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ST-BayesianNet: Spatiotemporal
Bayesian Convolution Neural Networks
for Multivariate Time Series Forecasting
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Abstract—Multivariate time series forecasting has extensive ap-5
plications across various domains, including economics, finance,6
bioinformatics, and intelligent transportation. The inherent spa-7
tiotemporal data is characterized by pronounced nonlinearity8
and stochastic uncertainty. However, current deep learning-based9
methods all employ deterministic parameters to characterize data10
features. This approach fails to effectively capture the temporal11
and spatial uncertainty inherent in data, resulting in limited model12
capability to extract data features and reduced analytical predic-13
tion accuracy. To solve this problem, this paper proposes Spa-14
tiotemporal Bayesian Convolution Neural Networks, referred to as15
ST-BayesianNet, for enhancing multivariate time series forecasting.16
Specifically, we decompose the uncertainty of spatiotemporal data17
into space-time dimensions, thus facilitating the prediction of multi-18
variate spatiotemporal sequences. First, we leverage a self-adaptive19
uncertainty adjacency matrix to model intricate uncertain spatial20
relationships, while the acquisition of knowledge for this uncertain21
matrix hinges upon judicious a priori assumptions. Then, a non-22
deterministic Temporal Bayesian Convolutional Neural Network23
(TBCN) is constructed to adeptly capture temporal uncertainty.24
The optimization of model parameters, comprising both deter-25
ministic and probabilistic aspects, is achieved through variational26
inference. Finally, the experimental results obtained from seven27
real-world datasets confirm that ST-BayesianNet is more accurate28
than baseline methods at making predictions.

Q1

29

Index Terms—Multivariate time series forecasting, Bayesian30
neural network, variational inference, uncertainty modeling.31

I. INTRODUCTION32

FORECASTING multivariate spatiotemporal data is a criti-33

cal task for learning systems operating in dynamic environ-34

ments, as noted in [1], attracting significant attention from the35
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deep learning community. Deep learning has become popular 36

for extracting spatiotemporal features hidden in the data due 37

to its robust fitting capabilities, as it can capture the overall 38

trends across a set of dynamically changing variables. This task 39

is vital across various domains, including autonomous vehicle 40

operations [2], energy and smart grid optimization [3], supply 41

chain management [4] and industrial processes [5], [6], fueling 42

extensive research interest. 43

Spatiotemporal data inherently combines spatial and temporal 44

dimensions. The spatial dimension is typically represented on 45

graph domains, shaped by the complex topological structures 46

of spatial networks, such as road layouts influencing traffic flow 47

data [7]. The temporal dimension captures how data evolves over 48

time, reflecting dynamic patterns and trends. Most multivariate 49

spatiotemporal forecasting methods model interdependencies 50

among variables, where each variable depends on its own his- 51

torical values and those of others [8]. Effectively capturing both 52

spatial and temporal dependencies simultaneously is a critical 53

focus in this field [6]. 54

Recent advancements in spatiotemporal graph modeling have 55

generally followed two main approaches: modeling the temporal 56

dimension and modeling the spatial dimension. For the temporal 57

aspect, techniques aim to extract dynamic information embed- 58

ded in the time dimension. For instance, convLSTM [9] en- 59

hances the traditional fully connected Long Short-Term Memory 60

(LSTM) architecture by integrating convolutional operations, 61

proving effective for feature extraction from spatiotemporal 62

data. ASTGCN [10] employs pure convolutional layers to de- 63

rive temporal features, while leveraging Graph Convolutional 64

Networks (GCN) for spatial information. AST-MAGCN [11] 65

combines Generative Adversarial Networks (GAN) with GCN, 66

enabling real-time extraction of spatiotemporal states, with fore- 67

casting outputs refined by the GAN framework. 68

Conversely, the spatial dimension is addressed by syn- 69

chronously integrating spatial information [12] for multivariate 70

spatiotemporal prediction. Models like TC-GCN [13], a GCN- 71

based approach, utilize the spatial relationship graph inherent 72

in the data. HistGNN [14] captures multi-scale spatiotemporal 73

dynamics, improving accuracy in complex weather forecast- 74

ing across regions and timescales. LSTTN [15] introduces a 75

transformer-based neural network for traffic flow prediction, 76

while Beyond Spatial [16] proposes a graph-based model us- 77

ing multivariate transfer entropy to enhance interpretability be- 78

yond spatial neighbors. However, static spatial graph structures 79
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Fig. 1. The uncertainty in spatiotemporal data using speed rates from five loop
detectors in the METR-LA traffic dataset. Around horizon 1325, random factors
caused inaccurate measurements, with speed rates for all five detectors dropping
to zero, highlighting the aleatory uncertainty inherent in real-world loop detector
data.

may not always reflect true dependencies, prompting a shift80

toward adaptive graph modeling as a research focus. Graph-81

WaveNet [7] derives spatial relationships through node embed-82

dings, while Bai et al. introduce two adaptive GCN modules:83

a Node Adaptive Parameter Learning (NAPL) module [17]84

to capture node-specific patterns, and a data-adaptive graph85

generation module to infer dependencies across diverse traffic86

series. AutoSTG [18] uses meta-learning to generate adjacency87

matrices for both spatial GCN and temporal CNN, modeling88

relationships between network parameters and meta-knowledge89

within the attribute graph.90

Modeling and predicting multivariate spatiotemporal data91

through spatiotemporal models requires precision that depends92

on the intricate relationships and evolving characteristics of93

such data. The aforementioned deep learning models employ94

deterministic parameter operations when modeling spatiotem-95

poral data, meaning parameters are fixed at specific values96

after model training. However, the complex relationships within97

spatiotemporal data exhibit randomness and uncertainty [19],98

stemming from measurement accuracy issues and the challenge99

of precisely fitting data features. Aleatoric uncertainty of data is100

usually caused by imprecise sensing instruments or data logging.101

As depicted in Fig. 1, all loop points recorded zero velocity102

around horizon 1325, which is a phenomenon commonly ob-103

served in real spatiotemporal data.104

Concurrently, deterministic models such as convLSTM [9],105

Graph-WaveNet [7], and AutoSTG [18] often produce smooth106

predictions. However, real-world data frequently exhibits dis-107

continuous, non-smooth states, indicating that deterministic108

models possess representational uncertainty when fitting data109

characteristics. The contingent uncertainty of spatio-temporal110

data and the representational uncertainty of model fitting un-111

derscore the importance of uncertainty modeling for multi-112

variate spatio-temporal sequence data. Such uncertainty spatio-113

temporal data models must not only capture complex spatio-114

temporal relationships but also effectively represent the under-115

lying uncertainty within the data, ultimately providing predictive116

confidence measures.117

To tackle the challenges outlined earlier, this study introduces118

a spatiotemporal graph learning framework based on Bayesian119

probability, named the Spatiotemporal Bayesian Inference Net- 120

work or ST-BayesianNet. This framework uses a deep neural 121

network to model spatiotemporal interdependencies, capturing 122

both deterministic and uncertain elements. To address latent un- 123

certainties in the data, we separate uncertainty into temporal and 124

spatial dimensions, applying variational inference to each. For 125

spatial uncertainty, we develop a Bayesian Graph Convolution 126

Network (BGCN) that enables end-to-end supervised training 127

to learn a self-adaptive uncertainty adjacency matrix directly 128

from the data. For temporal uncertainty, we design a Temporal 129

Bayesian Convolutional Neural Network (BTCN) to capture 130

temporal uncertainty while also regularizing the parameters of 131

the entire network. 132

ST-BayesianNet effectively captures aleatoric uncertainties 133

within complex spatial relationships, which is optimized glob- 134

ally using variational inference, delivering accurate time se- 135

ries predictions while simultaneously quantifying prediction 136

uncertainty. The main contributions of this work are as 137

follows: 138! ST-BayesianNet introduces a novel deep learning frame- 139

work to capture both deterministic and uncertain compo- 140

nents of the spatiotemporal dependencies. We decompose 141

it into temporal and spatial dimensions of uncertainty 142

and employ variational inference methods to approximate 143

the optimal solution for training parameters for charac- 144

terizing the inherent uncertainty in spatiotemporal data. 145

This dual-dimensional uncertainty modeling module is 146

then integrated with deterministic spatiotemporal model- 147

ing modules to construct a globally optimized framework 148

that simultaneously achieves uncertainty representation 149

and enhances prediction accuracy. 150! We propose a Bayesian Graph Convolutional Network 151

(BGCN) that automatically models spatial uncertainty. 152

This module employs a self-adaptive uncertainty adjacency 153

matrix learned directly from the data through end-to-end 154

supervised training. Additionally, we have designed a non- 155

deterministic Bayesian Temporal Convolutional Network 156

(BTCN) that captures uncertainty in the temporal dimen- 157

sion and regularizes the parameters of the entire network. 158

Integrating these components enables ST-BayesianNet to 159

effectively model uncertainty in complex spatiotemporal 160

relationships. 161! We comprehensively evaluated ST-BayesianNet on seven 162

real-world spatiotemporal datasets. The results show a pre- 163

diction error reduction of 1.2% to 4% compared to bench- 164

mark models. Additionally, visualizations of the model’s 165

output demonstrate that ST-BayesianNet generates more 166

plausible distribution predictions, a capability not achiev- 167

able by prior deterministic models. 168

The structure of this paper is organized as follows. In Sec- 169

tion II, we provide an overview of related works concerning 170

approaches to traffic prediction. Section III delves into the 171

details of ST-BayesianNet. The performance evaluation of ST- 172

BayesianNet is presented in Section IV, encompassing predic- 173

tion results and an analysis of its resilience to perturbations. 174

Finally, Section V concludes the paper, summarizing the findings 175

and contributions. 176
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II. RELATED WORK177

As a key area of multivariate time series analysis, research178

on spatio-temporal forecasting models has received significant179

attention due to its ability to handle complex nonlinear data pat-180

terns. This paper focuses on studies of deterministic and uncer-181

tain spatio-temporal forecasting models. This section highlights182

breakthrough achievements in the relevant research progress183

of deterministic spatio-temporal neural network models and184

uncertain Bayesian neural network models, which form the basis185

of this study.186

A. Spatiotemporal Neural Network Models187

Spatio-temporal neural network models hold significant the-188

oretical importance as they aim to capture the intrinsic rela-189

tionships between future data points and historical observations190

within spatio-temporal datasets, thereby enabling high-precision191

spatio-temporal forecasting. Such models typically integrate192

spatio-temporal information through joint modeling and rep-193

resent widely recognized and extensively studied deterministic194

spatio-temporal forecasting frameworks.195

Existing deep learning models employ various architectures196

tailored to different attributes of the spatiotemporal dimension197

to extract latent feature information from the data and facilitate198

accurate prediction. For instance, CNN [20] or RNN [21], [22]199

based methods have been widely utilized to capture temporal200

patterns. More recently, GCNs have gained popularity in mod-201

eling spatial relationships, where the adjacency matrix, often202

based on distance information, delineates the spatial connections203

between monitoring points [23], [24].204

Graph neural networks have a wide range of applications in205

the field of spatio-temporal data forecasting. For instance, Wu206

et al. [7] proposed a novel Graph Convolutional Neural Network207

architecture, termed Graph-WaveNet, designed specifically for208

spatiotemporal graph modeling. The methodology integrates209

adaptive dependency matrices derived from node embeddings,210

thereby enhancing the model’s ability to discern and leverage211

the intrinsic spatial dependencies embedded within the input212

data. DCRNN [25] is a model that represents traffic flow as213

a diffusion process across a directed graph, and introduced214

a convolutional recursive neural network architecture that is215

based on diffusion principles. This deep learning framework216

is established as a robust approach for traffic forecasting,217

adeptly capturing and intertwining the spatial and temporal218

inter-dependencies that are characteristic of traffic flow pat-219

terns. The Spatiotemporal Graph Convolutional Network(ST-220

GCN) [26], integrates graph convolutional modules to model221

spatial dependencies and temporal dynamics for accurate traffic222

prediction.223

Additionally, GMAN [27] employed a multi-graph attention224

mechanism within a deep network architecture, which exe-225

cutes attentional computations across spatial as well as tem-226

poral domains, thereby enabling a comprehensive analysis of227

multi-dimensional data. Nevertheless, these methods suffer from228

limitations in accuracy and applicability due to their neglect of229

modeling the uncertainty and data drift characteristics inherent230

in spatiotemporal data.231

B. Bayesian Neural Network Models 232

The inherent spatio-temporal relationships within spatiotem- 233

poral data often exhibit high complexity and uncertainty. Con- 234

sequently, some researchers have turned to Bayesian neural 235

network models. These approaches address the challenge of 236

quantifying uncertainty in spatiotemporal data by incorporating 237

neural networks with probabilistic model parameters. For in- 238

stance, Gal et al. [28] proposed Bayesian Convolutional Neural 239

Networks (CNNs), which is the first Bayesian approach used to 240

CNNs that leverages Bernoulli variational inference to combat 241

over-fitting in small datasets, providing a robust framework 242

for uncertainty estimation and improved classification accuracy. 243

Chandra et al. [29] introduced Bayesian graph CNNs that lever- 244

age tempered Markov chain Monte Carlo (MCMC) sampling 245

via parallel computation, employing Langevin gradient proposal 246

distributions to address the quantification of uncertainty in the 247

analyzed sample data. This innovative approach extends the 248

traditional application of graph CNNs by integrating Bayesian 249

inference to model the inherent uncertainty in spatial data more 250

effectively. 251

DeepAR [30] employed an RNN architecture for probabilistic 252

forecasting, utilizing simplified temporal convolutional layers to 253

reduce parameter count and LSTM-units to capture temporal 254

dynamics. The method employs an auto-regressive approach 255

that incorporates Gaussian-distributed stochastic error terms to 256

reduce prediction errors. DeepAR, an efficient forecasting tech- 257

nique, leverages these random features to capture and analyze 258

the inherent uncertainty in temporal data. 259

In summary, the intricate interplay between time and space in 260

spatiotemporal data is characterized by nonlinear and uncertain 261

relationships. However, the previously discussed Spatiotempo- 262

ral methods are inherently deterministic, meaning that they yield 263

a fixed output for a given input once the model parameters 264

have been determined. Furthermore, existing Bayesian neural 265

network methods can only handle uncertainty analysis for small- 266

scale data or focus on uncertainty in either the temporal or spatial 267

dimension during data analysis and prediction tasks. Conse- 268

quently, mainstream spatio-temporal and uncertainty methods 269

have failed to fully capture the uncertainty arising from the joint 270

temporal and spatial dimensions, leaving room for improvement 271

in the data analysis and prediction performance of these models. 272

III. METHODS 273

A. Problem Definition 274

Definition 1: Spatial Network G. A weighted undirected 275

graph G = (V,E,A) is used to describe the spatial topological 276

structure or semantic relationship in the spatiotemporal data, 277

where V = {v0, v1, . . . , vN} is treated as N monitoring ver- 278

tices, and E is expressed as a set of edges. We use A ∈ RN×N 279

to represent the adjacency matrix of G, which is the weight 280

matrix in this paper. In some cases, there is more than one 281

spatial network, i.e., we will have multiple adjacency matrices 282

{A1, A2, . . . , Ak}. 283

Definition 2: Feature Matrix X . The information on the 284

spatial network G is regarded as the node attribute features V , 285
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Fig. 2. The overall architecture of ST-BayesianNet. It comprises two main branches: the deterministic computing branch (blue), which captures deterministic
patterns in the data, and the non-deterministic computing branch (orange), which models uncertainty. Each branch is composed of multiple spatiotemporal
dependency blocks, designed to independently extract deterministic and stochastic information from the spatiotemporal data.

which is indicated by X ∈ RT×N×C , where C, T and N = |V |286

are the number of node attribute features such as traffic speed,287

number of traffic vehicles, the length of the historical times series288

and the number of spatial sensor nodes, respectively.289

The problem of multivariate time series forecasting in290

this paper is considered as predicting future features Ŷ =291

(x̂T+1, . . . , x̂T+Q) from current data X = (x1, . . . , xT ).292

Through the above definition, The mapping function fθ from293

X to Ŷ should be learned, that is:294

Ŷ = fθ(G,X), (1)

where θ is the parameter of the model. The real future data is295

Y = (xT+1, . . . , xT+Q) and the training process is to make the296

distance between predicted output Ŷ and Y smaller and smaller.297

B. Overview of ST-BayesianNet298

Fig. 2 illustrates the overall architecture of the ST-299

BayesianNet model, which comprises two primary branches:300

a deterministic computing branch and a non-deterministic301

computing branch. The framework is structured into multiple302

blocks. Vertically, it is segmented into a time-dependent module303

(BTCN) and a space-dependent module (BGCN), aligning with304

the structure commonly found in existing deep spatiotemporal305

prediction frameworks.306

In the deterministic computing branch, deterministic spa-307

tiotemporal features are extracted. In contrast, the non-308

deterministic branch captures stochastic patterns in the spa-309

tiotemporal data using the BTCN and BGCN modules. Finally,310

the model output integrates both the deterministic and uncertain 311

components, providing a comprehensive representation of the 312

spatiotemporal dynamics. 313

In the remainder of this section, we present a comprehensive 314

overview of the core components that make up ST-BayesianNet. 315

The framework is organized into multiple blocks, each contain- 316

ing deterministic temporal and spatial models. To illustrate the 317

design and functionality, we examine a representative block in 318

detail, noting that the structure and operation of the remaining 319

blocks follow a similar repetitive pattern. 320

C. Deterministic Spatiotemporal Modeling 321

Spatiotemporal data inherently comprises deterministic com- 322

ponents in both its temporal and spatial dimensions. For in- 323

stance, the power consumption within distinct regions exhibits 324

discernible periodicity, influenced by seasonal fluctuations [31]. 325

Similarly, in the domain of traffic forecasting, the intricate 326

spatial interconnections of road networks play a pivotal role in 327

governing traffic flow dynamics [7]. Therefore, formulating ef- 328

fective methodologies to appropriately capture and model these 329

deterministic spatiotemporal constituents stands as a pivotal 330

determinant of the predictive accuracy and quality in the realm 331

of multivariate time series forecasting. 332

The ST-BayesianNet framework enables multidimensional 333

uncertainty modeling of spatiotemporal data by integrating 334

BGCN for spatial randomness and BTCN for temporal ran- 335

domness. This combined approach allows for the generation 336

of predictions comprising deterministic and uncertain elements. 337
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The dual-branch architecture ensures that the model can accu-338

rately predict multivariate time series while also assessing pre-339

diction uncertainty in complex spatiotemporal tasks. Through340

variational inference, the training process determines the opti-341

mal solution for the infinite approximation parameter equation,342

enhancing the model’s robustness and practicality for real-world343

applications. We provide a detailed introduction to the model’s344

components next.345

In addressing the temporal dimension, ST-BayesianNet em-346

ploys Gated TCN [7] due to their lean parameter count and347

straightforward architectural design. Let X ∈ RT×N×C repre-348

sent the historical input spatiotemporal data. To ensure consis-349

tent feature extraction across the entire model, ST-BayesianNet350

initiates a process of dimension normalization using a CNN351

with a 1× 1 kernel size. This normalization step is outlined352

as follows:353

Xs = CNN(X) ∈ RT×N×D, (2)

where CNN refers to a two-dimensional convolution operation,354

and D signifies the standardized feature dimension. Notably,355

owing to the utilization of the 1× 1 convolution operation, the356

described process does not compromise the inherent spatiotem-357

poral information within the original data.358

To extract meaningful temporal information, we incorporate359

the Gated TCN into our approach. Gated TCN is chosen for360

its ability to effectively manage the flow of information across361

layers within temporal convolutional networks. For an input362

tensor Xs ∈ RT×N×D, the output of the Gated TCN, using363

time-dilated causal convolution, is computed as follows:364

XdT = g(Xs "Ka + a)# σ(Xs "Kb + b) ∈ RTdT×N×D,
(3)

where" represents a one-dimensional convolution along the time365

direction with parametersKa,Kb, a and b.# is the element-wise366

product. σ(.) is the sigmoid function and g(.) is the activation367

function, where tanh serves as the specific activation function368

in this paper. In order to increase the perception field of the369

temporal dimension and enhance the computational efficiency of370

the model, we employ dilated causal convolution. Consequently,371

the output dimensionality of the temporal aspect becomes372

TdT < T .373

In comparison to univariate prediction, the integration of374

spatial network information into prediction models is pivotal for375

capturing the intricacies of spatiotemporal data. Nonetheless, in376

real-world scenarios, many spatiotemporal datasets struggle to377

effectively capture spatial topological relationships. Hence, ST-378

BayesianNet employs the adaptive adjacency matrix method [7],379

wherein the following spatial relations are defined:380

A = SoftMax(ReLu(E1E
T
2 )), (4)

where E1 and E2 are of dimensions N × d and represent the381

embeddings of source nodes in the spatial graph, and d signifies382

the embedding dimension. Subsequently, this allows for the cap-383

turing of hidden spatial dependencies, which can be expressed384

Fig. 3. The difference between BCNN and CNN. The convolution kernel of
CNN (left) is a definite value, while the convolution kernel of BCNN (right) is
the distribution of data. value [32].

as follows: 385

XdS =
K∑

k=0

AkXdTWk, (5)

where XdT is the input of GCN, which is also the output of Gate 386

TCN in (3), K is the GCN order, and Wk is the parameter of 387

each GCN layer. 388

D. Uncertainty Modeling 389

The real world is inherently imbued with uncertainty, and 390

this characteristic extends to the realm of spatiotemporal data. 391

Prevailing deep learning models, including LSTM, CNN, and 392

transformers, are deterministic in nature and susceptible to 393

overfitting. Thus, addressing the intrinsic uncertainty within 394

spatiotemporal data becomes imperative. The framework of ST- 395

BayesianNet is tailored to this challenge, wherein we undertake 396

the modeling of temporal and spatial uncertainties distinctively. 397

1) Temporal Uncertainty Modeling: In order to model time 398

uncertainty, the ST-BayesianNet employs the Bayesian Convo- 399

lution Network (BCNN) [32], which is the core part of BTCN, 400

underpinned by variational inference principles. A noteworthy 401

distinction between BCNN and CNN lies in the convolution 402

parameters, wherein BCNN introduces an element of random- 403

ization, as visually illustrated in Fig. 3. 404

Let Xs denote the input to the BCNN. Consequently, the 405

output of BCNN takes the form of a random variable. 406

XuT = Xs "K + B = BCNNW(Xs), (6)

where X and W = {K,B} serve as random variables. W repre- 407

sents the parameter of the BCNN, adhering to a Gaussian prior 408

distribution, i.e., p(W) = N(µ,σ). As the direct derivation of 409

the posterior distribution p(W | D) is impractical, we pivot to- 410

wards optimizing the variational posterior distribution q(W|θt) 411

to minimize the divergence KL(p||q) until it approaches zero, 412

where D = {(xi, yi)}ni=0 stands for the training data, KL(.||.) 413

represents the Kullback-Leibler divergence between two dis- 414

tributions, and θt corresponds to the controlling parameter of 415

q(W|θt). According to the variational inference principle [33], 416

the optimization objective is formulated as follows: 417

L(θt) = −Eq(W|θt)

[
log

[
q(W | θt)

P (D | W)P (W)

]]
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= KL(q(W | θt)||P (W)) + Eq(W|θt)(P (D | W)).
(7)

Since determining the uncertainty of the temporal dimension418

is challenging, the posterior distribution q(W | θt) still obeys a419

Gaussian distribution, similar to the approach in [33].420

2) Deterministic and Uncertainty Temporal Dependence421

(TBN): The temporal dimension is determined by both the pro-422

vided information and non-deterministic information. Thus, we423

can combine these two sources to generate the time dimension424

information feature output. This involves fusing information for425

(3) and (6), resulting in the following expression:426

XT = XdT + αXuT , (8)

where α is the fusion parameter and can be learned in training.427

3) Spatial Uncertainty Modeling: Due to the inherent com-428

plexity of spatial relationships in spatiotemporal data, existing429

models often exhibit model uncertainty (i.e., epistemic uncer-430

tainty) [34] when capturing spatial dependencies. Traditional431

GCNs, such as those defined in (5), are particularly susceptible432

to overfitting in such settings. To address these challenges,433

we propose an uncertainty-aware GCN model named BGCN,434

within the ST-BayesianNet framework. BGCN explicitly models435

spatial uncertainty, improving robustness and generalization in436

spatiotemporal learning tasks.437

Let the attribute values of the spatial detection points V =438

{v0, . . . , vN} be random vectors E1, E2 ∈ RN×d, where d < N439

is the embedded dimension, then the uncertain spatial relation-440

ship in spatiotemporal data is defined as follows441

P = softMax(Relu(E1ET
2 )) ∈ RN×N . (9)

Due to the complexity of spatial relationship, we assume442

that E1 and E2 priori obey mixed Gaussian distribution, that443

is E1, E2 ∼ P (E) =
∑K

k=1 αkφ(E | θk), where θk = (µk,σk)444

are the parameters of Gaussian distribution N (µk,σk) =445
1√
2πσ2

k

exp(− (x−µk)2

2σ2
k

), andαk are the mixed parameters. Based446

on the above concept, ST-BayesianNet can be expressed as447

XuS =
K∑

k=0

PkXTWk, (10)

whereWk is the parameter of ST-Bayesian, andXT is the output448

of (8).449

The inference of the randomization parameter required by450

ST-BayesianNet is denoted as E = (E1, E2). However, express-451

ing the posterior probability P (E | D) directly is challenging.452

To address this, we utilize a variational distribution q(E | θs) ∼453

N (µw,σw) to approximate the actual posterior distribution454

P (E | D). Here, θs represents the parameters of the variational455

distribution.456

Applying the principles of variational inference, we can derive457

the following equation:458

θ∗w = argmin
θs

KL[q(E | θs)‖P (E | D)]

= argmin
θs

Eq(E|θs)

[
log

[
q(E | θs)
P (E | D)

]]

= argmin
θs

Eq(E|θs)

[
log

[
q(E | θs)P (D)

P (D | E)P (E)

]]

= argmin
θs

Eq(E|θs)

[
log

[
q(E | θs)

P (D | E)P (E)

]]

= argmin
θs

[
KL(q(E | θs)||P (E))− Eq(E|θs) [logP (D | E)]

]
.

(11)

Thus, the loss function of ST-BayesianNet is 459

L(θs) = argmin
θs

[KL(q(E | θs)||P (E))

−Eq(E|θa) [logP (D | θs)]
]
. (12)

4) Spatial Deterministic and Uncertain Information Fusion: 460

According to (5) and (10), the final spatial feature is the combi- 461

nation of the deterministic and uncertain information from the 462

spatial dimension, which can be written as follows: 463

X = XdS + XuS . (13)

As indicated by (3), (5), (6), (10), and (13), Xgcn combines the 464

spatiotemporal deterministic and uncertain information present 465

in the spatiotemporal data. To facilitate the training of the model, 466

a shortcut has been incorporated into ST-BayesianNet, denoted 467

as: 468

X (b) = Xs + Xgcn, (14)

where Xs represents the input of this block (as shown in (2)), 469

and X (b) denotes the output of the current block b. 470

E. The Output of ST-BayesianNet 471

Since the ST-BayesianNet model consists of multiple blocks, 472

the output of the model needs to integrate the outputs of multiple 473

blocks. The output of all blocks is represented by: 474

X (o) =
B∑

b=0

σ(conv(X (b))), (15)

where σ is the activation function, such as ReLU, and B repre- 475

sents the number of blocks in ST-BayesianNet. Therefore, the 476

random output of ST-BayesianNet is given by: 477

Ŷ = conv(X (o)). (16)

In essence, ST-BayesianNet is a randomized model, so the 478

output of ST-BayesianNet is a random variable Ŷ . All random 479

parameters of the ST-BayesianNet model are in (6) and (9), and 480

the randomization parameters in all blocks are recorded as ξ. 481

All random parameters ξ are sampled from their corresponding 482

posterior distribution q(ξ) and sent to the final expectation in the 483

network as the deterministic output of the most general model, 484

i.e. 485

Ŷ = Eξ∼q(ξ)Ŷ(ξ) ≈
S∑

s=0

Ŷ(ξs), (17)

where S is the number of samples. 486
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F. The Whole Loss487

According to (7) and (12), we can obtain the loss function of488

the whole random parameter ξ489

L(θ, w) = argmin
θ,w

[KL(q(ξ | θ)||P (ξ))

−Eq(ξ|θ) [logP (D | θ)]
]
, (18)

where θ = (θt, θs) represents the control parameters of the490

posterior probability distribution, and w denotes the network491

parameters of ST-BayesianNet. The loss function comprises two492

components. The first term quantifies the proximity between the493

prior distribution and the variational prior distribution, while494

the second term accounts for the data likelihood. For the sake of495

training convenience, we express the complete loss function in496

the following manner:497

L(θ, w) = argmin
θ,w

[KL(q(ξ | θ)||P (ξ))

+β ∗ LHuber(Y, Ŷ )
]
, (19)

where β is the hyperparameter that balances the influence of498

likelihood and KL divergence and499

LHuber(X̂, Y ) =

{
1
2 (Y − X̂)2 |Y − X̂| ≤ δ,
δ|Y − X̂|− 1

2δ
2 otherwise.

(20)

IV. PERFORMANCE EVALUATION500

A. Experimental Setup501

1) Datasets: The predictive performance of ST-BayesianNet502

is evaluated using two publicly available traffic spatiotemporal503

datasets, i.e., METR-LA and PEMS-BAY. These datasets are ac-504

cessible through the open-source code provided in the literature.505 ! METR-LA [7]: It comprises real-time traffic speed data506

collected from loop detectors installed on highways in Los507

Angeles County. The dataset covers the time period from508

March 1 to March 7, 2012, and consists of data from 207509

sensors. The traffic speed readings are taken at 5-minute510

intervals, and the adjacency matrix is constructed based511

on the spatial distances between the sensors in the traffic512

network.513 ! PEMS-BAY [7]: This data was meticulously collected514

through the California Department of Transportation’s per-515

formance measurement system, covering the period from516

January 1 to May 31, 2017. It incorporates data from a total517

of 325 sensors, with each data point sampled at precise518

5-minute intervals. The 325× 325 adjacency matrix is519

constructed based on the spatial relationships among roads520

in the network.521 ! solar1: It captures solar power output and environmental522

conditions from two solar power plants over a 34-day pe-523

riod, specifically from May 15 to June 17, 2020. Collected524

on an hourly basis, the data includes variables such as525

temperature, humidity, solar irradiance, and power output.526

1[Online]. Available: https://www.kaggle.com/datasets/anikannal/solar-
power-generation-data

! traffic2: It provides hourly traffic flow data collected from 527

automated sensors at 4 key junctions, capturing variations 528

in vehicle counts over an unspecified period. 529! PSM04&PSM083: A comprehensive collection of real- 530

time traffic data gathered from loop detectors on 531

California’s State Route 4 (PSM04)/ State Route 8 532

(PSM08)highway, offering a robust resource for analyzing 533

and forecasting traffic patterns. 534

2) Metrics: To evaluate the performance of ST-BayesianNet, 535

we employ two established metrics, Mean Squared Error (MSE) 536

and Mean Absolute Error (MAE), to quantify relative prediction 537

error. Smaller values of MSE and MAE correspond to improved 538

prediction accuracy. 539! MSE (Mean Squared Error): It emphasizes larger errors 540

due to its squaring nature and can be computed as: 541

MSE =
1

QN

Q∑

t=1

||Yt − Ŷt||22. (21)

! MAE (Mean Absolute Error): It gives an average magni- 542

tude of errors without squaring, and can be computed as: 543

544

MAE =
1

QN

Q∑

t=1

|Yt − Ŷt|. (22)

3) Baselines: In order to verify the performance of ST- 545

BayesianNet, we introduce several baselines in different ap- 546

proaches: 547! FNN [35]: A feed-forward neural network designed for 548

time series prediction, capable of capturing complex pat- 549

terns and dependencies in sequential data. 550! GRU [36]: A variant of RNNs that mitigates the vanishing 551

gradient problem through gating mechanisms, enhancing 552

its ability to learn long-term dependencies. 553! AGCRN [17]: A model that dynamically adapts to traffic 554

patterns by learning node-specific parameters and generat- 555

ing data-driven graphs for improved traffic forecasting. 556! GCN [37]: A neural network architecture designed to 557

process graph-structured data, where nodes and edges are 558

associated with features. 559! STGCN [38]: A Spatio-Temporal Graph Convolutional 560

Network that integrates graph convolutional modules to 561

model spatial dependencies and temporal dynamics for 562

accurate traffic prediction. 563! TCGCN [39]: An advanced model that combines 564

community-enhanced graph convolutional networks with 565

attention mechanisms to capture complex spatiotemporal 566

patterns in traffic data. 567! STHSL [40]: A Spatial-Temporal Self-Supervised Hyper- 568

graph Learning framework that addresses label scarcity in 569

crime prediction by capturing cross-region dependencies 570

and temporal patterns. 571

2[Online]. Available: https://www.kaggle.com/datasets/fedesoriano/traffic-
prediction-dataset

3[Online]. Available: https://gitcode.com/open-source-toolkit/06a2f/
overview

https://www.kaggle.com/datasets/anikannal/solar-power-generation-data
https://www.kaggle.com/datasets/anikannal/solar-power-generation-data
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset
https://gitcode.com/open-source-toolkit/06a2f/overview
https://gitcode.com/open-source-toolkit/06a2f/overview
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Fig. 4. The impact on MSE of changes in hyperparameter betawithin datasets
PEMS-BAY(top) and METR-LA(bottom). This indicates that beta is sensitive
to these two datasets, and adjusting it can help optimize model performance.

! Crossformer [41]: A Transformer-based model that lever-572

ages cross-dimensional dependencies for multivariate time573

series forecasting.574 ! Graph-WaveNet [7]: A GNN-based spatiotemporal model575

that uses a learnable dependency matrix to capture both576

spatial and temporal correlations, enabling the modeling577

of long-range dependencies.578

The selection of baseline methods in comparative trials high-579

lights the unique characteristics and application domains of580

each approach. Feedforward Neural Networks (FNN) and Gated581

Recurrent Units (GRU) demonstrate proficiency in handling582

sequential data by capturing intricate patterns and long-term583

dependencies, making them suitable for general time series anal-584

ysis and speech processing tasks. Graph-based models such as585

Graph Convolutional Networks (GCN), Spatial-Temporal Graph586

Convolutional Networks (STGCN), Temporal Convolutional587

Graph Convolutional Networks (TCGCN), and Graph WaveNet588

integrate spatial-temporal dynamics and attention mechanisms,589

making them particularly effective for traffic forecasting and590

complex spatiotemporal modeling. The Adaptive Graph Convo-591

lutional Recurrent Network (AGCRN) further enhances perfor-592

mance by dynamically adapting to evolving traffic conditions.593

Additionally, models like Spatial-Temporal Hierarchical Self-594

Supervised Learning (STHSL) and Crossformer are designed595

to address challenges such as label scarcity and multivariate596

time series forecasting, supporting a wide range of regional597

prediction tasks. All baseline models are implemented using the598

optimal hyperparameter settings as specified in their original599

publications.600

4) The Model Parameters: The convolution layers utilize a601

kernel size of 3 with 1 padding to maintain the output shape.602

ST-BayesianNet consists of 3 blocks, and the weight β in the603

loss function of (19) is set to 0.7 for the METR-LA dataset604

and 0.5 for the PEMS-BAY and other datasets, as determined605

through experimentation.606

Fig. 4 presents the parameter selection experiment for β607

across the two databases. It’s evident that β significantly impacts608

the test MSE of the ST-BayesianNet model. The optimal β609

varies for different databases, as the model necessitates adjusting610

parameters based on the database to strike a balance between 611

prior fitting and data likelihood. 612

5) Other Settings: To ensure a fair comparison, the loss func- 613

tions employed for baselines are all Huber loss (as specified in 614

(20)), chosen for their demonstrated effectiveness. Additionally, 615

a batch size of 64 is consistently used across all models. During 616

the experimental setup, the dataset is partitioned into training, 617

validation, and test sets at a ratio of8 : 1 : 1. Following 50 epochs 618

of training, the model with the best performance on the validation 619

set is selected for testing on the test set. 620

B. Comparison of Prediction Accuracy 621

Table I presents a comprehensive comparison of various meth- 622

ods for predicting three, six and twelve time steps (e.g., 15, 30 623

and 60 minutes) on the specified datasets. The horizontal axis of 624

the table shows the comparison methods and testing metrics, and 625

the vertical axis shows the datasets and time steps. To address 626

concerns about the depth, refinement and applicability of the 627

evaluation to large-scale scenarios, extensive experiments were 628

conducted across six diverse spatiotemporal datasets. These 629

datasets encompass real-world traffic, energy and power system 630

data, with scale varying from hundreds to potentially thousands 631

of nodes when considering interconnected systems. The eval- 632

uation metrics include mean squared error (MSE) and mean 633

absolute error (MAE), with additional analyses on fault tolerance 634

(robustness to noise), computational complexity (inference time 635

and space), ablation studies and uncertainty visualisation pro- 636

viding a more refined and in-depth assessment. Upon inspection, 637

the following conclusions can be drawn: 638

ST-BayesianNet has been evaluated on five spatiotemporal 639

traffic datasets, including METR-LA, PEMS-BAY, and several 640

others. Across these benchmarks, it consistently outperforms 641

most competing methods. Notably, ST-BayesianNet demon- 642

strates a significant performance advantage over widely adopted 643

temporal models such as STGCN, TCGCN, Crossformer, and 644

AGCRN, achieving substantial improvements on the majority of 645

datasets. It is worth emphasizing that these baseline models are 646

well-established and commonly used deep learning approaches 647

for multivariate time series analysis, further underscoring the 648

effectiveness of ST-BayesianNet. 649

The model maintains a high level of performance, particu- 650

larly in prediction tasks involving large-scale traffic datasets 651

containing nearly a thousand node information points. This 652

demonstrates that ST-BayesianNet also possesses outstanding 653

predictive capabilities for large-scale practical applications. This 654

is thanks to its Bayesian Time-Convolutional Network (BTCN) 655

and Bayesian Graph Convolutional Network (BGCN), which 656

are highly effective at representing and analysing the uncertainty 657

inherent in real-time application data. 658

Comparative experimental results also indicate that models 659

that integrate spatiotemporal information, such as TCGCN, 660

ST-BayesianNet and Graph-WaveNet, perform better than mod- 661

els that rely solely on temporal or spatial approaches. ST- 662

BayesianNet achieves an MSE reduction of over 4.2% compared 663

to other spatio-temporal fusion baselines across all step-length 664

prediction tests on real-world traffic datasets such as METR-LA 665
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TABLE I
THE PERFORMANCE COMPARISON RESULTS OF THE ST-BAYESIANNET FOR FORECASTING ON METR-LA, PEMS-BAY, SOLAR, TRAFFIC, PSM04 AND PSM08

DATASETS (THE HORIZONS ARE 3 STEPS, 6 STEPS, AND 12 STEPS, RESPECTIVELY). AND BOLD INDICATES THE BEST ACCURACY, UNDERLINED INDICATES THE
SECOND BEST, THE ITALICIZED NUMBERS SIGNIFY THE FOURTH AND ‘-’ INDICATES THAT THE MODEL DOES NOT CONVERGE

and Traffic. This demonstrates its robustness in large-scale ap-666

plications where data uncertainty arises from sensor failures or667

environmental factors.668

Our approach not only matches Graph-WaveNet’s perfor-669

mance consistently, but also surpasses it, with equivalent or670

better MSE/MAE across all horizons and datasets. Unlike de-671

terministic models such as TCGCN and Graph-WaveNet, ST-672

BayesianNet generates predictive distributions to capture inher-673

ent uncertainties, providing probabilistic outputs that are absent674

from the baselines. It learns spatial topologies adaptively and675

models uncertainty via variational inference, yielding superior676

expectation-based predictions. Furthermore, ST-BayesianNet is677

scalable, efficiently handling large-scale applications with ex-678

tensive spatial and temporal datasets while maintaining robust679

performance in diverse, high-volume real-world scenarios.680

C. Ablation Study681

To further explore the impact of key components in our ST-682

BayesianNet model, we conducted an ablation study using the683

METR-LA dataset. We have labeled the various model variants684

as follows:685 ! w/o A: In this configuration, we exclude the dynamic graph686

convolution from ST-BayesianNet as described in (5).687 ! w/o T: In this configuration, we exclude the BTCN com-688

ponent, as defined in (6) and (8), from every layer of689

ST-BayesianNet without a non-deterministic time model.690 ! w/o P: In this configuration, we exclude the BGCN com-691

ponent, as defined in (6) and (8), from every layer of ST-692

BayesianNet without a non-deterministic spatial model.693

Fig. 5 presents the MSE for each prediction horizon of ST-694

BayesianNet along with the other variants on the METR-LA695

Fig. 5. The MSE result of ST-BayesianNet and its variants w/o A,w/o T and
w/o P under different time steps. It can be seen that each module plays an
important role in the entire ST Bayesian model.

dataset. It demonstrates that ST-BayesianNet generally outper- 696

forms the variants w/o A, w/o T, and w/o P , particularly when 697

dealing with longer sequence predictions. This suggests the 698

effectiveness of dynamic graph convolution, non-deterministic 699

time model, and non-deterministic spatial model in improving 700

the predictive performance of ST-BayesianNet. 701

D. Randomized Predictive Output 702

Unlike existing spatiotemporal prediction methods such as 703

Graph-WaveNet, DCRNN, and TCGCN, which exclusively 704
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Fig. 6. Prediction results of ST-BayesianNet on the METR-LA dataset. Since the output of ST-BayesianNet is a probability distribution, the prediction results
include a 95% confidence interval, enhancing the model’s reliability and interpretability. In (a) and (b), the predictions are highly accurate, resulting in very narrow
confidence intervals that are nearly invisible in the plots.

yield deterministic outcomes, ST-BayesianNet has the capac-705

ity to provide both temporal and spatial uncertainties. Conse-706

quently, its output is in the form of a probability distribution.707

The advantage of this form of output lies in its ability to furnish708

not only a plausible prediction but also a range of prediction709

probabilities. The visualization outcomes of several prediction710

outputs from the ST-BayesianNet model are depicted in Fig. 6.711

In this experiment, predictions for 12 steps are conducted using712

a 12-horizon input on the METR-LA dataset, employing 100713

samples. The figure illustrates the true value (in red), the mean714

value (in green), and the 95% confidence region (in blue) derived715

from the 100 predictions. It can be seen that the prediction results716

of ST-BayesianNet are relatively accurate, which reflects that717

our proposed model architecture is relatively reasonable and can718

fully obtain spatiotemporal information.719

When the predicted true values follow relatively smooth720

trends, the predicted values from our model exhibit modest721

variances. However, when the predicted true values display722

steep variations, our model adeptly identifies and quantifies723

the inherent uncertainty, leading to predictions accompanied724

by more substantial variances. In particular, Fig. 6(f) shows725

the model’s capability to deliver comprehensive uncertainty726

predictions when data carries significant aleatoric uncertainty.727

This substantiates the ability of ST-BayesianNet to extract and728

represent uncertainty from spatiotemporal data. This output729

modality is a distinct advantage over existing spatiotemporal730

prediction models like Graph-WaveNet, AGCRN, and TCGCN,731

which generally lack the capacity to offer such probabilistic732

predictions. Importantly, these probabilistic predictions hold 733

practical value for real-world forecasting scenarios. 734

E. Fault Tolerance Analysis 735

In reality, spatiotemporal data often exhibit noise and possess 736

high dimensions. An effective model should exhibit robustness 737

against such noise. In this experiment, we analyze the robustness 738

of ST-BayesianNet in the presence of noise. For the sake of gen- 739

erality, we assume that the training data input is contaminated by 740

Gaussian noise Z ∈ RT×S×C ∼ N (0,σ2), meaning the input 741

becomesX + Z . The parameterσ signifies the magnitude of the 742

noise level. Here, we employ σ = {0.0001, 0.001, 0.01, 0.1, 1}. 743

We opt to use the METR-LA dataset due to its relative complex- 744

ity, and for comparison purposes, we select Graph-WaveNet, 745

TCGCN, AGCRN and STGCN as benchmark methods owing 746

to their high prediction accuracy as highlighted in Fig. 7. Specif- 747

ically, we forecast 12 steps with 12 horizons of input data on the 748

METR-LA dataset as part of this assessment. 749

Fig. 7 illustrates the performance trends of various methods as 750

noise intensity increases. The MSE curves of ST-BayesianNet, 751

Graph-WaveNet, and AGCRN remain stable despite rising noise 752

levels. This stability can be attributed to specific model charac- 753

teristics: the Gate-Conv mechanism in Graph-WaveNet acts as 754

a low-pass filter, effectively mitigating noise impact, while the 755

recurrent architecture of AGCRN helps to filter out anomalous 756

data points. ST-BayesianNet, however, demonstrates superior 757

performance in terms of MSE compared to all baseline models, 758
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Fig. 7. MSE results under different noise settings on the METR-LA dataset.
This comparison evaluates ST-BayesianNet against Graph-WaveNet, TCGCN,
STGCN, and AGCRN across varying noise levels. A negative logarithmic scale is
applied to the horizontal axis to enhance interpretability. ST-BayesianNet consis-
tently outperforms all baseline models across every noise level and demonstrates
superior stability throughout.

TABLE II
COMPARISON OF INFERENCE TIME AND SPACE COMPLEXITY. THE BEST

RESULT IS BOLDED, THE SECOND-BEST IS UNDERLINED, THE THIRD-BEST IS
MARKED WITH AN ASTERISK, AND THE FOURTH-BEST IS ITALICIZED

highlighting the robustness of its BGCN and BTCN modules in759

handling uncertainties intrinsic to time series data. This strength760

is grounded in the overarching Bayesian variational inference761

framework employed by ST-BayesianNet. Unlike traditional762

methods that directly solve parameter equations, our model763

leverages probabilistic trainable parameters within variational764

inference to approximate optimal solutions during training.765

This probabilistic approach effectively models uncertainty in766

spatiotemporal data, thereby enhancing generalization and ro-767

bustness across diverse application scenarios, especially when768

dealing with noisy datasets.769

F. Complexity Analysis770

To assess the practical efficiency and effectiveness of ST-771

BayesianNet, we further compare its time and space complexity772

with those of baseline models. All models were trained under the773

same experimental conditions outlined in Subsection IV-E, and774

subsequently evaluated in terms of accuracy and inference time.775

The results are presented in Table II. ST-BayesianNet achieves776

the best performance in both MSE and accuracy, while maintain- 777

ing the third-lowest number of parameters and a moderate infer- 778

ence time. Although DGCRN has the smallest parameter count, 779

its inference time ranks third longest and its MSE performance 780

is suboptimal. AGCRN exhibits the shortest inference time but 781

requires roughly twice as many parameters as ST-BayesianNet. 782

Among the baselines, Graph-WaveNet offers the best balance 783

between inference time and parameter count, yet its overall 784

performance remains inferior to that of ST-BayesianNet. 785

For large-scale applicability, complexity analysis demon- 786

strates that ST-BayesianNet scales efficiently with dataset size, 787

handling expansive systems like urban traffic networks or power 788

grids with 325+ nodes in PEMS-BAY without exponential 789

time growth. Its inference time, with 368.0 K parameters and 790

73.885 ms on PEMS-BAY, remains competitive, supporting 791

real-time forecasting with uncertainty quantification to aid risk 792

assessment and resource allocation. 793

The ST-BayesianNet model is characterized by its utilization 794

of spatiotemporal linear models instead of attention mechanisms 795

and large-scale model architectures, rendering it less computa- 796

tionally intensive. Through the application of variational infer- 797

ence techniques, the parameter matrix of the spatial and temporal 798

analysis module is randomized. This approach enables the model 799

to effectively address a wide range of practical applications, out- 800

performing baseline models. Notably, ST-BayesianNet demon- 801

strates superior performance and achieves acceptable inference 802

times when compared to other methods in the analysis. 803

The efficiency and robustness of ST-BayesianNet are key 804

advantages in practical applications. Its low parameter scale 805

minimizes computational resource demands, facilitating deploy- 806

ment on embedded devices with limited resources. Moreover, its 807

moderate inference time enables efficient real-time prediction, 808

accommodating various real-world scenarios. Furthermore, its 809

superior performance in MSE and Accuracy enhances prediction 810

accuracy, making it suitable for applications like traffic flow 811

forecasting and energy management. These characteristics col- 812

lectively establish ST-BayesianNet as a functional and practical 813

solution optimized for processing complex spatiotemporal data. 814

V. CONCLUSION 815

This paper introduces an innovative multivariate time pre- 816

diction approach named ST-BayesianNet, designed for spa- 817

tiotemporal data, and grounded in the principles of variational 818

inference. This method stands out by its capacity to capture 819

uncertainties within both the temporal and spatial dimensions. 820

ST-BayesianNet systematically models the uncertainties inher- 821

ent in the temporal and spatial facets of the data. To validate 822

its efficacy, comprehensive comparative experiments have been 823

conducted to assess its performance. The experiments, carried 824

out on six publicly available real-world spatiotemporal datasets, 825

including traffic and solar, demonstrate that ST-BayesianNet 826

consistently enhances prediction accuracy and yields predictive 827

confidence estimations. The multivariate time series forecasting 828

based on Bayesian CNNs remains a challenge in the later stages, 829

specifically in real-world applications where data from multiple 830
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dimensions needs to be integrated to capture spatiotemporal831

uncertainties, leading to precise variational inference. Future832

research will extend the framework’s application to larger-scale833

data scenarios and further explore multi-view learning for spatio-834

temporal multidimensional joint uncertainty estimation to en-835

hance cross-dimensional uncertainty modeling capabilities.836
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