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智能反射表面辅助的车载边缘任务卸载和资源分配策略

吴华明，梁永辉
（天津大学应用数学中心，天津 300072）

摘 要：针对车载边缘计算场景对低时延、高能效与安全性的需求，结合智能反射表面技术，提出了一种基于

深度强化学习的任务卸载与资源分配策略。首先，不同于仅优化单一指标的方法，构建了时延、能耗与任务完

成率的加权综合指标作为系统优化目标。其次，提出了一种具有任务完成感知能力的资源优化型双时延深度确

定性策略梯度算法。该算法通过引入基于任务完成率的奖励函数，并结合成功轨迹优先回放机制，有效增强了

稀疏环境下的学习稳定性，从而提升了在通信暗区或链路不稳定环境下的卸载成功率和资源利用效率。实验结

果表明，与现有基线算法相比，该算法可将系统平均成本降低约 25%，平均时延降低 23.2%，平均能耗降低

17.6%，并使任务完成率提升7%。
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Abstract: To address the demands for low latency, high energy efficiency, and security in vehicular edge computing sce‐

narios, a task offloading and resource allocation strategy based on deep reinforcement learning, combined with intelli‐

gent reflecting surface technology was proposed. Firstly, unlike approaches that optimized a single objective, a weighted 

comprehensive index of delay, energy consumption, and task completion rate was constructed as the system optimization 

objective. Furthermore, a resource-optimized twin-delayed deep deterministic policy gradient algorithm was designed, 

which was capable of perceiving task completion status. By introducing a task completion rate-based reward function 

and incorporating a successful trajectory prioritized replay mechanism, the learning stability of the algorithm in sparse 

environments was enhanced, thereby improving offloading success rate and resource utilization efficiency under poor sig‐

nal coverage or unstable links. Experimental results demonstrated that, compared with state-of-the-art baseline algo‐

rithms, the proposed method reduces average system cost by about 25%, average latency by 23.2%, and average energy 

consumption by 17.6%, while increasing the task completion rate by 7%.
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0　引言

作为物联网的重要组成部分，车联网（IoV, 

Internet of vehicles）的核心目标是实现车辆之间、

车辆与基础设施以及其他设备之间的高效互联互

通，从而提升道路安全、交通效率和整体运输系统

的智能化水平[1]。随着 IoV规模的扩大，大量具有

实时性和敏感性特征的数据在车辆终端不断涌

现[2]。然而，车辆的本地计算资源有限，难以有效

处理实时性强、计算密集型的任务，从而导致事故

风险升高[3]。车载边缘计算（VEC,vehicular edge 

computing）技术的兴起为解决上述挑战提供了一种

有效方案，被广泛认为能够有效解决车联网环境中

的计算瓶颈问题[4]。VEC允许车辆将自身的计算任

务卸载到道路附近部署的路侧单元（RSU, road-

side unit）上进行处理，能够显著降低车辆端计算

时延，提升 IoV环境下任务处理效率[5-6]。VEC 技

术不仅能够缓解车载计算压力，降低数据处理时

延，同时有助于减少核心网络的数据负载，降低网

络拥塞风险，同时也可提升数据安全性[7-9]。

然而，车联网环境的高度动态性和多变性为任

务卸载带来了诸多挑战[10]。特别是在复杂城市环境

或高速公路场景中，车与车、车与RSU之间的无线

链路常因遮挡、多径效应或频繁变化的信道条件而

面临严重的信号衰减与不稳定，导致任务卸载失败

率显著上升，严重影响系统的可靠性与稳定性[11]。 

为了应对这一问题，智能反射表面（IRS, intelligent 

reflecting surface）作为一种新兴的可重构环境感知

技术，逐渐受到广泛关注[12-13]。IRS 通过大量低功耗

的可编程反射单元，能对入射信号进行智能调控，

从而使信号绕过遮挡区域，并增强接收信号的质

量[14-15]。这种特性使 IRS 在提升任务卸载成功率、

优化无线资源利用方面具有显著潜力，为构建高效、

可靠的车载边缘计算系统提供了新的解决思路[16]。

目前，已有一些学者在 IRS 辅助的 IoV方面展

开了积极探索。例如，Qi等[17]使用深度学习算法对

车载用户功率分配进行优化，并结合块坐标下降算

法求解 IRS 相位调整问题。Xie等[18]提出了一种双 

IRS 辅助的车载边缘计算架构，并通过深度强化学习

和分数规划方法联合优化资源分配与相移控制，以

提升任务卸载效率并实现实时决策。Wahid等[19]聚焦

于提升车联网计算卸载过程中的安全性与效率，引

入零能耗智能反射表面助的深度强化学习卸载方案，

在保障通信机密性的同时，可以动态切换连接以优

化任务卸载效率。Saleem等[20]针对高频通信中信号

损耗严重的问题，提出了一种面向时延感知的计算

卸载框架，通过在车辆与 RSU 之间部署 IRS，有效

提升服务性能并显著降低时延。此外，一些学者也

探索了将最新的深度强化学习算法和IRS相结合的研

究。例如，在非正交多址接入的无线供能联邦学习

网络中，Alishahi等[21]引入 IRS以辅助能量传输与数

据通信，并提出了一种旨在最小化系统总能耗的联

合资源分配方案。Sharma等[22]将 IRS应用于无人机

通信，旨在利用IRS重构无线环境的能力来提升网络

的安全性和覆盖范围，并基于此设计了一种结合联

邦学习与长短期记忆网络的信道跟踪算法，利用前

者进行安全和预估，并借助后者强大的序列数据处

理能力来完成信道跟踪任务。

尽管如此，目前该领域仍面临两大核心挑战。

首先，车载场景本身高度动态，涉及车辆的持续移

动、信道状态的随机变化及任务特性的差异性，因

此需要设计一种能够实时适应环境变化的联合优化

策略，以协同决策任务卸载路径、通信资源分配、

计算资源分配以及 IRS 相位矩阵配置[23]。其次，

现有研究多围绕以系统单一指标为核心的优化目

标，难以在满足时延要求下同时兼顾整体能耗与任

务完成率，因此迫切需要一种能够权衡多种性能指

标、实现系统级综合优化的调度策略[24]。

针对上述挑战，本文旨在深入研究 IRS辅助下

的车载边缘计算卸载与资源分配问题，重点关注在

多目标约束下实现高可靠性与任务完成率、低时延

与能耗的系统性能提升。本文首先构建了一个融合

车辆任务卸载机制、通信与计算资源分配以及 IRS 

反射相位调控机制的系统模型。在此基础上，提出

一种基于双时延深度确定性策略梯度（TD3, twin 

delayed deep deterministic policy gradient）算法的感

知任务完成情况的深度强化学习算法，通过深度强

化学习框架实现对连续动作空间的高效探索，从而

在动态环境中学习最优卸载与资源调度策略。最

后，仿真实验验证了本文算法在多种复杂场景下的

性能表现，表明本文算法相较于其他基线算法能显

著提升任务卸载成功率，降低系统平均成本，并具

备良好的鲁棒性和泛化能力，为车载边缘场景中的

任务协同计算提供了有效解决方案。本文的主要工

作如下。

··117



通 信 学 报 第 46 卷 

1) 构建了一个 IRS辅助的车载边缘计算场景，

建立了VEC系统的通信模型、时延模型、能耗模

型和任务完成率模型，全面刻画了计算任务在卸载

过程中的关键性能指标。进一步，构建了时延、能

耗与任务完成率的综合性加权指标，以作为系统的

优化目标。

2) 提出了一个基于TD3算法的感知任务完成

情况的深度强化学习算法，该算法通过采用基于任

务完成率的奖励函数，并结合成功轨迹优先回放机

制，有效提升了通信暗区或链路不稳定环境下的卸

载成功率和资源利用效率。

3) 通过仿真实验把本文算法和多种基线算法

进行了性能对比，结果表明本文算法可以显著降低

系统时延和能耗，同时显著提升任务完成率，在动

态车载边缘计算环境中表现出良好的稳定性与扩

展性。

1　系统模型

1.1　IRS 辅助的车载边缘计算系统

考虑一个城市道路场景中智能反射表面辅助的

车载边缘计算系统，如图 1所示，场景中有车辆、

配备边缘服务器的基站、智能反射表面以及一定范

围的通信暗区。记车辆集为N = {1,2,⋯,N}。本文

采用一个离散时隙计算模型，即将总时间划分为

 M 个相等的时隙，每个时隙 t 的持续时间记为 δ。

因此，定义时间集合为T = {1,2,⋯,M }。假设每辆

车  n 在每个时隙  t 内生成一个计算任务，表示为

Θn = (Dn(t ) ,Cn(t ) ,T max
n (t ) ) (1)

其中，Dn(t )表示任务数据大小，Cn(t )表示计算密

度，T max
n (t )表示任务的最大可容忍时延。

由于许多实际任务具备可分性，可通过设定卸

载比例将任务划分为本地处理与远程处理部分。同

时，5G移动边缘计算（MEC）架构与实际平台也

已支持任务分片与动态卸载[25]。因此本文采用部

分卸载策略，即车辆可以选择本地执行部分任务或

卸载部分任务至边缘服务器，设卸载比例为

 αn(t ) ∈  [ 0,1]， 则 本 地 执 行 任 务 大 小 为 (1 -
αn(t ) ) Dn(t )，卸载任务大小为 αn(t ) Dn(t )。系统中

各实体间的交互为：车辆通过直射链路或者通过智

能反射表面建立折射链路，可以把计算任务卸载至

边缘服务器处，边缘服务器处理完计算任务后，再

通过相同的链路把计算结果返回车辆。

1.2　通信模型

根据通信理论，信号的复数表示为

x (t ) =  A(t ) · ejω ( )t (2)

其中，A(t)表示振幅，ω ( t ) 表示相位。为简便起

见，此处把振幅设为1，即A(t)=1。

设 IRS 反射相位矩阵为

Φ =  diag (ejθ1, ejθ2,⋯,ejθN ) (3)

从车辆n到边缘服务器的信号总增益可表示为

Hk =  hk s +  hi,kΦhi,b s (4)

其中，hk 为直射路径上的信道增益，hi,k 是从车辆

到 IRS的信道增益，hi,b是从 IRS到基站边缘服务器

的信道增益，s是发送的信号。需要说明的是，为

突出重点关注的“卸载与资源联合决策”而不过度

扩展物理层建模，采用“块衰落/时标分离”假设：

在每个调度时隙内，直射链路及经由 IRS的级联链

路的等效增益近似不变，而相邻时隙之间则因小尺

度衰落和多普勒效应而发生快变随机更新。本文涉

及的“增益”均指“每时隙内恒定、跨时隙随机的

有效增益”，并非全局固定常数；其作用相当于在

更细的物理层模型（如考虑小尺度衰落与多普勒效

应的统计信道）下对单个时隙进行等效平均，从而

便于聚焦系统层面的联合决策与算法设计。

因此，信噪比（SNR）可表示为

SNR =
P ⋅ G 

σ2
=

P ⋅ |
|

|
| ( )hk +  hi,kΦhi,b ⋅ ωk

2

 

σ2
(5)

其中，ωk表示基站处的波束成形矢量，P表示发射

功率，G表示有效信道增益，σ表示高斯噪声。

因此，数据传输速率可表示为

0C

(B->8
=?'9

D:45
,:45 D6,:(6

图1　智能反射表面辅助的车载边缘计算场景
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为简化起见，本文采用最大比传输方式，将发

射信号方向与信道增益方向对齐，通过简单的设

计，增强目标用户的信号质量，降低后续优化的复

杂性。故波束成形矢量ωk可以表示为

ωk =
hk +  hi,kΦhi,b

hk +  hi,kΦhi,b

(7)

1.3　时延模型

设本地计算时延为T l
n(t )，则有

T l
n(t ) =

(1 - αn( )t ) Dn( )t Cn( )t
f l

n ( )t (8)

其中，f l
n (t )代表车辆n在时隙 t 的计算能力。

由于计算结果的数据量通常很小，为了简便起

见，这里忽略结果的回传时间。因此任务上传至边

缘端处理这个过程的总时延由3个部分组成，分别

是上传时延 T up
n (t )、边缘端排队时延 T q

n (t )以及边

缘端计算时延 T e
n (t )。由于任务在边缘侧可能出现

积压排队情况，故设车辆n在边缘服务器处的队列

长度为Qn(t )，则其迭代式为

Qn ( t + 1) = max{Qn(t )- fn(t )Δt,0}+ αn( )t Dn( )t cn( )t
(9)

其中，第一项{Qn(t ) -  fn(t )Δt} 表示在时隙  t 内处

理完的任务量, 第二项{ αn(t ) Dn(t ) cn(t ) }表示时隙

 t 内新进入队列的任务量。

因此，T up
n (t ) 、T q

n (t )、T e
n (t )可分别表示为

T up
n (t ) =

αn( )t Dn( )t
Rn( )t (10)

T q
n (t ) =

Qn( )t
f e

n ( )t (11)

T e
n (t ) =

αn( )t Dn( )t cn( )t
f e

n ( )t (12)

其中，f e
n (t )表示边缘服务器分配给车辆 n 的计算

资源。

因此，车辆 n 在时隙 t 的总时延 Tn(t ) 为
Tn(t ) = T l

n(t ) + T up
n (t ) + T q

n (t ) + T e
n (t ) (13)

时隙 t 内所有车辆的总时延 T (t ) 为
T (t ) =  ∑

n = 1

N

Tn (t ) (14)

1.4　能耗模型

由于不考虑边缘服务器的能耗，系统总能耗由

本地计算能耗和传输能耗 2个部分组成。设E l
n(t ) 

代表本地车辆 n 在时隙 t 的本地计算能耗，则有

E l
n(t ) = κT l

n(t ) ( f l
n (t ) )3 (15)

其中，κ是计算能耗参数。

由于忽略了计算结果回传时间，此处也同样不

考虑结果下传能耗，故传输能耗仅由计算任务上传

能耗组成。设任务上传能耗为 E up
n (t )，则有

E up
n (t ) =

Dn( )t
Rn( )t Pn(t ) (16)

因此，车辆n在时隙 t的总能耗En(t ) 为
En(t ) = E l

n(t ) + E up
n (t ) (17)

时隙 t 所有车辆的总能耗  E (t )为

E (t ) =  ∑
n = 1

N

En( )t (18)

1.5　任务完成率模型

为综合评估系统性能，在时延与能耗加权成本

的基础上，引入任务完成率作为系统处理能力的衡

量指标[26]。车辆 n 的任务若在最大容忍时延 T max
n  

内完成，则视为“成功完成”。因此，系统在时隙

 t的任务完成率  η (t )可定义为

 η (t ) =
∑
n = 1

N

Γ ( )t Dn( )t

∑
n = 1

N

Dn( )t
 (19)

其中， Γ (t ) 为指示函数，定义为

Γ (t ) =
ì
í
î

ïï
ïï

1, Tn( )t ≤ T max
n ( )t

0, Tn( )t > T max
n ( )t

 (20)

1.6　优化目标

为鼓励系统在保证能效与时延表现的同时尽可

能地提高整体任务完成能力，本文构建的改进型系

统成本函数为

U (t ) =
∑
n = 1

N

( ) ω1Tn( )t +  ω2 βEn( )t
η ( )t  (21)

其中，ω1与ω2分别表示时延与能耗的权重系数，β 表

示数值归一化系数。该目标函数能够在优化时延与能

耗的同时，提高系统整体计算服务的稳定性与可用

性。设 x、f、p、θ分别代表卸载比例、计算资源、
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通信功率和智能发射表面反射相移，F l
n和F e

n 分别表

示单个车辆可以使用的最大本地和边缘计算资源。

本文的优化目标为最小化系统成本，即

min
( )x,f,P,θ

1
M∑t = 1

M

U ( )t

s.t.C1:xn( )t ∈ [ 0,1] ,∀n ∈ N,∀t ∈ T 

C2:0 ≤ f e
n ( )t ≤ F e

n ,∀n ∈ N,∀t ∈ T
C3:0 ≤ f l

n ( )t ≤ F l
n,∀n ∈ N, ∀t ∈ T 

(22)

 C4:0 ≤ Pn( )t ≤ P max
n ,∀n ∈ N, ∀t ∈ T

 C5:0 ≤ θn( )t ≤ π,∀n ∈ N, ∀t ∈ T
 C6:ω1 + ω2 = 1

 C7:0 < η ( )t ≤ 1

其中，C1表示任务卸载比例介于 0与 1之间，0代

表完全本地处理，1代表完全卸载至边缘端；C2和

C3 分别表示车辆和边缘服务器的最大计算资源限

制；C4表示车辆的最大发射功率限制；C5表示智

能反射表面的相位角度限制；C6 表示时延和能耗

的权重加和为 1；C7表示时隙 t 内系统的总任务完

成率的取值范围。

2　基于深度强化学习的感知型TD3算法

针对车载边缘场景中卸载决策、资源分配与 

IRS 相位调控之间高度耦合、决策变量维度高、环

境状态变化剧烈等挑战，传统的确定性优化方法难

以适应复杂动态环境[27]。为此，本文提出一种基

于深度强化学习的感知型 TD3 （ CR-TD3, comple‐

tion-aware resource-optimized TD3）算法，用于解

决车载边缘计算中的卸载与资源分配问题。

2.1　马尔可夫过程建模

本文给出马尔可夫过程的各个基本要素，包括

状态空间、动作空间和奖励函数。

设sn(t )为车辆n在时刻 t的状态空间。状态空间

sn(t )包含车辆的计算任务ϕn(t )、车辆速度vn(t )、车

辆位置ln(t )、本地最大计算资源F l
n、边缘端的最大计

算资源F e
n、最大通信功率P max

n 、边缘队列长度Qn(t )。
因此，系统在时刻 t的整体状态空间可表示为  

S (t ) =  (s1(t ) ,⋯,sn(t ) ,⋯,sN(t ) ) (23)

其中， sn(t ) =  [ϕn(t ) ,ln(t ) ,vn(t ) ,F l
n,F e

n ,P max
n ,Qn(t ) ]。

动作空间由以下几个部分组成：任务卸载比例

xn(t )、智能反射表面相移角度 θn(t )、本地算力

f l
n (t ) 、分配给车辆的边缘侧算力 f e

n (t )、Pn(t )。因

此，动作空间可表示为

A( t ) =  (a1(t ) ,⋯,an(t ) ,⋯,aN(t ) ) (24)

其中， an(t ) =  [ xn(t ) ,θn(t ) ,f l
n (t ) ,f e

n (t ) ,F e
n ,Pn(t ) ]。

本文所构建的奖励函数定义为目标函数U (t )
的相反数，即

R (t ) =  -U (t ) =  -∑n = 1

N

( ) ω1Tn( )t +  ω2 βEn( )t
η ( )t      (25)

2.2　基于 TD3 的深度强化学习算法

Fujimoto 等[28]提出的 TD3 算法显著提升了在

连续控制任务中的性能与稳定性，成为当前最常用

的深度强化学习算法之一。TD3算法基于演员-评

论家（Actor-Critic）架构，采用双Q网络结构以及

时延策略更新。这样可以先让Critic网络收敛更准

确的价值估计，再指导Actor学习，有助于策略稳

定。TD3算法引入目标策略扰动，在生成的目标动

作中加入噪声，有效缓解策略对某些值函数“陡峭

区域”的过度依赖。尽管TD3算法在标准连续控

制任务中性能优秀，直接应用于车载边缘计算仍存

在很多不足，例如缺乏对系统长期表现的度量，无

法优化全局任务完成能力；缺少资源约束意识，易

输出不满足系统限制的决策等[29]。

为解决上述问题，本文提出CR-TD3算法，该

算法保持了TD3算法的稳定优势，在原始TD3算

法框架基础上，结合车联网动态任务卸载特性进行

关键性改进。

1) 引入任务完成率作为全局反馈信号，更全

面地反映系统性能，避免策略陷入局部最优。

2) 联合建模高维动作空间，覆盖卸载比例、

通信功率、计算资源及智能反射表面相位角，显著

提升策略的综合能力。

3) 设计具有资源约束感知的奖励函数，通过

集成任务完成率的归一化系统成本，引导策略向

“高效+高完成率”的方向收敛。

4) 采用成功轨迹优先经验回放机制，加快策

略在稀疏奖励环境中的学习效率。

CR-TD3 算法通过强化策略网络的长期感知能

力与系统约束感知能力，通过双 Critic、时延更新

与轨迹筛选机制，不仅提升了训练稳定性，也增强

了算法对复杂动态环境的适应能力，在车辆数量波
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动、信道质量变化、任务需求多样化的场景下，依

然能保持较高的任务完成率与系统效能。

Critic 网络目标值使用最小 Q 值策略构建。

yi =  ri +  γ ⋅min
j = 1,2

Qϕj(si + 1,a′i + 1 ) (26)

其中，a′i + 1 = μθ̄(si + 1 ) + ε,ε ∼ N (0,σ2 )。(si,ai,ri,si + 1 )
样本来自成功轨迹经验池Dsuccess，即满足任务完成条

件的历史轨迹集合，用以强化策略对完成率的偏好。

对应的损失函数为

LQ(ϕj ) =  
1
N∑i = 1

N (Qϕj(si,ai ) - yi ) 2

(27)

策略网络每 d 步进行一次更新，其梯度定义为

∇θ J (θ ) =  
1
N∑i = 1

N ∇aQϕ1(si, a) |
a = μθ( )si

⋅ ∇θ μθ(si ) (28)

采用软更新策略更新目标网络参数。

ϕ̄new
j  ←  τϕj +  (1 - τ ) ϕ̄j (29)

θ̄ new
j  ←  τθ +  (1 - τ ) θ̄ (30)

CR-TD3算法流程如图2所示，伪代码如算法1

所示。

算法1 CR-TD3

输入　ϕn(t ) ,ln(t ) ,vn(t ) ,F l
n,F e

n ,P max
n ,Qn(t )

输出　卸载决策 x 以及资源分配策略  f,P,θ

1)初始化评论器参数  ϕ1,ϕ2，策略网络参数  θ，

目标网络参数 ϕ̄1,ϕ̄2,θ̄；成功轨迹经验池

Dsuccess，软更新系数 τ，探索噪声标准差σ；

2) for 每一轮训练  episode = 1 to G do

3)     初始化环境，获取初始状态  s0；

4)     for每个时间步 t = 1 to T do

5)         使用当前策略选择动作：at =  μθ(st ) +
 N (0,σ )；

6)         执行动作at，观察奖励rt和新状态st + 1；

7)         存储元组(st,at,rt,st + 1 )到Dsuccess；

8)         从Dsuccess中随机采样N个样本(si,ai,ri,si + 1 )；
9)         for 每个样本 i do

10)          计算目标动作：a′i + 1 = μθ̄(si + 1 ) + ε,ε ∼
N ( )0,σ2 ；

11)          计算目标 Q 值：yi=ri+γ· min
j=1,2

Qϕj
( si+1, 

a′i + 1 )；

12)          更 新 评 论 器 网 络 ： LQ(ϕj ) =  
1
N
⋅

∑
i = 1

N (Qϕj(si,ai ) - yi ) 2

；

13)       end for

14)       if 当前为策略时延更新步 then

15)          使用策略梯度更新 actor 网络：

                ∇θ J (θ ) =  
1
N∑i = 1

N ∇aQϕ1
(s,a)∇θ μθ(s)；

16)          执行软更新：

ϕ̄j ←  τϕj +  (1 - τ ) ϕ̄j

θ̄j  ←  τθ +  (1 - τ ) θ̄
17)       end if

18)    end for

19) end for

�
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图2　CR-TD3算法流程
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需要强调的是，为确保DRL策略在训练与决策

过程中始终满足式(22)定义的物理与资源约束，本

文在 Actor 网络输出后加入了一个动作可行性映

射层。该层针对不同类型的约束采用差异化机制：

1) 对于卸载比例、发射功率等独立变量，通过线性

变换将其映射到各自合法区间；2) 对于边缘总算

力、带宽等存在总量或耦合约束的变量，采用基于

Softmax的归一化分配方法，使分配总和自然满足

预算上限；3) 对于极少数数值计算导致的边界波

动，采用最终裁剪进行兜底。该机制不需要在线迭

代即可生成可行性动作，有效避免了在无效区域的

探索，从而显著提升了训练的稳定性与收敛速度。

3　仿真结果及分析

3.1　参数设置

所有仿真实验均在 Python 3.11 平台上进行，

硬件环境包括 NVIDIA GeForce 2.1 GHz GPU、In‐

tel Xeon Silver 4214R 2.40 GHz CPU和 32 GB内存。

假设实验路段每 500 m有一段50 m长的通信暗区。

车辆以 60 km/h的速度行驶，系统以每秒为一个时

隙运行，每个小时隙产生一次大小为0~2 Mbit的计

算任务，共设置 1 000 个时隙。设定信道带宽为 

W =  20 MHz，能耗系数为 κ = 10-26，路径损耗指

数为 l =  2.5，高斯白噪声功率为N0 = 10-13。仿真

参数[30-31]如表1所示。

3.2　数值归一化

时延和能耗的数值量级差距较大，这种不一致

会使时延或能耗在实际决策过程中的作用被弱化，

从而在任务卸载和资源分配策略中影响有限。为了

解决这一问题，有必要对时延和能耗进行归一化处

理。然而，由于计算能力和传输功率等变量在时延

与能耗的计算中是随时隙而变动的，常规的归一化

方法并不适用。鉴于此，本文采用了文献[32]提出

的归一化方法，该方法可以将时延T与能耗E的量

级调整至相同水平。具体做法是引入一个归一化系

数β，使
T
βE
≈ 1。本文在不同车辆数量条件下，对

不同的β值进行了实验，不同β对
T
βE

的影响如图3

所示。结果表明，随着 β的增大，
T
βE

的值逐渐减

小。特别地，当β = 15时，在各种车辆数量下都能

观察到
T
βE
≈ 1 成立。因此，在后续仿真实验中，

将归一化系数 β 设置为 10，以统一时延与能耗的

尺度。

3.3　对比算法

为体现 CR-TD3 算法在智能反射表面辅助的车

载边缘计算场景中的整体性能与增强机制，本文选

取以下4种具有代表性的算法作为对比对象。

1) 贪婪（Greedy）算法。每辆车独立选择当前

时隙最利于自己的卸载比例与资源分配策略，不考

虑全局协同或系统长期表现，仅优化当前决策

效果。

2)无 IRS 辅助的 CR-TD3（CR-TD3NI, non-IRS-

aided CR-TD3）算法。该算法为验证智能反射表面

  表1　 仿真参数

参数

车辆数量/辆

时隙时长/秒

任务数据大小/Mbit

基站覆盖范围/m

暗区覆盖范围/m

车辆速度/(km·h-1)

车辆计算资源上限/ GHz

边缘服务器计算资源上限/GHz

最大传输功率/W

车辆处理每比特所需 CPU 周期数

能耗系数

路径损耗因子

高斯白噪声功率/W

信道带宽/MHz

归一化系数 β

数值

25

1

0~2

500

50

60

3

6

1

3 000~4 500

10−26

2.5

10−13

20

15

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

β
ET

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

.A/>;β

N = 10

N = 15

N = 20

N = 25

N = 30

图3　不同 β 对
T
βE

 的影响
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的性能增益，将 IRS 带来的反射链路和通信增益去

除，仅保留卸载决策与资源分配框架，用作非 IRS 

辅助场景的对比基线。

3) 深度确定性策略梯度（DDPG, deep deter‐

ministic policy gradient）算法。经典的基于策略梯

度的深度强化学习算法，用于对比 TD3 算法的性

能表现。

4)辅助车辆（AVA, auxiliary vehicle）算法[30]。

该算法结合联邦学习与多智能体强化学习，综合优

化任务卸载、资源调度与任务完成率，代表现有文

献中的先进协同卸载方案。

3.4　对比实验

图 4 为CR-TD3算法与DDPG在不同学习率下

的平均奖励值变化趋势，其中阴影区域反映了不同

学习率（分别为 0.02、0.003 和 0.005）带来的性能

波动。由图 4可知，随着训练回合数增加，2种算

法的平均奖励值均持续提升，体现出良好的学习性

能和策略适应能力。其中，CR-TD3 算法在所有学

习率下均表现出更高、更稳定的奖励值，尤其在训

练后期性能波动明显较小，表明 CR-TD3算法对学

习率变化不敏感，具备更佳的鲁棒性，能够在多种

超参数配置下稳定地收敛至更优策略。

1) 系统平均成本分析

图 5 为不同车辆数量下各算法的系统平均成

本。从图5可以看出，随着车辆数量的增加，所有

算法的平均成本均有所上升，这主要是因为系统计

算负载加重，通信资源竞争加剧，导致任务时延和

能耗同步上升。Greedy因采用局部贪婪策略，无法

有效协调资源分配，导致在高负载情况下频繁出现

卸载失败和资源冲突，系统成本最高。DDPG 和

AVA作为已有的深度强化学习基线方案，在小规模

车辆场景下具有一定的优化能力，但随着车辆增

多， 其策略更新效率和泛化能力有限，表现逐渐

趋于平庸。CR-TD3NI 虽具备深度强化学习优化框

架，但缺乏 IRS 的反射链路的辅助和信道增强作

用，在链路遮挡场景中传输失败率高，导致总体成

本偏高。相比之下，CR-TD3算法在所有车辆规模

下均保持最低的系统平均成本，这得益于智能反射

表面所提供的额外反射链路与信道增益，有效提升

了卸载成功率，降低了传输重试与任务失败所带来

的额外开销，体现出良好的全局调度与信道自适应

能力。

2) 系统平均时延分析

不同车辆数量下各算法的系统平均时延如图 6

所示。从图6可以看出，随着车辆数量的上升，系

统平均时延普遍增加，但各算法表现存在显著差

异。Greedy 只局限于短期成本，不能在资源紧张

条件下灵活调整卸载策略，容易导致任务排队拥

塞，从而时延始终居高不下。CR-TD3NI 虽然优化

了调度框架，具备一定的资源调度能力，但由于缺

乏 IRS 的辅助，其在复杂信道环境中传输稳定性较

差，导致整体时延偏高。DDPG和AVA在一定程度

上通过策略学习和任务调度降低了排队等待时间，

但在车辆数量激增时，优化效果仍有限。CR-TD3

算法借助 IRS 绕过信号遮挡区，实现高效稳定的通

信链路，同时通过 TD3 策略动态感知环境状态，

合理调控卸载与资源分配，有效缓解了排队拥堵和

通信中断问题，表现出最低的系统平均时延，尤其

在高负载情况下优势更加明显，充分验证了其在高

动态、重负载环境下处理时延敏感型任务的能力。
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图4　CR-TD3算法与DDPG在不同学习率下的平均奖励值变化趋势
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3) 系统平均能耗分析

能耗作为边缘计算中的关键指标，对系统能

效具有重要影响。不同车辆数量下各算法的系统

平均能耗如图 7 所示。从图 7 可以看出 ，Greedy

因其短视，导致资源利用率较低，能耗水平最高。

具体来看，当车辆数量达到 30时，Greedy的能耗

高达约 0.15 J。CR-TD3NI 虽有优化框架，但缺乏

IRS对信道质量的提升作用，在传输中需投入更大

功率维持通信，导致其在高负载下能耗也达到了

0.12 J。作为深度强化学习基线，DDPG与AVA通

过资源调度在一定程度上降低了冗余能耗，其中

性能较好的 AVA 在车辆数量为 30 时平均能耗为

0.077 J。相比之下，CR-TD3算法在能耗方面表现

最为优异。其通过 IRS 构建了低功耗、高增益的

反射路径，显著减少了通信过程中的能量损耗。

当车辆数量为 30 时，CR-TD3 算法的平均能耗仅

为 0.06 J，相比 Greedy 降低了 60%，相比 AVA 也

降低了约 22%。同时，与没有 IRS 辅助的 CR-

TD3NI对比，能耗降低了 50%，这充分证明了 IRS

技术在提升系统能效方面的巨大作用。最终，CR-

TD3算法使系统在所有车辆数量下均保持最低能

耗水平，显示出极佳的能耗控制能力与调度效率。

4) 系统平均任务完成率分析

任务完成率作为衡量系统服务质量的重要指

标，其高低直接反映算法对资源的利用效率与系

统稳定性。不同车辆数量下各算法的平均任务完

成率如图 8所示。从图 8可以看出，随着车辆密度

增加，负载加重，所有算法的任务完成率均呈下

降趋势。Greedy的性能下降最为剧烈，在车辆数

量达到 30辆时，其任务完成率骤降至 0.51，表明

其在高负载场景中几乎无法保障服务质量。CR-

TD3NI因缺少 IRS构建的辅助链路，在通信暗区任

务失败率较高，导致其在车辆数量为 30辆时的完

成率也仅有 0.62。DDPG 和 AVA 在中等负载下表

现尚可，但在车辆数量超过 20辆后，由于策略泛

化能力不足，完成率也开始急剧下降，在车辆数

量为 30 辆时分别为 0.66 和 0.72。相较之下，CR-

TD3算法在所有实验场景下均表现出最优异的性

能和鲁棒性。在车辆数量从 5辆增加到 15的低到

中负载场景下，CR-TD3算法始终保持着 1.0的任

务完成率，即便是在车辆数量为 30辆的高负载极

限场景下，依然能维持 0.83的高成功率。这一性

能不仅远超Greedy（高出 0.32），也显著优于次优

的 AVA（高出 0.11）。CR-TD3 算法的优越性充分

体现了其在 IRS 辅助的通信链路增强与基于 DRL

的资源自适应优化方面的双重优势，展现了卓越

的系统稳定性和服务保障能力。 
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3.5　敏感性分析

为进一步验证CR-TD3算法在极端场景下的鲁

棒性，本节对关键环境参数进行敏感性分析。本

文重点关注当计算任务负载发生突发性激增时系

统的性能表现。本节试验保持车辆总数为 20 辆，

将任务数据大小的生成范围分别设置为普通负载 

[0, 1.5] Mbit、高负载 [1.5, 3] Mbit这 2种情景，以

模拟从平稳到任务激增的动态变化。

不同任务负载下各算法的平均任务完成率如

图 9所示。从图 9可以看出，随着平均任务数据量

从“普通负载”增加到“高负载”，所有算法的平

均任务完成率均有所下降，这符合资源竞争加剧

下的客观规律。然而，不同算法的性能下降幅度

存在显著差异。Greedy由于缺乏对系统未来状态

的预判，在任务负载激增时性能恶化最为严重，

其平均任务完成率从普通负载下的 0.77骤降至高

负载下的0.58，在所有算法中表现最差。DDPG表

现居中，平均任务完成率从 0.86 下降至 0.74。作

为一种深度强化学习算法，它能够学习并适应环

境变化，因此表现优于前两者。然而，相比于

TD3 算法，DDPG 在策略稳定性和价值估计准确

性上存在不足，这使其在高负载的复杂决策场景

中，性能下降较为明显。即使在“高负载”场景

下，CR-TD3算法的平均任务完成率依然能保持在

0.85。这一性能不仅显著优于次优的AVA（0.80），

更是远超Greedy（0.58）。从性能下降的平稳性来

看，CR-TD3算法的平均任务完成率仅从 0.98下降

至 0.85，次优的 AVA 则从 0.91 下降至 0.79，两者

的稳定性相近，但 CR-TD3 算法在各种负载下均

保持了最高的平均任务完成率。这充分表明 CR-

TD3算法具有相当的鲁棒性。

4　结束语

本文围绕车载边缘计算环境中信道遮挡和卸载

失败率较高的问题，引入智能反射表面技术，构建

了一个IRS辅助的车载边缘计算场景，并提出了一种

基于深度强化学习的感知型 TD3算法。首先，详

细介绍了 IRS辅助的VEC系统的通信模型、时延模

型、能耗模型和任务完成率模型，全面刻画了任务

在卸载过程中的各项关键性能指标。在此基础上，

进一步抽象出以时延、能耗与任务完成率的综合性

加权指标为优化目标的联合优化问题，并将其建模

为马尔可夫决策过程，以适应后续的算法求解。随

后，提出了 CR-TD3算法，该算法结合了成功轨迹

优先回放机制，可以对卸载决策、通信资源、计算

资源以及 IRS 相位角度控制等多变量进行联合优化

决策。最后，通过仿真实验把CR-TD3算法和多种

基线算法进行了性能对比，从系统平均成本、时

延、能耗以及任务完成率 4个方面验证了CR-TD3

算法的优越性。实验结果表明，CR-TD3 算法充分

发挥了智能反射表面和深度强化学习两者的优势，

可以显著降低系统时延和能耗，同时提升任务完成

率，在动态车载边缘计算环境中表现出良好的稳定

性与扩展性。未来研究将探索集中式与分布式相结

合的协同决策机制，通过引入联邦学习和多智能体

强化学习方法，使车辆具备自主决策任务卸载的能

力，并且有利于本地数据的隐私保护。
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