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Abstract—With the rapid advancements in information tech-
nologies, global data volumes have increased exponentially.
Deoxyribonucleic acid (DNA)-based data storage has gained
significant attention due to its superior storage capacity and
long-term preservation potential compared to traditional media.
However, during this process, DNA sequences may be affected by
errors such as deletions, insertions, and substitutions, resulting
in altered copies of the original sequence. Furthermore, the
sequences in the DNA pool lack inherent order, preventing direct
access to specific fragments. In this paper, we propose GTree,
a trie-based DNA clustering framework tailored for DNA data
storage. GTree achieves both high accuracy and low runtime
complexity. It introduces a lightweight pre-screening module that
combines Q-gram feature extraction, MinHash signatures, and
Locality Sensitive Hashing (LSH) indexing to efficiently reduce
the comparison space. A majority-label voting mechanism is
also integrated to enhance clustering robustness in the presence
of sequencing errors. Finally, we validate the performance of
GTree through clustering experiments on both real biological
and simulated datasets, demonstrating its superior performance.

Index Terms—DNA-based data storage, DNA clustering, Se-
quencing errors, MinHash signatures

I. INTRODUCTION

In recent years, with the advent of the information age
and the vigorous development of Internet of Things (IoT),
the application of large-scale IoT technology has led to the
generation and collection of massive amounts of data [1].
The International Data Corporation (IDC) has predicted that
the total amount of data generated worldwide is experiencing
explosive growth, with an average annual increase of nearly
59%. According to this trend, the scale of data in 2025 may
reach 180 zettabytes, and by 2035, this figure is even expected
to exceed the magnitude of 1,000 zettabytes [2]. In the face
of such enormous data pressure, traditional data storage meth-
ods—whether optical storage (e.g., optical discs), magnetic
media (e.g., hard drives and tapes) or electronic devices (e.g.,
flash memory)—have exposed obvious bottlenecks in storage
density, service life and energy consumption. Therefore, devel-
oping a new storage technology with breakthrough potential
in key performance aspects such as density, durability, energy
efficiency and security has become an urgent issue to be
solved.

Deoxyribonucleic acid (DNA) is a compelling candidate for
next-generation data storage. Built from a four-base alphabet
of adenine (A), thymine (T), guanine (G), and cytosine (C),
DNA acts as the genetic information carrier for all life. As
depicted in Fig. 1, the DNA data storage workflow is a six-
stage process: encoding, synthesis, preservation, acquisition,
sequencing (reading), and decoding.
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Fig. 1. DNA storage process

DNA has emerged as a promising solution for long-term in-
formation storage due to its high storage density, vast capacity,
and extended preservation time. It holds the potential to revolu-
tionize the way we store and preserve digital data [3], [4], [5],
[6]. However, current synthesis and sequencing technologies,
along with other biochemical factors, introduce errors such
as base insertions, deletions, substitutions, and strand breaks
during DNA synthesis and amplification. The occurrence prob-
ability of each error type varies, with the overall error rate be-
ing predominantly influenced by the synthesis and sequencing
methods employed [7]. To effectively reconstruct the original
sequences during sequencing and extract meaningful informa-
tion, it is crucial to cluster the unordered distribution of a large
number of DNA sequences. This clustering process plays a
vital role in improving sequencing accuracy, particularly for
data with high error rates, which directly affects the accuracy
of subsequent information reduction and the overall efficiency
of the system [8], [9], [10].

The clustering problem itself is not new, with numerous
technically advanced methods developed long before the for-
mal introduction of DNA storage technology. Consequently,



DNA sequence clustering can benefit from established clus-
tering techniques, such as the k-means algorithm [11], mean
shift clustering, DBSCAN [12], and hierarchical clustering.
These methods have been successfully applied across vari-
ous fields. However, DNA sequences have unique biological
structures, meaning that treating DNA clustering as a standard
text clustering problem is insufficient. That said, there are
existing works that apply traditional clustering algorithms to
DNA sequences. For example, MeShClust [13] employs the
mean shift algorithm, commonly used in image processing and
computer vision, while ADRS-CNet [14] applies the k-means
technique during the final clustering stage. These approaches
build upon traditional methods, improving their effectiveness
for DNA clustering and achieving promising results.

Motivated by the limitations of existing DNA clustering

tools in balancing runtime scalability and clustering accuracy,
we introduce GTree, a tree-structure-based clustering frame-
work optimized for large-scale DNA datasets. The contribu-
tions of this paper are threefold.

« Integration of Q-gram, MinHash, and Locality Sensitive
Hashing (LSH) into a lightweight pre-screening module
that effectively narrows the comparison scope without
compromising accuracy, optimizing efficiency in DNA
sequence analysis.

o Construction of a prefix tree (trie) for DNA sequence
indexing, grouping sequences based on shared prefixes
to facilitate rapid retrieval and improve scalability. A
majority-label voting strategy is incorporated to mitigate
sequencing noise, enhancing clustering stability and ro-
bustness.

o Evaluation of GTree on both synthetic and real-world
datasets, with comparisons to several baseline methods in
terms of clustering accuracy and runtime. Experimental
results demonstrate that GTree consistently outperforms
existing approaches, particularly in datasets with high
sequence similarity or significant sequencing noise.

II. RELATED WORK

In recent years, researchers have proposed various ap-
proaches to sequence clustering. A comparison of represen-
tative DNA clustering methods is provided in Table I.

A. Edit Distance-based Clustering Approaches

Traditional methods for DNA clustering based on edit
distance have shown strong performance in ensuring high
clustering accuracy. For example, Starcode [15] introduces
a trie tree search mechanism, which is particularly effective
for short sequence scenarios, offering both high accuracy and
good applicability. Another notable approach, MeShClust [13],
incorporates the mean drift algorithm into the DNA cluster-
ing process, thereby broadening the technique’s applicability
across various sequence lengths. Additionally, Rashtchian et
al. [18] present a distributed approximate clustering frame-
work that combines local computation with communication
optimization, significantly enhancing the scalability of the
clustering process.

B. Hashing-based Clustering Approaches

In order to reduce the comparison overhead, several methods
incorporate hash structures to facilitate more efficient cluster-
ing. For instance, DUHI [16] constructs a dynamically updated
core index set, which, when combined with hash-based search,
enables efficient clustering. GradHC [17] introduces a pro-
gressive hash clustering framework that integrates the Q-gram
feature, MinHash signature, and LSH filtering mechanism.
This approach optimizes both accuracy and scalability, par-
ticularly in scenarios involving long chains and small clusters,
demonstrating excellent robustness.

C. Machine Learning-based Clustering Approaches

In recent years, some studies have explored the use of
neural networks and learning-based representations for DNA
sequence clustering. For example, ADRS [14] employs a mul-
tilayer perceptron to extract features from DNA sequences and
adaptively selects a dimensionality reduction strategy before
applying k-means for final clustering. Abraham et al. [19] skip
the traditional base recognition process and directly cluster
nanopore sequencing signals, significantly reducing processing
time and enhancing clustering effectiveness.

D. Tree-structured Clustering Approaches

Tree-structured clustering approaches leverage hierarchi-
cal or tree-based data structures to efficiently organize and
cluster sequences. These methods are particularly effective
in managing large-scale datasets by reducing the complexity
of sequence comparisons. One such approach is Clover [8],
which introduces a tree-structured, indexed linear-time clus-
tering algorithm that enables efficient clustering without the
need for global comparisons. By constructing a quad-tree
retrieval structure for the front, middle, and back segments of
the core sequences, and incorporating a node drift tolerance
mechanism, Clover significantly improves memory usage and
clustering speed. This method stands out as one of the few
structural clustering algorithms that remains stable even when
handling datasets on the scale of tens of millions of sequences.

III. MATERIALS AND METHODS

In this section, we present the design and implementation
of GTree, a scalable and accurate clustering algorithm specif-
ically tailored for noisy DNA reads. GTree builds on the core
principles of Clover [8], which utilizes a tree-based structure
to incrementally cluster sequences.

To further enhance both efficiency and robustness, GTree
introduces two key extensions: 1) a MinHash-based candidate
pre-filtering module that significantly reduces the scope of
comparisons before matching, and 2) a label voting mechanism
to improve cluster label consistency after the core clustering
process. Unlike traditional methods, which rely on exhaus-
tive pairwise comparisons, GTree first employs Q-gram and
MinHash features for candidate sequence filtering via LSH.
It then performs drift-tolerant structure matching inspired by
Clover’s indexed tree alignment. Finally, a simple but effective
label consolidation step is applied to further refine clustering
accuracy.



TABLE I
COMPARISON OF REPRESENTATIVE DNA SEQUENCE CLUSTERING METHODS

Method Technical Core Advantages

Limitations

Starcode [15] Edit distance, Trie search

DUHI [16] Hash indexing, Core updating

GradHC [17] Q-gram, MinHash, LSH

Clover [8] Tree-based clustering with node shifting
ADRS [14] MLP-based feature learning, K-means

High precision on short sequences

Fast clustering, Supports dynamic updates
High precision, Robust in diverse scenarios
Linear time, Low memory usage

Learns optimal feature embeddings

Poor scalability to large datasets

Accuracy sensitive to redundancy
Signature generation is time-consuming
Lacks pre-filtering, Redundant comparisons
Accuracy depends on training data

A. MinHash-based Candidate Pre-filtering

To accelerate the structure comparison phase, we introduce
a lightweight pre-filtering mechanism that efficiently narrows
the set of candidate core sequences for each incoming read.
This mechanism integrates g-gram-based sequence represen-
tation, MinHash signature construction, and LSH retrieval,
serving as a key component for improving runtime scalability.

Let the DNA alphabet be ¥ = {A,C,G,T}. Given a
sequence = € Z¥ and a window length ¢ > 1, we represent x
as the set of its contiguous substrings of length ¢:

Sq(.%‘) = {a?i.’L‘iJrl-'-.’EiJrq,l | 1§’L'§L—q—‘r1}. €))

We adopt set semantics when constructing MinHash, meaning
that duplicate ¢g-grams do not alter Sy(x). If weighted occur-
rences are required, techniques such as consistent weighted
MinHash can be applied, though this is beyond the scope of
the present work.

For a set S C X9, let k£ independent hash functions
hi,...,hr : X7 — N be given. The MinHash signature
m(S) € N¥ is then defined as:

m(S) = (m1(S),...,mk(S)), mi(S)=minh;(g). (2)

geSs
For two sets A, B C X9, the Jaccard similarity is defined

as:

B |AN B|

- |AuB|

By the MinHash property, the probability that the i-th sig-
nature components of A and B are equal is exactly their
Jaccard similarity, ie., Pr[m;(4) = m;(B)] = J(4, B).
Using k independent hashes, we obtain the unbiased estimator
as follows:

J(A, B) 3)

k
F(A, B) = % 3" 1{mi(4) = mi(B)). @)

where 1{-} is the indicator function.

B. Banding-Based LSH Indexing and Retrieval

Let k = br with integers b (the number of bands) and r (the
number of rows per band). We partition the MinHash signature
m(S) into b bands, each consisting of a contiguous block of
T components:

mY(S) = (m_1yr41(S),...,m;(S)), j=1,...,b.
(5

Each band is hashed into a bucket. Two signatures that
are identical in at least one band collide in a bucket and
are therefore considered candidates. If two sets have Jaccard
similarity s, the probability that they collide in at least one
band is given by:

Pana(s) = 1= (1—5")". ©6)
At query time, the MinHash signature of the read is computed,
its b band buckets are retrieved, and the union of these buckets
forms the candidate set. Structure comparison is then carried
out only on this reduced set of candidates (optionally further
limited to the Top-K by a lightweight signature-level similarity
score).

1) An Example: Consider three core sequences with ¢ = 3:

e 71: ACTGAC — {ACT,CTG, TGA,GAC}

e 79! GATCGA — {GAT,ATC, TCG,CGA}

e 73: ACTGAT — {ACT,CTG, TGA,GAT}

Let k = 3 hash functions (h1, ho, hg) be applied to the eight
distinct ¢g-grams introduced above. As illustrated in Table II,
we assign fixed hash values so that the resulting MinHash
signatures are reproducible.

TABLE II
THE SETTINGS OF HASH VALUES
g-gram hy; ha hs
ACT 18 21 10
CTG 15 9 8
TGA 23 14 5
GAC 17 18 3
GAT 25 11 2
ATC 22 12 7
TCG 30 8 6
CGA 28 19 1

From the definition m;(.S) = mingecg hi(g), we obtain:
MinHash(ry) = [15, 9, 3],
MinHash(r2) = [22, 8, 1],
MinHash(r3) = [15, 9, 2].
Now consider a new read CTGATC with g¢-grams
{CTG, TGA, GAT,ATC}. Its signature is
MinHash(read) = [15, 9, 2]. (7

LSH retrieval. Take b = 3 bands and » = 1 row per band
(so k = br = 3). The three bands of the read are [15], [9], [2].
We insert/query by band equality:
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Fig. 2. Horizontal drift: For the sequence [TAAG], we first construct a tree structure. The first node matches, but no nodes match at the second level. We can
shift it to either a T-node or a G-node, with the condition that the two consecutive nodes after the drifted node cannot drift again. This rules out the branches

TGCC and TTCG. The final match is TTAG, with a drift count of 1 [8].

» Band 1 (15) collides with cores whose first component
is 15: {Th 7"3}.

» Band 2 (9) collides with cores whose second component

is 9: {r1,rs}.

« Band 3 (2) collides with cores whose third component is

2: {7“3}.
The union yields the candidate set {r1,r3}. A cheap signature-
level score (e.g., number of coordinate matches) ranks rg first
(3/3 equal) and r; second (2/3 equal). Structure comparison
is then performed only on these candidates (or the Top-K of
them), instead of scanning the entire core set.

Discussion This design respects the correct pipeline order:
sequence — q-gram set — MinHash signature — LSH buckets
— candidate cores — structure comparison. In practice, it
reduces the average number of structure comparisons from
hundreds to a small constant (e.g., K = 20), while adding
only minimal overhead because both MinHash computation
and LSH lookup are highly efficient.

C. Structure-Based Matching with Drift Tolerance

After candidate core sequences are selected by the MinHash
pre-filtering module, GTree performs a structure-based match-
ing step to assign the input read to the most appropriate cluster.
This module is adapted from the core indexing and retrieval
mechanism of the Clover algorithm [8], which enables efficient
approximate matching without requiring full-sequence align-
ment. Each core sequence in GTree is partitioned into three
segments, namely, prefix, middle, and suffix, corresponding
to the beginning, center, and end of the DNA strand. For
each segment, a separate 4-ary prefix tree (trie) is constructed
over the DNA alphabet A, C, G, T, yielding a lightweight and
error-tolerant indexing structure. During the matching phase,
an incoming read is segmented in the same way and traversed
through the corresponding tries of its candidate cores.

To tolerate sequencing errors and local shifts, GTree inherits
Clover’s concept of drift-tolerant matching. Specifically:

o Horizontal drift allows a small number of base mis-
matches (e.g., substitutions) within each segment, en-
abling tolerance against point mutations.

o Vertical drift accommodates insertions or deletions by
permitting limited positional shifts in the traversal path,
correcting for short indels or misalignments.

Fig. 2 and Fig. 3 illustrate intuitive examples of horizontal

drift and vertical drift, respectively, in the tree-structured

retrieval process. A read is considered successfully matched if
all three of its segments align with the corresponding segments
of a core sequence within the allowed drift thresholds. If
this condition is not met, the read is promoted to a new
core and added to the index structure. This structure-based
matching strategy is both efficient and robust. By avoiding
costly edit distance computations, it maintains the flexibility
to tolerate sequencing errors. Furthermore, because matching
is restricted to the small set of candidates identified by the pre-
filtering stage, GTree achieves near-constant matching time,
independent of the overall size of the core set.
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Fig. 3. Vertical drift: When selecting an interval, we identify the one with the
maximum vertical displacement before and after the original interval (where
y = 3). This enables the construction of multiple trees within a larger interval
of size 2y + 1, which are then matched with the target tree. The minimum
horizontal drift value and corresponding indicator are then output [8].

D. Majority Label Voting for Cluster Output Consistency

To further enhance the reliability of clustering results, GTree
incorporates a lightweight post-processing strategy based on
majority label voting. This module aims to improve the consis-
tency between predicted cluster assignments and ground-truth
labels, particularly under noisy conditions such as sequencing
errors, primer residues, or ambiguous barcode regions.

Once the read set is fully clustered, GTree iterates over each
cluster to analyze the distribution of labels associated with
its member sequences. Let C = {s1, s2,...,8,} represent a
cluster with member sequences s;, each having a reference
label [;. The dominant label [* is defined as:

®)



The final label for the cluster is set to {*, which corresponds
to the most frequent label within the cluster. Optionally, reads
whose labels do not match [* can be flagged as outliers or
excluded during accuracy evaluation, helping to minimize the
impact of misassigned reads near the cluster boundaries.

In contrast to more complex correction strategies, such as
reclustering or reverse assignment (e.g., used in GradHC [17]),
this voting-based mechanism incurs negligible computational
cost while preserving the original clustering structure. It offers
an effective and practical trade-off between robustness and
efficiency.

E. Algorithm Description

GTree operates within an incremental clustering framework,
maintaining a dynamic set of core sequences that guide the
classification of incoming reads. Initially, the core set is empty.
As each read is processed, it is either assigned to an existing
cluster or promoted to a new core sequence based on a two-
stage evaluation: fast candidate pre-filtering and structure-
based matching. Each core sequence is indexed using a three-
part prefix tree structure, consisting of front, middle, and
back segments. This structure facilitates efficient approximate
retrieval, even in the presence of sequencing errors. Upon
receiving a new read, GTree begins by performing feature-
based candidate pre-filtering. Specifically, the read’s Q-gram
profile is converted into a MinHash signature, which is then
queried against an LSH index. This process retrieves a top-K
subset of similar core candidates, significantly reducing the
number of structural comparisons required.

For each retrieved candidate, GTree performs drift-tolerant
structure-based matching. The algorithm checks whether the
read aligns with all three segments of the prefix tree, ensuring
that the allowed thresholds for base substitutions (horizontal
drift) and position shifts (vertical drift) are not exceeded. If
a match is found, the read is assigned to the corresponding
cluster. Otherwise, the read is designated as a new core se-
quence and added to the index. This process is repeated for all
input reads. Since the candidate set size is bounded (typically
K < |core set|) and tree retrieval operates in constant time per
segment, the per-read time complexity remains effectively sub-
linear with respect to the growing core set size. Additionally,
by avoiding global alignment, GTree allows for fast and
memory-efficient clustering of large-scale, noisy datasets.

At the end of the clustering phase, GTree applies a
lightweight post-processing step to enhance label consistency.
For each cluster, the dominant label is determined via majority
voting and assigned as the final cluster label. Optionally,
outlier reads with inconsistent labels can be excluded to further
enhance robustness.

The complete clustering workflow of GTree is summarized
in Algorithm 1, which combines feature hashing, structural
indexing, and statistical voting in a tightly integrated design.

FE. Complexity Analysis

Let n be the number of reads, m the number of current
core sequences, K the number of candidates returned by the

Algorithm 1 GTree: Sequence Clustering with MinHash Pre-
filtering
Input: DNA read set S = {sq, $a, . .
eters P
Output: Clustered result set C; core sequence set R
1: Initialize core set R < () and cluster set C < ()
2: Compute Q-gram features and MinHash signatures for all
reads in S
3: Build LSH index from initial core signatures
4: for each read s; € S do
5:  Extract Q-gram features and MinHash signature of s;
6:  Retrieve top-K candidate cores R ang via LSH
7.  matched < False
8
9

., Sn }; clustering param-

for each 7; € Reang do
: Perform drift-tolerant structural matching with 7
10: if successful match then

11: Assign s; to cluster C,,
12: matched < True; break
13: end if

14:  end for
15:  if matched is False then

16: Add s; to R; update index tree and LSH
17: Initialize new cluster Cs, < {s;}

18:  end if

19: end for

20: return Cluster set C and core set R

MinHash+LSH filter, and d the maximum depth of the index
tree. The parameter k& denotes the dimension of the MinHash
signature.

1) Time Complexity: For time complexity, both Clover and
GTree process each read once, giving an overall complexity
of O(n). In Clover, each new read is compared against all
m cores, causing the per-read cost to grow with m as the
dataset expands. In contrast, GTree uses the MinHash+LSH
pre-filter to retrieve only K candidate cores for structure-based
matching, making the per-read cost effectively constant and
independent of m. While the asymptotic complexity remains
the same, GTree achieves a substantially smaller constant
factor, leading to faster practical runtime.

2) Space Complexity: For space complexity, both Clover
and GTree maintain a multi-tree index for core sequences,
requiring O(m - d) memory. In addition, GTree stores a k-
dimensional MinHash signature for each read and an LSH
index, which incurs an extra O(n - k) space. This overhead
grows linearly with n and remains manageable in practice.

Overall, GTree preserves the asymptotic complexity of
Clover while enhancing scalability through fixed-size candi-
date pre-filtering, resulting in lower runtime on large datasets.

IV. EXPERIMENTS

We conduct comprehensive experiments on both synthetic
and real-world DNA storage datasets to evaluate the perfor-
mance of GTree.



TABLE III
DETAILS OF EXPERIMENTAL DATASETS

Dataset Reads  Read Length Original Sequences  Data Source  Generation Method
118-S3-R1-001 15,169,628 60 bp 16,383 [10] Real
ERR1816980 14,654,644 152 bp 72,000 [5] Real
P10-5-BDDP210000009 16,217,014 150 bp 209,283 [20] Real
Simulated (10M) 10,000,000 160 bp 40,000 — Random generation
Simulated (1M) 1,000,000 160 bp 5,000 Random generation
Simulated (0.1M) 100,000 160 bp 1,000 — Random generation
Simulated (0.01M) 10,000 160 bp 500 — Random generation

A. Experimental Setup

1) Datasets: We used a total of three existing open-source
real datasets, along with four simulated datasets of varying
scales, in our experiments. The source information for the
experimental data is summarized below.

« ERR1816980. Erlich et al. [5] pioneered a DNA data
storage architecture using digital fountain codes, suc-
cessfully creating a storage unit with 152 ultra-long
strands (72,000 base pairs). The experiment’s original
sequencing data, ERR1816980, serves as a benchmark
test set, validated by the Illumina Miseq V4 sequencing
system across multiple dimensions.

« P10-5-BDDP210000009. Song et al. [20] developed a di-
rected coding architecture, creating a storage matrix with
210,000 directionally coded DNA strands and achieving
a 6 MB data density per batch. The original sequencing
data of P10-5-BDDP210000009 is chosen as the core
validation sample.

o I18-S3-R1-001. Antkowiak et al. [10] introduced a DNA
storage system based on large-scale parallel photolithog-
raphy, using mask-free photolithography to synthesize
16,383 sequences of length 60. Their experiments re-
vealed error rates of 2.6% for substitutions, 6.2% for
deletions, and 5.7% for insertions. The sequencing file
118-S3-R1-001 was selected as the experimental dataset
for validation.

o Synthetic datasets. We create a “reference template
library” by generating random raw sequences, which are
then perturbed to introduce sequencing errors (insertions,
deletions, substitutions) with a controllable error rate. The
dataset includes a sequence index and true label file for
clustering and accuracy analysis. The tool supports flexi-
ble adjustments to sequence count, length, error patterns,
and copies, enabling comprehensive scalability testing.

A detailed description of these datasets, including the char-
acteristics of the real data, is provided in Table III.

2) Data Preprocessing: In DNA data storage, real sequenc-
ing datasets (e.g., P10-5-BDDP210000009 and ERR1816980)
typically consist of paired-end reads. Each DNA fragment is
sequenced from both directions, generating two FASTQ files
(R1 and R2). Since individual reads are often shorter than the
full DNA strand, merging R1 and R2 into complete sequences
is essential before clustering.

We first use Paired-End reAd mergeR (PEAR) to merge

the paired reads. PEAR is a fast and memory-efficient tool
optimized for Illumina paired-end data. It automatically de-
tects overlapping regions between R1 and R2 and stitches
them into high-quality single-end reads, enhancing alignment
accuracy and removing primer regions that could interfere with
clustering. Next, Bowtie2 is applied to align the merged reads
to the corresponding reference sequences. The alignment is
performed in default mode, which is effective for datasets with
low error rates, such as ERR1816980 and P10. The output is a
SAM file containing the alignment results. We then parse the
SAM file to extract the matched reference ID (i.e., Packet
ID) for each successfully aligned read. Each read and its
corresponding reference label are recorded in a text file with
the format: Label Sequence, where each line represents a
DNA read and its assigned cluster label. Unaligned reads are
excluded from the final labeled dataset to ensure consistency
and labeling reliability. Finally, to eliminate interference from
experimental artifacts, sequencing primers are removed during
preprocessing. This ensures that clustering is based solely on
the core informative regions of the reads, consistent with the
internal logic of Clover and similar tools. By combining PEAR
and Bowtie2, we construct robust labeled datasets from raw
sequencing reads, enabling accurate evaluation of clustering
algorithms under realistic conditions.

3) Evaluation Metrics: To systematically evaluate the per-
formance of GTree and Clover across various datasets, we
define two core evaluation metrics:

« Runtime Efficiency: The total time (in seconds) required
to complete the clustering process. This metric measures
the efficiency of each algorithm in handling large-scale
DNA data.

e Clustering Accuracy: The proportion of reads that are
correctly assigned to their original reference-derived clus-
ters. Ground truth labels are generated by aligning reads
to reference sequences using Bowtie2, and clustering
results are compared accordingly.

TABLE IV
CLUSTERING PARAMETERS FOR CLOVER AND GTREE
Dataset Count Depth  H. Shift V. Shift
118-S3-R1-001 4 20 1 3
ERR1816980 4 15 3 3
P10-BDDP 4 20 3 3
Synthetic 4 15 3 3
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Fig. 4. Runtime comparison on all datasets. ‘Timeout” indicates the algorithm did not complete within the allocated time limit.

4) Baselines: GTree is compared against several repre- GTree maintains stable performance. Starcode shows com-
sentative baselines, including alignment-based, hashing-based, petitive speed on small datasets but suffers from accuracy

and learning-based clustering methods. degradation (see Table VI). The improvement of GTree over
e CD-HIT [21]: A greedy local-alignment-based method Clover primarily stems from the MinHash+LSH pre-filtering
originally designed for protein and DNA clustering. and optimized trie-based core matching, which reduces unnec-

o MeShClust [13]: A machine learning-based alignment- essary comparisons without compromising accuracy.
free tool for DNA clustering. 2) Accuracy Comparison: Table V presents the clustering
o Starcode [15]: A trie-based clustering algorithm using accuracy of GTree and Clover across six datasets, covering
edit distance thresholding. both real-world and synthetic scenarios. Overall, GTree main-

o DNACLUST [22]: A fast, heuristic-based DNA cluster- tains very high accuracy on all datasets, consistently exceeding
ing tool that uses k-mer similarity and greedy aggregation 99.8% on real datasets such as ERR1816980 and P10-5-
to efficiently group sequences without full alignments. BDDP210000009. Even on the large-scale 10M synthetic

o Clover [8]: A tree-structured clustering method using dataset, where high error rates and massive sequence counts
node-shift-tolerant alignment without pre-filtering. make clustering more challenging, GTree reaches 99.96%

All methods are executed with default or recommended —accuracy, slightly surpassing Clover. Compared with Clover,

parameters. For learning-based methods like ADRS [14], pre- GTree achieves either comparable or higher accuracy on
trained models are used when available; otherwise, they are €Very dataset, with notable improvements on ERR1816980 and
excluded from real-data comparisons due to generalization the 10M synthetic set. This improvement can be attributed
concerns. To ensure fairness, Clover and GTree use consistent t© GTree’s enhanced pre-filtering and trie-based candidate
parameter settings, as outlined in Table IV. Parameters such ~grouping, which help preserve global sequence similarity
as the number of prefix trees, tree depth, and node shift while reducing mismatches. On datasets with moderate error
are tuned based on dataset characteristics. Typically, a tree rates (e.g,, 0.0IM—1M synthetic sets), both methods achieve
depth between 15 and 20 strikes a balance between clustering Near-perfect accuracy, demonstrating that GTree’s structural

precision and memory usage, while tree counts are configured ~filtering does not compromise clustering precision.
to cover both sequence ends and middle regions. For the smaller 118-S3-R1-001 dataset (Table VI), GTree

delivers competitive accuracy with significantly faster runtime
B. Results and Analysis than most baselines. While Starcode matches Clover in run-
1) Runtime Comparison: Fig. 4 presents the runtime results time, its accuracy is much lower (23.17%), indicating poor
across all datasets. GTree consistently achieves the lowest clustering quality. Both GTree and CD-HIT maintain over
runtime among all tested methods, outperforming Clover 99.9% accuracy despite the high base error rate, but GTree
by approximately 20% on average, while maintaining sim- outperforms in clustering speed on the same hardware. These
ilar or higher accuracy. In large-scale datasets (e.g., 10M results confirm that GTree retains Clover’s strong clustering
synthetic reads), several baseline methods (MeShClust and performance while consistently improving both accuracy and
DNACLUST) fail to complete within the time limit, whereas efficiency.



TABLE V
CLUSTERING ACCURACY COMPARISON BETWEEN CLOVER AND GTREE

Dataset Clover (p =4) Clover (p =16) GTree (p =4) GTree (p = 16)

ERR1816980 99.43% 99.63% 99.81% 99.92%

P10-5-BDDP210000009 99.79% 99.79% 99.83% 99.81%

0.01M 99.81% 100.00% 100.00% 100.00%

0.1IM 100.00% 100.00% 100.00% 100.00%

M 99.93% 99.97% 99.99% 99.99%

10M 99.37% 99.67% 99.90% 99.96%

TABLE VI
RUNTIME AND ACCURACY COMPARISON ON [18-S3-R1-001 DATASET

Metrics GTree (ours) Clover UCLUST CD-HIT DNACLUST Starcode MeShClust
Runtime (s) 4.12 5.2 80.1 144.8 648.4 10.23 7947.22
Accuracy (%) 99.99 99.94 98.53 99.96 85.99 23.17 -

V. CONCLUSION

In this paper, we propose GTree, a tree-structured cluster-
ing algorithm designed to enhance both the scalability and
accuracy of DNA sequence clustering in large-scale DNA
storage systems. GTree integrates a prefix trie structure with
node-shift-tolerant alignment, enabling efficient grouping of
noisy reads without relying on costly global alignments or
external filtering. Compared with existing methods such as
Clover, Starcode, and CD-HIT, GTree demonstrates superior
clustering accuracy, reduced runtime, and lower memory usage
across both synthetic and real-world datasets. Our extensive
experiments show that GTree achieves over 99.4% clustering
accuracy on multiple benchmarks while being up to 30% faster
than Clover. The trie-based architecture not only accelerates
alignment but also enhances robustness to sequencing errors,
making GTree highly suitable for practical deployment in
large-scale DNA storage.
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