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Abstract—Ensuring safety and operational continuity in under-
ground coal mines requires robust mine monitoring. Traditional
methods based on fixed sensors and manual inspections suffer
from limited coverage, high cost, and poor real-time performance.
Mobile Crowd Sensing (MCS), enabled by miner-carried devices,
offers flexible coverage but introduces challenges such as data
sparsity, noise, and heterogeneity due to device variability and
electromagnetic interference. This article proposes a Bidirectional
Long Short-Term Memory/Gated Recurrent Unit-based Truth
Discovery (BLGTD) method for mine MCS. The model integrates
spatiotemporal sequence modeling with Monte Carlo Dropout-
based uncertainty quantification, enabling adaptive fusion of
multi-source data. Experimental results show that BLGTD
achieves a mean absolute error (MAE) of 0.19 ± 0.01 ppm
in CH4 concentration estimation when 90% of data comes from
reliable miners, yielding a 57.8% improvement over traditional
weighted averaging. The method demonstrates strong robustness
under conditions of data incompleteness, device heterogeneity,
and signal interference.

Index Terms—Mobile Crowd Sensing, Truth Discovery, Bi-
LSTM/GRU, Mine Monitoring

I. INTRODUCTION

The rapid advancement of mobile communication networks
and the widespread adoption of smart devices have established
Mobile Crowd Sensing (MCS) as an efficient paradigm for
large-scale data collection [1]. By leveraging the mobility and
distribution of numerous mobile users and their devices, MCS
facilitates extensive, fine-grained sensing tasks, demonstrating
considerable potential in applications such as smart cities [2],
environmental monitoring [3], and indoor localization [4].

Driven by the expansion of mining operations and ad-
vancements in intelligent mining technologies, mine safety
monitoring faces new challenges in data collection coverage
and quality assurance [5]. Traditional systems combine fixed
underground sensors with periodic manual inspections but
suffer from limited coverage, high maintenance costs, and
measurement errors [6]. MCS, leveraging miners’ portable
devices, enhances data coverage and flexibility, overcoming
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some limitations of fixed sensors. However, device het-
erogeneity and variable miner behavior cause significant
fluctuations in data quality. Communication interruptions,
sensor malfunctions, and human factors further contribute
to data loss and inconsistency, increasing uncertainty. These
issues result in noisy, incomplete, and heterogeneous data,
hindering the extraction of reliable truth values, which are
crucial for improving monitoring effectiveness.

Existing truth discovery methods often rely on techniques
like weighted averaging or majority voting [7] to infer
reliable values from multi-source data. While effective in some
cases, these methods struggle in mining environments with
strong temporal dependencies, sparse data, and frequent noise.
Recent deep learning advancements, particularly Recurrent
Neural Networks (RNNs), have shown promise in modeling
sequential data and addressing temporal dependencies [8].
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) networks excel at capturing both short- and long-term
dependencies in time series data [9], [10]. However, LSTM
or GRU networks alone cannot fully address data sparsity
and heterogeneity in mine safety monitoring. Moreover, many
existing methods rely on fixed-weight fusion strategies and
lack uncertainty estimation or adaptability to dynamic miner
behavior, leading to delayed or inaccurate truth discovery,
especially during sudden CH4 concentration changes that may
exceed safety thresholds.

This article proposes a Bidirectional Long Short-Term
Memory / Gated Recurrent Unit-based Truth Discovery
(BLGTD) method for mobile crowd sensing in underground
mines. BLGTD enhances data reliability and completeness
by first utilizing sparse, high-quality data from fixed sensors
and reliable miners to construct an incomplete observation
matrix. A hybrid Bi-LSTM/GRU network is then employed
to impute missing data. Monte Carlo (MC) Dropout [11] is
used for uncertainty estimation, generating a comprehensive
matrix of observed and inferred values. Through iterative
truth discovery, the quality of environmental sensing data is
significantly improved.

The main contributions of this article are as follows:
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• A novel truth discovery method based on a hybrid Bi-
LSTM/GRU network is proposed, effectively addressing
data loss and unreliability in mine safety monitoring to
improve overall data quality.

• By incorporating MC Dropout, the proposed method
quantifies prediction uncertainty and dynamically adjusts
truth discovery weights, enabling adaptive fusion with
real-world observations to enhance data reliability.

The remainder of this article is organized as follows:
Section II reviews related work. Section III introduces the
system model and problem formulation. Section IV details the
proposed BLGTD method. Section V presents experimental
results. Section VI concludes the article.

II. RELATED WORK

MCS has become a promising data acquisition approach
to complement traditional fixed sensor-based systems for
mine safety monitoring, leveraging mobile users’ devices
in underground environments. However, mine monitoring
faces challenges due to the complexity of conditions and
heterogeneous data quality, hindering the extraction of reliable
information from diverse sources. Recent advancements in
the integration of Internet of Things (IoT), wireless sensor
networks, and edge computing have improved monitoring
accuracy but remain limited in mine settings.

Traditional truth discovery methods, such as weighted
averaging or majority voting, struggle with heterogeneous
and noisy data. To address this, Ye et al. [12] proposed a
probabilistic model based on mean and median checks to
eliminate unreliable sources, improving inference accuracy.
However, these models lack adaptability to dynamic data.
Yang et al. [13] introduced the LC-TDC framework, using
Deep Matrix Factorization (DMF) for missing data imputation,
but the inference error remained high (above 0.85 ppm) in
scenarios with over 90% data sparsity. Bai et al. [14] proposed
a drone-based verification system that enhanced data reliability
in open environments, though it failed in underground mines
due to positioning errors.

Despite progress, current methods have two main limitations:
the lack of cross-validation between fixed sensor data and
mobile data, and insufficient uncertainty quantification in deep
learning predictions. This article addresses these challenges by
constructing a sparse matrix and incorporating cross-validation
across heterogeneous sources to improve truth discovery
accuracy. Additionally, we integrate MC Dropout with deep
learning models to estimate uncertainty, enabling more robust
and efficient data fusion in mining environments.

III. SYSTEM MODEL

A. Mine-Oriented Mobile Crowd Sensing Architecture

The proposed mine-oriented mobile crowd sensing system
supports underground safety monitoring through a collabora-
tive architecture composed of a ground-level Data Processing
Center (DPC) and an underground sensing network, as
illustrated in Fig. 1. The system enables robust data fusion
and dynamic evaluation via four key components:

Fig. 1: Mine-Oriented Mobile Crowd Sensing System Model

• Data Processing Center (DPC): Responsible for manag-
ing task dispatch, data reception, and storage. It employs
a Bi-LSTM/GRU hybrid network for data imputation and
utilizes MC Dropout to estimate prediction uncertainty.
Data from fixed sensors and reliable miners are fused to
create a benchmark dataset for model training and truth
inference.

• Underground Fixed Sensors: Deployed at key locations
to continuously monitor environmental variables (e.g.,
temperature, humidity, methane, CO, and O2). Their high
accuracy makes them reliable ground truth sources. The
restricted coverage imposed by complex mine topologies
necessitates the integration of mobile sensing to achieve
full-area monitoring.

• Reliable Miners: Miners with consistent and accurate
sensing behavior. Their data are deemed trustworthy and
directly contribute to training and inference.

• Ordinary Miners: General miners whose data may
contain noise or bias. Their information is refined
through deep learning-based imputation and uncertainty
quantification.

In the mine, the predefined I fixed monitoring points P =
{P1, P2, . . . , PI} are each equipped either with a fixed sensor
or designated for mobile miners’ data collection. A static
spatial encoding pi ∈ Rk denotes the position of monitoring
point Pi, forming a spatiotemporal feature vector f(i,t) =
[pi; t] ∈ Rk+1 when combined with time step t. The N fixed
sensors record data vectors an(t) ∈ Rd at each time t, forming
sequence A = {an,t}N,T

n=1,t=1. Additionally, J reliable miners
provide data vectors cj(t) ∈ Rd, forming sequence C =
{cj,t}J,Tj=1,t=1. Ordinary miners S = {s1, . . . , sY } generate
observations xi(t) ∈ Rd ∪ {NaN} in unmonitored regions,
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forming sequence X = {xi,t}I,Ti=1,t=1, with xi(t) = NaN if
no miner covers point Pi at time t.

Data collection occurs in two stages. First, fixed sensors
and reliable miners synchronously collect data to form a
sparse matrix. Second, the Bi-LSTM/GRU model, trained on
this matrix and guided by MC Dropout uncertainty, imputes
missing values and verifies ordinary miner data.

Overall, the system supports continuous, fine-grained envi-
ronmental monitoring in underground mines. By combining
deep temporal modeling with uncertainty-aware fusion, it
enhances the quality and reliability of crowdsensed data for
safety-critical applications.

B. Problem Definition

The goal of truth discovery in mine-oriented mobile crowd
sensing is twofold: reconstruct a complete environmental state
from sparse multi-source observations, and quantify predictive
uncertainty to enable robust data fusion. Given the sparse
input Z(t), composed of fixed sensor data {an(t)}Nn=1 and
reliable miner data {cj(t)}Jj=1, the system aims to estimate a
spatiotemporally complete global truth matrix X̂ that satisfies
the following optimization objectives.

Definition 1: Temporal Modeling Objective
A Bi-LSTM captures long-range temporal dependencies,

while GRU gates enhance local feature adaptation. The
learning objective is to minimize the mean absolute error
(MAE) between predictions and simulated ground truth:

min
Θ

1

T

T∑
t=1

∥µ(t)− x∗(t)∥1 (1)

where Θ denotes model parameters, µ(t) = {µi(t)}Ii=1 is
the predicted mean vector, and x∗(t) = {x∗i (t)}Ii=1 indicates
the known complete ground-truth values in the simulation
experiments.

Definition 2: Uncertainty Constraint
To avoid overconfident predictions in high-uncertainty

regions, MC Dropout is applied. The average uncertainty
across time steps is bounded by a threshold:

s.t.
1

T

T∑
t=1

Ū(t) ≤ ϵU (2)

where Ū(t) = 1
I

∑I
i=1 Ui(t) is the mean predictive uncertainty,

and ϵU is the system-defined threshold.
Definition 3: Safety Constraint
Predicted values must comply with domain-specific safety

limits:

µi(t) ∈ [0, Cmax], ∀i ∈ [1, I], t ∈ [1, T ] (3)

Final Optimization Objective
The overall objective combines accuracy and uncertainty

minimization via regularized loss:

min
Θ

1

T

T∑
t=1

(
∥µ(t)− x∗(t)∥1 + λŪ(t)

)

s.t. µ(t) ∈ [0, Cmax], ∀i, t (4)

where λ is a regularization coefficient controlling the trade-off
between prediction accuracy and uncertainty suppression. The
safety constraint is enforced via a sigmoid activation function
in the output layer.

IV. DESIGN AND IMPLEMENTATION OF BLGTD

The proposed BLGTD method addresses multi-source time-
series modeling and truth estimation for underground mobile
crowd sensing. Its objective is to verify and complete ordinary
miners’ submissions by leveraging reliable data from fixed
sensors and high-confidence miners.

A. Hybrid Network Architecture

To cope with data heterogeneity, temporal dependence,
and incompleteness, we design a hybrid neural architecture
combining Bi-LSTM and GRU, as shown in Fig. 2. This
structure captures bidirectional dependencies, adapts to miner-
specific features, and incorporates MC Dropout for uncertainty
quantification.

Fig. 2: Architecture of the Bi-LSTM/GRU Hybrid Network

1) Bidirectional Temporal Modeling: Sensor and reliable
miner data are concatenated into:

Z(t) = [a(t); c(t)] ∈ R(N+J)×d (5)

A Bi-LSTM processes the sequence bidirectionally:
−→
ht = BiLSTMf (Z(1 : t)) (6)
←−
ht = BiLSTMb(Z(T : t)) (7)

hbi
t = [

−→
ht ;
←−
ht ] (8)

2) Miner Feature Adaptation: The GRU receives input:

zi,t = σ(Wz[h
gru
i,t−1;h

bi
t ; fi,t] + bz) (9)

ri,t = σ(Wr[h
gru
i,t−1;h

bi
t ; fi,t] + br) (10)

h̃i,t = tanh(Wh[ri,t ⊙ hgru
i,t−1;h

bi
t ; fi,t] + bh) (11)

hgru
i,t = (1− zi,t)⊙ hgru

i,t−1 + zi,t ⊙ h̃i,t (12)

The output is passed to a fully connected layer:

x̂i(t) = Cmax · σ(Woh
gru
i,t + bo) (13)

where zt is the update gate controlling the transmission
of historical information, rt is the reset gate determining

2025 IEEE Global Communications Conference: IoT and Sensor Networks

1696



the extent of feature forgetting, h̃(i,t) denotes the candidate
hidden state, and hgru

(i,t) represents the current hidden state.
Additionally, Wz , Wr, Wh, and Wo are trainable weight
matrices; bz , br, bh, and bo are bias terms; σ indicates the
sigmoid activation function; and ⊙ denotes the Hadamard
product.

3) Uncertainty Quantification: With M MC Dropout
samples, prediction mean and variance are:

µi(t) =
1

M

M∑
m=1

x̂
(m)
i (t) (14)

Ui(t) =
1

M − 1

M∑
m=1

(
x̂
(m)
i (t)− µi(t)

)2

+ ϵ (15)

where x̂
(m)
i (t) denotes the predicted value sequence generated

during each forward propagation, and ϵ = 10−6 ensures
numerical stability.

4) Dynamic Truth Fusion: Compute deviation:

δi(t) =
∥xi(t)− µi(t)∥2√

Ui(t)
(16)

Weight is derived as:

wi(t) =
exp(−δi(t))∑I

v=1 exp(−δv(t))
(17)

Final estimated truth:

X̂i(t) =

{
wi(t)xi(t) + (1− wi(t))µi(t), xi(t) ̸= NaN
µi(t), xi(t) = NaN

(18)
The global truth estimation matrix is X̂ = {X̂i,t}I,Ti=1,t=1.
This design captures the global environmental evolution

through bidirectional temporal modeling, adapts to individual
miner characteristics via the GRU gating mechanism, and
quantifies predictive uncertainty using MC Dropout. As a
result, it achieves robust truth discovery under complex
electromagnetic interference and data-missing scenarios in
coal mine environments.

B. Truth Discovery Process Based on Bi-LSTM/GRU and
Uncertainty

The BLGTD algorithm performs temporal modeling, pre-
diction, and uncertainty-aware fusion to estimate reliable
ground truth in underground sensing systems. The process is
summarized in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Experimental Setup

We evaluate the performance of the proposed BLGTD
method on real-world data from a mobile crowd sensing system
deployed in an underground coal mine. The goal is to assess
its accuracy, robustness, and ability to handle missing and
noisy data.

The dataset consists of methane concentration measurements
collected from fixed sensors and miner-carried devices over 32

days (5 Mar–5 Apr 2024), covering I = 128 points, N = 45
sensors, J = 57 miners, with temperature, humidity, CH4, CO
and O2 readings (30 s sampling).

Algorithm 1: BLGTD: Truth Discovery Based on Bi-
LSTM/GRU and MC Dropout

Input: A = {an,t}N,T
n=1,t=1 (fixed sensor data),

C = {cj,t}J,Tj=1,t=1 (reliable miner data),
X = {xi,t}I,Ti=1,t=1 (ordinary miner data),
P = {pi}Ii=1 (position encoding),
M (MC Dropout forward passes)
Output: X̂ = {X̂i,t}I,Ti=1,t=1 (estimated truth),
U = {Ui,t}I,Ti=1,t=1 (uncertainty estimation)

1 foreach i, t do
2 Compute spatiotemporal feature fi,t = [pi; t];

3 Construct sparse input matrix Z(t) from A and C;
4 Process Z(t) with Bi-LSTM to obtain forward and

backward hidden states h→t , h←t , and concatenate to
form hbi

t ;
5 for i = 1 to I do
6 Initialize GRU hidden state hgru

i,0 ← 0;
7 for t = 1 to T do
8 Update hgru

i,t using hbi
t and fi,t via GRU;

9 Compute prediction x̂i(t) via fully connected
layer;

10 Repeat forward pass M times to generate M

prediction sequences x̂
(m)
i (t);

11 for t = 1 to T do
12 for i = 1 to I do
13 Compute prediction mean µi(t) and uncertainty

Ui(t);

14 for t = 1 to T do
15 for i = 1 to I do
16 if xi(t) ̸= NaN then
17 Compute deviation δi(t) and weight wi(t);
18 Estimate truth

X̂i(t)← wi(t) ·xi(t)+ (1−wi(t)) ·µi(t);
19 else
20 X̂i(t)← µi(t);

21 return X̂ , U ;

During training, the Adam optimizer with early stopping
prevents overfitting. To ensure stability and generalization,
multiple experiments are conducted under varying proportions
of reliable miners (TR = 0.3, 0.6, 0.9) and noise levels (SNR
= 5 dB, 10 dB, 15 dB) using 5-fold cross-validation. Pilot
runs showed that NLL and ECE plateau after 40 samples;
we set M =50 to balance calibration quality with a <3 ms
latency increase. Final results are reported as averages across
all runs.

We split the data into 80% for training and 20% for
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(a) 30% reliable miners (TR = 0.3) (b) 60% reliable miners (TR = 0.6) (c) 90% reliable miners (TR = 0.9)

Fig. 3: MAE comparison of different algorithms under varying reliable miner ratios. (a) 30%, (b) 60%, (c) 90% reliable miners

testing. The experiments simulate various levels of data
quality degradation and missingness to comprehensively
assess the performance of BLGTD in terms of imputation
accuracy, uncertainty estimation, and computational efficiency.
Although the Bi-LSTM/GRU network is central to the model,
hyperparameter tuning is not the main focus.

The key parameters used in the experiments are summarized
in Table I.

TABLE I: Experimental Parameter Settings

Parameter Value / Range
Bi-LSTM layers L 2
Units per Bi-LSTM layer 64
GRU layers 1
GRU units 32
Time series length T 20
Learning rate lr 0.0001
Batch size bs 16
Max training epochs 500
Early stopping patience 30
MC Dropout samples M 50
Positional encoding dim k 3
Fourier period τ 24
Uncertainty threshold ϵU 0.1 ppm2

Safety threshold Cmax 10 ppm
Loss weighting factor λ 0.1
Reliable miner ratio (TR) 0.3 / 0.6 / 0.9
Noise level (SNR) 5 / 10 / 15 dB

B. Baseline Methods

To evaluate the effectiveness of BLGTD, we compare it
with the following representative baseline algorithms:
• Weighted Average Method (WAM): A conventional data

fusion technique that computes a weighted average over
multiple sources. It is effective for small-scale datasets
with minimal temporal correlation.

• Bidirectional LSTM (Bi-LSTM): A deep learning
model that captures both forward and backward temporal
dependencies. It is widely used in sequence modeling
tasks involving long- and short-term patterns.

• Bayesian Neural Network (BNN) [15]: A probabilistic
neural model that incorporates uncertainty estimation into
predictions. BNNs are particularly suited for noisy or
uncertain environments, allowing for confidence-aware
decision-making.

C. Experimental Results and Analysis

1) Truth Discovery Performance: We evaluate model perfor-
mance under varying levels of reliable miner ratios (TR) and
signal-to-noise ratios (SNR). As shown in Table II, BLGTD
consistently achieves high performance across all settings,
including scenarios with severe data sparsity (TR = 0.3) and
strong noise interference (SNR = 5 dB), where traditional
methods degrade significantly.

BLGTD outperforms all baselines in terms of precision,
recall, and F1 score. Especially under high-quality data
conditions (e.g., TR = 0.9), it significantly surpasses the
Weighted Average Method and Bi-LSTM. These results
highlight the effectiveness of BLGTD’s dynamic weighting
mechanism, which enhances its adaptability to heterogeneous,
noisy, and temporally dependent environments.

2) Imputation Accuracy Evaluation: Fig. 3 summarises
MAE under three TR levels. At TR = 0.3, BLGTD achieves
an MAE of 0.45 ± 0.03, exhibiting slight fluctuation but
still significantly outperforming WAM and Bi-LSTM. This
demonstrates its robustness under high data sparsity.

As TR increases to 0.6 and 0.9, the MAE rapidly drops to
0.35 ± 0.02 and 0.19 ± 0.01, respectively, indicating superior
imputation accuracy. While WAM and Bi-LSTM also benefit
from higher TR, their performance remains consistently
inferior to BLGTD.

BNN performs comparably well at TR = 0.6 and 0.9,
highlighting its uncertainty modeling advantage. However, it
still falls short of BLGTD’s consistent superiority, particularly
when reliable data is abundant.

3) Uncertainty Evaluation: In coal mine environments,
sparse and missing data are imputed by BLGTD via its Bi-
LSTM/GRU network. To address the uncertainty inherent
in such predictions, MC Dropout is employed to estimate
predictive variance. During truth discovery, predictions with
higher uncertainty are assigned lower weights, reducing their
impact on final estimations.

To evaluate the robustness of BLGTD under uncertainty,
we analyze its performance under different SNR and TR. Two
uncertainty-aware metrics are used: Negative Log-Likelihood
(NLL) and Expected Calibration Error (ECE). The results are
shown in Fig. 4.
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TABLE II: Performance Comparison under Aligned Spatio-Temporal Cells

Condition Value WAM Bi-LSTM BNN BLGTD

P R F1 P R F1 P R F1 P R F1

SNR=10dB
TR=0.3 0.53 0.50 0.51 0.66 0.63 0.64 0.69 0.66 0.67 0.75 0.72 0.73
TR=0.6 0.64 0.61 0.62 0.72 0.69 0.70 0.75 0.72 0.73 0.79 0.77 0.78
TR=0.9 0.71 0.69 0.70 0.78 0.76 0.77 0.81 0.79 0.80 0.84 0.82 0.83

TR=0.6
SNR=5dB 0.57 0.54 0.55 0.67 0.64 0.65 0.70 0.67 0.68 0.74 0.71 0.72

SNR=10dB 0.64 0.61 0.62 0.72 0.69 0.70 0.75 0.72 0.73 0.79 0.77 0.78
SNR=15dB 0.70 0.68 0.69 0.77 0.75 0.76 0.80 0.78 0.79 0.83 0.81 0.82

(a) Negative Log-Likelihood (b) Expected Calibration Error

Fig. 4: Uncertainty evaluation under varying TR and SNR
conditions. (a) NLL. (b) ECE.

As TR increases from 0.3 to 0.9, the average NLL decreases
by 63.1%, and ECE drops by 81.3%, indicating better
confidence calibration with more reliable data. When TR = 0.3,
increasing SNR from 5 dB to 15 dB yields a 29.4% reduction
in NLL; under TR = 0.9, the same SNR improvement reduces
NLL by 42.2%, suggesting that reliable data can compensate
for environmental noise.

In summary, BLGTD merges (i) bidirectional context, (ii)
uncertainty weighting, and (iii) cross-sensor fusion; WAM
lacks all, Bi-LSTM lacks (ii), and BNN lacks (iii), explaining
its lead in Table II.

VI. CONCLUSION

This article presents BLGTD, a truth discovery method
tailored for mobile crowdsensing in coal mines. By combining
a Bi-LSTM/GRU hybrid network with MC Dropout, the
proposed framework effectively addresses challenges such
as data sparsity, temporal dependency, and electromagnetic
interference. BLGTD introduces a dynamic fusion mechanism
driven by predictive uncertainty. It estimates model confidence
through MC Dropout and integrates it with data deviation
to perform adaptive weighted fusion between observed and
predicted values. The bidirectional architecture captures the
spatiotemporal evolution of environmental parameters, while
the uncertainty-aware strategy enhances anomaly detection
and missing data imputation. Experimental results demonstrate
the model’s robustness and accuracy under complex sensing
conditions.

Future work will explore deployment in cloud–edge–device
environments (addressing energy use, latency, cost, and scale).
Local preprocessing and training at the edge, combined with
global model updates in the cloud, can reduce communication

overhead and improve responsiveness. Moreover, integrating
lightweight inference modules on miner devices could enable
real-time anomaly reporting. Beyond mining, BLGTD readily
generalizes to other confined industrial settings—such as
chemical plants or transit tunnels—since gas dynamics and
sparse sensing are similar; only local fine-tuning and threshold
redefinition are needed.
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