

1 ST-BayesianNet: Spatiotemporal 2 Bayesian Convolution Neural Networks 3 for Multivariate Time Series Forecasting

4 Lei Wang [✉], Student Member, IEEE, Huaming Wu [✉], Senior Member, IEEE, Keqiu Li [✉], Fellow, IEEE, and Wei Yu [✉]

5 **Abstract**—Multivariate time series forecasting has extensive ap-
6 plications across various domains, including economics, finance,
7 bioinformatics, and intelligent transportation. The inherent spa-
8 tiotemporal data is characterized by pronounced nonlinearity
9 and stochastic uncertainty. However, current deep learning-based
10 methods all employ deterministic parameters to characterize data
11 features. This approach fails to effectively capture the temporal
12 and spatial uncertainty inherent in data, resulting in limited model
13 capability to extract data features and reduced analytical predic-
14 tion accuracy. To solve this problem, this paper proposes Spa-
15 tiotemporal Bayesian Convolution Neural Networks, referred to as
16 ST-BayesianNet, for enhancing multivariate time series forecasting.
17 Specifically, we decompose the uncertainty of spatiotemporal data
18 into space-time dimensions, thus facilitating the prediction of multi-
19 variate spatiotemporal sequences. First, we leverage a self-adaptive
20 uncertainty adjacency matrix to model intricate uncertain spatial
21 relationships, while the acquisition of knowledge for this uncertain
22 matrix hinges upon judicious a priori assumptions. Then, a non-
23 deterministic Temporal Bayesian Convolutional Neural Network
24 (TBCN) is constructed to adeptly capture temporal uncertainty.
25 The optimization of model parameters, comprising both deter-
26 ministic and probabilistic aspects, is achieved through variational
27 inference. Finally, the experimental results obtained from seven
28 real-world datasets confirm that ST-BayesianNet is more accurate
29 than baseline methods at making predictions.

30 **Index Terms**—Multivariate time series forecasting, Bayesian
31 neural network, variational inference, uncertainty modeling.

32 I. INTRODUCTION

33 **F**ORECASTING multivariate spatiotemporal data is a criti-
34 cal task for learning systems operating in dynamic environ-
35 ments, as noted in [1], attracting significant attention from the

Q1 Received 28 November 2024; revised 21 June 2025 and 4 October 2025; accepted 16 November 2025. This work was supported in part by the Emerging Frontiers Cultivation Program of Tianjin University Interdisciplinary Center, the Tianjin Intelligent Manufacturing Special Fund Project under Grant 20211093, and in part by Tianjin Science and Technology Planning Project under Grant 22ZYQYSN00110 and Grant 22ZYYJJC00020. (Corresponding author: Huaming Wu.)

Lei Wang and Keqiu Li are with the College of Intelligence and Computing, Tianjin University, Tianjin 300350, China (e-mail: wanglei2019@tju.edu.cn; keqiu@tju.edu.cn).

Huaming Wu is with the Center for Applied Mathematics, Tianjin University, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Wei Yu is with the School of International Business, Zhejiang Yuexiu University, Shaoxing 312069, China (e-mail: weiyu@zyu.edu.cn).

Color versions of one or more figures in this article are available at <https://doi.org/10.1109/TIV.2025.3634557>.

Digital Object Identifier 10.1109/TIV.2025.3634557

36 deep learning community. Deep learning has become popular
37 for extracting spatiotemporal features hidden in the data due
38 to its robust fitting capabilities, as it can capture the overall
39 trends across a set of dynamically changing variables. This task
40 is vital across various domains, including autonomous vehicle
41 operations [2], energy and smart grid optimization [3], supply
42 chain management [4] and industrial processes [5], [6], fueling
43 extensive research interest.

44 Spatiotemporal data inherently combines spatial and temporal
45 dimensions. The spatial dimension is typically represented on
46 graph domains, shaped by the complex topological structures
47 of spatial networks, such as road layouts influencing traffic flow
48 data [7]. The temporal dimension captures how data evolves over
49 time, reflecting dynamic patterns and trends. Most multivariate
50 spatiotemporal forecasting methods model interdependencies
51 among variables, where each variable depends on its own his-
52 torical values and those of others [8]. Effectively capturing both
53 spatial and temporal dependencies simultaneously is a critical
54 focus in this field [6].

55 Recent advancements in spatiotemporal graph modeling have
56 generally followed two main approaches: modeling the temporal
57 dimension and modeling the spatial dimension. For the temporal
58 aspect, techniques aim to extract dynamic information embed-
59 ded in the time dimension. For instance, convLSTM [9] en-
60 hances the traditional fully connected Long Short-Term Memory
61 (LSTM) architecture by integrating convolutional operations,
62 proving effective for feature extraction from spatiotemporal
63 data. ASTGCN [10] employs pure convolutional layers to de-
64 rive temporal features, while leveraging Graph Convolutional
65 Networks (GCN) for spatial information. AST-MAGCN [11]
66 combines Generative Adversarial Networks (GAN) with GCN,
67 enabling real-time extraction of spatiotemporal states, with fore-
68 casting outputs refined by the GAN framework.

69 Conversely, the spatial dimension is addressed by syn-
70 chronously integrating spatial information [12] for multivariate
71 spatiotemporal prediction. Models like TC-GCN [13], a GCN-
72 based approach, utilize the spatial relationship graph inherent
73 in the data. HistGNN [14] captures multi-scale spatiotemporal
74 dynamics, improving accuracy in complex weather forecast-
75 ing across regions and timescales. LSTTN [15] introduces a
76 transformer-based neural network for traffic flow prediction,
77 while Beyond Spatial [16] proposes a graph-based model us-
78 ing multivariate transfer entropy to enhance interpretability be-
79 yond spatial neighbors. However, static spatial graph structures

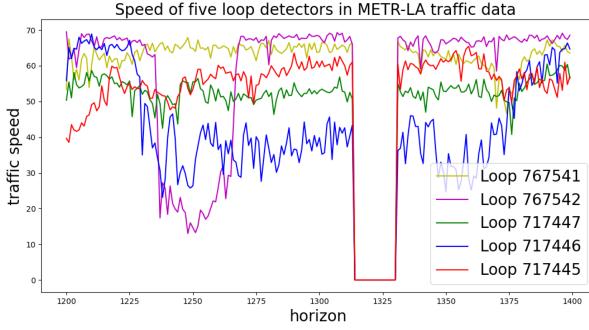


Fig. 1. The uncertainty in spatiotemporal data using speed rates from five loop detectors in the METR-LA traffic dataset. Around horizon 1325, random factors caused inaccurate measurements, with speed rates for all five detectors dropping to zero, highlighting the aleatory uncertainty inherent in real-world loop detector data.

80 may not always reflect true dependencies, prompting a shift
 81 toward adaptive graph modeling as a research focus. Graph-
 82 WaveNet [7] derives spatial relationships through node embed-
 83 dings, while Bai et al. introduce two adaptive GCN modules:
 84 a Node Adaptive Parameter Learning (NAPL) module [17]
 85 to capture node-specific patterns, and a data-adaptive graph
 86 generation module to infer dependencies across diverse traffic
 87 series. AutoSTG [18] uses meta-learning to generate adjacency
 88 matrices for both spatial GCN and temporal CNN, modeling
 89 relationships between network parameters and meta-knowledge
 90 within the attribute graph.

91 Modeling and predicting multivariate spatiotemporal data
 92 through spatiotemporal models requires precision that depends
 93 on the intricate relationships and evolving characteristics of
 94 such data. The aforementioned deep learning models employ
 95 deterministic parameter operations when modeling spatiotem-
 96 poral data, meaning parameters are fixed at specific values
 97 after model training. However, the complex relationships within
 98 spatiotemporal data exhibit randomness and uncertainty [19],
 99 stemming from measurement accuracy issues and the challenge
 100 of precisely fitting data features. Aleatoric uncertainty of data is
 101 usually caused by imprecise sensing instruments or data logging.
 102 As depicted in Fig. 1, all loop points recorded zero velocity
 103 around horizon 1325, which is a phenomenon commonly ob-
 104 served in real spatiotemporal data.

105 Concurrently, deterministic models such as convLSTM [9],
 106 Graph-WaveNet [7], and AutoSTG [18] often produce smooth
 107 predictions. However, real-world data frequently exhibits dis-
 108 continuous, non-smooth states, indicating that deterministic
 109 models possess representational uncertainty when fitting data
 110 characteristics. The contingent uncertainty of spatio-temporal
 111 data and the representational uncertainty of model fitting un-
 112 derscore the importance of uncertainty modeling for multi-
 113 variate spatio-temporal sequence data. Such uncertainty spatio-
 114 temporal data models must not only capture complex spatio-
 115 temporal relationships but also effectively represent the under-
 116 lying uncertainty within the data, ultimately providing predictive
 117 confidence measures.

118 To tackle the challenges outlined earlier, this study introduces
 119 a spatiotemporal graph learning framework based on Bayesian

probability, named the Spatiotemporal Bayesian Inference Net-
 120 work or ST-BayesianNet. This framework uses a deep neural
 121 network to model spatiotemporal interdependencies, capturing
 122 both deterministic and uncertain elements. To address latent un-
 123 certainties in the data, we separate uncertainty into temporal and
 124 spatial dimensions, applying variational inference to each. For
 125 spatial uncertainty, we develop a Bayesian Graph Convolution
 126 Network (BGCN) that enables end-to-end supervised training
 127 to learn a self-adaptive uncertainty adjacency matrix directly
 128 from the data. For temporal uncertainty, we design a Temporal
 129 Bayesian Convolutional Neural Network (BTCN) to capture
 130 temporal uncertainty while also regularizing the parameters of
 131 the entire network.

132 ST-BayesianNet effectively captures aleatoric uncertainties
 133 within complex spatial relationships, which is optimized glob-
 134 ally using variational inference, delivering accurate time se-
 135 ries predictions while simultaneously quantifying prediction
 136 uncertainty. The main contributions of this work are as
 137 follows:

- 138 • ST-BayesianNet introduces a novel deep learning frame-
 139 work to capture both deterministic and uncertain compo-
 140 nents of the spatiotemporal dependencies. We decompose
 141 it into temporal and spatial dimensions of uncertainty
 142 and employ variational inference methods to approximate
 143 the optimal solution for training parameters for charac-
 144 terizing the inherent uncertainty in spatiotemporal data.
 145 This dual-dimensional uncertainty modeling module is
 146 then integrated with deterministic spatiotemporal model-
 147 ing modules to construct a globally optimized framework
 148 that simultaneously achieves uncertainty representation
 149 and enhances prediction accuracy.
- 150 • We propose a Bayesian Graph Convolutional Network
 151 (BGCN) that automatically models spatial uncertainty.
 152 This module employs a self-adaptive uncertainty adjacency
 153 matrix learned directly from the data through end-to-end
 154 supervised training. Additionally, we have designed a non-
 155 deterministic Bayesian Temporal Convolutional Network
 156 (BTCN) that captures uncertainty in the temporal dimen-
 157 sion and regularizes the parameters of the entire network.
 158 Integrating these components enables ST-BayesianNet to
 159 effectively model uncertainty in complex spatiotemporal
 160 relationships.
- 161 • We comprehensively evaluated ST-BayesianNet on seven
 162 real-world spatiotemporal datasets. The results show a pre-
 163 diction error reduction of 1.2% to 4% compared to bench-
 164 mark models. Additionally, visualizations of the model’s
 165 output demonstrate that ST-BayesianNet generates more
 166 plausible distribution predictions, a capability not achiev-
 167 able by prior deterministic models.

168 The structure of this paper is organized as follows. In Sec-
 169 tion II, we provide an overview of related works concerning
 170 approaches to traffic prediction. Section III delves into the
 171 details of ST-BayesianNet. The performance evaluation of ST-
 172 BayesianNet is presented in Section IV, encompassing predic-
 173 tion results and an analysis of its resilience to perturbations.
 174 Finally, Section V concludes the paper, summarizing the findings
 175 and contributions.

177 II. RELATED WORK

178 As a key area of multivariate time series analysis, research
 179 on spatio-temporal forecasting models has received significant
 180 attention due to its ability to handle complex nonlinear data pat-
 181 terns. This paper focuses on studies of deterministic and uncer-
 182 tain spatio-temporal forecasting models. This section highlights
 183 breakthrough achievements in the relevant research progress
 184 of deterministic spatio-temporal neural network models and
 185 uncertain Bayesian neural network models, which form the basis
 186 of this study.

187 A. Spatiotemporal Neural Network Models

188 Spatio-temporal neural network models hold significant the-
 189oretical importance as they aim to capture the intrinsic rela-
 190tionships between future data points and historical observations
 191within spatio-temporal datasets, thereby enabling high-precision
 192spatio-temporal forecasting. Such models typically integrate
 193spatio-temporal information through joint modeling and rep-
 194resent widely recognized and extensively studied deterministic
 195spatio-temporal forecasting frameworks.

196 Existing deep learning models employ various architectures
 197tailored to different attributes of the spatiotemporal dimension
 198to extract latent feature information from the data and facilitate
 199accurate prediction. For instance, CNN [20] or RNN [21], [22]
 200based methods have been widely utilized to capture temporal
 201patterns. More recently, GCNs have gained popularity in mod-
 202eling spatial relationships, where the adjacency matrix, often
 203based on distance information, delineates the spatial connections
 204between monitoring points [23], [24].

205 Graph neural networks have a wide range of applications in
 206the field of spatio-temporal data forecasting. For instance, Wu
 207et al. [7] proposed a novel Graph Convolutional Neural Network
 208architecture, termed Graph-WaveNet, designed specifically for
 209spatiotemporal graph modeling. The methodology integrates
 210adaptive dependency matrices derived from node embeddings,
 211thereby enhancing the model's ability to discern and leverage
 212the intrinsic spatial dependencies embedded within the input
 213data. DCRNN [25] is a model that represents traffic flow as
 214a diffusion process across a directed graph, and introduced
 215a convolutional recursive neural network architecture that is
 216based on diffusion principles. This deep learning framework
 217is established as a robust approach for traffic forecasting,
 218adeptly capturing and intertwining the spatial and temporal
 219inter-dependencies that are characteristic of traffic flow pat-
 220terns. The Spatiotemporal Graph Convolutional Network(ST-
 221GCN) [26], integrates graph convolutional modules to model
 222spatial dependencies and temporal dynamics for accurate traffic
 223prediction.

224 Additionally, GMAN [27] employed a multi-graph attention
 225mechanism within a deep network architecture, which exe-
 226cutes attentional computations across spatial as well as tem-
 227poral domains, thereby enabling a comprehensive analysis of
 228multi-dimensional data. Nevertheless, these methods suffer from
 229limitations in accuracy and applicability due to their neglect of
 230modeling the uncertainty and data drift characteristics inherent
 231in spatiotemporal data.

232 B. Bayesian Neural Network Models

233 The inherent spatio-temporal relationships within spatiotem-
 234poral data often exhibit high complexity and uncertainty. Con-
 235sequently, some researchers have turned to Bayesian neural
 236network models. These approaches address the challenge of
 237quantifying uncertainty in spatiotemporal data by incorporating
 238neural networks with probabilistic model parameters. For in-
 239stance, Gal et al. [28] proposed Bayesian Convolutional Neural
 240Networks (CNNs), which is the first Bayesian approach used to
 241CNNs that leverages Bernoulli variational inference to combat
 242over-fitting in small datasets, providing a robust framework
 243for uncertainty estimation and improved classification accuracy.
 244 Chandra et al. [29] introduced Bayesian graph CNNs that lever-
 245age tempered Markov chain Monte Carlo (MCMC) sampling
 246via parallel computation, employing Langevin gradient proposal
 247distributions to address the quantification of uncertainty in the
 248analyzed sample data. This innovative approach extends the
 249traditional application of graph CNNs by integrating Bayesian
 250inference to model the inherent uncertainty in spatial data more
 251effectively.

252 DeepAR [30] employed an RNN architecture for probabilistic
 253forecasting, utilizing simplified temporal convolutional layers to
 254reduce parameter count and LSTM-units to capture temporal
 255dynamics. The method employs an auto-regressive approach
 256that incorporates Gaussian-distributed stochastic error terms to
 257reduce prediction errors. DeepAR, an efficient forecasting tech-
 258nique, leverages these random features to capture and analyze
 259the inherent uncertainty in temporal data.

260 In summary, the intricate interplay between time and space in
 261spatiotemporal data is characterized by nonlinear and uncertain
 262relationships. However, the previously discussed Spatiotem-
 263poral methods are inherently deterministic, meaning that they yield
 264a fixed output for a given input once the model parameters
 265have been determined. Furthermore, existing Bayesian neural
 266network methods can only handle uncertainty analysis for small-
 267scale data or focus on uncertainty in either the temporal or spatial
 268dimension during data analysis and prediction tasks. Conse-
 269quently, mainstream spatio-temporal and uncertainty methods
 270have failed to fully capture the uncertainty arising from the joint
 271temporal and spatial dimensions, leaving room for improvement
 272in the data analysis and prediction performance of these models.

273 III. METHODS

274 A. Problem Definition

275 *Definition 1: Spatial Network* G . A weighted undirected
 276graph $G = (V, E, A)$ is used to describe the spatial topological
 277structure or semantic relationship in the spatiotemporal data,
 278where $V = \{v_0, v_1, \dots, v_N\}$ is treated as N monitoring ver-
 279tices, and E is expressed as a set of edges. We use $A \in R^{N \times N}$
 280to represent the adjacency matrix of G , which is the weight
 281matrix in this paper. In some cases, there is more than one
 282spatial network, i.e., we will have multiple adjacency matrices
 283 $\{A_1, A_2, \dots, A_k\}$.

284 *Definition 2: Feature Matrix* X . The information on the
 285spatial network G is regarded as the node attribute features V ,

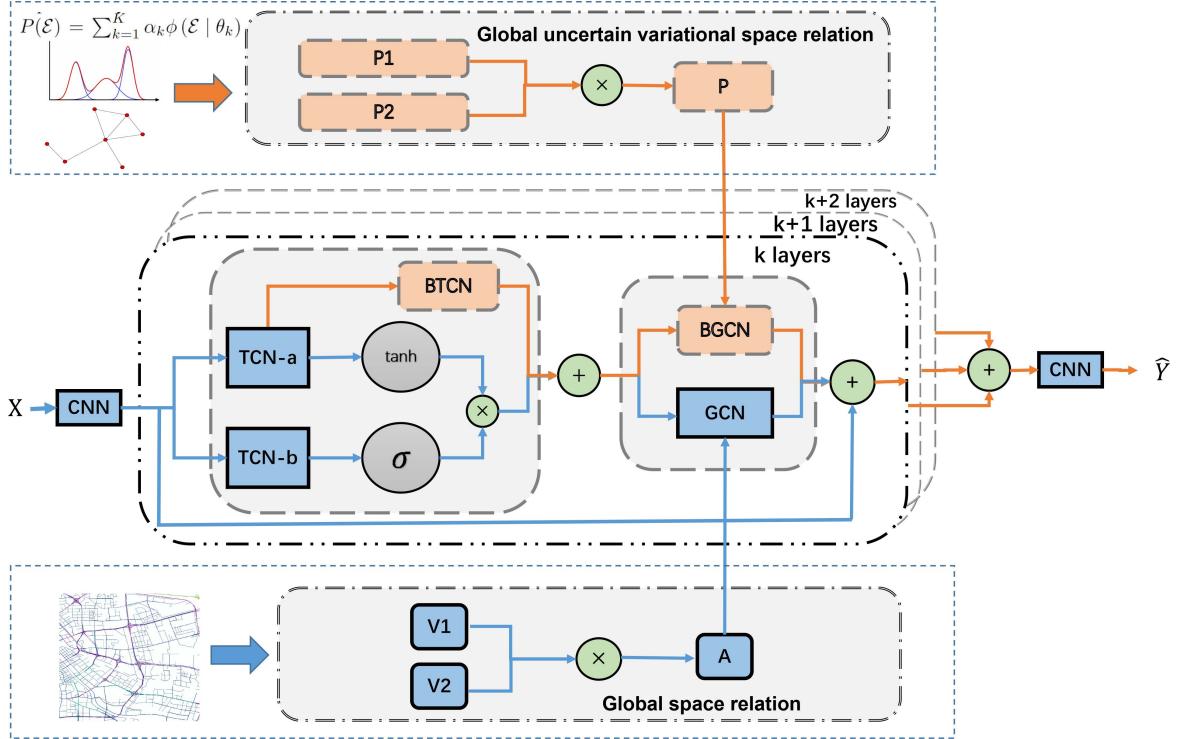


Fig. 2. The overall architecture of ST-BayesianNet. It comprises two main branches: the deterministic computing branch (blue), which captures deterministic patterns in the data, and the non-deterministic computing branch (orange), which models uncertainty. Each branch is composed of multiple spatiotemporal dependency blocks, designed to independently extract deterministic and stochastic information from the spatiotemporal data.

which is indicated by $X \in R^{T \times N \times C}$, where C , T and $N = |V|$ are the number of node attribute features such as traffic speed, number of traffic vehicles, the length of the historical times series and the number of spatial sensor nodes, respectively.

The problem of multivariate time series forecasting in this paper is considered as predicting future features $\hat{Y} = (\hat{x}_{T+1}, \dots, \hat{x}_{T+Q})$ from current data $X = (x_1, \dots, x_T)$. Through the above definition, The mapping function f_θ from X to \hat{Y} should be learned, that is:

$$\hat{Y} = f_\theta(G, X), \quad (1)$$

where θ is the parameter of the model. The real future data is $Y = (x_{T+1}, \dots, x_{T+Q})$ and the training process is to make the distance between predicted output \hat{Y} and Y smaller and smaller.

B. Overview of ST-BayesianNet

Fig. 2 illustrates the overall architecture of the ST-BayesianNet model, which comprises two primary branches: a deterministic computing branch and a non-deterministic computing branch. The framework is structured into multiple blocks. Vertically, it is segmented into a time-dependent module (BTCN) and a space-dependent module (BGCN), aligning with the structure commonly found in existing deep spatiotemporal prediction frameworks.

In the deterministic computing branch, deterministic spatiotemporal features are extracted. In contrast, the non-deterministic branch captures stochastic patterns in the spatiotemporal data using the BTCN and BGCN modules. Finally,

the model output integrates both the deterministic and uncertain components, providing a comprehensive representation of the spatiotemporal dynamics.

In the remainder of this section, we present a comprehensive overview of the core components that make up ST-BayesianNet. The framework is organized into multiple blocks, each containing deterministic temporal and spatial models. To illustrate the design and functionality, we examine a representative block in detail, noting that the structure and operation of the remaining blocks follow a similar repetitive pattern.

C. Deterministic Spatiotemporal Modeling

Spatiotemporal data inherently comprises deterministic components in both its temporal and spatial dimensions. For instance, the power consumption within distinct regions exhibits discernible periodicity, influenced by seasonal fluctuations [31]. Similarly, in the domain of traffic forecasting, the intricate spatial interconnections of road networks play a pivotal role in governing traffic flow dynamics [7]. Therefore, formulating effective methodologies to appropriately capture and model these deterministic spatiotemporal constituents stands as a pivotal determinant of the predictive accuracy and quality in the realm of multivariate time series forecasting.

The ST-BayesianNet framework enables multidimensional uncertainty modeling of spatiotemporal data by integrating BGCN for spatial randomness and BTCN for temporal randomness. This combined approach allows for the generation of predictions comprising deterministic and uncertain elements.

338 The dual-branch architecture ensures that the model can accurately predict multivariate time series while also assessing prediction uncertainty in complex spatiotemporal tasks. Through 339 variational inference, the training process determines the optimal solution for the infinite approximation parameter equation, 340 enhancing the model's robustness and practicality for real-world 341 applications. We provide a detailed introduction to the model's 342 components next.

343 In addressing the temporal dimension, ST-BayesianNet employs Gated TCN [7] due to their lean parameter count and 344 straightforward architectural design. Let $X \in R^{T \times N \times C}$ represent the historical input spatiotemporal data. To ensure consistent 345 feature extraction across the entire model, ST-BayesianNet initiates a process of dimension normalization using a CNN 346 with a 1×1 kernel size. This normalization step is outlined 347 as follows:

$$X_s = CNN(X) \in R^{T \times N \times D}, \quad (2)$$

354 where CNN refers to a two-dimensional convolution operation, 355 and D signifies the standardized feature dimension. Notably, 356 owing to the utilization of the 1×1 convolution operation, the 357 described process does not compromise the inherent spatiotemporal 358 information within the original data.

359 To extract meaningful temporal information, we incorporate 360 the Gated TCN into our approach. Gated TCN is chosen for 361 its ability to effectively manage the flow of information across 362 layers within temporal convolutional networks. For an input 363 tensor $X_s \in R^{T \times N \times D}$, the output of the Gated TCN, using 364 time-dilated causal convolution, is computed as follows:

$$X_{dT} = g(X_s \star K_a + a) \odot \sigma(X_s \star K_b + b) \in R^{T_{dT} \times N \times D}, \quad (3)$$

365 where \star represents a one-dimensional convolution along the time 366 direction with parameters K_a, K_b, a and b . \odot is the element-wise 367 product. $\sigma(\cdot)$ is the sigmoid function and $g(\cdot)$ is the activation 368 function, where \tanh serves as the specific activation function 369 in this paper. In order to increase the perception field of the 370 temporal dimension and enhance the computational efficiency of 371 the model, we employ dilated causal convolution. Consequently, 372 the output dimensionality of the temporal aspect becomes 373 $T_{dT} < T$.

374 In comparison to univariate prediction, the integration of 375 spatial network information into prediction models is pivotal for 376 capturing the intricacies of spatiotemporal data. Nonetheless, in 377 real-world scenarios, many spatiotemporal datasets struggle to 378 effectively capture spatial topological relationships. Hence, ST- 379 BayesianNet employs the adaptive adjacency matrix method [7], 380 wherein the following spatial relations are defined:

$$A = \text{SoftMax}(\text{ReLU}(E_1 E_2^T)), \quad (4)$$

381 where E_1 and E_2 are of dimensions $N \times d$ and represent the 382 embeddings of source nodes in the spatial graph, and d signifies 383 the embedding dimension. Subsequently, this allows for the capturing 384 of hidden spatial dependencies, which can be expressed

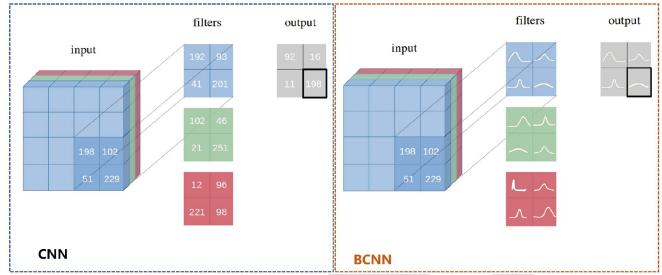


Fig. 3. The difference between BCNN and CNN. The convolution kernel of CNN (left) is a definite value, while the convolution kernel of BCNN (right) is the distribution of data. value [32].

385 as follows:

$$X_{dS} = \sum_{k=0}^K A^k X_{dT} W_k, \quad (5)$$

386 where X_{dT} is the input of GCN, which is also the output of Gate 387 TCN in (3), K is the GCN order, and W_k is the parameter of 388 each GCN layer.

D. Uncertainty Modeling

390 The real world is inherently imbued with uncertainty, and 391 this characteristic extends to the realm of spatiotemporal data. 392 Prevailing deep learning models, including LSTM, CNN, and 393 transformers, are deterministic in nature and susceptible to 394 overfitting. Thus, addressing the intrinsic uncertainty within 395 spatiotemporal data becomes imperative. The framework of ST- 396 BayesianNet is tailored to this challenge, wherein we undertake 397 the modeling of temporal and spatial uncertainties distinctively. 398

399 *1) Temporal Uncertainty Modeling:* In order to model time 400 uncertainty, the ST-BayesianNet employs the Bayesian Convolution 401 Network (BCNN) [32], which is the core part of BTCTN, 402 underpinned by variational inference principles. A noteworthy 403 distinction between BCNN and CNN lies in the convolution 404 parameters, wherein BCNN introduces an element of randomization, 405 as visually illustrated in Fig. 3.

406 Let X_s denote the input to the BCNN. Consequently, the 407 output of BCNN takes the form of a random variable.

$$\mathcal{X}_{uT} = X_s \star \mathcal{K} + \mathcal{B} = BCNN_{\mathcal{W}}(X_s), \quad (6)$$

408 where \mathcal{X} and $\mathcal{W} = \{\mathcal{K}, \mathcal{B}\}$ serve as random variables. \mathcal{W} represents 409 the parameter of the BCNN, adhering to a Gaussian prior 410 distribution, i.e., $p(\mathcal{W}) = N(\mu, \sigma)$. As the direct derivation of 411 the posterior distribution $p(\mathcal{W} | D)$ is impractical, we pivot towards 412 optimizing the variational posterior distribution $q(\mathcal{W} | \theta_t)$ 413 to minimize the divergence $KL(p || q)$ until it approaches zero, 414 where $D = \{(x_i, y_i)\}_{i=0}^n$ stands for the training data, $KL(\cdot || \cdot)$ 415 represents the Kullback-Leibler divergence between two distributions, 416 and θ_t corresponds to the controlling parameter of $q(\mathcal{W} | \theta_t)$. 417 According to the variational inference principle [33], the 418 optimization objective is formulated as follows:

$$\mathcal{L}(\theta_t) = -\mathbb{E}_{q(\mathcal{W} | \theta_t)} \left[\log \left[\frac{q(\mathcal{W} | \theta_t)}{P(D | \mathcal{W})P(\mathcal{W})} \right] \right]$$

$$= KL(q(\mathcal{W} | \theta_t) || P(\mathcal{W})) + \mathbb{E}_{q(\mathcal{W} | \theta_t)}(P(D | \mathcal{W})). \quad (7)$$

418 Since determining the uncertainty of the temporal dimension
 419 is challenging, the posterior distribution $q(\mathcal{W} | \theta_t)$ still obeys a
 420 Gaussian distribution, similar to the approach in [33].

421 2) *Deterministic and Uncertainty Temporal Dependence*
 422 (*TBN*): The temporal dimension is determined by both the pro-
 423 vided information and non-deterministic information. Thus, we
 424 can combine these two sources to generate the time dimension
 425 information feature output. This involves fusing information for
 426 (3) and (6), resulting in the following expression:

$$\mathcal{X}_T = X_{dT} + \alpha \mathcal{X}_{uT}, \quad (8)$$

427 where α is the fusion parameter and can be learned in training.

428 3) *Spatial Uncertainty Modeling*: Due to the inherent com-
 429 plexity of spatial relationships in spatiotemporal data, existing
 430 models often exhibit model uncertainty (i.e., epistemic uncer-
 431 tainty) [34] when capturing spatial dependencies. Traditional
 432 GCNs, such as those defined in (5), are particularly susceptible
 433 to overfitting in such settings. To address these challenges,
 434 we propose an uncertainty-aware GCN model named BGCN,
 435 within the ST-BayesianNet framework. BGCN explicitly models
 436 spatial uncertainty, improving robustness and generalization in
 437 spatiotemporal learning tasks.

438 Let the attribute values of the spatial detection points $V =$
 439 $\{v_0, \dots, v_N\}$ be random vectors $\mathcal{E}_1, \mathcal{E}_2 \in R^{N \times d}$, where $d < N$
 440 is the embedded dimension, then the uncertain spatial relation-
 441 ship in spatiotemporal data is defined as follows

$$\mathcal{P} = \text{softMax}(\text{Relu}(\mathcal{E}_1 \mathcal{E}_2^T)) \in R^{N \times N}. \quad (9)$$

442 Due to the complexity of spatial relationship, we assume
 443 that \mathcal{E}_1 and \mathcal{E}_2 priori obey mixed Gaussian distribution, that
 444 is $\mathcal{E}_1, \mathcal{E}_2 \sim P(\mathcal{E}) = \sum_{k=1}^K \alpha_k \phi(\mathcal{E} | \theta_k)$, where $\theta_k = (\mu_k, \sigma_k)$
 445 are the parameters of Gaussian distribution $\mathcal{N}(\mu_k, \sigma_k) =$
 446 $\frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$, and α_k are the mixed parameters. Based
 447 on the above concept, ST-BayesianNet can be expressed as

$$\mathcal{X}_{uS} = \sum_{k=0}^K \mathcal{P}^k \mathcal{X}_T W_k, \quad (10)$$

448 where W_k is the parameter of ST-Bayesian, and \mathcal{X}_T is the output
 449 of (8).

450 The inference of the randomization parameter required by
 451 ST-BayesianNet is denoted as $\mathcal{E} = (\mathcal{E}_1, \mathcal{E}_2)$. However, express-
 452 ing the posterior probability $P(\mathcal{E} | D)$ directly is challenging.
 453 To address this, we utilize a variational distribution $q(\mathcal{E} | \theta_s) \sim$
 454 $\mathcal{N}(\mu_w, \sigma_w)$ to approximate the actual posterior distribution
 455 $P(\mathcal{E} | D)$. Here, θ_s represents the parameters of the variational
 456 distribution.

457 Applying the principles of variational inference, we can derive
 458 the following equation:

$$\begin{aligned} \theta_w^* &= \underset{\theta_s}{\text{argmin}} \text{KL}[q(\mathcal{E} | \theta_s) || P(\mathcal{E} | D)] \\ &= \underset{\theta_s}{\text{argmin}} \mathbb{E}_{q(\mathcal{E} | \theta_s)} \left[\log \left[\frac{q(\mathcal{E} | \theta_s)}{P(\mathcal{E} | D)} \right] \right] \end{aligned}$$

$$\begin{aligned} &= \underset{\theta_s}{\text{argmin}} \mathbb{E}_{q(\mathcal{E} | \theta_s)} \left[\log \left[\frac{q(\mathcal{E} | \theta_s) P(D)}{P(D | \mathcal{E}) P(\mathcal{E})} \right] \right] \\ &= \underset{\theta_s}{\text{argmin}} \mathbb{E}_{q(\mathcal{E} | \theta_s)} \left[\log \left[\frac{q(\mathcal{E} | \theta_s)}{P(D | \mathcal{E}) P(\mathcal{E})} \right] \right] \\ &= \underset{\theta_s}{\text{argmin}} [\text{KL}(q(\mathcal{E} | \theta_s) || P(\mathcal{E})) - \mathbb{E}_{q(\mathcal{E} | \theta_s)} [\log P(D | \mathcal{E})]]. \end{aligned} \quad (11)$$

459 Thus, the loss function of ST-BayesianNet is

$$\begin{aligned} \mathcal{L}(\theta_s) &= \underset{\theta_s}{\text{argmin}} [\text{KL}(q(\mathcal{E} | \theta_s) || P(\mathcal{E})) \\ &\quad - \mathbb{E}_{q(\mathcal{E} | \theta_s)} [\log P(D | \theta_s)]]. \end{aligned} \quad (12)$$

460 4) *Spatial Deterministic and Uncertain Information Fusion*:
 461 According to (5) and (10), the final spatial feature is the combi-
 462 nation of the deterministic and uncertain information from the
 463 spatial dimension, which can be written as follows:

$$\mathcal{X} = X_{dS} + \mathcal{X}_{uS}. \quad (13)$$

464 As indicated by (3), (5), (6), (10), and (13), \mathcal{X}_{gcn} combines the
 465 spatiotemporal deterministic and uncertain information present
 466 in the spatiotemporal data. To facilitate the training of the model,
 467 a shortcut has been incorporated into ST-BayesianNet, denoted
 468 as:

$$\mathcal{X}^{(b)} = X_s + \mathcal{X}_{gcn}, \quad (14)$$

469 where X_s represents the input of this block (as shown in (2)),
 470 and $\mathcal{X}^{(b)}$ denotes the output of the current block b .

E. The Output of ST-BayesianNet

471 Since the ST-BayesianNet model consists of multiple blocks,
 472 the output of the model needs to integrate the outputs of multiple
 473 blocks. The output of all blocks is represented by:

$$\mathcal{X}^{(o)} = \sum_{b=0}^B \sigma(\text{conv}(\mathcal{X}^{(b)})), \quad (15)$$

475 where σ is the activation function, such as ReLU, and B repre-
 476 sent the number of blocks in ST-BayesianNet. Therefore, the
 477 random output of ST-BayesianNet is given by:

$$\hat{\mathcal{Y}} = \text{conv}(\mathcal{X}^{(o)}). \quad (16)$$

478 In essence, ST-BayesianNet is a randomized model, so the
 479 output of ST-BayesianNet is a random variable $\hat{\mathcal{Y}}$. All random
 480 parameters of the ST-BayesianNet model are in (6) and (9), and
 481 the randomization parameters in all blocks are recorded as ξ .
 482 All random parameters ξ are sampled from their corresponding
 483 posterior distribution $q(\xi)$ and sent to the final expectation in the
 484 network as the deterministic output of the most general model,
 485 i.e.

$$\hat{Y} = \mathbb{E}_{\xi \sim q(\xi)} \hat{\mathcal{Y}}(\xi) \approx \sum_{s=0}^S \hat{\mathcal{Y}}(\xi_s), \quad (17)$$

486 where S is the number of samples.

487 *F. The Whole Loss*

488 According to (7) and (12), we can obtain the loss function of
 489 the whole random parameter ξ

$$\mathcal{L}(\theta, w) = \arg \min_{\theta, w} [\text{KL}(q(\xi | \theta) || P(\xi)) \\ - \mathbb{E}_{q(\xi | \theta)} [\log P(D | \theta)]] , \quad (18)$$

490 where $\theta = (\theta_t, \theta_s)$ represents the control parameters of the
 491 posterior probability distribution, and w denotes the network
 492 parameters of ST-BayesianNet. The loss function comprises two
 493 components. The first term quantifies the proximity between the
 494 prior distribution and the variational prior distribution, while
 495 the second term accounts for the data likelihood. For the sake of
 496 training convenience, we express the complete loss function in
 497 the following manner:

$$\mathcal{L}(\theta, w) = \arg \min_{\theta, w} [\text{KL}(q(\xi | \theta) || P(\xi)) \\ + \beta * L_{\text{Huber}}(Y, \hat{Y})] , \quad (19)$$

498 where β is the hyperparameter that balances the influence of
 499 likelihood and KL divergence and

$$L_{\text{Huber}}(\hat{X}, Y) = \begin{cases} \frac{1}{2}(Y - \hat{X})^2 & |Y - \hat{X}| \leq \delta, \\ \delta|Y - \hat{X}| - \frac{1}{2}\delta^2 & \text{otherwise.} \end{cases} \quad (20)$$

500 **IV. PERFORMANCE EVALUATION**501 *A. Experimental Setup*

502 *1) Datasets:* The predictive performance of ST-BayesianNet
 503 is evaluated using two publicly available traffic spatiotemporal
 504 datasets, i.e., METR-LA and PEMS-BAY. These datasets are ac-
 505 cessible through the open-source code provided in the literature.

- 506 • **METR-LA [7]:** It comprises real-time traffic speed data
 507 collected from loop detectors installed on highways in Los
 508 Angeles County. The dataset covers the time period from
 509 March 1 to March 7, 2012, and consists of data from 207
 510 sensors. The traffic speed readings are taken at 5-minute
 511 intervals, and the adjacency matrix is constructed based
 512 on the spatial distances between the sensors in the traffic
 513 network.
- 514 • **PEMS-BAY [7]:** This data was meticulously collected
 515 through the California Department of Transportation's per-
 516 formance measurement system, covering the period from
 517 January 1 to May 31, 2017. It incorporates data from a total
 518 of 325 sensors, with each data point sampled at precise
 519 5-minute intervals. The 325×325 adjacency matrix is
 520 constructed based on the spatial relationships among roads
 521 in the network.
- 522 • **solar¹:** It captures solar power output and environmental
 523 conditions from two solar power plants over a 34-day pe-
 524 riod, specifically from May 15 to June 17, 2020. Collected
 525 on an hourly basis, the data includes variables such as
 526 temperature, humidity, solar irradiance, and power output.

527 ¹[Online]. Available: <https://www.kaggle.com/datasets/anikannal/solar-power-generation-data>

- 528 • **traffic²:** It provides hourly traffic flow data collected from
 529 automated sensors at 4 key junctions, capturing variations
 530 in vehicle counts over an unspecified period.
- 531 • **PSM04&PSM08³:** A comprehensive collection of real-
 532 time traffic data gathered from loop detectors on
 533 California's State Route 4 (PSM04)/ State Route 8
 534 (PSM08)highway, offering a robust resource for analyzing
 535 and forecasting traffic patterns.

535 *2) Metrics:* To evaluate the performance of ST-BayesianNet,
 536 we employ two established metrics, Mean Squared Error (MSE)
 537 and Mean Absolute Error (MAE), to quantify relative prediction
 538 error. Smaller values of MSE and MAE correspond to improved
 539 prediction accuracy.

- 540 • *MSE* (Mean Squared Error): It emphasizes larger errors
 541 due to its squaring nature and can be computed as:

$$MSE = \frac{1}{QN} \sum_{t=1}^Q \|Y_t - \hat{Y}_t\|_2^2. \quad (21)$$

- 542 • *MAE* (Mean Absolute Error): It gives an average magni-
 543 tude of errors without squaring, and can be computed as:

$$MAE = \frac{1}{QN} \sum_{t=1}^Q |Y_t - \hat{Y}_t|. \quad (22)$$

544 *3) Baselines:* In order to verify the performance of ST-
 545 BayesianNet, we introduce several baselines in different ap-
 546 proaches:

- 547 • **FNN [35]:** A feed-forward neural network designed for
 548 time series prediction, capable of capturing complex pat-
 549 terns and dependencies in sequential data.
- 550 • **GRU [36]:** A variant of RNNs that mitigates the vanishing
 551 gradient problem through gating mechanisms, enhancing
 552 its ability to learn long-term dependencies.
- 553 • **AGCRN [17]:** A model that dynamically adapts to traffic
 554 patterns by learning node-specific parameters and generat-
 555 ing data-driven graphs for improved traffic forecasting.
- 556 • **GCN [37]:** A neural network architecture designed to
 557 process graph-structured data, where nodes and edges are
 558 associated with features.
- 559 • **STGCN [38]:** A Spatio-Temporal Graph Convolutional
 560 Network that integrates graph convolutional modules to
 561 model spatial dependencies and temporal dynamics for
 562 accurate traffic prediction.
- 563 • **TCGCN [39]:** An advanced model that combines
 564 community-enhanced graph convolutional networks with
 565 attention mechanisms to capture complex spatiotemporal
 566 patterns in traffic data.
- 567 • **STHSL [40]:** A Spatial-Temporal Self-Supervised Hyper-
 568 graph Learning framework that addresses label scarcity in
 569 crime prediction by capturing cross-region dependencies
 570 and temporal patterns.

571 ²[Online]. Available: <https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset>

572 ³[Online]. Available: <https://gitcode.com/open-source-toolkit/06a2f/overview>

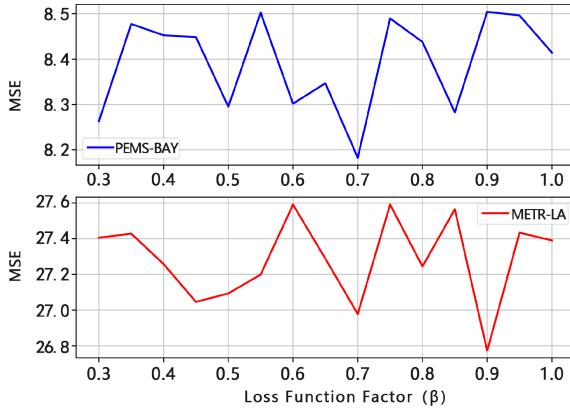


Fig. 4. The impact on MSE of changes in hyperparameter β within datasets PEMS-BAY (top) and METR-LA (bottom). This indicates that β is sensitive to these two datasets, and adjusting it can help optimize model performance.

- **Crossformer [41]:** A Transformer-based model that leverages cross-dimensional dependencies for multivariate time series forecasting.
- **Graph-WaveNet [7]:** A GNN-based spatiotemporal model that uses a learnable dependency matrix to capture both spatial and temporal correlations, enabling the modeling of long-range dependencies.

The selection of baseline methods in comparative trials highlights the unique characteristics and application domains of each approach. Feedforward Neural Networks (FNN) and Gated Recurrent Units (GRU) demonstrate proficiency in handling sequential data by capturing intricate patterns and long-term dependencies, making them suitable for general time series analysis and speech processing tasks. Graph-based models such as Graph Convolutional Networks (GCN), Spatial-Temporal Graph Convolutional Networks (STGCN), Temporal Convolutional Graph Convolutional Networks (TCGCN), and Graph WaveNet integrate spatial-temporal dynamics and attention mechanisms, making them particularly effective for traffic forecasting and complex spatiotemporal modeling. The Adaptive Graph Convolutional Recurrent Network (AGCRN) further enhances performance by dynamically adapting to evolving traffic conditions. Additionally, models like Spatial-Temporal Hierarchical Self-Supervised Learning (STHSL) and Crossformer are designed to address challenges such as label scarcity and multivariate time series forecasting, supporting a wide range of regional prediction tasks. All baseline models are implemented using the optimal hyperparameter settings as specified in their original publications.

4) *The Model Parameters:* The convolution layers utilize a kernel size of 3 with 1 padding to maintain the output shape. ST-BayesianNet consists of 3 blocks, and the weight β in the loss function of (19) is set to 0.7 for the METR-LA dataset and 0.5 for the PEMS-BAY and other datasets, as determined through experimentation.

Fig. 4 presents the parameter selection experiment for β across the two databases. It's evident that β significantly impacts the test MSE of the ST-BayesianNet model. The optimal β varies for different databases, as the model necessitates adjusting

parameters based on the database to strike a balance between prior fitting and data likelihood.

5) *Other Settings:* To ensure a fair comparison, the loss functions employed for baselines are all Huber loss (as specified in (20)), chosen for their demonstrated effectiveness. Additionally, a batch size of 64 is consistently used across all models. During the experimental setup, the dataset is partitioned into training, validation, and test sets at a ratio of 8 : 1 : 1. Following 50 epochs of training, the model with the best performance on the validation set is selected for testing on the test set.

B. Comparison of Prediction Accuracy

Table I presents a comprehensive comparison of various methods for predicting three, six and twelve time steps (e.g., 15, 30 and 60 minutes) on the specified datasets. The horizontal axis of the table shows the comparison methods and testing metrics, and the vertical axis shows the datasets and time steps. To address concerns about the depth, refinement and applicability of the evaluation to large-scale scenarios, extensive experiments were conducted across six diverse spatiotemporal datasets. These datasets encompass real-world traffic, energy and power system data, with scale varying from hundreds to potentially thousands of nodes when considering interconnected systems. The evaluation metrics include mean squared error (MSE) and mean absolute error (MAE), with additional analyses on fault tolerance (robustness to noise), computational complexity (inference time and space), ablation studies and uncertainty visualisation providing a more refined and in-depth assessment. Upon inspection, the following conclusions can be drawn:

ST-BayesianNet has been evaluated on five spatiotemporal traffic datasets, including METR-LA, PEMS-BAY, and several others. Across these benchmarks, it consistently outperforms most competing methods. Notably, ST-BayesianNet demonstrates a significant performance advantage over widely adopted temporal models such as STGCN, TCGCN, Crossformer, and AGCRN, achieving substantial improvements on the majority of datasets. It is worth emphasizing that these baseline models are well-established and commonly used deep learning approaches for multivariate time series analysis, further underscoring the effectiveness of ST-BayesianNet.

The model maintains a high level of performance, particularly in prediction tasks involving large-scale traffic datasets containing nearly a thousand node information points. This demonstrates that ST-BayesianNet also possesses outstanding predictive capabilities for large-scale practical applications. This is thanks to its Bayesian Time-Convolutional Network (BTCN) and Bayesian Graph Convolutional Network (BGCN), which are highly effective at representing and analysing the uncertainty inherent in real-time application data.

Comparative experimental results also indicate that models that integrate spatiotemporal information, such as TCGCN, ST-BayesianNet and Graph-WaveNet, perform better than models that rely solely on temporal or spatial approaches. ST-BayesianNet achieves an MSE reduction of over 4.2% compared to other spatio-temporal fusion baselines across all step-length prediction tests on real-world traffic datasets such as METR-LA

TABLE I
THE PERFORMANCE COMPARISON RESULTS OF THE ST-BAYESIANNet FOR FORECASTING ON METR-LA, PEMs-BAY, SOLAR, TRAFFIC, PSM04 AND PSM08 DATASETS (THE HORIZONS ARE 3 STEPS, 6 STEPS, AND 12 STEPS, RESPECTIVELY). AND **BOLD** INDICATES THE BEST ACCURACY, UNDERLINED INDICATES THE SECOND BEST, THE ITALICIZED NUMBERS SIGNIFY THE FOURTH AND ‘-’ INDICATES THAT THE MODEL DOES NOT CONVERGE

Methods	ST-bayesianet		FNN		GRU		AGCRN		GCN		STGCN		TCGCN		STHSL		Crossformer		Graph-Wavenet		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
METR-LA	15m.	20.032	<u>2.448</u>	28.425	3.051	32.238	2.952	24.046	2.587	56.336	4.756	95.019	3.849	20.538	2.446	32.120	2.974	46.352	2.577	<u>20.490</u>	2.504
	30m.	27.254	2.706	36.120	3.307	43.302	3.290	30.795	2.822	66.272	5.071	103.960	5.211	<u>27.383</u>	<u>2.716</u>	43.686	3.281	72.592	3.926	29.055	2.774
	1h.	36.995	<u>3.044</u>	46.612	3.680	59.338	3.860	40.884	3.154	83.939	5.613	119.961	5.359	<u>37.112</u>	3.033	64.772	4.251	96.196	4.437	37.977	3.117
PEMS-BAY	15m.	<u>5.016</u>	<u>1.099</u>	11.647	1.833	6.741	1.226	5.522	1.143	44.936	2.933	131.055	5.344	4.909	1.097	6.337	1.213	8.443	1.422	5.153	1.121
	30m.	<u>8.359</u>	<u>1.327</u>	15.354	2.019	12.536	1.536	8.730	1.346	46.573	3.056	115.063	5.036	8.281	1.309	11.972	1.513	16.656	1.811	9.689	1.393
	1h.	13.102	1.576	19.639	2.202	19.294	1.892	13.170	<u>1.588</u>	49.810	3.250	162.193	5.776	<u>13.154</u>	1.606	20.581	1.989	-	-	13.922	1.637
solar	30m.	4.132	1.011	12.642	2.268	11.741	2.312	5.262	1.224	58.600	4.982	166.111	10.051	<u>5.013</u>	<u>1.145</u>	14.736	2.577	16.405	2.500	10.136	1.942
	1h.	6.472	1.360	12.884	2.310	17.766	2.855	<u>8.637</u>	1.702	103.157	6.822	371.089	13.841	<u>8.787</u>	<u>1.636</u>	14.878	2.523	38.394	3.923	19.868	2.889
	2h.	11.540	1.952	16.765	2.644	30.924	3.700	<u>15.267</u>	2.373	98.217	6.730	211.283	10.065	15.665	<u>2.337</u>	129.028	8.194	44.714	4.035	36.795	4.233
traffic	3h.	<u>0.001</u>	0.015	0.001	0.015	0.002	0.019	0.002	0.027	0.002	0.029	0.006	0.048	0.001	<u>0.015</u>	0.002	0.026	-	-	0.001	0.015
	6h.	0.002	<u>0.018</u>	0.001	0.017	0.002	0.024	0.003	0.034	0.003	0.031	0.005	0.042	<u>0.002</u>	0.018	0.003	0.027	-	-	0.002	0.019
	12h.	0.002	<u>0.021</u>	0.002	0.019	0.002	0.021	0.002	0.022	0.003	0.030	0.004	0.041	<u>0.002</u>	0.021	0.003	0.027	-	-	0.002	0.022
PSM04	15m.	823.702	18.002	1.5K	25.167	1.1K	20.870	<u>940.633</u>	<u>19.575</u>	4.5K	40.942	7.7K	72.171	999.370	19.877	951.134	19.894	1.2K	22.615	983.639	20.261
	30m.	850.817	18.376	1.7K	27.176	1.2K	22.538	1.0K	20.645	4.7K	42.580	7.2K	70.217	1.0K	20.554	<u>947.983</u>	19.721	2.0K	30.386	1.1K	21.907
	1h.	920.785	18.909	1.7K	27.550	1.5K	24.818	1.0K	21.002	5.0K	44.788	7.9K	72.972	<u>973.879</u>	<u>19.915</u>	1.0K	20.938	2.4K	33.705	1.1K	21.293
PSM08	15m.	497.753	14.326	1.1K	23.073	631.344	16.374	<u>542.285</u>	<u>15.212</u>	3.3K	37.382	5.7K	65.827	598.585	15.884	582.550	16.016	774.455	19.768	572.157	15.728
	30m.	514.480	14.450	1.3K	24.639	780.775	17.956	631.951	16.358	3.4K	38.847	8.7K	81.033	<u>572.612</u>	15.341	604.886	16.024	1.8K	28.380	678.878	17.260
	1h.	551.402	14.734	1.5K	25.887	932.173	19.422	686.404	17.068	3.6K	40.522	10.2K	83.297	<u>608.375</u>	<u>15.791</u>	644.150	16.489	2.0K	30.260	620.514	16.048

666 and Traffic. This demonstrates its robustness in large-scale applications where data uncertainty arises from sensor failures or 667 environmental factors.

668 Our approach not only matches Graph-WaveNet’s performance 669 consistently, but also surpasses it, with equivalent or better 670 MSE/MAE across all horizons and datasets. Unlike deterministic 671 models such as TCGCN and Graph-WaveNet, ST- 672 BayesianNet generates predictive distributions to capture inherent 673 uncertainties, providing probabilistic outputs that are absent 674 from the baselines. It learns spatial topologies adaptively and 675 models uncertainty via variational inference, yielding superior 676 expectation-based predictions. Furthermore, ST-BayesianNet is 677 scalable, efficiently handling large-scale applications with extensive 678 spatial and temporal datasets while maintaining robust 679 performance in diverse, high-volume real-world scenarios.

681 C. Ablation Study

682 To further explore the impact of key components in our ST- 683 BayesianNet model, we conducted an ablation study using the 684 METR-LA dataset. We have labeled the various model variants 685 as follows:

- 686 • **w/o A**: In this configuration, we exclude the dynamic graph 687 convolution from ST-BayesianNet as described in (5).
- 688 • **w/o T**: In this configuration, we exclude the BTGN component, 689 as defined in (6) and (8), from every layer of ST-BayesianNet 690 without a non-deterministic time model.
- 691 • **w/o P**: In this configuration, we exclude the BGCN component, 692 as defined in (6) and (8), from every layer of ST-BayesianNet 693 without a non-deterministic spatial model.

694 Fig. 5 presents the MSE for each prediction horizon of ST- 695 BayesianNet along with the other variants on the METR-LA

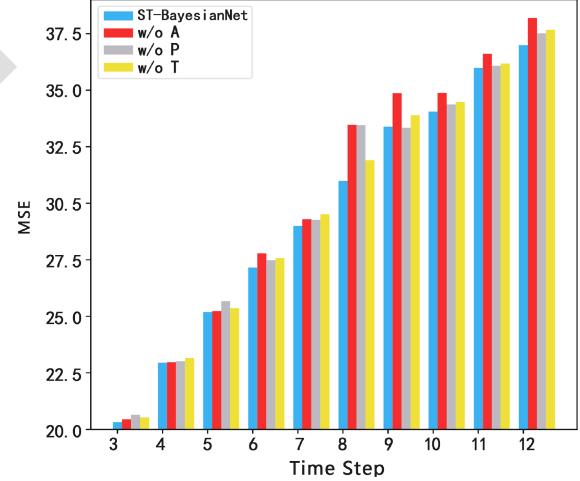


Fig. 5. The MSE result of ST-BayesianNet and its variants w/o A, w/o T and w/o P under different time steps. It can be seen that each module plays an important role in the entire ST Bayesian model.

696 dataset. It demonstrates that ST-BayesianNet generally outperforms 697 the variants **w/o A**, **w/o T**, and **w/o P**, particularly when 698 dealing with longer sequence predictions. This suggests the 699 effectiveness of dynamic graph convolution, non-deterministic 700 time model, and non-deterministic spatial model in improving 701 the predictive performance of ST-BayesianNet.

702 D. Randomized Predictive Output

703 Unlike existing spatiotemporal prediction methods such as 704 Graph-WaveNet, DCRNN, and TCGCN, which exclusively

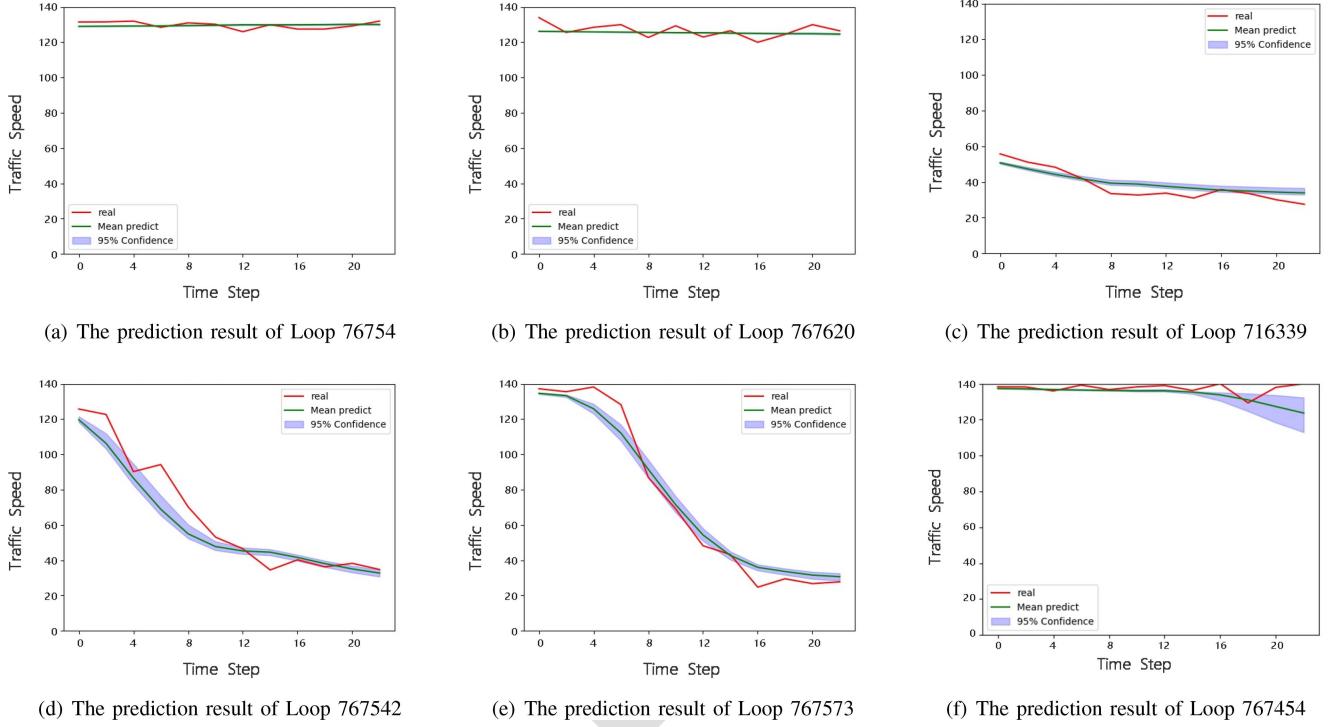


Fig. 6. Prediction results of ST-BayesianNet on the METR-LA dataset. Since the output of ST-BayesianNet is a probability distribution, the prediction results include a 95% confidence interval, enhancing the model's reliability and interpretability. In (a) and (b), the predictions are highly accurate, resulting in very narrow confidence intervals that are nearly invisible in the plots.

705 yield deterministic outcomes, ST-BayesianNet has the capacity to provide both temporal and spatial uncertainties. Consequently, its output is in the form of a probability distribution. 706 The advantage of this form of output lies in its ability to furnish 707 not only a plausible prediction but also a range of prediction 708 probabilities. The visualization outcomes of several prediction 709 outputs from the ST-BayesianNet model are depicted in Fig. 6. 710 In this experiment, predictions for 12 steps are conducted using 711 a 12-horizon input on the METR-LA dataset, employing 100 712 samples. The figure illustrates the true value (in red), the mean 713 value (in green), and the 95% confidence region (in blue) derived 714 from the 100 predictions. It can be seen that the prediction results 715 of ST-BayesianNet are relatively accurate, which reflects that 716 our proposed model architecture is relatively reasonable and can 717 fully obtain spatiotemporal information. 718

719 When the predicted true values follow relatively smooth 720 trends, the predicted values from our model exhibit modest 721 variances. However, when the predicted true values display 722 steep variations, our model adeptly identifies and quantifies 723 the inherent uncertainty, leading to predictions accompanied 724 by more substantial variances. In particular, Fig. 6(f) shows 725 the model's capability to deliver comprehensive uncertainty 726 predictions when data carries significant aleatoric uncertainty. 727 This substantiates the ability of ST-BayesianNet to extract and 728 represent uncertainty from spatiotemporal data. This output 729 modality is a distinct advantage over existing spatiotemporal 730 prediction models like Graph-WaveNet, AGCRN, and TCGCN, 731 which generally lack the capacity to offer such probabilistic 732

733 predictions. Importantly, these probabilistic predictions hold 734 practical value for real-world forecasting scenarios.

E. Fault Tolerance Analysis

735 In reality, spatiotemporal data often exhibit noise and possess 736 high dimensions. An effective model should exhibit robustness 737 against such noise. In this experiment, we analyze the robustness 738 of ST-BayesianNet in the presence of noise. For the sake of 739 generality, we assume that the training data input is contaminated by 740 Gaussian noise $\mathcal{Z} \in R^{T \times S \times C} \sim \mathcal{N}(0, \sigma^2)$, meaning the input 741 becomes $X + \mathcal{Z}$. The parameter σ signifies the magnitude of the 742 noise level. Here, we employ $\sigma = \{0.0001, 0.001, 0.01, 0.1, 1\}$. 743 We opt to use the METR-LA dataset due to its relative complexity, 744 and for comparison purposes, we select Graph-WaveNet, 745 TCGCN, AGCRN and STGCN as benchmark methods owing 746 to their high prediction accuracy as highlighted in Fig. 7. 747 Specifically, we forecast 12 steps with 12 horizons of input data on 748 the METR-LA dataset as part of this assessment. 749

750 Fig. 7 illustrates the performance trends of various methods as 751 noise intensity increases. The MSE curves of ST-BayesianNet, 752 Graph-WaveNet, and AGCRN remain stable despite rising noise 753 levels. This stability can be attributed to specific model 754 characteristics: the Gate-Conv mechanism in Graph-WaveNet 755 acts as a low-pass filter, effectively mitigating noise impact, while 756 the recurrent architecture of AGCRN helps to filter out anomalous 757 data points. ST-BayesianNet, however, demonstrates superior 758 performance in terms of MSE compared to all baseline models, 759

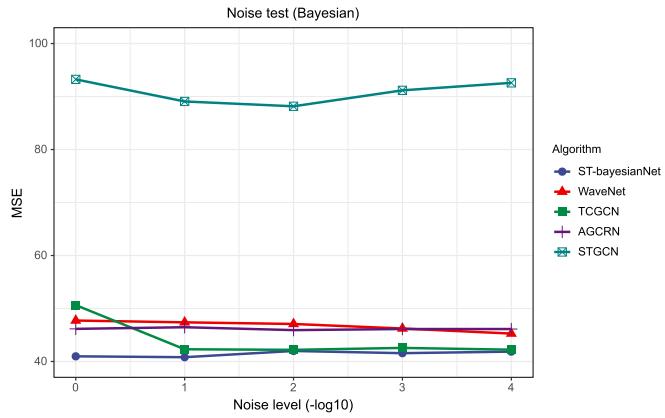


Fig. 7. MSE results under different noise settings on the METR-LA dataset. This comparison evaluates ST-BayesianNet against Graph-WaveNet, TCGCN, STGCN, and AGCRN across varying noise levels. A negative logarithmic scale is applied to the horizontal axis to enhance interpretability. ST-BayesianNet consistently outperforms all baseline models across every noise level and demonstrates superior stability throughout.

TABLE II
COMPARISON OF INFERENCE TIME AND SPACE COMPLEXITY. THE BEST
RESULT IS BOLDED, THE SECOND-BEST IS UNDERLINED, THE THIRD-BEST IS
MARKED WITH AN ASTERISK, AND THE FOURTH-BEST IS ITALICIZED

Algorithm	Params	MSE	Time	ACC
Graph-Wavenet	271.3K	20.490	*8.946	0.834
AGCRN	751.1K	24.046	1.462	*0.839
TCGCN	400.0K	20.538	31.250	<u>0.843</u>
crossformer	2.2M	46.352	<u>2.537</u>	0.830
DGCN	199.4K	21.921	22.298	0.835
DE_NET	409.4K	<u>20.445</u>	58.021	0.834
ST-BayesianNet	*368.0K	20.032	<u>13.885</u>	0.846

759 highlighting the robustness of its BGCN and BTCN modules in
760 handling uncertainties intrinsic to time series data. This strength
761 is grounded in the overarching Bayesian variational inference
762 framework employed by ST-BayesianNet. Unlike traditional
763 methods that directly solve parameter equations, our model
764 leverages probabilistic trainable parameters within variational
765 inference to approximate optimal solutions during training.
766 This probabilistic approach effectively models uncertainty in
767 spatiotemporal data, thereby enhancing generalization and ro-
768 bustness across diverse application scenarios, especially when
769 dealing with noisy datasets.

770 F. Complexity Analysis

771 To assess the practical efficiency and effectiveness of ST-
772 BayesianNet, we further compare its time and space complexity
773 with those of baseline models. All models were trained under the
774 same experimental conditions outlined in Subsection IV-E, and
775 subsequently evaluated in terms of accuracy and inference time.
776 The results are presented in Table II. ST-BayesianNet achieves

777 the best performance in both MSE and accuracy, while maintain-
778 ing the third-lowest number of parameters and a moderate infer-
779 ence time. Although DGCN has the smallest parameter count,
780 its inference time ranks third longest and its MSE performance
781 is suboptimal. AGCRN exhibits the shortest inference time but
782 requires roughly twice as many parameters as ST-BayesianNet.
783 Among the baselines, Graph-WaveNet offers the best balance
784 between inference time and parameter count, yet its overall
785 performance remains inferior to that of ST-BayesianNet.

786 For large-scale applicability, complexity analysis demon-
787 strates that ST-BayesianNet scales efficiently with dataset size,
788 handling expansive systems like urban traffic networks or power
789 grids with 325+ nodes in PEMS-BAY without exponential
790 time growth. Its inference time, with 368.0 K parameters and
791 73.885 ms on PEMS-BAY, remains competitive, supporting
792 real-time forecasting with uncertainty quantification to aid risk
793 assessment and resource allocation.

794 The ST-BayesianNet model is characterized by its utilization
795 of spatiotemporal linear models instead of attention mechanisms
796 and large-scale model architectures, rendering it less computa-
797 tionally intensive. Through the application of variational infer-
798 ence techniques, the parameter matrix of the spatial and temporal
799 analysis module is randomized. This approach enables the model
800 to effectively address a wide range of practical applications, out-
801 performing baseline models. Notably, ST-BayesianNet demon-
802 strates superior performance and achieves acceptable inference
803 times when compared to other methods in the analysis.

804 The efficiency and robustness of ST-BayesianNet are key
805 advantages in practical applications. Its low parameter scale
806 minimizes computational resource demands, facilitating deploy-
807 ment on embedded devices with limited resources. Moreover, its
808 moderate inference time enables efficient real-time prediction,
809 accommodating various real-world scenarios. Furthermore, its
810 superior performance in MSE and Accuracy enhances prediction
811 accuracy, making it suitable for applications like traffic flow
812 forecasting and energy management. These characteristics col-
813 lectively establish ST-BayesianNet as a functional and practical
814 solution optimized for processing complex spatiotemporal data.

815 V. CONCLUSION

816 This paper introduces an innovative multivariate time pre-
817 diction approach named ST-BayesianNet, designed for spa-
818 tiotemporal data, and grounded in the principles of variational
819 inference. This method stands out by its capacity to capture
820 uncertainties within both the temporal and spatial dimensions.
821 ST-BayesianNet systematically models the uncertainties inher-
822 ent in the temporal and spatial facets of the data. To validate
823 its efficacy, comprehensive comparative experiments have been
824 conducted to assess its performance. The experiments, carried
825 out on six publicly available real-world spatiotemporal datasets,
826 including traffic and solar, demonstrate that ST-BayesianNet
827 consistently enhances prediction accuracy and yields predictive
828 confidence estimations. The multivariate time series forecasting
829 based on Bayesian CNNs remains a challenge in the later stages,
830 specifically in real-world applications where data from multiple

dimensions needs to be integrated to capture spatiotemporal uncertainties, leading to precise variational inference. Future research will extend the framework's application to larger-scale data scenarios and further explore multi-view learning for spatiotemporal multidimensional joint uncertainty estimation to enhance cross-dimensional uncertainty modeling capabilities.

837

REFERENCES

838 [1] H. Guo, Z. Zhou, D. Zhao, and W. Gaaloul, "EGNN: Energy-efficient
839 uncertainties, leading to precise variational inference. Future
840 research will extend the framework's application to larger-scale
841 data scenarios and further explore multi-view learning for spatiotemporal
842 multidimensional joint uncertainty estimation to enhance cross-dimensional uncertainty modeling capabilities.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

[18] Z. Pan et al., "AutoSTG: Neural architecture search for predictions of spatio-temporal graphs," in *Proc. Web Conf.*, 2021, pp. 1846–1855, doi: [10.1145/3442381.3449816](https://doi.org/10.1145/3442381.3449816).

[19] A. Kendall and Y. Gal, "What uncertainties do we need in Bayesian deep learning for computer vision?," in *Proc. 31st Int. Conf. Neural Inf. Process. Syst.*, 2017, pp. 5580–5590, doi: [10.48550/arXiv.1703.04977](https://doi.org/10.48550/arXiv.1703.04977).

[20] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction," in *Proc. AAAI Conf. Artif. Intell.*, vol. 33, no. 01, 2019, pp. 5668–5675, doi: [10.48550/arXiv.1803.01254](https://doi.org/10.48550/arXiv.1803.01254).

[21] C. Zheng, X. Fan, C. Wang, and J. Qi, "GMAN: A graph multi-attention network for traffic prediction," in *Proc. AAAI Conf. Artif. Intell.*, 2020, vol. 34, no. 01, pp. 1234–1241, doi: [10.48550/arXiv.1911.08415](https://doi.org/10.48550/arXiv.1911.08415).

[22] L. Zhao et al., "T-GCN: A temporal graph convolutional network for traffic prediction," *IEEE Trans. Intell. Transp. Syst.*, vol. 21, no. 9, pp. 3848–3858, Sep. 2019, doi: [10.1109/TITS.2019.2935152](https://doi.org/10.1109/TITS.2019.2935152).

[23] W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, and X. Feng, "Multi-range attentive bicomponent graph convolutional network for traffic forecasting," in *Proc. AAAI Conf. Artif. Intell.*, 2020, vol. 34, no. 01, pp. 3529–3536, doi: [10.48550/arXiv.1911.12093](https://doi.org/10.48550/arXiv.1911.12093).

[24] K. Guo et al., "Optimized graph convolution recurrent neural network for traffic prediction," *IEEE Trans. Intell. Transp. Syst.*, vol. 22, no. 2, pp. 1138–1149, Feb. 2021, doi: [10.1109/TITS.2019.2963722](https://doi.org/10.1109/TITS.2019.2963722).

[25] Y. Li, R. Yu, C. Shahabi, and Y. Liu, "Diffusion convolutional recurrent neural network: Data-driven traffic forecasting," 2017, *arXiv:1707.01926*.

[26] B. Yu, H. Yin, and Z. Zhu, "Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting," 2017, *arXiv:1709.04875*.

[27] C. Zheng, X. Fan, C. Wang, and J. Qi, "GMAN: A graph multi-attention network for traffic prediction," in *Proc. AAAI Conf. Artif. Intell.*, 2020, vol. 34, no. 1, pp. 1234–1241, doi: [10.48550/arXiv.1911.08415](https://doi.org/10.48550/arXiv.1911.08415).

[28] Y. Gal and Z. Ghahramani, "Bayesian convolutional neural networks with Bernoulli approximate variational inference," *Comput. Sci.*, 2015, doi: [10.48550/arXiv.1506.02158](https://doi.org/10.48550/arXiv.1506.02158).

[29] R. Chandra, A. Bhagat, M. Maharana, and P. N. Krivitsky, "Bayesian graph convolutional neural networks via tempered MCMC," *IEEE Access*, vol. 9, pp. 130353–130365, 2021, doi: [10.1109/ACCESS.2021.3111898](https://doi.org/10.1109/ACCESS.2021.3111898).

[30] Y. Liao and C. Liang, "A temperature time series forecasting model based on deepar," in *Proc. 7th Int. Conf. Comput. Commun.*, 2021, pp. 1588–1593, doi: [10.1109/ICCC54389.2021.9674623](https://doi.org/10.1109/ICCC54389.2021.9674623).

[31] H. Zhou et al., "Informer: Beyond efficient transformer for long sequence time-series forecasting," in *Proc. AAAI Conf. Artif. Intell.*, 2021, pp. 11106–11115, doi: [10.1609/aaai.v35i12.17325](https://doi.org/10.1609/aaai.v35i12.17325).

[32] K. Shridhar, F. Laumann, and M. Liwicki, "Uncertainty estimations by softplus normalization in Bayesian convolutional neural networks with variational inference," 2018, *arXiv:1806.05978*.

[33] K. Shridhar, F. Laumann, and M. Liwicki, "A comprehensive guide to Bayesian convolutional neural network with variational inference," 2019, *arXiv:1901.02731*.

[34] A. D. Kiureghian and O. Ditlevsen, "Aleatory or epistemic? Does it matter?," *Struct. saf.*, vol. 31, no. 2, pp. 105–112, 2009, doi: [10.1016/j.strusafe.2008.06.020](https://doi.org/10.1016/j.strusafe.2008.06.020).

[35] W. Sun, Y. Lu, X. Zhang, and M. Sun, "DeepGlobal: A framework for global robustness verification of feedforward neural networks," *J. Syst. Archit.*, vol. 128, 2022, Art. no. 102582, doi: [10.1016/j.sysarc.2022.102582](https://doi.org/10.1016/j.sysarc.2022.102582).

[36] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, "On the properties of neural machine translation: Encoder–decoder approaches," in *Proc. 8th Workshop Syntax, Semantics Struct. Stat. Transl.*, 2014, p. 103, doi: [10.48550/arXiv.1409.1259](https://doi.org/10.48550/arXiv.1409.1259).

[37] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," 2016, *arXiv:1609.02907*.

[38] B. Yu, H. Yin, and Z. Zhu, "Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting," 2017, *arXiv:1709.04875*.

[39] Q. Bi, J. Liu, and J. Tang, "Graph convolutional network representation learning method with community-enhanced temporal features for dynamic graphs," in *Proc. 6th Int. Conf. Artif. Intell. Pattern Recognit.*, 2023, pp. 1336–1341, doi: [10.1145/3641584.3641785](https://doi.org/10.1145/3641584.3641785).

[40] Z. Li, C. Huang, L. Xia, Y. Xu, and J. Pei, "Spatial-temporal hypergraph self-supervised learning for crime prediction," in *Proc. IEEE 38th Int. Conf. Data Eng.*, 2022, pp. 2984–2996, doi: [10.1109/ICDE53745.2022.00269](https://doi.org/10.1109/ICDE53745.2022.00269).

[41] Y. Zhang and J. Yan, "Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting," in *Proc. 11th Int. Conf. Learn. Representations*, 2023, 1–9.

976
977
978
979
980
981
982
983
984
985

Lei Wang (Student Member, IEEE) received the bachelor's and master's degrees from Nankai University, Tianjin, in 2005 and 2014, respectively. He is currently working toward the Ph.D. degree with the College of Intelligence and Computing, Tianjin University, Tianjin. His research interests mainly include deep learning, traffic data analysis and application, complex spatiotemporal data mining, and multi-source heterogeneous data analysis.

986
987
988
989
990
991
992
993
994
995
996
997

Huaming Wu (Senior Member, IEEE) received the B.E. and M.S. degrees in electrical engineering from the Harbin Institute of Technology, Harbin, China, in 2009 and 2011, respectively, and the Ph.D. degree (with Highest Hons.) in computer science from Freie Universität Berlin, Berlin, Germany in 2015. He is currently a Professor with the Center for Applied Mathematics, Tianjin University, Tianjin, China. His research interests include mobile cloud computing, edge computing, Internet of Things, deep learning, complex networks, and DNA storage.

Keqiu Li (Fellow, IEEE) received the bachelor's and master's degrees from the Department of Applied Mathematics, Dalian University of Technology, Dalian, China, in 1994 and 1997, respectively, and the Ph.D. degree from the Graduate School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Japan, in 2005. He is currently a Professor with the College of Intelligence and Computing, Tianjin University, Tianjin, China. He has authored or coauthored more than 100 technical papers, such as the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ACM Transactions on Internet Technology, INFOCOM, Architectural Support for Programming Languages and Operating Systems, EourSys, and USENIX ATC. His research interests include data center networks, cloud computing, and cybersecurity. He is also an Associate Editor for the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS and IEEE TRANSACTIONS ON COMPUTERS.

Wei Yu received the B.S. degree from Jinggangshan University, Ji'an, China, in 2012, the M.S. degree from Henan Normal University, Xinxiang, China, in 2015, and the Ph.D. degree from the School of College of Intelligence and Computing, Tianjin University, Tianjin, China. He is currently an Associate Professor with Zhejiang Yuexiu University, Shaoxing, China. His research interests include dynamic complex network analysis, large-scale data mining and machine learning.

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026