
Deep Reinforcement Learning-Empowered
Task Offloading for Efficient DNN Partition in

Vehicular Edge Computing
Huaming Wu, Senior Member, IEEE, Fengyu Li, and Huijun Tang, Member, IEEE

Abstract—Deep neural networks (DNNs) have driven break-
throughs in autonomous driving through end-to-end methods,
utilizing their powerful learning capabilities to generate vehicle
controls directly from sensor data. However, maximizing the
satisfaction of DNN inference requirements under the constraints
of limited computing and energy resources on the vehicle side
has emerged as a critical challenge in Vehicular Edge Comput-
ing(VEC). To address these challenges, we propose the reinforce-
ment learning-empowered task diversion scheduling algorithm
named RTD. This algorithm intelligently offloads computation-
ally intensive portions of the DNN to Roadside Units (RSUs) by
taking into account factors such as the battery coefficient and
the type of DNNs. Firstly, we utilize the FLOPs method to model
the data flow structure and computational load distribution of
the DNNs. Subsequently, we formulate the task offloading model
as an optimization problem that jointly considers latency, energy
consumption, and the remaining battery power of the vehicle.
Finally, after simplifying the optimization problem using the
diversion algorithm, we employ the SAC method to determine the
optimal offloading strategy. Extensive experiments demonstrate
that RTD significantly reduces overall task completion time, effec-
tively handles time-sensitive tasks, properly protects low-battery
vehicles, and adapts well to dynamic network environments.

Index Terms—DNN partition, Roadside units, Task offloading,
Deep reinforcement learning

I. INTRODUCTION

W ITH the development of wireless communication tech-
nology and the continuous progress of technologies

such as cloud computing and edge computing, the Internet
of Vehicles (IoV) is constantly updated and evolved as a
significant component of autonomous driving technology [1].
IoV centers on facilitating communication and connectivity
between vehicles, enabling data transmission between vehicles
and infrastructure to improve road safety, traffic efficiency,
and overall transportation performance [2, 3]. However, as
road environments become increasingly complex, a growing
amount of time-sensitive tasks need to be processed to ensure
the normal running of autonomous driving. Meanwhile, the
ever-increasing demands of safety and convenience for users
have further presented challenges to the development of au-
tonomous driving [4, 5].

A promising approach to this challenge is Vehicular Edge
Computing (VEC) [6–8], which offloads computational tasks

H. Wu and F. Li are with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China. E-mail: {whming, fengyu_li}@tju.edu.cn

H. Tang is with the School of Cyberspace, Hangzhou Dianzi University,
Hangzhou 310018, China. Email: tanghuijune@hdu.edu.cn.

(Corresponding author: Huijun Tang)

from vehicles to roadside units (RSUs) deployed along the
roadway. With advanced computational capacities, RSUs can
effectively meet the growing computational demands of ve-
hicles. The assistance of RSU not only effectively alleviates
the computational burden on vehicles, but also significantly
reduces data processing latency [9, 10]. Additionally, VEC
enables the aggregation and preprocessing of edge data,
thereby mitigating network congestion and enhancing data
privacy [11, 12]. Given its numerous advantages, VEC has
emerged as a cornerstone in the development of intelligent
transportation systems, fostering more efficient, safer, and
smarter vehicle environments [13–15].

Fig. 1. Paradim of DNN partitioning in VEC networks

While VEC networks have unique advantages in reducing
inference latency, they may have potential performance bot-
tlenecks when facilitating distributed DNN inference [10, 12].
They usually have limited computing power, which makes
it challenging to drive inferences based on the entire DNN
model. Therefore, we adopt the DNN partitioning method
to fully accelerate the inference process. DNN partitioning
can decompose the entire DNN model into multiple blocks
or segments and execute these components independently on
different devices to facilitate distributed inference [14].

In this study, we consider implementing the task offloading
algorithm on the granularity of splitting DNN layers, which
can be shown as Fig.1. Firstly, a diversion algorithm is
utilized to confirm which RSU the task will be offloaded
to at the vehicle side. Then, an algorithm based on SAC is

392

2025 IEEE International Conference on Web Services (ICWS)

2836-3868/25/$31.00 ©2025 IEEE
DOI 10.1109/ICWS67624.2025.00055

20
25

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

eb
 S

er
vi

ce
s (

IC
W

S)
 |

 9
79

-8
-3

31
5-

55
63

-4
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

W
S6

76
24

.2
02

5.
00

05
5

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

wu huaming

adopted to determine the optimal offloading decisions and
resource allocation at a granularity of DNN layers. The main
contributions of this paper are as follows:

• We utilized the FLOPs method to model the com-
putational and transmission dataflow of DNNs. Com-
pared with traditional experimental testing methods, this
approach provides a more specific representation of
dataflow structure and distribution.

• We designed a novel reinforcement learning-empowered
task diversion algorithm to allocate part of the task
offloading decision-making power to the vehicle side. The
vehicle side will determine the target RSU for offloading
based on the information broadcast by the RSUs, enabling
the diversion of tasks from the vehicle side.

• We consider two types of parallelism during the task exe-
cution process. The first type is that the local computation
and task transmission processes are parallelized with the
queuing process at the RSU end. The second type of
parallelism occurs when a new task can be transmitted to
the RSU during the execution of the preceding task.

• We take into account the remaining battery power of
the vehicles using the battery factor α. We developed
customized task offloading strategies based on the current
battery status of individual vehicles. For vehicles with low
battery levels, the algorithm increases the weight of local
energy consumption.

The remainder of this paper is organized as follows: Sec-
tion II presents the modeling of the task offloading process
and DNN partitioning, formulating the entire problem as an
optimization expression. Section III introduces the diversion
algorithm and provides the simplified model formulation after
applying diversion algorithm. Subsequently, we detail the
SAC-based task offloading algorithm. Finally, Section IV
presents evaluations of the proposed algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Vehicular Network Scenarios

The scenario depicted in Fig. 2 involves a straight two-way
urban road where RSUs, capable of handling offloading tasks,
are placed at regular intervals. The communication model be-
tween RSUs and vehicles is based on vehicle-to-infrastructure
(V2I) communication [16]. Vehicles collaborate with RSUs
to decide whether to perform local computation or partial
offloading. In recent years, the rapid advancement of deep
learning and its groundbreaking applications in autonomous
driving and visual recognition have prompted this paper to
focus on a partial task-offloading scheme for neural networks.

B. DNN Partitioning Model

1) Basic Settings: Vehicles are designated as veh =
{1, 2, · · · , v, · · · , V }. The division of time slot intervals con-
tinues to be utilized, with the time interval being defined as
τ = {1, 2, · · · , T}. The generated task can be defined as:

φv
m(t) = {dm(t), DDLm(t), xm, ym} , (1)

Fig. 2. Topology of vehicular network model

where φv
m(t) represents the task m generated by vehicle v at

time t, and dm(t) denotes the type of DNN task m at time t.
DDLm(t) represents the time constraint for this task. Failure
to complete the task within the designated time limit will result
in a significant penalty. xm represents the offloading variable
of the task, and ym denotes the index of the RSU to which
the task is offloaded.

2) DNN Offloading Process: In this study, we consider a
set of multiple DNNs, denoted as G = {G1, · · ·Gi, · · · , GI}.
For each DNN Gi, the layers are defined as follows:

Gi =
{
l1i , · · · l

j
i , · · · l

J
i

}
. (2)

During the offloading process, the subsequent part of a
specific layer can be offloaded to the RSU for computa-
tion. Therefore, we define the offloading decision variable as
xm(t) ∈ {0, 1, 2, · · · , J}, which determines how many layers
of the DNN will be offloaded to the RSU. For instance, if our
offloading decision variable is indicated as xi = j, then we
will perform the computations of layers from l1i to lji locally
and offload the layers after lj+1

i to the RSU. If our current
decision variable is indicated as xi = J , this task requires
local computation by the vehicle.

Considering the granularity of DNN layers, it is essential
to model the floating-point operations (FLOPs) [17] and data
traffic for each layer of the neural network defined as:

lji =
{
Cj

i , D
j
i

}
, (3)

where Cj
i represents the computation cost and Dj

i represents
the data traffic. Subsequently, we will employ the FLOPs
method to calculate Cj

i , D
j
i of the fully connected layers,

pooling layers, and convolutional layers.
Regarding the convolutional layer and the pooling layer, the

corresponding FLOPs and data traffic are defined as follows:

Cj
i = Cin

(
k2 + k2 − 1

)
×H ×W × Cout , (4)

Dj
i = Cin ×Hj−1 ×W j−1, (5)

where Cin and Cout are the input channel and output channel
of the current layer, k is the size of the kernel, H and W
are the height and width of layer lji , Hj−1 and W j−1 are the

393

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

height and width of layer lj−1
i .

As for the fully connected layer, its corresponding FLOPs
and data traffic are:

Cj
i = (Nin +Nin − 1)×Nout , (6)

Dj
i = Nin, (7)

where Nin is the number of neuron for the previous layer and
Nout is the number of neuron for the next layer. Nin +Nin −1
denotes the maximum number of operations required for a
neural network layer to generate an output where up to Nin
multiplications and Nin − 1 additions are needed.

C. Local and Offloading Computation Model

This section introduces the modeling for local task com-
puting, RSU computing, and task transmission, primarily
involving partial offloading, so we first derive the expressions
for the FLOPs on both the vehicle and RSU sides. When the
decision variable is set as xm, the FLOPs for each part is as:

Cveh =

xm−1∑
j=0

Cj
i , CRSU =

J∑
j=xm

Cj
i . (8)

1) Local computing: In this case, we consider xm(t) = J
for DNN with a total layer of J . The completion time is only
related to the execution time, given by:

tvehm (t) =
Cveh

fveh
v,m(t)

=

∑xm(t)−1
j=0 Cj

i

fveh
v,m(t)

, (9)

where fveh
m (t) is computation capacities allocated to task m

by the current vehicle, Cj
i is defined in Eq. (4). The energy

consumed by the vehicle is:

evehm (t) = κ · Cveh ·
(
fveh
v,m(t)

)2
, (10)

where κ is the computation energy efficiency coefficient.
2) RSU computing: When parts of the DNN are offloaded

to the RSU, the vehicle has to transmit the related data to the
RSU first. The transmission time can be defined as:

ttransm =
Dj

i

rm(t)
, (11)

where Dj
i can be calculated by Eq. (5) or Eq. (7), and rm(t)

is the transmission rate of the task m at time t, which can be
calculated by Shannon’s formula [3], given by:

rm(t) = B(t) log2(1 +
Pm(t) · δr,m(t)

N0
), (12)

where B(t) is the bandwidth between the vehicle and
RSU,Pm(t) is the transmission power, δr,m(t) is the channel
gain and N0 is the Gaussian white noise. Similar to the local
computing model, the processing time for RSU is defined as:

tRSU
m (t) =

CRSU

fRSU
r,m (t)

, (13)

where fRSU
r,m (t) is the computing capacities allocated to the

offloading part of task m.

Meanwhile, the energy consumed by transmitting the task
and processing the task at the RSU side is defined as:

etransm (t) =
Dj

i

rm(t)
· Pm(t), (14)

eRSU
m (t) = κ · CRSU ·

(
fRSU
r,m (t)

)2
, (15)

D. Problem Formulation

1) Task queuing in RSU: As shown in Fig. 2, it is common
for multiple offloaded tasks to queue for the computation
capacity. This study defines the task queue for RSU r as:

Qr(t) = {φr,k(t) | k = 1, 2, · · · ,K(t)} , (16)

where φr,k(t) is the new symbol for task φv
m(t) in the RSU

queue, indicating that the task is positioned at the k-th place
in the queue of RSU r.

So, we can define the queuing time for new task m as:

tqueuer,m =

K(t)∑
k=1

tRSU
r,k (t), (17)

where K(t) is the total queue length which may fluctuate with
the time slot, tRSU

r,k (t) is the processing time for the k-th task,
and the calculation formula is the same as Eq. (13).

2) Total time and energy consumption: When a queue is
established, the total time of task m (same as the task queued
K(t) + 1 in RSU queue) can be defined as:

tm = max
{
Pd + tqueuer,m , Pg + tvehm + ttransm

}
−Pg+tRSU

m (t),
(18)

where Pd denotes the point of making the offloading decision.
Pg represents the point of generating the current task.

Meanwhile, the total energy consumption can be defined as:

em = α · (evehm (t) + etransm (t)) + eRSU
m , (19)

where α represents a weight directly associated with the
vehicle’s current battery level Bv(t). We can define the battery
coefficient α as follows:

α =

{
1

Bv(t)
, 1

3 < Bv(t) < 1,

3, 0 < Bv(t) ≤ 1
3 ,

(20)

3) The optimization problem: From what we have discussed
above, we can formulate the optimization problem as:

P1 : min
x,y,f

1

M

M∑
m=1

(tm + βem) (21)

s.t. xm(t) ∈ {0, 1, · · · , J}, Gi =
{
l′i, · · · lJi

}
,∀t ∈ τ,

(21a)
ym(t) ∈ {0, 1, · · · , R}, ∀t ∈ τ, (21b)

0 ≤
M∑

m=1

fveh
v,m(t) ≤ fveh

max,∀t ∈ τ, (21c)

0 ≤
M∑

m=1

fRSU
r,m (t) ≤ fRSU

max ,∀t ∈ τ, (21d)

394

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

where β is the balance coefficient of time and energy con-
sumption, Eq. (21a) indicates that the offloading decision
variable is in the set {0, 1, · · · , J} for a specific task requiring
the i-th DNN, which comprises a total of J layers. Eq. (21b)
defines the RSUs that tasks may be offloaded to. Eq. (21c)
restricts the computational resource on the vehicle side and
Eq. (21d) limits the computational resource on the RSUs.

III. PROPOSED APPROACH

In Section II, we formulated the entire system model as
an optimization problem. Nevertheless, it is a multi-objective
optimization problem with an enormous state space. If we
adopt the reinforcement learning approach for solving it now,
converging may be tough. Therefore, we initially employ
the pre-diversion algorithm to decompose the optimization
problem into smaller subproblems. Subsequently, we utilize
reinforcement learning to determine the optimal solution for
each subproblem. An overview of the reinforcement learning-
empowered task diversion scheduling can be shown in Fig. 3.

A. Pre-diversion DRL Algorithm

In this section, we elaborate on the 3 parts related to
diversion and the DRL part is introduced in the next section.

1) Broadcast RSU state index: We stipulate that the RSU
broadcasts its status index at fixed intervals of a certain number
of time slots. This index is defined as:

RIr = (twait
r,m , δm,r(t), lr, Bv(t)), (22)

where RIr represents the state index of RSU r, twait
r,m is the

waiting time for queuing and can be calculated by Eq. (17),
lr is location coordinate of the RSU r, δm,r(t) is the channel
gain of RSU r and the vehicle, Bv(t) is the bandwidth.

2) Offloading application: For a certain vehicle v, upon
receiving the state index from multiple RSUs, an expected
waiting Time tprer will first be predicted based on the RSU
index. Here, we define the prediction waiting time as:

tprer =
maxj{Dj

i }
rm(t)

+ twait
r,m , (23)

where Di is the output data size for DNN i.
Then, the vehicle will first choose the RSU with the shortest

prediction waiting time, either tprer1 or tprer2 and follow the
principle that the longer the expected waiting time is, the lower
the probability of sending the offloading application to that
RSU will be. The probability is defined as follows:

pr1 =
tprer2

tprer1 + tprer2

, pr2 =
tprer1

tprer1 + tprer2

. (24)

After confirming the probability of sending the application,
an offloading application containing {lv(t), fveh

max, φ
v
m(t)} will

be sent to the RSU.
3) Offloading decision making: After receiving the task

request from the vehicle, the RSU employs the DRL method
to identify the potentially optimal routing decision xm(t). The
procedure structure above can be summarized in Alg. 1.

Algorithm 1 Reinforcement learning-empowered task diver-
sion scheduling algorithm
Input: Bv(t),Qr(t),δm,r(t),φm(t),fveh

max,fRSU
max .

Output: Offlaoding decision xm(t).
1: for each time slot do
2: Get φm(t) for each RSU;
3: Broadcast RSU state index;
4: for each vehicle with new task do
5: Receive 2 sets of RSU state index;
6: Predict the possible waiting time;
7: Get pr1 and pr2 and send the offloading request;
8: end for
9: for each RSU do

10: Receive offloading attempts;
11: Make the offloading decision by SAC agent;
12: Send the request feedback;
13: end for
14: end for

We use the diversion method described by lines 2 to 9 in
Alg. 1, where the algorithm delegates part of the offloading
decision-making authority from RSUs to vehicles. Hence, we
can transform the problem P1 into problem P2:

P2 : min
x,f

tm + βem (25)

s.t. xm(t) ∈ {0, 1, · · · , J}, Gi =
{
1, · · · lJi

}
,∀t ∈ τ

(25a)

0 ≤ fveh
v,m(t) ≤ fveh

max,∀t ∈ τ (25b)

0 ≤ fRSU
r,m (t) ≤ fRSU

max ,∀t ∈ τ, (25c)

B. SAC Based Offloading Decision Making

1) MDP modeling: We will model the problem as a Markov
Decision Process (MDP) and present the state space, action
space, and reward.

• State: Let s(t) be the state space at time slot t. Hence,
we can define the state as:

S(t) = [lm(t), vm(t), ϕv
m(t), fveh

max, f
RSU
max , Qr(t)], (26)

where lm(t) is the location of the vehicle that generated
the task m, vm(t) is the velocity of the vehicle, and ϕv

m(t)
is the attribute of the task m. fveh

max and fRSU
max are the

maximum computational resources of the vehicle and the
current RSU.

• Action: Since we have eliminated the variable y(t) in
the optimization problem, according to problem P2,we
can define the action as:

A(t) = [xm(t), fveh
v,m(t), fRSU

v,m (t)], (27)

where xm(t) is the offloading decision variable of task
m, fveh

v,m(t) and fRSU
v,m (t) are the computational resource

from vehicle and RSU that can be allocated to task m,
respectively.

• Reward: The reward function of our MDP can be defined
as the negative of a weighted sum of delay and energy

395

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Overview of the proposed reinforcement learning-empowered task diversion scheduling in VEC networks

consumption by:

R(t) = −(tm + βem). (28)

2) SAC algorithm: Unlike traditional reinforcement learn-
ing methods that merely maximize the reward, the SAC
algorithm incorporates a weighted entropy term. This encour-
ages the agent to explore the environment more thoroughly,
prevents the system from prematurely converging to a sub-
optimal solution, and enhances the overall robustness of the
system [18]. If p(x) is the density function of a random
variable X , we can define the entropy of X as:

H(X) = Ex∼p[− log (p(x))]. (29)

In this algorithm, we modify the original reward to be a
weighted sum of the cumulative reward and the entropy. As
a result, we use this modified reward to derive the optimal
policy π⋆. The following formula can express it:

π∗ = argmax
π

Eπ

[∑
r (st, at) + µH (π (· | st))

]
, (30)

where µ is the temperature parameter that can adjust the
relative weights of the entropy and the reward to fine-tune
the balance between exploration and exploitation [18].

As illustrated in Fig. 3, we utilize four critic networks:
two delay networks and two target networks. Additionally,
there is an actor network that learns the policy π∗ based
on the target network. The actions generated by the actor
network are returned to the environment, where we will get
(st, at, rt, st+1) in the MDP model and store the transition
quadruplet in the replay pool.

C. Computing Complexity

The complexity of Alg. 1 is O(TR) and depends on
the total duration of the test intervals and the number of
RSUs. Meanwhile, the complexity of SAC is O(ETN), which

is mainly related to the number of training sessions, time
intervals, and training rounds.

IV. PERFORMANCE EVALUATION

A. Parameter Settings

In the current scenario, the RSUs are elevated to 4 meters
and furnished with a communication range of 500 meters [19].
In accordance with the standard of conventional highways, it
supervises a three-lane expressway, with each lane 3.5 meters
wide. In this study, we consider 4 types of DNN, including
TinyTOLOv2, AlexNet, VGG16, and NiN.

The configuration is mainly derived from [20] and [21]. We
set the channel bandwidth Bv = 20 MHz and the computation
energy efficiency coefficient κ = 10−26. We assume Gaussian
white noise N0 = 3 × 10−13. The maximum computational
resources of the vehicle and RSU server are set as 3 GHz and
7 GHz. The range of temperature parameter µ is [0.001, 1]

B. Baselines

We implemented the following four benchmark algorithms
for comparison with our proposed RTD scheme:

• Local Executing Only (LEO): All tasks are handled
entirely on the vehicle without being offloaded.

• RSU Executing Only (REO): Regardless of the network
condition, all tasks are directly offloaded to the RSUs.

• Greedy-based Scheme (GBS): This method strictly ad-
heres to the original greedy algorithm for task offloading
without incorporating any additional enhancements [22].

• Distributed DQN (DisDQN): This method uses the
distributed DQN algorithm to partition DNN blocks and
choose the offloading RSU [23].

C. Experiment Results

1) Convergence performance: As depicted in Fig. 4, a
distinct convergence trend becomes evident after 2000 rounds.

396

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

Setting the learning rate to 0.05 can achieve the best conver-
gence, and choosing the learning rate to 0.1 may achieve the
highest reward with wider fluctuations. It is crucial to select
an appropriate learning rate with care. Both large and small
learning rates have their distinctive advantages. We set the
learning rate as 0.05 for a trade-off between convergence and
exploration.

Fig. 4. Convergence of proposed method

2) Delay with changing number of vehicles: In Fig. 5, it can
be observed that the performance disparities between the four
baseline approaches and the proposed RTD under different
vehicle numbers. When the number of vehicles increases, the
latency of all approaches rises accordingly. With an increase
in the number of vehicles, the number of tasks generated
increases markedly, resulting in a corresponding increment in
the total time needed to complete these tasks.

With the continuous growth of the number of vehicles, the
waiting time for the baselines is increasing, and the increase
in the waiting time is also gradually expanding. This delay
variation is caused by task congestion. As for the RTD method,
although the vehicle time delay is also on the rise, the increase
in increment is not obvious.

Fig. 5. Variation of delay with changing numbers of vehicles

3) Impact of task release rate for different algorithm: Fig. 6
illustrates the trend of the average total cost per task as the

task release rate varies while maintaining a fixed number of 15
vehicles. In this scenario, the total cost of the LEO algorithm
consistently remains the highest. This can be attributed to the
penalty imposed on local computing when vehicle battery lev-
els are low, as described in Eq. (19). Meanwhile, regardless of
the task release rate, the proposed RTD algorithm consistently
exhibits lower overall costs, demonstrating a clear advantage.

Fig. 6. Cost for algorithms with task release rate.

V. CONCLUSION

This paper proposes a joint computing offloading and re-
source allocation strategy in a VEC network to minimize the
weighted sum of delay and energy consumption. Specifically,
we address the remaining battery power of vehicles to provide
customized and differentiated services for task offloading
scenarios. Algorithmically, we implement pre-processing of
tasks that require offloading, effectively reducing the action
space for subsequent reinforcement learning decisions and
thereby enhancing both the convergence and robustness of
the reinforcement learning process. Simulation experiments
demonstrate that the proposed method significantly improved
the convergence of reinforcement learning. Additionally, it
efficiently allocates computing and communication resources
while prioritizing the normal running of low-battery vehicles,
thereby reducing the overall system cost. However, despite its
great simulation performance, the method may face challenges
in practical implementation due to its complexity and the
influence of environmental factors.

In future research, we plan to incorporate additional real-
world traffic factors into our model to enhance its performance
in complex and dynamic scenarios. Furthermore, we will
integrate graph neural networks to further optimize decision-
making and resource allocation, thereby improving the model’s
overall robustness and adaptability.

ACKNOWLEDGMENT

This work is supported by the Zhejiang Provincial
Natural Science Foundation of China under Grant (No.
LQN25F020016), the National Natural Science Foundation
of China under Grant (No. 62401190 and 62071327), and
the Tianjin Science and Technology Planning Project (No.
22ZYYYJC00020).

397

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Liang, H. Tang, H. Wu, Y. Wang, and P. Jiao,
“Lyapunov-guided offloading optimization based on soft
actor-critic for isac-aided internet of vehicles,” IEEE
Transactions on Mobile Computing, vol. 23, no. 12, pp.
14 708–14 721, 2024.

[2] M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He,
D. Pesch, K. Moessner, W. Saad, and H. V. Poor, “6g for
vehicle-to-everything (v2x) communications: Enabling
technologies, challenges, and opportunities,” Proceedings
of the IEEE, vol. 110, no. 6, pp. 712–734, 2022.

[3] Z. Liu, Z. Zhao, X. Wang, M. Dong, C. Qiu, and
C. Zhang, “Toward mobility-aware edge inference via
model partition and service migration,” in ICC 2023-
IEEE International Conference on Communications.
IEEE, 2023, pp. 3258–3263.

[4] H. Wu, A. Gu, and Y. Liang, “Federated reinforcement
learning-empowered task offloading for large models
in vehicular edge computing,” IEEE Transactions on
Vehicular Technology, vol. 74, no. 2, pp. 1979–1991,
2025.

[5] C. Tang, H. Wu, R. Li, and J. J. P. C. Rodrigues, “Joint
optimization of task offloading content caching and re-
source allocation in vehicular edge computing,” ACM
Trans. Auton. Adapt. Syst., Apr. 2025, just Accepted.

[6] C. Tang, Y. Zhao, and H. Wu, “Lyapunov-guided optimal
service placement in vehicular edge computing,” China
Communications, vol. 20, no. 3, pp. 201–217, 2023.

[7] C. Li, L. Chai, K. Jiang, Y. Zhang, J. Liu, and S. Wan,
“DNN partition and offloading strategy with improved
particle swarm genetic algorithm in VEC,” IEEE Trans-
actions on Intelligent Vehicles, 2023.

[8] H. Tang, H. Wu, G. Qu, and R. Li, “Double deep q-
network based dynamic framing offloading in vehicular
edge computing,” IEEE Transactions on Network Science
and Engineering, vol. 10, no. 3, pp. 1297–1310, 2023.

[9] R. Meneguette, R. De Grande, J. Ueyama, G. P. R. Filho,
and E. Madeira, “Vehicular edge computing: Architec-
ture, resource management, security, and challenges,”
ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–
46, 2021.

[10] Z. Hao, G. Xu, Y. Luo, H. Hu, J. An, and S. Mao,
“Multi-agent collaborative inference via dnn decoupling:
Intermediate feature compression and edge learning,”
IEEE Transactions on Mobile Computing, vol. 22, no. 10,
pp. 6041–6055, 2022.

[11] X. Zhang, M. Peng, S. Yan, and Y. Sun, “Joint communi-
cation and computation resource allocation in fog-based
vehicular networks,” IEEE Internet of Things Journal,
vol. 9, no. 15, pp. 13 195–13 208, 2022.

[12] Z. Liu, Q. Lan, and K. Huang, “Resource allocation
for multiuser edge inference with batching and early
exiting,” IEEE Journal on Selected Areas in Communi-
cations, vol. 41, no. 4, pp. 1186–1200, 2023.

[13] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation

offloading and resource allocation for cloud assisted
mobile edge computing in vehicular networks,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 8, pp.
7944–7956, 2019.

[14] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, “Task
partitioning and offloading in dnn-task enabled mobile
edge computing networks,” IEEE Transactions on Mobile
Computing, vol. 22, no. 4, pp. 2435–2445, 2021.

[15] C. Tang, G. Yan, H. Wu, and C. Zhu, “Computation
offloading and resource allocation in failure-aware vehic-
ular edge computing,” IEEE Transactions on Consumer
Electronics, vol. 70, no. 1, pp. 1877–1888, 2024.

[16] M. S. Bute, P. Fan, G. Liu, F. Abbas, and Z. Ding, “A
cluster-based cooperative computation offloading scheme
for c-v2x networks,” Ad Hoc Networks, vol. 132, p.
102862, 2022.

[17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,
“Pruning convolutional neural networks for resource effi-
cient inference,” arXiv preprint arXiv:1611.06440, 2016.

[18] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,
J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al.,
“Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[19] C. Creß, Z. Bing, and A. C. Knoll, “Intelligent transporta-
tion systems using roadside infrastructure: A literature
survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 25, no. 7, pp. 6309–6327, 2024.

[20] S. Huang, M. Zhang, Y. Gao, and Z. Feng, “Mimo
radar aided mmwave time-varying channel estimation in
mu-mimo v2x communications,” IEEE Transactions on
Wireless Communications, vol. 20, no. 11, pp. 7581–
7594, 2021.

[21] H. Li, X. Li, Q. Fan, Q. He, X. Wang, and V. C. M. Le-
ung, “Distributed dnn inference with fine-grained model
partitioning in mobile edge computing networks,” IEEE
Transactions on Mobile Computing, vol. 23, no. 10, pp.
9060–9074, 2024.

[22] H. Gauttam, K. K. Pattanaik, S. Bhadauria, G. Nain,
and P. B. Prakash, “An efficient dnn splitting scheme
for edge-ai enabled smart manufacturing,” Journal of
Industrial Information Integration, vol. 34, p. 100481,
2023.

[23] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu,
“Smart manufacturing scheduling with edge computing
using multiclass deep q network,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 7, pp. 4276–4284,
2019.

398

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 02,2025 at 05:33:04 UTC from IEEE Xplore. Restrictions apply.

