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Abstract

Graph federated learning(GFL) is increasingly uti-
lized in domains such as social network analy-
sis and recommendation systems, where non-1ID
data exist extensively and necessitate a strong em-
phasis on personalized learning. However, exist-
ing methods focus only on the personality among
different clients instead of the personality within
a client which widely exists in the real social
networks, where intra-client personality addresses
the heterogeneity of known data, while inter-client
personality always tackle client heterogeneity un-
der privacy constraint. In this paper, we pro-
pose a novel automatic personalized graph fed-
erated learning (PGFL) scheme named FedCCH
to capture both inter-client and intra-client hetero-
geneity. For intra-client heterogeneity, we inno-
vatively propose the learnable Personalized Factor
(PF) to automatically normalize each graph rep-
resentation within clients by learnable parameters,
which weakens the impact of non-1ID data distri-
bution. For inter-client heterogeneity, we propose
a novel hash-based similarity clustering method to
generate the hash signature for each client, and then
group similar clients for joint training among dif-
ferent clients. Ultimately, we collaboratively train
intra-client and inter-client modules to improve the
effectiveness of capturing the heterogeneity of the
graph data of clients. Experiment results demon-
strate that FedCCH outperforms other state-of-the-
art baseline methods.

1 Introduction

Federated Learning (FL) enables distributed machine learn-
ing while addressing privacy and security concerns by keep-
ing data locally. [McMahan er al., 2017]. However, in FL,
clients often exhibit diverse data distributions, thereby con-
travening the standard assumption of independent and identi-
cally distributed (i.i.d) data prevalent in centralized machine
learning. This phenomenon, referred to as data heterogeneity,
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Figure 1: Heterogeneity of the graph data between and within
clients. Client 1 exhibits significant structural heterogeneity, while
Client 2 demonstrates notable feature heterogeneity.

is recognized as a significant factor contributing to the per-
formance degradation of the global model. Therefore, those
non-i.i.d phenomenon drive the development of personalized
federated learning (PFL) [Tan et al., 2022], which learns
customer-specific personalized models with a global model
as an integral part of knowledge sharing [Tan ef al., 2022;
Gauthier er al., 2023]. PFL satisfies the personalized re-
quirements by delivering tailored model parameters to unique
model architectures of diverse devices(same as clients in FL),
which is called model customization. Model customization
becomes imperative for individual devices or users, particu-
larly for cooperative training in cross-client scenarios such
as speech recognition [Sim et al, 2019], anomaly detec-
tion [Haotian et al., 2022], and image segmentation [Jiang
et al., 2022] among different clients. Recently, GFL has
emerged as a dominant approach to address the limitation of
Graph Neural Networks (GNNs) [Kipf and Welling, 2017;
Velickovic ef al., 2017; Xu et al., 2018] when facing scat-
tered graph data in the real world with privacy concerns [Fu
et al., 2022]. Existing GFL methods are categorized into three
types, differentiated by the graph data each client holds. (1)
Node-level separation [Chen ef al., 2022; Pan et al., 2023]
(2) Subgraph-level separation [Zhang et al., 2021; Chen et
al., 2021] and (3) Graph-level separation [Tan et al., 2023;
Xie et al., 2021]. Similar to traditional FL, GFL also faces
the issue of data heterogeneity, and several studies have been
conducted to address related challenges [Xie er al., 2021;
Gauthier et al., 2023]. However, they still lack specific con-
siderations for graph data. Particularly in graph-level feder-



ated learning, there is also a certain degree of heterogeneity
among the graphs within each client. Those pose significant
challenges to the overall goals of federated learning in vari-
ous graph-based applications. As shown in Fig. 1, molecular
structures can exhibit both ring and tree-like configurations,
with substantial differences in their underlying attribute dis-
tributions.

Additionally, significant domain differences across clients
contribute to common forms of heterogeneity. To tackle the
challenges caused by the heterogeneity, clustering techniques
in personalized federated learning have emerged as a crucial
solution. Previous works [Xie et al., 2021; Sattler et al.,
2020] have attempted to address these challenges by clus-
tering based on partial graph data or statistical information.
However, the former approach compromises user privacy,
giving rise to privacy vulnerabilities since sensitive informa-
tion may be exposed during the clustering stage, while the
latter inaccurately represents the data, leading to suboptimal
outcomes in federated graph learning. Therefore, enhancing
the performance of GFL with heterogeneous issues while en-
suring privacy protection presents a significant challenge.

To address the contradiction between privacy and person-
ality widely existed in heterogeneous environments, we pro-
pose a novel framework named personalized graph Federated
learning with inter-Client and intra-Client Heterogeneity
(FedCCH for brevity) for personalized graph federated learn-
ing with data privacy in heterogeneous environments. The
main contributions can be summarized as follows:

e Joint learning for Intra- and inter-client personaliza-
tion: We considered the issues of intra-client and inter-
client heterogeneity present in GFL in heterogeneity en-
vironments and proposed a novel personalized Graph
Federated Learning approach, which is the first work to
jointly learn intra- and inter-client personalization.

* Automatic  Personalization  Factor  for Intra-
Heterogeneity: To address intra-client data heterogene-
ity, we propose a novel learnable PF by individually
normalizing each graph within a client to achieve an
approximate data feature distribution and excluding PF
from federated learning. It is worth mentioning that Fed-
CCH does not introduce additional hyper-parameters
and can automatically learn personality.

* Hash-based Clustering for Personalization Learning:
To address inter-client heterogeneity of graph data which
deteriorates GNNs generalization, we innovatively uti-
lize the hash algorithm to generate hash signatures for
similarity calculations and clustering to protect client
privacy while capturing heterogeneous relationships be-
tween clients.

L]

Effective Performance: We conduct extensive experi-
ments on 15 graph datasets, which include 6 different
data combinations to assess the performance of the pro-
posed FedCCH framework. The results surpass multiple
FL and GFL algorithms, outperforming other methods
by up to 5.04% in average test accuracy on BIO-SN-CV.

2 Preliminaries

2.1 Federated Learning

In FL, each client owns a local private dataset D; drawn from
distribution P;(x,y), i = 1,2,...,m, where z and y denote
the input features and corresponding class labels respectively,
and m denotes the number of clients. Usually, clients share a
model F(w; x) with the same architecture and hyperparame-
ters. This model is parameterized by learnable weights w and
input features . The objective function of FedAvg [McMa-
han et al., 20171 is:

m
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where w is the global model’s parameters, NN is the total num-
ber of instances over all clients, F is the shared model, and
Ls is a general definition of any supervised learning task.

Nonetheless, In the statistical heterogeneity setting in the
real world, P; varies across clients, indicating heterogeneous
input/output space for x and y. For example, P; on different
clients can be the data distributions over different subsets of
classes. For the i-th client, the training procedure is to mini-
mize the loss as defined below:
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Most existing methods cannot well handle the heteroge-
neous settings above. Thus, the global model’s parameter
w cannot be optimized by averaging wi,ws,...,wn,. In a
GFL framework, w; and D; refer to the parameter set of GNN
model and the graph dataset at client ¢, respectively.

2.2 Graph Neural Networks

Let G = (V, E) be a graph consisting of a set of nodes V" and
a set of edges E connecting nodes. Each node v € V has a
feature vector x,,. Based on the graph structure and node fea-
tures, GNNs can be used to learn the node-level representa-
tion vector h,, of node v € V" and/or the graph-level represen-
tation vector h¢ of graph G. Existing GNNs usually follow
the message passing scheme where h,, is iteratively updated
by aggregating the representations of node v’s neighbors. [-th
layer in L-layer GNNs can be formulated as:

al) = AGGREGATE") ({hg*) uEN (v)}) )

h{) = UPDATE®) (hgf—U, ag”) , @)
where hg) is the representation vector of node v output by

the I-th layer, A/(v) is the set of node v’s neighbors. Dif-
ferent AGGREGATE and UPDATE strategies are adopted
in different GNN variants and sometimes can be integrated
together [Kipf and Welling, 2017].

Specifically, for graph classification, the graph representa-
tion hg can be further obtained by aggregating all the node
representations involved in graph G via various graph-level
readout functions, such as summation and mean pooling.



3 Related Work
3.1 Federated Learning

FL allows isolated data to collaboratively train a global model
with strong generalization ability. FedAvg [McMahan et al.,
2017], a classic FL algorithm, performs local training on
clients iteratively and averages global parameters on a central
server for the next round of client training. Various methods
have been proposed to optimize communication cost [Hamer
et al., 2020; Wu et al., 2022], data privacy [Wei et al., 2023;
Tang et al., 2023], and model accuracy [Wu et al., 2023;
Niu and Deng, 2022] in FL. This paper primarily focuses on
enhancing model accuracy, which is independent and com-
plementary to other methods concerning communication cost
and data privacy. However, the heterogeneity of data distri-
bution can negatively impact the generalization performance
of the federated learning global model on each client.

To address this issue, PFL is proposed, which can be di-
vided into data-based PFL and model-based PFL. Data-based
PFL aims to reduce heterogeneity among clients by shar-
ing part of the global data [Zhao et al., 2018], but it may
pose privacy risks. To mitigate this, model-based PFL was
introduced. Model-based PFL can be further categorized
into single-model [Li et al., 2020; Karimireddy et al., 2020;
Wang et al., 2019; Yue et al., 2021] and multi-model PFL ap-
proaches [Dinh er al., 2020; Arivazhagan er al., 2019]. How-
ever, the inherent characteristics of graph data introduce ad-
ditional layers of heterogeneity that exacerbate the challenges
in federated learning. This includes the variability in degree
distribution across different graphs, the varying levels of spar-
sity within these graphs, and the diversity in graph feature
representations. Such complexities render traditional feder-
ated learning methods less effective.

3.2 Graph Federated Learning

The rapid development of FL, along with the benefits of pro-
cessing graph data using GNNs, has fostered the emergence
of GFL, which enables the processing of distributed graph
data through FL. Previous work in this area can be classified
into three categories:

In node-level graph federated learning, each client pos-
sesses an ego graph, which comprises links to other clients,
often encapsulating a wealth of information. This approach
utilizes the client-composed graphs as the primary objects of
learning, aiming to enhance the overall model’s capabilities.
SFL in [Baek et al., 2023] learns both the global and per-
sonalized models simultaneously using client-wise relation
graphs and clients’ private data to enhance the knowledge-
sharing process in PFL. Lumos in [Pan et al., 2023] design a
novel tree constructor to improve the representation capabil-
ity given the limited structural information.

In subgraph-level graph federated learning, where the
client only holds a part of the complete graph data [Zheng
et al., 2021; Chen et al., 2021; Zhang et al., 2021; Zhang
et al., 2022; Liu et al., 2021; Baek et al., 2023; Guo et al.,
2023]. These works address information loss after splitting
subgraphs, either by generating missing nodes [Zhang et al.,
2021] or improving federation strategies [Zheng et al., 2021].

This research is mainly oriented toward node classification or
link prediction tasks on graphs.

In graph-level graph federated learning, each client holds
multiple complete graphs and mainly uses graph classifi-
cation as the main downstream task [Hu et al, 2022;
Xie et al., 2021; Tan et al., 2023]. Existing research mainly
focuses on the heterogeneity of graphs between different
clients, GCFL in [Xie et al., 2021] performance clustering
federated learning based on gradients. FedStar in [Tan er
al., 2023] tries to share domain-agnostic structural informa-
tion to enhance local model performance. However, exist-
ing methodologies often overlook the heterogeneity preva-
lent within client-specific graph data, notably in aspects such
as graph degree distribution and feature distribution. This
oversight consequently restricts the performance efficacy of
Graph Neural Networks (GNNs). Our research is directed to-
wards developing an advanced graph federation architecture.
This architecture is meticulously designed to proficiently ad-
dress both intra-client and inter-client heterogeneity without
additional privacy concerns compared to traditional methods.

4 Methodology
4.1 FedCCH Overview

In our federated learning framework, we consider a sce-
nario with m distinct clients, each identified by indices
1,2,--- ,m. These clients operate under the oversight of a
semi-honest or curious server. Each client possesses a col-
lection of complete graphs, with all graphs from a single
client belonging to the same domain. Since graph data in
different domains may contain complementary information.
Through federated learning, various fields can share their do-
main expertise, thereby improving the performance of the
overall model. For instance, client A, representing a biolog-
ical company, holds extensive biological graph data, while
client B, representing a chemical company, maintains a sub-
stantial repository of chemical molecular graphs. The objec-
tive is to collaboratively train multiple Graph Neural Network
(GNN) models that fulfill the requirements of all participating
entities. Finally, the system trains each client’s model based
on local graph data and performs clustering federated average
learning. We can formulate the goal of the system as Eq 2.

4.2 Automatic Personalization Factor

We introduce ’intra-client heterogeneity’ as a novel concept,
specifically referring to the variability in structural and fea-
ture compositions among different graphs within the same
client. To address this challenge, we advocate using fea-
ture standardization and transformation techniques, such as
BatchNorm and LayerNorm.

However, this one-size-fits-all approach may fail to address
the unique characteristics of each client’s data effectively.
Secondly, the necessity of model sharing in a federated envi-
ronment raises concerns, particularly with regularization lay-
ers that encapsulate extensive information, potentially lead-
ing to privacy vulnerabilities.

To mitigate these issues, we propose the introduction of
personalization factors. This concept is designed to navigate



Solution for Intra-client Heterogeneity: Automatic Personalization Factor
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Figure 2: An overview of the GFL architecture in our proposed FedCCH. The top section represents each client and conducts local GNNs
training, obtaining a unique signature through readout and hash. The client then uploads this signature, along with its model parameters w? to
the server. The left-bottom section corresponds to the server. The server calculates the similarity of the client’s signature, performs clustering,
and utilizes the federated average algorithm to share knowledge within each cluster.

the balance between standardization and customization. By
applying these factors, local data undergoes feature normal-
ization tailored to the specific characteristics of each client’s
dataset. Crucially, while standardizing local data, the per-
sonalization factors refrain from sharing any federated data.
This approach aims to preserve data privacy while ensuring
that the normalization process is more closely aligned with
the intrinsic properties of each client’s data, thereby enhanc-
ing model relevance and effectiveness in a federated learning
context.

Inspired by [Cai et al., 2021], considering the particularity
of the graph structure, structural information for classification
will be lost when removing the norm mean. we have elected
to employ it as our preferred standardization method in this
study. We perform the GIN layer to obtain the hidden embed-
ding for each graph G in the client ¢ as follows:

h) = GIN(R{, ), 5)
L, k=1,..., K;, and K; is the number of
graphs in the i-th client. hiok) is the input graph, ﬁgl,)C denotes
the hidden embedding of the graph in the {-th layer. GIN(-)
denotes the GIN layer [Xu ef al., 2018] of the model. We

denote the element of v-th row and d-th column in A" ik s

wherel =1,...,

hZ k.v,4» Which is abbreviated as h ; for the purpose of sim-
phﬁcatlon when computing PF factors The value of PF factor
is computed as follows:

l 1 h(l)d—a(?rud l
PF(h) =afh- gl ©
where d = 1,2,...,d" represents the index of the

oo
embedding of the [-th layer, uq = Lh“d,&ﬁ =

n

o (hO—a® g N
_1( L ) , %(’C)l, z(()z are the affine parameters as

BatchNorm, £, g specializes in the d-th parameter of the v-

th node in the graph, and a( ) is the learnable parameter that
plays a crucial role in controlhng the retention of information
and enhancing the expressive capability of GNNs.

The retention of PF at the local client level, while exclud-
ing them from the federated learning’s shared parameters, is
a strategic approach that caters to the specific needs of indi-
vidual graph datasets. This methodology permits each set of
graph data within a client to adapt to its unique distributional
characteristics, significantly enhancing the suitability and ef-
ficacy of the model for that particular data. After the PF and
ReLU [Glorot ef al., 2011], we get the embedding of the [-th
layer as follows:

h{) = ReLU(PF(h{))), @)

After the transformation of L layers of the neural network, the

final representation h( k) is obtained. Next, the embedding is

processed by the READOUT function which is summation
to obtain the entire graph’s representation hj; and compared
with the ground truth g; label to calculate the loss and perform
gradient descent. The loss function is Cross-Entropy loss as
follows:

Loss(yi, §i) = Zyz rlog(gi,r) (®)

where R represents the number of graph categories It is

worth noting that parameters such as a(l), Vi andﬂ @ are up-
dated after the gradient is backpropagated. The specific pro-
cess is shown in the upper part of Fig 2.



As a result, local models are capable of achieving faster
convergence rates, effectively addressing the challenge of
intra-client graph data heterogeneity. The implementation of
the PF plays a pivotal role in ensuring that disparate graph
datasets within a single client can approximate and learn
from their respective distributional representations. Conse-
quently, this leads to an overall improvement in model per-
formance, substantially mitigating the effects of data hetero-
geneity present within individual clients.

4.3 Hash-based Clustering

In real-world settings, the inherent data heterogeneity among
different clients presents a significant challenge to the effec-
tiveness of traditional federated learning methods. To address
this, clustering techniques in personalized federated learning
have emerged as a key solution. These techniques involve
grouping clients based on the similarity in their data distribu-
tions, allowing for model training to be tailored to each clus-
ter. This strategy enhances the relevance and suitability of the
model to the particular characteristics of the clients within
a given group. Implementing clustering in federated learn-
ing enhances model performance by tailoring each model to
the specific characteristics of its cluster’s data, leading to in-
creased accuracy and efficiency. Additionally, it optimizes
resource utilization by focusing training and communication
on similar clients, conserving computing and communication
resources across the network.

While client-side clustering in federated learning presents
several advantages, it is not devoid of challenges. Firstly,
though this approach can enhance privacy protection, the
clustering process often necessitates a degree of data shar-
ing or analysis. This requirement could potentially lead to
privacy vulnerabilities, as sensitive information might be ex-
posed during the clustering phase. Secondly, the reliance on
indirect features in certain clustering algorithms might not ac-
curately represent the extent of heterogeneity across diverse
data distributions. Such algorithms might fail to capture the
nuanced differences between datasets, thereby limiting the ef-
fectiveness of the clustering. Lastly, the dynamic nature of
data in real-world scenarios poses another challenge. Static
clustering methods may struggle to adapt to changes in simi-
larity measures over time, leading to outdated or suboptimal
groupings.

We adopt aggregation and hash operations to preserve es-
sential client features while ensuring data privacy to tackle
this challenge and explore the potential of low-dimensional
data representations. Considering the data scale drift among
different datasets, we aim to streamline computations and
minimize communication costs by achieving a uniform length
representation for all clients. To achieve this, we get the
final embedding hiL’ . of graph £ at last round of epochs
in the client, and aggregate the all graph’s embedding as
H} = [h}y,...,hk ], where ¢ represents the number of FL
training rounds. Then we compute the unified representation
of client ¢ at t-round after aggregation as follows:

H! = T,H, ©)

ﬁ] T represents the aggregation matrix for

mean-pooling and | D, | is the size of graphs of i-th client.

where T; =

Indeed, hash-based similarity computation has gained pop-
ularity in the field of computer vision for achieving faster
computation. This approach involves converting two images
into a consistent range of pixels and utilizing a hash function
to generate a signature that represents the images’ similarity.
By using this compact representation, image similarity can be
efficiently calculated, making it an effective method for large-
scale image processing tasks. Hash-based image similarity
computation has been widely adopted in various computer vi-
sion applications, including image retrieval, object detection,
and image clustering, due to its computational efficiency and
satisfactory performance.

While most algorithms designed for Euclidean data might
not adapt to the graph data, we leverage the low-dimensional
representation of the data as it reflects valuable information.
For our approach, we consider the low-dimensional vector
matrix generated by the client as the input, treating it as Eu-
clidean data for the algorithm. In the last round of GNNs
training, the resulting embedding is compressed into a matrix
with consistent dimensions, which serves as the input for the
hash function as follows:

St = HASH(HY), (10)

where HASH represents a special mapping function that

maps I:If to S!. After the clients send their hash signatures
to the server, the server calculates the similarity Efj between
client 7 and client j based on the corresponding hash signa-
tures. The specific formula is as follows:

&!; = 1 — HammingDistance(S}, S%) /d', (11)

where HammingDistance(-) is employed to calculate the dis-
similarity between two hash signatures. It involves compar-
ing each bit of the vector to determine if they are the same. If
they differ, the Hamming Distance is incremented by one. By
summing up the differences in the bits, we obtain the Ham-
mingDistance as a measure of dissimilarity.

The similarity between client ¢ and client j is obtained by
subtracting the Hamming distance by one and dividing it by
the length of the hash signature. Based on the similarity val-
ues, a similarity matrix F is formed as follows:

&L, ifi=j
El. =70 12
* { 1, otherwise (12)

Based on the computed similarity matrix, we employ com-
monly used clustering methods, such as k-means and Hierar-
chical Clustering Tree (HCT), for the clustering process. In
this paper, we primarily utilize HCT as the clustering method
to group the clients into multiple clusters based on their sim-
ilarity. After determining the clustering result, the client as-
signed to a specific cluster will engage in synchronous train-
ing within that cluster. This involves performing FL specifi-
cally within the assigned cluster.

4.4 Model Training Process

FedCCH combines PF with clustering federated learning to
enable individual clients to learn knowledge more effectively
and achieve better training results in the presence of hetero-
geneous graph data. Fig. 2 illustrates the overall training



Table 1: Performance on different federated graph classification tasks under multiple datasets owned by different clients. Underlining
represents the optimal approach without considering intra-client graph heterogeneity.

# datasets CHEM BIO-CHEM MIX BIO-SN-CV BIO-CV ALL

# client num 7 9 12 8 5 15
Accuracy avg. gain avg. gain avg. gain avg. gain avg. gain avg. gain
Local 75.19+£1.05 - 71.67£237 - 69.70+£2.02 - 66.34+3.72 - 70.48+1.48 - 71.69+2.64 -
FedAvg  76.234+2.81 1.04 70.72+2.73 -0.96 69.34£2.75 -0.35 66.25+3.21 -0.09 71.25+£2.00 0.07 69.60+2.43 -2.09
FedProx  74.88+2.14 -0.31 71.2842.40 -0.40 69.92+2.63 0.22 67.48+2.41 1.14 70.47+2.17 -0.01 69.55+2.25 -2.14
FedBN  76.48+4.94 1.29 69.88+£4.86 -1.79 69.074+3.05 -0.62 65.44+2.69 -0.90 69.79+£2.25 -0.68 67.47+5.03 -4.22
GCFL 75.63+2.18 0.44 72.41£3.53 0.73 70.56+1.97 0.86 67.77+£2.50 1.43 69.58+1.93 -0.90 72.60+1.83 0.91
FedStar ~ 77.30£2.59 2.11 74.314+2.08 2.64 70.32+£3.38 0.62 66.9943.02 0.65 66.94+1.88 -3.54 72.02+£2.74 0.33

FedCCH-PF 77.42+2.04 1.73 73.40£2.24 223

70.87£1.98

1.18 70.904+2.14 4.56 74.03+1.69 3.55 72.39£1.51 0.70

FedProx+PF 77.34£3.07 2.15
FedAvg+PF 77.71+£2.76 2.52 72.96£3.81 1.28
FedCCH

71.57£2.48 -0.10 69.68+2.41
70.06+2.13
78.17+£2.33 2.98 74.77+2.71 3.09 72.97+0.98

-0.02 68.02£2.37 1.68 72.25+1.96 1.77 71.87+£2.37 0.18
036 67.75+1.87 1.41 71.07£1.84 0.59 70.90+2.27 -0.79
3.28 71.38+1.81 5.04 74.57+2.01 4.01 75.00+2.21 3.31

pipeline of our proposed method, where each client, regard-
less of whether they have the same or different domain graph
data, employs the same model architecture.

From left to right, for the client 7, the model is trained using
its local data. Subsequently, the client computes the signature
of its data, uploads the signature information along with the
model, and retains the PF parameters locally. This process en-
sures that each client can effectively personalize their training
process while still contributing to the overall FL framework.
After clustering in the server and dividing into c classes, the
model parameters are averaged within the classes, and the av-
eraging step is similar to FedAvg [McMahan et al., 2017],
which behaves as follows:

_ | D]
eC

13)

where | D;| refers to the number of graphs in the local dataset
of client 7 and | D,.| refers to the total number of graphs across
all clients in the c-th cluster. Then, the server returns EZ to
clients in the c-th cluster, and clients update their local model
parameters wf“ by w?, except for the PF and start local train-
ing for the next round. The complete algorithm is shown in
the Appendix.

5 Experiments
5.1 Experimental Settings

Datasets We use 15 public graph classification datasets
from four different fields, including small molecules (MU-
TAG, BZR, COX2, DHFR, PTC_MR, AIDS, NCI1), bioinfor-
matics (ENZYMES, DD), social network (COLLAB, IMDB-
BINARY, IMDB-MULTI) and computer vision (Letter-low,
Letter-high, Letter-med)[Morris er al., 2020].To thoroughly
assess the method’s effectiveness on heterogeneous graph
data, we segmented the aforementioned graph data into six
different combinations as CHEM, BIO-CHEM, MIX, BIO-
SN-CV, BIO-CV, ALL. Specific information on all graph data

can be obtained from the Appendix. In each setting, the client
owns the corresponding data set One, by default is randomly
divided into three parts: 80% for training, 10% for validation,
and 10% for testing.

5.2 Baseline and Experiment Setting

We compare FedCCH with eight baselines. It includes clas-
sic federated learning algorithms FedAvg[McMahan er al.,
2017], FedProx [Li e al., 2020] and FedBN [Li et al.,
2021]. graph federated learning algorithms FedStar [Tan et
al., 2023] and GCFL [Xie er al., 2021], and specially mod-
ified classic federated learning algorithms FedAvg+PF and
FedAvg+PF. The details of these baselines are provided in
the Appendix. For model, we primarily utilize a three-layer
Graph Isomorphism Network (GIN) as our model. Before the
activation function, we incorporate Batch Normalization and
Graph Normalization layers. The hidden layer dimension of
the GIN is set to 64. For the local training process, we employ
1 epoch and a batch size of 64. The optimization is performed
using the Adam optimizer with a weight decay of 5 x 10~°
and a learning rate of 0.001. Regarding the FL settings, we
set the number of communication rounds to 200 for all FL
methods. We employ the Ahash method for hashing and a hi-
erarchical clustering tree for clustering. To ensure robustness
in the experimental results, we conduct 5 experiments with
different random seeds and calculate the mean and variance.
The experiments are conducted on a system equipped with an
Nvidia 3090Ti GPU configuration.

5.3 Experimental Results

Performance on Graph Classification. We show feder-
ated graph classification results for all methods under six
non-IID settings, including a cross-dataset setting (CHEM)
and five cross-domain different settings (BIO-CHEM, BIO-
CHEM-SN, BIO-SN-CV). We summarize the final average
test accuracy and its average gain compared to Local in Ta-
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Figure 3: Test accuracy curves of our FedCCH and five FL/FGL methods along the communication rounds.

ble 1. The results show that FedCCH is significantly better
than all baselines overall, and the effect is even more obvious
after combining the proposed PF.

Among them, traditional FL. methods (such as FedAvg and
FedProx) cannot surpass Local due to the inevitable perfor-
mance deterioration in non-IID settings. In particular, Fe-
dAvg dropped by 0.96% and 2.09% in BIO-CHEM and ALL
respectively, while FedProx dropped by 0.40% and 2.14%
in BIO-CHEM and ALL respectively. FedBN, which is de-
signed for personalization, is not suitable for graph data due
to its BatchNorm layer and performs poorly in all datasets,
losing 4.22% accuracy in the ALL dataset. The two FGL
methods (FedStar and GCFL) perform better than Local
in most cases. The structure embedding sharing strategy
adopted by FedStar aims to share feature-independent struc-
tural information, effectively avoiding performance degrada-
tion caused by feature heterogeneity and with a 2.64% accu-
racy increase on BIO-CHEM, but in some datasets such as
BIO-CYV, the effect is unsatisfactory due to potential hetero-
geneity in the structure of the data. GCFL uses the nature of
gradient information to cluster data information and outper-
forms Local with a 1.43% accuracy increase on BIO-SN-CV,
but due to the limitations of gradient information, most of the
effects are not as significant as FedCCH.

Convergence Analysis Fig. 3 illustrates the average test ac-
curacy curves of different FL methods on four datasets, ex-
cluding the baseline with regularization technology. It can
be observed that across all datasets, FedCCH exhibits faster
convergence speed and achieves better average test accuracy.
Compared with other baselines, FedCCH saves 100 rounds
of training time on average, which is attributed to the fact
that the hash clustering method captures more intrinsic simi-
larities between the data, enabling each client to achieve im-
proved performance.

5.4 Ablation Study

Ablation Experiment of Hash Mechanisms. In our exper-
iment, we removed the hash mechanism and solely utilized
cosine similarity, calculated by embedding the data, to repre-
sent the similarity between clients and clusters. As depicted
in Fig. 4, when compared with the method without the hash
mechanism, the performance of FedCCH has not significantly
declined. In fact, there is a certain improvement observed in
most of the datasets, which indicates that the hash clustering

mechanism can contribute to the accuracy performance of the
model while reducing the sensitivity of the data.

0.80
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Figure 4: The average test accuracy and variance of FedCCH for ab-
lation experiments on hash mechanisms and PF on different datasets.
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Ablation Experiment of The PF  To investigate the impact
of the PF on the overall performance of FL, we conducted
experiments on multiple datasets using FedCCH by sharing
its layer globally. As depicted in Fig. 4, there is a substantial
improvement in performance when retaining the PF locally
across different datasets, which suggests that the PF is better
suited for local clients to undergo specific training without the
need for sharing, resulting in reduced communication costs in
FL.

6 Conclusion

In this paper, we define the intra-client heterogeneity and
inter-client heterogeneity that exist in graph-level graph fed-
eration learning and propose FedCCH to overcome the train-
ing challenge caused by these two kinds of heterogeneity.
For details, the proposed framework FedCCH improve the
training performance by collaboratively training two novel
modules: one novel module is hash-based similarity clus-
tering and the other novel module is the learnable PF nor-
malizing, where hash-based similarity clustering can capture
inter-client heterogeneity and protect client privacy, while PF
normalizing can capture intra-client heterogeneity and bring
a faster convergence. Through extensive experiments on 15
graph datasets, the results demonstrate the effectiveness and
superiority of the proposed FedCCH. In future work, we will
study how to improve the robustness of graph federated sys-
tems while handling graph data heterogeneity.
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