
σ−1
r ζrdr

)
(s), which may contribute to the study of the Girsanov transformation

for the fractional Brownian motion case and then the log-Harnack inequality (4.2). Before
going on, for any given continuous function f : [0, T ]→ Rd and Hölder continuous function
g : [0, T ]→ Rd of order α ∈ (0, 1), we put

‖f‖∞ := sup
t∈[0,T ]

|f(t)|, ‖g‖α := sup
0≤s<t≤T

|g(t)− g(s)|
(t− s)α

.

Lemma 4.3. Let the assumptions in Theorem 4.1 hold, then for any µ, ν ∈Pp(Rd) with
p ≥ 2(1 + β) if H ∈ (1/2, 1) or p ≥ 2 if H ∈ (0, 1/2),

EH̃,0
(∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣2 ds

)
≤ ϑ(H),

where

ϑ(H) =



CT,κ,κ̃,H,H̃

[
Wp(µ, ν)2 +

(
1
t2H0

+ ‖%µ· ‖
2β

H̃−ς1
+ ‖%ν· ‖

2β

H̃−ς2
+ ψ2β(X0, %)

)
ψ2(X0, %)

+
(

1 + |Xµ
0 |2β + ‖%µ· ‖2β

∞ + ‖%µ· ‖
2β

H̃−ς1

)
(Wp(µ, ν)2 + ψ2(X0, %))

+
∫ t0

0
s2H−1

(∫ s
0
|%νs−%

µ
s−(%νr−%

µ
r )|

(s−r)
1
2+H

r
1
2
−Hdr

)2

ds

]
, H ∈ (1/2, 1),

CT,κ,H,H̃

(
ψ2(X0,%)

t2H0
+ Wp(µ, ν)2

)
, H ∈ (0, 1/2),

with ψ(X0, %) := |Xµ
0 −Xν

0 |+ sups∈[0,t0] |%µs − %νs | and ςi ∈ (0, 1/2), i = 1, 2, 3.

Proof. We start by dealing with the case H ∈ (1/2, 1) By (2.4) and (2.2), we get

K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s) = sH−

1
2D

H− 1
2

0+

[
·
1
2
−Hσ−1

· ζ·

]
(s)

=
H − 1

2

Γ(3
2
−H)

[
s

1
2
−Hσ−1

s ζs
H − 1

2

+ sH−
1
2σ−1

s ζs

∫ s

0

s
1
2
−H − r 1

2
−H

(s− r) 1
2

+H
dr

+ sH−
1
2 ζs

∫ s

0

σ−1
s − σ−1

r

(s− r) 1
2

+H
r

1
2
−Hdr

+ sH−
1
2

∫ s

0

ζs − ζr
(s− r) 1

2
+H

σ−1
r r

1
2
−Hdr

]

=:
H − 1

2

Γ(3
2
−H)

[I1(s) + I2(s) + I3(s) + I4(s)].(4.10)
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From (H1), (4.5) and Theorem 3.2, it follows that

|ζs| ≤
κs(t0 − s) + 1

t0
|Xµ

0 −Xν
0 |+

κss+ 1

t0
|%µt0 − %

ν
t0
|

+ κs
(
|%µs − %νs |+ CT,H̃Wp(µ, ν)

)
.(4.11)

Besides, we have ∫ s

0

r
1
2
−H − s 1

2
−H

(s− r) 1
2

+H
dr = s1−2H

∫ 1

0

r
1
2
−H − 1

(1− r) 1
2

+H
dr <∞.

These, along with (H2)(ii), lead to

3∑
i=1

|Ii(s)|2 ≤CT,κ̃,H(s1−2H + s2δ−2H+1)|ζs|2

≤CT,κ,κ̃,H,H̃(s1−2H + s2δ−2H+1)

(
ψ2(X0, %)

t20
+ Wp(µ, ν)2

)
,

where we put ψ(X0, %) := |Xµ
0 −Xν

0 |+ sups∈[0,t0] |%µs − %νs | for simplicity.
Then, we get

3∑
i=1

∫ t0

0

|Ii(s)|2ds ≤ CT,κ,κ̃,H,H̃

(
ψ2(X0, %)

t2H0
+ Wp(µ, ν)2

)
.(4.12)

As for I4, using (H1’) and Lemma 2.1, we deduce that for every s ∈ [0, T ],

bs(Ys, P
∗
s ν)− bs(Xµ

s , P
∗
s µ)

=

∫ 1

0

d

dθ
bs(X

µ
s + θ(Ys −Xµ

s ), P ∗s ν)dθ +

∫ 1

0

d

dθ
bs(X

µ
s ,LXµ

s +θ(Xν
s−X

µ
s ))dθ

=

∫ 1

0

∇bs(·, P ∗s ν)(Xµ
s + θ(Ys −Xµ

s ))(Ys −Xµ
s )dθ

+

∫ 1

0

(
E〈DLbs(x, ·)(LXµ,ν

s (θ))(X
µ,ν
s (θ)), Xν

s −Xµ
s 〉
)
|x=Xµ

s
dθ,

where for any θ ∈ [0, 1], Xµ,ν
s (θ) := Xµ

s + θ(Xν
s −Xµ

s ).
Then by (H1’), (H2)(i) and (4.5), we have

|ζs − ζr| = |bs(Ys, P ∗s ν)− bs(Xµ
s , P

∗
s µ)− (br(Yr, P

∗
r ν)− br(Xµ

r , P
∗
r µ))|

≤CT,κ,κ̃,H,H̃

{[
(s− r)α +

s− r
t0

+ Wp(P
∗
s ν, P

∗
r ν) +

(s− r)β

tβ0
ψβ(X0, %)

+ |%νs − %µs − (%νr − %µr )|β + |Xµ
s −Xµ

r |β
]
ψ(X0, %)
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+
[
(s− r)α + (E|Xµ

s −Xµ
r |p)

γ
p + (E|Xν

s −Xν
r |p)

γ
p

+ (E|Xµ
s −Xµ

r |p)
1
p + (E|Xν

s −Xν
r |p)

1
p + |Xµ

s −Xµ
r |β
]
(E|Xµ

s −Xν
s |p)

1
p

+ |%νs − %µs − (%νr − %µr )|+ E|(Xµ
s −Xµ

r )− (Xν
s −Xν

r )|

}
.

Following respectively the same arguments as Theorem 3.2, we derive that for any s, r ∈
[0, T ] and µ, ν ∈Pp(Rd) with p > max{1/H, 1/H̃},

E|Xµ
s −Xµ

r |p ≤ CT,κ,κ̃,H,H̃ |s− r|
p(H∧H̃)

and

E|(Xµ
s −Xµ

r )− (Xν
s −Xν

r )|p ≤ CT,κ,κ̃,H̃(s− r)pH̃Wp(µ, ν)p.

Consequently, combining these with (3.4) leads to

|I4(s)|2

≤CT,κ,κ̃,H,H̃

[(
s2(α−H)+1 + s2(H∧H̃−H)+1 + s2((H∧H̃)γ−H)+1

)
Wp(µ, ν)2

+

(
s2(α−H)+1 + s2(H∧H̃−H)+1 +

s3−2H

t20
+
s2(β−H)+1

t2β0
ψ2β(X0, %)

)
ψ2(X0, %)

+ s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|
(s− r) 1

2
+H

r
1
2
−Hdr

)2

+ s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

ψ2(X0, %)

+ s2H−1

(∫ s

0

|Xµ
s −Xµ

r |β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

(Wp(µ, ν)2 + ψ2(X0, %))

]

≤CT,κ,κ̃,H,H̃

[(
s2(α−H)+1 + s2(H∧H̃−H)+1 + s2((H∧H̃)γ−H)+1

)
Wp(µ, ν)2

+

(
s2(α−H)+1 + s2(H∧H̃−H)+1 +

s3−2H

t20
+ ‖%µ· ‖

2β

H̃−ς1
s1+2(H̃−ς1)β−2H̃

+ ‖%ν· ‖
2β

H̃−ς2
s1+2(H̃−ς2)β−2H̃ +

s2(β−H)+1

t2β0
ψ2β(X0, %)

)
ψ2(X0, %)

+ s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|
(s− r) 1

2
+H

r
1
2
−Hdr

)2
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+ s2H−1

(∫ s

0

|Xµ
s −Xµ

r |β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

(Wp(µ, ν)2 + ψ2(X0, %))

]
,

(4.13)

where the last inequality is due to the Hölder continuity of %µ· and %ν· of order H̃ − ς1 and
H̃ − ς2 with ςi ∈ (0, 1/2), i = 1, 2, respectively.
Observe that there hold

sup
t∈[0,T ]

|Xµ
t | ≤CT,κ,H,H̃

(
1 + (E|Xµ

0 |p)
1
p + |Xµ

0 |+
∥∥∥∥∫ ·

0

σtdB
H
t

∥∥∥∥
∞

+ ‖%µ· ‖∞
)

=:CT,κ,H,H̃Υµ

and

E
(

sup
t∈[0,T ]

|Xµ
t |p
)
≤ CT,κ,H,H̃ (1 + E|Xµ

0 |p) .

Then, by (H1’) we get∣∣∣∣∫ s

r

bt(X
µ
t ,LXµ

t
)dt

∣∣∣∣ ≤κ(T )

[
1 + sup

t∈[0,T ]

|Xµ
t |+

(
E sup
t∈[0,T ]

|Xµ
t |2
) 1

2

]
(s− r)

≤CT,κ,H,H̃Υµ(s− r).

As a consequence, we obtain

s2H−1

(∫ s

0

|Xµ
s −Xµ

r |β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

≤3s2H−1

(∫ s

0

|
∫ s
r
bt(X

µ
t ,LXµ

t
)dt|β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

+ 3s2H−1

(∫ s

0

|
∫ s
r
σtdB

H
t |β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

+ 3s2H−1

(∫ s

0

|%µs − %µr |β

(s− r) 1
2

+H
r

1
2
−Hdr

)2

≤CT,κ,H,H̃Υ2β
µ s

1+2(β−H) + CH

∥∥∥∥∫ ·
0

σtdB
H
t

∥∥∥∥2β

H−ς3
s1+2(H−ς3)β−2H

+ CH̃ ‖%
µ
· ‖

2β

H̃−ς1
s1+2(H̃−ς1)β−2H̃ .

Here we have used the Hölder continuity of
∫ ·

0
σtdB

H
t of order H − ς3 with ς3 ∈ (0, 1/2).

Substituting this into (4.13) and integrating on the interval [0, t0] yields∫ t0

0

|I4(s)|2ds
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≤CT,κ,κ̃,H,H̃

[(
t
2(α−H+1)
0 + t

2(H∧H̃−H+1)
0 + t

2((H∧H̃)γ−H+1)
0

)
Wp(µ, ν)2

+

(
t
2(α−H+1)
0 + t

2(H∧H̃−H+1)
0 + t

2(1−H)
0 + ‖%µ· ‖

2β

H̃−ς1
t
2(1+(H̃−ς1)β−H̃)
0

+ ‖%ν· ‖
2β

H̃−ς2
t
2(1+(H̃−ς2)β−H̃)
0 + t

2(1−H)
0 ψ2β(X0, %)

)
ψ2(X0, %)

+

∫ t0

0

s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|
(s− r) 1

2
+H

r
1
2
−Hdr

)2

ds

+

(
Υ2β
µ t

2(1+β−H)
0 +

∥∥∥∥∫ ·
0

σtdB
H
t

∥∥∥∥2β

H−ς3
t
2(1+(H−ς3)β−H)
0

+ ‖%µ· ‖
2β

H̃−ς1
t
2(1+(H̃−ς1)β−H̃)
0

)
(Wp(µ, ν)2 + ψ2(X0, %))

]
.(4.14)

This, together with (4.12) and (4.10), implies

EH̃,0
∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣2 ds

≤CT,κ,κ̃,H,H̃

[(
1 + t

2(α−H+1)
0 + t

2(H∧H̃−H+1)
0 + t

2((H∧H̃)γ−H+1)
0

)
Wp(µ, ν)2

+

(
1

t2H0
+ t

2(α−H+1)
0 + t

2(H∧H̃−H+1)
0 + t

2(1−H)
0 + ‖%µ· ‖

2β

H̃−ς1
t
2(1+(H̃−ς1)β−H̃)
0

+ ‖%ν· ‖
2β

H̃−ς2
t
2(1+(H̃−ς2)β−H̃)
0 + t

2(1−H)
0 ψ2β(X0, %)

)
ψ2(X0, %)

+

∫ t0

0

s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|
(s− r) 1

2
+H

r
1
2
−Hdr

)2

ds

+

((
1 + |Xµ

0 |2β + ‖%µ· ‖2β
∞
)
t
2(1+β−H)
0 + t

2(1+(H−ς3)β−H)
0

+ ‖%µ· ‖
2β

H̃−ς1
t
2(1+(H̃−ς1)β−H̃)
0

)
(Wp(µ, ν)2 + ψ2(X0, %))

]

≤CT,κ,κ̃,H,H̃

[
Wp(µ, ν)2 +

(
1

t2H0
+ ‖%µ· ‖

2β

H̃−ς1
+ ‖%ν· ‖

2β

H̃−ς2
+ ψ2β(X0, %)

)
ψ2(X0, %)

+
(

1 + |Xµ
0 |2β + ‖%µ· ‖2β

∞ + ‖%µ· ‖
2β

H̃−ς1

)
(Wp(µ, ν)2 + ψ2(X0, %))

+

∫ t0

0

s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|
(s− r) 1

2
+H

r
1
2
−Hdr

)2

ds

]
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Then we get the desired claim.
We now move on to the case H ∈ (0, 1/2). According to (2.5) and (2.1), we get∣∣∣∣K−1

H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣ =
∣∣∣sH− 1

2 I
1
2
−H

0+

[
·
1
2
−Hσ−1ζ·

]
(s)
∣∣∣

=

∣∣∣∣∣ σ−1sH−
1
2

Γ(1
2
−H)

∫ s

0

r
1
2
−Hζr

(s− r) 1
2

+H
dr

∣∣∣∣∣
≤CT,κ,H,H̃s

1
2
−H
(
ψ(X0, %)

t0
+ Wp(µ, ν)

)
,(4.15)

where the last inequality is due to (4.11).
Then, we obtain

EH̃,0
∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣2 ds ≤ CT,κ,H,H̃

(
ψ2(X0, %)

t2H0
+ Wp(µ, ν)2

)
,

which is the desired relation. Our proof is now complete.

Remark 4.4. (i) With the help of the Fernique theorem (see, e.g., [13, Theorem 1.3.2] or
[27, Lemma 8]), by (4.12), (4.14) and (4.15) we can conclude that

EH̃,0
(

exp

{
1

2

∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζrdr

)
(s)

∣∣∣∣2 ds

})
<∞.

(ii) Under the assumptions in Lemma 4.3, we have

Eϑ(H) ≤


CT,κ,κ̃,H,H̃

(
1 + Wp(µ, ν)2β + 1

t2H0

)
Wp(µ, ν)2, H ∈ (1/2, 1),

CT,κ,H,H̃

(
1 + 1

t2H0

)
Wp(µ, ν)2, H ∈ (0, 1/2).

Indeed, first observe that by Remark 3.3 and (4.3), we derive that for any 1 ≤ q ≤ p,

Eψq(X0, %) ≤ CT,κ,H̃

(
1 + t0

qH̃
)
Wp(µ, ν)q ≤ CT,κ,H̃Wp(µ, ν)q.(4.16)

If H ∈ (0, 1/2), then it is easy to see that for any p ≥ 2,

Eϑ(H) ≤ CT,κ,H,H̃

(
1 +

1

t2H0

)
Wp(µ, ν)2.

If H ∈ (1/2, 1), using the same lines as in Remark (3.3) in the second inequality leads to

E
∫ t0

0

s2H−1

(∫ s

0

|%νs − %µs − (%νr − %µr )|
(s− r) 1

2
+H

r
1
2
−Hdr

)2

ds
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≤
∫ t0

0

s2H−1

(∫ s

0

r1−2H

(s− r)1+2H−2λ0
dr

)
·
(∫ s

0

E|%νs − %µs − (%νr − %µr )|2

(s− r)2λ0
dr

)
ds

≤Cλ0,T,κ,H,H̃
∫ t0

0

s2(λ0−H)

(∫ s

0

(s− r)2(H̃−λ0)dr

)
ds ·Wp(µ, ν)2

≤Cλ0,T,κ,H,H̃Wp(µ, ν)2,(4.17)

where we take λ0 such that H < λ0 < H̃ + 1/2 and remark that Cλ0,T,κ,H,H̃ above may

depend only on T, κ,H, H̃ by choosing proper λ0.
Then, by (4.16) and (4.17) one can verify that for any p ≥ 2(1 + β),

Eϑ(H) ≤ CT,κ,κ̃,H,H̃

(
1 + Wp(µ, ν)2β +

1

t2H0

)
Wp(µ, ν)2.

4.1.2 Bismut formula

In this part, we focus on establishing a Bismut formula for the L-derivative of (3.1). That
is, for every t ∈ (0, T ], µ ∈Pp(Rd) and φ ∈ Lp(Rd → Rd, µ), we are to find an integrable
random variable Mt(µ, φ) such that

DL
φ (Ptf)(µ) = E (f(Xµ

t )Mt(µ, φ)) , f ∈ Bb(Rd).

Recall that for any µ ∈Pp(Rd), let (Xµ
t )t∈[0,T ] is the solution to (3.1) with LXµ

0
= µ and

P ∗t µ = LXµ
t

for every t ∈ [0, T ]. For any ε ∈ [0, 1] and φ ∈ Lp(Rd → Rd, µ), let X
µε,φ
t

denote the solution of (3.1) with X
µε,φ
0 = (Id + εφ)(Xµ

0 ). In order to ease notations, we
simply write µε,φ = L(Id+εφ)(Xµ

0 ).
Next, we first consider the spatial derivative of Xµ

t along φ:

∇φX
µ
t := lim

ε→0

X
µε,φ
t −Xµ

t

ε
, t ∈ [0, T ], φ ∈ Lp(Rd → Rd, µ).

To this end, we impose the following assumption.

(H3) There exists a non-decreasing function κ· such that

|DLσ̃t(µ)(x)| ≤ κt, t ∈ [0, T ], x ∈ Rd, µ ∈Pp(Rd).

Lemma 4.5. Assume that (H1’), (H3) hold and σt does not depend on t if H ∈ (0, 1/2).
For any µ ∈ Pp(Rd) and φ ∈ Lp(Rd → Rd, µ) with p > max{1/H, 1/H̃} if H ∈ (1/2, 1)
or p > 1/H̃ if H ∈ (0, 1/2), then the following assertions hold.
(i) ∇φX

µ
· exists in Lp(Ω→ C([0, T ];Rd),P) such that ∇φX

µ
· is the unique solution of the

following linear SDE

dGφ
t =

[
∇Gφt

bt(·,LXµ
t
)(Xµ

t ) +
(
E〈DLbt(y, ·)(LXµ

t
)(Xµ

t ), Gφ
t 〉
)
|y=Xµ

t

]
dt
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+ E〈DLσ̃t(LXµ
t
)(Xµ

t ), Gφ
t 〉dB̃H̃

t , Gφ
0 = φ(Xµ

0 ),(4.18)

and

E
(

sup
t∈[0,T ]

|∇φX
µ
t |p
)
≤ Cp,T,κ,H,H̃‖φ‖

p
Lp(µ).

(ii) It holds

lim
ε↓0

E
(

sup
s∈[0,t]

∣∣∣∣%µε,φs − %µs
ε

− Λs

∣∣∣∣p) = 0,

where Λ· is defined as

Λs :=

∫ s

0

〈
E[〈DLσ̃r(P

∗
r µ)(Xµ

r ),∇φX
µ
r 〉], dB̃H̃

r

〉
, s ∈ [0, T ].

Proof. (i) We first set

Πε
t :=

X
µε,φ
t −Xµ

t

ε
, t ∈ [0, T ], ε > 0.

By Lemma 2.1, we deduce that for any t ∈ [0, T ],

dΠε
t =

bt(X
µε,φ
t ,L

X
µε,φ
t

)− bt(Xµ
t ,LXµ

t
)

ε
dt+

σ̃t(LX
µε,φ
t

)− σ̃t(LXµ
t
)

ε
dB̃H̃

t

=

[ ∫ 1

0

(
∇Πεt

bt(·,LX
µε,φ
t

)(Xε
t (θ))

+ (E〈DLbt(x, ·)(LXε
t (θ))(X

ε
t (θ)),Π

ε
t〉)|x=Xµ

t

)
dθ

]
dt

+

[∫ 1

0

E〈DLσ̃t(LXε
t (θ))(X

ε
t (θ)),Π

ε
t〉dθ

]
dB̃H̃

t , Πε
0 = φ(Xµ

0 ),(4.19)

where Xε
t (θ) := Xµ

t + θ(X
µε,φ
t −Xµ

t ), θ ∈ [0, 1].
On the other hand, it is easy to see that under (H1’), (4.18) has a unique solution.
Combining (4.18) with (4.19) implies that for any t ∈ [0, T ],

d(Πε
t −G

φ
t ) =

(
∇Πεt−G

φ
t
bt(·,LXµ

t
)(Xµ

t ) + Ψε
1(t)
)

dt

+
[(

E〈DLbt(x, ·)(LXµ
t
)(Xµ

t ),Πε
t −G

φ
t 〉
) ∣∣

x=Xµ
t

+ Ψε
2(t)
]

dt

+
(
E〈DLσ̃t(LXµ

t
)(Xµ

t ),Πε
t −G

φ
t 〉+ Ψε

3(t)
)

dB̃H̃
t , Πε

0 −G
φ
0 = 0,

where

Ψε
1(t) :=

∫ 1

0

(
∇Πεt

bt(·,LX
µε,φ
t

)(Xε
t (θ))−∇Πεt

bt(·,LXµ
t
)(Xµ

t )
)

dθ,

21



Ψε
2(t) :=

∫ 1

0

(
E〈DLbt(x, ·)(LXε

t (θ))(X
ε
t (θ))−DLbt(x, ·)(LXµ

t
)(Xµ

t ),Πε
t〉
)
|x=Xµ

t
dθ,

Ψε
3(t) :=

∫ 1

0

E〈DLσ̃t(LXε
t (θ))(X

ε
t (θ))−DLσ̃t(LXµ

t
)(Xµ

t ),Πε
t〉dθ.

Then, using (H1’) we have

|Πε
t −G

φ
t |p

≤Cp,T,κ
[ ∫ t

0

(|Ψε
1(s)|p + |Ψε

2(s)|p)ds+

∫ t

0

(
|Πε

s −Gφ
s |p + E|Πε

s −Gφ
s |p
)

ds

+

∣∣∣∣∫ t

0

(
E〈DLσ̃s(LXµ

s
)(Xµ

s ),Πε
s −Gφ

s 〉+ Ψε
3(s)

)
dB̃H̃

s

∣∣∣∣p
]
.(4.20)

By [11, (3.5) in the proof of Theorem 3.1] and (H3), we get

E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
E〈DLσ̃s(LXµ

s
)(Xµ

s ),Πε
s −Gφ

s 〉+ Ψε
3(s)

)
dB̃H̃

s

∣∣∣∣p
)

≤Cp,T,H̃
∫ T

0

(
‖E〈DLσ̃s(LXµ

s
)(Xµ

s ),Πε
s −Gφ

s 〉‖p + ‖Ψε
3(s)‖p

)
ds

≤Cp,T,κ,H̃
∫ T

0

(
E|Πε

s −Gφ
s |p + ‖Ψε

3(s)‖p
)

ds.(4.21)

Additional, similar to [11, Lemma 4.1 and (4.9)], one has

sup
ε∈(0,1]

E
(

sup
t∈[0,T ]

|Πε
t |p
)

+ E
(

sup
t∈[0,T ]

|Gφ
t |p
)
≤ Cp,T,κ,H,H̃‖φ‖

p
Lp(µ).

Consequently, combining this with (4.20)-(4.21) and applying the Gronwall lemma, we
obtain

E
(

sup
t∈[0,T ]

|Πε
t −G

φ
t |p
)
≤ Cp,T,κ,H̃

∫ T

0

E (|Ψε
1(s)|p + |Ψε

2(s)|p + ‖Ψε
3(s)‖p) ds.

Then, following the argument to derive the assertion of [11, Proposition 4.2] from [11,
(4.10) in the proof of Proposition 4.2], we conclude that

lim
ε↓0

E
(

sup
t∈[0,T ]

|Πε
t −G

φ
t |p
)

= 0,

which is exactly the first claim.
(ii) From [11, (3.5) in the proof of Theorem 3.1] again, it follows that

E
(

sup
s∈[0,t]

∣∣∣∣%µε,φs − %µs
ε

− Λs

∣∣∣∣p)
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≤Cp,H̃t
pH̃−1

∫ t

0

∣∣∣∣ σ̃r(P ∗r µε,φ)− σ̃r(P ∗r µ)

ε
− E[〈DLσ̃r(P

∗
r µ)(Xµ

r ),∇φX
µ
r 〉]
∣∣∣∣p dr.

Observe that by (H1’) and Theorem 3.2, we get

|σ̃r(P ∗r µε,φ)− σ̃r(P ∗r µ)| ≤ κrWθ(P
∗
r µε,φ, P

∗
r µ) ≤ Cp,T,κ,H̃Wp(µε,φ, µ) ≤ Cp,T,κ,H̃ε‖φ‖Lp(µ).

Then, using (H3) and the assertion (i), and applying the dominated convergence theorem
and Lemma 2.1, we derive the second claim.

Our main result in this part is the following.

Theorem 4.6. Consider Eq. (3.1). If one of the two following assumptions holds:

(I) H ∈ (1/2, 1), b, σ, σ̃ satisfy (H1’), (H2) and (H3);

(II) H ∈ (0, 1/2), b, σ̃ satisfies (H1’), (H3) and σt does not depend on t,

then for any t ∈ (0, T ], f ∈ Bb(Rd), µ ∈Pp(Rd) and φ ∈ Lp(Rd → Rd, µ) with p ≥ 2(1+β)
if H ∈ (1/2, 1) or p ≥ 2 if H ∈ (0, 1/2), DL

φ (Ptf)(µ) exists and satisfies

DL
φ (Ptf)(µ) = E

(
f(Xµ

t )

∫ t

0

〈
K−1
H

(∫ ·
0

σ−1
r Υr,tdr

)
(s), dWs

〉)
,(4.22)

where Υ·,· is given by

Υr,t =
φ(Xµ

0 ) + Λt

t
+∇br(·, P ∗r µ)(Xµ

r )

(
t− r
t

φ(Xµ
0 )− r

t
Λt + Λr

)
+ E[〈DLbr(x, ·)(P ∗r µ)(Xµ

r ),∇φX
µ
r 〉]|x=Xµ

r
, 0 ≤ r < t ≤ T

with Λ· defined in Lemma 4.5.

Proof. Let t0 ∈ (0, T ] be fixed. For ε ∈ (0, 1], let Y ε solve (4.4) with ν = µε,φ and
Y0 = Y ε

0 = (Id + εφ)(Xµ
0 ). Correspondingly, (4.5) turns into

Y ε
t −X

µ
t = −εt− t0

t0
φ(Xµ

0 ) +
t

t0
(%µt0 − %

µε,φ
t0 ) + %

µε,φ
t − %µt , t ∈ [0, t0],(4.23)

which implies that Y ε
t0

= Xµ
t0 . Put

RH̃,0
ε := exp

[∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r ζεrdr

)
(s), dWs

〉
− 1

2

∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζεrdr

)
(s)

∣∣∣∣2 ds

]

with

ζεs := bs(Y
ε
s , P

∗
s µε,φ)− bs(Xµ

s , P
∗
s µ) +

1

t0
(εφ(Xµ

0 ) + %
µε,φ
t0 − %µt0).
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Similar to (4.7), one has

(P H̃,0
t0 f)(X

µε,φ
0 ) = EH̃,0

(
RH̃,0
ε f(Xµ

t0)
)
.

Then, we arrive at

lim
ε↓0

(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )

ε
= lim

ε↓0
EH̃,0

(
f(Xµ

t0)
RH̃,0
ε − 1

ε

)
.(4.24)

Note that we have

lim
ε↓0

EH̃,0
RH̃,0
ε − 1

ε

= lim
ε↓0

EH̃,0
∫ t0

0

〈
K−1
H

(∫ ·
0
σ−1
r ζεrdr

)
(s), dWs

〉
− 1

2

∫ t0
0

∣∣K−1
H

(∫ ·
0
σ−1
r ζεrdr

)
(s)
∣∣2 ds

ε

= lim
ε↓0

EH̃,0
∫ t0

0

〈
K−1
H

(∫ ·
0
σ−1
r ζεrdr

)
(s), dWs

〉
ε

,(4.25)

where the last equality is due to Remark 4.4 (ii) for µε,φ replacing ν and the fact that
Wp(µ, µε,φ) ≤ ε‖φ‖Lp(µ).

Next, we handle the case H ∈ (1/2, 1) and H ∈ (0, 1/2) slightly.
The case H ∈ (1/2, 1). In view of (2.4) and (2.2), one has∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r ζεrdr

)
(s), dWs

〉
=

H − 1
2

Γ(3
2
−H)

[∫ t0

0

〈
s

1
2
−Hσ−1

s ζεs
H − 1

2

, dWs

〉

+

∫ t0

0

〈
sH−

1
2σ−1

s ζεs

∫ s

0

s
1
2
−H − r 1

2
−H

(s− r) 1
2

+H
dr, dWs

〉

+

∫ t0

0

〈
sH−

1
2 ζεs

∫ s

0

σ−1
s − σ−1

r

(s− r) 1
2

+H
r

1
2
−Hdr, dWs

〉

+

∫ t0

0

〈
sH−

1
2

∫ s

0

ζεs − ζεr
(s− r) 1

2
+H

σ−1
r r

1
2
−Hdr, dWs

〉]

=:
H − 1

2

Γ(3
2
−H)

[J1(t0) + J2(t0) + J3(t0) + J4(t0)].(4.26)

Note that by our hypotheses, (4.23) and Lemma 4.5, it is readily verified that for any
r, s ∈ [0, t0],

lim
ε↓0

ζεs
ε

=
φ(Xµ

0 ) + Λt0

t0
+∇bs(·, P ∗s µ)(Xµ

s )

(
t0 − s
t0

φ(Xµ
0 )− s

t0
Λt0 + Λs

)
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+ E[〈DLbs(x, ·)(P ∗s µ)(Xµ
s ),∇φX

µ
s 〉]|x=Xµ

s
=: Υs,t0(4.27)

and

lim
ε↓0

ζεs − ζεr
ε

=∇bs(·, P ∗s µ)(Xµ
s )

(
t0 − s
t0

φ(Xµ
0 )− s

t0
Λt0 + Λs

)
−∇br(·, P ∗r µ)(Xµ

r )

(
t0 − r
t0

φ(Xµ
0 )− r

t0
Λt0 + Λr

)
+ E[〈DLbs(x, ·)(P ∗s µ)(Xµ

s ),∇φX
µ
s 〉]|x=Xµ

s

− E[〈DLbr(y, ·)(P ∗r µ)(Xµ
r ),∇φX

µ
r 〉]|y=Xµ

r

=Υs,t0 −Υr,t0 .(4.28)

Then, applying the dominated convergence theorem, we obtain that as ε ↓ 0, Ji(t0)/ε, i =
1, · · · , 4, converge to ∫ t0

0

〈
s

1
2
−Hσ−1

s Υs,t0

H − 1
2

, dWs

〉
,

∫ t0

0

〈
sH−

1
2σ−1

s Υs,t0

∫ s

0

s
1
2
−H − r 1

2
−H

(s− r) 1
2

+H
dr, dWs

〉
,

∫ t0

0

〈
sH−

1
2 Υs,t0

∫ s

0

σ−1
s − σ−1

r

(s− r) 1
2

+H
r

1
2
−Hdr, dWs

〉

and ∫ t0

0

〈
sH−

1
2

∫ s

0

Υs,t0 −Υr,t0

(s− r) 1
2

+H
σ−1
r r

1
2
−Hdr, dWs

〉
.

in L1(PH̃,0), respectively. Consequently, combining these with (4.24), (4.25) and (4.26),
we conclude that

lim
ε↓0

(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )

ε

=EH̃,0
(
f(Xµ

t0) ·
H − 1

2

Γ(3
2
−H)

[∫ t0

0

〈
s

1
2
−Hσ−1

s Υs,t0

H − 1
2

, dWs

〉

+

∫ t0

0

〈
sH−

1
2σ−1

s Υs,t0

∫ s

0

s
1
2
−H − r 1

2
−H

(s− r) 1
2

+H
dr, dWs

〉

+

∫ t0

0

〈
sH−

1
2 Υs,t0

∫ s

0

σ−1
s − σ−1

r

(s− r) 1
2

+H
r

1
2
−Hdr, dWs

〉
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+

∫ t0

0

〈
sH−

1
2

∫ s

0

Υs,t0 −Υr,t0

(s− r) 1
2

+H
σ−1
r r

1
2
−Hdr, dWs

〉])

=EH̃,0
(
f(Xµ

t0)

∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r Υr,t0dr

)
(s), dWs

〉)
.(4.29)

Here we have used (2.4) and (2.2) in the last relation.

Now, let LY |PH̃,0 be the conditional distribution of a random variable Y under PH̃,0.
According to the Pinsker inequality, we have

sup
‖f‖∞≤1

∣∣∣(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )
∣∣∣2 = sup

‖f‖∞≤1

∣∣∣LX
µε,φ
t0
|PH̃,0(f)−LXµ

t0
|PH̃,0(f)

∣∣∣2
≤2Ent

(
L
X
µε,φ
t0
|PH̃,0|LXµ

t0
|PH̃,0

)
.

Then, using the equivalence between the log-Harnack inequality and the entropy-cost
estimate (see Remark 4.2), it follows from (4.8) and Lemma 4.3 that

sup
‖f‖∞≤1

∣∣∣(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )
∣∣∣2 ≤ 2ϑ(H),

where ν of ϑ(H) is replaced by µε,φ.
Consequently, this, along with the expression of ϑ(H) and Theorem 3.2, leads to

|(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )|

ε

≤CT,κ,κ̃,H,H̃‖f‖∞

[
‖φ‖Lp(µ) +

(
1

tH0
+ ‖%µ· ‖

β

H̃−ς1
+ ‖%µε,φ· ‖βH̃−ς2 + ψβ(X0, %)

)
ψ̃(X0, %)

+
(

1 + |Xµ
0 |β + ‖%µ· ‖β∞ + ‖%µ· ‖

β

H̃−ς1

)
(‖φ‖Lp(µ) + ψ̃(X0, %))

+

∫ t0

0

s2H−1

(∫ s

0

|%µε,φs − %µs − (%
µε,φ
r − %µr )|

(s− r) 1
2

+H
r

1
2
−Hdr

)2

ds

 1
2 ]

(4.30)

with ψ̃(X0, %) := |φ(Xµ
0 )|+sups∈[0,t0] |%µs−%

µε,φ
s |/ε. Therefore, taking into account of (4.29)

and Remark 3.3, applying the dominated convergence theorem yields

DL
φ (Pt0f)(µ) = lim

ε↓0
E

(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )

ε

=E

(
lim
ε↓0

(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )

ε

)

=E
(
f(Xµ

t0)

∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r Υr,t0dr

)
(s), dWs

〉)
.(4.31)
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The case H ∈ (0, 1/2). Using (2.5) and (2.1), we first have∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r ζεrdr

)
(s), dWs

〉
=

∫ t0

0

〈
σ−1sH−

1
2

Γ(1
2
−H)

∫ s

0

r
1
2
−Hζεr

(s− r) 1
2

+H
dr, dWs

〉
.

Reasoning as in (4.29) and (4.30) , it can be shown that

lim
ε↓0

(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )

ε

=EH̃,0
(
f(Xµ

t0) ·
∫ t0

0

〈
σ−1sH−

1
2

Γ(1
2
−H)

∫ s

0

r
1
2
−HΥr,t0

(s− r) 1
2

+H
dr, dWs

〉

=EH̃,0
(
f(Xµ

t0)

∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r Υr,t0dr

)
(s), dWs

〉)
.(4.32)

and

|(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )|

ε
≤ CT,κ,H,H̃‖f‖∞

(
ψ̃(X0, %)

tH0
+ ‖φ‖Lp(µ)

)
.

So, by Remark 3.3 and the dominated convergence theorem again, we deduce

DL
φ (Pt0f)(µ) = lim

ε↓0
E

(P H̃,0
t0 f)(X

µε,φ
0 )− (P H̃,0

t0 f)(Xµ
0 )

ε

=E
(
f(Xµ

t0)

∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r Υr,t0dr

)
(s), dWs

〉)
.(4.33)

Our proof is now finished.

Remark 4.7. (i) Due to (2.4) and (2.5), we can rewrite the term K−1
H

(∫ ·
0
σ−1
r Υr,tdr

)
(s)

on the right-hand side of (4.22) as follows

K−1
H

(∫ ·
0

σ−1
r Υr,tdr

)
(s)

=



(H− 1
2

)sH−
1
2

Γ( 3
2
−H)

[
s1−2Hσ−1

s Υs,t
H− 1

2

+ σ−1
s Υs,t

∫ s
0
s
1
2−H−r

1
2−H

(s−r)
1
2+H

dr+

Υs,t

∫ s
0

(σ−1
s −σ−1

r )r
1
2−H

(s−r)
1
2+H

dr +
∫ s

0

(Υs,t−Υr,t)σ
−1
r r

1
2−H

(s−r)
1
2+H

dr

]
, H ∈ (1

2
, 1),

σ−1sH−
1
2

Γ( 1
2
−H)

∫ s
0

r
1
2−HΥr,t

(s−r)
1
2+H

dr, H ∈ (0, 1
2
).
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(ii) Using Theorem 4.6 and the Hölder inequality and following the similar argument
as in Lemma 4.3, we obtain

‖DL(Ptf)(µ)‖
Lp
∗
µ
≤ CT,κ,κ̃,H,H̃

(
1 +

1

tH

)(
(Pt|f |p

∗
)(µ)

) 1
p∗

with any t ∈ (0, T ], f ∈ Bb(Rd) and µ ∈ Pp(Rd), where CT,κ,κ̃,H,H̃ is a positive constant
which is independent of κ̃ when H ∈ (0, 1/2), and p ≥ 2(1 + β) if H ∈ (1/2, 1) or p ≥ 2 if
H ∈ (0, 1/2).

4.2 The degenerate case

Let A and B be two matrices of order m ×m and m × l, we now consider the following
distribution dependent degenerate SDE:

(4.34)

{
dX

(1)
t = (AX

(1)
t +BX

(2)
t )dt,

dX
(2)
t = bt(Xt,LXt)dt+ σtdB

H
t + σ̃t(LXt)dB̃

H̃
t ,

where Xt = (X
(1)
t , X

(2)
t ), b : [0, T ] × Rm+l ×Pp(Rm+l) → Rl, σ(t) is an invertible l × l-

matrix for every t ∈ [0, T ], σ̃ : [0, T ] ×Pp(Rm+l) → Rl ⊗ Rl are measurable. It is worth
pointing out that as in the Brownian motion case (see, e.g., [4, 24]), the above model is a
distribution dependent stochastic Hamiltonian system with fractional noise.

4.2.1 Log-Harnack inequality

To establish the log-Harnack inequality, we let

Ut =

∫ t

0

s(t− s)
t2

e−sABB∗e−sA
∗
ds ≥ `(t)Im×m, t ∈ (0, T ],(4.35)

where ` ∈ C([0, T ]) satisfies `(t) > 0 for any t ∈ (0, T ] and Im×m is the m × m identity
matrix. It is obvious that Ut is invertible with ‖U−1

t ‖ ≤ 1/`(t) for every t ∈ (0, T ]. Then,
our main result in the part can be stated in the following theorem.

Theorem 4.8. Consider Eq. (4.34). Assume (4.35) and if one of the two following
assumptions holds:

(I) H ∈ (1/2, 1), b, σ, σ̃ satisfy (H1’) and (H2) with d = m+ l, and p ≥ 2(1 + β);

(II) H ∈ (0, 1/2), b, σ̃ satisfies (H1) with d = m+ l, σt does not depend on t and p ≥ 2.

Then for any t ∈ (0, T ], µ, ν ∈Pp(Rm+l) and 0 < f ∈ Bb(Rm+l),

(Pt log f)(ν) ≤ log(Ptf)(µ) + χ(H),
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where

χ(H) =


CT,κ,κ̃,H,H̃

(
1 + Wp(µ, ν)2β + 1

t2H
+ 1

`2(t)
+ 1

t2H`2(t)

)
Wp(µ, ν)2, H ∈ (1/2, 1),

CT,κ,H,H̃

(
1 + 1

t2H
+ 1

`2(t)
+ 1

t2H`2(t)

)
Wp(µ, ν)2, H ∈ (0, 1/2).

Proof. For any µ, ν ∈ Pp(Rd), let Xµ
0 and Xν

0 be F0-measurable satisfying LXµ
0

=
µ,LXν

0
= ν and

E|Xµ
0 −Xν

0 |p = Wp(µ, ν)p,(4.36)

and let Xµ
t and Xν

t solve respectively (4.34) with LXµ
0

= µ and LXν
0

= ν, which implies
LXµ

t
= P ∗t µ and LXν

t
= P ∗t ν.

Fix t0 ∈ (0, T ]. We first introduce the following coupling DDSDE: for t ∈ [0, t0],

(4.37)

{
dY

(1)
t = (AY

(1)
t +BY

(2)
t )dt,

dY
(2)
t = (bt(Xt, P

∗
t µ) + g′(t))dt+ σtdB

H
t + σ̃t(P

∗
t ν)dB̃H̃

t ,

with Y0 = Xν
0 , where the differentiable function g : [0, t0]→ R will be determinated below.

Combining (4.34) with (4.37) yields that for each t ∈ [0, t0],

(4.38)

{
Y

(1)
t −Xµ,(1)

t = etAZ
(1)
0 +

∫ t
0

e(t−s)AB(Z
(2)
0 + g(s)− g(0) + %νs − %µs )ds,

Y
(2)
t −Xµ,(2)

t = Z
(2)
0 + g(t)− g(0) + %νt − %

µ
t ,

where Z0 = (Z
(1)
0 , Z

(2)
0 ) := Y0 −Xµ

0 = (Y
(1)

0 −Xµ,(1)
0 , Y

(2)
0 −Xµ,(2)

0 ).
To construct a coupling (Xµ

t , Yt) by change of measure for them such that Xµ
t0 = Yt0 , we

take g as follows:

g(t) = − t

t0
(Z

(2)
0 + %νt0 − %

µ
t0)−

t(t0 − t)
t20

B∗e−tA
∗
U−1
t0
Z

(1)
0

− t(t0 − t)
t20

B∗e−tA
∗
U−1
t0

∫ t0

0

e−sAB

[
t0 − s
t0

Z
(2)
0 −

s

t0
(%νt0 − %

µ
t0) + %νs − %µs

]
ds.(4.39)

Next, we rewrite (4.37) as

(4.40)

{
dY

(1)
t = (AY

(1)
t +BY

(2)
t )dt,

dY
(2)
t = bt(Yt, P

∗
t ν)dt+ σtdB̂

H
t + σ̃t(P

∗
t ν)dB̃H̃

t , t ∈ [0, t0],

where

B̂H
t := BH

t −
∫ t

0

σ−1
s ζ̂sds =

∫ t

0

KH(t, s)

(
dWs −K−1

H

(∫ ·
0

σ−1
r ζ̂rdr

)
(s)ds

)
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with

ζ̂s = bs(Ys, P
∗
s ν)− bs(Xs, P

∗
s µ)− g′(s).

Put

R̂H̃,0 := exp

[∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r ζ̂rdr

)
(s), dWs

〉
− 1

2

∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζ̂rdr

)
(s)

∣∣∣∣2 ds

]
.

By a direct calculation, we can have

|Yt −Xµ
t | ≤

CT,κ
`(t0)

(
|Z0|+ sup

s∈[0,t0]

|%µs − %νs |
)

and

|ζ̂t| ≤ CT,κ,H̃

[
Wp(µ, ν) +

(
1

t0
+

1

`(t0)
+

1

t0`(t0)

)(
|Z0|+ sup

s∈[0,t0]

|%µs − %νs |
)]

.

Then, in the sprit of the proofs of Lemma 4.3 and Remark 4.4, we conclude that (B̂H
t )t∈[0,t0]

is a l-dimensional fractional Brownian motion under the conditional probability R̂H̃,0dPH̃,0.
and there holds

E

(∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζ̂rdr

)
(s)

∣∣∣∣2 ds

)
≤ χ(H)

with

χ(H) =


CT,κ,κ̃,H,H̃

(
1 + Wp(µ, ν)2β + 1

t2H0
+ 1

`2(t0)
+ 1

t2H0 `2(t0)

)
Wp(µ, ν)2, H ∈ (1/2, 1),

CT,κ,H,H̃

(
1 + 1

t2H0
+ 1

`2(t0)
+ 1

t2H0 `2(t0)

)
Wp(µ, ν)2, H ∈ (0, 1/2).

Now, let Ŷt = Yt − (0, %νt ) and then it is easy to see that Ŷ· satisfies

(4.41)

{
dŶ

(1)
t = (AŶ

(1)
t +BŶ

(2)
t +B%νt )dt,

dŶ
(2)
t = bt(Ŷt + (0, %νt ), P

∗
t ν)dt+ σtdB̂

H
t , t ∈ [0, t0], Ŷ0 = Y0.

Observe that X̂ = Xν−(0, %ν) solves SDE of the same form as (4.41) with B̂H replaced by
BH . So, along the same lines as in (4.7), (4.8) and (4.9), we get the desired assertion.

30



4.2.2 Bismut formula

In this part, we aim to establish the Bismut formula for the L-derivative of (4.34). For
every µ ∈ Pp(Rm+l), let Xµ

0 be F0-measurable satisfying LXµ
0

= µ, and let (Xµ
t )t∈[0,T ]

be the solution to (4.34) with initial value Xµ
0 . For any ε ∈ [0, 1] and φ ∈ Lp(Rm+l →

Rm+l, µ), denote X
µε,φ
t by the solution of (4.34) with X

µε,φ
0 = (Id + εφ)(Xµ

0 ) and denote
P ∗t µε,φ = L

X
µε,φ
t

for every t ∈ [0, T ]. We set for each 0 ≤ s < t ≤ T ,

~s,t :=

(
esAφ(1)(Xµ

0 ) +

∫ s

0

e(s−r)AB
(
φ(2)(Xµ

0 ) + Ξt(r) + Λr

)
dr, φ(2)(Xµ

0 ) + Ξt(s) + Λs

)
,

where

Ξt(s) :=− s

t0
(φ(2)(Xµ

0 ) + Λt)−
s(t− s)
t2

B∗e−sA
∗
U−1
t φ(1)(Xµ

0 )

− s(t− s)
t2

B∗e−sA
∗
U−1
t

∫ t0

0

e−rAB

[
t− r
t0

φ(2)(Xµ
0 )− r

t0
Λt + Λr

]
dr.

Theorem 4.9. Consider Eq. (4.34). Assume (4.35) and if one of the two following
assumptions holds:

(I) H ∈ (1/2, 1), b, σ, σ̃ satisfy (H1’), (H2) and (H3);

(II) H ∈ (0, 1/2), b, σ̃ satisfies (H1’), (H3) with d = m+ l, σt does not depend on t,

then for any t ∈ (0, T ], f ∈ Bb(Rm+l), φ ∈ Lp(Rm+l → Rm+l, µ) and µ ∈ Pp(Rm+l) with
p ≥ 2(1 + β) if H ∈ (1/2, 1) or p ≥ 2 if H ∈ (0, 1/2), DL

φ (PTf)(µ) exists and satisfies

DL
φ (Ptf)(µ) = E

(
f(Xµ

t )

∫ t

0

〈
K−1
H

(∫ ·
0

σ−1
r Θr,tdr

)
(s), dWs

〉)
,

where Θ·,· is defined as

Θs,t = ∇bs(·, P ∗s µ)(Xµ
s )~s,t + E[〈DLbs(x, ·)(P ∗s µ)(Xµ

s ),∇φX
µ
s 〉]|x=Xµ

s
− (Ξt)

′(s).

Proof. Let t0 ∈ (0, T ] be fixed. For ε ∈ (0, 1], let Y ε solve (4.37) with ν = µε,φ and
Y0 = Y ε

0 = (Id + εφ)(Xµ
0 ). Then, (4.38) becomes{

Y
ε,(1)
t −Xµ,(1)

t = εetAφ(1)(Xµ
0 ) +

∫ t
0

e(t−s)AB(εφ(2)(Xµ
0 ) + g(s) + %

µε,φ
s − %µs )ds,

Y
ε,(2)
t −Xµ,(2)

t = εφ(2)(Xµ
0 ) + g(t) + %

µε,φ
t − %µt .

Here we recall that g(0) = 0 due to (4.39) in which ν and (Z
(1)
0 , Z

(2)
0 ) is replaced by µε,φ

and (εφ(1)(Xµ
0 ), εφ(2)(Xµ

0 )), respectively. In particular, there holds Y ε
t0

= Xµ
t0 .

Set

R̂H̃,0
ε := exp

[∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r ζ̂εrdr

)
(s), dWs

〉
− 1

2

∫ t0

0

∣∣∣∣K−1
H

(∫ ·
0

σ−1
r ζ̂εrdr

)
(s)

∣∣∣∣2 ds

]
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with

ζ̂εs = bs(Y
ε
s , P

∗
s µε,φ)− bs(Xµ

s , P
∗
s µ)− g′(s).

Observe that as in (4.27) and (4.28), we obtain that for each r, s ∈ [0, t0],

lim
ε↓0

ζ̂εs
ε

=∇bs(·, P ∗s µ)(Xµ
s )~s,t0 + E[〈DLbs(x, ·)(P ∗s µ)(Xµ

s ),∇φX
µ
s 〉]|x=Xµ

s

− (Ξt0)
′(s) =: Θs,t0

and

lim
ε↓0

ζ̂εs − ζ̂εr
ε

=∇bs(·, P ∗s µ)(Xµ
s )~s,t0 −∇br(·, P ∗r µ)(Xµ

r )~r,t0

+ E[〈DLbs(x, ·)(P ∗s µ)(Xµ
s ),∇φX

µ
s 〉]|x=Xµ

s

− E[〈DLbr(y, ·)(P ∗r µ)(Xµ
r ),∇φX

µ
r 〉]|y=Xµ

r

− [(Ξt0)
′(s)− (Ξt0)

′(r)]

=Θs,t0 −Θr,t0 .

Then, resorting to the same techniques as in (4.29) and (4.31) as well as (4.32) and (4.33),
we derive that for each H ∈ (1/2, 1) ∪ (0, 1/2),

DL
φ (Pt0f)(µ) = E

(
f(Xµ

t0)

∫ t0

0

〈
K−1
H

(∫ ·
0

σ−1
r Θr,t0dr

)
(s), dWs

〉)
.

We conclude this part with a remark.

Remark 4.10. Similar to Remarks 4.2 and 4.7(ii), it follows from Theorems 4.8 and 4.9
that the following entropy-cost and intrinsic derivative estimates

Ent(P ∗t ν|P ∗t µ) ≤ χ(H)

and

‖DL(Ptf)(µ)‖
Lp
∗
µ
≤ CT,κ,κ̃,H,H̃

(
1 +

1

tH
+

1

`(t)
+

1

tH`(t)

)(
(Pt|f |p

∗
)(µ)

) 1
p∗

hold for any t ∈ (0, T ], µ, ν ∈ Pp(Rd) and f ∈ Bb(Rd), where CT,κ,κ̃,H,H̃ is a positive
constant which is independent of κ̃ when H ∈ (0, 1/2), and p ≥ 2(1 +β) if H ∈ (1/2, 1) or
p ≥ 2 if H ∈ (0, 1/2). In addititon, to guarantee (4.35) holds, one needs to impose some
non-degeneracy condition on the matrix B. For instance, assume the following Kalman
rank condition:

Rank[B,AB, · · · , AkB] = m(4.42)

holds for some integer number k ∈ [0,m − 1] (in particular, if k = 0, (4.42) reduces to
Rank[B] = m), then (4.35) is satisfied with `(t) = C(t ∧ 1)2k+1 for positive constant C
(see, e.g., [31, Proof of Theorem 4.2]).

32



Data Availability Statement Data sharing not applicable to this article as no datasets
were generated or analysed during the current study.

References
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