
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Deep Reinforcement Learning-Based Collaborative
Computation Offloading for Distributed

Vehicular Edge Computing
Chaogang Tang , Member, IEEE, Zhao Li, Huaming Wu , Senior Member, IEEE, Shuo Xiao ,

and Ruidong Li , Senior Member, IEEE

Abstract—In Vehicular Edge Computing (VEC), apart from
the Road Side Units (RSUs) that can undertake the computation,
smart vehicles that incorporate high-end multi-core processors
into On-Board Units (OBU) can also contribute their computing
resources for vehicular tasks in a pay-as-you-go fashion. Design-
ing an appropriate pricing strategy for vehicles with abundant
computing resources is essential yet challenging, as it requires
balancing profit-seeking objectives with the needs of service
requestors. On the other hand, considering the perspective of
vehicles with offloading requests, task offloading should strike a
balance between achieving ultra-low task latency and minimizing
the associated offloading costs. To tackle these issues, we propose
a Collaborative Computation Offloading Scheme (CCOS) for the
VEC system. In particular, we take into account the fluctuation
of service pricing, to cater to the monetary constraints of service
requesters. A Mixed-Integer Nonlinear Programming (MINLP)
problem is formulated to minimize the weighted sum of task
completion latency and the offloading costs. The optimization
problem is decomposed into two subproblems, i.e., the task
offloading problem and the computing resource allocation prob-
lem, respectively. The task offloading problem is essentially a
combinatorial optimization problem that necessitates exponential
time complexity for determining the optimal solution. Hence, a
Deep Reinforcement Learning (DRL)-based algorithm is put for-
ward to solve this subproblem. The resource allocation problem,
however, has been proven to be a convex optimization problem,
and the scheduling and allocation of computing resources can
be performed in parallel, since each edge node is aware of
its own task offloading requests. Simulation results demonstrate
that our strategy outperforms other approaches in terms of the
convergence rate, task completion rate, and optimal values.

Index Terms—Vehicular edge computing, collaborative compu-
tation offloading, combinatorial optimization, resource allocation,
deep reinforcement learning, service pricing.

Received 21 March 2025; revised 18 August 2025; accepted 16 September
2025. This work was supported in part by the National Natural Science
Foundation of China under Grant 62271486, Grant 62476276, and Grant
62071327; in part by the Emerging Frontiers Cultivation Program of Tianjin
University Interdisciplinary Center; and in part by Tianjin Science and
Technology Planning Project under Grant 22ZYYYJC00020. The Associate
Editor for this article was S. Wan. (Corresponding author: Huaming Wu.)

Chaogang Tang, Zhao Li, and Shuo Xiao are with the School of Com-
puter Science and Technology and the School of Artificial Intelligence,
China University of Mining and Technology, Xuzhou 221116, China (e-mail:
cgtang@cumt.edu.cn; lizhaolzl@163.com; sxiao@cumt.edu.cn).

Huaming Wu is with the Center for Applied Mathematics, Tianjin Univer-
sity, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Digital Object Identifier 10.1109/TITS.2025.3611955

I. INTRODUCTION

THE cult 1980s television show “Knight Rider” satisfies
the fantasy about future vehicles, e.g., in regards to

appearance, functionality and human-vehicle interaction. Four
decades later, familiar scenes from the sci-fi TV series are
being replicated in reality, thanks to dramatic breakthroughs
in Information and Communication Technologies (ICTs), the
Internet of Things (IoT), and Artificial Intelligence (AI) tech-
nologies [1]. For instance, Vehicular Edge Computing (VEC),
as one of the key enablers of intelligent transportation, has
garnered extensive attention from both industry and academia
over the past few years. This computing paradigm enables
vehicular tasks to be processed in proximity to data sources,
thus satisfying the ultra-low task latency requirement in time-
critical application scenarios such as autonomous driving, and
human-vehicle interaction. Apart from the Road Side Unit
(RSU) that can undertake the computation, various smart
vehicles, e.g., Tesla automobiles equipped with powerful AMD
Ryzen chips, can also contribute their computing resources
for task processing in VEC systems. Such vehicles are also
referred to as service vehicles, which typically provide and
monetize their idle computing resources. In contrast, vehicles
generating offloading requests are also known as task vehicles.

Offloading tasks to service vehicles instead of RSU can
not only serve as an alternative offloading approach, but
also enhance the robustness of VEC systems, particularly in
scenarios where the edge server is overloaded. This multi-
destination computation offloading is also termed collaborative
computation offloading in VEC [2], [3], [4]. In practice, how-
ever, few studies have focused on designing efficient incentive
mechanisms to effectively encourage service vehicles to con-
tribute their resources. Meanwhile, designing an appropriate
pricing strategy for service vehicles is essential, yet challeng-
ing, as it requires balancing profit-seeking objectives with the
needs of service requestors, such as their monetary constraints.
However, considering the perspective of task vehicles, task
offloading should strike a balance between achieving ultra-low
task latency and minimizing the associated offloading costs.

On the other hand, service vehicles that integrate high-end
multi-core processors facilitate the widespread implementation
of AI models and algorithms [5], [6], [7], and general AI
approaches are transitioning toward edge-based training and

1524-9050 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4471-9856
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-0887-9449
https://orcid.org/0000-0002-9905-8952

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

end (vehicle)-based inference in complex VEC environments
[8], [9], [10]. In this paper, we introduce a collaborative
computation offloading scheme (CCOS) based on Deep Rein-
forcement Learning (DRL), leveraging the strengths of AI
methodologies. Specifically, we consider the variability of
service pricing, focusing on vehicles providing computing
services, to accommodate the financial limitations of task vehi-
cles. The objective of this paper is to optimize the weighted
sum of task completion latency and the offloading costs, by
jointly optimizing the task offloading and resource allocation
decisions in VEC. The major contributions of this paper are
summarized as follows.
• Vehicles are classified into task vehicles and service vehi-

cles, respectively, according to their practical demands.
A collaborative computation offloading strategy is put
forward, where vehicular tasks can be offloaded and
executed in either the RSU or other vehicles. By doing
so, the robustness of VEC systems can be enhanced,
especially considering that the edge server (RSU) can
occasionally be overloaded and overwhelmed by large
amounts of offloading requests.

• This paper formulates a joint optimization problem for
task offloading and resource allocation in VEC. The
objective is to minimize both task completion latency
and offloading costs during the optimization period by
simultaneously optimizing task offloading and resource
allocation decisions in VEC. Specifically, the optimiza-
tion problem is modeled as a Mixed-Integer Nonlinear
Programming (MINLP) problem.

• To lower the difficulty in solving the optimization prob-
lem, we decompose it into two subproblems, i.e., the
computing resource allocation problem and the task
offloading problem. The former can be proven to be a
convex optimization problem and the latter is actually
a combinatorial optimization problem. Hence, we put
forward a DRL-based strategy to solve the task offloading
problem.

• Comprehensive numerical evaluation is carried out from
multiple perspectives, while several existing strategies are
selected as the benchmarks in the simulation. Experimen-
tal results demonstrate that our strategies and algorithms
outperform other approaches in terms of the convergence
rate, task completion rate, and optimal values.

The subsequent sections of this paper are structured as fol-
lows: A comprehensive review of the state-of-the-art literature
on this topic is provided in Section II. Section III presents the
system model and then formulates the optimization problem.
The algorithm design is presented in Section IV, followed by
the numerical evaluation in Section V. Finally, the conclusion
comes in Section VI.

II. RELATED WORK

Extensive literature has delved into task offloading in edge
computing environments [11], [12]. In this section, the state-
of-the-art literature on this topic is reviewed.

Wang et al. [2] stated that legacy vehicles will coexist with
smart vehicles for a long time. For the tasks from the legacy

vehicles, smart vehicles can serve as the offloading desti-
nations. Hence, they model the collaborative task offloading
problem as a Markov decision process (MDP), in the hope
of optimizing the average response latency for the tasks. A
heuristic strategy is then adopted to solve the problem, and the
simulation results prove its advantages over other approaches.

Owing to the limited computing capabilities of vehicles,
it is very difficult for vehicular networks to handle latency-
sensitive and compute-intensive tasks. Hence, fog computing
is put forward in [3] as a supplement to assist computation in
time-critical scenarios. Specifically, they propose an efficient
solution that combines federated learning with deep Q-learning
techniques in a collaborative computing paradigm. They also
take into account multiple computing and communication
constraints in the work. The simulation results show that their
strategy is much better than others, e.g., with a minimal and
maximal improvement of 8.21% and 49%, respectively.

As computation-intensive tasks in intelligent transportation
systems continue to increase, substantial computing resources
are required from vehicles, edge servers, and remote cloud cen-
ters. Vehicular Cloud Computing (VCC) can provide a plethora
of computing and storage resources, however, it is constrained
by lengthy data transmission across the core network. On the
contrary, while VEC can provide latency-sensitive computing
services, its computational capabilities are constrained. Hence,
Mittal et al. [13] proposed a distributed task orchestration
framework to realize the efficient collaboration between edge
computing and cloud computing. Meanwhile, Liu et al. [14]
explored collaborative task offloading and resource allocation.
Their framework facilitates efficient collaboration among vehi-
cles, edge servers, and the cloud while enabling intelligent
management of heterogeneous resources. Specifically, they
proposed a joint optimization problem aiming to maximize
system utility. They employed an asynchronous DRL algo-
rithm to seek the optimal solution to this problem.

Recently, lightweight Deep Neural Networks (DNNs) have
been increasingly deployed in Intelligent IoT systems. Real-
izing energy-efficient offloading for tasks with strict latency
requirements in DNN-based IoT systems is still challenging.
Hence, Chen et al. [15] constructed an energy consumption
model and used a hybrid offloading method combining PSO
with GA algorithms to realize task offloading. The simulation
demonstrated the advantages over other approaches. In contrast
to cloud computing, Mobile Edge Computing (MEC) can
effectively reduce long-distance transmission over the core
network, thereby enhancing the quality of service (QoS) for
Internet of Vehicles (IoV). However, both system congestion
and waiting delay are often overlooked in current works when
dealing with large volumes of computational data. Hence,
Sun et al. [16] put forward a joint on-board task offloading
and job scheduling strategy in the context of collaborative
cloud-edge computing paradigms. An ant colony optimization
algorithm is employed to achieve multi-objective optimiza-
tion. Experimental results substantiate the effectiveness of the
approach.

Li et al. [17] designed a collaborative task offloading and
service caching replacement scheme. It primarily focused on
the cooperation in task processing between adjacent RSUs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: DRL-BASED COLLABORATIVE COMPUTATION OFFLOADING FOR DISTRIBUTED VEC 3

TABLE I
COMPARISON BETWEEN THIS WORK AND EXISTING STUDIES

A proactive strategy was proposed in [18] to reduce the
performance instability events. Particularly, an adaptive task
offloading scheme with the proactive adjustment capability is
designed, and then a DRL-based task offloading algorithm is
introduced.

Edge caching plays an important role in task offloading in
VEC. However, it is difficult to design an efficient offloading
and caching scheme in VEC, since there is no global controller
knowing all the information of entities in VEC. Therefore,
Liu and Chen [19] aimed to solve a multiuser task offloading,
computation caching and resource allocation problem in the
VEC system. A deep deterministic policy gradient (DDPG)
algorithm is introduced for the formulated problem. Simulation
results have proven its advantages in several aspects.

A NOMA-based VEC model is put forward in [22], aim-
ing to minimize the total system cost while meeting the
severe latency requirement of tasks. The decision variables
encompass multiple decision policies, such as task offloading,
clustering, subchannel and computation resource allocation, as
well as transmission power control. The formulated MINLP
problem is decomposed into two subproblems to alleviate
the computational complexity, and two heuristic algorithms
are proposed for their respective solutions. Other outstanding
works have also investigated issues of task offloading, service
caching and computing resource allocation from different
perspectives, such as [23], [24], [25], and [26]. Particularly,
the distinctions between our work and the existing literature
are systematically summarized in Table I. Although the afore-
mentioned works focus on enhancing the performance of edge
computing systems through minimizing task offloading latency
and optimizing resource allocation, they often overlook the
pay-as-you-go model for resource provisioning in these sys-
tems. A reasonable pricing strategy not only needs to balance
profit-maximizing objectives with the requirements of service
requesters but also aims to strike a balance between achieving
ultra-low task latency and reducing associated offloading costs.
As a result, in this paper, we propose a collaborative computa-
tion offloading mechanism for the VEC system that accounts
for service pricing fluctuations, thereby accommodating the
financial constraints of service requesters.

Fig. 1. The considered application scenario in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 illustrates the system model proposed in this paper,
consisting of multiple vehicles, an RSU, and a cloud center.
The vehicles are classified into two types: task vehicles and
service vehicles. The RSU, integrated with edge servers, offers
robust computing and networking resources in close proximity
to the vehicles. Meanwhile, the cloud center, rich in diverse
resources, is located at a greater distance from the VEC
system.

Generally, both RSU and service vehicles can serve as
potential offloading destinations for tasks generated by task
vehicles. In this paper, we collectively refer to both the RSU
and service vehicles as edge nodes (ENs), denoted by the set
M = {0, . . . ,M}, where m = 0 corresponds to the RSU R,
and 1 ≤ m ≤ M represents the service vehicle m. The key
difference between RSU and other ENs lies in the computing
capabilities and service prices. In addition, we denote the set of
task vehicles by N = {1, . . . ,N}, where M and N represent the
total number of service vehicles and task vehicles, respectively.

We assume that each task vehicle n generates one task in
the optimization period. Each task is characterized by a tuple
of six parameters: (ln, veln, cn, sn, bn, dn), where ln indicates the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

location of vehicle n, veln is the velocity of vehicle n, cn stands
for the task-input data size, sn denotes the required computing
resources (e.g., CPU cycles) for the task, bn represents the
monetary budget for the task, and dn is the latency constraint
for the task. EN m can be described by a tuple of four
parameters (lm, κm, zm, pm), where lm indicates the location of
EN m, κm denotes the total communication resources of m
(e.g., in the form of the total bandwidth or total transmission
rate), zm denotes the total computing resources of m (e.g.,
in CPU cycles/s), and pm is the service price per computing
resource allocated for task execution.

We assume that the generated tasks are indivisible, and can
only be offloaded and executed externally. A binary variable
αn,m is defined to indicate whether the task from vehicle n is
offloaded to EN m. Specifically, if the task is offloaded to
m for execution, then αn,m = 1, and αn,m = 0, otherwise.
If the vehicle n offloads its task to EN m, the response
delay (i.e., task completion latency) typically consists of three
components: i) the offloading delay, representing the time
required to transmit the task; ii) the computational latency,
representing the time required by m to execute the task; iii)
the feedback delay, which accounts for the time taken by m
to send the computation result back to n. Since the size of the
computation result is much smaller than that of the task input
data, we omit the feedback delay in this paper. The calculation
methods for these delays will be presented in the following
subsections.

B. Task Offloading Model

Let rn,m denote the transmission rate for offloading the
task from n to m. rn,m actually depends upon the quantity
of communication resources allocated to the task by m. For
simplicity, we assume that all the tasks offloaded to m share
the communication resources equally. Hence, rn,m can be
represented as [27]:

rn,m =
κmP

i∈N αi,m
. (1)

The offloading delay, denoted by T o f f
n,m , can be calculated as:

T o f f
n,m =

cn

rn,m
. (2)

C. Computation Model

If the task from vehicle n is offloaded to EN m for execution,
m can execute the task immediately once the offloading
process is accomplished. The computational latency, denoted
by T com

n,m , is given as:

T com
n,m =

sn

fm,n
, (3)

where fm,n denotes the total computing resources allocated by
m to the task from n. The total response delay for the task
from n, denoted by Tn, can be represented as:

Tn =
X

m∈M

αn,m(T o f f
n,m + T com

n,m). (4)

D. Resource Pricing Model

It is generally understood that the computing resources at
ENs are provisioned in a pay-as-you-go fashion. Namely, task
vehicles need to pay ENs for using their computing services,
which is considered as an efficient incentive approach to moti-
vate ENs to contribute their computing resources. Driven by
the profit-seeking instinct, ENs usually price their computing
resources towards profit maximization. In addition, the service
price of service vehicles is more fluctuant than that of RSU, in
the sense that service vehicles are usually selfish individuals
that are easily affected by the number of offloading requests,
while RSU is usually deployed by non-commercial entities
(e.g., local government), aiming to provide cost-effective and
sustainable computing services.

To embody the above characteristics, we present the
resource pricing models for service vehicles and RSU, respec-
tively. Particularly, the service price pm can be defined as
follows:

pm =

(epm · e−
P

n∈N αn,m
N , 1 ≤ m ≤ M,epm,R, m = 0,

(5)

where epm and epm,R denote the initial service prices for the
service vehicle m and RSU R, respectively. The price of the
service vehicle m has the following properties. e−

P
n∈N αn,m/N

can be viewed as a discount coefficient that depends on
the number of offloading requests. As the number of tasks
offloaded to m increases, the discount also increases. Thus,
the service price pm decreases with the increasing number of
offloaded tasks. Similarly, the service price pm increases with
the decreasing number of offloaded tasks. Actually, the task
vehicles need to strike a balance between response latency
and offloading cost for their tasks. For instance, in the case
of the service price of RSU being higher than that of service
vehicles, task vehicles can choose the service vehicle with a
lower service price as the offloading destination to achieve
cost-efficient computation offloading. Such task offloading,
however, could incur long task completion latency. In contrast,
task vehicles can also choose RSU as the offloading destination
at a higher offloading cost.

If the vehicle n offloads its task to EN m for execution, the
cost that n should pay to m can be expressed as:

Cn,m = pm fm,n. (6)

Thus, the generalized cost for task vehicle n is:

Cn =
X

m∈M

αn,m pm fm,n. (7)

E. Problem Formulation

We formulate a vehicle-RSU collaborative computation
offloading optimization problem for VEC, with one goal to
minimize the overall response latency for all the tasks from
the angle of QoE, and the other goal to minimize the total
costs for all the vehicles from the cost-effective angle, by
jointly optimizing the offloading policy and the computing
resource allocation policy. However, as described earlier, the
two optimization objectives contradict each other, since lower
response latency requires more computing resources, incurring

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: DRL-BASED COLLABORATIVE COMPUTATION OFFLOADING FOR DISTRIBUTED VEC 5

more monetary costs, and less monetary costs mean that
more tasks share the same computing resources, leading to
higher response latency. Accordingly, we compromise the
optimization with a weighted additive technology to balance
the response latency and the cost.

Let αn = {αn,m|∀m ∈M} denote the offloading decision of
task vehicle n and thus α = {αn|∀n ∈ N } denotes the offloading
policy. Let fm = { fm,n|∀n ∈ N } denote the computing resource
allocation of EN m and thus f = { fm|∀m ∈ M} denotes the
computing resource allocation policy. The objective function
regarding α and f can be given as:

J(α, f) =

NX
n=1

β1Tn + β2Cn, (8)

where βi(i ∈ {1, 2}) are the weights to indicate the pReferences
towards the response latency and the system costs, respec-
tively. A larger β1 indicates that the response latency as the
performance metric is paid more attention by vehicle users.
Contrarily, a larger β2 means that the cost for task execution
is more sensitive to the vehicle users. Then, our optimization
problem in this paper is formulated as follows:

P0 : min
α, f

J(α, f),

s.t.
MX

m=1

αn,m = 1, ∀n ∈ N , (9)

Tn ≤ dn, ∀n ∈ N , (10)
Cn ≤ bn, ∀n ∈ N , (11)X
n∈N

αn,m fm,n ≤ zm, ∀m ∈M, (12)

fm,n ≥ 0, ∀n ∈ N , ∀m ∈M, (13)
αn,m ∈ {0, 1}, ∀n ∈ N , ∀m ∈M, (14)

where the constraint (9) denotes that one task can be offloaded
to only one EN. Constraint (10) means that the task should be
accomplished before its deadline. Constraint (11) means that
the cost paid to the EN by a task vehicle should not exceed
the given monetary budget. Constraint (12) indicates that the
computing resources allocated to the offloaded tasks should
not exceed the maximal computing capability of the EN.

The problem P0 is essentially a MINLP problem, making it
highly challenging to solve directly. Given the stringent latency
requirements for vehicular tasks in large-scale VEC networks,
algorithms with exponential time complexity for finding the
optimal solution are practically infeasible. As a result, we aim
to apply a suboptimal algorithm with lower time complexity
to address this problem.

F. Problem Decomposition

The expression of the objective function J(α, f) can be
expanded as:

J(α, f) =

NX
n=1

β1Tn + β2Cn

=

NX
n=1

MX
m=1

�
αn,mβ1

�
cn
P

n∈N αn,m

κm
+

sn

fm,n

�

+αn,mβ2 pm fm,n
	

(15)

It is easily observed that the decision variables α and f
are tightly coupled in the objective function as well as in
the constraints. To simplify the problem P0, we decouple the
two variables from each other, and thus the original prob-
lem can be decomposed into two subproblems, i.e., the task
offloading problem P1 and the computing resource allocation
problem P2, respectively. In particular, by temporarily fixing
the offloading variable α, the problem P0 can be rewritten as:

min
α

(min
f

J(α, f)),

s.t. (9) − (14). (16)

Solving the above problem is equivalent to solving the
following task offloading problem P1,

P1 : min
α

J∗(α),

s.t. (9), (14), (17)

where J∗(α) is the function with optimal value regarding the
resource allocation problem P2, i.e.,

P2 : J∗(α) = min
f

J∗(α, f),

s.t. (10), (11), (12), (13). (18)

Note that temporarily fixing the offloading variable α also
decouples the constraints on task offloading (9), and (14) from
the constraints on the resource allocation (10), (11), (12),
and (13). More importantly, the transformation from P0 to
subproblems P1 and P2 does not alter the optimality of the
solution [28]. Therefore, we shift our attention from solving
P0 to solving the subproblems P1 and P2, respectively.

IV. THE PROPOSED CCOS

A. Computing Resource Allocation

Given the feasible offloading decision, the subproblem P2
strives to acquire J∗(α) by optimizing the computing resource
allocation policy. From the expanded expression of the objec-
tive function J(α, f), we have the following lemma.

Lemma 1: Given the task offloading decision α, the comput-
ing resource optimization problem P2 regarding f is convex.

Proof: For simplicity, we define gn as the weighted sum of
the response latency and monetary cost for vehicle n,

gn ,
MX

m=1

αn,mβ1

�
cn
P

n∈N αn,m

κm
+

sn

fm,n

�
+ αn,mβ2 pm fm,n.

We then prove that gn is convex w.r.t. f given α as follows.
The partial derivatives by differentiating gn w.r.t. fm can be
calculated as:

∂gn

∂ fm,i
=

(
−
β1 sn
f 2
m,n

+ β2 pm, i = n,

0, otherwise.

Then, the second partial derivatives are:

∂2gn

∂ fm,i∂ fm, j
=

(
2β1 sn

f 3
m,n
, i = n and j = n,

0, otherwise.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The Hessian matrix of gn is constructed as:

M(gn) =

266664
0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · 2β1 sn

f 3
m,n
· · · 0

· · · · · · · · · · · · · · ·

0 · · · · · · · · · 0

377775 .
Then, we have YTMY ≥ 0 always holds for an arbitrary

nonzero vector Y , so M(gn) is positive semi-definite. Hence
gn is convex w.r.t. fm. Owing to the additivity attribute of
convex function, J(α, f) =

P
n∈N gn is also convex w.r.t. fm

(∀m ∈ M). Thus, the objective function is convex regarding
the computing resource allocation policy.

The left-hand side of the constraint (10) is easily proven to
be convex. The second partial derivatives by differentiating Tn

w.r.t. fm are,

∂2Tn

∂ fm,i∂ fm, j
=

(
2sn
f 3
m,n
, i = n and j = n,

0. otherwise.

The resulting Hessian matrix of Tn, denoted by M(Tn), is
positive semi-definite, since it satisfies that YTM(Tn)Y ≥ 0
always holds for an arbitrary nonzero vector Y . The constraints
(11), (12) and (13) are also convex. As a result, the problem
P2 is convex, and the proof is completed.

The computing resource allocation policy can be determined
via Karush-Kuhn-Tucker (KKT) conditions. Particularly, the
Lagrangian function for the problem P2 is constructed as
shown in Eq. (19), as shown at the bottom of the page.
v = {vn|vn ≥ 0,∀n ∈ N }, µ = {µn|µn ≥ 0,∀n ∈ N }
and λ = {λm|λm ≥ 0,∀m ∈ M} are the Lagrangian
multipliers. According to the KKT conditions, let the first
partial derivative of L(α, f , v, µ, λ) regarding F equal zero,
i.e., ∂L(α, f , v, µ, λ)/∂ f = 0, and we have

∂L(α, f , v, µ, λ)
∂ fm,n

= pm(µ∗n + β2) −
sn(β1 + v∗n)

f ∗2m,n

+ λ∗m = 0,

where αn,m = 1,∀n ∈ N ,∀m ∈M.
The optimal solution f ∗m,n can be obtained as:

f ∗m,n =

s
sn(β1 + v∗n)

pm(µ∗n + β2) + λ∗m
, ∀n ∈ N , ∀m ∈M. (20)

Apart from the optimal resource allocation policy f ∗m,n
(αn,m = 1,∀n ∈ N ,∀m ∈ M), the optimal values for the
Lagrangian multipliers v∗n, µ∗n and λ∗m (∀n ∈ N ,∀m ∈ M)
can also satisfy the KKT conditions. We notice that the
resource allocation policy can actually be implemented in
parallel, because temporarily fixing the offloading variable α

makes each EN m aware of their own offloading requests from
nearby vehicles. For an arbitrary EN m (∀m ∈M), the KKT
conditions include8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

f ∗m,n =

q
sn(β1+v∗n)

pm(µ∗n+β2)+λ∗m
,

v∗n(Tn − dn) = 0,
µ∗n(Cn − bn) = 0,
λ∗m
�P

n∈N f ∗m,n − zm
�

= 0,
Tn ≤ dn,

Cn ≤ bn,P
n∈N f ∗m,n ≤ zm,

∀n ∈ N , αn,m = 1.

(21)

For the task from vehicle n, there are eight candidate
solutions for the computing resource allocation f ∗m,n, each of
which needs to be discussed separately. For example, if the
solution f ∗m,n strictly satisfies the inequalities (10), (11), and
(12), it means that f ∗m,n lies within the interior of the feasible
regions defined by these three constraints. In this case, we
have v∗n = 0, µ∗n = 0, and λ∗m = 0, and the optimal resource
allocation is given by:

f ∗m,n =

s
snβ1

pmβ2
. (22)

If the solution f ∗m,n lies on the boundary of the feasible
region for only one constraint, say constraint (10), and we
have Tn − dn = 0, then µ∗n = 0 and λ∗m = 0. By combining the
optimal resource allocation solution shown in Eq. (20), we can
obtain the solution:

f ∗m,n =
sn

dn − T o f f
n,m

, v∗n =
pmsnβ2

(dn − T o f f
n,m)2

, µ∗n = 0, λ∗m = 0. (23)

The remaining candidate solutions can be enumerated in
a similar manner. Finally, we need to check whether these
candidates satisfy all the constraints in order to determine
the optimal solution for the task from vehicle n offloaded to
computing resource m.

The corresponding algorithm is outlined in Alg. 1. The
input to the algorithm involves parameters such as α, M,
N , β1, β2, epm, and epm,R. Given the task offloading policy
α, the resource price pm(∀m ∈ M) can be determined via
Eq. (5) (line 1). Then the Lagrange function L(α, f , v, µ, λ) can
be constructed via Eq. (19). Providing α means each EN m
acquires the information of tasks offloaded to them. Thus, the
optimal computing resource allocation policy for each EN f ∗m
can be determined in parallel. The optimal computing resource
allocation policy is determined, and then each EN can allocate

L(α, f , v, µ, λ) =

NX
n=1

MX
m=1

�
αn,mβ1

�
cn
P

n∈N αn,m

κm
+

sn

fm,n

�
+ αn,mβ2 pm fm,n

�
+

NX
n=1

vn(Tn − dn)

+

NX
n=1

µn(Cn − bn) +
MX

m=1

λm

 X
n∈N

αn,m fm,n − zm

!
. (19)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: DRL-BASED COLLABORATIVE COMPUTATION OFFLOADING FOR DISTRIBUTED VEC 7

the computing resources to the offloaded tasks (lines 4-13).
Meanwhile, the local value for the objective function Gm is
recorded (line 14). At last, the optimal objective value J∗(α)
is calculated and returned together with the optimal resource
allocation policy { f ∗m,n|∀m ∈M,∀n ∈ N }.

Algorithm 1 Distributed Lagrange-Based Approach for
Resource Allocation

B. Task Offloading Decisions

The task offloading decision αn,m is a discrete variable,
and the task from n can be offloaded to one of the M + 1
possible ENs for execution. Finding the optimal solution
regarding task offloading requires traversing the solution space
of O((M + 1)N), which is practically prohibitive in large-scale
VEC systems. Iteration-based evolutionary algorithms, such as
Genetic Algorithm (GA), are time-consuming and also tend to
be trapped in local optima. Accordingly, we propose a DRL-
based approach to solve the problem P1.

DRL-based approaches have been widely adopted to solve
complicated decision-making optimization problems. In time
step t, an agent is trained to acquire the current state st(∈ S)
that is usually an abstract description of knowledge and
experience by interacting with its environment. Then, the
agent takes the currently “best” action at(∈ A) to explore
the environment and obtain a reward rt. In the meanwhile,
the state st of the environment, affected by the adopted action
at, turns into st+1. The agent aims to find the optimal policy
π : S → A (mapping from the state space S to the action space
A) that can maximize the expected total discounted reward.
Specifically, the state space S, action space A and the reward
function can be given below.
• State Space: S is a collection of all the environment

states in the VEC system, which can be defined as

Algorithm 2 DRL-Based Collaborative Computation Offload-
ing Algorithm

S , {st = (S N , S M)}, t ∈ {0, 1, 2, . . .}. S N
denotes the states of the vehicular tasks and SN =

{(ln, veln, cn, sn, bn, dn)}n∈N . SM denotes the states of the
ENs in the VEC system and S M = {(lm, κm, zm, pm)}m∈M.

• Action Space: A is a collection of all the actions in the
VEC system that the agent can take according to the
observed state. In this paper, the agent should decide
where to offload the task based on the current environ-
ment state, and thus A can be defined as A = {αt},
t ∈ {0, 1, 2, . . .}. αt is the task offloading decision the
agent makes in time step t, and αt = {αn|∀n ∈ N } and
αn = {αn,m|∀m ∈M}.

• Reward Function: The agent will get an immediate reward
rt after it takes the action at current state st. rt can weigh
up the pros and cons of the adopted action in the current
state. A larger rt means that it is more desirable to take
this action than others. The immediate reward rt can be
calculated by the reward function. Our problem P1 is
to minimize the objective function. Hence, we need to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 2. The complete procedure for DRL-based collaborative computation offloading.

convert our optimization objective to a reward function.
The immediate reward rt can be defined as

rt =

NX
n=1

β1dn + β2bn − J∗(α). (24)

The action space A in this paper is of size (M + 1)N . Deep
Q-Network (DQN) often suffers from Q-value overestimation
and high-variance updates when applied to combinatorial
action spaces. To address these challenges, we propose a
REINFORCE-based approach in this paper, which offers
advantages in policy representation efficiency and allows for
the feasible integration of constraints. The whole framework
of our solution is depicted in Fig. 2. A deep neural network
(DNN) is adopted to generate the offloading policy π with
embedded parameters θ. The DNN takes the state st as the
input and outputs a probability distribution of actions that can
be taken from st. Then, the output vector can be transformed
into one N×(M+1) probability matrixM with row i denoting
the probabilities for all the actions to be taken. For example,
the element Pi, j, as shown in this figure, denotes the probability
of offloading the task from vehicle i to the EN j.

The task offloading decision α is constructed based on
the actual actions from the training samples. Given the task
offloading policy α, the resource allocation problem P2 can
be solved by calling the Alg. 1. Then, the immediate reward
can be calculated via Eq. (24). The DNN parameters θ can
be updated towards maximizing the expected total discounted
reward via the policy gradient approach. The parameter update
can be formulated as:

θt+1 = θt + ηγt(Gt − Bt)∇θ ln π(ai|si; θ), (25)

where η and γ represent the learning rate and the discount
factor, respectively. The total discounted reward at the t-th
time step, denoted as Gt, can be computed using a Monte
Carlo approach:

Gt =

TX
k=t+1

γk−t−1rk. (26)

To reduce variance during neural network training, a base-
line utility Bt is used. It is defined as the average of the total
discounted rewards at the t-th time step over the most recent
K episodes:

Bt =
1
K

KX
i=1

Gi
t, (27)

where Gi
t represents the total discounted reward at the t-th time

step for the i-th episode.
Additionally, the corresponding algorithm is depicted in

Alg. 2, which consists of two parts, i.e., the training data
generation process (lines 3-16) and the DNN training process
(lines 17-25), respectively. The training data is actually a series
of complete episodes and we generate K complete episodes at
the data collection phase by the initial DNN. Then, the DNN
training process starts by inputting these episodes. We assume
each episode has T time steps, and the parameter θ can be
updated within each time step. This process ceases until the
policy network converges.

V. PERFORMANCE EVALUATION

A. Simulations Settings

The proposed CCOS optimization in VEC is extensively
evaluated through simulations in this section. First, the fol-
lowing three baseline approaches are adopted to compare to
our strategy.
• Deep Q-network (DQN) [29]: DQN algorithm employs

neural networks to approximate the Q-function, where the
current state serves as the input and the output consists
of the Q values associated with all feasible actions that
can be taken from this state. The state space, action space,
and reward function in DQN adhere to the aforementioned
definitions without further elaboration.

• All-in-RSU approach [30]: Since the computing capa-
bility of RSU is much more powerful than the service
vehicles, all the tasks can be offloaded to RSU for
execution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: DRL-BASED COLLABORATIVE COMPUTATION OFFLOADING FOR DISTRIBUTED VEC 9

TABLE II
PARAMETER SETTINGS

Fig. 3. Training process under different learning rates and trajectory length.

• Random approach: This approach is the simplest
strategy for collaborative computation offloading. The
generated tasks by vehicles are offloaded to the edge
nodes in M for execution in a random way.

In addition, parameters in the simulation are set as fol-
lows. The RSU and vehicles are randomly generated in the
simulation. The communication coverage of the RSU and
the vehicle is set to 100m and 40m, respectively. The num-
ber of task vehicles ranges between 10 and 30, while the
default value for the number of service vehicles is 4. Other
key parameters involved in the simulation are summarized
in Table II. Note that the parameter settings are rigorously
grounded in empirical studies and several refer to previous
works [31], [32].

B. Simulation Results and Analysis

1) Hyperparameters Analysis: The initial set of experi-
ments has been conducted to assess the impact of learning rates
and trajectory length on the training process. The simulation
results are shown in Fig. 3, with Fig. 3(a) denoting the impact
of learning rates and Fig. 3(b) denoting the impact of trajectory
length, respectively. The simulation is configured with a total
of 20 task vehicles and 4 service vehicles.

In Fig. 3(a), the trajectory length is set to 128, and three
different values for the learning rates are investigated. Gener-
ally, the convergence of our strategy is relatively stable under
different learning rates. From this figure, we can observe that
the performance is the best when the learning rate is set to
0.0003 in the simulation. In Fig. 3(b), the learning rate is set to
0.0003, and three different values for the sampling trajectory
length are investigated in the simulation. In comparison to
the impact of learning rates, it appears that the training
process is more significantly influenced by the length of the
sampling trajectory. For instance, the reward increases rapidly

Fig. 4. Performance comparison between DRL-based approaches with differ-
ent numbers of episodes.

with a trajectory length equal to 256, while it increases very
slowly with a trajectory length equal to 64. Obviously, the
strategy can achieve the best performance, when the trajectory
length is equal to 128. Unless otherwise stated, the subsequent
simulation will be conducted using a learning rate of 0.0003
and a trajectory length of 128 as the default values.

2) Convergence Performance: In the next, we compare our
CCOS strategy with the DQN approach as the number of
episodes increases. Four evaluation metrics are selected, i.e.,
the total reward, the value of the objective function, the task
completion latency, and the task completion rate. Note that,
the completion rate serves as an indicator of the VEC system’s
reliability, which is defined as the ratio between the number
of offloaded tasks without any constraint violation and the
total number of offloaded tasks. The simulation results are
shown in Fig. 4, where Fig. 4(a), Fig. 4(b), Fig. 4(c), Fig. 4(d)
present the comparison between the CCOS and DQN in terms
of reward, objective function, task completion latency, and task
completion rate, respectively. The following observations can
be made based on the findings from the figure. The proposed
approach in this paper is better than DQN in terms of the
evaluation metrics. In particular, our approach regarding the
capability to obtain the optimal objective value is much better
than the DQN approach, as shown in Fig. 4(b). Generally,
the decision-making ability of our approach in a dynamic
environment outperforms that of DQN.

3) Impact of Task Completion Latency: The performance
comparison regarding the average task completion latency is
conducted and the simulation results are presented in Fig. 5,
where the x-coordinate denotes the number of tasks and the
y-coordinate denotes the average completion latency for all
the tasks in the optimization period. As shown in the figure,
as the number of tasks increases, the average completion
latency for all the approaches increases, since the amount
of computing resources allocated to individual tasks reduces.
The DQN approach is better than CCOS when the number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Performance comparison regarding average task completion latency.

Fig. 6. Performance comparison regarding average task completion rate.

of tasks is equal to 10. When the number of vehicular tasks
increases, CCOS is better than it. The policy gradient-based
optimization in our approach can exhibit superior decision-
making capabilities compared to the DQN approach, enabling
it to effectively adapt to dynamic environments and make
optimal offloading decisions with respect to the completion
latency. On the other hand, the random approach is highly
dynamic. When all the tasks are offloaded to the RSU for
execution, the performance is the worst all the time, regardless
of variations in the number of tasks. This observation can
be predictable, since the all-in-RSU approach only leverages
the computing capability of the RSU, ignoring the computing
resources of other service vehicles.

4) Impact of Task Completion Rate: Then, we present the
performance comparison regarding the task completion rate
with different numbers of tasks and the simulation results are
shown in Fig. 6. When the number of tasks is small, both
the service vehicle and the RSU can meet the requirements
of the tasks. This conclusion can be found in this figure, with
the number of tasks ranging between 10 and 15. However,
when the number of tasks increases, the random approach
becomes difficult to adapt to the dynamic environment, and
thus its performance gradually deteriorates. Similarly, within
the computing capacity of RSU, the all-in-RSU approach can
meet the requirements of the vast majority of tasks. However,

Fig. 7. Performance comparison regarding the offloading cost.

when RSU is overloaded or overwhelmed by the offloading
requests, the amount of computing resources allocated to
individual tasks is not enough to support the strict latency
requirement of tasks, which results in a significant increase
in task completion latency. Such an increment gives rise to
the constraint violation, consequently leading to a decrease
in the rate of task completion. CCOS exhibits a higher task
completion rate compared to other approaches, primarily due
to its superior adaptability in highly dynamic environments.
Notably, the random approach demonstrates the lowest task
completion rate.

5) Impact of Offloading Cost: The simulation results for
performance comparison regarding the offloading cost are
presented in Fig. 7. In general, the more the allocation of
computing resources to a task, the lower its completion latency
and the higher its offloading costs. Although service vehicles
offer a discounted service price based on the number of
received tasks, the initial unit price is higher than that of RSU.
In addition, due to the limitation of computing resources for
service vehicles, it is impossible to offload all the tasks to the
same service vehicle. For the weights of response latency and
offloading costs in the objective function, we set β1 and β2 to 1
and 0.5, respectively, which means that we pay more attention
to the response delay (i.e., the task completion latency).
Accordingly, more computing resources are allocated among
these tasks to satisfy their latency requirements, thus bringing
about more computing costs. Therefore, we can observe from
the figure that the offloading costs of CCOS and the DQN
approach are much higher than the other two approaches.
There is no consistent pattern between our approach and the
DQN approach. It takes less cost for the random approach and
the all-in-RSU approach.

6) Impact of Objective Values: The simulation results for
performance comparison regarding the objective values are
presented in Fig. 8. While the advantages of DRL-based
approaches may not be apparent when dealing with a small
number of tasks, CCOS demonstrates increasingly prominent
benefits in terms of the objective function and exhibits a
higher task completion rate as discussed earlier, when the
number of tasks increases. It shall be noted that the random
approach seems to have the best optimal values as shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: DRL-BASED COLLABORATIVE COMPUTATION OFFLOADING FOR DISTRIBUTED VEC 11

Fig. 8. Performance comparison regarding the objective values.

Fig. 9. Performance comparison with different numbers of service vehicles.

in the simulation results. However, this observation does not
align with objective facts for the following reasons. As shown
earlier in Fig. 6, the random approach has the worst task
completion rate, which means that the tasks in this approach
may take less offloading costs to accomplish the task, as shown
in Fig. 7. The reduction in offloading costs may lead to the
reduction of objective values, as the offloading cost as the
second component constitutes the objective function.

7) Impact of the Number of Service Vehicles: The per-
formance comparison for different approaches regarding the
number of service vehicles is conducted and the simulation
results are presented in Fig. 9. Similar to the earlier simulation
configuration, we also select the task completion latency, the
task completion rate, the objective values, and the offloading
costs as the evaluation metrics for different approaches.

The average task completion latency and completion rate
of the four approaches with different numbers of service
vehicles are presented in Fig. 9(a) and Fig. 9(b), respectively.
The simulation is conducted with a fixed number of 20 task
vehicles. First of all, the average task completion latency
and task completion rate in the all-in-RSU approach remain
unchanged, since this approach does not offload vehicular
tasks to any service vehicles. Also, we can observe that the
average task completion latency for other approaches gradually

decreases, with the increasing number of service vehicles. This
can be attributed to the increased contribution of computing
resources from newly joined service vehicles. On the other
hand, the growth in computing resources also mitigates the
pressure of RSU and existing service vehicles, which directly
improves the reliability of the VEC system, e.g., the task
completion rate for the approaches gradually increases as the
number of service tasks increases.

Fig. 9(c) presents the comparison of offloading costs with
the increasing number of service vehicles. Both the CCOS and
DQN approaches increase first and then begin to decrease.
The increment of the offloading costs at the beginning can
be attributed to the fact that more service vehicles bring
more computing resources that can be allocated to the task
execution. Hence, the offloading costs increase. The latter
reduction is due to the fact that more service vehicles will
effectively alleviate the burden on task-input data transmission
and consequently reduce transmission delay. As a result, the
overall response latency can be reduced, thereby mitigating
the urgent demand for computing resources to some extent.

Fig. 9(d) presents the comparison of the objective val-
ues with the increasing number of service vehicles. Firstly,
both our approach and the DQN approach exhibit a gradual
decrease in objective values, indicating their ability to adapt
to environmental changes. However, our approach demon-
strates superior decision-making capabilities compared to the
DQN approach. In contrast, the random approach exhibits
significant fluctuations. Generally, increasing the number of
service vehicles can enhance resource allocation, improve
system efficiency, reduce task completion latency, and increase
task completion rates. Nevertheless, employing the random
approach leads to substantial fluctuations and cannot make
optimal offloading decisions.

C. Engineering Applications

The Internet of Vehicles (IoV), as the most pivotal appli-
cation of 5G+ infrastructure, has recently received strong
support from national policies in China. The country is actively
promoting the coordinated development of “5G+ vehicle
networking”, integrating it into the national new information
infrastructure construction project, and further encouraging
the widespread implementation of LTE-V2X. Furthermore,
the collaborative advanced engineering team established by
renowned communication technology corporation Verizon and
automaker Nissan has successfully demonstrated the process-
ing of data collected from vehicles and RSUs at the edge of
Verizon’s wireless network, enabling near real-time delivery
of results back to the vehicles. Such advancements in the
engineering field accelerate the practical application of the-
oretical results revolving around task offloading and resource
allocation in VEC systems.

VI. CONCLUSION AND FUTURE WORK

The integration of high-end multi-core processors into ser-
vice vehicles not only enables local computation but also
facilitates resource provisioning in a pay-as-you-go manner.
Hence, in addition to RSU as the offloading destination,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

vehicles with abundant computing resources can also serve
as ENs for profit-seeking purposes. In this paper, we consider
collaborative computation offloading in the VEC system, in
which the service pricing fluctuates according to the dynamic
environments such as the offloading requests. We strive to
minimize the weighted sum of the task completion latency and
the offloading costs for all the tasks in the optimization period.
Specifically, a DRL-based algorithm is adopted to solve the
task offloading problem. The simulation results demonstrate
significant advantages over the comparison baselines in terms
of optimal values, task completion rate, and other evaluation
metrics.

For future work, we plan to integrate a more complex
VEC environment where multiple RSUs and many vehicles
with high mobility can serve as ENs to contribute their idle
computing resources.

REFERENCES

[1] C. Tang, H. Wu, and S. Xiao, “Lightweight reputation management
for multi-role Internet of Vehicles,” IEEE Internet Things Mag., vol. 6,
no. 2, pp. 38–42, Jun. 2023.

[2] Z. Wang, D. Zhao, M. Ni, L. Li, and C. Li, “Collaborative mobile
computation offloading to vehicle-based cloudlets,” IEEE Trans. Veh.
Technol., vol. 70, no. 1, pp. 768–781, Jan. 2021.

[3] K. Mishra, G. N. V. Rajareddy, U. Ghugar, G. S. Chhabra, and
A. H. Gandomi, “A collaborative computation and offloading for
compute-intensive and latency-sensitive dependency-aware tasks in
dew-enabled vehicular fog computing: A federated deep Q-learning
approach,” IEEE Trans. Netw. Service Manage., vol. 20, no. 4,
pp. 4600–4614, Dec. 2023.

[4] H. Wu, L. Tian, H. Tang, R. Li, and P. Jiao, “Graph convolutional
reinforcement learning-guided joint trajectory optimization and task
offloading for aerial edge computing,” IEEE Trans. Intell. Transp. Syst.,
pp. 1–12, 2024.

[5] T. H. Binh, D. B. Son, H. Vo, B. M. Nguyen, and H. T. T. Binh,
“Reinforcement learning for optimizing delay-sensitive task offloading
in vehicular edge–cloud computing,” IEEE Internet Things J., vol. 11,
no. 2, pp. 2058–2069, Jan. 2024.

[6] P. Li, Z. Xiao, X. Wang, K. Huang, Y. Huang, and H. Gao, “EPtask:
Deep reinforcement learning based energy-efficient and priority-aware
task scheduling for dynamic vehicular edge computing,” IEEE Trans.
Intell. Vehicles, vol. 9, no. 1, pp. 1830–1846, Jan. 2024.

[7] S. Cao et al., “Reinforcement learning based tasks offloading in vehicular
edge computing networks,” Comput. Netw., vol. 234, Oct. 2023, Art. no.
109894.

[8] W. Y. B. Lim et al., “Decentralized edge intelligence: A dynamic
resource allocation framework for hierarchical federated learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 536–550, Mar. 2022.

[9] H. Shen, Y. Tian, T. Wang, and G. Bai, “Slicing-based task offloading
in space-air-ground integrated vehicular networks,” IEEE Trans. Mobile
Comput., vol. 23, no. 5, pp. 4009–4024, May 2024.

[10] H. Tang, M. Du, H. Wu, P. Jiao, and R. Li, “TLCO: Topological link-
aware task co-offloading method for joint V2V and V2I system,” IEEE
Trans. Intell. Transp. Syst., pp. 1–13, 2025.

[11] J. Du, H. Wu, M. Xu, and R. Buyya, “Computation energy efficiency
maximization for NOMA-based and wireless-powered mobile edge com-
puting with backscatter communication,” IEEE Trans. Mobile Comput.,
vol. 23, no. 6, pp. 6954–6970, Jun. 2024.

[12] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[13] S. Mittal, R. K. Dudeja, R. S. Bali, and G. S. Aujla, “A distributed task
orchestration scheme in collaborative vehicular cloud edge networks,”
Computing, vol. 106, no. 4, pp. 1151–1175, Apr. 2024.

[14] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan, and M. Xiao, “Asynchronous
deep reinforcement learning for collaborative task computing and on-
demand resource allocation in vehicular edge computing,” IEEE Trans.
Intell. Transp. Syst., vol. 24, no. 12, pp. 15513–15526, Dec. 2023.

[15] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3,
pp. 683–697, Mar. 2022.

[16] Y. Sun, Z. Wu, K. Meng, and Y. Zheng, “Vehicular task offloading and
job scheduling method based on cloud-edge computing,” IEEE Trans.
Intell. Transp. Syst., vol. 24, no. 12, pp. 14651–14662, Dec. 2023.

[17] Z. Li, C. Yang, X. Huang, W. Zeng, and S. Xie, “CoOR: Collabo-
rative task offloading and service caching replacement for vehicular
edge computing networks,” IEEE Trans. Veh. Technol., vol. 72, no. 7,
pp. 9676–9681, Jul. 2023.

[18] J. Liu, N. Liu, L. Liu, S. Li, H. Zhu, and P. Zhang, “A proactive stable
scheme for vehicular collaborative edge computing,” IEEE Trans. Veh.
Technol., vol. 72, no. 8, pp. 10724–10736, Aug. 2023.

[19] L. Liu and Z. Chen, “Joint optimization of multiuser computation
offloading and wireless-caching resource allocation with linearly related
requests in vehicular edge computing system,” IEEE Internet Things J.,
vol. 11, no. 1, pp. 1534–1547, Jan. 2024.

[20] X. Chen, S. Hu, C. Yu, Z. Chen, and G. Min, “Real-time offloading for
dependent and parallel tasks in cloud-edge environments using deep
reinforcement learning,” IEEE Trans. Parallel Distrib. Syst., vol. 35,
no. 3, pp. 391–404, Mar. 2024.

[21] B. Cao, Z. Li, X. Liu, Z. Lv, and H. He, “Mobility-aware mul-
tiobjective task offloading for vehicular edge computing in digital
twin environment,” IEEE J. Sel. Areas Commun., vol. 41, no. 10,
pp. 3046–3055, Oct. 2023.

[22] J. Du, Y. Sun, N. Zhang, Z. Xiong, A. Sun, and Z. Ding, “Cost-effective
task offloading in NOMA-enabled vehicular mobile edge computing,”
IEEE Syst. J., vol. 17, no. 1, pp. 928–939, Mar. 2023.

[23] B. Hu, Y. Shi, and Z. Cao, “Adaptive energy-minimized scheduling of
real-time applications in vehicular edge computing,” IEEE Trans. Ind.
Informat., vol. 19, no. 5, pp. 6895–6906, May 2023.

[24] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial
computation offloading in collaborative edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 5, pp. 1133–1145, May 2021.

[25] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Trans. Intell. Transp.
Syst., vol. 24, no. 2, pp. 2169–2182, Feb. 2023.

[26] W. Miao, G. Min, X. Zhang, Z. Zhao, and J. Hu, “Performance
modelling and quantitative analysis of vehicular edge computing with
bursty task arrivals,” IEEE Trans. Mobile Comput., vol. 22, no. 2,
pp. 1129–1142, Feb. 2023.

[27] J. Zhou and X. Zhang, “Fairness-aware task offloading and resource
allocation in cooperative mobile-edge computing,” IEEE Internet Things
J., vol. 9, no. 5, pp. 3812–3824, Mar. 2022.

[28] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[29] L. Zhang et al., “DQN-based mobile edge computing for smart Internet
of Vehicle,” EURASIP J. Adv. Signal Process., vol. 2022, no. 1, p. 45,
Dec. 2022.

[30] W. Zhou et al., “Profit maximization for cache-enabled vehicular mobile
edge computing networks,” IEEE Trans. Veh. Technol., vol. 72, no. 10,
pp. 13793–13798, Oct. 2023.

[31] C. Tang, Y. Ding, S. Xiao, Z. Huang, and H. Wu, “Collaborative service
caching, task offloading, and resource allocation in caching-assisted
mobile edge computing,” IEEE Trans. Services Comput., vol. 18, no. 4,
pp. 1966–1981, Jul. 2025.

[32] C. Tang, Z. Li, S. Xiao, H. Wu, and W. Chen, “A bandwidth-fair
migration-enabled task offloading for vehicular edge computing: A
deep reinforcement learning approach,” CCF Trans. Pervas. Comput.
Interact., vol. 6, no. 3, pp. 255–270, Sep. 2024.

Chaogang Tang (Member, IEEE) received the B.S.
degree from Nanjing University of Aeronautics and
Astronautics, Nanjing, China, and the joint Ph.D.
degree from the School of Information Science and
Technology, University of Science and Technology
of China, Hefei, China, and the Department of
Computer Science, City University of Hong Kong,
in 2012. He is currently with China University
of Mining and Technology. His research interests
include mobile cloud computing, fog computing, the
Internet of Things, and big data.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: DRL-BASED COLLABORATIVE COMPUTATION OFFLOADING FOR DISTRIBUTED VEC 13

Zhao Li received the B.S. degree in computer
science and technology from Henan University of
Science and Technology, China, in 2022. He is cur-
rently pursuing the M.S. degree with the School of
Computer Science and Technology, China University
of Mining and Technology. His current research
interests include vehicular edge computing and deep
reinforcement learning.

Huaming Wu (Senior Member, IEEE) received the
B.E. and M.S. degrees in electrical engineering from
Harbin Institute of Technology, China, in 2009 and
2011, respectively, and the Ph.D. degree (Hons.)
in computer science from Freie Universität Berlin,
Germany, in 2015. He is currently a Professor at the
Center for Applied Mathematics, Tianjin University,
China. His research interests include mobile cloud
computing, edge computing, the Internet of Things,
deep learning, complex networks, and DNA storage.

Shuo Xiao received the Ph.D. degree in traffic
information engineering and control from Beijing
Jiaotong University in 2010. He has been with China
University of Mining and Technology since 2010,
where he is currently a Professor. His research inter-
ests include the Internet of Things and measurement
systems.

Ruidong Li (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science from
the University of Tsukuba in 2005 and 2008,
respectively. He is currently an Associate Profes-
sor at Kanazawa University, Japan. Before joining
this university, he was a Senior Researcher at the
National Institute of Information and Communi-
cations Technology (NICT), Japan. His research
interests include future networks, big data, intelli-
gent internet edge, the Internet of Things, network
security, information-centric network, artificial intel-

ligence, quantum internet, cyber-physical systems, and wireless networks. He
is a member of IEICE. He serves as the Secretary for the IEEE ComSoc
Internet Technical Committee (ITC) and the Founder and Chair for the IEEE
SIG on Big Data Intelligent Networking and the IEEE SIG on Intelligent
Internet Edge. He also served as the chairs for several conferences and
workshops, such as the General Co-Chair for IEEE MSN 2021, AIVR2019,
and IEEE INFOCOM 2019/2020/2021 ICCN Workshop, and the TPC
Co-Chair for IWQoS 2021, IEEE MSN 2020, BRAINS 2020, IEEE ICDCS
2019/2020 NMIC Workshop, and ICCSSE 2019. He is an Associate Editor
of IEEE INTERNET OF THINGS JOURNAL and also served as the Guest
Editor for a set of prestigious magazines, transactions, and journals, such
as IEEE Communications Magazine, IEEE Network, IEEE TRANSACTIONS
ON NETWORK SCIENCE AND ENGINEERING.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 02,2025 at 07:31:25 UTC from IEEE Xplore. Restrictions apply.

