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ST-BayesianNet: Spatiotemporal
Bayesian Convolution Neural Networks
for Multivariate Time Series Forecasting

Lei Wang ¥, Student Member, IEEE, Huaming Wu

Abstract—Maultivariate time series forecasting has extensive ap-
plications across various domains, including economics, finance,
bioinformatics, and intelligent transportation. The inherent spa-
tiotemporal data is characterized by pronounced nonlinearity
and stochastic uncertainty. However, current deep learning-based
methods all employ deterministic parameters to characterize data
features. This approach fails to effectively capture the temporal
and spatial uncertainty inherent in data, resulting in limited model
capability to extract data features and reduced analytical predic-
tion accuracy. To solve this problem, this paper proposes Spa-
tiotemporal Bayesian Convolution Neural Networks, referred to as
ST-BayesianNet, for enhancing multivariate time series forecasting.
Specifically, we decompose the uncertainty of spatiotemporal data
into space-time dimensions, thus facilitating the prediction of multi-
variate spatiotemporal sequences. First, we leverage a self-adaptive
uncertainty adjacency matrix to model intricate uncertain spatial
relationships, while the acquisition of knowledge for this uncertain
matrix hinges upon judicious a priori assumptions. Then, a non-
deterministic Temporal Bayesian Convolutional Neural Network
(TBCN) is constructed to adeptly capture temporal uncertainty.
The optimization of model parameters, comprising both deter-
ministic and probabilistic aspects, is achieved through variational
inference. Finally, the experimental results obtained from seven
real-world datasets confirm that ST-BayesianNet is more accurate
than baseline methods at making predictions.

Index Terms—Multivariate time series forecasting, Bayesian
neural network, variational inference, uncertainty modeling.

1. INTRODUCTION

ORECASTING multivariate spatiotemporal data is a criti-
cal task for learning systems operating in dynamic environ-
ments, as noted in [1], attracting significant attention from the
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deep learning community. Deep learning has become popular
for extracting spatiotemporal features hidden in the data due
to its robust fitting capabilities, as it can capture the overall
trends across a set of dynamically changing variables. This task
is vital across various domains, including autonomous vehicle
operations [2], energy and smart grid optimization [3], supply
chain management [4] and industrial processes [5], [6], fueling
extensive research interest.

Spatiotemporal data inherently combines spatial and temporal
dimensions. The spatial dimension is typically represented on
graph domains, shaped by the complex topological structures
of spatial networks, such as road layouts influencing traffic flow
data [7]. The temporal dimension captures how data evolves over
time, reflecting dynamic patterns and trends. Most multivariate
spatiotemporal forecasting methods model interdependencies
among variables, where each variable depends on its own his-
torical values and those of others [8]. Effectively capturing both
spatial and temporal dependencies simultaneously is a critical
focus in this field [6].

Recent advancements in spatiotemporal graph modeling have
generally followed two main approaches: modeling the temporal
dimension and modeling the spatial dimension. For the temporal
aspect, techniques aim to extract dynamic information embed-
ded in the time dimension. For instance, convLSTM [9] en-
hances the traditional fully connected Long Short-Term Memory
(LSTM) architecture by integrating convolutional operations,
proving effective for feature extraction from spatiotemporal
data. ASTGCN [10] employs pure convolutional layers to de-
rive temporal features, while leveraging Graph Convolutional
Networks (GCN) for spatial information. AST-MAGCN [11]
combines Generative Adversarial Networks (GAN) with GCN,
enabling real-time extraction of spatiotemporal states, with fore-
casting outputs refined by the GAN framework.

Conversely, the spatial dimension is addressed by syn-
chronously integrating spatial information [12] for multivariate
spatiotemporal prediction. Models like TC-GCN [13], a GCN-
based approach, utilize the spatial relationship graph inherent
in the data. HistGNN [14] captures multi-scale spatiotemporal
dynamics, improving accuracy in complex weather forecast-
ing across regions and timescales. LSTTN [15] introduces a
transformer-based neural network for traffic flow prediction,
while Beyond Spatial [16] proposes a graph-based model us-
ing multivariate transfer entropy to enhance interpretability be-
yond spatial neighbors. However, static spatial graph structures
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Fig. 1.  The uncertainty in spatiotemporal data using speed rates from five loop
detectors in the METR-LA traffic dataset. Around horizon 1325, random factors
caused inaccurate measurements, with speed rates for all five detectors dropping
to zero, highlighting the aleatory uncertainty inherent in real-world loop detector
data.

may not always reflect true dependencies, prompting a shift
toward adaptive graph modeling as a research focus. Graph-
WaveNet [7] derives spatial relationships through node embed-
dings, while Bai et al. introduce two adaptive GCN modules:
a Node Adaptive Parameter Learning (NAPL) module [17]
to capture node-specific patterns, and a data-adaptive graph
generation module to infer dependencies across diverse traffic
series. AutoSTG [18] uses meta-learning to generate adjacency
matrices for both spatial GCN and temporal CNN, modeling
relationships between network parameters and meta-knowledge
within the attribute graph.

Modeling and predicting multivariate spatiotemporal data
through spatiotemporal models requires precision that depends
on the intricate relationships and evolving characteristics of
such data. The aforementioned deep learning models employ
deterministic parameter operations when modeling spatiotem-
poral data, meaning parameters are fixed at specific values
after model training. However, the complex relationships within
spatiotemporal data exhibit randomness and uncertainty [19],
stemming from measurement accuracy issues and the challenge
of precisely fitting data features. Aleatoric uncertainty of data is
usually caused by imprecise sensing instruments or datalogging.
As depicted in Fig. 1, all loop points recorded zero velocity
around horizon 1325, which is a phenomenon commonly ob-
served in real spatiotemporal data.

Concurrently, deterministic models such as convLSTM [9],
Graph-WaveNet [7], and AutoSTG [18] often produce smooth
predictions. However, real-world data frequently exhibits dis-
continuous, non-smooth states, indicating that deterministic
models possess representational uncertainty when fitting data
characteristics. The contingent uncertainty of spatio-temporal
data and the representational uncertainty of model fitting un-
derscore the importance of uncertainty modeling for multi-
variate spatio-temporal sequence data. Such uncertainty spatio-
temporal data models must not only capture complex spatio-
temporal relationships but also effectively represent the under-
lying uncertainty within the data, ultimately providing predictive
confidence measures.

To tackle the challenges outlined earlier, this study introduces
a spatiotemporal graph learning framework based on Bayesian
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probability, named the Spatiotemporal Bayesian Inference Net-
work or ST-BayesianNet. This framework uses a deep neural
network to model spatiotemporal interdependencies, capturing
both deterministic and uncertain elements. To address latent un-
certainties in the data, we separate uncertainty into temporal and
spatial dimensions, applying variational inference to each. For
spatial uncertainty, we develop a Bayesian Graph Convolution
Network (BGCN) that enables end-to-end supervised training
to learn a self-adaptive uncertainty adjacency matrix directly
from the data. For temporal uncertainty, we design a Temporal
Bayesian Convolutional Neural Network (BTCN) to capture
temporal uncertainty while also regularizing the parameters of
the entire network.

ST-BayesianNet effectively captures aleatoric uncertainties
within complex spatial relationships, which is optimized glob-
ally using variational inference, delivering accurate time se-
ries predictions while simultaneously quantifying prediction
uncertainty. The main contributions of this work are as
follows:

e ST-BayesianNet introduces a novel deep learning frame-
work to capture both deterministic and uncertain compo-
nents of the spatiotemporal dependencies. We decompose
it into temporal and spatial dimensions of uncertainty
and employ variational inference methods to approximate
the optimal solution for training parameters for charac-
terizing the inherent uncertainty in spatiotemporal data.
This dual-dimensional uncertainty modeling module is
then integrated with deterministic spatiotemporal model-
ing modules to construct a globally optimized framework
that simultaneously achieves uncertainty representation
and enhances prediction accuracy.

e We propose a Bayesian Graph Convolutional Network
(BGCN) that automatically models spatial uncertainty.
This module employs a self-adaptive uncertainty adjacency
matrix learned directly from the data through end-to-end
supervised training. Additionally, we have designed a non-
deterministic Bayesian Temporal Convolutional Network
(BTCN) that captures uncertainty in the temporal dimen-
sion and regularizes the parameters of the entire network.
Integrating these components enables ST-BayesianNet to
effectively model uncertainty in complex spatiotemporal
relationships.

® We comprehensively evaluated ST-BayesianNet on seven
real-world spatiotemporal datasets. The results show a pre-
diction error reduction of 1.2% to 4% compared to bench-
mark models. Additionally, visualizations of the model’s
output demonstrate that ST-BayesianNet generates more
plausible distribution predictions, a capability not achiev-
able by prior deterministic models.

The structure of this paper is organized as follows. In Sec-
tion II, we provide an overview of related works concerning
approaches to traffic prediction. Section III delves into the
details of ST-BayesianNet. The performance evaluation of ST-
BayesianNet is presented in Section IV, encompassing predic-
tion results and an analysis of its resilience to perturbations.
Finally, Section V concludes the paper, summarizing the findings
and contributions.
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II. RELATED WORK

As a key area of multivariate time series analysis, research
on spatio-temporal forecasting models has received significant
attention due to its ability to handle complex nonlinear data pat-
terns. This paper focuses on studies of deterministic and uncer-
tain spatio-temporal forecasting models. This section highlights
breakthrough achievements in the relevant research progress
of deterministic spatio-temporal neural network models and
uncertain Bayesian neural network models, which form the basis
of this study.

A. Spatiotemporal Neural Network Models

Spatio-temporal neural network models hold significant the-
oretical importance as they aim to capture the intrinsic rela-
tionships between future data points and historical observations
within spatio-temporal datasets, thereby enabling high-precision
spatio-temporal forecasting. Such models typically integrate
spatio-temporal information through joint modeling and rep-
resent widely recognized and extensively studied deterministic
spatio-temporal forecasting frameworks.

Existing deep learning models employ various architectures
tailored to different attributes of the spatiotemporal dimension
to extract latent feature information from the data and facilitate
accurate prediction. For instance, CNN [20] or RNN [21], [22]
based methods have been widely utilized to capture temporal
patterns. More recently, GCNs have gained popularity in mod-
eling spatial relationships, where the adjacency matrix, often
based on distance information, delineates the spatial connections
between monitoring points [23], [24].

Graph neural networks have a wide range of applications in
the field of spatio-temporal data forecasting. For instance, Wu
etal. [7] proposed a novel Graph Convolutional Neural Network
architecture, termed Graph-WaveNet, designed specifically for
spatiotemporal graph modeling. The methodology integrates
adaptive dependency matrices derived from node embeddings,
thereby enhancing the model’s ability to discern and leverage
the intrinsic spatial dependencies embedded within the input
data. DCRNN [25] is a model that represents traffic flow as
a diffusion process across a directed graph, and introduced
a convolutional recursive neural network architecture that is
based on diffusion principles. This deep learning framework
is established as a robust approach for traffic forecasting,
adeptly capturing and intertwining the spatial and temporal
inter-dependencies that are characteristic of traffic flow pat-
terns. The Spatiotemporal Graph Convolutional Network(ST-
GCN) [26], integrates graph convolutional modules to model
spatial dependencies and temporal dynamics for accurate traffic
prediction.

Additionally, GMAN [27] employed a multi-graph attention
mechanism within a deep network architecture, which exe-
cutes attentional computations across spatial as well as tem-
poral domains, thereby enabling a comprehensive analysis of
multi-dimensional data. Nevertheless, these methods suffer from
limitations in accuracy and applicability due to their neglect of
modeling the uncertainty and data drift characteristics inherent
in spatiotemporal data.

B. Bayesian Neural Network Models

The inherent spatio-temporal relationships within spatiotem-
poral data often exhibit high complexity and uncertainty. Con-
sequently, some researchers have turned to Bayesian neural
network models. These approaches address the challenge of
quantifying uncertainty in spatiotemporal data by incorporating
neural networks with probabilistic model parameters. For in-
stance, Gal et al. [28] proposed Bayesian Convolutional Neural
Networks (CNNs), which is the first Bayesian approach used to
CNN s that leverages Bernoulli variational inference to combat
over-fitting in small datasets, providing a robust framework
for uncertainty estimation and improved classification accuracy.
Chandra et al. [29] introduced Bayesian graph CNNs that lever-
age tempered Markov chain Monte Carlo (MCMC) sampling
via parallel computation, employing Langevin gradient proposal
distributions to address the quantification of uncertainty in the
analyzed sample data. This innovative approach extends the
traditional application of graph CNNs by integrating Bayesian
inference to model the inherent uncertainty in spatial data more
effectively.

DeepAR [30] employed an RNN architecture for probabilistic
forecasting, utilizing simplified temporal convolutional layers to
reduce parameter count and LSTM-units to capture temporal
dynamics. The method employs an auto-regressive approach
that incorporates Gaussian-distributed stochastic error terms to
reduce prediction errors. DeepAR, an efficient forecasting tech-
nique, leverages these random features to capture and analyze
the inherent uncertainty in temporal data.

In summary, the intricate interplay between time and space in
spatiotemporal data is characterized by nonlinear and uncertain
relationships. However, the previously discussed Spatiotempo-
ral methods are inherently deterministic, meaning that they yield
a fixed output for a given input once the model parameters
have been determined. Furthermore, existing Bayesian neural
network methods can only handle uncertainty analysis for small-
scale data or focus on uncertainty in either the temporal or spatial
dimension during data analysis and prediction tasks. Conse-
quently, mainstream spatio-temporal and uncertainty methods
have failed to fully capture the uncertainty arising from the joint
temporal and spatial dimensions, leaving room for improvement
in the data analysis and prediction performance of these models.

III. METHODS
A. Problem Definition

Definition 1: Spatial Network G. A weighted undirected
graph G = (V, E, A) is used to describe the spatial topological
structure or semantic relationship in the spatiotemporal data,
where V = {vp,v1,...,vn} is treated as N monitoring ver-
tices, and F is expressed as a set of edges. We use A € RV*N
to represent the adjacency matrix of G, which is the weight
matrix in this paper. In some cases, there is more than one
spatial network, i.e., we will have multiple adjacency matrices
{Ay, Ay, ..., A}

Definition 2: Feature Matrix X. The information on the
spatial network G is regarded as the node attribute features V/,
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Fig. 2.

The overall architecture of ST-BayesianNet. It comprises two main branches: the deterministic computing branch (blue), which captures deterministic

patterns in the data, and the non-deterministic computing branch (orange), which models uncertainty. Each branch is composed of multiple spatiotemporal
dependency blocks, designed to independently extract deterministic and stochastic information from the spatiotemporal data.

which is indicated by X € RT*¥N*C where O, T and N = |V|
are the number of node attribute features such as traffic speed,
number of traffic vehicles, the length of the historical times series
and the number of spatial sensor nodes, respectively.

The problem of multivariate time series forecasting in
this paper is considered as predicting future features Y =
(r4+1,...,Tr+g) from current data X = (z1,...,27).
Through the above definition, The mapping function fy from
X to'Y should be learned, that is:

Y = fo(G, X), )]

where 6 is the parameter of the model. The real future data is
Y = (¢741,...,2r4¢) and the training process is to make the
distance between predicted output Y and Y smaller and smaller.

B. Overview of ST-BayesianNet

Fig. 2 illustrates the overall architecture of the ST-
BayesianNet model, which comprises two primary branches:
a deterministic computing branch and a non-deterministic
computing branch. The framework is structured into multiple
blocks. Vertically, it is segmented into a time-dependent module
(BTCN) and a space-dependent module (BGCN), aligning with
the structure commonly found in existing deep spatiotemporal
prediction frameworks.

In the deterministic computing branch, deterministic spa-
tiotemporal features are extracted. In contrast, the non-
deterministic branch captures stochastic patterns in the spa-
tiotemporal data using the BTCN and BGCN modules. Finally,

the model output integrates both the deterministic and uncertain
components, providing a comprehensive representation of the
spatiotemporal dynamics.

In the remainder of this section, we present a comprehensive
overview of the core components that make up ST-BayesianNet.
The framework is organized into multiple blocks, each contain-
ing deterministic temporal and spatial models. To illustrate the
design and functionality, we examine a representative block in
detail, noting that the structure and operation of the remaining
blocks follow a similar repetitive pattern.

C. Deterministic Spatiotemporal Modeling

Spatiotemporal data inherently comprises deterministic com-
ponents in both its temporal and spatial dimensions. For in-
stance, the power consumption within distinct regions exhibits
discernible periodicity, influenced by seasonal fluctuations [31].
Similarly, in the domain of traffic forecasting, the intricate
spatial interconnections of road networks play a pivotal role in
governing traffic flow dynamics [7]. Therefore, formulating ef-
fective methodologies to appropriately capture and model these
deterministic spatiotemporal constituents stands as a pivotal
determinant of the predictive accuracy and quality in the realm
of multivariate time series forecasting.

The ST-BayesianNet framework enables multidimensional
uncertainty modeling of spatiotemporal data by integrating
BGCN for spatial randomness and BTCN for temporal ran-
domness. This combined approach allows for the generation
of predictions comprising deterministic and uncertain elements.
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The dual-branch architecture ensures that the model can accu-
rately predict multivariate time series while also assessing pre-
diction uncertainty in complex spatiotemporal tasks. Through
variational inference, the training process determines the opti-
mal solution for the infinite approximation parameter equation,
enhancing the model’s robustness and practicality for real-world
applications. We provide a detailed introduction to the model’s
components next.

In addressing the temporal dimension, ST-BayesianNet em-
ploys Gated TCN [7] due to their lean parameter count and
straightforward architectural design. Let X € RT*N*C repre-
sent the historical input spatiotemporal data. To ensure consis-
tent feature extraction across the entire model, ST-BayesianNet
initiates a process of dimension normalization using a CNN
with a 1 x 1 kernel size. This normalization step is outlined
as follows:

X, =CNN(X) € RT*NxDP, )

where CNN refers to a two-dimensional convolution operation,
and D signifies the standardized feature dimension. Notably,
owing to the utilization of the 1 x 1 convolution operation, the
described process does not compromise the inherent spatiotem-
poral information within the original data.

To extract meaningful temporal information, we incorporate
the Gated TCN into our approach. Gated TCN is chosen for
its ability to effectively manage the flow of information across
layers within temporal convolutional networks. For an input
tensor X, € RT*NxD " the output of the Gated TCN, using
time-dilated causal convolution, is computed as follows:

Xar = g(Xs % Kq + a) © 0( X+ Ky +b) € RTar*N>xD/

3)
where * represents a one-dimensional convolution along the time
direction with parameters K ,, K, a and b. © is the element-wise
product. o(.) is the sigmoid function and ¢(.) is the activation
function, where tanh serves as the specific activation function
in this paper. In order to increase the perception field of the
temporal dimension and enhance the computational efficiency of
the model, we employ dilated causal convolution. Consequently,
the output dimensionality of the temporal aspect becomes
Tar <T.

In comparison to univariate prediction, the integration of
spatial network information into prediction models is pivotal for
capturing the intricacies of spatiotemporal data. Nonetheless, in
real-world scenarios, many spatiotemporal datasets struggle to
effectively capture spatial topological relationships. Hence, ST-
BayesianNet employs the adaptive adjacency matrix method [7],
wherein the following spatial relations are defined:

A = SoftMax(ReLu(FE1ET)), 4)

where F; and F5 are of dimensions N X d and represent the
embeddings of source nodes in the spatial graph, and d signifies
the embedding dimension. Subsequently, this allows for the cap-
turing of hidden spatial dependencies, which can be expressed

filters output filters output

input ol input 7
- | ————— ,,/' h
12 96 > 4 A
221 98 A

CNN BCNN

Fig. 3. The difference between BCNN and CNN. The convolution kernel of
CNN (left) is a definite value, while the convolution kernel of BCNN (right) is
the distribution of data. value [32].

as follows:

K
Xas = ZAkXdTka (5)
k=0

where X 47 is the input of GCN, which is also the output of Gate
TCN in (3), K is the GCN order, and W, is the parameter of
each GCN layer.

D. Uncertainty Modeling

The real world is inherently imbued with uncertainty, and
this characteristic extends to the realm of spatiotemporal data.
Prevailing deep learning models, including LSTM, CNN, and
transformers, are deterministic in nature and susceptible to
overfitting. Thus, addressing the intrinsic uncertainty within
spatiotemporal data becomes imperative. The framework of ST-
BayesianNet is tailored to this challenge, wherein we undertake
the modeling of temporal and spatial uncertainties distinctively.

1) Temporal Uncertainty Modeling: In order to model time
uncertainty, the ST-BayesianNet employs the Bayesian Convo-
lution Network (BCNN) [32], which is the core part of BTCN,
underpinned by variational inference principles. A noteworthy
distinction between BCNN and CNN lies in the convolution
parameters, wherein BCNN introduces an element of random-
ization, as visually illustrated in Fig. 3.

Let X, denote the input to the BCNN. Consequently, the
output of BCNN takes the form of a random variable.

Xur = Xy % K 4+ B = BCNNw(X,), (©)

where X and W = {KC, B} serve as random variables. W repre-
sents the parameter of the BCNN, adhering to a Gaussian prior
distribution, i.e., p(W) = N(u, o). As the direct derivation of
the posterior distribution p(W | D) is impractical, we pivot to-
wards optimizing the variational posterior distribution ¢(WV|6;)
to minimize the divergence K L(p||q) until it approaches zero,
where D = {(z;,y;)}", stands for the training data, K L(.||.)
represents the Kullback-Leibler divergence between two dis-
tributions, and 6; corresponds to the controlling parameter of
q(W)|0;). According to the variational inference principle [33],
the optimization objective is formulated as follows:

L(6:) = ~Eqowi,) {k’g [1%”

385

386
387
388

389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

407
408
409
410
411
412
413
414
415
416
417



418
419
420
421
422
423
424
425
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444
445

446

447

448
449
450
451
452
453
454
455
456
457
458

= KL(qW [ 0,)[|[POV)) + Eqope,) (P(D | W))~(7)

Since determining the uncertainty of the temporal dimension
is challenging, the posterior distribution ¢g(W | 6;) still obeys a
Gaussian distribution, similar to the approach in [33].

2) Deterministic and Uncertainty Temporal Dependence
(TBN): The temporal dimension is determined by both the pro-
vided information and non-deterministic information. Thus, we
can combine these two sources to generate the time dimension
information feature output. This involves fusing information for
(3) and (6), resulting in the following expression:

Xr = Xyr + aXyr, (8)

where « is the fusion parameter and can be learned in training.

3) Spatial Uncertainty Modeling: Due to the inherent com-
plexity of spatial relationships in spatiotemporal data, existing
models often exhibit model uncertainty (i.e., epistemic uncer-
tainty) [34] when capturing spatial dependencies. Traditional
GCNes, such as those defined in (5), are particularly susceptible
to overfitting in such settings. To address these challenges,
we propose an uncertainty-aware GCN model named BGCN,
within the ST-BayesianNet framework. BGCN explicitly models
spatial uncertainty, improving robustness and generalization in
spatiotemporal learning tasks.

Let the attribute values of the spatial detection points V' =
{vo, ..., vn} be random vectors £, E € RV*?, where d < N
is the embedded dimension, then the uncertain spatial relation-
ship in spatiotemporal data is defined as follows

P = softMaz(Relu(£1EL)) € RNV, ©)

Due to the complexity of spatial relationship, we assume
that £ and & priori obey mixed Gaussian distribution, that
is £1,8 ~ P(E) = S, awd(E | Ox), where 0 = (ug, %)
are the parameters of Gaussian distribution N (py,0x) =

1 (z—pi)?

Jaroz OP(= 55

on the above concept, ST-BayesianNet can be expressed as

), and oy, are the mixed parameters. Based

K
Xus = PFXrWx,
k=0

(10)

where W}, is the parameter of ST-Bayesian, and X1 is the output
of (8).

The inference of the randomization parameter required by
ST-BayesianNet is denoted as £ = (&1, E2). However, express-
ing the posterior probability P(E | D) directly is challenging.
To address this, we utilize a variational distribution ¢(& | 05) ~
N (pi, ) to approximate the actual posterior distribution
P(& | D). Here, 05 represents the parameters of the variational
distribution.

Applying the principles of variational inference, we can derive
the following equation:

0,, = argminKL[g(& | 0,)[| P(E | D)]
0,

- ae 0
= argemlnEq(gles) |:10g l:P(g | D)

s
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q(€ | HS)P(D)”

— argminE !
argminy epp,) {Og [p(D | E)P(E)

- argeminIEq(sws) [log [%”

s

= argmin [KL(q(€ | 0)|[P(€)) — Eqgeje.) log P(D | £)]] -

s

(11)
Thus, the loss function of ST-BayesianNet is
L) = argemin [KL(g(E | O)I|P(E))
~Ey(gj0,) llog P(D | 6,)]] - (12)

4) Spatial Deterministic and Uncertain Information Fusion:
According to (5) and (10), the final spatial feature is the combi-
nation of the deterministic and uncertain information from the
spatial dimension, which can be written as follows:

X = Xys + Xus- (13)

As indicated by (3), (5), (6), (10), and (13), X, combines the
spatiotemporal deterministic and uncertain information present
in the spatiotemporal data. To facilitate the training of the model,
a shortcut has been incorporated into ST-BayesianNet, denoted
as:

X0 = X, + Xyen, (14)

where X represents the input of this block (as shown in (2)),
and X'®) denotes the output of the current block b.

E. The Output of ST-BayesianNet

Since the ST-BayesianNet model consists of multiple blocks,
the output of the model needs to integrate the outputs of multiple
blocks. The output of all blocks is represented by:

B
x) = Z o(conv(xX®)),
b=0

5)

where o is the activation function, such as ReL.U, and B repre-
sents the number of blocks in ST-BayesianNet. Therefore, the
random output of ST-BayesianNet is given by:

Y = conv(X). (16)

In essence, ST-BayesianNet is a randomized model, so the
output of ST-BayesianNet is a random variable Y. All random
parameters of the ST-BayesianNet model are in (6) and (9), and
the randomization parameters in all blocks are recorded as &.
All random parameters £ are sampled from their corresponding
posterior distribution ¢(§) and sent to the final expectation in the
network as the deterministic output of the most general model,
ie.

S
Y =Ee g ~ Y V&), (17)
s=0

where S is the number of samples.
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F. The Whole Loss

According to (7) and (12), we can obtain the loss function of
the whole random parameter &

L0, w) = arg min [KL(q(¢ [ 0)[1P(€))

~Eq(cjo) llog P(D | 9)]]

where 6 = (0;,05) represents the control parameters of the
posterior probability distribution, and w denotes the network
parameters of ST-BayesianNet. The loss function comprises two
components. The first term quantifies the proximity between the
prior distribution and the variational prior distribution, while
the second term accounts for the data likelihood. For the sake of
training convenience, we express the complete loss function in
the following manner:

L0, w) = arg min [KL(g(¢ [ 0)[1P(€))

(18)

+8 % Liruper (Y, Y) |, (19)

where 3 is the hyperparameter that balances the influence of
likelihood and KL divergence and

Ly - X)? Y — X| <4,

N 20
8|Y — X| — 46% otherwise. 0)

LHuber(X7 Y) = {

IV. PERFORMANCE EVALUATION
A. Experimental Setup

1) Datasets: The predictive performance of ST-BayesianNet
is evaluated using two publicly available traffic spatiotemporal
datasets, i.e., METR-LA and PEMS-BAY. These datasets are ac-
cessible through the open-source code provided in the literature.

e METR-LA [7]: It comprises real-time traffic speed data
collected from loop detectors installed on highways in Los
Angeles County. The dataset covers the time period from
March 1 to March 7, 2012, and consists of data from 207
sensors. The traffic speed readings are taken at 5-minute
intervals, and the adjacency matrix is constructed based
on the spatial distances between the sensors in the traffic
network.

e PEMS-BAY [7]: This data was meticulously collected
through the California Department of Transportation’s per-
formance measurement system, covering the period from
January 1 to May 31, 2017. It incorporates data from a total
of 325 sensors, with each data point sampled at precise
S-minute intervals. The 325 x 325 adjacency matrix is
constructed based on the spatial relationships among roads
in the network.

e solar!: It captures solar power output and environmental
conditions from two solar power plants over a 34-day pe-
riod, specifically from May 15 to June 17, 2020. Collected
on an hourly basis, the data includes variables such as
temperature, humidity, solar irradiance, and power output.

[Online].  Available:
power-generation-data

https://www.kaggle.com/datasets/anikannal/solar-

e traffic?: It provides hourly traffic flow data collected from
automated sensors at 4 key junctions, capturing variations
in vehicle counts over an unspecified period.

e PSMO04&PSMO083: A comprehensive collection of real-
time traffic data gathered from loop detectors on
California’s State Route 4 (PSMO04)/ State Route 8
(PSMO08)highway, offering a robust resource for analyzing
and forecasting traffic patterns.

2) Metrics: To evaluate the performance of ST-BayesianNet,
we employ two established metrics, Mean Squared Error (MSE)
and Mean Absolute Error (MAE), to quantify relative prediction
error. Smaller values of MSE and MAE correspond to improved
prediction accuracy.

e MSFE (Mean Squared Error): It emphasizes larger errors

due to its squaring nature and can be computed as:

Q

1 N
MSE = Q—Z 1Y, — V|3
t=1

e M AFE (Mean Absolute Error): It gives an average magni-
tude of errors without squaring, and can be computed as:

2L

Q
1 N
MAE = QN;M Yil. (22)
3) Baselines: In order to verify the performance of ST-
BayesianNet, we introduce several baselines in different ap-
proaches:

e FNN [35]: A feed-forward neural network designed for
time series prediction, capable of capturing complex pat-
terns and dependencies in sequential data.

e GRU [36]: A variant of RNNs that mitigates the vanishing
gradient problem through gating mechanisms, enhancing
its ability to learn long-term dependencies.

e AGCRN [17]: A model that dynamically adapts to traffic
patterns by learning node-specific parameters and generat-
ing data-driven graphs for improved traffic forecasting.

e GOCN [37]: A neural network architecture designed to
process graph-structured data, where nodes and edges are
associated with features.

e STGCN [38]: A Spatio-Temporal Graph Convolutional
Network that integrates graph convolutional modules to
model spatial dependencies and temporal dynamics for
accurate traffic prediction.

e TCGCN [39]: An advanced model that combines
community-enhanced graph convolutional networks with
attention mechanisms to capture complex spatiotemporal
patterns in traffic data.

e STHSL [40]: A Spatial-Temporal Self-Supervised Hyper-
graph Learning framework that addresses label scarcity in
crime prediction by capturing cross-region dependencies
and temporal patterns.

2[Online]. Available: https://www.kaggle.com/datasets/fedesoriano/traffic-
prediction-dataset

3[Online]. Available:
overview

https://gitcode.com/open- source-toolkit/06a2f/
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Fig.4. Theimpact on MSE of changes in hyperparameter beta within datasets
PEMS-BAY (top) and METR-LA (bottom). This indicates that beta is sensitive
to these two datasets, and adjusting it can help optimize model performance.

e Crossformer [41]: A Transformer-based model that lever-
ages cross-dimensional dependencies for multivariate time
series forecasting.

e Graph-WaveNet[7]: A GNN-based spatiotemporal model
that uses a learnable dependency matrix to capture both
spatial and temporal correlations, enabling the modeling
of long-range dependencies.

The selection of baseline methods in comparative trials high-
lights the unique characteristics and application domains of
each approach. Feedforward Neural Networks (FNN) and Gated
Recurrent Units (GRU) demonstrate proficiency in handling
sequential data by capturing intricate patterns and long-term
dependencies, making them suitable for general time series anal-
ysis and speech processing tasks. Graph-based models such as
Graph Convolutional Networks (GCN), Spatial-Temporal Graph
Convolutional Networks (STGCN), Temporal Convolutional
Graph Convolutional Networks (TCGCN), and Graph WaveNet
integrate spatial-temporal dynamics and attention mechanisms,
making them particularly effective for traffic forecasting and
complex spatiotemporal modeling. The Adaptive Graph Convo-
lutional Recurrent Network (AGCRN) further enhances perfor-
mance by dynamically adapting to evolving traffic conditions.
Additionally, models like Spatial-Temporal Hierarchical Self-
Supervised Learning (STHSL) and Crossformer are designed
to address challenges such as label scarcity and multivariate
time series forecasting, supporting a wide range of regional
prediction tasks. All baseline models are implemented using the
optimal hyperparameter settings as specified in their original
publications.

4) The Model Parameters: The convolution layers utilize a
kernel size of 3 with 1 padding to maintain the output shape.
ST-BayesianNet consists of 3 blocks, and the weight /3 in the
loss function of (19) is set to 0.7 for the METR-LA dataset
and 0.5 for the PEMS-BAY and other datasets, as determined
through experimentation.

Fig. 4 presents the parameter selection experiment for (3
across the two databases. It’s evident that /3 significantly impacts
the test MSE of the ST-BayesianNet model. The optimal /3
varies for different databases, as the model necessitates adjusting
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parameters based on the database to strike a balance between
prior fitting and data likelihood.

5) Other Settings: To ensure a fair comparison, the loss func-
tions employed for baselines are all Huber loss (as specified in
(20)), chosen for their demonstrated effectiveness. Additionally,
a batch size of 64 is consistently used across all models. During
the experimental setup, the dataset is partitioned into training,
validation, and testsets ataratioof 8 : 1 : 1. Following 50 epochs
of training, the model with the best performance on the validation
set is selected for testing on the test set.

B. Comparison of Prediction Accuracy

Table I presents a comprehensive comparison of various meth-
ods for predicting three, six and twelve time steps (e.g., 15, 30
and 60 minutes) on the specified datasets. The horizontal axis of
the table shows the comparison methods and testing metrics, and
the vertical axis shows the datasets and time steps. To address
concerns about the depth, refinement and applicability of the
evaluation to large-scale scenarios, extensive experiments were
conducted across six diverse spatiotemporal datasets. These
datasets encompass real-world traffic, energy and power system
data, with scale varying from hundreds to potentially thousands
of nodes when considering interconnected systems. The eval-
uation metrics include mean squared error (MSE) and mean
absolute error (MAE), with additional analyses on fault tolerance
(robustness to noise), computational complexity (inference time
and space), ablation studies and uncertainty visualisation pro-
viding a more refined and in-depth assessment. Upon inspection,
the following conclusions can be drawn:

ST-BayesianNet has been evaluated on five spatiotemporal
traffic datasets, including METR-LA, PEMS-BAY, and several
others. Across these benchmarks, it consistently outperforms
most competing methods. Notably, ST-BayesianNet demon-
strates a significant performance advantage over widely adopted
temporal models such as STGCN, TCGCN, Crossformer, and
AGCRN, achieving substantial improvements on the majority of
datasets. It is worth emphasizing that these baseline models are
well-established and commonly used deep learning approaches
for multivariate time series analysis, further underscoring the
effectiveness of ST-BayesianNet.

The model maintains a high level of performance, particu-
larly in prediction tasks involving large-scale traffic datasets
containing nearly a thousand node information points. This
demonstrates that ST-BayesianNet also possesses outstanding
predictive capabilities for large-scale practical applications. This
is thanks to its Bayesian Time-Convolutional Network (BTCN)
and Bayesian Graph Convolutional Network (BGCN), which
are highly effective at representing and analysing the uncertainty
inherent in real-time application data.

Comparative experimental results also indicate that models
that integrate spatiotemporal information, such as TCGCN,
ST-BayesianNet and Graph-WaveNet, perform better than mod-
els that rely solely on temporal or spatial approaches. ST-
BayesianNet achieves an MSE reduction of over 4.2% compared
to other spatio-temporal fusion baselines across all step-length
prediction tests on real-world traffic datasets such as METR-LA
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TABLE 1
THE PERFORMANCE COMPARISON RESULTS OF THE ST-BAYESIANNET FOR FORECASTING ON METR-LA, PEMS-BAY, SOLAR, TRAFFIC, PSM04 AND PSM08
DATASETS (THE HORIZONS ARE 3 STEPS, 6 STEPS, AND 12 STEPS, RESPECTIVELY). AND BOLD INDICATES THE BEST ACCURACY, UNDERLINED INDICATES THE
SECOND BEST, THE ITALICIZED NUMBERS SIGNIFY THE FOURTH AND ‘-’ INDICATES THAT THE MODEL DOES NOT CONVERGE

Methods ST-bayesianet FNN GRU AGCRN GCN STGCN TCGCN STHSL Crossformer ~ Graph-Wavenet
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
15m. 20032 2.448 28425 3.051 32238 2952 24.046 2.587 56336 4756 95.019 3.849 20.538 2.446 32.120 2974 46352 2577 20490 2.504
METR-LA 30m. 27.254 2.706 36.120 3307 43302 3.290 30.795 2.822 66272 5.071 103.960 5211 27383 2.716 43.686 3281 72592 3.926 29.055 2.774
Th. 36995 3.044 46.612 3.680 59.338 3.860 40.884 3.154 83.939 5.613 119.961 5359 37.112 3.033 64.772 4251 96.196 4.437 37.977 3.117
15Sm. 5016 1.099 11.647 1833 6741 1226 5.522 1.143 44936 2.933 131.055 5344 4.909 1.097 6337 1213 8443 1422 5153 LI121
PEMS-BAY 30m. 8359 1327 15354 2,019 12.536 1.536 8730 1.346 46.573 3.056 115.063 5.036 8.281 1309 11972 1.513 16.656 1.811 9.689 1.393
Ih. 13102 1.576 19.639 2202 19.294 1.892 13.170 1.588 49.810 3.250 162.193 5776 13.154 1.606 20.581 1989 - - 13922 1.637
30m. 4032 LOI1 12.642 2268 11741 2312 5262 1.224 58600 4.982 166.111 10.051 5.013 1.145 14736 2577 16405 2.500 10.136 1.942
solar  1h. 6472 1360 12.884 2310 17.766 2.855 8.637 1.702 103.157 6.822 371.089 13.841 8787 1.636 14.878 2.523 38394 3.923 19.868 2.889
2h. 11540 1952 16765 2.644 30.924 3700 15267 2373 98217 6.730 211.283 10.065 15.665 2337 129.028 8.194 44.714 4.035 36.795 4.233
3h. 0.001 0015 0001 0015 0002 0019 0002 0.027 0002 0029 0006 0.048 0.001 0015 0.002 0.026 - - 0001 0.015
wraffic  6h. 0002 0.018 0.001 0.017 0002 0024 0003 0.034 0003 0031 0005 0042 0002 0.018 0.003 0027 - - 0002 0.019
12h, 0,002 0021 0.002 0.019 0002 0021 0002 0.022 0003 0030 0004 0041 0002 0021 0003 0.027 - - 0002 0.022
15m. 823.702 18.002 1.5K 25.167  1.1K 20.870 940.633 19.575  4.5K 40.942  7.7K 72.171 999.370 19.877 951.134 19.894  1.2K 22.615 983.639 20.261
PSMO4  30m. 850.817 18376 1.7K 27.176 12K 22538  1.0K 20.645 47K 42580 72K 70.217  1.0K 20.554 947.983 19.721  2.0K 30386  1.1K 21.907
1h. 920785 18.909 1.7K 27.550  1.5K 24.818  1.0K 21.002  5.0K 44.788  7.9K 72.972 973.879 19.915  1.0K 20.938 24K 33.705  1.IK 21.293
15m. 497.753 14326  1.1K 23.073 631.344 16,374 542.285 15.212  3.3K 37382 5.7K 65.827 598.585 15.884 582.550 16.016 774.455 19.768 572.157 15.728
PSMO8  30m. 514.480 14.450 1.3K 24.639 780.775 17.956 631.951 16358  3.4K 38.847  8.7K 81.033 572.612 15341 604.886 16.024  1.8K 28.380 678.878 17.260
1h. 551402 14.734  1.5K 25.887 932.173 19.422 686.404 17.068  3.6K 40.522 10.2K 83.297 608.375 15.791 644.150 16.489  2.0K 30.260 620.514 16.048
and Traffic. This demonstrates its robustness in large-scale ap- s ST-BayesianNet
plications where data uncertainty arises from sensor failures or 37.51 mmwo
environmental factors. w/o T
35.0+
Our approach not only matches Graph-WaveNet’s perfor-
mance consistently, but also surpasses it, with equivalent or 32 51
better MSE/MAE across all horizons and datasets. Unlike de-
terministic models such as TCGCN and Graph-WaveNet, ST- w 30,51
BayesianNet generates predictive distributions to capture inher- =
ent uncertainties, providing probabilistic outputs that are absent 27.51
from the baselines. It learns spatial topologies adaptively and
models uncertainty via variational inference, yielding superior .07
expectation-based predictions. Furthermore, ST-BayesianNet is 225
scalable, efficiently handling large-scale applications with ex- '
tensive spatial and temporal datasets while maintaining robust 20,04
. . . 3 4 5 6 7 8 9 10 11 12
performance in diverse, high-volume real-world scenarios. Time Step
Fig. 5. The MSE result of ST-BayesianNet and its variants w/o A,w/o T and

C. Ablation Study

To further explore the impact of key components in our ST-
BayesianNet model, we conducted an ablation study using the
METR-LA dataset. We have labeled the various model variants
as follows:

® w/o A: In this configuration, we exclude the dynamic graph
convolution from ST-BayesianNet as described in (5).

e w/o T: In this configuration, we exclude the BTCN com-
ponent, as defined in (6) and (8), from every layer of
ST-BayesianNet without a non-deterministic time model.

® w/o P: In this configuration, we exclude the BGCN com-
ponent, as defined in (6) and (8), from every layer of ST-
BayesianNet without a non-deterministic spatial model.

Fig. 5 presents the MSE for each prediction horizon of ST-
BayesianNet along with the other variants on the METR-LA

w/o P under different time steps. It can be seen that each module plays an
important role in the entire ST Bayesian model.

dataset. It demonstrates that ST-BayesianNet generally outper-
forms the variants w/o A, w/o T, and w/o P, particularly when
dealing with longer sequence predictions. This suggests the
effectiveness of dynamic graph convolution, non-deterministic
time model, and non-deterministic spatial model in improving
the predictive performance of ST-BayesianNet.

D. Randomized Predictive Output

Unlike existing spatiotemporal prediction methods such as
Graph-WaveNet, DCRNN, and TCGCN, which exclusively
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(e) The prediction result of Loop 767573
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(f) The prediction result of Loop 767454

Prediction results of ST-BayesianNet on the METR-LA dataset. Since the output of ST-BayesianNet is a probability distribution, the prediction results

include a 95% confidence interval, enhancing the model’s reliability and interpretability. In (a) and (b), the predictions are highly accurate, resulting in very narrow

confidence intervals that are nearly invisible in the plots.

yield deterministic outcomes, ST-BayesianNet has the capac-
ity to provide both temporal and spatial uncertainties. Conse-
quently, its output is in the form of a probability distribution.
The advantage of this form of output lies in its ability to furnish
not only a plausible prediction but also a range of prediction
probabilities. The visualization outcomes of several prediction
outputs from the ST-BayesianNet model are depicted in Fig. 6.
In this experiment, predictions for 12 steps are conducted using
a 12-horizon input on the METR-LA dataset, employing 100
samples. The figure illustrates the true value (in red), the mean
value (in green), and the 95% confidence region (in blue) derived
from the 100 predictions. It can be seen that the prediction results
of ST-BayesianNet are relatively accurate, which reflects that
our proposed model architecture is relatively reasonable and can
fully obtain spatiotemporal information.

When the predicted true values follow relatively smooth
trends, the predicted values from our model exhibit modest
variances. However, when the predicted true values display
steep variations, our model adeptly identifies and quantifies
the inherent uncertainty, leading to predictions accompanied
by more substantial variances. In particular, Fig. 6(f) shows
the model’s capability to deliver comprehensive uncertainty
predictions when data carries significant aleatoric uncertainty.
This substantiates the ability of ST-BayesianNet to extract and
represent uncertainty from spatiotemporal data. This output
modality is a distinct advantage over existing spatiotemporal
prediction models like Graph-WaveNet, AGCRN, and TCGCN,
which generally lack the capacity to offer such probabilistic

predictions. Importantly, these probabilistic predictions hold
practical value for real-world forecasting scenarios.

E. Fault Tolerance Analysis

In reality, spatiotemporal data often exhibit noise and possess
high dimensions. An effective model should exhibit robustness
against such noise. In this experiment, we analyze the robustness
of ST-BayesianNet in the presence of noise. For the sake of gen-
erality, we assume that the training data input is contaminated by
Gaussian noise Z € RT*5*¢ ~ N(0,0?), meaning the input
becomes X + Z. The parameter o signifies the magnitude of the
noise level. Here, we employ o = {0.0001,0.001,0.01,0.1, 1}.
We opt to use the METR-LA dataset due to its relative complex-
ity, and for comparison purposes, we select Graph-WaveNet,
TCGCN, AGCRN and STGCN as benchmark methods owing
to their high prediction accuracy as highlighted in Fig. 7. Specif-
ically, we forecast 12 steps with 12 horizons of input data on the
METR-LA dataset as part of this assessment.

Fig. 7 illustrates the performance trends of various methods as
noise intensity increases. The MSE curves of ST-BayesianNet,
Graph-WaveNet, and AGCRN remain stable despite rising noise
levels. This stability can be attributed to specific model charac-
teristics: the Gate-Conv mechanism in Graph-WaveNet acts as
a low-pass filter, effectively mitigating noise impact, while the
recurrent architecture of AGCRN helps to filter out anomalous
data points. ST-BayesianNet, however, demonstrates superior
performance in terms of MSE compared to all baseline models,
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Noise test (Bayesian)
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80+ Algorithm
-®- ST-bayesianNet
- WaveNet
- TCGCN
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60 4% STGCN
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MSE

40+

Noise level (-log10)

Fig. 7. MSE results under different noise settings on the METR-LA dataset.
This comparison evaluates ST-BayesianNet against Graph-WaveNet, TCGCN,
STGCN, and AGCRN across varying noise levels. A negative logarithmic scale is
applied to the horizontal axis to enhance interpretability. ST-BayesianNet consis-
tently outperforms all baseline models across every noise level and demonstrates
superior stability throughout.

TABLE II
COMPARISON OF INFERENCE TIME AND SPACE COMPLEXITY. THE BEST
RESULT IS BOLDED, THE SECOND-BEST IS UNDERLINED, THE THIRD-BEST IS
MARKED WITH AN ASTERISK, AND THE FOURTH-BEST IS ITALICIZED

Algorithm Params MSE Time ACC
Graph-Wavenet ~ 271.3K 20490 *8.946  0.834
AGCRN 751.1K  24.046  1.462 *0.839
TCGCN 400.0K 20.538 31.250  0.843
crossformer 22M 46352 2537  0.830
DGCRN 1994K 21.921 22298 0.835
DE_NET 409.4K 20.445 58.021 0.834
ST-BayesianNet ~ *368.0K  20.032 7/3.885  0.846

highlighting the robustness of its BGCN and BTCN modules in
handling uncertainties intrinsic to time series data. This strength
is grounded in the overarching Bayesian variational inference
framework employed by ST-BayesianNet. Unlike traditional
methods that directly solve parameter equations, our model
leverages probabilistic trainable parameters within variational
inference to approximate optimal solutions during training.
This probabilistic approach effectively models uncertainty in
spatiotemporal data, thereby enhancing generalization and ro-
bustness across diverse application scenarios, especially when
dealing with noisy datasets.

F. Complexity Analysis

To assess the practical efficiency and effectiveness of ST-
BayesianNet, we further compare its time and space complexity
with those of baseline models. All models were trained under the
same experimental conditions outlined in Subsection IV-E, and
subsequently evaluated in terms of accuracy and inference time.
The results are presented in Table II. ST-BayesianNet achieves

the best performance in both MSE and accuracy, while maintain-
ing the third-lowest number of parameters and a moderate infer-
ence time. Although DGCRN has the smallest parameter count,
its inference time ranks third longest and its MSE performance
is suboptimal. AGCRN exhibits the shortest inference time but
requires roughly twice as many parameters as ST-BayesianNet.
Among the baselines, Graph-WaveNet offers the best balance
between inference time and parameter count, yet its overall
performance remains inferior to that of ST-BayesianNet.

For large-scale applicability, complexity analysis demon-
strates that ST-BayesianNet scales efficiently with dataset size,
handling expansive systems like urban traffic networks or power
grids with 325+ nodes in PEMS-BAY without exponential
time growth. Its inference time, with 368.0 K parameters and
73.885 ms on PEMS-BAY, remains competitive, supporting
real-time forecasting with uncertainty quantification to aid risk
assessment and resource allocation.

The ST-BayesianNet model is characterized by its utilization
of spatiotemporal linear models instead of attention mechanisms
and large-scale model architectures, rendering it less computa-
tionally intensive. Through the application of variational infer-
ence techniques, the parameter matrix of the spatial and temporal
analysis module is randomized. This approach enables the model
to effectively address a wide range of practical applications, out-
performing baseline models. Notably, ST-BayesianNet demon-
strates superior performance and achieves acceptable inference
times when compared to other methods in the analysis.

The efficiency and robustness of ST-BayesianNet are key
advantages in practical applications. Its low parameter scale
minimizes computational resource demands, facilitating deploy-
ment on embedded devices with limited resources. Moreover, its
moderate inference time enables efficient real-time prediction,
accommodating various real-world scenarios. Furthermore, its
superior performance in MSE and Accuracy enhances prediction
accuracy, making it suitable for applications like traffic flow
forecasting and energy management. These characteristics col-
lectively establish ST-BayesianNet as a functional and practical
solution optimized for processing complex spatiotemporal data.

V. CONCLUSION

This paper introduces an innovative multivariate time pre-
diction approach named ST-BayesianNet, designed for spa-
tiotemporal data, and grounded in the principles of variational
inference. This method stands out by its capacity to capture
uncertainties within both the temporal and spatial dimensions.
ST-BayesianNet systematically models the uncertainties inher-
ent in the temporal and spatial facets of the data. To validate
its efficacy, comprehensive comparative experiments have been
conducted to assess its performance. The experiments, carried
out on six publicly available real-world spatiotemporal datasets,
including traffic and solar, demonstrate that ST-BayesianNet
consistently enhances prediction accuracy and yields predictive
confidence estimations. The multivariate time series forecasting
based on Bayesian CNNs remains a challenge in the later stages,
specifically in real-world applications where data from multiple
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dimensions needs to be integrated to capture spatiotemporal
uncertainties, leading to precise variational inference. Future
research will extend the framework’s application to larger-scale
data scenarios and further explore multi-view learning for spatio-
temporal multidimensional joint uncertainty estimation to en-
hance cross-dimensional uncertainty modeling capabilities.
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