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Abstract
The log-Harnack inequality and Bismut formula are established for McKean-
Vlasov SDEs with singularities in all (time, space, distribution) variables, where
the drift satisfies an integrability condition in time-space, and the continuity in
distribution may be weaker than Dini. The main results considerably improve
the existing ones for the case where the drift is L-differentiable and Lipschitz
continuous in distribution with respect to the 2-Wasserstein distance.
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1 Introduction

Let 2 be the set of all probability measures on R? equipped with the weak topology,
and let W; be an m-dimensional Brownian motion on a complete filtration probability
space (Q, {Z: }+>0, 7, P). Consider the following McKean-Vlasov SDE on R%:

dXt = bt(Xt,gXt)dt + Jt(Xt>th7 te [O,T], (1)



where T' > 0 is a fixed time, Zx, is the distribution of X}, and
b:[0,T] xR x Z R4, o:[0,T] x R? - R @ R™

are measurable for some non-empty subspace P c P equipped with a complete
distance p. Because of its wide applications, this type SDE has been intensively
investigated, see for instance [4, 5, 8, 9, 16, 17, 23] and the survey [11].

In this paper, we study the regularity of (1) for distributions in

Pri={pe 2 ||ullk=n(-1*)*F <oo}, ke (1,00).

Note that &7 is a Polish space under the Wasserstein distance

%
Wi(uv) = inf ( / |x—ykw<dx,dy>),
R4 xR

TEL (p,v)

where €' (1, v) is the set of all couplings of x and v. The SDE (1) is called well-posed
for distributions in &%, if for any initial value Xy with Zx, € &) (respectively, any
initial distribution v € Z;), it has a unique solution (respectively, a unique weak
solution) X = (X¢)seo,7) such that Lx := (Lx,)iepo, 1) € C([0,T]; P ). In this case,
for any v € P, let Py = L, for the solution X7 with Zxy = 7. We study the
regularity of the map

P37 P ) = BLFCOQ)) = [ FalPea)

for t € (0,T] and f € %,(R?), where %,(R?) is the space of bounded measurable
functions on RY.

As powerful tools characterizing the regularity in distribution for stochastic sys-
tems, the dimension-free Harnack inequality due to [25], the log-Harnack inequality
introduced in [26], and the Bismut (also called Bismut-Elworthy-Li) formula devel-
oped from [6, 10], have been intensively investigated. See for instance the monograph
[27] for an account of related study on SPDEs.

In recent years, the log-Harnack inequality and Bismut type formula have also
been established for McKean-Vlasov SDEs with coefficients regular in the distribution
variable. Below we present a brief summary.

Write by(x,pn) = bgo)(x) + bgl)(:r,u). According to [29], if b(®) satisfies some
integrability condition on (¢, ), and there exists a constant K} > 0 such that

|b1(51)(m7/1‘) - bgl)(%Vﬂ < Kb(|l' - y| +W2(Ma V))a (Z',H), (ya V) € Rd X ‘@271; € [O7T]7

then there exists a constant ¢ > 0 such that the log-Harnack inequality

Pylog f(7) < log Puf(7) + s Wa(1,7)%, t€ (0.T), f € B (RY), 7,5 € 2,



holds, where %, (R?) is the space of positive elements in %, (R?). This inequality is
equivalent to the entropy-cost inequality

* * ~ c ~ ~
Ent(Pt ’V|Pt ’Y) < ¥W2(777)27 te (OvT]v’%Py € 3227

where Ent is the relative entropy, i.e. for any p,v € &, Ent(v|u) := oo if v is not
absolutely continuous with respect to u, while

d
Ent(v|p) := u(plogp) = / (plog p)du, if p:= SV exists.
R4 du

See also [14, 20, 28] for log-Harnack inequalities with more regular b(?), and see [18]
for the dimension-free Harnack inequality with power.

If furthermore bgl)(x, u) is L-differentiable in p € P, the following Bismut type
formula has been established in [30] for the intrinsic derivative Dé (see Definition 1

below):
D(IﬁPtf(,u) = E[f(X#)M#’¢]7 t e (07T]7f S %b(Rd)hu € @kagb S Lk(Rd — Rd;,u’)a

where M}' % is an explicit martingale. See [3, 5, 12, 19] for earlier results with more
regular b(®). See [2] for the case where p = &, is the Dirac measure at = € R, and
see [22, 24] for a less explicit Bismut formula involving in the inverse of the Malliavin
matrix of the solution.

We emphasize that existing results on log-Harnack inequality and Bismut for-
mula for McKean-Vlasov SDEs only apply to the case with coeflicients regular in the
distribution variable, i.e. either Ws-Lipschitz continuous or L-differentiable. The rea-
son is that the Zvonkin transform technique [34] used in these references only kills
singularities in the time-spatial variables (¢, z), but not the distribution variable.

On the other hand, a derivative estimate has been presented in [7] for the heat
kernel when the drift is of type b¢(x, u(V)), where V' is a Holder continuous function,
and (V) := [p. Vdp. In this case, the drift is only Lipschitz continuous in distribution
with respect to

We(p,v) :=sup {|u(f) —v(f)] : [f(@) = f@W)| < Jo—y|}

for some ¢ € (0,1) rather than Wy, and hence also has certain singularity in the
distribution variable. This result encourages us to establish the log-Harnack inequality
and Bismut formula for McKean-Vlasov SDEs with coefficients singular in all time-
spatial-distribution variables.

Indeed, we will establish the log-Harnack inequality and Bismut formula for
McKean-Vlasov SDEs with stronger singularity in the distribution variable: the drift
is only Lipschitz continuous with respect to

Wa (p,v) :=sup {|u(f) —v(f)| : 1f(x) = Fy)| < ellz —y])},



where « is the square root of a Dini function, i.e. it belongs to class
o = {a : [0,00) = [0, 00) is increasing and concave,
La(r)?
a(0) =0, a(r) >0 for r > 0, / Tdr € (0,00)}.
0

a(r)?

Noting that fol ——dr < oo is the Dini condition for a?, the continuity in the distri-
bution variable is even weaker than Dini, so that the existing study in the literature
is considerably improved.

The log-Harnack inequality is established in Section 2, where a key step is to derive
the estimate (Lemma 5 for k = 2):

[N

at

)

W&(Pt*lyvpt*’?) < CW?(’%’V) ) ’Y,’S/ € 92,15 € (O’T]

<

for some constant ¢ > 0.

The Bismut formula for the intrinsic derivative of P;f is presented in Section 3,
for which we develop new techniques to control the intrinsic derivative D! and the
extrinsic derivative D of the drift term in the distribution variable (Theorem 7(1)):

. < ca(t?)
LE=T(u) =/t

||D1Pt[DEbt(y,u)(-)](u)” , t€(0,T),n € P,y € R v e 2.

2 Log-Harnack Inequality

Since W is involved in the log-Harnack inequality, in this section we mainly consider
(1) for (2, p) = (H4, W3), but the drift may be not Lipschitz continuous in Wy, for any
k > 0. We first state the concrete assumption and the main result on the log-Harnack
inequality, then present a complete proof in a separate subsection.

2.1 Assumption and main result

We will allow b;(x,-) to be merely Lipschitz continuous in the sum of Ws and the
Wasserstein distance induced by the square root of a Dini function.
Let o € 7. Then it holds

al(s+1t) <als)+alt), alrt) <ra(t), s,t>0r>1. (2)

These inequalities follow from «(0) = 0 and the decreasing monotonicity of o’ such
that d
o (s+t) <d(s), &a(rt) =rad/(rt) <rd/(t), s,t>0,r>1.

The second estimate in (2) with » = ¢~1 yields

alt) > a(l)t >0, te(0,1]. (3)



To measure the singularity in (¢,z) € [0,7] x R we recall locally integrable
functional spaces presented in [31]. For any ¢ > s > 0 and p,q € (1,00], we write
f e Li([s, 1)) if f : [s,1] x RY — R is measurable with

t 8 \d
||f‘|ig([s,t]) ‘= sup {/ </ |f(r, x)pdx) dr} < 00,
yeR? LJs B(y,1)

where B(y, 1) := {x € R%: |z — y| < 1} is the unit ball centered at the point y. When
s = 0, we simply denote

Li(t) = Li([0,4]), 1 zg ) = 1 23 f0,61)-
We take (p, q) from the space

H o= {(p,q) € (2,00]? : g+§<1},

and make the following assumption where V is the gradient in = € R

(A) Let (2,5) = (P, W},) for some k € (1,00). There exist K € (0,00),l € N, € o
and
1< fi € LE(T), (piai) €4, 0<i<lI
such that the following conditions hold.
(A1) (ot07)(z) is invertible and o4(x) is weakly differentiable in x such that

l
loo™[loo + [(00) Moo < 00, Vo[ <D fi,
i=1

lim sup [(ot07) () — (o107)(2")]| = 0.
€40 ¢[0,T],|z—a'|<e

(A2) bi(x, 1) = by (x) + by (, ), where for any ¢ € [0,T], 2,y € R, p,v € P,

2 (@)] < fo(t,2), [b87(0,80)] < K,
01 (2, 1) — b (y, )| < K { & — y| + W (11, v) + Wi () }.

We first observe that (A) implies the well-posedness of (1) for distributions in Z?.
Let []o be the a-continuity modulus defined by

@)
e = oy allz—y))

Since a(0) = 0 and « is concave, there exists a constant ¢ > 0 such that

S [f(z) = f(0)] < a(lz]) < a()(A +|2]) < c+cla]*, zeR™
<1



Thus,

EWQ (My V) < Wk,'ua'r(/% V) = sup |M(f) - V(f)| (4)
c FESEC

So, by [29, Theorem 3.1(1)] for D = R%, under assumption (A), (1) is well-posed for
distributions in &, and for any n > 1 there exists a constant ¢, > 0 such that

E[ sup |X,|"
t€[0,T)

ﬁo} < en(1+ | Xo|™). (5)

Consequently,

sup [Prllf = sup (Br)(- 1) < B[ sup [X7F] <+ [lE) (6)
te[0,T) te[0,T) te[0,T)

Theorem 1. Assume (A) with k = 2. Then there exists a constant ¢ > 0 such that
Ent(P/y|P9) < 5 Wa(1.9)%, t€ (0.7),7,5 € 2s. (7)
Example 1. Let h: R? x R? — R? satisfy
h(x1,91) = h(x2, )| < Knlz1 — 2| + allys — ), @1, 22,91, 92 € R?
for some o € & and Ky, > 0. Then b,gl)(:v,u) = Joa Mz, y)p(dy) satisfies (Asz).

2.2 Proof of Theorem 1

Although in Theorem 1 we assume (A) for k£ = 2, for later use we will also consider
general k € (1,00). For any v € &, consider the decoupled SDE of (1):

AX7 = b (X7 Pyt £ oy (X)W, X5 = ®)

By [29, Theorem 3.1(1)] for D = R?, this SDE is well-posed and (5) also holds for
X377 in place of X3, i.e. for any n > 1 there exists a constant ¢, () > 0 such that

E| sup |X77"] <en(y)(1+ |2["), = €R% 9)
t€[0,T]

Let P, be the associated Markov semigroup, i.e.
P) f(z) := E[f(X77)], t€[0,T],z € R f € B(RY).

We first present the following generalized Holder inequality with a concave function a.



Lemma 2. Let « : [0,00) — [0,00) be concave. Then for any non-negative random
variables € and 0,

Ela(©)n] < [ll@a(lEl, 2, ). P>1, (10)

Consequently, for any random variable & on R, f € C(R%B) for a Banach space
(B, || - l) with [f]a < oo, and any real random variable 7j with E[fj] = 0,

B ©lls < Haller@a(lE -2, e, ) p>12€R (1)

Proof. Since the assertion holds trivially for p = 0o, we only prove for p < occ. It suffices

to prove for E[f] € (0,00). Let Q := g P. By Jensen’s and Holder’s inequalities, and

using the second inequality in (2), we obtain

Then the second inequality follows by noting that E[7] = 0 implies

IELf ()]l = |[ELFE) — £}l < [FlaElal€ - 2))]7ll-

Therefore, the proof is completed. O

To characterize properties of (8), consider the following PDE for u : [0, 7] x R? —
R<:

%ut<w>+<ﬂut><x>+b£”<x> = duy(x), ur =0, (12)

where A > 0 is a constant, and
1
&z = §tr{(at02‘)v2} +0(-, Pfy) - V. (13)

By [33, Theorem 2.1] and (A), for large enough constants A, ¢ > 0 independent of ~,
(12) has a unique solution u™7 satisfying

1
4[| oo + | VM |0 < = ||V2uA’7||Eg%(T) <ec (14)
So, for any t € [0,T7,

J:r—)@i"'y(:c) ::erui"'Y(x), z e RY (15)

is a homeomorphism on R?.



Moreover, for any v € Py, t € [0,T], consider
do; (@) = bV (1) 71O (@), Pry)dt, 637 (x) = 07 (x),x € RY, (16)
and let R
0,7 () = (O27) 716, (), t€[0,T),x € R (17)
Then we have

Ao} (627 () = bV (07 (x), Pfy)dt, te (0,767 (x) =z eRL  (18)

Lemma 3. Let o and b satisfy (A). Then the following assertions hold.

(1) For any p > 1, there exists a constant ¢, > 0 such that
E[| X7 = )7 (x)|P] < pt?, t€0,T),2 € Ry € . (19)
(2) For any a € &, there exists a constant ¢ > 0 such that the gradient estimate holds:

A _ pY
VP fl() = limsup L W) = P F(@)]
ly—z|—0 ly — x|

, (20)
ca(tz)

VAR

Proof. (1) We will use Zvonkin’s transform defined in (15). By It6’s formula (see [33,
Lemma 3.3]), we derive

< [fla <1, z € R% v € P, t € (0,T).

dO}7 (XP7) = P (XP7) + b (X7, Pry) bt + {(VOR e J(X7) dWs. (21)
By (A), (14), there exists a constant C' > 1 such that

CYXPT =607 ()] < |01 (X[7) — O (67 (x))] < X7 — 627 (x),
00X, Pry) — b (07 (), Pi)| < CIXET — 627 (),
X (X + [[{(VOr Mo JXP)|| < C, (t2,7) €[0,T] x RY x 2.

This together with (18), (21) and Gronwall’s inequality implies (19).
(2) For any measurable f : R? — R with [f], < 1, take

fo=[(=n)V flAn, n>1.
By an approximation technique, it is sufficient to prove (20) for f € %,(R?) with

[f]a < 1. According to [33, Theorem 4.1], there exists a constant ¢g > 0 such that for
any v € &, the log-Harnack inequality

P)log f(z) < log P} f(y) + %le —y|?, z,yeRYte (0,71, f € B (RY



holds, so that [27, Proposition 1.3.8] implies

RV4 2¢ 1
VP < SRS, f € ARt e (0,T],7 € P
Observe that for any f € %,(RY) with [f], <1,
. VQCO 2 1
2 < Y _ 3
IVEf|(z) < inf 7 (P (1f = 27) (@)}
\/20 T ~ 1
< YR = 8 @) (22
\/20 T ~ 1
< VRa(B(X7T -0 @),z eRLEe0.1)
where in the last step, we used (10) for n = a(€) with £ = | X7 — 0,7 (z)| and p = 2.
Therefore, (20) follows from (22), (19) and (2). O

To verify (7), in the following Lemma 4 and Lemma 5 we will prove

t
/ {Wa(Ps*’YaPs*ﬁ/) +W2<P:’Y,P;:)/)}2d8 < CWQ(’%’?)% te [OaT]afyfv € ’@2 (23)
0

for some constant ¢ > 0.
Lemma 4. Assume (A). Then there exists a constant ¢ > 0 such that

t
Wk(Pt*’yvpt*ﬁ/) < ka(’y”?) +C\/ WQ(P:'.Y?PS*’?)ds? te [O,TL%:Y € yk (24)
0

Proof. We take .Zy-measurable random variables X, XJ such that
xy =7 Lxi=% Wi(v)" =E[X5 - XJ|]. (25)
Recall that ©)7 is defined in (15). By (12), (13) and Itd’s formula, we derive
4077 (X7) = {7 (X7) + 0V (X7, P}t + (VO 7)o }(X7) AWy, (26)

and

67 (X]) = (X (X7) + b (X], Pry) pt

~ ~ ~ N (27)
+ VO (X)) be(X], PA) — by (X[, Pry))de + {(VO 7)oy (X)) AW

Combining this with (26) and (A, we prove the desired estimate by using the maximal
functional inequality, Khasminskii’s estimate and stochastic Gronwall’s inequality, see



for instance the proof of [15, Lemma 2.1] for details. Below we simply outline the
procedure.
By (A2) we have

[be(X7, P 7) = e )|+ 0§ (X7 Pr) = 0 (] P

< K{|th - Xg| + Wa (P, Pra) + Wi (P, PZ‘?)}*
Combining this with (26), (27), (A1), the maximal functional inequality and Khas-
minskii’s estimate (see [31, Lemma 2.1 and Lemma 4.1]), we derive

dler(X7) — O (X" < dMy + X7 - X7 M
* * ~ * * ~ s s SRV
+ er{Wa (P, B7) + Wi (P, PrA) }O; (X7) — 7 (X)) |,

)|k?+1

where ¢; > 0 is a constant, .%, is an adapted increasing process with E[e5$T] < oo for
any d > 0, and M, is a local martingale. Since (14) implies

1,5 \ N .
SIXT = X7 < 1007(X7) - 017 (X)) < 21X - X7,

by the stochastic Gronwall inequality (see [32, Lemma 3.7]), we find a constant ¢y > 1
such that

i 1+k1 )
{IE[ sup | X7 — X;’|’“‘3?0}} — | Xg — Xg P
s€[0,t]

t
<o [ {Wa(Py PIA)+ WP PEDJE[IXT - X7 #0]as, ¢ (0.7
0
So, there exists a constant c3 > 0 such that for any ¢t € [0, T,

E[ sup X7 - XI1*[ ] - eolX] - X7)*
s€0,t]
k

k+1

t
<o [ {Walr.PE3) 4 V(P P BT - 31| 7 s
0

1 - t k
< SE[ swp X7 - X7 5] +c3( / {waw:%P:a)+wk<P:v,P:a>}ds) .
s€0,t] 0

This together with (25) yields

- 1
Wi (P, Py) < sup, (E[IX7 —Xx7")*
s€|0,t

t
< (202)%Wk(775/) + (263)% / {WQ(PS*’Y’PS*;?) + Wk(Ps*’YaPs*r;/)}d& te [O’T]
0

10



By Gronwall’s inequality, this implies the desired estimate for some constant ¢ > 0. O

Noting that X;”7 solves (1) if the initial value x is random with distribution v, by
the standard Markov property of X;”, we have

RO) = [ @B = [ Pi@ntde) feAmEY). (29)

The following lemma provides a regularity estimate on P;*, which together with Lemma
4 implies the desired (23).
Lemma 5. Assume (A). Then there exists a constant ¢ > 0 such that

1
* * ~ ~ a(tz ~
Wa(Pt ’YaPt’y) SCWk('Y,’Y)M, te(())T])FYv’Ye'@k' (29)

Vit

Consequently, there exists a constant ¢ > 0 such that for any ~v,5 € Py,

sup Wi (P, Py) < cWi(y,7). (30)
t€[0,T]

Proof. By Lemma 4, (30) follows from (29) and the fact fT o(t?)

0 /7 dt < co. So, we only

need to prove (29).
Let X and X be in (25). For any ¢ € [0, 2], let

X = X) 4e(X) - X)), =%

X%
and let X} solve (1) with initial value Xq *. Then
YD < 20l + 21Allk, € €[0,2], (31)
Wiy R B[N - X7 =W, Y erel01 (32)
For any € > 0, consider the SDE
AXP = b (X7, Pry)dt + o (XPY)AW,, XY =2t €[0,T).  (33)
For any r € (0,1), let
e = oy (o00y) T )b (X7 Ay = b(X]T L PEAS), t e [0, 7).
By (A), there exists a constant ¢; > 0 such that

S[upT] ‘n?q S C1 {Wa(Pt*'ysa Pt*rys—i_r) + Wk(Pt*’y‘i Pt*'ys_'_r)}a e € [07 1] (34)
telo,

11



By Girsanov’s theorem,

t t
1
Ry :=exp {/ (2", dW,) — B |n§’r|2d5} , te[0,T]
0 0

is a martingale, and
t
W = Wi - / no'ds, te[0,T]
0
is a Brownian motion under the probability measure Q%" := R7"P. Rewrite (33) as
AXPY = b(XP7, PP At 4 oy (XPY)AWET, XG0 =, t€[0,T).
By the weak uniqueness we obtain

Z Z

{th"’ye Yeeo, Q5" = {Xf’”’EJrr}te[oyT] ’
where .Z|g-.~ is the law under Q=", so that

e+r

P f(@) = P f(a) = E [f(XFT)BT - 1)), f € By(RY). e € (0,1)

Hence, by (28), we have

Pf(y) = Pf () = v (BT ) = (B F)

— @)= P AP ) = (P )

= / CE AT - 1]y de) + B[P () - B ],
so that

* _e+r * € e+r ey (2
Wo (Piy Y Piy*)? = sup |Pf(y") = Pf(¥9)|” < L + I,

[f]a<1
. 2
hi=2 swp | [ B [fOGT)BT - 1] 47 o) (35)
[fla<1 | JRY
€ e+r e e 2
I:=2 sup |E[P] f(X] )—P] f(Xg)]| -
[fla<l
Below we estimate I; and I respectively.
By (34), we obtain
E[R;" — 1P = E[(Rf")” - 1] < esssupg(elo 1271 1)
t
< esssupq, (eﬂ; |"§'T‘2ds/ |77§’T|2ds> (36)
0

12



P(e,r / {W (P~ P 5'”) + Wy (P25, PX~etT) }ds,

e 9.2
where for ¢y := 2¢7,
(e, ) == cpe Jo AWa (Pl PIySH )24 Wi (P S PIy*HT)? }ds (37)

By (4) and (6), we have B
Y= sup P(e,7) < o0
e,r€[0,1]

) with z = " (), where 6" (z) is

Combining this with (2), (19), (36) and (11
defined in (17) with 4° replacing v, we can find constants ki, ko > 1 such that

)
2
< (/Rda(klt%)sgp( 57~ 1P) 7))
< a(kt?)* sup B[R} ~ 1P
PIy)? + Wi (P, Piyet7)?hds, t€[0,T).

<k2a% sr/{W (Prv*

Combining this with (2), (24), (32), (31), and letting

Ti(e,r) = Wo (Pf", Piyt) / Wao(Py, Piyt)2ds,

we find a constant ¢4 > 0 such that

I < cia(VT) (e, 7) (ﬂwkmﬁ n / rs<e,r>ds), e [0.7].

By (20), we find a constant ¢s > 0 such that

VP flz) < Za(t:
o, 97110 ot

Combining this with (2), we find a constant ¢g > 0 such that

r 2
n<2 s (8] - x50 [ 9P 5 e )
0

[fla<1

CGO‘(t%)Q 2 1\2
< )2 g)xg - x3))

13



- t
Let
a(r) == (/T a(tt)zdt) %, r > 0. (41)
0
By (2), we find some constant ¢’ > 0 such that
/T O‘(Tf)Zdt - 2/TTé O‘(SS)st <da(r)? <oo, r>1. (42)
0 0

So, (40) together with (35) and (39) yields that for some constant ¢; > 0,

t
Ty(e,r) < err®Wi(r,3)* Hy(e,r) + crib(e,r) / T'u(e,r)ds,
0

142
Hi(e,r) =g, r) —|—d(1)2 + a(t:) ,

(43)

e,r€[0,1],t € [0,T].
By Gronwall’s inequality and (43), for any e, r € [0, 1] we have
Wa(Pi®, Piy™)? < Ti(e,r)

t
< C7T2Wk(’y,’~)/)2{Ht(E,T) + 071/1(5,7")66”/’(5”’)T/ Hs(s,r)ds}, tel0,T).
0
This together with (24), (42) and (37)-(38) implies that v (e, r) is bounded in (e, r) €

[0,1]? with v(e,7) — co as 7 — 0, so that by the dominated convergence theorem we
find a constant ¢ > 0 such that

Wa P* E,P* e+r
lim sup (Prye, Pry™™)

[at2)
0 . < ch('yﬁ){ + 1}. (44)

Vit
By the triangle inequality,
‘Wa(Pt*% Prv®) = Wo (P, Pt*7€+r)’ < W (PfYs, Pt*75+r)a e,r €10,1],

so that (44) implies that W, (P}, P;/~*) is Lipschitz continuous (hence a.e. differen-
tiable) in € € [0,1] for any ¢ € (0,77, and

d Wa P*~E . P* e+r
‘7Wa(Pt*’YaPt*’YE) ghmsup ( t V4 )

- 5
= s . < CWk(%v){

<

This implies (29) by noting that 7' = 5 and sup,c(,7 ( i) < \/Ti/)l due to (3). O
’ al(t?2 (03
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Proof of Theorem 1. Let k = 2. According to [29, Theorem 2.5] for D = R?, see also
[33, Theorem 4.1], (A) implies the following log-Harnack inequality for some constant
co > 0 and any v € Hy:

C
Pl log f(x) < log P f(y) + Do =y, w.y € RYt € (0,T],f € % (R).

Then by [29, (4.13)], see also [13, Theorem 2.1], it suffices to find a constant ¢ > 0
such that

sup log]EHR;h:YF] < CWQ(’}/?:Y)27 ’77:)/ S QQa (45)
te(0,T]

where
RYY = elon7 dWa) =4 [§ I |ds
0 = {02(0wl) X0 (XD, PI) — (X2 D)}, s EST.
Noting that (A) implies
07 < er{Wa(Pry, PA)? + Wa(Pry, PIA)?}, s €[0,T)
for some constant ¢; > 0, we have

= t * * N2 * * N2
E[|R}7)?] < e Jo {Wa (PI v, PI7)* +Wo (P y,P{7)  }ds

Moreover, by (42) and Lemma 5, there exists a constant ¢ > 0 such that
t
s [ (W (PE, PEA) 4 WP, PR < (0, 5)%
tef0,7]Jo

Therefore, (45) holds for some constant ¢ > 0.

3 Bismut Formula

Let k € (1,00) and denote k* := £, In this part, we consider the SDE (1) with
(2, p) = (Pr, W), where as in (Ay) the drift b is decomposed as

bi(z,v) = bgo)(x) + bgl)(x, v), te[0,T],z € R ve . (46)

We aim to establish Bismut type formula for the intrinsic derivative of &, > u —
P, f(11) for bounded measurable functions f on R, by only assuming that the extrinsic
derivative Db, (x, 1)(z) of the drift has a half-Dini continuity in z € R9.

To this end, we first recall the notions of intrinsic and extrinsic derivatives which
go back to [1], see [3] and [21].

15



Definition 1. Let f € C(P;B) for a Banach space B. The function f is called
intrinsically differentiable at a point p € Py, if

flpo (id+e¢)™') — f(u)

g

Tpp = LF(RT = R% 1) 3 ¢ DL f(n) = lifg €B
£

is a well defined bounded linear operator. In this case, the mnorm of the intrinsic
derivative DT f(p) is given by

ID f ()l o=y == sup DG f ().
”‘b”[}c@wgl

The function f is called intrinsically differentiable on Py, if it is so at any p € Py.
Next, we recall the (convexity) extrinsic derivative, see e.g. [21, Definition 1.2].
Definition 2. A real function f on Py is called extrinsically differentiable on Py

with derivative DT f if

D f () () = lim f(—e)p +E€5z) —fw) g

exists for all (z,p) € RY x 2. When f = (fY, f2,---, ) is an R%-valued function
on Py, we denote DF f = (DF f1, DFf2 ... DEfd),

3.1 Main result

We will establish a Bismut formula for the intrinsic derivative of P,f under the
following assumption.

(B) Let k € (1,00) and let b in (46).

(B1) b and o satisfy the corresponding conditions in (A).

(Bz) For any t € [0,T],y € RY, bgl)(y, -) is extrinsically differentiable in &7, with the
extrinsic derivative DEbgl)(y, v)(2) being continuous in (y,v,z) € R? x &}, x R4,
Moreover, there exists o € & with a < ¢g(1+ |- |*71) for some cq > 0 such that

IDE) (y,0)(2) — DEBY (y,0)(2)] < o]z — 2)),
z,z2eRYte(0,T],y e R v e 2.

(B3) For any t € [0,T], v € P, bgl)(~, v) is differentiable and there exists a constant
K > 0 such that

657(0,00)| < K, [VoP(y,v)] < K, (t,y,v) € 0,T] x RY x 2.
As indicated in Introduction that existing results on Bismut type formulas for the

intrinsic derivative of P f(u) are established under upper bound conditions on the L-
derivative of b;(y, v) in v. Noting that under a mild condition, the L-derivative equals

16



to the gradient of the extrinsic derivative, so the above condition on the a-continuity

of DEb,El) (y,v)(2) in z is much weaker. To see this, we present below a simple example.
Example 2. Let a(s) = s° for somee € (0,1A(k—1)). Let g : RY x RY — R? satisfy

|g(y,z) —g(y,Z)\ < a(|z - 5|)7 \Vg(,z)| < K7 Y, 2,2 € Rd

for some K > 0. Let bgl)(y, v)= f]Rd 9(y, z)v(dz). By Definition 2, it holds

PP () =9l — [ gl w(d), ye Ry e Pz e R
R

However, by Definition 1, bgl)(yw) 18 not intrinsically differentiable in v. In fact,

since g(y, z) is not differentiable in z, for any y € R, v € Py, ¢ € LF(R? — R%;v),

the limit
o S 9002 £ TO()(d2) = [y gy ()

rl0 r
does not exist. Moreover, it holds

IDE() (y,v)(2) — DEB (7, 7) ()]

~lo(02) ~ 0.2+ | [ ot 2wian) - [ otz 2wiaz)

<allz—2) + 2Ky — g + Wo (v, 9), y,5€R v, v € P, 2,7 € R

Note that Jensen’s inequality implies that

Wa(p,v) < inf / ale—y|)r(dz, dy) < a(Wi(p,v)) < a(Wi(p,v)), p,v e Py.
TEE (1,v) JRd xR

So, DEbgl)(y, v)(2) is continuous in (y,v, z) € RYx 2}, xRe. Finally, by the dominated
convergence theorem, we have

v (- v) :/ Vol 2)v(dz), v € Py
Rd

Therefore, bV satisfies (By)-(Bs).

Since (B) implies (A), as explained before that under this assumption (1) is well-
posed for distributions in 7.

For p € &y, consider the decoupled SDE

Ax;H = (XY + b (X, Prp) Yt + o (X)W,
Xgt =z, tel0,T).

Let

By p(RY) = {f: ! - € %b(Rd)}.

L4
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We first give a lemma on Bismut formula of P f for f € %y ,(R?).
Lemma 6. Let o and b satisfy (B). Then for any v € R%, v € Py, x € R, the limit

XI+5U"Y _ Xwa'Y
VX[ =l S e [0.T]
€ 3

exists in LP(Q — C([0,T};R?);P) for any p > 1, and there exists a constant ¢, > 0
such that
E| sup |V, X"
te[0,7]
Moreover, the Bismut formula for P, holds:

p} < cplvfP, veERL Y€ Py xR (48)

VP S) =8 |10 [ G am))

(s == 02(0302)717 IS %k,b(Rd)v T,V € Rdﬁ € Py t € (OvT]

(49)
Proof. By [30, Theorem 2.1] for 3, = £, (B) implies (48) and (49) for f € %,(R%).
To deduce (49) for any f € By ,(R?), let

fo=[(=n)V flAn, n>1.

By (9), (48) and the boundedness of (,, we find constants cg, ¢1(y) > 0 such that

|

1 1
< CO\/IE(]E [2 + |th+rv,w|2kD 2 (]E[ es[%pT] |V’UX;1;+T’U,7|2]) 2 (50)

t
B+ 1) [ (g aw)
0

< iVl (14 [2|* + [v]*), t € (0,T),z,v e R, rel0,1].
By (49) for f, in place of f, we obtain

P/ fu(x 4 cv) = P fu(x)
g

1

€ t
1
= EA E |:fn(th+TU7’Y)/(; Z<<S(XS$+T’U,’Y)V’UXSE+TU,’)/7dW8> dr

Since f € By p(RY), by (9), (48) and (50), we may apply the dominated convergence
theorem such that the above formula with n — oo implies

B f(z +ev) — B f(x)
9

1 [° t 1
= g/0 E [f(XtIJrrv;y)/O E<CS(XSI+M,W)VUX;E+M,7’dWS> dr, (51)

f€Bo(RY),e>0, z,0 Ry € Pt €(0,T).

18



Note that (49) for f,, in place of f yields

ngrb(x + EU) — Pt’yfn(x)

lim limsup ’

_E [f(Xf"y)/O 1<§5(X§*7)VUX§”,dWS>H

n—=00 g0 €

"1
= Tim |E | £,(X57) [ 2(C(XT)V, X5, dW,
Jn (5| [ o w,xeam)|

—-E {f(Xf”) /0 t 1<CS(X;”’7)VUX§”,dWs>} ‘ -0

where the last step follows from the dominated convergence theorem due to f €
B p(R?) and (50). This together with (51) for f — f,, in place of f implies

Pz S B g [ [ | Je v xenawy) |
€ ot

‘Ptv(f — fn)(m —I-E’U) _ Ptv(f — fn)('r)

lim sup
e—=0

< lim limsup

n—0o0 0 3

’Ptvfn(x +ev) — P fu(x)
€

+ lim limsup
n—=00  £—0

_E {f(XfW)/Ot 1<CS(X§”Y)V’UX§”Y,dWS>:| ‘ (52)

1 €
< lim limsupg/ E’(fn—f)(Xf+Tv’7)
0

n—oo 50

t
x / (G (X7, X2 ) |dr.
0

Since f € % ,(RY) implies

[(fo = N@)] < @+ |21*) e riap)zny, n>1

for some constant ¢ > 0, by the same reason leading to (50), we find constants
¢, ca(7y) > 0 such that

t
sup E[(f = ) [ (GO wLxr e aw)
relo,1 0

< &Vtlv| sup (E 1+ |Xf+m’7\4k]>§n*1
ref0,1]
< o)Vl (1 + |2 + [ )n "

Therefore, (49) follows form (52). O
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To state the Bismut formula for P;f, we introduce the quantity Itf : for fixed t €
(0,7, let

1

t
)= 7 [ B[ [ xae,aims) | o)

5 € [0,t],0 € Py, ¢ € Ty, f € Br—1.5(RY).

(53)

By (B) and (48), we find a constant ¢ > 0 such that
c NN
1 ()| < %(Ptlflk ) NDlerys 1€ Pryd € Tk f € Broan(RY). (54)

Next, let X be Fo-measurable such that Zx» = p, and let X{* solve (1) with
initial value X/. For any € > 0, denote

pe i= o (id+eg)~t, X§° = X§ +ep(XE).
Let X} solve (1) with initial value X/}. So,
X#:Xéto, Pt*ILLE:.,S/ﬂXtMa, te[O,T],SZO

Now, we present the main result of this part.
Theorem 7. Assume (B) and let C; and I] be in (49) and (53) respectively. Then
the following assertions hold.

(1) For any t € (0,7], y € R, v € 2, Pt[DEb,El)(y,V)(-)](u) is intrinsically
differentiable on y € Py, and there exists a constant ¢ > 0 such that

N co(t?)

su DIPIDEbV (y, v)(- . <
. 1" PDZ0, 7 (s YOV W by ) < NG

, t€(0,T],p € P.

(2) For any t € (0,T] and f € By—1,(R?), Pif is intrinsically differentiable on Zy,.
Moreover, for any p € Py and ¢ € T, 1,

DLPf(p) = If (1. 0)
w [ [ {aoennine. av )|, 69
NS(vab) = {DéPS[DEbgl)(yvV)(')](N)}ly:X;”’“,u:R;w

where X" solves (47) with initial value x € RY.

By (54)-(55), we find a constant ¢ > 0 such that

Mj te (0,T), f € Br_1p(R), p € P

Vit

ID P f ()| ey < €



To explain the main idea in the proof of Theorem 7, we first figure out a sketch. By
the definition of the intrinsic derivative, we intend to calculate for any f € %1 ,(R9),

P, — P, E[f(X!e) — f(XF
el0 £ el0 g
To this end, for any p € &,z € R%, recall that X;* solves the decoupled SDE (47),
and

(56)

P/ f(z) = E[f(X;")], zeR"

Define
Plf(ji) = / Prfdf, t>0,f € Bi1o(RY), ufi € Py
R
For € > 0, let X}'=’* be the solution of (47) with initial value X§, i.e,

dx et = (b0 (X 4b) (XJe Py ) Yt + oy (XM AW,
te[0,T], X" = Xg.

Then X}'<'*< solves (1) with initial value X§, so that
Ptf(ﬂe) = Ptusf(ﬂ's) = E[f(X#EME)]) e20,te [O7T]7 fe ‘%)k—lyb(Rd)'
Noting that pg = u, (56) reduces to

He o
Dgptf(ﬂ)zlgfg P f(us)8 PrF(p)

— lim { Pl f(pe) — P f(w) n Pl f(ue) — P f(pe) }
el0 51 g

(57)

So, to calculate DéPtf(u), we only need to study the limits of

 hf(te) = T )~ P (e)

Jlf(tvs) = €

P f(pe) = P (1)
9

By Lemma 6, for any ¢t € (0,7],¢ > 0 and f € Bx_1,,(R?), we have

i H 13 P#f(#€+r)_P#f(Ns)
P () = tim -

T T 1 ! xT T x T
= /dE[f(Xt +eg( ),#)z/ <<S(XS+E¢( ),M)V¢(I)XS+E¢( )au7dWS> p(da).
R 0
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In particular,

Ptuf(,ue) - Pt“f(,u)
g

lim J1 £ (t,€) = lim = I (1n.¢), te(0,1). (58)

Consequently, it remains to prove

i o s0.0) = [ 800 [ (G, aws]utan

Rd

for Ns(p, ¢) defined in (55), which involves in Dé{PS [DEbgl)(y, v)(-)](1)}. Therefore,
we will first study DL{P[DFb{" (y,1)()] (1)}
Recall that & is defined in (41). For any V € %,([0,T] x R x P;; R?), the set of

bounded and measurable R%-valued functions on [0,7] x R? x &2, and t € [0,T],y €
R, v € Py, we write

(59)
(cxzm vz P, aw.)| o)

By (Bsy), for any t € [0,T],y € RY, v € &, we have

IDEO) (y, 1) ()] < o] - |) + [DEBM (y,0)(0)]
< co(L+ |- [F71) + [ DEo) (y, 1) (0)].

So, If (u, ) for f = DEbil)(y7 v)(+) in (53) is well-defined, and we denote
1 @
1) = ¢ [ B[ )
Rd
t
X / <§S(X;E’“)V¢(x)Xf’“,dWS> p(dz).
0
Consider the following equation for V' € %,([0,T] x R? x 2;;R%):

Vi(y,v) = {ti(%{]f"b(y,u) + I;V(y,y)}, te[0,T),y € RL, v e P (61)

If this equation has a unique solution, we denote it by Vi (y, v) = v/%(y, v) for (t,y,v) €
[0,T] x RY x &, to emphasize the dependence on u and ¢.
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In the following two subsections, we prove the well-posedness of (61) and establish
the formula

DHPDEOM (g, ) (M} (1) = —— o v (y.v), te(0,T],y e RLv e Py (62)

3.2 Well-posedness of (61)

Lemma 8. Assume (B). For any p € Py and ¢ € Ty, the equation (61) has a

unique solution, which is denoted by {’U#’d)(y,V)}te[()7T]’y€Rd7V€gk, and there ezists a
constant ¢ > 0 such that

sup sup v} ?(y,v)| < eyJa(tE), pe Py te0T). (63)
|‘¢|‘Lk(u)§1yERd,l/€=@k

Proof. Let
%o = {V € B([0,T] x R x Z;RY) : ¥ =0},

which is a Banach space under the uniform norm. For V' € %, let

[Villoo = sup  [Vi(y,v)], t€[0,T]
yERI vE Py,

and for any t € [0,T],y € R%, v € Py, let

. M{[ﬁ(y, v)+ 1) (y,v)} (64)

{H(V)}i(y,v) - alt

O T

Then it suffices to prove

(i) The map H : %, — ¥ is well-defined and has a unique fixed point v**® which
turns out to be the unique solution of (61).
(ii) There exists a constant ¢ > 0 such that

sup ||vf’¢||OO <cn/atz), (t,p)e [0,T] x P.
Hd)HLk(M)Sl

Next, we will prove (i) and (ii) one by one.
(1) Proof of (i).
(a) We first verify
H: ¥ — %. (65)
Recall that 07 and 6 are defined in (16)-(18). Since (B) implies (A), we
conclude that (19) still holds.
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By [DEbgl)(y, V)()]a < 1 due to (By), (11) in Lemma 2 for p = 2 and z = 6, (),
(48), (19), (2) and (60), we find a constant ¢; > 0 such that

1)l < | (i) o) |u(d)
C1 R{I (66>
< %a(ﬁ)H(j)HLk(#), t€(0,T),u € Py,dp € Typ,y €RL Y € Py

So, by (59), (Ba), (11) in Lemma 2 for p = 2 and z = 6,;"*(z), (2) and (19), we
find a constant ¢y > 0 such that

N sty é
ol e [ L hmine) vertves 60
0 sa(s?)

Combining this with (64) and (66), we find a constant ¢z > 0 such that

Il <l o/a() +era() ([ 2 wiza) o

Then (65) follows from the fact that (41) implies

[N

1
+ 1 2 rt2 2 rt
[ s [0 M as—a [ @(s)as = aatreh), rz0. (09)
0 0 0

5@(7"55) sd(s)

(b) We intend to prove that H in (i) has a unique fixed point in #5. Obviously, for
any 0 > 0, ¥ is complete under the metric

ps(V,U) == sup e |V, = Uilloo, ViU € %
te[0,T]

So, it suffices to prove the contraction of H in ps for large enough § > 0.
By (64), (66) and (67), we find a constant ¢4 > 0 such that

HHEWV)}e(y,v) = {H(U)}e(y, v)| = WIEV_U(%V)I

)

t % 2 %
§04(/ afs ) ||VS—US|§Ods) , VU € ¥,t € 0,T).
0 sa(s?)

Combining this with (69), we conclude that H is contractive in the complete metric

space (%, ps) for large enough § > 0, and hence has a unique fixed point denoted by
o?

o] Wl
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(2) Proof of (ii). By (68) and noting that H(v*?) = v/?, we derive

1
1 1 a(s2)®
[ 2112, < 2c3a(t 2)H¢||L’C(u)+2c?>ta(t2)/0 ——[[vf?|%ds, ¢ €[0,T].

sa(sz)

Combining this with (69) and Gronwall’s inequality, we find a constant ¢5 > 0 such
that for any ¢ € [0, 7],

< C5||¢||Lk(u (t%)a JURS '@kn ¢ € Tu k

lof?
This proves (ii). O

3.3 Proof of Theorem 7

By Lemma 8, the proof of Theorem 7(1) is completed by the following lemma.
Lemma 9. Assume (B). Then for any p € Py, ¢ € Ty, x, the function h : (0,T] x
R? x 22;, — R? defined by

hi(y,v) == DY{PIDEO (y,0)()(1)}, te(0,T],y eREve Py

exists in B((0,T] x R x P;;R?) such that (62) holds. Consequently, there exists a
constant ¢ > 0 such that for any p € Py,

t
sup { sup Ll sup |D1{Pt DEb }}
Il <t Lte(0,7] t?) yerd ve s,

Proof. (a) By Lemma 8, it suffices to prove (62). For simplicity, for any ¢t € [0,T],y €
R, v € Py, let

Ui(y,v,z) == DEbgl)(y7 v)(z), z€R% (70)
Moreover, simply denote

Vi (. v) =07 (y,v) + 07 (y, ),
Pl Ut(ya v, )(ME) _PtMUt(y7Va')(M)

Ty, v) = . ;
P# Ut(ya v, )(:U's) - Pt'uUt(yvVv ')(NE)
T2y, v) = . .
Next, for v“’d’ in Lemma 8, let
R o t%
) = 22 moy ) e (0,T]y e Ry € 24, (71)
{a(t2)t}=
and
by, ) = IO (1w, ¢), 03y, v) = ey v) — I (1, 0) (72)



Noting that
PtMUt<y’ v, ')(:U’E) - PtMUt(yv v, )(M)
= [ [Pt o+ <o) = PEV (v ) @)t (73)
y (49) for f = U(y, v, "), we obtain

hm|vt (y,v) — 0t (y,v)| =0, te (0,T],y € R v € . (74)
Since (61) holds for V; = v/*?, (70)-(72) imply that
0w w) = oy ) = 1 (1, 9)

= /Rd E {Ut(y, v, X;7H) (75)
< [ (GO P + ek xes P, aws)|uta).

In view of (74), to prove (62), it remains to verify

t
lim sup L1|vf’2(y, v) — ﬁf(y, v)|=0, ye R, v e P, (76)
e=0¢e(0,1) t?)

In the following, we first estimate |05 ||oe and |v5" —o¢|(i = 1,2) in steps (b)-(c), then
verify (76) in step (d).

(b) Estimates on [|v5""||00,i = 1,2 and [Jv5" — 6} e

By (51) for f = U(y,v,-) and (73), we obtain

PrU(y, v, ) (1 )—P”Ut(y,v,-)(u)

) =
/ / |: Ut Y, v, Xat+7’¢(m) H) U (y,l/ 9 ’Il .’E+7‘¢ )
Rd
/ <<é Xaz+r¢ z), #)V () Xm+r¢(m S dW3>] dr (77)
1
:/ / E{(Ut(yJ/, Xtm+eu¢(z),u) _ Ut(y,w ét)vu( + eud(z )
0 JR4
t
X/ %<<s(X§+6U¢(E)a#)v¢(w)X:+EU¢(I) #’dWs>] (dz)du,
0

where in the last step, we used the integral transform r = eu. Similar to (66), noting
that (B) implies [U;(y,v,-)]a < 1, by (11) in Lemma 2 for p = 2 and z = 0, (z +
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erd(x)), (48), (19) and (2), we find a constant c(u, ¢) > 0 depending on ¢, p such that

P |PtMUt(y>V’ ')(ME) - PtMUt(yayv )(M)‘

(00 XT775) B+ 1))

1
07" oo =

Y,V
1
Ssup// E
y,v Jo JRd

(78)
!
0
c(p, $)a(t?)
< SO e e (0,1t € (0,T].
< N (0,1],t € (0,7
This together with (74) and (66) implies that for a constant c(u, ¢) > 0
{ta( t% }%
) =0 Y, v —’U ) 1
tl (y,v { t ¢ (Y, v } a(th)
satisfies
lim \h;l(y,u)| =0, sup sup|h;;(y, V)| < e(p, @) d(t%), t € (0,7T). (79)
e—0 c€(0,1] yov

Next, we estimate ||[vi|o. Recall that X7 solves (47) with initial value
x +ep(x). For any x € RY s, € [0,T], let

R® = ofo (027 aWo) =3 fi Inge s,

w = (X

(80)
(DT, Prae) - b0 (X P ),
By [21, Lemma 3.2], we have
0 (y, Py aie) = b (y, Py o)
/ *b(l (y, (1= r) P p+rP]pe)dr (81)

[ [ D560, 0 = nPw B () B — @)
0o Jr
Since (B) implies (A), Lemma 5 holds so that we find constants ¢, ¢ > 0 such that

1
* * « Si
1727 < coWo (P e, Prp) < ce||¢|Lk(M>(ﬁ), s€[0,T], e€0,1],z € RE  (82)
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Then by Girsanov’s theorem, for any x € R,
t
Wt =W, 7/ nsds, s€(0,T]
0

is a Brownian motion under Q := R7“P. Reformulate (47) with = + e¢(z) replacing
as

dX;ZHE(b(w):H _ {bgo) (th+5¢(w)’u) + bgl) (Xf+€¢(w)’“, Pru) }dt +o, (Xtac+5¢(w)>u)th
_ {b,EO) (Xt27+6¢($)»ﬂ) + bgl) (X:?+E¢(x)7ﬂ’ Pt*ﬂs)}dt + oy (X§6+E¢($)vlt)th€,m’

X§+E¢(x)’” =z +ep(z), z € RL
By the weak uniqueness of (47) with u = ., we get

PMEU : £ _PMU s ¥yt €
o2y, v) = 22 t(y, v, ) (p )6 LUy, v, ) (pe)

_ Jral P Uiy, v, )z + £6(@)) — Bl Uiy, v, ) (@ + e (x))]p(de)
9

(83)
1

= - /d E[U(y, v, Xf+8¢($)’u)(R§7m —)p(da), te[0,T].
R

By (82), for any p > 1 there exists a constant ¢(p, u, ¢) > 0 such that

t 1\2 z
EnRi’fup]gc(p,u,as)sp( / O‘(S)ds) L te[0T)ee 0,1z e R (84)

S

Again by (11) in Lemma 2 for p = 2 and z = 6,""(z + e¢(x)), (83), (84), (48), (19)
and (2), we find a constant ¢; (¢, ¢) > 0 such that

vf’2||oo<c1<u,¢>>a<t%>( / “”d) tel0.Thee (01  (85)

S

This together with (78) yields that for some constant ca(pu, ¢) > 0,

2
e}

< co(p, @) (OW + a(t%)/ot Mds), t e (0,7],e € (0,1].

t S

1 2
i 112 < 2007 1% + 2llv]

By the definition of o and (42), we find a constant cz(u, ¢) > 0 such that

a(t2)?

||U§||§o < c3(“’a¢) , te (OvT]v €€ (Oa 1] (86)



(c) Estimate on [|vf> — 82||o. Similarly to (b), we have

£,T t
A / RE™ (e Ing™, dWs)
€ 0

t ; XSersd)(m),,u bgl) o Pru) — bgl) .. P* X§+5¢(I)vl‘
0

t
= hy(e, x) +/ <CS(Xf’“)U§(X§’“,P:u), dWs>7 z € RY,
0

where

B (¢, Prue) — 08D (-, Prp)) (XS0 my
g

t
hi(e, ) ::/ <C5(Xf+8¢(£)’“)R§’x
0

— GXPHUL(XI, P, dW,), @ € R

satisfies

1im1E[ sup |ht(e,x)|2] =0, zeR% (88)
=0 Lyclo,1)

Indeed, by (81) and the definition of v¢, we have

) (¢, Pre) — b8 (-, Prp)) (X EHE0000y
E

1 1
= - / / _DEbgl)()(;’“rsdﬁ(ac),#b7 (1= P)P* i+ rP ) (2) (P e — PF)(d2)dr
0 R4

1
= / VS (XTHE@R (1 — P PF o+ 7P e )dr.
0

This together with the BDG inequality implies

E[ sup [hu(e,2)?]
t€[0,T)

T 1
<2 [ Blereen R [on e (P rPde (89)
0 0
2
— G(XEE (X, P ds.
By (48), for any p > 1, we can find a constant ¢, > 0 such that

E sup. | xEree@m Xf’“|p] < clp(x)Pe?, €€ 0,1, € P (90)
te|o,

1
By the boundedness and continuity of ¢ due to (B), fOT a(tfzfdt < o0, (90), (84),

(86), (89), and the dominated convergence theorem, to prove (88), it is sufficient to
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prove that for (s,z,7) € (0,7] x R? x [0, 1],

lim E[v (XTH00H, (1= r) Pl P — oS (X04 PLw)| = 0. (91)

e—0

For any (w,w’) € Q x Q, let

/

Up(,y,8,u,w,0') = Ug(XTFOH(W), (1= )Pl pt r P pe, XET0W (W),
U (a,y, 5,u,0,0") = Us (XTI, (1= 1) Pl + 1P pe, 63 (y + eud(y))),
U3 (2,8, u,w,0') = Us(XPH(W), PEp, XYF0W0 (),

( ) = Us(XPH(W), P, 02" (y + cud(y)))-

72,6 /
U?" CC,y, S, U, w,w

Since (B) implies (A), (30) holds such that
Wi((1 = )P i 1P e, PLp) < rWa(Plpie, Pot) < crelllpeg (92)
By (77), (48) and Holder’s inequality, we conclude that for any 5 € (1, k),

Elog ! (XEF=000 (1= r) Pi i+ rPlpe) — o3 (X9, Pl

1
S
0 JREJOXQ
51
X / S<cv(Xg+€“¢<y>v“)v¢(y)xg+€”¢<y>v#,de>‘dP(w)dp(w’)u(dy)du
0

<o [ Sowi{ [
‘B 1

[(UTLE(‘TJ% s,u,w,w’) - Ufya(xvy’ s,u,w,w’))

- ([?7%76(3373/’3’“’“’“/) - Ug,s(.%’y’&u’w,w/))]

(U:,E(xﬂ Y, s»uvwvwl) - U’r%a(xvy? s,u,w,w/))

— (O} (g, 5,u,0,0) = U2 (2,9, 5,u,0,0))| dP(w)dPW)}” p(dy)du.

By (10) for 5 = ()"~ and p = 7, we obtain (€]l < a([¢] o)), which
together with (19) implies

/QXQ

< 2FBa (| XYW _ G (y - cug(y))])*

(U (2,9, 8,u,0,0") = UP(,y, 8,u,0,0"))

k

— (UY (z,y, 8,u,w,0") — U (2,y, s, u,w,w"))| dP(w)dP(w’)

~ 1 k
< 2% ((BIXYH0Ws — Gru(y + cug(y)))} )
< cra(y/s)"
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for some constant c; > 0. So, it follows from the fact that DEb,(fl)(y, v)(z) is continuous

in (y,v, 2) € RYx 2, xR due to (By), (92), (90), (70) and the dominated convergence
theorem that

lim E
e—0

W (XTI (1= )P+ Pl ) — o (X2, P )| = 0.

Similarly, by (83) and (84), we have

lim |03 (XIHO0, (1= )Pt Py pe)dr — o3 (XE, P;*u)‘ =0.
E—r

Therefore, (91) holds, which implies (88) as explained before (91).
Moreover, by (88), (79), (19), (86), (89) and the argument leading to (66), we
obtain from the dominated convergence theorem that

. t T
lim sup 7\[; / [E[U:(-, -, Xi") hu (e, )| oope(da) = 0, (93)
e=0¢c(0,1) o(t2) Jre

and

t
lim sup \/1/ E[Ut(~7~7Xf’”)
e=04c(0,1] a(t2) JRra

< [ {eoempe -t mrmy, aw)| e <o o

o0

Moreover, combining (83) with [Us(y, v,-)]o < 1, and (10) for p = k*, we obtain

ot [ B X R - Dl
R

d £ 00

1 x ztep(x), T
<2 [ Blallx7 e = X R~ 1)

1 o\ BF 1
< = ex _ 1|k T, ztep(z), k1 & )
<2 [ {(umer - ap ) T a(enae - oo ) g

This together with (90) and (84) yields that for some constant k1 (u, ¢) > 0,

Combining this with (75), (83), (88), (94), (87), (93), and the argument leading to
(67), we find a constant ks (u, ¢) and a measurable function h : (0,7 x (0, 1] — (0, c0)
with

< ki(p, @)a(e), t€]0,T], €€ (0,1].

1 xT x
o= [ ZEIU X R = D)

t - . t -
sup 7‘( he(e) < ka(p, #), lim sup Llht(e)zo (95)
£€(0,1],t€(0,1] (t?) e=0¢c(0,1) (t?)
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such that

£,2 ~2

vt — 0 ‘OO gﬁt(e)Jr/Rd
< [ (et o e, aw]| wan oo

E {Ut(, S XM

< hy(e) + ka(p </ o2 — 02|12, ds> , t€(0,T).
(d) Proof of (76). Let

NG

, := limsup sup —[|v5? = 2o
e=0  se(0,t] (s2)

Noting that (63), (71), (72), (66) and (85) imply that §; satisfies

sup f; < sup sup f HUE 2 - A2||oo =
te(0,T] £€(0,1] s€(0,T) a(sz)

c(p, ¢) < o0,

so that by Fatou’s lemma in (96) we derive from (95) that

t % 2
B2 < Chalp1, 6)? / A geas, te 0.1,
0

where by (3),

t
C:= sup —5— <
te(0,1] a(t2)?
Combining this with f T a(t2)? dt < oo, and applying Gronwall’s inequality, we prove
(76), which together with (79) completes the proof. O

We are now ready to prove Theorem 7.

Proof of Theorem 7. By (57) and (58), it suffices to prove that for any ¢ € (0,7] and
f € Br_1,R?),

i TS o) = P f(pe)
el0 € (97)

— /Rd ]E{f(XfW) /Ot <Cs(X;”’u)Ns(u, ), dWs>]u(dx).

Let R;™ be in (80). By (83) for f replacing U (y, v, ), we obtain

P ZPEIe) [ gl <o) (i — )utas), 1€ 0.7). (99
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Noting that (90) implies

lim B[ sup | X7 - x| o,
20 Licpo,1]

while (88), (87), Lemma 9, (74), (71), (62) and (76) lead to

E,T
. =1
lim =t— =
e—0 £

¢
= [ {exrmNu ), aw)

0
in L?(P), by taking ¢ — 0 in (98) and using the dominated convergence theorem, we
deduce (97) for f € Cp(R?). By an approximation argument as in [30, Proof of (2.3)]
for f € %,(R?), this implies (97) for f € %,(R?). By the approximation argument
used in the proof of (49), we may further extend (97) to f € Br_1.(R?). O
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