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Abstract. Integrated sensing and communication (ISAC), as a key tech-
nology for 6G communication, alleviates frequency spectrum pressure by
enabling communication and sensing to share the same hardware plat-
form and frequency spectrum resources. However, high-frequency signals
exhibit weak penetration capabilities. Particularly in non-line-of-sight
(NLoS) scenarios where obstacles exist between the transmitter and re-
ceiver, the performance of communication and sensing sharply decline.
To solve this problem, reconfigurable intelligent surface (RIS) has been
widely studied for its ability to improve signal attenuation and com-
munication environment. This paper constructs a new channel model
using unmanned aerial vehicles (UAV) equipped with RIS to solve the
problem of NLoS communication faced by ISAC systems. The beam-
forming weights of base station (BS) and phase shift of RIS are jointly
optimized by deep neural network (DNN), so as to maximize the user’s
communication sum rate and sensing effect on sensing target. Simula-
tion results demonstrate the algorithm proposed in this paper, namely
ISAC-Aerial RIS-DNN (IARD)), is effective for NLoS communication and
achieve higher sum rate.
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1 Introduction

With 5G moving towards a new era of everything, traffic density and connection
scale are surging, and the world is stepping up 6G research. ISAC technology is
widely regarded as one of the core enabling technologies for 6G systems [12] [6]. Tt
converges wireless communication and radar sensing functionalities onto a unified
hardware platform, enabling resource sharing and coordinated operation between
these capabilities. This integration simultaneously addresses the demands for
high-data-rate communications and high-precision environmental sensing while
alleviating spectrum scarcity issues. However, how to ensure signal transmission
stability and perception accuracy in complex wireless channel environment is
still an important challenge.
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To address these challenges, RIS, as an innovative electromagnetic reconfig-
urable architecture, has become a key technology for next-generation ISAC sys-
tems. RIS dynamically modulates electromagnetic waves through programmable
units to enhance communication reliability and perception resolution. In non-
line-of-sight(NLoS) environments, RIS establishes artificial LoS links through
intelligent reflections to avoid obstacles, enhance target detection capabilities,
and mitigate path loss [13] [2] [14]. In addition, RIS-assisted beamforming op-
timizes resource allocation, maximizes signal-to-noise ratio(SNR) and improves
detection probability [11] [7] [1]. RIS-equipped UAVs play a key role in the con-
struction of an integrated air, space and sea network. Its flexible deployment
capability and three-dimensional mobility support the intelligent networking of
space communication nodes, effectively solving problems such as signal fading
and incomplete coverage [15] [4], realizing reliable and comprehensive network
coverage, and contributing to the construction of an efficient communications
infrastructure.

The current joint optimization methods for BS beamforming and RIS phase
shift in UAV-carried RIS communication sensing integrated systems are mainly
classified into traditional and deep learning methods. For example, Zhou et
al. [18] use genetic and greedy algorithms to optimize the beamforming and
RIS reflection unit phases to maximize the multiuser rate. Although the tra-
ditional methods are effective, they require large computational resources and
are prone to produce suboptimal solutions. In contrast, deep learning methods
have made significant progress in RIS optimization, and DNN can automatically
learn complex nonlinear mapping relations from a large amount of data without
relying on artificially designed heuristic rules, and exhibits stronger adaptability
and generalization ability when dealing with high-dimensional nonlinear prob-
lems. In addition, DNN is fast in reasoning after training, which is especially
suitable for scenarios with high real-time requirements [5].

This paper proposes a joint optimization method for BS beamforming and
RIS phase shifts based on DNN, targeting an ISAC system utilizing an UAV-
mounted RIS. In complex urban environments, buildings may obstruct the LoS
link between the UAV and ground users, severely degrading channel quality. To
circumvent these obstructions and enhance signal coverage, we deploy the RIS on
the UAV platform. Building upon this configuration, we establish a RIS-assisted
UAV-ISAC system model. Finally, a DNN-based algorithm is designed to jointly
optimize the BS beamforming matrix and the RIS phase shift configuration.
This approach aims to significantly improve signal transmission quality and ef-
fectively enhance the integrated communication and sensing performance of the
system under challenging environmental conditions. The main contributions of
this paper are as follows:

— First, we innovatively propose a model that fuses ISAC, RIS, and UAV to
improve communication and sensing capabilities in complex environments.
Specifically, this paper proposes a RIS-assisted ISAC system to improve the
stability of signal transmission and the accuracy of perception in complex
wireless channel environments. Meanwhile, in order to reduce the signal in-
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terference from ground objects, NLoS links are constructed by mounting RIS
on UAV to extend the coverage of communication and sensing.

— Next, the sensing sum rate is incorporated as a penalty term into the in-
tegrated rate objective function to facilitate the joint optimization of both
communication rate and sensing sum rate. Leveraging the capability of DNN
to characterize high-dimensional nonlinear relationships, alongside the end-
to-end collaborative optimization mechanism which mitigates convergence
to local optima, is anticipated to yield enhanced performance advantages.

— Finally, we conduct comprehensive simulation experiments under the mod-
eled scenarios to validate the effectiveness of the proposed model and its
associated algorithms. The results show that the IARD algorithm consis-
tently achieves a higher achievable sum rate compared to several baseline
methods across diverse experimental settings, demonstrating a clear per-
formance advantage. Moreover, the proposed methodology exhibits strong
robustness, maintaining stable and competitive performance under varying
learning rates, which underscores its practical reliability and adaptability in
different configurations.

2 System Model And Problem Formulation

2.1 Scene Description

As shown in Fig. 1, this paper investigates a BS utilizing a downlink RIS-assisted
UAV multi-input single-output network. In this system, the BS is equipped with
M wire lines to provide service to K single antenna users sensing a sensed
target. The lifted UAV carrying RIS’s acts as a relay node to provide additional
connectivity to the users. The UAV is equipped with a RIS module containing
N passive phase-shifting elements, which are flexibly assisted by adjusting the
position of the UAV and the phase-shifting settings of the RIS. Ground obstacles
are assumed to be impenetrable, so the communication link between the BS and
the users is not considered. K ground users can only communicate with the BS
through the RIS on the UAV, and the sensing target is sensed by the BS through
the RIS on the UAV. A 3D Cartesian coordinate system is constructed with the
BS as the coordinate origin, i.e., the BS coordinates are (0,0,0). All users are
located on the ground, i.e., their vertical coordinates are 0. Assuming that the
UAV knows the location of each user, the link channel information between the
UAV and each user can be determined accordingly. The UAV flies at height z and
assists each user with its communication process with the BS. The coordinates
of the UAV are (z,y, z) and the coordinates of the users are (a,b,0).

2.2 Channel Model

Since the RIS carried by the UAV is deployed in the air, the link from the BS
to the RIS is mainly a LoS path. In the case of the free space path loss model,
the Downlink Channel matrix from the BS to the RIS is:
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Fig. 1. Scene Model

G= ’YDo_QaB (¢gs) ar (¢>§15, ¢gIS)H ) (1)
where Dy is the distance from the BS to the low-altitude RIS, and the channel
gain at the reference distance D = 1 m is denoted as 7. ag (¢35, Ph;g)is
the receiving array response vector at the low-altitude RIS. (;5‘1% 7g and qﬁg 1g are
the azimuth and elevation angles of the arrival angle, respectively. apg (qﬁé S)
denotes the response vector of the transmit array in BS. ¢4 g is the azimuth of
the departure angle. (-)* denotes the conjugate transpose operator. Assuming
that the low-altitude RIS elements are arranged in a uniform square array, the
receiver array response vector ag (¢p;g, 5, 5) of the RIS can be expressed as:

1 dn (g
an (9rs Ofirs) = | - [L PRI IO,

LT )] "

(2)

where d,, = A\/2 is the distance between two neighboring elements in the RIS
and A is the wavelength. f(¢) = sin(¢4;5), g(¢) = cos(¢E;). The Downlink
Channel vector hj, between the RIS and the user k can be expressed as:

by = /7Dy ar (675 05ks) - (3)

where Dy, is the distance between the RIS and the kth user. ar (gbgfs, qbﬁ’}s

is the transmitting array response vector at the RIS. The Downlink Channel
vector h; between the RIS and the target can be expressed as:

ht = \/ ’YDt_QaT (ngtfga g?g) ) (4)
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where D; is the distance from the RIS to the target. ap ((b‘g}“sr , g‘f‘g )is the
response vector of the transmit array from RIS to target.

2.3 Signal Model

In this paper, we denote the Downlink Channel matrix transmitted from the
BS to the RIS by G € CM*¥N  and the Downlink Channel vector reflected from
the RIS to user k by hy € CN*! It is assumed that the channel obeys a Rice
distribution and the channel is a Rayleigh fading channel gain. Therefore, the
signal received at each user can be expressed as:

v = (Gdiag(0)hg)" x + i,

T
=U;x + ny,

()

where (-)7 denotes the transpose operator. diag(8) is the diagonal matrix of the
vector 6 on the main diagonal. U = Gdiag(0)h; denotes the relationship be-
tween the BS and the user k the cascade channel between BS and user via RIS.
ni ~ CN(0,0%) denotes the additive white Gaussian noise. 8 = [0y, - - Lon]"
denotes the reflection coefficient of RIS. x = B.S.+B;S; = B-S is the transmit
signal at BS for all users k, which consists of the source signal and the BS beam-
forming vector by, B = [by,...,bg,bs] and S = [sq, .. .,sK,st]T, E [ssH] =1.
The signal to interference plus noise ratio (SINR) of user k can be described as :

Ul by [*
gk = K H 2 9 . (6>
Dt itk [Ub;[" + o}

Sensing is performed on a sensing target. When sensing at the BS, the trans-
mitted signal has to arrive at the target through the reflective link of RIS. Then
it is folded back to the BS from the target through the reflective link of RIS, so
the echo signal reflected back from the sensing target can be expressed as:

vt = n: (Gdiag(0)h,) (Gdiag(@)ht)T X + 1y,

(7)

= ’l]tUtU;TX —|— ng,

where n; ~ CN(0,07) denotes the additive white Gaussian noise. n; ~ CN(0, 02)

denotes the radar cross section(RCS). Assuming that the radar signal is not

interfered by the communication user’s signal, the expression for the radar SNR
is [8]:

2

e ’bg{UtUtHbt‘

ft O'? . (8)
For a user, the sum rate from BS to user k(k = 1,2, 3, ...... K) can be expressed

as:

Ry, = logy (14 &) (9)
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For the target, this paper uses a penalty term to make the sensing sum rate
join the total sum rate. Where n(n > 0) is a threshold value for whether the
penalty is enforced or not. If the sensing sum rate is less than 7, the penalty is
enforced. Conversely, if the sensing sum rate is greater than 7 , then the sum
rate increases. And pu represents the severity of the punishment. The expression
for the sensing sum rate is as follows:

Ry =p-(logy (14&) —n), (10)

The ultimate goal of this paper is to maximize the sum rate of K users and
sensed targets by jointly optimizing the BS beamforming and RIS reflection
coefficients while satisfying the BS transmit power constraints and RIS phase
shift constraints. Therefore, the optimization problem in this paper is formulated
as:

K
%%CZRI“ + Ry, (11a)
k=1
s.t. E [|z]*] < Puax, (11b)

0cov, (11c)

where Py, denotes the maximum transmit power of the BS. (11b) equation
denotes the transmit power constraint of the BS. (11c) equation denotes the
finite resolution (B bits) RIS phase constraint, with discrete phase shifts @ =

27 (2% -1
foo e {05, 20

3 DNN-Based Joint Optimization of Beamforming and
Phase Shift Matrix

A feed-forward fully connected DNN is essentially a multilayer perceptual ma-
chine containing multiple hidden layers. The DNN is divided by the location of
different layers and the internal neural network layers can be categorized into
three types, input, hidden and output layers. The nodes in neighboring layers
are fully connected, while there is no connection between nodes in the same
layer. The activation values of hidden layer nodes are obtained by applying a
nonlinear activation function to the linearly weighted sum of the activation val-
ues from the previous layer and the weights of the current network layer. For a
DNN containing L hidden layers [9] [10]. Assuming that the input is h® = X,
the calculation of the activation value of the hidden layer can be expressed by
the following equation:

IN

al=W'h'"! +b' (1<I<L+1), (12a)

h~'=f() (1<i<L), (12b)
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where W' and b! represent the weights and bias vectors of the Ith layer of
the network, respectively. f(-) denotes the nonlinear activation function of the
hidden layer nodes.

To optimize the network parameters, backpropagation is employed as the
foundational learning mechanism. In this phase, the error is propagated back-
ward from the output layer through each hidden layer. The gradients of the
loss function with respect to all weights and biases are computed efficiently us-
ing the chain rule. These gradients are then used to update the parameters via
gradient-based optimization algorithms, thereby minimizing the prediction error
and enhancing model accuracy. Through this iterative process, the DNN progres-
sively refines its internal representations and improves its performance on the
given task.

IARD Algorithm
Input: Cascaded channel Uy between BS and user k£ via RIS and cascaded channel
between BS and target Uk.
Training Phase

: Initialize: Extract relevant information from Uy, U¢ to initialize user nodes and
RIS nodes: 6, B (beamforming matrix) <+ Uk, Uk.

—

2: for iteration t do
3: Use mini-batch training samples.
4: for DNN training layer d do
5: PhaseNet: Compute phase shift matrix 6.
6: Compute equivalent channel: Beg = H - 6.
7: BeamNet: Generate B based on Beg.
8: end for
9: Compute batch loss:
K
L == log, (1+&)—p-(logy (1+&) —n)
k=1
10: Backpropagation: Update network parameters via gradient descent:
B{""Y =B — Vg, L
11: end for

Output: Beamforming matrix B at BS and phase shift matrix 6 at RIS.

3.1 Input Layer

At this layer, the real and imaginary components of the cascaded channel state
information R, € CM*N*XK are reorganized into a 2D tensor of 2K channels,
which allows the network to learn both real and imaginary information to obtain
more complete channel characteristics.
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3.2 PhaseNet Design

The main task of the phase control sub-network is to generate the RIS phase shift
matrix 6, i.e. to optimize the signal propagation path by controlling the phase.
The network learns how to adjust the phase to optimize the signal transmis-
sion by performing feature extraction through a multilayer convolutional neural
network and a fully connected layer. Since neural networks can usually only
handle real data, but each element of the input sample is a complex number.
So it needs to be converted to real numbers. In this paper, we use independent
channels to extract the real and imaginary parts separately [16], forming 2K
channels. The input sample dimension becomes RP#tchsizex2KXMXN The sam-
ples are processed by the neural network and output. The output phase matrix
is normalized to ensure that it satisfies the unit mode constraints. Finally, the
normalized phase matrix is obtained. The specific steps are shown in Flg.2.

batch size X 64 X M X N batch size X 4N
batch size X 64 X M X NS batch 51ze X 64—MN batch 51ze X 2N
i Input
n
batch size X 2K X M X N
Conv1 Conv2 Flatten Linear1 L|near2
(3,1,1) (3,1,1)
A Conv Block: A Linear Block: Note:(kernel size,stride,padding)
Conv+BN+RelLU Linear+BN+ReLU

Fig. 2. Network Architecture of PhaseNet

3.3 BeamNet Design

The purpose of the beamforming subnetwork is to generate a BS beamforming
matrix based on the input channel state information to optimize signal recep-
tion and transmission. The subnetwork uses a fully connected layer to perform
further feature learning on the input channel information and outputs the BS
beamforming matrix B. For the input samples, an equivalent channel needs to
be constructed for input to the beamforming subnetwork. First, it is necessary
to extract each user’s channel from the joint channels Uy and Ug. The complex
channel is divided into real and imaginary parts and the augmented real-valued
matrix is constructed to preserve the complex multiplicative relationship. Then,
the phase-adjusted equivalent channel is computed by combining the phase pa-
rameter 6 with the channel matrix by matrix multiplication. Finally, the equiv-
alent channels of all users are spliced along the feature dimensions to form the
Rbatehsizex2MK oquivalent channel. The beamforming matrix is obtained after
subnetwork processing and normalized to make it satisfy the maximum power
constraint. Finally the normalized beamforming matrix is obtained. The specific
steps are shown in Fig.3.
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batch size x 2KN batch size X 100 batch size x 100 batch size X 2MK

matrix \S s S S
operations =
-—>-U LU effective 5
- :

A Linear Block:
Linear+BN+RelLU

Linear1 Linear2 Linear3

Fig. 3. Network Architecture of BeamNet

4 Experimentation and Analysis

4.1 Parameter Setting

In this section, simulation results are presented to validate the effectiveness of
the proposed joint optimization algorithm for BS beamforming and RIS phase
shift design. Following the system configurations adopted in [19] and [3], the
BS is equipped with 8 antennas to serve 4 single-antenna users. The UAV is
integrated with a RIS comprising 50 passive reflecting elements. Users and sens-
ing target locations are randomly distributed within a circular region centered
at (200,0,0) with a radius of 10 meters, simulating a typical deployment sce-
nario containing both communication users and a sensing object of interest. The
maximum transmit power at the BS is set to Ppax = 10mW, and the path
loss exponent is set to f = 2. For the DNN training configuration, the Adam
optimizer is employed for weight updates, with an initial learning rate of 0.001
and a decay rate of le — 6. The penalty coefficients g and 7 are empirically
chosen as 0.8 and 0.1, respectively, through systematic hyperparameter tuning
to maximize the sum-rate performance.

Table 1. Experimental Parameters

Parameter Value
Number of BS antennas 8
Number of RIS elements 50
Maximum transmit power 10 mW
Path loss exponent 2
Penalty item coefficient 0.8
Penalty item coefficient 7 0.1
Number of users 4
Batch size 64
Learning rate 0.001
Learning rate decay factor 1x10°°
Number of convolutional layers 2
Number of neurons 564

The following approaches are compared:
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—_

TARD model proposed in this paper;

2. TARD-6-non-opt: randomly generating the RIS reflection coefficients 6, and
the DNN optimizes only the BS beamforming matrix;

3. ISAC-Aerial RIS (IAR)-GLS: based on the principle of the greedy local
search algorithm proposed in Paper [17], the model of this paper is modified
to optimize the RIS reflection phase shift and beamforming matrix using the
greedy local search algorithm;

4. TAR-random-6-B: random generation of RIS reflection coefficients 8 and

beamforming matrix B.

4.2 Maximum Sum Rate

e ———

—a— |ARD
IARD-8-non-opt

—— |AR-GLS

—e— |AR-random-0-B

~
w
L

~
o
L

Sum Rates (bps/Hz)
5 e

w
L

9_————+——-—"‘
< -
> *

L

1@

']
EER 2R 4

5 é 7 8
Number of antennas at BS

Fig. 4. Maximum sum rate plotted against antennas

Fig. 4. illustrates the user communication and sensing sum rate versus the
number of BS antennas. The number of RIS reflective elements in the experi-
ment is fixed at 50. For the evaluated scenarios, the sum rate of IARD is the
highest for all numbers of BS antennas. For the sum rate, IARD is stabilized at
26.22bps/ H z. TARD-0-non-opt is stabilized at 12.18bps/H z. IAR-GLS is stable
at 3.890ps/Hz. IAR-random-0-B is stable at 1.56bps/H z. The experimental re-
sults show that the performance of the proposed IARD scheme is significantly
improved compared to all three baseline methods under the joint optimization
conditions.A RIS optimizes signal propagation by adjusting the electromagnetic
properties (e.g., reflection phase) of its surface units. This process is completely
controlled by the RIS itself, independent of how many antennas are used by the
BS. Instead, the BS focuses the signal energy in a specific direction by adjust-
ing the signal strength (amplitude) and phase difference of each antenna in the
antenna array. Even though the accuracy of the beam is reduced with a smaller
number of antennas in the BS, it can still be tuned algorithmically to achieve ba-
sic directional functionality. The fundamental mechanism of beamforming relies
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on coherent signal superposition across antenna elements to control radiation
directionality, rather than the mere quantity of antennas. Therefore, the number
of antennas at the BS has relatively little effect on the experimental results.

Loss(bps/Hz)

Sum Rates (bps/Hz)

204

=
w
L

=
o
L

w
L

—— |ARD
IARD-8-non-opt

—— IAR-GLS

—e— |AR-random-8-B

&
. 2

&
—
[
T

L 4
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Bie 1L

519 ¢
L1904
r
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Number of RIS reflection elements

Fig. 5. Maximum sum rate plotted against RIS elements
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Fig. 6. Maximum sum rate plotted against learning rate

Fig. 5. illustrates the user communication and sensing sum rate versus the
number of RIS reflection elements. The number of BS wires in the experiment
is fixed at 8. The maximum sum rate is changed by varying the number of RIS
reflective elements, while the TARD has the highest sum rate for all of them. For
the maximum sum rate, IARD is stabilized at 26.54bps/H z, IARD-0-non-opt is
stabilized at 13.47bps/Hz. IAR-GLS is stable at 3.58bps/Hz. IAR-random-6-B
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is stable at 1.58bps/H z. The experimental results show that the performance
of the proposed TARD scheme is significantly improved compared to all three
baseline methods under the joint optimization conditions. The performance and
flexibility of the RIS are significantly affected by the number of its reflection
units. The number of reflection units directly determines the phase adjustment
accuracy of RIS. RIS beamforming precision scales with the number of pro-
grammable elements, with higher element counts enabling sharper beam con-
trol and consequently greater system throughput. In addition, more reflection
units means a larger effective reflection area, which not only enhances the inci-
dent signal capture capability, but also significantly improves the reflected signal
strength through the array gain. Particularly in millimeter-wave and other high-
frequency regimes, large-scale RIS can effectively compensate for propagation
path loss through coherent phase manipulation.

32

24 4 —&— 1500 iterations

Sum Rates (bps/Hz)

2000 iterations

22
—4&— 2500 iterations

0 . ‘ : :
0.0001 0.0005 0.001 0.005 0.01
Learning Rate

Fig. 7. Maximum sum rate plotted against learning rate

As shown in Fig.6, to demonstrate model convergence, we plotted the loss
against the number of iterations. As shown in the figure, the loss stabilizes and
plateaus beyond a certain number of iterations, indicating that the model has
successfully converged.

4.3 Algorithm Robustness Analysis

To demonstrate the robustness of the TARD algorithm, we set up several sets
of comparison experiments. By adjusting the learning rate and the number of
iteration rounds, the relationship between the learning rate and the optimiza-
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tion results in the case of different number of iteration rounds is obtained. The
experimental results are shown in Fig. 7.

The experimental results show that, with the same number of iteration
rounds, the difference of the maximum sum rate obtained by optimization with
different learning rates does not exceed 15.1%. In addition, the maximum sum
rate obtained by optimization does not change significantly with the change of
iteration rounds. This shows that the IARD algorithm converges well and is
robust.

5 Conclusion

This paper proposes a UAV-carried RIS-assisted ISAC system to address user
communication and sensing SNR degradation caused by LoS blockage in dense
obstacle environments. Through the joint optimization of BS beamforming and
RIS phase-shift configurations, significant improvements in user sum rate are
achieved. Specifically, the TARD framework is employed to optimize both the
BS beamforming and RIS phase shifts in our experimental simulations. The
results demonstrate that the proposed IARD model offers substantial advan-
tages in sum-rate performance and exhibits stronger optimization capabilities
compared to traditional heuristic algorithms. Furthermore, by incorporating the
sensing SNR as a penalty term into the sum-rate objective, this work success-
fully enables the co-optimization of communication and sensing performance.
Additional experiments also confirm that the IARD model maintains stable per-
formance under varying learning rates, indicating strong robustness. Despite
these promising results, it should be noted that the current study is conducted
under relatively ideal assumptions. Consequently, the practical applicability of
the system in real-world scenarios remains to be further validated. Future work
will focus on evaluating the performance under more realistic conditions, includ-
ing dynamic obstacles, diverse environmental interference, and more complex
mobility patterns.
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