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With the evolution of urban smart transportation, the complexity of urban traffic networks escalates, emphasizing the
importance of large-scale traffic data prediction in traffic management and urban planning. Traditional spatiotemporal
graph models, such as Graph-WaveNet and MTGCN, face exponentially increasing computational complexity as the spatial
dimensions expand. To address this challenge, we propose a novel Higher-order Adaptive Generative graph for Massive
Traffic Forecasting (HAG-MTF) approach, which utilizes generative AI and high-order graph structures to model the intricate
spatial dependencies in large-scale traffic data. The HAG-MTF incorporates a high-order dimensionality reduction module to
optimize traffic node processing, utilizing prior graph relationships to generate a fusion graph that dynamically incorpo-
rates neighborhood information for efficient, localized graph convolution. The model further incorporates the high-order
spatiotemporal relationship extraction module (H-net), enhancing the capacity and speed of traffic data processing while
boosting prediction accuracy for complex spatial structures. Furthermore, HAG-MTF introduces a fusion loss function that
hierarchically balances multiple objectives, ensuring both precision and computational efficiency. HAG-MTF adaptively
handles large-scale real-world traffic data, meeting the needs of traffic controllers and urban planners for predicting massive
datasets in practical settings. It supports efficient, flexible interactions via parameter tuning and model outputs, ultimately
integrating human insights into traffic analysis and decision-making. This dynamic human-machine collaboration differs from
non-Industry 5.0 approaches, which rely on purely automated systems without human input. Those lead to inflexible, brittle
conclusions and recommendations, neglecting shifts in traffic patterns driven by human behavior. Extensive experiments
on real-world traffic datasets demonstrate that HAG-MTF significantly improves processing efficiency for high-complexity
spatial data while delivering precise, human-informed predictions through generative AI-driven operations.
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1 INTRODUCTION
The prediction of traffic flow is crucial for various applications such as congestion forecasting, vehicle flow
measurement, and autonomous driving [15]. This field has evolved from traditional methods involving feature
engineering and time-series modeling to more advanced approaches based on Graph Neural Networks (GNNs).
However, the practical implementation of these models necessitates the integration of high-frequency data from
extensive sensor networks. For instance, a city with 100 intersections may generate over 10 million daily data
points for second-level traffic control, presenting significant computational challenges. Meanwhile, complex real-
world traffic conditions, such as traffic congestion, traffic accidents, and rain weather disturbances [7], introduce
increasingly high-dimensional features into traffic data, leading to a substantial rise in data dimensionality. To
address this, current techniques often rely on downsampling or data segmentation to manage the complexity.
However, this comes at the expense of data integrity and the challenge of balancing efficiency with real-world
demands.

The rapid growth of urban traffic networks also presents increasing challenges to traffic data analysis and
prediction. For example, London has over 5719 lane sensors as indicated in Table 1. This trend especially affects
models that handle large temporal scales, such as involving over 50,000 time steps and 1,000 nodes spatial scales.

Table 1. Dataset Descriptions

Overview of traffic and spatiotemporal datasets by city, sensors, time span, interval, and data size.

Dataset City Sensors/Lanes Time Span Interval (min) Data Size

METR-LA Los Angeles 207 2012-2017 5 3,011,904,000
PEMS-BAY Bay Area 325 2017 5 1,617,408,000
Solar Power Phoenix 5 (e.g., irradiance, temp) 2017-2020 15 6,727,680

Traffic Los Angeles 4 2015-2017 60 5,045,760
PeMS04 California 384 2018 5 3,822,059,520
PeMS08 California 170 2016 5 846,028,800
UTD19 London 5719 2015-2016 5 41,803,776,000

Challenges in accessing traffic trends and cyclical data stem from incomplete sensor coverage leading to
data loss, real-time data delays due to the city network’s size, and interference from weather or congestion.
Furthermore, limited computing resources impede accurate trend extraction and cycle detection, necessitating
advanced data dimension compression and efficient feature extraction algorithms.

Existing spatiotemporal models face computational challenges with large-scale traffic data. Graph WaveNet
employs diffusion convolution and multi-layer adaptive GCNs, but becomes impractical as node counts exceed
1,500 due to rising complexity. DCRNN [16] uses a diffusion process and recursive neural networks to capture
dependencies, yet struggles with scalability. ST-GCN[32] integrates graph and temporal convolutions for multi-
node modeling but lacks depth for accurate large-scale predictions. GMAN [36] leverages multi-graph attention
for precision, but its high complexity limits real-time processing. These shortcomings highlight the need for
innovative, efficient solutions that maintain accuracy in large-scale traffic forecasting.

Higher-order dependencies in traffic data, such as shared patterns across lanes at intersections, enable generative
AI to map similarities and compress road network scales. This enhances the adaptability and efficiency of
autonomous traffic systems while improving prediction accuracy within human-centered Industry 5.0 frameworks.
It signals a shift in traffic intelligence toward human-focused practices, where AI and automation augment rather
than replace human skills.
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To address this issue, we introduce HAG-MTF, a novel spatio-temporal prediction model. This model incor-
porates high-order feature compression and expansion modules to efficiently predict large-scale spatial nodes
within computational constraints. By enhancing the viability of traffic data prediction technology, HAG-MTF
offers crucial predictive techniques for urban traffic management and planning.

• This study introduces a distributed higher-order graph convolution algorithm powered by generative AI,
which captures high-order dependencies in spatiotemporal graphs by modeling mappings, grouping, and
convolving neighboring traffic data nodes. This approach efficiently reduces computational complexity in
large-scale graph structures, enhancing adaptability and precision in traffic forecasting.

• A novel module integrates spatial neighborhood information in traffic spatiotemporal data by coupling
neighboring node weights, embedding global spatial details, and hierarchically fusing spatiotemporal
information, enhancing prediction model performance without increasing computational load.

• Extensive experiments on real-world traffic datasets show that HAG-MTF outperforms existing methods
in managing high-frequency, long-sequence, multi-node spatiotemporal data, offering superior prediction
accuracy, enhanced node-processing capacity, faster speeds, and robust generalization across diverse
traffic scenarios.

In traffic forecasting scenarios, the HAG-MTF model integrates human intent through adaptive analysis and
prediction of large-scale real-world traffic data. It supports judgment and decision adjustments for real-time
events and urban traffic planning. Industry 5.0 applications in smart traffic facilitate hybrid systems, where
human experts collaborate with AI to ensure safe operations and effective oversight. This approach contrasts
sharply with non-Industry 5.0 methods, which rely on full automation and often overlook expert awareness,
human factors, or real-world experiences and objective changes. As a result, they produce rigid and potentially
biased outcomes in urban traffic.

2 RELATED WORK
Existing traffic flow forecasting methods can be broadly categorized into four groups: classical statistical ap-
proaches, time series-based methods, spatiotemporal neural network-basedmethods, and approaches that leverage
higher-order structural information. The details of each category are outlined below:

2.1 Classical Traffic Flow Prediction Methods
Classical traffic flow prediction methods, rooted in traditional machine learning, target specific traffic data
traits. The Historical Average (HA) model [14] leverages historical time series averages for periodic sequences,
while fully connected neural networks capture basic linear patterns in simpler time series. HMMHMPI [22]
employs Hidden Markov Models to integrate spatial attributes, enhancing regional traffic evolution modeling.
The ALTO model [1] uses low-rank tensor decomposition with controlled randomness to avoid local optima, and
ARIMA-SVM [3] merges SVM with ARIMA for accurate short-term urban traffic forecasts [19]. Though effective,
these methods, developed earlier, struggle with the coarse data granularity and fail to meet the complexity and
precision demands of modern traffic prediction tasks [25].

2.2 Time Series-based Traffic Flow Prediction Methods
Advancing insights into traffic flow data have led researchers to reframe prediction as time series forecasting [21],
leveraging deep sequence models under the hidden Markov hypothesis [6]. The GRU model employs gating
to mitigate vanishing gradient issues, adeptly handling long-term dependencies. CNN-Traffic [37] reframes
prediction as a classification task using convolutional neural networks for fixed-interval traffic analysis. 3D-
ConvLSTMNet [9] integrates 3D CNN with LSTM to capture both short- and long-term traffic features, enhancing
performance. MF-CNN [26] incorporates external factors like periodicity, weather, and holidays into traditional
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CNNs for improved efficiency. MAPredRNN [10] adds a multi-head attentionmechanism to RNNs, better capturing
complex temporal dependencies in traffic data.

The above methods deeply consider the long-term and short-term dependence of traffic flow data in the time
dimension, as well as the influencing factors [27] in the task of traffic flow data prediction, such as weather,
holidays, etc. However, such methods ignore the spatial characteristics of traffic flow data, such as the connectivity
relationship of each intersection.

2.3 Spatiotemporal Neural Network-based Traffic Flow Prediction Methods
Advances in graph theory and GNNs have led researchers to model traffic flow data as a fusion of temporal and
spatial features, developing spatiotemporal neural network-based prediction methods. Graph convolutional neural
networks [4] utilize adjacency matrices to capture spatial correlations, excelling in traffic network modeling.
STGCN [32] integrates graph and temporal convolutions for effective spatiotemporal prediction. STFGCN [2] intro-
duces a spatial-temporal multi-factor fusion graph convolutional network for traffic flow prediction. TCGCN [30]
employs a multi-channel cross-attention model to address cross-dimensional dependencies. Crossformer [35]
adapts the Transformer framework with cross-dimensional attention for multi-dimensional sequence analysis.
These spatiotemporal data prediction methods have large spatiotemporal information monitoring modules, which
are difficult to apply to the analysis of large-scale spatial node traffic data.

STGNFs [33] uses conditional normalized flows and a spatiotemporal fusion network to learn probabilistic
relationships between historical and future traffic data. DCGCN [28] incorporates causality via dynamic Bayesian
networks, generating temporal causal graphs to depict nonlinear traffic flow changes. Additionally, preprocessing
techniques like EfficientDeRain+ [8] enhance sensor data quality in rain using RainMix augmentation and
uncertainty filtering, enhancing spatiotemporal traffic prediction robustness. These probabilistic models of
spatiotemporal data are studied by probabilistic methods, and the training results are uncertain. In practice, the
stability of the training results should be improved.

The aforementioned methods design a series of spatiotemporal neural network-based approaches [11] aimed
at enhancing traffic flow prediction accuracy, effectively improving both the model’s accuracy and receptive field.
However, they also introduce significant challenges [20], particularly in terms of increased model complexity,
which complicates their application to real-world tasks.

2.4 High-order Structure-based Traffic Flow Prediction Methods
Recent research highlights the significance of incorporating higher-order dependencies in isotemporal traffic
flow data [24]. Methods such as STHGCN [29] and [17] have been instrumental in improving prediction accuracy
by separately modeling time, space, and dimensional attributes. While STHGCN excels in capturing intricate
traffic characteristics, its computational efficiency is compromised by its multi-layered structure [34], particularly
with increasing data volume and node counts (Zhang et al., 2024). Similarly, HSPGNN effectively addresses
missing spatiotemporal data through a spatial attention mechanism and a dynamic Laplace matrix, utilizing a
general non-homogeneous partial differential equation to reconstruct time series values [13]. Nonetheless, both
approaches encounter challenges in adapting to large-scale datasets due to their complexity.

To address the challenges posed by high time and space complexity, suboptimal performance with large-scale
data, and obstacles in deploying models for practical traffic flow applications, this chapter presents an effective
spatiotemporal data compression module utilizing high-order graphs, in conjunction with a robust prediction
approach named HAG-MTF. This methodology incorporates a modular framework with bidirectional diffusion
convolution and a Global Node Information Embedding Module, providing enhanced computational efficiency
and flexibility. Through dimensionality reduction while retaining crucial spatiotemporal patterns, HAG-MTF
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surpasses existing techniques in large-scale scenarios, ensuring resilient performance and scalability without
significant computational overhead.

3 METHODOLOGY

3.1 Problem Definition
This section focuses on the formal definition related to high-order spatial networks in traffic flow prediction. This
section introduces the commonly used concepts and symbols in this chapter.

RoadNetwork� : A road network is typically defined as aweighted directed graph, denoted by� = (+ , �,�,- ),
used to describe the inherent topological configuration of traffic road lanes. Here, the node set + = {E0, · · · , E( }
represents a collection of ( intersections containing lanes, while the edge set � signifies the relationships between
intersection nodes, where (E8 , E 9 ) ∈ � indicates a direct connection between intersection E8 and E 9 by road or lane.
The adjacency matrix � ∈ R(×( serves as the weight matrix to express the strength of the connection between
these nodes quantitatively.

The intrinsic traffic data on the road network � is considered as attribute features of the nodes in set + ,
represented by matrix - ∈ R(×�×) . Here, � represents the number of node attribute features, including traffic
speed, traffic flow, and traffic density, while ) represents the duration of the historical time series, and ( denotes
the number of nodes.

High-order RoadNetwork �̂ : A high-order road network is typically represented as a weighted directed graph
�̂ = (+̂ , �̂, �̂, -̂ ), aggregated from elements in � . This is achieved by defining a mapping c : {+ , �, X} → {+̂ , �̂},
where nodes from the original network are mapped such that for any node c (Ê) ∈ +̂ , c−1 (Ê) ∈ + . Here, c can be
any similarity-based node merging algorithm, which combines nodes E1, E2, . . . , EX with similarity measures into
a super node Ê , with the input parameter X denoting the compression ratio.
Traffic Flow Prediction: Let GC ∈ R(×� represent the traffic data at each intersection or lane at time C . The

historical traffic data with a length of ) time steps is denoted as - = {G0, · · · , G) } ∈ R(×�×) . The traffic data for
the next % time steps can be predicted as follows:

.̂ = 5\ (�,- ) , - ∈ R(×�×) , (1)

where .̂ = {Ĝ)+1, · · · , Ĝ)+% } represents the predicted outputs generated by the model 5\ , where \ denotes the
model parameters. The training objective of the model 5\ is to progressively minimize the discrepancy between .̂
and the corresponding ground truth . = {G)+1, · · · , G)+% }.

3.2 Framework
To effectively capture the spatiotemporal dynamics of complex systems, the HAG-MTF spatiotemporal data
prediction framework, as illustrated in Fig. 1, is composed of four core components, namely, the spatiotemporal
neighborhood information coupling module, the high-order spatial information extraction module, the spa-
tiotemporal evolution pattern modeling module (denoted as H-net), and the high-order spatial data decoding and
mapping module. The HAG-MTF framework systematically addresses the high-order features of spatiotemporal
data by efficiently extracting spatial high-order information, dynamically learning the high-order graph structure,
and incorporating temporal dependencies to predict future states. The core modules of the model are as follows:

(1) Spatial-Temporal Neighborhood Information Coupling Module: By integrating spatial weights
with data features and incorporating the spatiotemporal information of neighboring data nodes [12],
the module enhances the spatial information representation of sequential data without increasing the
computational load.
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Fig. 1. The architecture of HAG-MTF. This framework integrates four core components that capture the spatiotemporal
dynamics information: a. Spatiotemporal neighborhood coupling, b. Spatial information extraction, c. High-order spatiotem-
poral analysis network, d. High-order ST-data decoding.

(2) High-order Spatial Information Extraction Module: Through high-order spatial transformations [23]
and feature simplification, it generates high-order, low-dimensional spatiotemporal information represen-
tations, simplifies and optimizes data dimensions, and further extracts high-order features.

(3) Spatiotemporal Evolution Pattern Modeling: Using a chain-like, time-causal convolutional main
architecture [35], it captures high-order, low-dimensional spatiotemporal data features. The module
includes submodules such as diffusion graph convolution, causal convolution, gate structures, and attention
mechanisms.

(4) Reverse High-order Decoding: It uses high-order features to reconstruct predicted values of the original
space, ensuring prediction accuracy.

Through the collaborative interaction of the above modules, the HAG-MTF algorithm framework effectively
addresses issues such as excessively large spatial dimensions, complexity, nonlinearity, and dynamics in high-
order, low-dimensional data for spatiotemporal prediction. It provides a scientifically sound solution for modeling
and predicting large-scale, complex system data [5] in traffic information.

3.3 Neighborhood Spatial Information Fusion Module. (NSIF)
In spatiotemporal modeling, accurately representing the relationship between nodes and their neighbors is
essential for precise prediction. The original data often contains spatial features with redundancies or incom-
pleteness, complicating feature aggregation and increasing computational complexity. To address this issue, we
introduce a spatio-temporal neighborhood information coupling module. This module combines spatial features
of target nodes through weighted aggregation and convolution optimization. By prioritizing important neighbor
nodes (e.g., high traffic and short distance links) over less significant ones (e.g., low traffic and long distance
links), the module incorporates key neighborhood information into the target node. It achieves this by utilizing
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trainable adaptive weights for the fusion of neighborhood node information. This approach enhances the model’s
spatial information representation capability without adding to the computational burden. The formulation of
the modular approach is as follows:

For the raw traffic data input -raw, the method for coupling spatial information from neighboring nodes is
formulated as:

- = Conv2d

(
-raw + 68

(
=∑
8=1

U 9-
( 9 )
raw

))
, (2)

where -raw represents the raw data of the current traffic node, and each - (8 )
raw denotes the data of the 8-th

neighboring traffic node. The weight parameter U8 is a learnable coefficient that adjusts the contribution of each
neighboring node’s data in the fusion process.

Themodule integrates spatial feature information by considering neighboring nodes that are close to the current
node. Finally, a two-dimensional convolution (Conv2d) is applied to the weighted aggregated data to extract
features for subsequent analysis. The module for spatial feature fusion and extraction of hidden information
integrates weighted spatial data from neighboring nodes with two-dimensional convolution operations. By
incorporating spatial information from original data nodes, it enriches the representation of neighborhood node
information to deepen the understanding of spatial relationships within the model. This process extracts crucial
features for decision-making and prediction, while disregarding distant spatial nodes’ mutual relationships. This
approach uniquely contributes to the analysis and prediction of non-uniformly distributed actual traffic flow
patterns.

3.4 Spatiotemporal High-Order Feature Aggregation Module

Fig. 2. High-order transformation graph. The module employs high-order node temporal feature averaging and spatial
information compression/reconstruction transformations to process the high-order features of complex spatiotemporal data.

The HAG-MTF framework employs a spatiotemporal high-order feature aggregation module to generate a
compact, information-rich feature representation by reducing input data dimensionality, simplifying spatial
information, and compressing redundant features into a lower-dimensional form. After spatial domain information

ACM Trans. Autonom. Adapt. Syst.

 



8 • Wang et al.

coupling, the low-order spatial feature tensor of the original data is denoted as �# ∈ R#×3 , where # represents
the number of low-order node spatial features and 3 is the dimension of each feature. After dimensionality
reduction, this tensor is transformed into high-order spatial features, represented as �� ∈ R�×3 , where� denotes
the number of high-order node spatial features and � < # , This transformation not only reduces the number of
spatial dimensions but also aggregates and preserves essential information.

In the high-order feature transformation, we utilize feature alignment and multiple activation functions to
extract and integrate both conventional and high-order features, enhancing their representational capacity
through a salient feature iterative enhancement method. The fusion process is expressed as follows:

�′
#� = tanh

(
tanh(6\ (�# )) � tanh(6q (�∗� ))

)
, (3)

where 6\ and 6q denote parameterized projection networks, and � is the Hadamard product.
To mitigate information degradation post-high-order transformation and enhance feature expressiveness, we

introduce a mask generation mechanism using a parameter-enhanced iterative strategy. This approach selects
the top contributing elements from fused features, zero-padding non-salient ones to preserve tensor shape
consistency. The mask matrix is formulated as follows:

�mask = TopK
(
�

′
#�

)�8=1

:=10
+ TopK

′
(
�

′
#�

)�′
8=0

:
′
>10

. (4)

To continuously reinforce the salient features within the data, we select the top = 10most significant features
from the transformation module �′

#�
after introducing random noise. The corresponding positions in the index

matrix are set to 1, while all other positions are set to 0. Iteratively repeating this process yields the reinforced
high-order transformation feature mask matrix �mask.

A small amount of random noise is then added to the original high-order feature matrix �′
#�

to enhance
feature diversity and improve the model’s robustness. The noise magnitude is controlled by a constant of 0.01,
ensuring that it does not significantly alter the features, thereby maintaining stability when processing uncertain
or noisy data.

Finally, the high-order feature matrix is element-wise multiplied with the generated mask�mask. This operation
further filters the important feature information by selecting key features while ignoring unnecessary ones,
reducing computational complexity and enhancing efficiency. Consequently, this leads to improved performance
in subsequent tasks. The formula is as follows:

�#� =

(
�

′
#� + Rand(�′

#� ) × 0.01
)
×�mask . (5)

The dimension reduction transformationmatrixANH ∈ R#×� compresses spatial information in traffic data into
a compact feature representation via dimensionality reduction. Processed through the high-order spatiotemporal
module, upscaling and downscaling operations map these low-dimensional features back to a high-dimensional
space, restoring data post-degenerate feature analysis for a concise, effective representation. Embedded into the
high-order spatiotemporal network, this refined representation captures long-range dependencies and global
distribution characteristics, enhancing the model’s perception of the overall spatiotemporal structure.

Within the HAG-MTF framework, the dimensionality ascending and descending modules address redundancy
issues in high-dimensional traffic data by compressing and simplifying spatial node dimensions. This process
effectively reduces computational complexity, significantly enhancing the scalability of real-time data processing
models, which is of practical importance. Moreover, it has demonstrated superior efficiency in handling large-
scale data, thereby improving the scalability of real-time traffic prediction and resource optimization within
urban systems. Through global embedding, the modules minimize noise while preserving essential information,
ultimately ensuring efficient model calculations without sacrificing accuracy. Furthermore, the framework exhibits
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adaptability to diverse datasets, thereby bolstering the effectiveness, scalability, and generalization capabilities of
the model.

3.5 High-order Spatiotemporal Evolution Module
Traffic data’s spatiotemporal variability necessitates concurrent spatial and temporal modeling, yet traditional
approaches falter with high-order data and escalating spatial feature dimensions. To address this, the High-order
spatiotemporal Evolution Module integrates two advanced modules: the Global Node Information Embedding
Module, which aggregates temporal features from high-order spatial data to reduce dimensionality while simulat-
ing spatial dynamics, and the High-Order Spatiotemporal Analysis Network (H-net), which enhances modeling
via diffusion convolution for long-range spatial interactions and gated convolutions for multi-scale temporal
variations.

Reverse high-order transformation then restores features to their original dimensions, followed by convolution
to produce the final output. Within this, HAG-MTF excels in initialization performance, leveraging bidirectional
diffusion convolution to capture complex forward and reverse spatial relationships [18] and a modular H-net
design for adaptive feature and dependency learning. This ensures high predictive accuracy in large-scale graph
scenarios, computational efficiency, and robust initialization over prolonged operations [31].

3.5.1 Global Node Information Embedding. In higher-order tensor representations of traffic data, dimensionality
reduction inevitably leads to feature loss during spatial compression. To mitigate this challenge, we propose a
global-aware embedding mechanism that enhances residual learning through three coordinated operations: (1)
temporal feature aggregation, (2) adaptive spatial reconstruction, and (3) structural dimension calibration. This
approach effectively preserves essential spatiotemporal patterns during the dimensionality reduction process.

Given input tensor - ∈ R1×3×ℎ×C where 1, 3, ℎ, C denote batch size, node dimension, hidden size, and temporal
length respectively, the module first extracts global temporal context through dimension-wise averaging:

& ′ = Tanh(6\ (
1
C

C∑
:=1

-:,:,:,: )), (6)

where 6\ (·) denotes learnable linear projection.
Subsequently, we construct dynamic embedding matrices EN ∈ R3×A and EH ∈ Rℎ×A through hierarchical

transformation:

EN, EH = Tanh(6q (Tanh(6k (N (0, 1)))), (7)

& = & ′ � (E# ⊗ Ê� ), (8)

where ⊗ denotes tensor product and � represents element-wise multiplication. As illustrated in Fig. 2, this
dual-embedding mechanism establishes learnable mappings between original and compressed spaces through: (1)
Stochastic initialization with normal distribution N(0, 1), (2) Nonlinear projection via 6k and 6q , (3) Dimensional
alignment using hyperbolic tangent activations.

3.5.2 Temporal Order-Preserving Causal Convolution. H-net employs Gated convolution to process temporal data,
Causal convolution is used to handle temporal information, and Dilated convolution is employed to compress
feature dimensions into the time dimension, enabling the model to capture time features of high-order data at
different scales. The formulas are as follows:

T = tanh
(
,5 ∗ - + 1 5

)
× f

(
,6 ∗ - + 16

)
, (9)

- (C ) = tanh
(
,C ∗ - (C−1) ), (10)

'�=+1 = '�= + (: + (: − 1) (3 − 1) − 1) (, (11)
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where T is the output of gated convolution, - (C ) is the output at time step C ,, and 1 are convolution and bias
parameters, '� is the receptive field size, : is the kernel size, 3 is the dilation rate, and ( is the stride.

Gated Convolution. The Multi-layer Gated Recognition Module (MGSM), defined by Eq. (9), serves as a
specialized multi-layer gated convolution mechanism within the high-order spatiotemporal feature extraction
module H-net. It adaptively regulates information flow through a gating mechanism that combines tanh and
sigmoid activations for selective propagation. The module captures long-range dependencies, boosts model
expressiveness, and focuses on the identification and processing of temporal features in complex traffic sequences.
Causal Convolution. Eq. (10) ensures temporal outputs depend only on current and past inputs, capturing

high-order spatiotemporal dependencies. Dilated Convolution. Eq. (11) expands the receptive field in the
temporal dimension by systematically adjusting the dilation rate 3 , allowing rapid expansion of the receptive
field in a multi-layer causal network. This enhances the model’s ability to capture global temporal information
across all frequencies without increasing parameters or computational costs.

The High-Order Spatiotemporal Analysis Network (H-net) employs Diffusion Graph Convolution to model
the characteristics of high-order spatial traffic data due to its ability to effectively capture complex spatial
dependencies. This method leverages a normalized bidirectional power propagation mechanism, aggregating node
features across both forward and reverse information flows. This bidirectional approach excels in handling the
dynamic, non-uniform spatial relationships in traffic networks, enhancing the expressive capacity for long-range
dependencies. The adjustable diffusion step length  allows flexibility in controlling the propagation range,
making it ideal for large-scale, high-order data.

3.5.3 Spatial-Dependency Diffusion Graph Convolution. To capture the spatial information contained in high-
order spatial data, we first apply Diffusion Graph Convolution, which employs a diffusion propagation mechanism.
This process, also known as the normalized bidirectional power propagation of the adjacency matrix, aggregates
node features for extraction. The module is designed to enhance the expressive capacity of high-order spatial
features by utilizing bidirectional diffusion convolution that accounts for both forward and reverse information
flows. The specific method is as follows:

X′ =
 −1∑
:=0

(
D−1A

):
XΘ: +

 −1∑
:=0

(
DA>): XΘ: , (12)

where the adjacency matrix for high-order spatial data is embedded after the initial matrix undergoes a high-order
transformation. D is the degree matrix, with its diagonal elements given by D88 =

∑
9 A8 9 . The degree matrix

helps to aggregate the neighborhood information of nodes, thereby better capturing the spatial dependencies
among them. And A8 9 is the Spatial Prior Information Embeding (SPIE) adjacency matrix. The SPIE module
embeds prior spatial knowledge from raw input data into the H-net following dimensionality reduction. The
H-net module employs bidirectional diffusion convolution and Gated units to model high-order features by
the - ′ ∈ R)×3×#� , compressing spatial data to �� while retaining global and neighborhood details, widening
receptive fields, and enhancing prediction accuracy and efficiency in large-scale traffic forecasting without extra
computational burden. Θ: denotes the trainable parameters of the :th convolution layer, and  is the diffusion
step length, which determines the range of information propagation.

3.6 Loss Function and Optimization Objective
3.6.1 Composite Loss Optimization Module. A key challenge in the model is the discrepancy that can arise when
transforming between high-dimensional and low-dimensional data. Relying on a single error metric is insufficient
for a comprehensive evaluation of prediction performance. To address this, we have designed a composite loss
function that simultaneously considers high-order error, global error, and dynamic adjustments, thereby imposing
constraints on the model from multiple perspectives.
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The selection of this composite loss function is specifically designed for traffic prediction applications. It
incorporates high-order errors to capture intricate spatial relationships, global errors to maintain consistency
throughout traffic networks, and dynamic adjustments to accommodate real-time fluctuations such as congestion
or weather conditions. This comprehensive methodology improves resilience and is in line with the demand
for precise and scalable predictions in evolving urban settings, as evidenced by various traffic datasets. The
formulation of the loss function is outlined below:

L =
1
=

=∑
8=1

(
(.� )8 − (-� )8

)
+ U 1

=

=∑
8=1

(
(-rec)8 − -8

)2
+ V HUP

(
.� , -�

)
. (13)

Where .� and -� denote predicted and input high-order data, respectively, focusing on fitting high-order
features, while -rec represents reconstructed data from upscaling and downscaling via inverse normalization,
assessing transformation fidelity against original data - . Hyperparameters U and V balance global error and
dynamic penalty weights, ensuring comprehensive optimization of high-order feature fitting, data consistency,
and refined constraints.The loss comprises three parts: the overall error between.� and-� to evaluate high-order
feature fitting, the difference between -rec and - to maintain consistency across transformations, and the High
Uncertainty Penalty (HUP) to heighten focus on regions with significant high-order errors, boosting sensitivity
to critical data in complex scenarios.

3.6.2 Data upscaling and downscaling Reconstruction. To accurately assess data fidelity during upscaling and
downscaling, we introduce a reconstruction formula:

Xrec = 5MLP
(
68

(
Tanh (- × ANH) × A∗

NH
) )
. (14)

The matrices �#� and �∗
#�

serve as transformation matrices for upscaling and downscaling, respectively. The
activation function tanh introduces nonlinearity. The functions 68 and 5"!% denote a linear transformation and a
multi-layer perceptron (MLP) module, respectively, for adaptive fine-tuning following dimensionality changes.
Comparing -A42 with the original data ensures consistency and integrity during the upscaling and downscaling
processes.

3.6.3 Dynamic Penalty Term (HUP). This term imposes additional penalties when the prediction error exceeds a
threshold, focusing the model’s optimization on high-error regions. It is formulated as a piecewise function that
applies no penalty for small errors, while larger errors incur quadratic penalties, thereby increasing sensitivity to
critical data. The HUP is defined as:

hup(4) =
{
W · 42, if 4 > X,
0, otherwise.

(15)

The model employs a loss function where 4 = | |~̂8 − G8 | | denotes the absolute prediction error, X (set to 5) is the
error threshold triggering additional penalties, and W (set to 0.1) modulates penalty strength. For example, an error
4 = 8 incurs a penalty of 0.1 · 82 = 6.4, while 4 = 3 incurs none, prioritizing correction of larger discrepancies.
The first term loss function assesses absolute errors in high-order spatial data post-degeneration, underscoring
its impact on accuracy, while the 2nd portion evaluates average loss across original data, minimizing errors
from dimensionality transformations. The 3rd component, the dynamic High-Order Uncertainty Penalty (HUP),
enhances sensitivity to extreme variations by weighting larger errors, and optimizing prediction. Experiments
confirm this formulation significantly boosts performance.

The HAG-MTF framework effectively captures the spatiotemporal dynamics of complex systems through its
four core components. It adeptly extracts high-order spatial information, learns graph structures dynamically,
and integrates temporal dependencies to ensure precise and resilient predictions of future states. The algorithmic
process for HAG-MTF is as shown in Algorithm 1.
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We offer a simple step-by-step overview to interpret Algorithm 1. For each time step, combine spatial data
from neighbors using weighted fusion and convolution. And then, create high-order embeddings, boosting key
features with a TopK mask and slight random noise for robustness. Use bidirectional diffusion convolution to
capture forward and backward spatial links. After that, apply gated causal convolution to manage time-series
flow, and restore features to original dimensions via upsampling and a multi-layer perceptron. At last, compute a
combined loss covering high-order errors, reconstruction, and penalties for big uncertainties, minimize the loss
with the Adam optimizer, and output predictions and reconstructed data. The detailed algorithmic process is as
described in Algorithm 1.

Algorithm 1 HAG-MTF Spatiotemporal Data Prediction
Input: Traffic tensor Xraw ∈ R�×(×�×) , adjacency matrix A, hyperparameters (,  , U, V

Output: Predictions Ŷ, reconstructions X̃
1: Initialize parameters Θ,W, {\: } −1

:=0
2: for time step C = 1 to ) do ⊲ Spatial aggregation
3: for node 8 = 1 to # do
4: X(C,8 ) = Conv2D

(
X (C,8 )
raw + 68

( ∑
9∈N8

U 9X (C, 9 )
raw

) )
5: end for
6: end for
7: E# , E� = N(X),H∗ (X) ⊲ High-order features
8: A′

#�
= tanh(6(E# ) � 6(E∗� ))

9: A#� =
(
A′
#�

+ [ · Rand(A′
#�

) ∗ 0.01
)
⊗ TopK10 (A′

#�
)�8=1

10: X′ =
∑ −1
:=0

[
(D−1A):X\: + (D−1A>):X\:

]
⊲ Bidiffusion

11: T = tanh(W5 ∗ X + b5 ) � f (W6 ∗ X + b6) ⊲ Gated tempoconv
12: XC = tanh(W ∗ XC−1) for C = 2 : ) ⊲ Causal convolution
13: X̃ = MLP

(
tanh(XA#� ) · A>

#�

)
⊲ Reconstruction

14: L = ‖Ŷ − Y‖22 + U ‖X̃ − X‖22 + VLhup ⊲ Composite loss
15: Minimize L via Adam
16: return Ŷ, X̃

3.7 Analysis of Module Complexity
Building on the problem definition for traffic data and the methodological details outlined earlier, we examine
the complexity of the method’s core modules to lay the groundwork for discussing subsequent experiments and
applications.

• Neighborhood Spatial Information Fusion (NSIF): NSIF acts as the preprocessing module for spatial
information coupling in the HAG-MTF model. It fuses spatial details from adjacent nodes into the raw
input -raw ∈ R#×)×3 using a graph convolution-style aggregation, as shown in Eq. 2. The computation
of �:-raw uses sparse matrix multiplication, where : = 3 is the number of neighbor nodes, E is the
number of edges in the adjacency matrix, and d is the node feature dimension. The module’s complexity
is O(� · 3 ·) ) × 3.

• Spatial Prior Information Embedding (SPIE): SPIE embeds prior spatial information from the raw
data into the high-order spatiotemporal feature processing module (H-net) after dimensionality reduction.
It models the high-order features - ′ ∈ R)×3×# using bidirectional diffusion convolution and GRU-like
units. The SPIE module compresses the spatial information to a reduced dimension �� , resulting in
a per-operation cost of O(�� · 3 · ) ) for the bidirectional diffusion convolution. The gated temporal
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convolution operates along the time steps ) per layer, with a complexity of O() · �� · 32). The full H-net
module stacks ! = 8 layers, yielding a total complexity of O((�� · 3 ·) +) · �� · 32)) × 8.

• Multi-layer Gated RecognitionModule (MGSM): MGSM is a specialized multi-layer gated convolution
mechanismwithin the high-order spatiotemporal feature extractionmodule H-net, dedicated to identifying
and processing temporal features. By stacking multiple layers of gated convolutions (with L = 8 ), it
adaptively manages information flow, preserves temporal sequencing, and broadens the receptive field.
Its complexity is two main operations: bidirectional diffusion convolution for spatial handling and gated
temporal convolution across layers. As a result, the overall complexity of MGSM (H-net) is O((�� · 3 ·
) +) · �� · 32) × 8). With high-order compression yielding �� << # (where N is the original number
of spatial nodes), this complexity remains quadratic in the original spatial dimension # , specifically, an
O(# 2) · 3 scaling that leverages the efficiency gains from dimensionality reduction.

In summary, the total complexity of HAG-MTF is O(8 × (3 × � · 3 · ) + �2
�
· 3 + ) · �� · 32)). As shown in

Table 4, HAG-MTF can process data with over 1,500 spatial nodes from the UTD19 dataset, while baselines like
GraphWaveNet fail due to GPU memory overflow. This design strikes a balance between accuracy and efficiency
for real-time Industry 5.0 applications, delivering strong prediction metrics unlike other deep learning frameworks
built on complete graph structures, which often cannot finish running because of their heavy computational load.

4 EXPERIMENTS

4.1 Experimental Settings
4.1.1 Dataset and Baseline. The proposed HAG-MTF model has been evaluated on multiple publicly available
datasets spanning various domains, including traffic flow, energy generation, and meteorology. The study utilizes
METR-LA, PEMS-BAY, Solar, Traffic,Weather, PeMS04, PeMS08, and UTD-19 datasets. And the proposedmethod is
compared against the following baseline methods: HAG-MTF, HA, FNN, GRU, GCN, STGCN, STHSL, Crossformer,
AGCRN, SVR, DGCRN, and AM-GCN.

The HAG-MTF model was evaluated using publicly available datasets with diverse characteristics. Specifically,
the model was tested on traffic flow data from METR-LA and PEMS-BAY, both of which are characterized by
dense road network structures. METR-LA was used to assess the model’s sensitivity to traffic bursts and to verify
its robustness in handling missing data. In contrast, PEMS-BAY was employed to evaluate the model’s ability
to manage complex topologies and capture long-term dependencies. Additionally, the model was tested on the
high-speed traffic datasets PEMS04 and PEMS08, which feature sparse spatial nodes, to assess its performance
in modeling sparse nodes and implicit spatial relationships. Finally, a medium-sized traffic dataset was used
to confirm the model’s stability in predicting traffic patterns for medium-sized road networks, particularly in
managing seasonal variations and missing data.

The UTD-19 dataset comprises a vast road network with diverse inter-city traffic patterns and intricate spatio-
temporal dependencies, serving as a rigorous benchmark for evaluating prediction models. Specifically, it assesses
the algorithm’s efficacy in long-range spatial association mining and computational efficiency. Additionally, the
dataset includes solar energy generation and meteorological data, each varying in scale and complexity. These
diverse datasets offer a robust foundation for evaluating the spatiotemporal predictive capabilities of the model
under test.

4.1.2 Evaluation Metrics. To evaluate the performance of HAG-MTF, two widely used metrics are employed to
quantify the relative prediction error.
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• "(� (Mean Squared Error) emphasizes larger errors through squaring and computes the average of
squared differences, which can be computed as:

"(� =
1
&#

&∑
C=1

| |.C − .̂C | |22. (16)

• "�� (Mean Absolute Error) provides the average magnitude of errors using absolute differences, which
can be computed as:

"�� =
1
&#

&∑
C=1

|.C − .̂C |. (17)

Other Settings. This study utilized an RTX 4090 GPU cluster for efficient parallel training of deep learning
models, with Python 3.8 ensuring portable and maintainable code and PyTorch 2.1.1, with its flexible API and
optimizations, enabling rapid model iteration and enhanced performance; for a fair comparison, all baseline
models employed Huber loss for its demonstrated effectiveness, with a consistent batch size of 64 and a dataset
partitioned into training, validation, and test sets at an 8:1:1 ratio, selecting the best-performing model after 50
epochs of training on the validation set for testing on the test set.

4.2 Experimental Results
4.2.1 Baseline Comparisons. We assessed the HAG-MTF model using a range of publicly available datasets.
The datasets were selected based on their varying scales, temporal resolutions, and connections to practical
traffic forecasting problems, such as urban congestion, sparse network configurations, long-term trends, data
incompleteness, and weather impacts. The METR-LA dataset examined the model’s response to traffic surges and
its robustness against missing values in dense networks, while PEMS-BAY evaluated its handling of intricate
topologies and prolonged dependencies. These two medium-sized datasets also verified the model’s stability in
the face of seasonal fluctuations. PEMS04 and PEMS08 gauged their ability to capture implicit spatial connections.
UTD-19 served as a benchmark for long-distance associations and computational efficiency in expansive systems.
Solar and weather data tested the model’s performance on sparse datasets and its adaptability to environmental
variations. This selection of datasets validates the model’s effectiveness and supports reliable outcomes in
extensive, fine-grained spatiotemporal traffic prediction tasks.

Experimental results in Table 2 and Table 3 show that HAG-MTF consistently achieves top or near-top
performance across datasets and prediction intervals. HAG-MTF markedly surpasses traditional models like GCN
and STGCN, sustains superior performance across all intervals on the Solar dataset, and excels on the Weather
and PeMS datasets, demonstrating robust capability in both short- and long-term predictions.

The model is trained using the Adam optimizer with an initial learning rate of 0.001, decayed by a factor of
0.1 every 50 epochs, and a batch size of 32. Convergence is achieved when the validation loss stabilizes for 10
consecutive epochs or falls below 0.01. To mitigate overfitting, a dropout rate of 0.1 is applied during training.

The superior performance of HAG-MTF can be attributed to its advanced spatiotemporal modeling, which
combines higher-order graph convolution with a spatial information fusion module. This approach efficiently
captures both temporal and spatial features, along with non-linear spatiotemporal dependencies, enabling accurate
predictions across datasets characterized by significant temporal variations and spatial complexity.

4.2.2 Efficiency Experiment. The efficiency experiment aims to assess the algorithm’s performance in processing a
significant volume of node spatiotemporal data. Table 4 illustrates that HAG-MTF employs adaptive neighborhood
embedding, higher-order transformation, and spatial graphics compression to reduce the dimensionality of such
data. It demonstrates notable efficiency and accuracy in handling large-scale node data, effectively processing Los
Angeles traffic data in the UTD19 dataset using an RTX-2080Ti graphics processor with limited computational
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Table 2. Baseline Comparisons (MSE)

Method HAG-MTF HA FNN GRU GCN STGCN STHSL Crossformer

METR-LA
15m. 25.983 75.075 28.425 32.238 56.336 95.019 32.120 46.352
30m. 32.380 118.091 36.120 43.302 66.272 103.960 43.686 72.592
1h. 42.362 189.279 46.612 59.338 83.939 119.961 64.772 96.196

PEMS-BAY
15m. 8.871 9.501 11.647 6.741 44.936 131.055 6.337 8.443
30m. 12.945 18.798 15.354 12.536 46.573 115.063 11.972 16.656
1h. 16.856 36.438 19.639 19.294 49.810 162.193 20.581 -

Solar
30m. 5.843 4.891 12.642 11.741 58.600 166.111 14.736 16.405
1h. 8.016 12.537 12.884 17.766 103.157 371.089 14.878 38.394
2h. 13.206 33.528 16.765 30.924 98.217 211.283 129.028 44.714

Traffic
3h. 0.001 0.003 0.001 0.002 0.002 0.006 0.002 -
6h. 0.001 0.004 0.001 0.002 0.003 0.005 0.003 -
12h. 0.002 0.005 0.002 0.002 0.003 0.004 0.003 -

Weather
3h. 661.181 791.558 985.900 832.029 103.5K 679.301 1.3K 683.787
6h. 856.330 1.2K 1.7K 1.2K 103.7K 895.496 5.8K 921.287
12h. 1.1K 2.2K 2.4K 1.8K 104.2K 1.4K 27.6K 1.4K

PSM04
15m. 961.880 1.1K 1.5K 1.1K 4.5K 7.7K 951.134 1.2K
30m. 943.937 1.5K 1.7K 1.2K 4.7K 7.2K 947.983 2.0K
1h. 1.0K 2.7K 1.7K 1.5K 5.0K 7.9K 1.0K 2.4K

PSM08
15m. 560.165 658.759 1.1K 631.344 3.3K 5.7K 582.550 774.455
30m. 597.541 959.105 1.3K 780.775 3.4K 8.7K 604.886 1.8K
1h. 617.755 1.9K 1.5K 932.173 3.6K 10.2K 644.150 2.0K

resources. This dataset comprises over 1500 spatial nodes. The HAG-MTF’s prediction performance consistently
surpasses that of baseline methods, while approaches like 3DFormer, Crossformer, DGCRN, and AM-GCN struggle
to manage replication tasks involving 1500 spatial nodes due to their extensive parameter spatiotemporal modules.
Deep learning models with fixed topologies, such as AGCRN, STGCN, and FNN, exhibit inadequate prediction
performance in intricate and variable graph structures and are incapable of executing long-term prediction tasks
spanning one hour. Apart from the models introduced in this study, only HA, SVR, and GRU can accomplish the
task, albeit with prediction accuracy below the desired standard.

The HAG-MTF method utilizes high-order spatial node compression to decrease data dimensionality, enhance
computational efficiency, preserve spatial information richness, demonstrate its effectiveness in handling intricate
spatio-temporal dynamics, and is well-suited for analyzing and predicting large-scale spatio-temporal data in
real-world traffic scenarios.

4.2.3 Ablation Study. The ablation study confirms the critical significance of key modules within HAG-MTF for
spatiotemporal prediction. These include the incorporation of higher-order compression loss in the loss function,
spatial diffusion convolution in the higher-order spatiotemporal analysis module, time-gated convolution, and
training initial convolution. Empirical findings across various datasets unequivocally underscore the pivotal role
of these modules in enhancing the predictive efficacy of the model.

The high-order dimensionality reduction module optimizes computational efficiency for large-scale data by
compressing redundant features without major information loss. The generative fusion graph enhances spatial
dependency modeling through dynamic neighborhood integration, improving relationship capture in dense
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Table 3. Baseline Comparisons (MAE)

Method HAG-MTF HA FNN GRU GCN STGCN STHSL Crossformer

METR-LA
15m. 2.742 8.665 3.051 2.952 4.756 3.849 2.974 2.577
30m. 2.968 10.867 3.307 3.290 5.071 5.211 3.281 3.926
1h. 3.294 13.758 3.680 3.860 5.613 5.359 4.251 4.437

PEMS-BAY
15m. 1.540 3.082 1.833 1.226 2.933 5.344 1.213 1.422
30m. 1.748 4.336 2.019 1.536 3.056 5.036 1.513 1.811
1h. 1.965 6.036 2.202 1.892 3.250 5.776 1.989 -

Solar
30m. 1.450 2.212 2.268 2.312 4.982 10.051 2.577 2.500
1h. 1.664 3.541 2.310 2.855 6.822 13.841 2.523 3.923
2h. 2.220 5.790 2.644 3.700 6.730 10.065 8.194 4.035

Traffic
3h. 0.017 0.052 0.015 0.019 0.029 0.048 0.026 -
6h. 0.017 0.065 0.017 0.024 0.031 0.042 0.027 -
12h. 0.017 0.070 0.019 0.021 0.030 0.041 0.027 -

Weather
3h. 6.516 28.135 14.775 5.487 174.780 6.884 15.493 7.229
6h. 7.644 34.887 22.917 7.062 175.480 8.127 28.902 7.746
12h. 8.134 47.185 21.633 9.575 177.075 10.158 77.558 10.145

PSM04
15m. 19.773 33.255 25.167 20.870 40.942 72.171 19.894 22.615
30m. 19.849 38.255 27.176 22.538 42.580 70.217 19.721 30.386
1h. 20.814 52.347 27.550 24.818 44.788 72.972 20.938 33.705

PSM08
15m. 15.781 25.666 23.073 16.374 37.382 65.827 16.016 19.768
30m. 15.897 30.969 24.639 17.956 38.847 81.033 16.024 28.380
1h. 15.972 43.539 25.887 19.422 40.522 83.297 16.489 30.260

Table 4. Efficiency Experiment

Model

Metric Step AGCRN GRU HA FNN SVR STGCN

3DFormer
Crossformer

DGCRN
AM-GCN HAG-MTF

MSE
15min. 150.1K 257.2K 10.4K 8.7K 164.4K 110.2K - 9.2K
30min. 152.5K 263.8K 22.9K 13.2K 166.8K 123.7K - 12.5K
1h. - 214.9K 46.2K - 170.1K - - 23.8K

MAE
15min. 269.798 393.614 62.937 59.327 283.394 273.520 - 49.289
30min. 269.305 395.649 83.156 64.790 286.445 301.980 - 82.756
1h. - 344.024 127.529 - 290.514 - - 102.185

networks. The H-net module boosts accuracy via hierarchical fusion of temporal and spatial features, aiding
long-sequence handling. The fusion loss function aids balanced optimization, enhancing stability and convergence
while preventing overfitting. Notably, the NSIF module has a pivotal impact, reducing errors by embedding global
details and coupling node weights, essential for Information extraction of data compression.

As shown in Table 5, experimental evidence underscores the importance of the time-gated convolution
and spatial diffusion convolution components in effectively capturing complex spatiotemporal features and
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Table 5. Ablation Study

Method HAG-MTF
Wo. Second

Loss
Wo. GCN in

H-net
Wo. Head

Conv
Wo. Gate in

H-net
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

METR-LA
15m. 25.983 2.742 26.107 2.769 26.867 2.798 27.569 2.850 41.718 3.481
30m. 32.380 2.968 34.191 3.057 33.297 3.021 33.440 3.057 43.647 3.447
1h. 42.362 3.294 43.093 3.336 43.440 3.340 42.509 3.331 63.033 4.091

PEMS-BAY
15m. 8.871 1.540 9.033 1.556 8.989 1.564 10.375 1.707 25.523 2.422
30m. 12.045 1.718 12.136 1.745 12.091 1.721 12.902 1.830 25.917 2.465
1h. 16.496 1.965 16.482 1.974 16.507 1.965 17.810 2.044 26.304 2.486

Solar
30m. 5.843 1.450 6.113 1.535 5.876 1.440 8.702 1.857 6.399 1.532
1h. 8.016 1.664 8.071 1.707 8.237 1.735 11.761 2.195 8.968 1.825
2h. 13.206 2.220 13.398 2.236 13.899 2.264 18.644 2.775 15.131 2.480

Traffic
3h. 0.001 0.017 0.001 0.017 0.001 0.017 0.001 0.016 0.002 0.020
6h. 0.001 0.017 0.001 0.017 0.001 0.017 0.001 0.018 0.003 0.037
12h. 0.001 0.017 0.001 0.017 0.001 0.017 0.001 0.018 0.001 0.017

Weather
3h. 661.181 6.516 749.860 8.695 723.939 8.233 671.397 7.026 680.445 6.623
6h. 856.330 7.644 955.735 9.827 1.1K 10.137 905.162 8.580 1.1K 11.528
12h. 1.1K 8.134 1.3K 11.281 1.6K 12.844 1.6K 11.001 1.5K 11.879

establishing dynamic dependencies within spatiotemporal data. These results emphasize the critical interplay
between temporal and spatial feature analysis modules, which is fundamental to higher-order spatiotemporal
analysis frameworks.

Furthermore, ablation experiments underscore the essential role of high-order compression loss in counterbal-
ancing spatial compression loss. The discrepancy between compressed high-order features and original data is
integrated into the loss function to effectively manage information loss during high-order transformation. These
results affirm that the modular architecture of HAG-MTF effectively harmonizes feature extraction, dynamic
dependency modeling, and regularization processes.

4.2.4 Parametric Analysis. Analysis of the ST Block underscores HAG-MTF’s exceptional spatiotemporal feature
modeling and its sensitivity to depth optimization. Its modular design unifies high-dimensional spatial represen-
tation, feature extraction, and dynamic adjacency matrix learning, delivering a robust framework for capturing
intricate spatiotemporal dependencies.

A. ST Block Depth Analysis. Experiments on St-Block layer variations, as detailed in Table 6, demonstrate
that the 8-layer configuration of the HAG-MTF framework consistently outperforms alternatives across datasets,
achieving an MSE of 25.983 on the METR-LA 15-minute prediction task, and an MSE of 13.206 for the Solar 2-hour
prediction. The 8-layer’s performance surpasses 6 and 10-layer setups by effectively capturing nonlinear, dynamic
spatiotemporal features and long-term dependencies. This robust performance arises from synergistic modules’
graph convolution for spatial dependencies, causal convolution for temporal dynamics, and adaptive graph
learning for latent node relationships, though extending to 10 layers reveals diminishing returns, suggesting a
trade-off where excessive depth risks inefficiency, noise, or overfitting. For complex datasets like Weather, the
8-layer setup remains optimal despite higher errors, indicating room for enhanced multi-scale modeling, yet it

ACM Trans. Autonom. Adapt. Syst.

 



18 • Wang et al.

Table 6. ST Block Depth Analysis Experiment

Method Layers 4 Layers 6 Layers 8 Layers 10
Metric MSE MAE MSE MAE MSE MAE MSE MAE

METR-LA
15m. 28.116 2.861 30.010 2.924 25.983 2.742 28.393 2.910
30m. 35.032 3.135 46.767 3.467 32.380 2.968 34.685 3.135
1h. - - 50.589 3.580 42.362 3.294 44.531 3.433

PEMS-BAY
15m. 10.600 1.724 13.143 1.856 8.871 1.540 10.825 1.740
30m. 14.245 1.847 23.316 2.587 12.945 1.748 12.216 1.750
1h. - - 26.313 2.491 16.856 1.965 17.665 2.038

Solar
30m. 6.449 1.551 14.497 2.363 5.843 1.450 8.240 1.810
1h. 8.840 1.796 15.718 2.553 8.016 1.664 11.891 2.214
2h. - - 18.866 2.789 13.206 2.220 17.206 2.657

Traffic
3h. 0.002 0.020 0.001 0.018 0.001 0.017 0.001 0.016
6h. 0.001 0.017 0.002 0.022 0.001 0.017 0.002 0.021
12h. - - 0.002 0.026 0.002 0.017 0.002 0.022

Weather
3h. 694.242 7.523 895.496 8.127 661.181 6.516 666.095 7.357
6h. 1.0K 9.075 1.2K 14.512 856.330 7.644 1.1K 10.114
12h. - - 1.4K 10.158 1.1K 8.134 1.5K 11.737

strikes a balance between depth and efficiency, reinforcing HAG-MTF’s adaptability and rigor in spatiotemporal
prediction tasks.

B. High-Order Mapping Module Compression Ratio Analysis. The analysis of the high-order mapping
module’s compression ratio, as shown in Fig. 3, underscores HAG-MTF’s efficiency in optimizing feature rep-
resentation and dynamic modeling. A 1/3 compression ratio consistently yields superior performance across
datasets, striking an optimal balance between redundancy elimination and information retention. This ratio
enhances dimensionality reduction, spatial dynamics extraction, and spatiotemporal feature fusion.

To further illustrate the impact of spatial compression rates on model performance, we examine the trends
in Fig. 3, which depicts MAE and MSE variations across ratios from 1/1 to 1/5 on the PeMS04 dataset. As the
compression rate rises from 1/1 (no compression) to 1/3, both metrics exhibit a steady decline, indicating improved
prediction accuracy. This gain arises from the high-order dimensionality reduction module’s ability to distill
essential spatiotemporal dependencies, thereby alleviating noise and redundancy in raw high-dimensional data.
For example, on PeMS04, MAE decreases from 28.5 at 1/1 to 22.3 at 1/3, as compressed features preserve key
higher-order patterns, such as multi-hop neighbor correlations, while cutting computational overhead by about
65%.

However, beyond 1/3 (e.g., at 1/4 or 1/5), errors increase sharply due to excessive information loss, where critical
local dependencies are discarded, resulting in underfitting for complex scenarios. These trends affirm the 1/3 ratio
as optimal, minimizing errors (with an 18% MSE reduction) while fostering scalability and efficiency. This choice
aligns with HAG-MTF’s design to circumvent the quadratic complexity issues in baselines like GraphWaveNet.

Overall, this optimal ratio addresses the pitfalls of low compression (suboptimal performance) and high
compression (feature degradation). The module’s integration of high-dimensional spatial representations with a
reverse decoding strategy further ensures efficient feature extraction, achieving a robust equilibrium between
predictive accuracy and computational demands.
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Fig. 3. The figure analyzes the high-order compression-decompression module’s performance with varying compression
ratios. The experimental diagram shows that the MAE and MSE values are relatively low when the compression ratio of
multiple datasets is 1/3, showing a parabolic relationship between compression and prediction accuracy.

C. The Dimension in High-order Analysis Modules Study. As shown in Table 7, the experiment results on
embedding dimensions within the HAG-MTF framework reveal that a 128-dimensional embedding optimally
balances feature representation and computational efficiency across diverse datasets and prediction tasks. Out-
performing the 192-dimensional variant, it delivers sufficient expressive capacity with lower computational cost,
minimizing noise and inefficiencies tied to higher dimensions. HAG-MTF?s adaptive architecture?integrating
graph convolution, causal convolution, and attention mechanisms?synergistically captures dynamic spatiotem-
poral relationships, ensuring robustness and efficiency. This equilibrium underscores the model?s emphasis on
accuracy and resource efficiency, laying a foundation for future enhancements via dynamic embedding and
advanced dimensionality reduction techniques.

4.2.5 Components Study. The enhanced spatiotemporal feature modeling within the HAG-MTF framework is
achieved through the synergistic integration of NSIF, MGSM, and SPIE modules. This collaborative approach
facilitates dynamic information exchange and mutual reinforcement among the components, enabling more
effective analysis of high-order data features and adept capture of nonlinear dynamics within intricate datasets.
As illustrated in the experimental Fig. 4, the combined NSIF, MGSM, and SPIE modules demonstrate superior
performance in predictive tasks across various datasets. Notably, the holistic configuration outperforms individual
modules in isolation, underscoring their pivotal roles in spatial interdependence and multi-layer feature extraction.

The collaboration between NSIF and SPIE enhances the spatial information receptive field of spatiotemporal data
and integrates prior spatial information into high-order spatiotemporal data analysis. This collaboration closely
interacts with the MGSMmodule, which analyzes long-sequence spatiotemporal data characteristics, ensuring the
incorporation of original spatial information into the multi-gate structure’s high-order spatiotemporal analysis
module while preserving the original characteristics. Additionally, compressing spatiotemporal information
enhances model efficiency significantly. Thus, these three modules are essential and work closely together.

In the context of the 30-minute solar mission, the integrated model demonstrates superior performance
compared to a standalone MGSM configuration. This suggests that although MGSM can compress time and
predict over medium to long durations, additional elements within the model enhance its capacity for representing
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Table 7. Experiment of The Dimension in High-order Analysis Modules

Method
Dimension

256
Dimension

192
Dimension

128
Dimension

64
Metric MSE MAE MSE MAE MSE MAE MSE MAE

METR-LA
15m. 27.846 2.824 26.107 2.757 25.983 2.742 28.904 2.900
30m. 33.299 3.042 32.014 2.648 32.380 2.968 35.011 3.123
1h. 42.226 3.341 42.362 3.294 41.819 3.208 43.327 3.327

PEMS-BAY
15m. 10.324 1.719 8.653 1.540 8.871 1.471 10.692 1.762
30m. 14.358 1.874 12.207 1.799 12.945 1.748 13.921 1.871
1h. 16.914 2.012 16.633 1.704 16.856 1.965 17.125 2.031

solar
30m. 9.547 1.994 5.415 1.309 5.843 1.450 9.723 2.001
1h. 12.875 2.254 8.096 1.704 8.016 1.664 11.746 2.174
2h. 19.585 2.857 13.406 2.238 13.292 2.220 18.319 2.761

traffic
3h. 0.001 0.016 0.002 0.020 0.001 0.017 0.001 0.016
6h. 0.001 0.018 0.001 0.017 0.001 0.017 0.002 0.020
12h. 0.001 0.018 0.001 0.018 0.002 0.017 0.002 0.020

weather
3h. 740.103 8.205 695.880 8.146 661.181 6.516 691.394 7.705
6h. 929.805 9.436 948.674 8.081 856.330 7.644 897.144 8.102
12h. 1.5K 10.623 1.6K 10.354 1.1K 8.134 1.2K 8.990

Fig. 4. The figure compares the prediction performance of the model composed of different components (Original, NSIF, NSIF
+ SPIE, MGSM) under multiple data sets, illustrating the contribution of each optimized module to the prediction accuracy.

high-dimensional spatial features and encoding extensive spatiotemporal data. Despite certain modules like
higher-order transformations leading to decreased accuracy and efficiency, potential enhancements in module
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synchronization and task-specific optimization may enhance the adaptability of HAG-MTF for spatiotemporal
prediction tasks.

5 CONCLUSION AND FUTURE WORK
This paper introduces a distributed higher-order graph convolution algorithm using generative AI. It captures
high-order dependencies in spatiotemporal traffic graphs by mapping, grouping, and convolving neighboring
nodes. This reduces computational complexity in large-scale graphs, improving adaptability and precision. We
also present a module that fuses spatial neighborhood information by weighting nodes, embedding global features,
and combining spatiotemporal data, boosting performance without extra computational cost. Experiments on
real-world traffic datasets show HAG-MTF excels in handling high-frequency, long-sequence, multi-node data,
with better accuracy, speed, node capacity, and generalization.

While our experiments demonstrate robust performance on urban datasets like METR-LA and UTD-19, which
feature dense and inter-city networks, the model’s generalizability to other scenarios warrants further discussion.
For instance, in rural networks with sparser topologies and fewer sensors, HAG-MTF’s high-order dimensionality
reduction and adaptive graph fusion could maintain efficiency by compressing sparse nodes without losing key
dependencies, as qualitatively suggested by its handling of implicit spatial relationships in PEMS04/PEMS08.
In extreme weather, where data shows sudden disruptions like reduced visibility or altered flows, the model’s
component may boost resilience by dynamically integrating environmental factors, akin to its performance on
weather-impacted solar and meteorological data.

Furthermore, HAG-MTF captures the essence of Industry 5.0’s focus on people by using AI for flexible traffic
predictions in everyday settings, promoting closer teamwork between humans and machines while giving traffic
managers the tools for in-depth research and judgment for smarter oversight. Looking ahead, to push beyond
what Industry 5.0 currently requires, we should concentrate on building tougher hybrid setups by blending in
real-time data from multiple sources, reinforcement learning, big models, and agent-based tools. This approach
affords individuals supplementary channels for intervening in and steering traffic flows. For instance, through
the configuration of adjustable intelligent emergency alerts or the execution of rapid safety risk assessments,
thereby augmenting the scalability, robustness, and adaptability of intelligent transportation systems.
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